On the Fixed-Parameter Tractability of Composition-Consistent Tournament Solutions

Hans Georg Seedig

COMSOC 2010 August 14, 2010

Joint work with Felix Brandt and Markus Brill

Overview

• Tournaments

- Components and Decomposition
- Tournament Solutions
 - Composition Consistency
- Parametrized Complexity
 - Fixed-parameter tractability
- Algorithm
- Experiments

Tournaments

- T=(A, >) is a tournament
 - A is a finite set of candidates or alternatives
 - > is an asymmetric and complete binary relation on the alternatives
 - a > b means 'a dominates b' or 'a is preferred over b'
 - pairwise majority outcome of an election
 - > may be cyclic
- Corresponds to complete oriented graph

Components in Tournaments

• Alternatives in a tournament form a component if they bear the same relationship to all outside alternatives

Components in Tournaments

• Alternatives in a tournament form a component if they bear the same relationship to all outside alternatives

Components in Tournaments

• Alternatives in a tournament form a component if they bear the same relationship to all outside alternatives

Decompositions

- A graph can be decomposed into components
- A decomposition of T=(A, >) is a set of pairwise disjoint components $\{B_1, B_2, ..., B_k\}$ such that $\bigcup B_i = A$
- The summary of T w.r.t this decomposition is the tournament on the components \check{T} , induced by T.

Decomposition Tree

- There is a unique minimal decomposition
- A component may be decomposable again
- Represent this recursive decompositions as a decomposition tree
- The decomposition degree δ is the maximum degree in the decomposition tree

 Decomposition degree δ is max. degree in decomp. tree

Tournament Solutions

- Given a tournament, what is the set of winners?
- Intuitively easy if one alternative c dominates all others
 - c is a Condorcet winner
 - does not exist in most tournaments
- A tournament solution S returns a non-empty subset of A, i.e., S(T)⊆A
- Many solution concepts have been proposed in the past
- Axiomatic approach: Do they have desirable properties?

Zoo of Tournament Solutions

- Copeland set
- Slater set

- Banks set
- Uncovered Set
- Minimal Covering Set (MC)
- Bipartisan Set (BP)
- TEQ
- Many tournament solutions are computationally hard
 - Slater, Banks and TEQ are NP-hard. MC and BP are in P but existing algorithms rely on linear programming and are thus rather inefficient.
 - All of these except Copeland and Slater satisfy composition-consistency.

Composition-Consistency

- A tournament solution S is composition-consistent if it chooses the 'best' alternatives from the 'best' components.
- Formally: S is composition-consistent if for all T, T summary of T w.r.t. some decomposition $\{B_1,...,B_k\}$

Fixed-Parameter Tractability

- Use parametrized complexity to analyze whether the hardness of a problem depends on the size of a certain parameter
- Consider a problem with parameter k fixed-parameter tractable (FPT) if there is an algorithm that solves it in time f(k) · poly(InputLength) where f is independent of the input length

Algorithm

- I. Compute the decomposition tree
- 2. Recursively compute tournament solution on components
- Decomposition tree computable in linear time!
 - Follows from results by McConnell and de Montgolfier (2005);
 Capelle et al. (2002) on modular decomposition of directed graphs
- Number of tournaments to solve is bounded by |A|-I
- Size of the largest tournament to solve equals the decomposition degree

Main Result

Given composition-consistent tournament solution S where computing S(T) with $|T| \le k$ takes time $\le f(k)$

compute decomposition tree wo

for solving a tournament

<u>Corollary</u>

Computing S(T) is fixed-parameter tractable w.r.t. $\delta(T)$.

Experiments

- Generate majority tournaments according to voting models
 - Noise model: Voters give "correct" ranking of each pair of alternatives with probability $p > \frac{1}{2}$
 - Spatial model: Alternatives and voters are located in [0,1]^d.
 Preferences according to Euclidian distances between voters and alternatives.
- a > b iff a majority prefers a to b

Noise model with p=0.55

Spatial model with d=2

Spatial model with d=20

Conclusion

- Exploiting composition-consistency can lead to dramatical speed ups in algorithms for tournament solutions
- All tournament solutions satisfying compositionconsistency are fixed-parameter tractable w.r.t. the decomposition degree
- δ=O(log^k |A|) for some k allows polynomial-time algorithms for tournament solutions that in general only admit algorithms of time O(2ⁿ)
- Future work
 - Measure positive effect by actual computation of compositionconsistent tournament solutions.
 - Use parallelization and lookup tables.

