

Fair Division under Ordinal Preferences: Computing Envy-Free Allocations of Indivisible Goods

Sylvain Bouveret Onera Toulouse Ulle Endr University of Am **Jérôme Lang** Université Paris Dauphine

Third International Workshop on Computational Social Choice Düsseldorf, September 13–16, 2010

Introduction

The fair division problem

Given

- a set of indivisible objects $O = \{o_1, \ldots, o_m\}$
- and a set of agents $A = \{1, \ldots, n\}$
- such that each agent has some preferences on the subsets of objects she may receive

Find

- an allocation $\pi: A \to 2^{O}$
- such that $\pi(i) \cap \pi(j)$ for every $i \neq j$
- satisfying some fairness and efficiency criteria

Separable ordinal preferences

- We assume that the preferences are ordinal.
- **Restriction**: each agent specifies a linear order \triangleright on *O* (single objects)

 $\mathcal{N}: a \rhd b \rhd c \rhd d$

Separable ordinal preferences

- We assume that the preferences are ordinal.
- **Restriction**: each agent specifies a linear order \triangleright on *O* (single objects)

 $\mathcal{N}: a \rhd b \rhd c \rhd d$

Problem: How to compare subsets of objects ?

$$\sim$$
 e.g abc $\stackrel{?}{\prec}\succ$ ab; ab $\stackrel{?}{\prec}\succ$ ac ?

Separable ordinal preferences

- We assume that the preferences are ordinal.
- **Restriction**: each agent specifies a linear order \triangleright on *O* (single objects)

 $\mathcal{N}: a \rhd b \rhd c \rhd d$

Problem: How to compare subsets of objects ?

$$\rightsquigarrow e.g \ abc \ \prec \succ \ ab; \ ab \ \prec \succ \ ac \ ?$$

• Assume monotonicity $\rightarrow e.g \ abc \succ ab$.

Separable ordinal preferences

- We assume that the preferences are ordinal.
- **Restriction**: each agent specifies a linear order \triangleright on *O* (single objects)

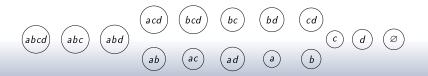
 $\mathcal{N}: a \rhd b \rhd c \rhd d$

Problem: How to compare subsets of objects ?

$$\sim$$
 e.g abc $\stackrel{?}{\prec}\succ$ ab; ab $\stackrel{?}{\prec}\succ$ ac ?

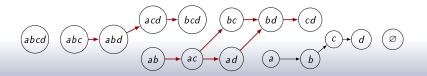
- Assume monotonicity $\rightarrow e.g \ abc \succ ab$.
- ② Assume separability: if $(X \cup Y) \cap Z = \emptyset$ then $X \succ Y$ iff $X \cup Z \succ Y \cup Z$. → e.g ab \succ ac.

- $\mathcal{N}: a \rhd b \rhd c \rhd d$
- Separability
- Monotonicity

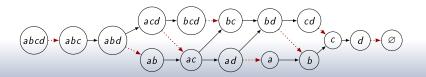


- $\mathcal{N}: a \rhd b \rhd c \rhd d$
- Separability
- Monotonicity

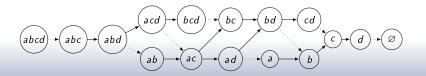
- $\mathcal{N}: a \rhd b \rhd c \rhd d$
- Separability
- Monotonicity



- $\mathcal{N}: a \rhd b \rhd c \rhd d$
- Separability
- Monotonicity



- $\mathcal{N}: a \rhd b \rhd c \rhd d$
- Separability
- Monotonicity



Dominance

Proposition

$X \succ_{\mathcal{N}} Y \Leftrightarrow \exists$ an injective mapping of improvements $Y \mapsto X$.

Dominance

Proposition

 $X \succ_{\mathcal{N}} Y \Leftrightarrow \exists$ an injective mapping of improvements $Y \mapsto X$.

Example: $\mathcal{N} = a \triangleright b \triangleright c \triangleright d \triangleright e \triangleright f$

• { a , c , d }
$$\succ_{\mathcal{N}}$$
 { b , c , e }

- { a , d , e } and { b , c , f } are incomparable.
- $\{a, c, d\}$ and $\{b, c, e, f\}$ are incomparable.

Dominance

Proposition

 $X \succ_{\mathcal{N}} Y \Leftrightarrow \exists$ an injective mapping of improvements $Y \mapsto X$.

Example:
$$\mathcal{N} = a \triangleright b \triangleright c \triangleright d \triangleright e \triangleright f$$

• {
$$a$$
 , c , d } $\succ_{\mathcal{N}}$ { b , c , e }

- $\{a, d, e\}$ and $\{b, c, f\}$ are incomparable.
- $\{a, c, d\}$ and $\{b, c, e, f\}$ are incomparable.

Dominance

Proposition

 $X \succ_{\mathcal{N}} Y \Leftrightarrow \exists$ an injective mapping of improvements $Y \mapsto X$.

Example: $\mathcal{N} = a \rhd b \rhd c \rhd d \rhd e \rhd f$

• {
$$a, c, d$$
 } > \mathcal{N} { b, c, e }

- { \vec{a} , d , e } and { b , \dot{c} , f } are incomparable.
- $\{a, c, d\}$ and $\{b, c, e, f\}$ are incomparable.

Dominance

Proposition

 $X \succ_{\mathcal{N}} Y \Leftrightarrow \exists$ an injective mapping of improvements $Y \mapsto X$.

Example: $\mathcal{N} = a \rhd b \rhd c \rhd d \rhd e \rhd f$

• { a , c , d }
$$\succ_{\mathcal{N}}$$
 { b , c , e }

- $\{a, d, e\}$ and $\{b, c, f\}$ are incomparable.
- $\{a, c, d\}$ and $\{b, c, e, f\}$ are incomparable.

Brams, S. J., Edelman, P. H., and Fishburn, P. C. (2004). Fair division of indivisible items. Theory and Decision, 5(2):147–180.

Brams, S. J. and King, D. (2005). Efficient fair division—help the worst off or avoid envy? Rationality and Society, 17(4):387–421. Fairness and efficiency

Envy-freeness

Fairness...

Envy-freeness

Fairness...

Envy-freeness: $\langle \succ_1, \ldots, \succ_n \rangle$ total strict orders, allocation π .

 π envy-free $\Leftrightarrow \forall i, j, \pi(i) \succ_i \pi(j)$

Envy-freeness

Fairness...

Envy-freeness: $\langle \succ_1, \ldots, \succ_n \rangle$ total strict orders, allocation π .

 π envy-free $\Leftrightarrow \forall i, j, \pi(i) \succ_i \pi(j)$

When $\langle \succ_1, \ldots, \succ_n \rangle$ are partial orders ?

Envy-freeness

Fairness...

Envy-freeness: $\langle \succ_1, \ldots, \succ_n \rangle$ total strict orders, allocation π .

 π envy-free $\Leftrightarrow \forall i, j, \pi(i) \succ_i \pi(j)$

When $\langle \succ_1, \ldots, \succ_n \rangle$ are partial orders ?

 \rightsquigarrow Envy-freeness becomes a modal notion

Possible and necessary Envy-freeness

- π is **Possibly Envy-Free** *iff* for all *i*, *j*, we have $\pi(j) \not\succ_i \pi(i)$;
- π is Necessary Envy-Free *iff* for all i, j, we have $\pi(i) \succ_i \pi(j)$.

Fairness and efficiency

Pareto-efficiency

Efficiency...

Fairness and efficiency

Pareto-efficiency

Efficiency...

- Complete allocation.
- Pareto-efficiency

Pareto-efficiency

Efficiency...

Classical Pareto dominance

 π' dominates π if for all $i, \pi'(i) \succeq_i \pi(i)$ and for some $j, \pi'(j) \succ_j \pi(j)$

Extended to possible and necessary Pareto dominance.

- π is *possibly Pareto-efficient* (PPE) if there exists no allocation π' such that π' necessarily dominates π .
- π' is *necessarily Pareto-efficient* (NPE) if there exists no allocation π' such that π' possibly dominates π .

Envy-freeness and efficiency

complete PPE NPE - Efficiency

Fair Division under Ordinal Preferences: Computing Envy-Free Allocations of Indivisible Goods

Envy-freeness and efficiency

Envy-freeness and efficiency

Fair Division under Ordinal Preferences: Computing Envy-Free Allocations of Indivisible Goods

PEF

NEF

Fairness

Х

Х

Envy-freeness and efficiency cannot always be satisfied simultaneously

X X X X

Х

Envy-freeness and efficiency cannot always be satisfied simultaneously

Questions:

- under which conditions is it guaranteed that there exists a allocation that satisfies Fairness and Efficiency ?
- how hard it is to determine whether such an allocation exists?

Complete possibly envy-free allocations

Complete possibly envy-free allocations

Result

n agents, m objects, k distinct goods are top-ranked by some agent.

 \exists complete PEF allocation $\Leftrightarrow m \ge 2n - k$.

Constructive proof (algorithm/protocol)

Example

 $\begin{array}{lll} \mathcal{N}_1: \ a \rhd \ b \rhd \ c \rhd \ d \rhd \ e \rhd \ f & \mathcal{N}_2: \ a \rhd \ d \rhd \ b \rhd \ c \rhd \ e \rhd \ f \\ \mathcal{N}_3: \ b \rhd \ a \rhd \ c \rhd \ d \rhd \ f \ \rhd \ e & \mathcal{N}_4: \ b \rhd \ a \rhd \ d \rhd \ e \rhd \ f \ \rhd \ c \\ \end{array}$

$$(k = 2; m = 6 \ge 2n - k)$$

Consider the agents in order 1 > 2 > 3 > 4:

- *first step*: give *a* to 1; give *b* to 3; 1 and 3 leave the room;
- second step: give d to 2; give c to 4;
- third step: give e to 4; give f to 2.

PPE-PEF allocations

PPE-PEF allocations

Result

 \exists PPE-PEF allocation $\Leftrightarrow \exists$ complete, PEF allocation.

Based on the characterization of efficient allocations in [Brams and King, 2005].

Brams, S. J. and King, D. (2005). Efficient fair division—help the worst off or avoid envy? Rationality and Society, 17(4):387–421.

NPE-PEF allocations

NPE-PEF allocations

Complexity of the existence of NPE-PEF allocations: open.

Complete NEF allocations

	complete	PPE	NPE
PEF	Х	Х	Х
NEF	\mathbf{X}	Х	Х

• Two easy necessary conditions:

- distinct top ranked objects;
- *m* is a multiple of *n*.

Complete allocation

- deciding whether there exists a complete NEF allocation is NP-complete (even if m = 2n).
- the problem falls down in *P* for two agents

(hardness by reduction from [X3C])

Pareto-efficient-NEF allocations

	complete	PPE	NPE
PEF	Х	Х	Х
NEF	Х	X	X

Possible and necessary Pareto-efficiency

- existence of a PPE-NEF allocation: NP-complete
- existence of a NPE-NEF allocation: NP-hard but probably not in NP $(\Sigma_2^p$ -completeness conjectured).

Conclusion

Results and beyond

Fair division with incomplete ordinal preferences:

- separable and monotone ordinal preferences;
- modal Pareto-efficiency and Envy-freeness.

	complete	PPE	NPE
PEF	P (algorithm)	P (algorithm)	?
NEF	NP-complete	NP-complete (P for 2 agents)	NP-hard (\Sigma_2^p-completeness conjectured)

Conclusion

Results and beyond

Fair division with incomplete ordinal preferences:

- separable and monotone ordinal preferences;
- modal Pareto-efficiency and Envy-freeness.

	complete	PPE	NPE
PEF	P (algorithm)	P (algorithm)	?
NEF	NP-complete	NP-complete (P for 2 agents)	NP-hard (\Sigma_2^p-completeness conjectured)

Beyond separable preferences ? CI-nets [Bouveret et al., 2009]. → Even dominance is PSPACE-complete.

Bouveret, S., Endriss, U., and Lang, J. (2009).

Conditional importance networks: A graphical language for representing ordinal, monotonic preferences over sets of goods. In Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAF09), pages 67–72, Pasadena, California.