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Introduction

The fair division problem

Given
a set of indivisible objects O = {o1, . . . , om}
and a set of agents A = {1, . . . , n}
such that each agent has some preferences on the subsets of objects she
may receive

Find
an allocation π : A→ 2

O

such that π(i) ∩ π(j) for every i 6= j

satisfying some fairness and efficiency criteria
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Ordinal preferences

Separable ordinal preferences

We assume that the preferences are ordinal.
Restriction: each agent specifies a linear order B on O (single objects)

N : a B b B c B d

Problem: How to compare subsets of objects ?
; e.g abc

?
≺� ab; ab

?
≺� ac ?

1 Assume monotonicity ; e.g abc � ab.
2 Assume separability: if (X ∪ Y ) ∩ Z = ∅ then X � Y iff X ∪ Z � Y ∪ Z .

; e.g ab � ac .
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Ordinal preferences

Example

N : a B b B c B d

Separability
Monotonicity

abcd abc abd

acd bcd

ab ac ad

bc bd cd

a b

c d ∅
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Ordinal preferences

Dominance

Proposition
X �N Y ⇔ ∃ an injective mapping of improvements Y 7→ X .

Example: N = a B b B c B d B e B f

{ a , c , d } �N { b , c , e }

{ a , d , e } and { b , c , f } are incomparable.
{a, c, d} and {b, c, e, f } are incomparable.
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Proposition
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Brams, S. J., Edelman, P. H., and Fishburn, P. C. (2004).
Fair division of indivisible items.
Theory and Decision, 5(2):147–180.

Brams, S. J. and King, D. (2005).
Efficient fair division—help the worst off or avoid envy?
Rationality and Society, 17(4):387–421.
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Fairness and efficiency

Envy-freeness

Fairness. . .

Envy-freeness: 〈�1, . . . ,�n〉 total strict orders, allocation π.

π envy-free ⇔ ∀i , j , π(i) �i π(j)

When 〈�1, . . . ,�n〉 are partial orders ?

; Envy-freeness becomes a modal notion
Possible and necessary Envy-freeness

π is Possibly Envy-Free iff for all i , j , we have π(j) 6�i π(i);
π is Necessary Envy-Free iff for all i , j , we have π(i) �i π(j).
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Fairness and efficiency

Pareto-efficiency
Efficiency. . .
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Fairness and efficiency

Pareto-efficiency
Efficiency. . .

Complete allocation.
Pareto-efficiency
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Fairness and efficiency

Pareto-efficiency
Efficiency. . .

Classical Pareto dominance
π′ dominates π if for all i , π′(i) �i π(i) and for some j , π′(j) �j π(j)

Extended to possible and necessary Pareto dominance.
π is possibly Pareto-efficient (PPE) if there exists no allocation π′ such
that π′ necessarily dominates π.
π′ is necessarily Pareto-efficient (NPE) if there exists no allocation π′

such that π′ possibly dominates π.
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Computing envy-free allocations

Envy-freeness and efficiency
complete PPE NPE Efficiency
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Computing envy-free allocations

Envy-freeness and efficiency
complete PPE NPE Efficiency

PEF
NEF

Fairness
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Computing envy-free allocations

Envy-freeness and efficiency
complete PPE NPE Efficiency

PEF X X X
NEF X X X

Fairness
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Computing envy-free allocations

Envy-freeness and efficiency
complete PPE NPE Efficiency

PEF X X X
NEF X X X

Fairness

Envy-freeness and efficiency cannot always be satisfied simultaneously
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Computing envy-free allocations

Envy-freeness and efficiency
complete PPE NPE Efficiency

PEF X X X
NEF X X X

Fairness

Envy-freeness and efficiency cannot always be satisfied simultaneously

Questions:
under which conditions is it guaranteed that there exists a allocation that
satisfies Fairness and Efficiency ?
how hard it is to determine whether such an allocation exists?
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Computing envy-free allocations – Possible envy-freeness

Complete possibly envy-free allocations

complete PPE NPE
PEF X X X
NEF X X X

Result
n agents, m objects, k distinct goods are top-ranked by some agent.

∃ complete PEF allocation ⇔ m ≥ 2n − k.

Constructive proof (algorithm/protocol)
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Computing envy-free allocations – Possible envy-freeness

Example

N1: a B b B c B d B e B f N2: a B d B b B c B e B f

N3: b B a B c B d B f B e N4: b B a B d B e B f B c

(k = 2; m = 6 ≥ 2n − k)

Consider the agents in order 1 > 2 > 3 > 4:
first step: give a to 1; give b to 3; 1 and 3 leave the room;
second step: give d to 2; give c to 4;
third step: give e to 4; give f to 2.
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Computing envy-free allocations – Possible envy-freeness

PPE-PEF allocations

complete PPE NPE
PEF X X X
NEF X X X

Result
∃ PPE-PEF allocation ⇔ ∃ complete, PEF allocation.

Based on the characterization of efficient allocations in
[Brams and King, 2005].

Brams, S. J. and King, D. (2005).
Efficient fair division—help the worst off or avoid envy?
Rationality and Society, 17(4):387–421.
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Computing envy-free allocations – Possible envy-freeness

NPE-PEF allocations

complete PPE NPE
PEF X X X
NEF X X X

Complexity of the existence of NPE-PEF allocations: open.
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Computing envy-free allocations – Necessary envy-freeness

Complete NEF allocations

complete PPE NPE
PEF X X X
NEF X X X

Two easy necessary conditions:
distinct top ranked objects;
m is a multiple of n.

Complete allocation
deciding whether there exists a complete NEF allocation is
NP-complete (even if m = 2n).
the problem falls down in P for two agents

(hardness by reduction from [X3C])
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Computing envy-free allocations – Necessary envy-freeness

Pareto-efficient-NEF allocations

complete PPE NPE
PEF X X X
NEF X X X

Possible and necessary Pareto-efficiency
existence of a PPE-NEF allocation: NP-complete
existence of a NPE-NEF allocation: NP-hard but probably not in NP

(Σp
2
-completeness conjectured).
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Conclusion

Results and beyond
Fair division with incomplete ordinal preferences:

separable and monotone ordinal preferences;
modal Pareto-efficiency and Envy-freeness.

complete PPE NPE

PEF P

(algorithm)
P

(algorithm)
?

NEF NP-complete NP-complete
(P for 2 agents)

NP-hard
(Σp

2
-completeness

conjectured)

Beyond separable preferences ? CI-nets [Bouveret et al., 2009].
; Even dominance is PSPACE-complete.

Bouveret, S., Endriss, U., and Lang, J. (2009).
Conditional importance networks: A graphical language for representing ordinal, monotonic preferences over sets of goods.
In Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI’09), pages 67–72, Pasadena,
California.

15 / 15
Fair Division under Ordinal Preferences: Computing Envy-Free Allocations of Indivisible Goods

N



Conclusion

Results and beyond
Fair division with incomplete ordinal preferences:

separable and monotone ordinal preferences;
modal Pareto-efficiency and Envy-freeness.

complete PPE NPE

PEF P

(algorithm)
P

(algorithm)
?

NEF NP-complete NP-complete
(P for 2 agents)

NP-hard
(Σp

2
-completeness

conjectured)

Beyond separable preferences ? CI-nets [Bouveret et al., 2009].
; Even dominance is PSPACE-complete.

Bouveret, S., Endriss, U., and Lang, J. (2009).
Conditional importance networks: A graphical language for representing ordinal, monotonic preferences over sets of goods.
In Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI’09), pages 67–72, Pasadena,
California.

15 / 15
Fair Division under Ordinal Preferences: Computing Envy-Free Allocations of Indivisible Goods

N


	Introduction
	Ordinal preferences
	Fairness and efficiency
	Computing envy-free allocations
	Possible envy-freeness
	Necessary envy-freeness

	Conclusion

