Pareto Stable Assignment

Ning Chen Arpita Ghosh

NTU, Singapore Yahoo! Research

COMSOC 2010

- Marriage model (Gale-Shapley, 1954)
 - n men, n women
 - Strict, complete, preferences
 - *Stable matching*: No blocking pair (*m*, *w*) where both prefer the other to current partner

Relaxing the Marriage Model

Pareto Stable Assignmen

Multi-unit demand

- Multi-unit demand
- Ties and incomplete lists:
 - No strict ordering: *m* can be indifferent amongst *w*
 - Unacceptable partners: Need not rank all w

Stable Matching with Indifferences

Pareto Stable Assignmen

Stable Matching with Indifferences

 Man/woman-optimal matching not well-defined; max-cardinality matching is NP-hard

Stable Matching with Indifferences

- Man/woman-optimal matching not well-defined; max-cardinality matching is NP-hard
- With indifferences, stable matchings need not be Pareto optimal:
 - 2 men, 2 women
 - i_1 strictly prefers j_1 to j_2
 - Remaining nodes indifferent amongst all partners
 - $(i_1, j_2), (i_2, j_1)$ is a stable matching
 - But not Pareto optimal:
 - Reassign $i_1 \rightarrow j_1$, $i_2 \rightarrow j_2$

• Matchings that are stable and Pareto optimal (Sotomayor)

- Strict refinement of stability
- 'Locally' optimal amongst stable matchings

• Matchings that are stable and Pareto optimal (Sotomayor)

- Strict refinement of stability
- 'Locally' optimal amongst stable matchings
- Other solution concepts
 - Strong & super-stable; maximum size & weight stable matchings
 - Existence or computability issues

- Do they always exist?
 - Yes: Pareto improvements are stability preserving

- Do they always exist?
 - Yes: Pareto improvements are stability preserving
- Can we find one?
 - Prior work: Yes, for both one-to-one and many-to-one markets (Erdil-Ergin, AER '07)

- Do they always exist?
 - Yes: Pareto improvements are stability preserving
- Can we find one?
 - Prior work: Yes, for both one-to-one and many-to-one markets (Erdil-Ergin, AER '07)
 - This talk: Many-to-many matching

- Bipartite graph M with nodes (A, B), edges E
- Node $i \in M$ has capacity constraint c_i

- Bipartite graph M with nodes (A, B), edges E
- Node $i \in M$ has capacity constraint c_i
- Feasible assignment $X = (x_{ij})_{(i,j)\in E}$:
 - $x_{ij} \ge 0$ is number of units assigned between $i \in A$ and $j \in B$

- Bipartite graph M with nodes (A, B), edges E
- Node $i \in M$ has capacity constraint c_i
- Feasible assignment $X = (x_{ij})_{(i,j)\in E}$:
 - $x_{ij} \ge 0$ is number of units assigned between $i \in A$ and $j \in B$

•
$$\sum_{j} x_{ij} \leq c_i; \sum_{i} x_{ij} \leq c_j$$

- *i* ∈ A has preference list P_i ranking neighbors {*j* ∈ B : (*i*, *j*) ∈ E}
- P_i can have ties, be incomplete

•
$$P_i = ([j_1, j_2], [j_3, j_5])$$

- *i* ∈ A has preference list P_i ranking neighbors {*j* ∈ B : (*i*, *j*) ∈ E}
- P_i can have ties, be incomplete

• $P_i = ([j_1, j_2], [j_3, j_5])$

- Preferences over sets of partners: Partial order induced by P_i
 - Erdil-Ergin (AER'07)

- $X = (x_{ij})$ is pairwise stable if there is no pair (i, j) such that
 - Both i, j have leftover capacity, or
 - *i* has leftover capacity and there is *i*', x_{i'j} > 0 with *i* ≻_j *i*' (or vice-versa), or
 - There are i' and $j', \, x_{ij'} > 0$ and $x_{i'j} > 0,$ such that $i \succ_j i'$ and $j \succ_i j'$

Pareto-stable Assignments

- Pareto optimality
 - Level function L_i(j) ∈ {1,...,n}: Ranking of j in i's preference list
 - For $X = (x_{ij})$, $x_i(\alpha) = \sum_{j \in L_i(j) \le \alpha} x_{ij}$
 - Y Pareto-dominates $X = (x_{ij})$ if:
 - $y_i(\alpha) \ge x_i(\alpha)$ for all i, α
 - At least one inequality is strict

Pareto-stable Assignments

Pareto optimality

Level function L_i(j) ∈ {1,...,n}: Ranking of j in i's preference list

• For
$$X = (x_{ij}), x_i(\alpha) = \sum_{j: L_i(j) \le \alpha} x_{ij}$$

• Y Pareto-dominates
$$X = (x_{ij})$$
 if:

- $y_i(\alpha) \ge x_i(\alpha)$ for all i, α
- At least one inequality is strict

• Pareto stability: Pairwise stability + Pareto optimality

- 'Augmenting path': $m_0 \rightarrow w_1 \xrightarrow{X} m_1 \rightarrow w_2 \xrightarrow{X} m_3 \ldots \rightarrow w_{k+1}$
 - m_0 and w_{k+1} have leftover capacity
 - $x_{m_\ell w_\ell} > 0$
 - m_ℓ weakly prefers $w_{\ell+1}$ to w_ℓ & w_ℓ weakly prefers $m_{\ell-1}$ to w_ℓ

- 'Augmenting path': $m_0 \rightarrow w_1 \stackrel{X}{\rightarrow} m_1 \rightarrow w_2 \stackrel{X}{\rightarrow} m_3 \ldots \rightarrow w_{k+1}$
 - m_0 and w_{k+1} have leftover capacity
 - $x_{m_\ell w_\ell} > 0$
 - m_ℓ weakly prefers $w_{\ell+1}$ to w_ℓ & w_ℓ weakly prefers $m_{\ell-1}$ to w_ℓ
- 'Augmenting cycle': $m_0 \rightarrow w_1 \stackrel{X}{\rightarrow} m_1 \rightarrow w_2 \stackrel{X}{\rightarrow} m_3 \ldots \rightarrow m_0$
 - At least one strict improvement

- 'Augmenting path': $m_0 \rightarrow w_1 \xrightarrow{X} m_1 \rightarrow w_2 \xrightarrow{X} m_3 \ldots \rightarrow w_{k+1}$
 - m_0 and w_{k+1} have leftover capacity
 - $x_{m_\ell w_\ell} > 0$
 - m_ℓ weakly prefers $w_{\ell+1}$ to w_ℓ & w_ℓ weakly prefers $m_{\ell-1}$ to w_ℓ
- 'Augmenting cycle': $m_0 \rightarrow w_1 \stackrel{X}{\rightarrow} m_1 \rightarrow w_2 \stackrel{X}{\rightarrow} m_3 \ldots \rightarrow m_0$
 - At least one strict improvement
- X is Pareto optimal iff no augmenting paths and cycles

- Matching: Unit capacity $c_i = 1$
- Suppose X is stable
- Reassigning via augmenting path or cycle of X preserves stability

• Construct directed bipartite graph on M

• Forward edges are *"weak improvement"* edges wrt X

• Construct directed bipartite graph on M

- Forward edges are "weak improvement" edges wrt X
- Backward edges: Pairings in X

• Construct directed bipartite graph on M

- Forward edges are *"weak improvement"* edges wrt X
- Backward edges: Pairings in X
- Finding Pareto improvements
 - Augmenting paths: Introduce source, sink linking to unmatched nodes in (A, B)
 - Cycles: One subgraph for each node with only strict improvement edges

- Multiunit demand: $c_i \ge 1$
- Concept of improvement edges for a node is not well defined
 - Nodes have multiple partners
 - Edge can be improvement for some partners but not others
 - Suppose $i (c_i = 2)$ is matched to j_1, j_3
 - $j_1 \succ_i j_2 \succ_i j_3$
 - (i, j₂) is improvement relative to (i, j₃), but not relative to (i, j₁)

- Make c_i copies of node i
- Improvement edges are well-defined: Unique neighbor in assignment
- But...

- Make c_i copies of node i
- Improvement edges are well-defined: Unique neighbor in assignment
- But...
- New graph size $\sum_i c_i + \sum_j c_j$
 - Exponential in input!

Algorithm Idea I: Defining Improvement Edges

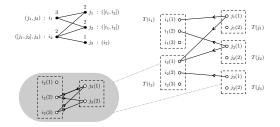
- Construct augmented graph G from original M
- Node structure in *G*: Create a copy of a node for *each level in its preference list*
 - Number of levels in preference list cannot exceed number of nodes

Algorithm Idea I: Defining Improvement Edges

- Construct augmented graph G from original M
- Node structure in *G*: Create a copy of a node for *each level in its preference list*
 - Number of levels in preference list cannot exceed number of nodes
- Edge Structure in G: Every augmenting path or cycle in any assignment X maps to feasible path or cycle in G

The Augmented Graph G

• G depends only on preferences P_i , independent of X



• Size of *G* polynomial in n = |M|; *independent* of c_i

Algorithm Idea II: Eliminating Pareto Improvements

- Start from arbitrary stable assignment X
- Construct sequence of networks *H* to remove all Pareto improvements:
 - H based on G; capacities based on assignment X
 - Increases in flow preserve stability; correspond to Pareto improvements

Algorithm Idea II: Eliminating Pareto Improvements

- Start from arbitrary stable assignment X
- Construct sequence of networks *H* to remove all Pareto improvements:
 - H based on G; capacities based on assignment X
 - Increases in flow preserve stability; correspond to Pareto improvements
- No remaining Pareto improvements after all networks have been executed once

Polynomial-time Algorithm for Pareto-Stability

- Identifying Pareto improvements in polynomial time
 - Create one copy for each preference level, rather than each unit of capacity
- *Removing* all Pareto improvements in polynomial time (convergence)
 - Reassignments do not re-introduce Pareto-improvements
 - Happens for slightly different construction of sequence of networks!

Many-to-many two-sided matching market

- Ties and incomplete preference lists
- Nodes on *both* sides have multi-unit capacities
- Multiple edges between pairs

- Many-to-many two-sided matching market
 - Ties and incomplete preference lists
 - Nodes on *both* sides have multi-unit capacities
 - Multiple edges between pairs
- Strongly polynomial time algorithm to find Pareto-optimal, pairwise-stable assignment

- What's next?
 - Work in progress: Algorithm for edge capacities, other models of set preferences

- What's next?
 - Work in progress: Algorithm for edge capacities, other models of set preferences
 - Broadly: What are limits of existence and computation of solution concepts in many-to-many matching?