Sum of Us Strategyproof Selection from the Selectors

Noga Alon **Felix Fischer** Ariel Procaccia Moshe Tennenholtz

3rd International Workshop on Computational Social Choice

The Problem

- Approval voting
 - each voter approves of set of candidates (of any size)
 - choose candidate (or committee of desired size) with largest number of votes
- Strategyproof (assuming dichotomous preferences)

The Problem

- Approval voting
 - each voter approves of set of candidates (of any size)
 - choose candidate (or committee of desired size) with largest number of votes
- Strategyproof (assuming dichotomous preferences)
- No longer the case when sets of candidates and voters coincide
 - scientific organizations (GTS, AMS, IEEE, IFAAMAS)
 - web graph, (directed) social networks, reputation systems

Outline

The Model

Deterministic Mechanisms

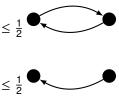
Randomized Mechanisms

Open Problems

- ▶ Set N = [n] of agents
- ▶ Directed graph $G = (N, E) \in G$, no self-loops
- ► Ideally: select $S \in S_k = \{T \subseteq N : |T| = k\}$ to maximize $\sum_{i \in S} \deg(i) = \sum_{i \in S} |\{j \in N : (j, i) \in E\}|$
- Mechanism $M: \mathcal{G} \to \Delta(\mathcal{S}_k)$
- Strategyproofness: probability of selecting *i* independent of edges (*i*, *j*) for *j* ∈ N

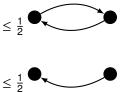
- ▶ Set *N* = [*n*] of agents
- ▶ Directed graph $G = (N, E) \in G$, no self-loops
- ► Ideally: select $S \in S_k = \{T \subseteq N : |T| = k\}$ to maximize $\sum_{i \in S} \deg(i) = \sum_{i \in S} |\{j \in N : (j, i) \in E\}|$
- Mechanism $M: \mathcal{G} \to \Delta(\mathcal{S}_k)$
- Strategyproofness: probability of selecting *i* independent of edges (*i*, *j*) for *j* ∈ N

- ▶ Set *N* = [*n*] of agents
- ▶ Directed graph $G = (N, E) \in G$, no self-loops
- ► Ideally: select $S \in S_k = \{T \subseteq N : |T| = k\}$ to maximize $\sum_{i \in S} \deg(i) = \sum_{i \in S} |\{j \in N : (j, i) \in E\}|$
- Mechanism $M: \mathcal{G} \to \Delta(\mathcal{S}_k)$
- Strategyproofness: probability of selecting *i* independent of edges (*i*, *j*) for *j* ∈ N



- ▶ Set N = [n] of agents
- ▶ Directed graph $G = (N, E) \in G$, no self-loops
- ► Ideally: select $S \in S_k = \{T \subseteq N : |T| = k\}$ to maximize $\sum_{i \in S} \deg(i) = \sum_{i \in S} |\{j \in N : (j, i) \in E\}|$
- Mechanism $M: \mathcal{G} \to \Delta(\mathcal{S}_k)$
- Strategyproofness: probability of selecting *i* independent of edges (*i*, *j*) for *j* ∈ N
- α -efficiency: for every graph,

$$\frac{\max_{S \in \mathcal{S}_k} \sum_{i \in S} \deg(i)}{\mathbb{E}_{S \sim \mathcal{M}} \left[\sum_{i \in S} \deg(i) \right]} \leq \alpha$$



- Set N = [n] of agents
- ▶ Directed graph $G = (N, E) \in G$, no self-loops
- ► Ideally: select $S \in S_k = \{T \subseteq N : |T| = k\}$ to maximize $\sum_{i \in S} \deg(i) = \sum_{i \in S} |\{j \in N : (j, i) \in E\}|$
- Mechanism $M: \mathcal{G} \to \Delta(\mathcal{S}_k)$
- Strategyproofness: probability of selecting *i* independent of edges (*i*, *j*) for *j* ∈ N
- α -efficiency: for every graph,

$$\frac{\max_{S \in \mathcal{S}_k} \sum_{i \in S} \deg(i)}{\mathbb{E}_{S \sim \mathcal{M}} \left[\sum_{i \in S} \deg(i) \right]} \le \alpha$$

upper bounds: mechanisms

lower bounds: impossibility results

Bad News

Theorem: Let $n \ge 2$, $k \le n - 1$. Then there is no strategyproof and α -efficient deterministic mechanism for any finite α .

Proof: ...

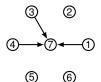
Bad News

Theorem: Let $n \ge 2$, $k \le n - 1$. Then there is no strategyproof and α -efficient deterministic mechanism for any finite α . *Proof:* ...

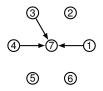
Particularly surprising for k = n - 1: cannot guarantee to select unique agent receiving any votes

- ▶ Assume for contradiction *M* was such a mechanism
- ▶ Since k < n, assume w.l.o.g. $n \notin M((N, \emptyset))$

- Assume for contradiction M was such a mechanism
- ▶ Since k < n, assume w.l.o.g. $n \notin M((N, \emptyset))$
- Restrict domain to stars with n at the center



- Assume for contradiction M was such a mechanism
- ▶ Since k < n, assume w.l.o.g. $n \notin M((N, \emptyset))$
- Restrict domain to stars with n at the center



► Isomorphic to $\{0, 1\}^{n-1}$, so we now look at a mechanism $M : \{0, 1\}^{n-1} \rightarrow S_k$

- (1) $n \notin M(\mathbf{0})$ (by assumption) (2) $n \in M(x)$ for all $x \in \{0, 1\}^{n-1} \setminus \{\mathbf{0}\}$ (by α -efficiency for finite α)
- (3) $i \in M(x)$ iff $i \in M(x + e_i)$ for all $x \in \{0, 1\}^{n-1}$ and $i \in N \setminus \{n\}$

(by strategyproofness)

(1)
$$n \notin M(\mathbf{0})$$
 (by assumption)
(2) $n \in M(x)$ for all $x \in \{0, 1\}^{n-1} \setminus \{\mathbf{0}\}$ (by α -efficiency for finite α)
(3) $i \in M(x)$ iff $i \in M(x + e_i)$ for all $x \in \{0, 1\}^{n-1}$ and $i \in N \setminus \{n\}$
(by strategyproofness)

$$\sum_{x \in \{0,1\}^{n-1}} |M(x)| = \sum_{i \in N} |\{x \in \{0,1\}^{n-1} : i \in M(x)\}|$$
$$= (2^{n-1} - 1) + \sum_{i \in N \setminus \{n\}} |\{x \in \{0,1\}^{n-1} : i \in M(x)\}|$$
$$\underbrace{\underbrace{}}_{\text{by (1) and (2)}}$$

(1)
$$n \notin M(\mathbf{0})$$
 (by assumption)
(2) $n \in M(x)$ for all $x \in \{0, 1\}^{n-1} \setminus \{\mathbf{0}\}$ (by α -efficiency for finite α)
(3) $i \in M(x)$ iff $i \in M(x + e_i)$ for all $x \in \{0, 1\}^{n-1}$ and $i \in N \setminus \{n\}$
(by strategyproofness)

$$\sum_{x \in \{0,1\}^{n-1}} |M(x)| = \sum_{i \in N} |\{x \in \{0,1\}^{n-1} : i \in M(x)\}|$$
$$= \underbrace{(2^{n-1} - 1)}_{\text{odd}} + \sum_{i \in N \setminus \{n\}} |\{x \in \{0,1\}^{n-1} : i \in M(x)\}|$$

(1)
$$n \notin M(\mathbf{0})$$
 (by assumption)
(2) $n \in M(x)$ for all $x \in \{0, 1\}^{n-1} \setminus \{\mathbf{0}\}$ (by α -efficiency for finite α)
(3) $i \in M(x)$ iff $i \in M(x + e_i)$ for all $x \in \{0, 1\}^{n-1}$ and $i \in N \setminus \{n\}$
(by strategyproofness)

$$\sum_{x \in \{0,1\}^{n-1}} |M(x)| = \sum_{i \in N} |\{x \in \{0,1\}^{n-1} : i \in M(x)\}|$$

= $(2^{n-1} - 1) + \sum_{i \in N \setminus \{n\}} |\{x \in \{0,1\}^{n-1} : i \in M(x)\}|$
odd even by (3)

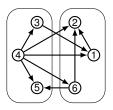
(1)
$$n \notin M(\mathbf{0})$$
 (by assumption)
(2) $n \in M(x)$ for all $x \in \{0, 1\}^{n-1} \setminus \{\mathbf{0}\}$ (by α -efficiency for finite α)
(3) $i \in M(x)$ iff $i \in M(x + e_i)$ for all $x \in \{0, 1\}^{n-1}$ and $i \in N \setminus \{n\}$
(by strategyproofness)

$$\underbrace{\sum_{x \in \{0,1\}^{n-1}}^{2^{n-1}k} |M(x)|}_{x \in \{0,1\}^{n-1}} = \sum_{i \in N} |\{x \in \{0,1\}^{n-1} : i \in M(x)\}| \\ = \underbrace{(2^{n-1}-1)}_{\text{odd}} + \underbrace{\sum_{i \in N \setminus \{n\}} |\{x \in \{0,1\}^{n-1} : i \in M(x)\}|}_{\text{even by (3)}}$$

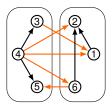
- 1. assign each agent i.i.d. to one of *m* sets
- 2. from each subset, select $\sim k/m$ agents with largest indegree based on edges from *other* subsets

- 1. assign each agent i.i.d. to one of *m* sets
- 2. from each subset, select $\sim k/m$ agents with largest indegree based on edges from *other* subsets

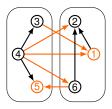
- 1. assign each agent i.i.d. to one of *m* sets
- 2. from each subset, select $\sim k/m$ agents with largest indegree based on edges from *other* subsets



- 1. assign each agent i.i.d. to one of m sets
- 2. from each subset, select $\sim k/m$ agents with largest indegree based on edges from *other* subsets



- 1. assign each agent i.i.d. to one of *m* sets
- 2. from each subset, select $\sim k/m$ agents with largest indegree based on edges from *other* subsets



Theorem: m-RP is (universally) strategyproof for all n, k, m and

- 4-efficient for m = 2,
- $1 + O(1/k^{\frac{1}{3}})$ -efficient for $m \sim k^{\frac{1}{3}}$.

Theorem: m-RP is (universally) strategyproof for all n, k, m and

- 4-efficient for m = 2,
- $1 + O(1/k^{\frac{1}{3}})$ -efficient for $m \sim k^{\frac{1}{3}}$.

Theorem: Let $n \ge 2$, $k \le n - 1$. Then there is no strategyproof and α -efficient mechanism for $\alpha < 1 + \Omega(1/k^2)$.

Theorem: m-RP is (universally) strategyproof for all n, k, m and

- 4-efficient for m = 2,
- $1 + O(1/k^{\frac{1}{3}})$ -efficient for $m \sim k^{\frac{1}{3}}$.

Theorem: Let $n \ge 2$, $k \le n - 1$. Then there is no strategyproof and α -efficient mechanism for $\alpha < 1 + \Omega(1/k^2)$. 2 for k = 1

Theorem: m-RP is (universally) strategyproof for all n, k, m and

- 4-efficient for m = 2,
- $1 + O(1/k^{\frac{1}{3}})$ -efficient for $m \sim k^{\frac{1}{3}}$.

Theorem: Let $n \ge 2$, $k \le n - 1$. Then there is no strategyproof and α -efficient mechanism for $\alpha < 1 + \Omega(1/k^2)$. 2 for k = 1

Group-strategyproofness: selecting k agents randomly is essentially optimal (n/k vs. (n-1)/k)

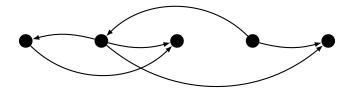
Theorem: m-RP is (universally) strategyproof for all n, k, m and

- 4-efficient for m = 2,
- $1 + O(1/k^{\frac{1}{3}})$ -efficient for $m \sim k^{\frac{1}{3}}$.

Theorem: Let $n \ge 2$, $k \le n - 1$. Then there is no strategyproof and α -efficient mechanism for $\alpha < 1 + \Omega(1/k^2)$. 2 for k = 1

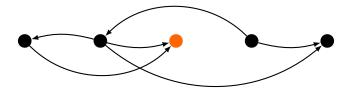
Group-strategyproofness: selecting k agents randomly is essentially optimal (n/k vs. (n-1)/k)

A Curious Mechanism



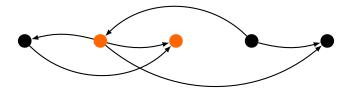
1. Fix an order on the agents

A Curious Mechanism



- 1. Fix an order on the agents
- 2. Choose first agent from left to right to receive any votes from its left (or agent *n* if there is no such agent)

A Curious Mechanism



- 1. Fix an order on the agents
- 2. Choose first agent from left to right to receive any votes from its left (or agent *n* if there is no such agent)
- Choose first agent from right to left to receive any votes from its right (or agent 1 if there is no such agent)

Thank you!

Alon, Fischer, Procaccia, Tennenholtz

Sum of Us

11