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The Problem

I Approval voting
I each voter approves of set of candidates (of any size)
I choose candidate (or committee of desired size) with largest

number of votes
I Strategyproof (assuming dichotomous preferences)

I No longer the case when sets of candidates and voters coincide
I scientific organizations (GTS, AMS, IEEE, IFAAMAS)
I web graph, (directed) social networks, reputation systems
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The Model Deterministic Randomized Open Problems

Sum of Us

I Set N = [n] of agents
I Directed graph G = (N,E) ∈ G, no self-loops
I Ideally: select S ∈ Sk = {T ⊆ N : |T | = k } to maximize∑

i∈S deg(i) =
∑

i∈S |{j ∈ N : (j, i) ∈ E}|
I Mechanism M : G → ∆(Sk )

I Strategyproofness: probability of selecting i
independent of edges (i, j) for j ∈ N

I α-efficiency: for every graph,

maxS∈Sk

∑
i∈S deg(i)

ES∼M [
∑

i∈S deg(i)]
≤ α
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The Model Deterministic Randomized Open Problems

Bad News

Theorem: Let n ≥ 2, k ≤ n − 1. Then there is no strategyproof
and α-efficient deterministic mechanism for any finite α.

Proof: . . .

Particularly surprising for k = n − 1: cannot guarantee to select
unique agent receiving any votes

Alon, Fischer, Procaccia, Tennenholtz Sum of Us 5



The Model Deterministic Randomized Open Problems

Bad News

Theorem: Let n ≥ 2, k ≤ n − 1. Then there is no strategyproof
and α-efficient deterministic mechanism for any finite α.

Proof: . . .

Particularly surprising for k = n − 1: cannot guarantee to select
unique agent receiving any votes

Alon, Fischer, Procaccia, Tennenholtz Sum of Us 5



The Model Deterministic Randomized Open Problems

Proof

I Assume for contradiction M was such a mechanism
I Since k < n, assume w.l.o.g. n < M((N, ∅))

I Restrict domain to stars with n at the center

7 1

23

4

5 6

I Isomorphic to {0, 1}n−1, so we now look at a mechanism
M : {0, 1}n−1 → Sk
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The Model Deterministic Randomized Open Problems

Proof

(1) n < M(0) (by assumption)
(2) n ∈ M(x) for all x ∈ {0, 1}n−1 \ {0} (by α-efficiency for finite α)
(3) i ∈ M(x) iff i ∈ M(x + ei) for all x ∈ {0, 1}n−1 and i ∈ N \ {n}

(by strategyproofness)

2n−1k (even)︷            ︸︸            ︷∑
x∈{0,1}n−1

|M(x)| =
∑
i∈N

|{x ∈ {0, 1}n−1 : i ∈ M(x)}|

= (2n−1 − 1)︸      ︷︷      ︸
odd

+
∑

i∈N\{n} |{x ∈ {0, 1}n−1 : i ∈ M(x)}|︸                                       ︷︷                                       ︸
even by (3)
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The Model Deterministic Randomized Open Problems

Random Partitions

Random m-partition (m-RP)

1. assign each agent i.i.d. to one of m sets

2. from each subset, select ∼k/m agents with largest indegree
based on edges from other subsets

23

4

6

1

5
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The Model Deterministic Randomized Open Problems

Bounds for Randomized Mechanisms

Theorem: m-RP is (universally) strategyproof for all n, k ,m and
I 4-efficient for m = 2,
I 1 + O(1/k

1
3 )-efficient for m ∼ k

1
3 .

Theorem: Let n ≥ 2, k ≤ n − 1. Then there is no strategyproof
and α-efficient mechanism for α < 1 + Ω(1/k 2).

Group-strategyproofness: selecting k agents randomly is
essentially optimal (n/k vs. (n − 1)/k )
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The Model Deterministic Randomized Open Problems

A Curious Mechanism

1. Fix an order on the agents

2. Choose first agent from left to right to receive any votes from its
left (or agent n if there is no such agent)

3. Choose first agent from right to left to receive any votes from its
right (or agent 1 if there is no such agent)
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The Model Deterministic Randomized Open Problems

Thank you!
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