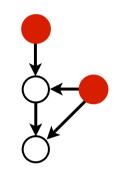
Bypassing Combinatorial Protections Polynomial-Time Algorithms for Single-Peaked Electorates

Markus Brill

COMSOC 2010 Düsseldorf

Joint work with Felix Brandt, Edith Hemaspaandra, and Lane Hemaspaandra

Voting Rules


- C = {a,b,c,...} is a finite set of candidates or alternatives
- A voting rule f maps a vector $V = (v_1, v_2, ..., v_n)$ of votes to a non-empty subset $f(V) \subseteq C$ of candidates
 - ignores tie-breaking
- Ranking-based voting rules
 - each vote is a complete ranking of the candidates: $v_i = [b >_i a >_i c]$
- Approval-based voting rules
 - each vote is a set of "approved" candidates: $v_i = \{a, b\}$

Voting rules (2)

• Ranking-based voting rules

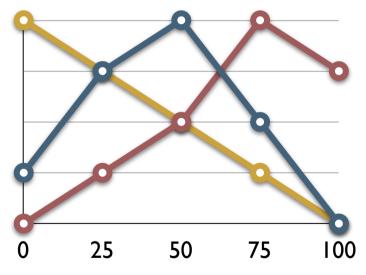
- Many rules are defined via pairwise comparisons (majority graphs)
- Weak Condorcet winners: all candidates without pairwise defeats

- A weakCondorcet rule is a rule that precisely returns all weak Condorcet winners whenever at least one exists
- Llull's rule yields all candidates with minimal number of pairwise defeats
- Young, Kemeny, Dodgson, Maximin, Fishburn, Schwartz, ...
- Approval voting
 - yields all candidates with maximal number of approvals

Swaying Elections

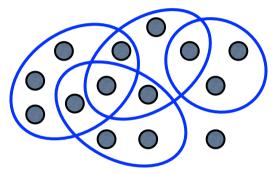
- People may try to influence the outcome of an election by
 - manipulating the voters' preferences
 (e.g., bribery, campaigning, strategic manipulation)
 - changing the election's structure (e.g., introducing primaries, adding/deleting voters and/or candidates)
- All voting rules are vulnerable to at least some of these attacks
 - But: Attacker's task may be computationally intractable due to combinatorial challenges (e.g., covering or partition problems) [BTT 1989]
- Are such computational protections meaningful in practice?
 - NP-hardness is a worst-case measure
 - heuristics that find successful manipulations in "most" instances
 - approximation algorithms

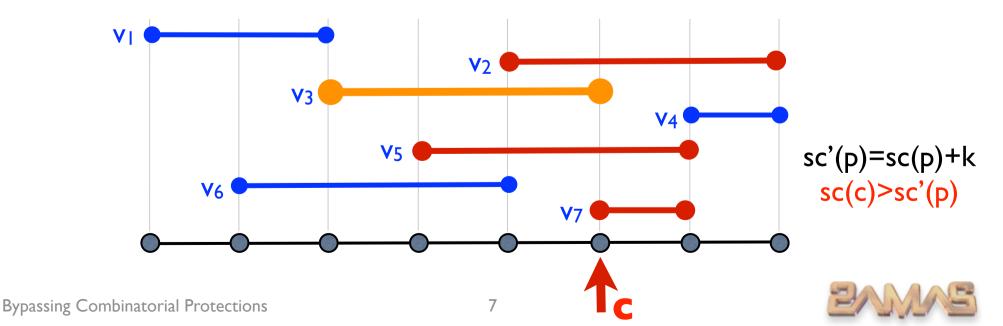
Single-Peaked Preferences


- What should be the registration fee for COMSOC 2010?
 - Candidates: €0, €25, €50, €75, €100

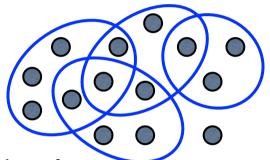
• Jörg	• Vince	O Markus	
€50	€75	€0	
€25	€ 00	€25	
€75	€50	€50	
€0	€25	€75	
€100	€0	€100	0 25 50 75 100

Single-Peaked Preferences (2)


- Preferences are single-peaked iff there exists a linear ordering over C such that if b lies between a and c, then (a $>_i$ b \Rightarrow b $>_i$ c) for all voters i
 - natural variant for approval votes: approved candidates form an interval
 - Popular model in political science
 - left-right political spectrum
 - Singled-peakedness can be checked in polynomial time [BT 1986]
 - weak Condorcet winners always exist (nice characterization in terms of median voters)



Bribery


- Is it possible to bribe at most k voters such that p wins?
 - NP-complete for approval voting
 - reduction from X3C [FHH 2009]
 - Theorem: For single-peaked electorates, approval bribery is in P

Bribery

- Is it possible to bribe at most k voters such that p wins?
 - NP-complete for approval voting
 - reduction from X3C [FHH 2009]
 - Theorem: For single-peaked electorates, approval bribery is in P

- NP-hard for Llull's rule and [FHH 2009] Kemeny's rule
- Theorem: For single-peaked electorates, this problem is in P for all weakCondorcet rules
 - e.g., Fishburn, Maximin, Young, Llull, Kemeny, Schwartz, Nanson, etc.

Control

- Is it possible to add/delete k voters such that p wins?
 - NP-hard for Kemeny's rule and Young's rule
 - Theorem: For single-peaked electorates, both problems are in P for all weakCondorcet rules
- Can the set of voters be partitioned into two subsets (primary elections) such that *p* wins the final election?
 - ▶ NP-complete for Llull's rule [FHHR 2009]
 - Theorem: For single-peaked electorates, this problem is in P for all weakCondorcet rules

2x	lх	2x	Ix
b	а	с	а
а	b	а	С
С	с	b	b

Manipulation

- Constructive coalition weighted manipulation problem: Is it possible to set the preferences of manipulative voters such that p wins?
- We completely characterize all scoring rules where CCWM is in P or NP-complete for single-peaked electorates, respectively

Conclusion

- It has been shown in previous work that various manipulative attacks on voting rules are computationally intractable
- In many realistic settings preferences may be assumed to be single-peaked
- The preference profiles constructed in many hardness proofs are so intricate that they cannot be realized by single-peaked electorates
- Good news: Young, Kemeny, and Dodgson winners can be computed in P for single-peaked electorates