Int	roduction	Kernelization results	Conclusio
00	000000	000000	00

On Problem Kernels for Possible Winner Determination Under the *k*-Approval Protocol

Nadja Betzler

Friedrich-Schiller-Universität Jena, Germany

3rd Workshop on Computational Social Choice September 2010

イロト イポト イヨト イヨト

Motivation

Typical voting scenario for joint decision making:

Voters give preferences over a set of candidates as linear orders.

Example: candidates: $C = \{a, b, c, d\}$

p

orofile:	vote 1:	а	>	b	>	С	>	d
	vote 2:	а	>	d	>	С	>	b
	vote 3:	b	>	d	>	с	>	а

Aggregate preferences according to a voting rule

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Partial information

Realistic settings: voters might only provide partial information.

For example:

- not all voters have given their preferences yet
- new candidates are introduced
- a voter cannot compare several candidates because of lack of information

How to deal with partial information?

We consider whether a distinguished candidate can still win.

<ロト < 団ト < 団ト < 団ト

Introduction	Kernelization results	Conclusion
Partial vote		

A partial vote is a transitive and antisymmetric relation.

Example: $C = \{a, b, c, d\}$ partial vote: $a \succ b \succ c, a \succ d$

possible extensions:

- $\mathbf{0} \ a > \mathbf{d} > b > c$
- 2 a > b > d > c
- $a > b > c > \mathbf{d}$

An extension of a profile of partial votes extends every partial vote.

Computational Problem

Possible Winner

Input: A voting rule r, a set of candidates C, a profile of partial votes, and a distinguished candidate c. **Question:** Is there an extension profile where c wins according to r?

Considered voting rule:

k-approval

In every vote, the best k candidates get one point each. A candidate with most points in total wins.

イロト イポト イヨト イヨト

Known results for **POSSIBLE WINNER**

Results for several voting systems, [Konczak and Lang, 2005], [Pini et al., IJCAI 2007], [Walsh, AAAI 2007], [Xia and Conitzer, AAAI 2008], ...

Results for k-approval

- POSSIBLE WINNER is NP-hard for two (or more) partial votes [Betzler, Hemmann, and Niedermeier, IJCAI 2009]
- POSSIBLE WINNER is NP-hard for any fixed k ∈ {2,..., m − 2} for m candidates

[Betzler and Dorn, JCSS 2010]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Known results for **POSSIBLE WINNER**

Results for several voting systems, [Konczak and Lang, 2005], [Pini et al., IJCAI 2007], [Walsh, AAAI 2007], [Xia and Conitzer, AAAI 2008], ...

Results for k-approval

- POSSIBLE WINNER is NP-hard for two (or more) partial votes [Betzler, Hemmann, and Niedermeier, IJCAI 2009]
- POSSIBLE WINNER is NP-hard for any fixed $k \in \{2, ..., m-2\}$ for *m* candidates

[Betzler and Dorn, JCSS 2010]

This work

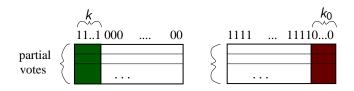
Is the POSSIBLE WINNER problem easy to compute when the number k of "one-positions" **and** the number of votes is small?

・ロト ・聞ト ・ヨト ・ヨト

Combined parameters

2 scenarios:

- "number of partial votes" and "number of one-positions" k
- "number of partial votes" and "number of zero-positions" k_0



Motivation: Small committee selects few winners/losers out of a large set of candidates (grants, graduate students, ...)

イロト イポト イヨト イヨト

Kernelization results

Conclusion

Parameterized Complexity

Given an NP-hard problem with input size n and a parameter p**Basic idea:** Confine the combinatorial explosion to p

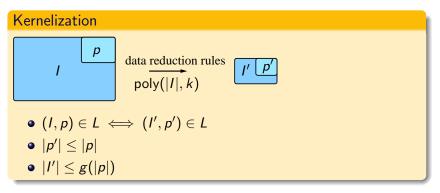
Definition

A problem of size *n* is called *fixed-parameter tractable* with respect to a parameter *p* if it can be solved in $f(p) \cdot n^{O(1)}$ time.

Parameters: pairs of integers

8/17

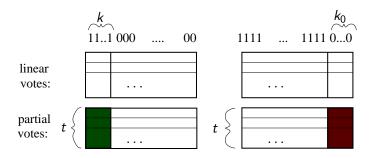
Let $L \subseteq \Sigma^* \times \Sigma^*$ be a parameterized problem. An instance of L is denoted by (I, p).



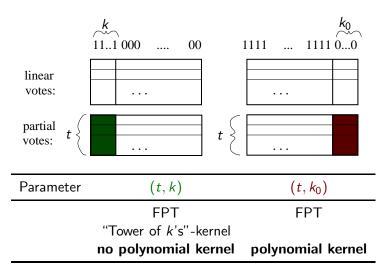
If g is a polynomial, we say L admits a polynomial problem kernel.

イロト イポト イヨト

Introduction	Kernelization results	Conclusion
0000000	●00000	00
Main results		



Introduction	Kernelization results	Conclusion
0000000	●00000	00
N.4. 1		
Main results		



Ξ

・ロト ・聞ト ・ヨト ・ヨト

 Fix the distinguished candidate c as good as possible
 z(c') := # zero-positions such that c' is beaten by c
 If ∑_{c'∈C} z(c') > t ⋅ k₀, then return "no" else replace "irrelevant" candidates by a bounded number.

Example: $C := \{a, b, c, d_1, \dots, d_s\}, k_0 = 2$

candidate	points in linear votes
d_i	≤ 10
b	11
а	12
С	12

partial votes:

$$v_1 : a \succ c, \ b \succ d_1, \ d_2 \succ d_3$$
$$v_2 : d_1 \succ d_2 \succ \cdots \succ d_s \succ b \succ c$$
$$v_3 : d_s \succ c, \ a \succ d_2$$

 Fix the distinguished candidate c as good as possible
 z(c') := # zero-positions such that c' is beaten by c
 If ∑_{c'∈C} z(c') > t ⋅ k₀, then return "no" else replace "irrelevant" candidates by a bounded number.

Example: $C := \{a, b, c, d_1, d_2, \dots, d_s\}$, $k_0 = 2$

candidate	points in linear votes
di	\leq 10
b	11
а	12
С	12

partial votes:

$$\begin{array}{ll} v_1: a \succ c, \ b \succ d_1, \ d_2 \succ d_3, \ c \succ C \setminus \{c, a\} & \Rightarrow a > c > \dots \\ v_2: d_1 \succ d_2 \succ \dots \succ d_s \succ b \succ c \\ v_3: d_s \succ c, \ a \succ d_2, \ c \succ C \setminus \{c, d_s\} & \Rightarrow d_s > c > \dots \end{array}$$

э

 Fix the distinguished candidate c as good as possible
 z(c') := # zero-positions such that c' is beaten by c
 If ∑_{c'∈C} z(c') > t ⋅ k₀, then return "no" else replace "irrelevant" candidates by a bounded number.

Example: $C := \{a, b, c, d_1, d_2, \dots, d_s\}$, $k_0 = 2$

candidate	points in linear votes	# zero-positions
di	≤ 10	0
Ь	11	1
а	12	2
с	12	

partial votes:

$$v_1: a \succ c, b \succ d_1, d_2 \succ d_3, c \succ C \setminus \{c, a\}$$
$$v_2: d_1 \succ d_2 \succ \cdots \succ d_s \succ b \succ c$$
$$v_3: d_s \succ c, a \succ d_2, c \succ C \setminus \{c, d_s\}$$

э

 Fix the distinguished candidate c as good as possible
 z(c') := # zero-positions such that c' is beaten by c
 If ∑_{c'∈C} z(c') > t ⋅ k₀, then return "no" else replace "irrelevant" candidates by a bounded number.

Example: $C := \{a, b, c, d, d_1, d_2, \dots, d_s\}, k_0 = 2$

candidate	points in linear votes	# zero-positions
di	≤ 10	0
Ь	11	1
а	12	2
с	12	

partial votes:

$$\begin{array}{ll} v_{1}: a \succ c, \ b \succ d_{1}, \ d_{2} \succ d_{3}, \ c \succ C \setminus \{c, a\} & \Rightarrow \ a \succ c \succ b \succ d \\ v_{2}: d_{1} \succ d_{2} \succ \cdots \succ d_{s} \succ b \succ c & \Rightarrow \ d \succ b \succ c \\ v_{3}: d_{s} \succ c, \ a \succ d_{2}, \ c \succ C \setminus \{c, d_{s}\} & \Rightarrow \ c \succ a \succ d \end{array}$$

Polynomial kernels

Theorem

For *k*-approval, POSSIBLE WINNER with *t* partial votes and k_0 zero-positions admits a polynomial kernel with $O(t \cdot k_0^2)$ candidates.

Crucial idea: Number of candidates that **have to** take **zero-positions** is bounded in a yes-instance.

Why does this not work for (t, k)?

イロト イポト イヨト イヨト

Polynomial kernels

Theorem

For *k*-approval, POSSIBLE WINNER with *t* partial votes and k_0 zero-positions admits a polynomial kernel with $O(t \cdot k_0^2)$ candidates.

Crucial idea: Number of candidates that **have to** take **zero-positions** is bounded in a yes-instance.

```
Why does this not work for (t, k)?
```

In a yes-instance, there might be an unbounded number of candidates that **may** take a **one-position**.

Theorem

For k-approval, POSSIBLE WINNER with t partial votes does not admit a polynomial kernel wrt. (t, k) unless coNP \subseteq NP/poly.

< (1)

Overview of kernelization results

POSSIBLE WINNER for *k*-approval with *t* partial votes k_0 denotes the number of zero-positions

(t, k_0)	(t, k)
polynomial kernel (FPT)	superexponential kernel (FPT) no polynomial kernel 2-approval : polynomial kernel with $O(t^2)$ candidates

3

Introduction	Kernelization results	Conclusion
0000000	000000	00

Future work

Counting variant: In how many extensions does a distinguished candidate win?
 Some first results in

[BACHRACH, BETZLER, AND FALISZEWSKI, AAAI 2010]

- Can the results from this work be transferred to other voting rules.
- kernelization for related problems

3

<ロト < 聞 > < 置 > < 置 > …

Introduction	Kernelization results	Conclusion
0000000	000000	00

Future work

- Counting variant: In how many extensions does a distinguished candidate win?
 Some first results in
 [BACHRACH, BETZLER, AND FALISZEWSKI, AAAI 2010]
- Can the results from this work be transferred to other voting rules.
- kernelization for related problems

Thank you

<ロト < 聞 > < 置 > < 置 > …