
Institut für Informatik
Heinrich-Heine-Universität Düsseldorf

Proceedings of the Third International Workshop

on Computational Social Choice

(COMSOC-2010)

Vincent Conitzer & Jörg Rothe (eds.)

Printed by Düsseldorf University Press



Program Committee

Felix Brandt TU München, Germany
Vincent Conitzer (co-chair) Duke University, Durham, NC, USA
Edith Elkind Nanyang Technological University of Singapore, Singapore
Ulle Endriss University of Amsterdam, The Netherlands
Piotr Faliszewski AGH University Krákow, Poland
Michael R. Fellows University of Newcastle, Australia
Marc Kilgour Wilfried Laurier University, Waterloo, Canada
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Preface

Computational social choice, an interdisciplinary field of study at the interface of social
choice theory and computer science, promotes a bidirectional exchange of ideas between
both fields. On the one hand, techniques developed in computer science (such as complex-
ity analysis or algorithm design) are applied to social choice mechanisms (such as voting
procedures or fair division protocols) and problems related to them. On the other hand,
concepts from social choice theory are imported into computing. For instance, social wel-
fare orderings originally developed to analyze the quality of resource allocations in human
society are equally well applicable to problems in multiagent systems or network design.

Social choice theory is concerned with the design and analysis of methods for collective
decision making. Much classical work in the field has focused on establishing abstract results
on the existence of procedures meeting certain requirements, but such work has not usually
taken computational issues into account. For instance, while it may not be possible to design
a voting protocol that makes it impossible for a voter to cheat in one way or another, it may
well be the case that cheating successfully turns out to be a computationally intractable
problem, which may therefore be deemed an acceptable risk. Examples of topics studied
in computational social choice include the complexity-theoretic analysis of voting protocols
(with respect to both developing computationally feasible mechanisms and exploiting com-
putational intractability as a means against strategic manipulation), and the application
of techniques developed in artificial intelligence and logic to the compact representation of
preferences in combinatorial domains.

These and other COMSOC topics are well represented in these proceedings of the Third
International Workshop on Computational Social Choice (COMSOC-2010), hosted by the
Institut für Informatik at Heinrich-Heine-Universität Düsseldorf on September 13–16, 2010.
As with the previous two workshops in this biennial series (COMSOC-2006 in Amsterdam
and COMSOC-2008 in Liverpool), our aim in organizing COMSOC-2010 has been to bring
together different communities: computer scientists interested in computational issues in
social choice; people working in artificial intelligence and multiagent systems who are using
ideas from social choice to organize societies of artificial software agents; logicians interested
in the logic-based specification and analysis of social procedures (social software); and last
but not least people coming from social choice theory itself. Moreover, COMSOC-2010 will
be held in association and co-located with the COST Action “Algorithmic Decision Theory.”

We received 57 submissions,1 which again represents an increase over the previous COM-
SOC workshop. Each submission was reviewed by at least two members of the program
committee, supported by many additional reviewers. Eventually, 39 papers were accepted
to be presented at the workshop and to be included—in revised form—in these proceedings.
As with the previous two COMSOC workshops, the Call for Papers explicitly solicited sub-
missions of both original papers and of papers describing recently published work, so some of
the papers have recently appeared in other publication venues as well or may be submitted
elsewhere soon. The copyright of the articles in this volume lies with the individual authors.

In addition, the proceedings contain short abstracts of talks to be given by our invited
speakers: Gabrielle Demange (Paris School of Economics), Matthew O. Jackson (Stanford
University), Bettina Klaus (University of Lausanne), Hervé Moulin (Rice University), and
Hannu Nurmi (University of Turku). A wide range of COMSOC topics is covered by both the

1This is not counting the paper “When Alternatives Vote over Voters” submitted by Marky D. Kondor VII
of the University of International Waters, which proposed an “ambitious novel research agenda of inverted
social choice” (where the alternatives rank the voters). We were about to label the paper as rejected when
Marky informed us that due to tight competition from other workshops his paper had to reject COMSOC
(but agreed with a preprint in our proceedings), and he encourages us to continue reviewing his papers in
the future. Good luck, Marky, with submitting your paper to COSMOC-2011! The COSMOC workshop
series—as proposed in Marky’s paper—will take place biennially in odd years.
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invited talks and the contributed papers, spanning complexity issues in winner determination
for voting systems and tournament solutions as well as strategic manipulations (both in the
term-of-art sense of manipulation and in the related senses of bribery, control, and cloning
in elections); multiagent resource allocation, fairness, judgement aggregation, and cake-
cutting algorithms; approximating voting rules; determining possible winners in elections
and studying single-peaked electorates; coalition formation and cooperative game theory;
mechanism design in social choice and mechanism design with payments; and matching
problems in social choice as well as pure social choice and political science topics.

COMSOC-2010 continues a “tradition” established at COMSOC-2008: The actual work-
shop is preceded by a day of tutorials, which will help newcomers to the field to get ac-
quainted with computational social choice in an easily accessible manner. Vincent Conitzer
(Duke University) will give a general introductory tutorial and more specific invited tuto-
rials will be presented by Agnieszka Rusinowska (Université Paris 1 Panthéon-Sorbonne),
Nicolaus Tideman (Virginia Tech), and Toby Walsh (NICTA and University of NSW). Our
tutorial day is called the “LogICCC Tutorial Day”—LogICCC is a EUROCORES program
of the European Science Foundation (ESF) that supports several collaborative research
projects, including “Computational Foundations of Social Choice” and “Social Software for
Elections, the Allocation of Tenders and Coalition/Alliance Formation,” which both are
closely related to COMSOC. In addition, there will be a special LogICCC session, and the
abstracts of the LogICCC tutorials and short talks are also contained in the proceedings.

First and foremost, we thank Ulle Endriss and Jérôme Lang for starting and coordinating
the COMSOC workshop series and for their help and advice in organizing COMSOC-2010.
We thank the authors for their excellent papers, the workshop participants for attending (at
the time of this writing, more than 80 have already registered), and the PC members for
their support, advice, and hard work during the preparation for COMSOC-2010. Both our
PC members and the additional reviewers wrote high-quality reviews, and they did so under
a lot of time pressure. We also thank the many people who have been engaged in the local
organization of COMSOC-2010, in particular the Düsseldorf Organizing Team—especially
Dorothea Baumeister and Claudia Forstinger for their huge amount of work, Gábor Erdélyi,
Claudia Lindner, Magnus Roos, Lena Piras, Anja Rey, Alina Elterman, Florian Klein, Nhan-
Tam Nguyen, and Hilmar Schadrack for their organizational help; Isabelle Mehlhorn, Bernd
Prümm, and Irene Rothe for the cover design; Heinz Mehlhorn from Düsseldorf University
Press for his help and advice; and Eva Hoogland from ESF for her helpful advice and sup-
port. Finally, we are grateful to the sponsors of COMSOC-2010 for their generous financial
support: the Deutsche Forschungsgemeinschaft and the European Science Foundation.

The topics covered in these proceedings are examples of a wider trend towards inter-
disciplinary research involving all of decision theory, game theory, social choice, and wel-
fare economics on the one hand, and computer science, artificial intelligence, multiagent
systems, operations research, and computational logic on the other. In particular, the
mutually beneficial impact of research in microeconomic theory and computer science is al-
ready widely recognized and has lead to significant advances in areas such as auction theory
(including applications to combinatorial auctions and sponsored search auctions), solving
games/equilibrium computation (including applications to the allocation of security assets
as well as AI for games such as poker), analysis of strategic behavior in networks, electronic
commerce, and negotiation in multiagent systems. What had been missing until 2006 was
a forum that specifically addresses computational issues in social choice theory. When the
COMSOC workshop series was launched four years ago, the hope was to be able to fill this
gap. This hope has been fulfilled by the success of the COMSOC workshop series so far.
We are looking forward to an exciting workshop in Düsseldorf.

Durham & Düsseldorf, July 2010 V.C. & J.R.
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Parameterized Control Complexity in Bucklin Voting and in Fallback Voting . . . . . 163
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A Brief Introductory Tutorial on

Computational Social Choice

Vincent Conitzer

Abstract

This is a brief description of the introductory tutorial given at COMSOC 2010.

1 Focus of the Tutorial

This tutorial gives a brief introduction to computational social choice. It is directed espe-
cially at the workshop participants who are new to this community, to give them a foothold
from which to appreciate the rest of the workshop. Because the workshop program is
densely packed, there is too little time to give an exhaustive overview of all the exciting
current research topics in computational social choice. Hence, this tutorial focuses strictly
on computational aspects of common voting rules. There are two main reasons for this.
First, a large fraction of the current research in computational social choice concerns such
topics. Second, it gives good insight into the type of problem in which the computational
social choice community is interested.

2 Topics

In this tutorial, after a quick review of voting rules, we consider some representative problems
from computational social choice. For each voting rule, we are confronted with the following
computational problems:

1. How hard is it to execute the voting rule, that is, to determine the winning alterna-
tive(s)?

2. How hard is it to manipulate the voting rule by misreporting one’s preferences?

3. How hard are other types of undesirable behavior? For example, how hard is it for the
chair of the election to control the outcome of the election, for instance by introducing
additional candidates? How hard is it for an outside party to effectively bribe voters?

4. If we have partial information about the votes, how hard is it to determine whether a
particular alternative is still a possible winner?

5. How can the voters effectively communicate their preference information to determine
the winning alternative?

It should be noted that for topics 2 and 3 above, computational hardness is desirable,
because it may prevent the undesirable behavior. This raises interesting questions about
whether the worst-case nature of computational complexity theory is appropriate here.

3 Materials and Further Reading

The slides will be made available (at least) on the presenter’s website, where the slides of
a longer tutorial on the same topic, given jointly with Ariel Procaccia, can also be found.
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There are several overview articles of research in this area (e.g., [1, 4, 3, 2, 5]), which also
provide references to more focused technical papers.
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Different Approaches to Influence

in Social Networks

Agnieszka Rusinowska

1 Extended Abstract

The influence phenomenon is faced in all kinds of real life situations, and as a consequence
it is studied in many scientific areas: in sociology and social psychology, in political science,
in economics, in management and business science. Also different approaches are applied
to study influence concepts: research is not restricted only to theoretical investigations, but
more and more experiments are conducted to get a deeper insight into these phenomena. In
the economics literature, studying different concepts related to influence can find its place in
several branches of this field, like, e.g., in labor economics, political and public economics,
game theory, contract theory, experimental economics, and industrial organization. One
of the game theoretic approaches to influence is based on using social networks which are
particularly suitable to such an analysis. The aim of this talk is to deliver a short overview
of different approaches to influence applied in the economics and game-theoretic literature,
with a particular focus on studying influence in networks.

Concerning the game-theoretic literature, both cooperative and noncooperative ap-
proaches to influence have been applied; for a short survey, see e.g. [8]. Already more
than fifty years ago the concept of influence relation to qualitatively compare the a priori
influence of voters in a simple game was introduced [13], and fifty years later this influence
relation was extended to voting games with abstention [15]. The cooperative game theoret-
ical approach to interaction is also used in [11, 12], where the authors apply the command
structure to model players’ interaction relations by simple games.

A very important game theoretic approach to influence is based on using social networks,
since they play a central role in the sharing of information and the formation of opinions.
Individual decisions and strategic interaction are both embedded in social networks which
are therefore particularly useful in analyzing influence. In the decision process the mutual
influence does not stop necessarily after one step but may iterate. In this survey, we par-
ticularly discuss the iterated models of influence. The seminar network interaction model
of information transmission, opinion formation, and consensus formation is presented in [4];
see also e.g. [5, 14]. In [10] the authors consider a social network in which players make
an acceptance/rejection decision on a certain proposal, and each of them has an inclination
(preliminary opinion) to say either “yes” or “no”. It is assumed that players may influ-
ence the decisions of others, and consequently the players’ decisions may differ from their
preliminary inclinations. For further research on this model, see e.g. [6, 7, 9].

Another interesting approach to influence in social networks is based on using relational
algebra and RelView [1, 2] which is a BDD-based tool for the visualization and manip-
ulation of relations and for prototyping and relational programming. In [3] the authors
apply relation algebra to measure agents’ ‘strength’ (like power, success, and influence) in
a social network. This leads to specifications, which can be executed with the help of the
BDD-based tool RelView after a simple translation into the tool’s programming language.
Determining such measures can become quite complex and requires a lot of computations.
Hence, using a computer program to compute the measures is extremely useful for real life
applications of the concepts in question.

5



References

[1] R. Behnke, R. Berghammer, E. Meyer, and P. Schneider. RelView — A system for cal-
culation with relations and relational programming. In E. Astesiano, editor, Fundamental
Approaches to Software Engineering, LNCS 1382, Springer-Verlag, pages 318–321, 1998.

[2] R. Berghammer, G. Schmidt, and M. Winter. RelView and Rath – Two systems for
dealing with relations. In H. de Swart, E. Orlowska, G. Schmidt, and M. Roubens,
editors, Theory and Applications of Relational Structures as Knowledge Instruments,
LNCS 2929, Springer, pages 1–16, 2003.

[3] R. Berghammer, A. Rusinowska, and H. de Swart. Applying relational algebra and
RelView to measures in a social network. European Journal of Operational Research,
202:182–195, 2010.

[4] M.H. DeGroot. Reaching a consensus. Journal of the American Statistical Association,
69:118–121, 1974.

[5] P. DeMarzo, D. Vayanos, and J. Zwiebel. Persuasion bias, social influence, and unidi-
mensional opinions. Quarterly Journal of Economics, 118:909–968, 2003.

[6] M. Grabisch and A. Rusinowska. A model of influence in a social network. Theory and
Decision, forthcoming, 2009a.

[7] M. Grabisch and A. Rusinowska. Measuring influence in command games. Social Choice
and Welfare, 33:177–209, 2009b.

[8] M. Grabisch and A. Rusinowska. Different approaches to influence based on social net-
works and simple games. In A. van Deemen and A. Rusinowska, editors, Collective
Decision Making: Views From Social Choice and Game Theory. Series Theory and De-
cision Library C, pages 185–209. Springer, 2010a.

[9] M. Grabisch and A. Rusinowska. Influence functions, followers and command games.
Games and Economic Behavior, forthcoming, 2010b.

[10] C. Hoede and R. Bakker. A theory of decisional power. Journal of Mathematical
Sociology, 8:309–322, 1982.

[11] X. Hu and L.S. Shapley. On authority distributions in organizations: equilibrium.
Games and Economic Behavior, 45:132–152, 2003a.

[12] X. Hu and L.S. Shapley. On authority distributions in organizations: controls. Games
and Economic Behavior, 45:153–170, 2003b.

[13] J.R. Isbell. A class of simple games. Duke Mathematical Journal, 25:423–439, 1958.

[14] M.O. Jackson. Social and Economic Networks. Princeton University Press, 2008.

[15] B. Tchantcho, L. Diffo Lambo, R. Pongou, B. Mbama Engoulou. Voters’ power in voting
games with abstention: Influence relation and ordinal equivalence of power theories.
Games and Economic Behavior, 64:335–350, 2008.

Agnieszka Rusinowska
Centre d’Economie de la Sorbonne
CNRS - Université Paris I Panthéon-Sorbonne
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Some Research Problems in Computational

Social Choice

Nicolaus Tideman

It is useful to think of a social choice process as composed of a sequence of sub-processes:
nomination, evaluation, message submission, message processing, resolution of ties (if any),
and authoritative announcement of the result. Researchers with computational expertise
might want to apply their efforts to any of the sub-processes, or to questions of design that
involve combinations of the sub-processes. But the questions that stand out as calling for
the talents of persons with computational expertise are primarily questions of evaluating
the feasibility and attractiveness of message processing rules (vote-counting rules).

1 Questions Associated with the Spatial Model of the
Election Universe

Many questions with respect to the evaluation of vote-counting rules require a model of the
process that generates election outcomes. Recent evidence suggests that a spatial model is
appropriate for this purpose. Consider elections in which voters rank the candidates. (That
is, the message that the participants in the social choice process must send is a ranking of
the options.) For an election with M candidates, define an “election outcome” as a vector
of with M ! components, in which each component is the number of voters who placed
the candidates in one of the M ! possible orders. Three candidates span a space of two
dimensions. In this space, assume that voters have ideal points that have a bivariate normal
distribution, and that they have circular indifference contours. The space is then divided
into six wedges assigned to the six orderings of the candidates. There are five degrees of
freedom in the shares of votes going to the different orderings of the candidates, but only
four degrees of freedom in the spatial model, so the spatial model is refutable. Evidence
indicates that deviations from the spatial model can entirely or nearly entirely be explained
by sampling variability. Research questions: Will the results hold for additional data sets?
The proportion of voters who know the candidates appears to correlate with how well the
spatial model explains the outcome. Can other correlates be identified? What happens
when you look at elections with four candidates? With five? With M? Are other versions
of the spatial model better? What is the best way to deal with ties that arise in survey
data? Implication: Modeling of the consequences of alternative voting rules should be done
with the spatial model.

2 Questions Associated with Identifying the Outcome
under Rules for Selecting One Candidate from More
than Two

A number of voting rules have been proposed for elections with more than two candidates.
Some of these rules pose computational problems. Examples: The Condorcet-Kemeny-
Young rule potentially requires the evaluation of M ! sums. The Ranked Pairs rule (which I
devised) poses computational challenges that I could imagine solving only in a very crude and
time-consuming way. Are there computationally efficient ways of dealing with the difficult
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cases that could occasionally arise under these voting rules? What about the “estimated
centrality” rule, which selects the candidate whose estimated spatial location is closest to
the center of the distribution of voters’ ideal points. Is that rule computationally feasible for
more than three candidates? Would someone like to offer a general program that counted
votes by a wide variety of rules?

3 Questions Associated with Evaluating the Suscepti-
bility of Voting Rules to Strategizing

The Gibbard-Satterthwaite theorem tells us that all reasonable voting rules are subject to
strategy in some instances. There are a number of ways in which the susceptibility of voting
rules to strategizing might be measured. What is the best way to measure the susceptibility
of voting rules to strategizing? How do different rules compare?

4 Questions Associated with the Single Transferable
Vote Form of Proportional Representation

The Single Transferable Vote (STV) is a form of proportional representation in which vot-
ers submit rankings of candidates, and votes are counted by a complex algorithm that is
intended to identify a winning set of candidates of a specified size that reflects the diver-
sity of preferences in the electorate. There are a number of versions of STV, varying in
their sophistication and in their susceptibility to different concerns. There are at least two
proposed versions of STV that may be so sophisticated that they might require an unaccept-
ably long time to determine the winners. Thus it is interesting to ask: What are the best
computational algorithms for identifying the winning sets of candidates under the highly
sophisticated versions of STV? What are the resulting computational times with specified
hardware? If the most sophisticated versions of STV pose computational problems that
make it impossible to guarantee computability, what are the closest approximations that do
permit guarantees of computability?
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Where Are the Hard Manipulation Problems?

Toby Walsh

Abstract

One possible escape from the Gibbard-Satterthwaite theorem is computational com-
plexity. For example, it is NP-hard to compute if the STV rule can be manipulated.
However, there is increasing concern that such results may not reflect the difficulty
of manipulation in practice. In this tutorial, I survey recent results in this area.

The Gibbard Satterthwaite theorem proves that, under some simple assumptions, a vot-
ing rule can always be manipulated. A number of possible escapes have been suggested.
For example, if we relax the assumption of an universal domain and replace it with sin-
gle peaked preferences, then strategy free voting rules exist. In an influential paper [1],
Bartholdi, Tovey and Trick proposed that complexity might offer another escape: perhaps
it is computationally so difficult to find a successful manipulation that agents have little
option but to report their true preferences? Many voting rules have subsequently been
shown to be NP-hard to manipulate [3]. However, NP-hardness only dictates the worst-case
and may not reflect the difficulty of manipulation in practice. Indeed, a number of recent
theoretical results suggest that manipulation can often be easy (e.g. [19]).

I argue here that we can study the hardness of manipulation empirically [17, 18]. There
are several reasons why empirical analysis is useful. For example, theoretical analysis is
usually restricted to simple distributions like uniform votes. Votes in real elections may
be very different due, for instance, to correlations between votes. As a second example,
theoretical analysis is often asymptotic so does not reveal the size of hidden constants. Such
constants may be important to the actual computational cost. In addition, elections are
typically bounded in size so asymptotic results may be uninformative. Such experiments
suggest different behaviour occurs in the problem of computing manipulations of voting
rules than in other NP-hard problems like propositional satisfiability [2, 13], constraint
satisfaction [4, 9], number partitioning [6, 8], and other NP-hard problems [7, 14, 15]. For
instance, many transitions seen in our experiments appear smooth, as seen in polynomial
problems [16].

Another problem in which manipulation may be an issue is the stable marriage prob-
lem. Can agents be married to a more preferred partner by mis-reporting their preferences?
Unfortunately, Roth [11] proved that all stable marriage procedures can be manipulated.
We might hope that computational complexity might also be a barrier to manipulate sta-
ble marriage procedures. In joint work with Pini, Rossi and Venable, I have proposed a
new stable marriage procedures based on voting that is NP-hard to manipulate [10]. This
procedure has other desirable properties like gender neutrality.

A third domain in which manipulation may be an issue is sporting tournaments [12].
Manipulating a sporting tournament is slightly different to manipulating an election. In a
sporting tournament, the voters are also the candidates. Since it is hard (without bribery or
similar mechanisms) for a team to play better than it can, we consider just manipulations
where the manipulators can throw games. We show, for example, that we can decide
how to manipulate round robin and cup competitions, two of the most popular sporting
competitions in polynomial time.
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Problem Solving on Simple Games via Bdds

Rudolf Berghammer and Stefan Bolus

Abstract

Simple games are yes/no cooperative games which arise in many practical applica-
tions, especially in political life and the formation of alliances and coalitions. Binary
decision diagrams (Bdds) can be used to represent, for instance, Boolean function,
sets of subsets and relations. They are extensively studied and were applied to vari-
ous research problems. In this extended abstract we’ll give a motivation why it is a
good idea to consider BDDs as another representation for simple games.

1 Motivation

A simple game (see e.g. [4]) is a pair (N,W) where N is a set of so called players andW ⊆ 2N

is an up-set (with respect to set inclusion) of so called winning coalitions. Elements not inW
are called losing and elements in 2N are called coalitions. Binary decision diagrams (see e.g.
[2]) are directed, labeled and acyclic graphs with a root and two designated sinks (1-/0-sink)
such that each non-sink has two outgoing edges. As one can see from Fig. 1, they can be used
to represent Boolean function in a very natural way. Each path corresponds to an assignment
and the sink determines the outcome. Because simple games are technically a set of subsets
they can easily be represented by their characteristic function χ : {0, 1}|N | → {0, 1} where
the first player corresponds to the first Boolean variable and so one.

1 0

3 3 3

2 2

1
variable 1 2 3 f -value

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Figure 1: A Bdd for a Boolean function. Numbers inside circles (labels) correspond to
Boolean variables. The rectangular nodes are the 1- and 0-sink, respectively. Edges are
directed downwards. Solid/dashed edges are 1-/0-edges.

So called quasi-reduced and ordered binary decision diagrams (Qobdds) are Bdds that
share sub-Bdds whenever possible. E.g., in Fig. 1 the center node with label 3 is shared.
Qobdds are often small in practice. In general, however, they can grow exponentially in
the number of Boolean variables. The same holds for monotone Boolean functions and even
threshold functions1 where in the latter case the bounds for the number of nodes are O(2n/2)
and O(|N |Q) if Q is the threshold (see [3, 1]), but even the latter bound is rarely reached
in practice. A similar bound can be shown for multiple weighted voting games (Mwvg;
see again [1]). Additionally, different classes of Qobdds (Wvg, Mwvg, any) can exhibit
useful properties which perhaps can be exploited to derive efficient algorithms. For instance,
building the Qobdd for the minimal winning coalitions of a Wvg from the Qobdd of its
winning coalition is a linear time algorithm in the number of Qobdd nodes.

1Threshold functions correspond exactly to characteristic functions of weighted voting games (Wvgs).
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The use of Qobdds offers not only another representation of simple games, Wvg and
Mwvg, but due to its relatively compact representation of simple games it also allows
to solve problems for real world instances. A feature which is offered by other explicit
representation just to a very limited degree. Moreover, Qobdds can be manipulated like
sets as long as they represent an up-set. For instance, constraints for the winning coalitions
can be applied. Winning coalitions of multiple games can be combined not only using
conjunction but also using other operations like disjunction to model multiple opportunities
for a coalition to win. For instance, the US Federal Legal System and Taylor’s and Zwicker’s
Magic Squares can be modeled using that.

Despite the very famous problem of computing different power indices for simple games,
the computation of the desirability relation on the players and the test for dummy players
are two basic problems which appear in some other more complex problems like the test to be
a Wvg or not . Here, one can profit from the fact that Bdds were already applied to many
problems from different areas and many problems have been solved in a slightly different
notion. For instance, dummy players in simple games correspond exactly to redundant
variables in Boolean functions. Other problems can be solved using existing operations on
Qobdds and some simple algorithms like the following one to compute the Qobdd for the
blocking coalitions (and thus the dual game) from the winning coalition of a simple game:

Compls(v) ≡
if v is a sink then return v
elsif v was already visited with result r then return r
else r := ite(i, Compls(else(v)), Compls(then(v)))

mark v as visited with result r and return r

Graphically, the algorithm just exchanges each node’s 1- and 0-edge. Thus, it has a running
time linear in the number of nodes. This allows to handle even larger real world problems
like the International Monetary Fund with 186 players which has about 16 mil. nodes.

Our research in this direction has two main objectives. The first one is to study the
complexity of known problems using the Bdd representation. This is especially interesting
since Qobdds can have exponential size in general but have a bounded size for special classes
like Wvgs. The second objective is to develop and provide applicable methods which can
be used not only by computer scientists and maybe serve as a foundation for new questions.
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Consensus Measures Generated by Weighted

Kemeny Distances on Linear Orders

José Luis Garćıa-Lapresta and David Pérez-Román

Extended Abstract

In the field of Social Choice, Bosch [4] introduced the notion of consensus measure as a
mapping that assigns a number between 0 and 1 to every profile of linear orders, satisfying
three properties: unanimity (in every subgroup of agents, the highest degree of consensus
is only reached whenever all individuals have the same ranking), anonymity (the degree
of consensus is not affected by any permutation of agents) and neutrality (the degree of
consensus is not affected by any permutation of alternatives).

In Garćıa-Lapresta and Pérez-Román [8] we extended Bosch’s notion of consensus mea-
sure to the context of weak orders (indifference among different alternatives is allowed) and
we consider some additional properties that such measures could fulfill: maximum dissension
(in each subset of two agents, the minimum consensus is only reached whenever preferences
of agents are linear orders and each one is the inverse of the other), and reciprocity (if all
individual weak orders are reversed, then the consensus does not change). After that, a class
of consensus measures based on the distances among individual weak orders were introduced
and analyzed. See also Garćıa-Lapresta and Pérez-Román [7].

In this contribution, we consider the above mentioned framework and properties for the
case of linear orders. However, we now deal with the possibility of weighting discrepancies
among linear orders by taking into account where these discrepancies appear. Since in some
decision problems it is not the same to have differences in the top alternatives than in the
bottom ones (see Baldiga and Green [3]), we introduce weights for distinguishing where
these differences occur. To do this, we consider a class of consensus measures generated
by weighted Kemeny distances, and we analyze some of their properties. The Kemeny
metric was initially defined on linear orders by Kemeny [9], as the number of pairs where
the orders’ preferences disagree. We note that the Kemeny distance is a metric, but the
introduced weighted Kemeny distances are not metrics in the sense of Deza and Deza [5].
On the the use of Kemeny and other metrics in the field of Social Choice see Eckert and
Klamler [6].

Recently, Alcalde-Unzu and Vorsatz [1, 2] have introduced some consensus measures in
the context of linear orders –related to some rank correlation indices– and they provide
some axiomatic characterizations. It is important to note that both papers introduce a
preliminary analysis to the weighting approach of consensus measures in the context of
linear orders. See also Baldiga and Green [3].

It is interesting to note that the introduced consensus measures generated by weighted
Kemeny distances can be used for designing appropriate decision making processes that
require a minimum agreement among agents. For instance, in Garćıa-Lapresta and Pérez-
Román [7] we propose a voting system where agents’ opinions are weighted by the marginal
contributions to consensus.

With respect to the computational aspect, we are preparing a computer program to
obtain the consensus in real decisions when agents rank order the feasible alternatives. We
are also working in an extension of the weighted consensus measures to the framework of
weak orders.

13



Acknowledgements

The financial support of the Junta de Castilla y León (Consejeŕıa de Educación, Projects
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Strategy and Manipulation

in Medieval Elections

Sara L. Uckelman1 and Joel Uckelman

There are many goals in developing electoral protocols, including a desire for a sys-
tem which is transparent, in that it is clear what the rule or procedure to follow is; non-
manipulable, in that it is not in a person’s best interest to misrepresent their preferences;
honest, in the sense that it elects the ‘right’ candidate; and not open to strategizing, i.e.,
bribery or collusion. However, these desiderata are in tension with each other: Often, trans-
parent electoral procedures are the least strategy resistant, and many honest procedures
encourage manipulation. Thus a balance between these different goals must be sought. In
modern times, since the seminal result on vote manipulation, the Gibbard-Satterthwaite
Theorem [5, 6], much attention has been devoted to developing voting rules where manipu-
lation is never in the best interest of the voters [4] or which are computationally too complex
for the average bounded agent to be able to manipulate [1]. This focus on computational
aspects of electoral methods is one of the hallmarks of modern studies on voting.

But pursuit of these goals is not restricted to modern times: Those participating in
elections in the Middle Ages also sought transparency, non-manipulability, honesty, and
strategyproofness in so far as these properties can be consistently expressed in a single
procedure. However, given the lack of computational sophistication in the Middle Ages,
alternate approaches were needed in order to promote honesty, discourage strategizing, etc.
These approaches can be classified as either external (constraints introduced outside of
the electoral procedure, such as incentives for coming to consensus quickly) or internal
(constraints introduced within the electoral procedure, such as voting rules which cannot
be manipulated without adverse effects, or which are too difficult for the average bounded
agent to manipulate). Surveying examples of both approaches in the context of medieval
ecclesiastical and secular elections provides an interesting comparison to modern electoral
procedures.

Elections in the Middle Ages were used for the same reasons that they are today: To select
suitable candidate(s) for a particular office, duty, or obligation. However, it is important to
note that the term electio was used in the Middle Ages in a broader sense than our modern
‘election’. Its primary sense was ‘selection’ or ‘choice’, and only secondarily ‘election’ in the
modern sense. Thus, many records which purportedly discuss elections are not discussing
elections of the type which interests us. We can identify four categories of medieval electoral
processes: (1) Election by an external authority having no direct interest in the election; (2)
Indirect election, where electors name other electors who then select or elect the officials; (3)
Election by lot; and (4) Election by ballot. Elections of the first and third types are generally
computationally uninteresting; the first type corresponds to dictatorial voting rules, and the
third type collapses to probability theory. In general, interesting voting methods are found
only in the fourth type, election by ballot, though they can also occur in indirect election.

Ecclesiastical elections

In ideal circumstances, the election of popes, bishops, and abbots and abbesses required
unanimous consent for a candidate to win. These elections were “conceived as a way to
discover God’s will. It was guided by the unanimity rule, the only rule that could assure

1This author was funded by the NWO project “Dialogical Foundations of Semantics” (DiFoS) in the ESF
EuroCoRes programme LogICCC (LogICCC-FP004; DN 231-80-002; CN 2008/08314/GW).
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the participants that their decision was right” [3, p. 3]. However, most cases were not
ideal: the electorate, being fallible humans, did not have direct access to the will of God,
and furthermore, they were often driven by wholly different motivations, such as desire for
political influence, knowledge of ecclesiastical favor or reward if their candidate was elected,
etc. In such cases, reaching consensus was extremely difficult, if not impossible, resulting in
schisms and impasses, and thus alternative methods had to be used.

We consider methods introduced in the election of each of the three types of officials. In
papal elections, the use of majority voting was in use from the late 5th C onwards; in later
periods, a modified notion of approval voting was also implemented. We highlight three
trends in archepiscopal elections: election by fiat, election by lots, and dual postulation.
The third is the most interesting, as it can be understood as an early example of a “cut and
choose” method, one which predates by nearly 500 years the legislative method proposed
by James Harrington (1611–77), which is cited by Brams and Taylor as the first example
of cut and choose in the political arena [2, p. 12]. The most interesting data comes from
the elections of abbots and abbesses, in particular the case study of the abbatial electoral
procedure used by the convent of San Zaccaria in Venice at the beginning and the end of
the of the 16th C, which is neither anonymous nor consistent.

Secular elections

In secular contexts, votes were used to elect officials to public office (e.g., sheriff, mem-
ber of parliament, etc.), and to decide upon matters of policy. Quite often, the electoral
procedures and voting methods used in these contexts are more sophisticated, and hence
more interesting, than in the ecclesiastical contexts, in part because secular elections were
not intended to reveal God’s will. Secular nevertheless elections faced similar problems of
deadlock, and we consider requirements put in place intended to reduce this occurrence.
We also look at various methods which were implemented to make the cost of influencing
the result of an election prohibitive, including the code of Vicenza for 1264 and the voting
systems used in Cambridge from 18 Edward III to 10 Elizabeth I and in Newcastle-upon-
Tyne in 1345. These are but a few examples of medieval electoral processes which were
safe-guarded against manipulation and strategizing by increasing the actual, monetary cost
of such manipulation, rather than the computational cost.
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Collective Attention and Ranking Methods

Extended Abstract

Gabrielle Demange

The use of rankings is becoming pervasive in many areas including academia for ranking
researchers, journals, universities, and the Web environment for ranking Internet pages. The
public good aspect of information explains the use of rankings. Rankings are based on a
costly process of gathering and summarizing some relevant information on the alternatives in
a particular topic. When such information is relevant to anyone, the publication of rankings
avoids each individual to pay the search and processing costs. For that very reason, rankings
have some influence on the attention that is devoted to the various alternatives. In recurrent
situations, attention will, in turn, alter the new statements on which subsequent rankings
will be based. This paper proposes an analysis of the feedback between rankings, attention
intensities, and statements by studying some reasonable dynamics.

A ranking problem is described by a set of items to be ranked and a set of ’experts’ who
provide some statements on which the ranking will be based. Rankings here are cardinal,
meaning that relative scores are assigned to items. In some situations, as in the ranking of
Web pages based on the link structure, the items to be ranked coincide with the experts.
These situations are sometimes referred to as the judgment by ’peers’.

The analysis bears on ranking methods that satisfy two important properties. The first
property, intensity invariance, has been introduced for dealing with the situations in which
the ’intensity’ of statements is not controlled. In such situations, one may not want an
expert to increase its impact on the final ranking by an inflation in its statements (there are
other justifications, as explained in the paper). An ’intensity invariant’ ranking method is
obtained by factoring out the intensity of experts’ statements. For example, the ’invariant’
method, which serves as a basis to PageRank of Google, factors out the intensity of outward
links to avoid pages to increase their score by inflating the number of these links.

The second property, that of supporting weights views a method as simultaneously as-
signing scores to the items and weights to the experts. Given the experts’ statements, the
ranking writes as a weighted combination of the experts’ statements in which furthermore
the scores and the weights form some sort of an equilibrium relationship. The property is
satisfied by most current methods - e.g. the counting method, the invariant method, the
Hits method- although it has not be made explicit so far. This property is useful for various
reasons. In particular, it helps us to define new methods through alternative equilibrium
relationships and to give a precise definition to what a peers’ method is.

The first part of the paper considers static problems, in which the experts’ statements
are given. I introduce a new ranking method that is both intensity invariant and supported
by equilibrium weights. The equilibrium is based on the notion of handicaps. There are
indeed strong relationships between rankings and handicaps. Since the purpose of handicaps
is to adjust the marks received by items so as to equalize their ’strength’, rankings and
handicaps are inversely related to each other. The method, called the handicap-based method,
is characterized by simple properties. The computation of the handicap-based ranking relies
on a well-known procedure of matrix scaling, called RAS method or iterative proportional
fitting procedure.

The second part of the paper studies a recurrent framework to analyze the influence of
rankings. This influence is driven by their impact on attention intensities. In a context in
which the number of alternatives to consider is huge, experts cannot carefully assess each one
and tend to pay more attention to those whose score is higher. For example, while working

19



on a paper, a researcher who uses rankings tends to read more the journals whose ranks
are higher. An ’influence function’ describes how the current ranking modifies attention
intensities. This generates a joint dynamics on rankings and statements because statements
depend on both preferences and attention: the current ranking modifies attention intensities,
hence the next statements on which next ranking is based. An intuition is that, as past
statements have an impact on future statements through rankings computation, we might
expect ‘the rich to get richer’. However, the impact of such self-enforcing mechanism may
differ according to the ranking method. Our aim is to investigate more precisely this link
between a ranking method and the dynamics, starting with a simple linear form for the
influence function. Contrasted results are obtained for two different classes of methods.

The first class, called the generalized handicap-based methods, is obtained from the
handicap-based method by modifying the experts’ weights. The class includes both the
handicap-based and the counting methods. These methods guarantee stability in the sense
that, given preferences for the experts, the sequence of rankings converges towards a unique
rest point.

The second class is the class of peers’ methods. The rationale behind a peers’ method
is that the ability of an individual to perform (measured by his score) is correlated with his
ability to judge others’ performance. In particular, for a method supported by weights, a
minimal requirement is that an individual who receives a small score is also assigned a small
expert’s weight. This defines a peers’ method. I show that whatever peers’ method, the
dynamics may admit multiple limit points for some preferences, each one corresponding to a
different support (the support is the subset of items that keep a positive score). Furthermore,
the supports of the limit points are independent of the peers’ method. Such result illustrates
the self-sustaining aspect of a peers’ method. Self-sustainability here is not obtained through
plain manipulation but through the coordination device induced by the influence of the
ranking.1

This paper is about the convergence of behaviors and statements. This is also the concern
of the large literature that analyzes the influence of opinions channelled by ’neighbors’ in a
partially connected network. This literature analyzes situations in which individuals receive
private signals about a state of the world. One main question is whether (non-strategic)
communication will lead opinions to converge to a common belief and, if convergence occurs,
how this common belief relates to the initial opinions and the network structure. Instead
here information -the ranking- is made public and influences all experts in an identical
way. The impact however differs across experts because they differ in their preferences.The
analysis shows that the interplay of preferences and the ranking method may induce a variety
of different outcomes.

Gabrielle Demange
Paris School of Economics
48 bd Jourdan, 75014 Paris, France
Email: demange@pse.ens.fr.

1Researchers in computer science have also concerns about the influence of the rankings provided by
search engines. The main criticism is that rankings are biased towards already popular webpages, thus
preventing the rise in popularity of recently created high quality pages. There has been some proposals to
correct the bias, such as introducing some randomness in the rankings, or to account of the date of creation
of a page in the computation of the ranking.
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Collective Time Preferences

Matthew O. Jackson and Leeat Yariv

We examine collective decisions over streams of consumption. Agents all consume the
same stream and evaluate it according to time discounted and smooth utility functions. We
show that if agents differ in their time discount factors, then the only way to aggregate their
preferences while satisfying unanimity and time-consistency conditions is by appointing a
dictator, even when all agents have exactly the same instantaneous utility function. This
implies that decision makers embodying several different “personalities” must be time incon-
sistent. We also show that aggregation via voting results in choices that violate transitivity
despite the highly structured space of alternatives.

JEL Classification Numbers: D72, D71, D03, D11, E24

Keywords: Aggregating preferences, time inconsistent preferences, intransitivities, voting

Matthew O. Jackson
Department of Economics
Stanford University
& the Santa Fe Institute
Email: jacksonm@stanford.edu

Leeat Yariv
Division of the Humanities and Social Sciences
Caltech
Email: lyariv@hss.caltech.edu

21



22



Allocation via Deferred-Acceptance

under Responsive Priorities

Lars Ehlers and Bettina Klaus
This extended abstract summarizes Ehlers and Klaus (2009)

1 Extended Abstract

We study the allocation of indivisible objects with capacity constraints to a set of agents
when each agent receives at most one object and monetary compensations are not possi-
ble. Important applications of this model are the assignment of students to public schools,
university admissions, and university housing allocation. We assume that students in these
situations have strict preferences over the (object) types (e.g., admission to a specific school
or university or dormitory rooms of a certain type) and that (object) types might come
with a capacity constraint (the maximal number of students a school or university can ad-
mit or the maximal number of dormitory rooms of the same type). An allocation rule is a
systematic way of solving any allocation problem (with capacity constraints).

In most papers that study the allocation of indivisible objects with capacity constraints,
externally prescribed priorities are also specified; this class of problems is usually referred to
as “school choice problems” or “student placement problems”. Balinski and Sönmez (1999)
were the first to formulate the allocation problem based on priorities, which in many real
life situation naturally arise, e.g., in school choice students who live closer to a school
and/or have siblings attending a school have higher priority at that school. The agents’
priorities for a certain type are captured by an ordering of the agents: a priority structure.
Given agents’ priorities, it is natural to require that the allocation is “stable” with respect
to the priorities. This means that there should be no agent who—conditional on higher
priority—envies another agent (for receiving a better object). Given a priority structure,
Gale and Shapley’s (1962) famous deferred acceptance algorithm (an algorithm which has
been extensively applied in practice, see Roth, 2008) can be used to find the agent-optimal
stable allocation for any problem with capacity constraints and responsive priorities. We call
a rule which is based on the agents-proposing deferred-acceptance algorithm with responsive
priorities a responsive DA-rule.

Note that we do not a priori assume that priorities are externally given. Two other papers
that consider this more general model of object allocation with multiple copies of each type
and capacity constraints are Ehlers and Klaus (2006) and Kojima and Manea (2009). Kojima
and Manea (2009) point out that “Despite the importance of deferred acceptance rules in
both theory and practice, no axiomatization has yet been obtained in an object allocation
setting with unspecified priorities.” Then, they proceed to provide two characterizations of
deferred acceptance rules with so-called acceptant substitutable priorities (a larger class of
rules than the class of responsive DA-rules which is based on priorities that are determined
by a choice function that reflects substitutability in preferences over sets of agents).

We consider situations where resources may change, i.e., it could be that additional ob-
jects are available. When the change of the environment is exogenous, it would be unfair if
the agents who were not responsible for this change were treated unequally. We apply this
idea of solidarity and require that if additional resources become available, then all agents
(weakly) gain. This requirement is called resource-monotonicity. Next, we add the mild effi-
ciency requirement of weak non-wastefulness as well as the very basic and intuitive properties
of individual rationality and unavailable type invariance. We also impose the invariance
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property truncation invariance. Our last property is the well-known strategic robustness
condition of strategy-proofness. First, we show that these elementary and intuitive proper-
ties characterize, for so-called house allocation problems (quotas at most one), the class of
responsive DA-rules that are based on the agent-proposing deferred-acceptance algorithm
with responsive priority structures (Theorem 1). Second, we extend this characterization to
the class of all problems with capacity constraints, by replacing resource-monotonicity with
the new property of two-agent consistent conflict resolution (Theorem 2).

Another situation of interest is the change of the set of agents and objects because
agents leave with their allotments. Consistency requires that the allocation for the “reduced
economy” allocates the remaining objects to the remaining agents in the same way as before.
Since many rules do not satisfy consistency, we introduce weak consistency, which only
requires that agents who received the null object in the original economy still receive the null
object in any reduced economy. We obtain a third characterization of the class of responsive
DA-rules by unassigned type invariance, individual rationality, weak non-wastefulness, weak
consistency, and strategy-proofness (Theorem 3).
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Impartial Peer Evaluation

Hervé Moulin

Peer evaluation is a central institution of many communities of experts. Evaluating
the relative merits of specialized pieces of work requires knowledge that can only be found
among those experts, thus it cannot be entrusted to an impartial outside observer. But
peer evaluation is plagued by conflicts of interest, a difficulty only partially alleviated by
the confidentiality of reports: even protected by the veil of anonymity, evaluator Smith
may and will take into account how her message about Jones’ work affects Smith’s standing
within the peer group. Although it is clearly impossible to eliminate entirely the inherent
partiality of peer evaluation1, we can nevertheless design group decision rules for specific,
limited choice problems, that systematically avoid any conflict of interest.

In a general group decision problem, we call a decision rule impartial if an agent’s message
never has any influence on the aspects of the collective decision that matter to this agent;
thus I have no way to use my message strategically, because I am indifferent between all
outcomes in my option set.

A family of impartial rules for allocating a divisible commodity is the subject of [1]: a
group of four or more partners must divide a bonus (or a malus) among themselves, and
each partner has a well formed subjective opinion about the relative contributions of the
other partners to the bonus, which the rule asks him to report. The key assumption is that
he cares only about his own share, not about the distribution among others of the money
he does not get. Impartiality means that his report has no impact on his final share.

The paper explores impartial rules in two simple problems involving no money, one akin
to voting and one to assignment. In the first problem, a group of agents must choose one of
them to receive a prize, or undertake a task (not necessarily a desirable one). Each agent
cares about receiving the prize or not, but is indifferent about who among the others gets
the prize. In the second problem, the agents must be assigned to a given set of indivisible
objects (private goods or bads), and each one cares only about which object she gets. A
prime example of the second problem is the collective determination of a strict ranking of
the agents, based on these agents’ messages only, when we assume that each participant
only cares about her own rank. Think of a ranking of undergraduate programs by polls of
their alumni.

We look for “reasonable” impartial decision rules in these two problems, where “reason-
ableness” conveys other, more familiar, desirable properties of a rule.

In the first problem, we must assign a purely private commodity called a prize. We look
for impartial voting rules: everyone votes for someone other than herself, and whether or
not she get the prize is completely independent of her own message (but this message does
influence who gets it if not her).

The set of agents is N ; agent i’s message space is N�i: everyone nominates one of the
other agents to be the winner. We interpret mi = j as supporting the choice of agent j for
the winner, which requires the rule to be monotonic in the sense that additional votes for a
given agent cannot reverse the decision to make her the winner.

With the notation D = ui∈N (N�i), with generic element x = (xi), a voting rule is a
mapping ϕ : D → N , and we want such a rule to satisfy

• Impartiality: for all i, xi, x
′
i, x−i, ϕ(xi, x−i) = i⇔ ϕ(x′i, x−i) = i;

• Unanimity: for all i, x, {xj = i for all j ∈ N�i} ⇒ ϕ(x) = i;

1For a formal statement we can invoke the Gibbard-Satterthwaite impossibility result.
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• Monotonicity: for all i, j, i 6= j, all x, ϕ(x) = i⇒ ϕ(i, x−j) = i;

• No Dummy: for all i, ϕ(xi, x−i) 6= ϕ(x′i, x−i) for some xi, x
′
i, x−i.

We show that these four requirements are incompatible for n ≤ 4, but they are compat-
ible for n ≥ 5 or more agents. The proof is constructive.

In the second problem we must determine a strict ordering of the agents (with respect to
some given criteria), when everyone cares only about his own rank (i.e., how many are above
but not who). There too it seems possible to design a reasonable mechanism where agent
i’s report is a strict ranking of agents other than i, and i’s actual ranking is independent of
his own report.
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Nice, but Are They Relevant? A Political

Scientist Looks at Social Choice Results

Hannu Nurmi

The motivation for introducing a new voting system or criticizing an old one is often a
counterintuitive or unexpected voting outcome. A case in point is Borda’s memoir where
he criticized the plurality voting and suggested his own method of marks [2]. With time
this approach focusing on a specific flaw of a system has given way to studies dealing
with a multitude of systems and their properties. An example of such studies (e.g. [3]) is
summarized in Table 1.

Here criterion a denotes the Condorcet winner criterion, b the Condorcet loser one, c
strong Condorcet criterion, d monotonicity, e Pareto, f consistency, g Chernoff property,
h independence of irrelevant alternatives and i invulnerability to the no-show paradox. A
“1” (“0”, respectively) in the table means that the system represented by the row satisfies
(violates) the criterion represented by the column.

A more “graded” approach to comparing two systems with respect to one criterion has
also been suggested [1]. The superiority of system A with respect to system B takes on
degrees from strongest to weakest as follows:

1. A satisfies the criterion, while B doesn’t, i.e. there are profiles where B violates the
criterion, but such profiles do not exist for B.

2. in every profile where A violates the criterion, also B does, but not vice versa.

3. in practically all profiles where A violates the criterion, also B does, but not vice versa
(“A dominates B almost everywhere”).

4. in a plausible probability model B violates the criterion with higher probability than
A.

5. in those political cultures that we are interested in, B violates the criterion with higher
frequency than A.

Comparing systems with respect to just one criterion is, however, not plausible since
criteria tend to be contested not only among the practitioners devising voting systems, but
also within the scholarly community. Suppose instead that one takes a more holistic view of
Table 1 and gives some consideration to all criteria. A binary relation of dominance could
then be defined as follows: A system A (strictly) dominates system B in terms of a set of
criteria, if and only if whenever B satisfies a criterion, so does A, but not the other way
around.

But all criteria are not of equal importance. Nor are they unrelated. Moreover, Table 1
tells very little – in fact nothing – about the likelihood of criterion violations in those
cases where those violations are possible. To find out how often a given system violates
a criterion – say, elects a Condorcet loser – one has to know how often various preference
profiles occur and how these are mapped into voting strategies by voters. Once we know
these two things we can apply the system to the voting strategy n-tuples (if the number of
voters is n), determine the outcomes, and, finally, compare these with preference profile to
find out whether the choices dictated by the criterion contradict those resulting from the
profile, e.g. if an eventual Condorcet loser was chosen. Traditionally, two methods have been
resorted in estimating the frequency of criterion violations: (i) probability modeling, and (ii)
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Criterion
Voting system a b c d e f g h i
Amendment 1 1 1 1 0 0 0 0 0
Copeland 1 1 1 1 1 0 0 0 0
Dodgson 1 0 1 0 1 0 0 0 0
Maximin 1 0 1 1 1 0 0 0 0
Kemeny 1 1 1 1 1 0 0 0 0
Plurality 0 0 1 1 1 1 0 0 1
Borda 0 1 0 1 1 1 0 0 1
Approval 0 0 0 1 0 1 1 0 1
Black 1 1 1 1 1 0 0 0 1
Pl. runoff 0 1 1 0 1 0 0 0 0
Nanson 1 1 1 0 1 0 0 0 0
Hare 0 1 1 0 1 0 0 0 0

Table 1: A Comparison of voting procedures

computer simulations. Both are based on generating artificial electorates and calculating
how frequently the criterion is violated or some other incompatibility is encountered in these
electorates.

A consideration not disclosed by Table 1 is the intuitive difficulty of finding examples
demonstrating criterion violations. In some cases such examples are rather straight-forward,
while in others one has to work them out. We shall discuss some of these and dwell on their
implications for voting system choice.

The mainstream social choice theory is based on the assumption that the individuals are
endowed with complete and transitive preference relations over choice alternatives. Since
there are circumstances under which non-transitive preferences make perfect sense, it is
worthwhile to find out whether plausible alternatives to the ranking assumption exist. To-
wards the end of the paper we shall briefly outline some of these.
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Partial Kernelization for Rank Aggregation:
Theory and Experiments

Nadja Betzler1, Robert Bredereck1, and Rolf Niedermeier

Abstract

RANK AGGREGATION is important in many areas ranging from web search over databases
to bioinformatics. The underlying decision problem KEMENY SCORE is NP-complete even
in case of four input rankings to be aggregated into a “median ranking”. We study efficient
polynomial-time data reduction rules that allow us to find optimal median rankings. On the
theoretical side, we improve a result for a “partial problem kernel” from quadratic to linear
size. On the practical side, we provide encouraging experimental results with data based on
web search and sport competitions, e.g., computing optimal median rankings for real-world
instances with more than 100 candidates within milliseconds.

1 Introduction
We investigate the effectiveness of data reduction for computing optimal solutions of the NP-
hard RANK AGGREGATION problem. Kemeny’s corresponding voting scheme goes back to the
year 1959 [14] and was later specified by Levenglick [16]. It can be described as follows. An elec-
tion (V,C) consists of a set V of n votes and a set C of m candidates. A vote or a ranking is a
total order of all candidates. For instance, in case of three candidates a, b, c, the order c > b > a
means that candidate c is the best-liked one and candidate a is the least-liked one. For each pair of
votes v, w, the Kendall-Tau distance between v and w is defined as

KT-dist(v, w) =
∑

{c,d}⊆C

dv,w(c, d),

where dv,w(c, d) is set to 0 if v and w rank c and d in the same order, and is set to 1, otherwise.
The score of a ranking l with respect to an election (V,C) is defined as

∑
v∈V KT-dist(l, v). A

ranking l with a minimum score is called a Kemeny ranking of (V,C) and its score is the Kemeny
score of (V,C). The central problem considered in this work is as follows:

RANK AGGREGATION: Given an election (V,C), find a Kemeny ranking of (V,C).

Its decision variant KEMENY SCORE asks whether there is a Kemeny ranking of (V,C) with score at
most some additionally given positive integer k. The RANK AGGREGATION problem has numerous
applications, ranging from building meta-search engines for the web or spam detection [10] over
databases [11] to the construction of genetic maps in bioinformatics [12]. Kemeny rankings are also
desirable in classical voting scenarios such as the determination of a president (see, for example,
www.votefair.org) or the selection of the best qualified candidates for job openings. The wide
range of applications is due to the fulfillment of many desirable properties from the social choice
point of view [23], including the Condorcet property: if there is a candidate (Condorcet winner)
who is better than every other candidate in more than half of the votes, then this candidate is also
ranked first in every Kemeny ranking.

Previous work. First computational complexity studies of KEMENY SCORE go back to Bartholdi
et al. [3], showing its NP-hardness. Dwork et al. [10] showed that the problem remains NP-hard even
in the case of four votes. Moreover, they identified its usefulness in aggregating web search results

1Supported by the DFG, research project PAWS, NI 369/10.
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and provided several approximation and heuristic algorithms. Recent papers showed constant-factor
approximability [2, 22] and an (impractical) PTAS [15]. Schalekamp and van Zuylen [20] provided
a thorough experimental study of approximation and heuristic algorithms. Due to the importance of
computing optimal solutions, there have been some experimental studies in this direction [8, 9]: An
integer linear program and a branch-and-bound approach were applied to random instances gener-
ated under a noise model (motivated by the interpretation of Kemeny rankings as maximum likeli-
hood estimators [8]). From a parameterized complexity perspective, the following is known. First
fixed-parameter tractability results have been shown with respect to the single parameters number of
candidates, Kemeny score, maximum range of candidate positions, and average KT-distance da [4].
The average KT-distance

da :=
∑

v,w∈V,v 6=w

KT-dist(v, w)
)
/(n(n− 1))

will also play a central role in this work. Moreover, KEMENY SCORE remains NP-hard when
the average range of candidate positions is two [4], excluding hope for fixed-parameter tractabil-
ity with respect to this parameterization. Simjour [21] further introduced the parameter “Kemeny
score divided by the number of votes” (also showing fixed-parameter tractability) and improved the
running times for the fixed-parameter algorithms corresponding to the parameterizations by average
KT-distance and Kemeny score. Recently, Karpinski and Schudy [13] devised subexponential-time
fixed-parameter algorithms for the parameters Kemeny score, da, and Kemeny score divided by the
number of votes. Mahajan et al. [17] studied above guarantee parameterization with respect to the
Kemeny score. Introducing the new concept of partial kernelization, it has been shown that with
respect to the average KT-distance da one can compute in polynomial time an equivalent instance
where the number of candidates is at most 162d2

a +9da [5]. This equivalent instance is called partial
kernel2 with respect to the parameter da because it only bounds the number of candidates but not the
number of votes instead of bounding the total instance size (as one has in classical problem kernels).
Finally, it is interesting to note that Conitzer [7] developed a powerful preprocessing technique for
solving a similar rank aggregation problem (Slater ranking). His concept of similar candidates is
related to our approach.

Our contributions. On the theoretical side, we improve the previous partial kernel from 162d2
a +

9da candidates [5] to 11da candidates. Herein, the central point is to exploit “stronger majorities”,
going from “>2/3-majorities” as used before [5] to “≥3/4-majorities”. In this line, we also prove
that the consideration of “≥3/4-majorities” is optimal in the sense that “≥s-majorities” with s < 3/4
do not suffice.

On the practical side, we provide strong empirical evidence for the usefulness of data reduction
rules associated with the above mentioned kernelization. An essential property of our data reduction
rules is that they can break instances into several subinstances to be handled independently, that
is, the relative order between the candidates in two different subinstances in a Kemeny ranking is
already determined. This also means that for hard instances which we could not completely solve,
we were still able to compute “partial rankings” of the top and bottom ranked candidates. Finally,
we employ some of the known fixed-parameter algorithms and integer linear programming to solve
sufficiently small parts of the instances remaining after data reduction.

Due to the lack of space, several details are deferred to the full version of the paper.

2 Majority-based data reduction rules
We start with some definitions and sketch some relevant previous results [5]. Then we show how to
extend the previous results to obtain a linear partial kernel for the parameter average KT-distance by

2A formal definition of partial kernels appears in the upcoming journal version of [5].
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value of s partial kernel result sp. case: no dirty pairs
2/3 < s < 3/4 quadratic partial kernel w.r.t. nd ([5, Theorem 5]) polynomial-time solvable
3/4 ≤ s ≤ 1 linear partial kernel w.r.t. nd (Theorem 1) ([5, Theorem 4])

Table 1: Partial kernelization and polynomial-time solvability. The term dirty refers to the ≥s-
majority for the respective values of s. The number of dirty pairs is nd. A linear partial kernel w.r.t.
the average KT-distance follows directly from the linear partial kernel w.r.t. nd (Theorem 1).

providing a new reduction rule. We also show the “limits” of our new reduction rule. Finally, we
provide two more reduction rules of practical relevance.

Definitions and previous results. The data reduction framework from previous work [5] intro-
duces a “dirtiness concept” and shows that one can delete some “non-dirty candidates” by a data
reduction rule leading to a partial kernel with respect to the average KT-distance. The “dirtiness” of
a pair of candidates is measured by the amount of agreement of the votes for this pair. To this end,
we introduce the following notation. For an election (V,C), two candidates c, c′ ∈ C, and a rational
number s ∈ ]0.5, 1], we write

c ≥s c
′

if at least ds · |V |e of the votes prefer c to c′. A candidate pair {c, c′} is dirty according to the
≥s-majority if neither c ≥s c

′ nor c′ ≥s c. All remaining pairs are non-dirty according to the ≥s-
majority. This directly leads to the parameter number nd of dirty pairs according to the≥s-majority.
Previous work only considered >2/3-majorities3 and provided a reduction rule such that the number
of candidates in a reduced instance is at most quadratic in nd as well as in da [5]. In this work, we
provide a linear partial kernel with respect to nd according to the≥s-majority for s ≥ 3/4 and show
that this leads to a linear partial kernel with respect to da.

We say that c and c′ are ordered according to the ≥s-majority in a preference list l if c ≥s c
′

and c > c′ in l. If all candidate pairs are non-dirty with respect to the ≥s-majority for an s > 2/3,
then there exists a≥s-majority order, that is, a preference list in which all candidate pairs are ordered
according to the ≥s-majority [5]. Furthermore, such a >2/3-majority can be found in polynomial
time and is a Kemeny ranking [5]. Candidates appearing only in non-dirty pairs are called non-
dirty candidates and all remaining candidates are dirty candidates. Note that with this definition a
non-dirty pair can also be formed by two dirty candidates. See Table 1 for an overview of partial
kernelization and polynomial-time solvability results.

We end with some notation needed to state our data reduction rules. For a candidate subset C ′ ⊆
C, a ranking fulfills the condition C ′ > C \ C ′ if every candidate from C ′ is preferred to every
candidate from C \ C ′. A subinstance of (V,C) induced by a candidate subset C ′ ⊆ C is given
by (V ′, C ′) where every vote in V ′ one-to-one corresponds to a vote in V keeping the relative order
of the candidates from C ′.

2.1 New results exploiting ≥3/4-majorities
We improve the partial kernel upper bound [5] for the parameter da from quadratic to linear, pre-
senting a new data reduction rule. The crucial idea for the new reduction rule is to consider ≥3/4-
majorities instead of >2/3-majorities. We further show that the new reduction rule is tight in the
sense that it does not work for >2/3-majorities.

3To simplify matters, we write “>2/3” instead of “≥s with s > 2/3”, and if the value of s is clear from the context, then
we speak of “dirty pairs” and omit “according to the ≥s-majority”.

33



value of s properties

1/2 ≤ s ≤ 2/3 a ≥s-majority order does not necessarily exist (Example 1)
2/3 < s < 3/4 a ≥s-majority order exists (follows from [5, Theorem 4])

but a non-dirty candidate and a dirty candidate do not have to be ordered
according to the ≥s-majority in a Kemeny ranking (Theorem 2)

3/4 ≤ s ≤ 1 a ≥s-majority order exists (follows from [5, Theorem 4])
and in every Kemeny ranking every non-dirty candidate is ordered according
to the ≥s-majority with respect to all other candidates (Lemma 1)

Table 2: Properties “induced” by ≥s-majorities for different values of s.

Reduction rule. The following lemma allows us to formulate a data reduction rule that deletes all
non-dirty candidates and additionally may break the remaining set of dirty candidates into several
subsets to be handled independently from each other.

Lemma 1. Let a ∈ C be a non-dirty candidate with respect to the ≥3/4-majority and b ∈ C \ {a}.
If a ≥3/4 b, then in every Kemeny ranking one must have “a > · · · > b”; if b ≥3/4 a, then in every
Kemeny ranking one must have “b > · · · > a”.

As a direct consequence of Lemma 1 we can partition the candidates of an election (V,C) as
follows. Let N := {n1, . . . , ns} denote the set of non-dirty candidates with respect to the ≥3/4-
majority such that ni ≥3/4 ni+1 for 1 ≤ i ≤ s− 1. Then,

D0 := {d ∈ C \N | d ≥3/4 n1},
Di := {d ∈ C \N | ni ≥3/4 d and d ≥3/4 ni+1} for 1 ≤ i ≤ s− 1, and
Ds := {d ∈ C \N | ns ≥3/4 d}.

3/4-Majority Rule. Let (V,C) be an election and N and D0, . . . , Ds be the sets of non-dirty and
dirty candidates as specified above. Replace the original instance by the s+1 subinstances induced
by Di for i ∈ {0, . . . , s}.
The soundness of the 3/4-Majority Rule follows directly from Lemma 1 and it is straightforward
to verify its running time O(nm2). An instance reduced by the 3/4-Majority Rule contains only
dirty candidates with respect to the original instance. Making use of a simple relation between the
number of dirty candidates and the average KT-distance as also used previously [5], one can state
the following.

Theorem 1. For KEMENY SCORE a partial kernel with less than 11 · da candidates and less than
2nd candidates can be computed in O(nm2) time.

Tightness results. We investigate to which ≥s-majorities the results obtained for ≥3/4-majorities
extend. An overview of properties for a Kemeny ranking for different values of s is provided in
Table 2.

For the >2/3-majority, instances without dirty candidates are polynomial-time solvable [5].
More precisely, the >2/3-majority order is a Kemeny ranking. A simple example shows that for
any s ≤ 2/3 a ≥s-majority order does not always exist:

Example 1. Consider the election consisting of the three candidates a, b, and c and the three votes
“a > b > c”, “b > c > a”, and “c > a > b”. Here, a ≥2/3 b, b ≥2/3 c, and c ≥2/3 a. Then, no
linear order fulfills all three relations.
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The existence of a data reduction rule analogously to the 3/4-Majority Rule for ≥s-majorities
for s < 3/4 would be desirable since such a rule might be more effective: There are instances for
which a candidate is dirty according to the ≥3/4-majority but non-dirty according to a ≥s-majority
with s < 3/4. Hence, for many instances, the number nd of dirty pairs according to the ≥3/4-
majority assumes higher values than it does according to smaller values of s. In the following, we
discuss why an analogous s-Majority Rule with s < 3/4 cannot exist. The decisive point of the 3/4-
Majority Rule is that, in a Kemeny ranking, every non-dirty candidate must be ordered according to
the ≥3/4-majority with respect to every other candidate. The following theorem shows that this is
not true for ≥s-majorities with s < 3/4.

Theorem 2. Consider a ≥s-majority for any rational s ∈ ]2/3, 3/4[. For a non-dirty candidate x
and a dirty candidate y, x ≥s y does not imply x > y in a Kemeny ranking.

Proof. Let s1 and s2 be two positive integers such that s = s1/s2. We construct an election such
that there is a non-dirty candidate x with x ≥s y but “y > · · · > x” in every Kemeny ranking. The
set of candidates is {x, y, a1, a2} and there are the following n = s1 · s2 votes:

• s1 · s2 − s21 votes of type 1: x > y > a1 > a2,

• 2s21 − s1 · s2 votes of type 2: a1 > a2 > x > y,

• s1 · s2 − s21 votes of type 3: y > a1 > a2 > x.

We first show that there is a positive number of votes of every type:
Considering the number of votes of types 1 and 3, recall that 3/4 > s1/s2 and thus s2 > 4/3·s1.

Hence, it is easy to see that their number is s1 · s2 − s21 > s1 · (4/3 · s1 − s1) > 0. Regarding votes
of type 2, we use the trivial bound that s1/s2 > 1/2 and thus their number is 2s21 − s1 · s2 >
s1 · (2s1 − 2s1) = 0.

Now, we show that x is non-dirty and x ≥s y. The number of votes with a > x for a ∈
{a1, a2} is 2s21 − s1 · s2 + s1 · s2 − s21 = s21 = s · n and the number of votes with x > y is
s1 · s2 − s21 + 2s21 − s1 · s2 = s21 = s · n and thus x is non-dirty according to the ≥s-majority and
x ≥s y.

In the following, we show that the score of “y > a1 > a2 > x” is smaller than the score of every
other preference list and, hence, there is no Kemeny ranking in which x and y are ordered according
to the ≥s-majority.

Since “a1 > a2” in every vote, “a1 > a2” in every Kemeny ranking (see e.g. [4]). Distinguishing
three cases, we first show that in every Kemeny ranking “a1 > x” if and only if “a2 > x”, and
“a1 > y” if and only if “a2 > y”. After this, we can treat a1 and a2 as one candidate of “weight”
two and thus with this argument there remain only six preference lists for which the score has to be
investigated to show that “y > a1 > a2 > x” is the only preference list with minimum score.

Case 1: Consider a preference list with “a1 > x > a2” where y is placed either before or after all
other three candidates. This preference list cannot have minimum score since swapping x and
a2 leads to a preference list with smaller score since a2 ≥ x in more than sn > 2/3 · n votes.

Case 2: Consider a preference list with “a1 > y > a2” where x is placed either before or after
all three other candidates. This preference list cannot have minimum score since swapping
a1 and y leads to a preference list with smaller score. This can be seen as follows. Since
s1 < 3/4 · s2, the number of votes with “y > a1” is

2s1s2 − 2s21 > 2s1(s2 − 3/4 · s2) = 1/2 · s1s2 = n/2.
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Case 3: Consider the preference list “a1 > x > y > a2”. Note that the same preference list with
x and y swapped would clearly have a larger score. We show that “a1 > a2 > x > y” has a
smaller score than “a1 > x > y > a2”. The only pairs that change the score are {a2, y} and
{a2, x}. These pairs contribute with

#v(a2 > y) + #v(a2 > x) = 2s21 − s1s2 + 2s21 − s1s2 + s1s2 − s21 = 3s21 − s1s2
to the old score and with 2n − #v(a2 > y) − #v(a2 > x) to the “new” score. Hence, it
remains to show that the difference between the old and new score is positive, that is,

3s21 − s1s2 − 2s1s2 + 3s21 − s1s2 = 6s21 − 4s1s2 > 6 · 2/3 · s1s2 − 4s1s2 = 0.

Finally, we consider the scores of all possible remaining six preference lists r1, . . . , r6 with a stand-
ing for “a1 > a2”:

r1 : a > x > yxxxxxxxx r3 : x > a > yxxxxxxxx r5 : y > a > x
r2 : a > y > x r4 : x > y > a r6 : y > x > a

Let t(r) denote the score of a preference list r. It is easy to verify that t(r1) < t(r2),
t(r1) < t(r3), and t(r4) < t(r6). Hence, it remains to compare the score of r5 with the score
of r1 and r4. Since a represents two candidates, we count the corresponding pairs twice in the
following computations.

t(r1)− t(r5)

= 2#v(x > a) + 2#v(y > a) + #v(y > x)− 2#v(a > y)− 2#v(x > a)−#v(x > y)

= 2s1s2 − 2s2
1 + 4s1s2 − 4s2

1 + s1s2 − s2
1 − 4s2

1 + 2s1s2 − 2s1s2 + 2s2
1 − s2s1 + s1s2

= 7s1s2 − 5s2
1 > 7s1 · 4/3 · s1 − 5s2

1 = 13/3 · s2
1 > 0

t(r4)− t(r5)

= #v(y > x) + 2#v(a > x) + 2#v(a > y)− 2#v(a > y)− 2#v(x > a)−#v(x > y)

= s1s2 − s2
1 + 2 · s2

1 − 2 · (s1s2) + 2 · s2
1 − s2

1

= 2s2
1 − s1s2 > 2/3 · s2

1 > 0

This shows that r5 has a smaller score than r1 and r4.
Altogether, we showed that r5 is the only Kemeny ranking. Thus, there is an election with

x ≥s y for every s ∈ ]2/3, 3/4[ such that every Kemeny ranking has y > x.

2.2 Exploiting the Condorcet property
We present a well-known data reduction rule of practical relevance and show that it reduces an
instance at least as much as the 3/4-Majority Rule. The reduction rule is based on the following
easy-to-verify observation.

Observation 1. Let C ′ ⊆ C be a candidate subset with c′ ≥1/2 c for every c′ ∈ C ′ and every
c ∈ C \ C ′. Then there must be a Kemeny ranking fulfilling C ′ > C \ C ′.

To turn Observation 1 into a reduction rule, we need a polynomial-time algorithm to identify
appropriate “winning subsets” of candidates. We use the following simple strategy, called winning
subset routine: For every candidate c, compute a minimal winning subset Mc by iteratively adding
every candidate c′ with c′ >1/2 c′′, c′′ ∈ Mc, to Mc. After this, we choose a smallest winning
subset.
Condorcet-Set Rule. If the winning subset routine returns a subset C ′ with C ′ 6= C, then replace
the original instance by the two subinstances induced by C ′ and C \ C ′.
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It is easy to see that the Condorcet-Set Rule can be carried out in O(nm3) time. The following
proposition shows that the Condorcet-Set Rule is at least as powerful as the 3/4-Majority Rule,
implying that the Condorcet-Set Rule provides a partial kernel with less than 11da candidates.

Proposition 1. An instance reduced by the Condorcet-Set Rule cannot be further reduced by the
3/4-Majority Rule.

Proposition 1 shows that the 3/4-Majority Rule cannot lead to a “stronger” reduction of an
instance than the Condorcet-Set Rule does. However, since the Condorcet-Set Rule has a higher
running time, that is O(nm3) compared to O(nm2), applying the 3/4-Majority Rule before the
Condorcet-Set Rule may lead to an improved running time in practice. This is also true for the
consideration of the following “special case” of the Condorcet-Set Rule also running in O(nm2)
time.
Condorcet Rule. If there is a candidate c ∈ C with c ≥1/2 c

′ for every c′ ∈ C \ {c}, then delete c.

Indeed, our experiments will show that combining the Condorcet-Set Rule with the other rules sig-
nificantly speeds up the practical running times for many instances.

3 Experimental results
To solve sufficiently small remaining parts of the instances left after the application of our data
reduction rules, we implemented three exact algorithms. First, an extended version of the search tree
algorithm showing fixed-parameter tractability with respect to the Kemeny score [4, 6]. Second, a
dynamic programming algorithm running inO(2m ·nm2) time form candidates and n votes [4, 19].
Third, the integer linear program [8, Linear Program 3] which was the fastest exact algorithm in
previous experimental studies [8, 20]. We use the freely available ILP-solver GLPK4 to solve the
ILP.5

Our algorithms are implemented in C++ using several libraries of the boost package. Our
implementation consists of about 4000 lines of code. All experiments were carried out on a
PC with 3 GHz and 4 GB RAM (CPU: Intel Core2Quad Q9550) running under Ubuntu 9.10
(64 bit) Linux. Source code and test date are available under the GPL Version 3 license under
http://theinf1.informatik.uni-jena.de/kconsens/.

We start to describe our results for two different types of web search data (Sections 3.1 and 3.2)
followed by instances obtained from sport competitions (Section 3.3).

3.1 Search result rankings
A prominent application of RANK AGGREGATION is the aggregation of search result rankings ob-
tained from different web search engines. We queried the same 37 search terms as Dwork et al. [10]
and Schalekamp and van Zuylen [20] to generate rankings. We used the search engines Google,
Lycos, MSN Live Search, and Yahoo! to generate rankings of 1000 candidates. We consider two
search results as identical if their URL is identical up to some canonical form (cutting after the top-
level domain). Results not appearing in all rankings are ignored. Ignoring the term “zen budism”
with only 18 candidates, this results in 36 instances having between 55 and 163 candidates. We
start with a systematic investigation of the performance of the individual reduction rules followed
by describing our results for the web instances.

We systematically applied all combinations of reduction rules, always sticking to the following
rule ordering: If applied, the Condorcet-Set Rule is applied last and the 3/4-Majority Rule is applied

4http://www.gnu.org/software/glpk/
5We omit a detailed discussion about the performance of the single algorithms. A systematic comparison of the three

algorithms will be provided in the full version of this work.
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blues gardening classical guitar
time profile time profile time profile

001 0.03 12 >5>1>101>1>2 0.01 1>2>1>102 0.03 1>114
010 0.10 174 >9>129 0.05 154 >43>19 0.06 16 >92>117

011 0.10 174 >9>129 0.05 154 >43>19 0.07 16 >92>117

100 0.84 174 >9>129 0.95 154 >20>13 >9>110 >4>16 1.89 16 >7>150 >35>117

101 0.10 174 >9>129 1.03 154 >20>13 >9>110 >4>16 2.03 16 >7>150 >35>117

110 0.10 174 >9>129 0.10 154 >20>13 >9>110 >4>16 0.19 16 >7>150 >35>117

111 0.10 174 >9>129 0.11 154 >20>13 >9>110 >4>16 0.18 16 >7>150 >35>117

Figure 1: The first column encodes the combination of reduction rules used: the first digit is “1” if
the Condorcet-Set Rule is applied, the second if the Condorcet Rule is applied and the last digit is
“1” if the 3/4-Majority Rule is applied. For the three instances corresponding to the search terms
“blues”, “gardening”, and “classical guitar” we give the running times in seconds and the profiles
describing the result of the data reduction process.
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Figure 2: Left: Running times of different combinations of reduction rules. To improve readability,
we omitted the data points for the Condorcet-Set Rule combined with the 3/4-Majority Rule which
was usually worse and in no case outperformed the best running times for the other combinations.
Right: Percentage of the web search instances for which the x top candidates could be determined
by data reduction and dynamic programming within five minutes. For a given number x of top
positions, we only considered instances with at least x candidates.

first. After a successful application of the Condorcet-Set Rule, we “jump” back to the other rules (if
“activated”). Examples are given in Fig. 1. This led to the following observations.

First, surprisingly, the Condorcet Rule alone led to a stronger reduction than the 3/4-Majority
Rule in most of the instances whereas the 3/4-Majority Rule never led to a stronger reduction than
the Condorcet Rule. Second, for several instances the Condorcet-Set Rule led to a stronger reduction
than the other two rules, for example, for gardening and classical guitar (see Fig. 1). It led to a
stronger reduction for 14 out of the 36 instances and restricted to the 15 instances with more than
100 candidates (given in Table 3), it led to a stronger reduction for eight of them. Finally, the
running times for the Condorcet-Set Rule in combination with the other rules are given in the left
part of Fig. 2. Applying the Condorcet Rule before the Condorcet-Set Rule led to a significant speed-
up. Additionally applying the 3/4-Majority Rule changes the running time only marginally. Note
that jumping back to the “faster” rules after applying the Condorcet-Set Rule is crucial to obtain the
given running times. In the following, by “our reduction rules”, we refer to all three rules applied in
the order: Condorcet Rule, 3/4-Majority Rule, and Condorcet-Set Rule.
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Table 3: Web data instances with more than 100 candidates. The first column denotes the search term, the
second the number of candidates, the third the running time in seconds, and the last column the “profiles”
remaining after data reduction to read as follows. Every “1” stands for a position for which a candidate was
determined in a Kemeny ranking and higher numbers for groups of candidates whose “internal” order could
not be determined by the data reduction rules. Sequences of i ones are abbreviated by 1i. For example, for the
search term “architecture”, we know the order of the best 36 candidates, then we know the set of candidates
that must assume positions 37– 48 without knowledge of their relative orders, and so on.

search term # cand. time structure of reduced instance

affirmative action 127 0.21 127 > 41 > 159

alcoholism 115 0.10 1115

architecture 122 0.16 136 > 12 > 130 > 17 > 127

blues 112 0.10 174 > 9 > 129

cheese 142 0.20 194 > 6 > 142

classical guitar 115 0.19 16 > 7 > 150 > 35 > 117

Death+Valley 110 0.11 115 > 7 > 130 > 8 > 150

field hockey 102 0.17 137 > 26 > 120 > 4 > 115

gardening 106 0.10 154 > 20 > 1 > 1 > 9 > 18 > 4 > 19

HIV 115 0.13 162 > 5 > 17 > 20 > 121

lyme disease 153 3.08 125 > 97 > 131

mutual funds 128 2.08 19 > 45 > 19 > 5 > 1 > 49 > 110

rock climbing 102 0.07 1102

Shakespeare 163 0.26 1100 > 10 > 125 > 6 > 122

telecommuting 131 1.60 19 > 109 > 113

For all instances with more than 100 candidates, the results of our reduction rules are displayed
in Table 3: the data reduction rules are not only able to reduce candidates at the top and the last
positions but also partition some instances into several smaller subinstances. Out of the 36 instances,
22 were solved directly by the reduction rules and one of the other algorithms in less than five
minutes. Herein, the reduction rules always contributed with less than four seconds to the running
time. For all other instances we still could compute the “top” and the “flop” candidates of an optimal
ranking. For example, for the search term “telecommuting” there remains a subinstance with 109
candidates but we know the best nine candidates (and their order). The effectiveness in terms of top
candidates of our reduction rules combined with the dynamic programming algorithm is illustrated
in Fig. 2. For example, we were able to compute the top seven candidates for all instances and the
top 40 candidates for 70 percent of the instances.

3.2 Impact rankings
We generated rankings that measure the “impact in the web” of different search terms. For a search
engine, a list of search terms is ranked according to the number of the hits of each single term.
We used Ask, Google, MSN Live Search, and Yahoo! to generate rankings for all capitals (240
candidates), all nations (242 candidates), and the 103 richest people of the world.6 Our biggest
instance is built from a list of 1349 mathematicians.7

As to the capitals, in less than a second, our algorithms (reduction rules and any of the other
algorithms for solving subinstances up to 11 candidates) computed the following “profile” of a
Kemeny ranking: 145 > 34 > 190 > 43 > 126 (see Table 3 for a description of the profile concept).
The final Kemeny ranking starts as follows: London> Paris>Madrid> Singapore> Berlin> · · · .

6http://en.wikipedia.org/wiki/List of{capitals by countries, richest people}
7http://aleph0.clarku.edu/∼djoyce/mathhist/chronology.html
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For aggregating the nation rankings, our algorithms were less successful. However, we could still
compute the top 6 and the flop 12 candidates. Surprisingly, the best represented nation in the web
seems to be Indonesia, followed by France, the United States, Canada, and Australia. The instance
consisting of the 103 richest persons could be solved exactly in milliseconds by the data reduction
rules. In contrast, for the mathematicians we could only compute the top 31 and flop 31 candidates
but could not deal with a subinstance of 1287 candidates between. For the mathematicians instance,
the search strategy for minimal subsets for the Condorcet-Set Rule as given in Section 2 led to a
running time of more than a day. Hence, we used a cutoff of 20 candidates for the size of the
minimal subsets. This decreased the running time to less than one hour.

3.3 Sport competitions
Formula 1. The winner determination of a Formula 1 season can be considered as an election
where the candidates are the drivers and the votes are the single races. Currently, the winner de-
termination is based on a “scoring rule”, that is, in a single race every candidate gets some points
depending on the outcome and the candidate with highest total score wins. We computed Kemeny
winners for the seasons from 1970 till 2008. Since currently our implementation cannot handle ties,
we only considered candidates that have competed in all races. Candidates that dropped out of a
race are ordered according to the order determined by how long the drivers participated in the race.
The generated instances have about 16 votes and up to 28 candidates.

Without data reduction, the ILP-approach was the most successful algorithm. It could solve
all instances in less than 31 seconds whereas the dynamic programming algorithm could not solve
the two instances with the highest number of candidates within 5 minutes. All search tree variants
performed even worse. The Condorcet and the Condorcet-Set Rule partitioned nearly all instances
in very small components such that a Kemeny ranking could be computed for all years except 1983
in few milliseconds. For 1983 (24 candidates), a remaining component with 19 candidates could be
solved in less than one minute by the dynamic programming algorithm.

The Kemeny winner in most of the considered seasons is the same as the candidate selected by
the used scoring rule. However, in 2008, Lewis Hamilton was elected as world champion (beating
Felipe Massa by only one point) whereas Massa was the “Condorcet driver” and thus the first candi-
date in every Kemeny ranking. Since in contrast to Kemeny’s voting system there is no scoring rule
fulfilling the Condorcet property [23], this is no complete surprise.

Winter sport competitions. For ski jumping and cross skiing, we considered the world cup rank-
ings from the seasons 2005/2006 to 2008/2009,8 ignoring candidates not appearing in all four rank-
ings. Without data reduction, the ski jumping instance, consisting of 33 candidates, was solved by
the ILP-solver GLPK in 103 seconds whereas the search tree and dynamic programming algorithms
did not find a solution within five minutes. In contrast, the instance was solved in milliseconds by
only applying the reduction rules. The cross skiing instance, consisting of 69 candidates, could not
be solved without data reduction within five minutes by any of our algorithms but was reduced in
0.04 seconds such that one component with 12 and one component with 15 candidates were left
while all other positions could be determined by the reduction rules. The remaining parts could be
solved, for example by the dynamic programming algorithm, within 0.12 and 0.011 seconds.

4 Conclusion
Our experiments showed that the described data reduction rules allow for the computation of opti-
mal Kemeny rankings for real-world instances of non-trivial sizes within seconds. For instance, all
of our larger now solved instances (with more than 50 candidates) could not be solved by the ILP,

8Obtained from http://www.sportschau.de/sp/wintersport/
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the previously fastest exact algorithm [8], or the two other implemented fixed-parameter algorithms
directly. A key-feature of the data reduction rules is to break instances into smaller, independent
instances. A crucial observation in the experiments with the different data reduction rules regards
certain cascading effects, that is, jumping back to the faster-to-execute rules after a successful appli-
cation of the Condorcet-Set Rule significantly improves the running time. This shows that the order
of applying data reduction rules is important. We could not observe a specific behavior of our data
reduction rules for the different types of data under consideration. However, a further extension of
the data sets and experiments in this direction are clearly of interest.

On the theoretical side, we improved the previous partial kernel [5] with respect to the parameter
average KT-distance from quadratic to linear size. Despite the negative results from Theorem 2,
there is still room for improving the >2/3-majority based results. In particular, is there a linear
partial kernel with respect to the ≥s-majority for any s < 3/4? A natural step in answering this
question seems to investigate whether for two non-dirty candidates a, b, there must be a Kemeny
ranking with a > b if a ≥s b. An important extension of RANK AGGREGATION is to consider
“constraint rankings”, that is, the problem input additionally contains a prespecified order of some
candidate pairs in the consensus list [22]. Here, our data reduction rules cannot be applied anymore.
New reduction rules for this scenario could also be used in “combination” with the search tree
algorithm [4] in an “interleaving mode” [18]. Other challenging variants of RANK AGGREGATION
of practical interest are investigated by Ailon [1].
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On the Fixed-Parameter Tractability of
Composition-Consistent Tournament Solutions

Felix Brandt, Markus Brill, and Hans Georg Seedig

Abstract

Tournament solutions, i.e., functions that associate with each complete and asym-
metric relation on a set of alternatives a non-empty subset of the alternatives, play
an important role within social choice theory and the mathematical social sciences
at large. Laffond et al. have shown that various tournament solutions satisfy
composition-consistency, a strong structural invariance property based on the simi-
larity of alternatives. We define the decomposition degree of a tournament as a pa-
rameter that reflects its decomposability and show that computing any composition-
consistent tournament solution is fixed-parameter tractable with respect to the de-
composition degree. This is of particular relevance for tournament solutions that are
known to be computationally intractable such as the Banks set and the tournament
equilibrium set, both of which have been proposed in the context of social choice.
Finally, we experimentally investigate the decomposition degree of two natural dis-
tributions of tournaments.

1 Introduction
Many problems in multiagent decision making can be addressed using tournament solu-
tions, i.e., functions that associate with each complete and asymmetric relation on a set of
alternatives a non-empty subset of the alternatives. Tournament solutions are most preva-
lent in social choice theory, where the binary relation is typically assumed to be given by
the simple majority rule (Moulin, 1986; Laslier, 1997). Other application areas include
multi-criteria decision analysis (Arrow and Raynaud, 1986; Bouyssou et al., 2006), zero-sum
games (Fisher and Ryan, 1995; Laffond et al., 1993; Duggan and Le Breton, 1996), coalition
formation (Brandt and Harrenstein, 2011), and argumentation theory (Dung, 1995; Dunne,
2007).

Recent years have witnessed an increasing interest in the computational complexity of
tournament solutions by the multiagent systems and theoretical computer science commu-
nities. A number of concepts such as the Banks set (Woeginger, 2003), the Slater set (Alon,
2006; Conitzer, 2006), and the tournament equilibrium set (Brandt et al., 2010) have been
shown to be computationally intractable. For others, including the minimal covering set
and the bipartisan set, algorithms that run in polynomial time but are nevertheless compu-
tationally quite demanding because they rely on linear programming, have been provided
(Brandt and Fischer, 2008). The class of all tournaments is excessively rich and it is well-
known that only a fraction of these tournaments occur in realistic settings (see, e.g., Feld
and Grofman, 1992). Therefore, an important question is whether there are natural classes
or distributions of tournaments that admit more efficient algorithms for computing specific
tournament solutions. In this paper, we study tournaments that are decomposable in a cer-
tain well-defined way. A set of alternatives forms a component if all alternatives in this set
bear the same relationship to all outside alternatives. Elements of a component can thus
be seen as variants of the same type of an alternative. Laslier (1997) has shown that every
tournament admits a unique natural decomposition into components, which may themselves
be decomposable into subcomponents. A tournament solution is composition-consistent if
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it chooses the best alternatives of the best components (Laffond et al., 1996).1 In other
words, a composition-consistent tournament solution can be computed by recursively deter-
mining the winning components. All of the tournament solutions mentioned earlier except
the Slater set are composition-consistent.

In this paper, we provide a precise formalization of the recursive decomposition of tour-
naments and a detailed analysis of the speed-up that can be achieved when computing
composition-consistent tournament solutions. In particular, we define the decomposition
degree of a tournament as a parameter that reflects its decomposability. Intuitively, a low
decomposition degree indicates that the tournament admits a particularly well-behaved de-
composition and therefore allows the efficient computation of composition-consistent tourna-
ment solutions. Within our analysis, we leverage a recently proposed linear-time algorithm
for the modular decomposition of directed graphs (McConnell and de Montgolfier, 2005;
Capelle et al., 2002).

In related work, Betzler et al. (2010) proposed data reduction rules that facilitate the
computation of Kemeny rankings. One of these rules, the “Condorcet-set rule”, corresponds
to a (rather limited) special case of composition-consistency where tournaments are decom-
posed into exactly two components. Furthermore, a preprocessing technique that resembles
the one proposed in this paper has been used by Conitzer (2006) to speed up the compu-
tation of Slater rankings. Interestingly, even though Slater’s solution is not composition-
consistent, decompositions of the tournament can be exploited to identify a subset of the
optimal rankings.

Our results, on the other hand, allow us to compute complete choice sets and are appli-
cable to all composition-consistent tournament solutions, including the uncovered set (Fish-
burn, 1977; Miller, 1980), the minimal covering set (Dutta, 1988), the bipartisan set (Laffond
et al., 1993), the Banks set (Banks, 1985), the tournament equilibrium set (Schwartz, 1990),
and the minimal extending set (Brandt, 2009). The former three admit polynomial-time
algorithms whereas the latter three are computationally intractable. None of the concepts
is known to admit a linear-time algorithm.

We show that computing any composition-consistent tournament solution is fixed-
parameter tractable with respect to the decomposition degree of the tournament, i.e., there
are algorithms that are only superpolynomial in the decomposition degree. We conclude
the paper with an extensive investigation of the decomposition degree of two natural dis-
tributions of tournaments. The first one is a well-studied model model that assumes the
existence of a true linear ordering of the alternatives that has been perturbed by binary
random inversions. The other one is a spatial voting model based on the proximity of voters
and alternatives in a multi-dimensional space.

2 Preliminaries
In this section, we provide the terminology and notation required for our results (see Laslier
(1997) for an excellent overview of tournament solutions and their properties).

2.1 Tournaments
Let X be a universe of alternatives. For notational convenience we assume that N ⊆ X. The
set of all non-empty finite subsets of X will be denoted by F(X). A (finite) tournament T is
a pair (A,�), where A ∈ F(X) and � is an asymmetric and complete (and thus irreflexive)

1Composition-consistency is related to cloning-consistency, which was introduced by Tideman (1987) in
the context of social choice.
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binary relation on X, usually referred to as the dominance relation.2 Intuitively, a � b
signifies that alternative a is preferable to b. The dominance relation can be extended to
sets of alternatives by writing A � B when a � b for all a ∈ A and b ∈ B.3 We further write
T (X) for the set of all tournaments on X. The order |T | of a tournament T = (A,�) refers
to its number of alternatives |A|. Finally, a tournament isomorphism of two tournaments
T = (A,�) and T ′ = (A′,�′) is a bijective mapping π : A→ A′ such that a � b if and only
if π(a) �′ π(b).

2.2 Components and Decompositions
An important structural concept in the context of tournaments is that of a component. A
component is a subset of alternatives that bear the same relationship to all alternatives not
in the set.

Definition 1. Let T = (A,�) be a tournament. A non-empty subset B of A is a component
of T if for all a ∈ A \ B either B � a or a � B. A decomposition of T is a set of pairwise
disjoint components {B1, . . . , Bk} of T such that A =

⋃k
i=1Bi.

The null decomposition of a tournament T = (A,�) is {A}; the trivial decomposition
consists of all singletons of A. Any other decomposition is called proper. A tournament
is said to be decomposable if it admits a proper decomposition. Given a particular de-
composition, the summary of a tournament is defined as the tournament on the individual
components rather than the alternatives.

Definition 2. Let T = (A,�) be a tournament and B̃ = {B1, . . . , Bk} a decomposition of
T . The summary of T with respect to B̃ is defined as T̃ = ({1, . . . , k}, �̃), where

i �̃ j if and only if Bi � Bj .

A tournament is called reducible if it admits a decomposition into two components.
Otherwise, it is irreducible. Laslier (1997) has shown that there exist a natural unique way
to decompose any tournament. Call a decomposition B̃ finer than another decomposition
B̃′ if B̃ 6= B̃′ and for each B ∈ B̃ there exists B′ ∈ B̃′ such that B ⊆ B′. B̃′ is said to be
coarser than B̃. A decomposition is minimal if its only coarser decomposition is the null
decomposition.

Proposition 1 (Laslier (1997)). Every irreducible tournament with more than one alterna-
tive admits a unique minimal decomposition.

This is obviously not true for reducible tournaments, as witnessed by the tournament
T = ({1, 2, 3},�) with 1 � 2, 1 � 3, and 2 � 3, which admits two minimal decompositions,
namely {{1}, {2, 3}} and {{1, 2}, {3}}. Nevertheless, there is a unique way to decompose
any reducible tournament. A scaling decomposition is a decomposition with a transitive
summary.

Proposition 2 (Laslier (1997)). Every reducible tournament admits a unique scaling de-
composition such that each component is irreducible.

This scaling decomposition into irreducible components is also the finest scaling decom-
position.

2This definition slightly diverges from the common graph-theoretic definition where � is defined on A
rather than X. However, it facilitates the sound definition of tournament solutions.

3To avoid cluttered notation, we omit the curly braces if one of the sets is a singleton, i.e., we write
a � B instead of the more cumbersome {a} � B.
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2.3 Tournament Solutions
A maximal element of a tournament T = (A,�) is an alternative that is not dominated by
any other alternative. Due to the asymmetry of the dominance relation, there can be at
most one maximal element, which then also constitutes a maximum. Let max(T ) denote
the function that yields the empty set or the maximum whenever one exists, i.e.,

max(T ) = {a ∈ A : a � b for all b ∈ A \ {a}}.

In social choice theory, the maximum of a tournament given by a majority relation is com-
monly referred to as the Condorcet winner.

Since the dominance relation may contain cycles and thus fail to have a maximal element,
a variety of concepts have been suggested to take over the role of singling out the “best”
alternatives of a tournament. Formally, a tournament solution S is defined as a function
that associates with each tournament T = (A,�) a non-empty subset S(T ) of A. Following
Laslier (1997), we require a tournament solution to be independent of alternatives outside
the tournament, invariant under tournament isomorphisms, and to select the maximum
whenever it exists.

Definition 3. A tournament solution is a function S : T (X)→ F(X) such that

(i) S(T ) ⊆ A for all tournaments T = (A,�);

(ii) S(T ) = S(T ′) for all tournaments T = (A,�) and T ′ = (A,�′) such that T |A = T ′|A;
(iii) S((π(A),�′)) = π(S((A,�))) for all tournaments (A,�), (A′,�′), and every tourna-

ment isomorphism π : A→ A′ of (A,�) and (A′,�′); and
(iv) S(T ) = max(T ) whenever max(T ) 6= ∅.

A tournament solution is composition-consistent if it chooses the “best” alternatives from
the “best” components (Laffond et al., 1996).

Definition 4. A tournament solution S is composition-consistent if for all tournaments T
and T̃ such that T̃ is the summary of T with respect to some decomposition {B1, . . . , Bk},

S(T ) =
⋃

i∈S(T̃ )

S(T |Bi
).

2.4 Fixed-Parameter Tractability and Parameterized Complexity
We briefly introduce the most basic concepts of parameterized complexity theory (see, e.g.,
Downey and Fellows, 1999; Niedermeier, 2006). In contrast to classical complexity the-
ory, where the size of problem instances is the only measure of importance, parameterized
complexity analyzes whether the hardness of a problems only depends on the size of certain
parameters. A problem with parameter k is said to be fixed-parameter tractable (or to belong
to the class FPT) if there exists an algorithm that solves the problem in time f(k) ·poly(|I|),
where |I| is the size of the input and f is some computable function independent of |I|.

For example, each (computable) problem is trivially fixed-parameter tractable with re-
spect to the parameter |I|. The crucial point is to identify a parameter that is reasonably
small in realistic instances and to devise an algorithm that is only superpolynomial in this
parameter.
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3 The Decomposition Tree of a Tournament
Propositions 1 and 2 offer a straightforward method to iteratively decompose tournaments.
If the tournament is reducible, take the scaling decomposition with irreducible components.
If it is irreducible, take the minimal decomposition. The repeated application of these
decompositions leads to the decomposition tree of a tournament.

Definition 5. The decomposition tree D(T ) of a tournament T = (A,�) is defined as a
rooted tree whose nodes are non-empty subsets of A. The root of D(T ) is A and for each
node B ∈ C with |B| ≥ 2, the children of B are defined as follows:

• If T |B is reducible, the children of B are the components of a finest scaling decompo-
sition of T |B .

• If T |B is irreducible, the children of B are the components of a minimal decomposition
of T |B .

It also follows from Propositions 1 and 2 that every tournament has a unique decom-
position tree. By definition, each node in D(T ) is a component of T and each leaf is a
singleton. However, not all components of T need to appear as nodes in D(T ). An example
of a decomposition tree is provided in Figure 1.

a

b
c

d

e

f
g

A

a,d,e,g

a d,e

d e

g

b f,c

f c

Figure 1: Example tournament with corresponding decomposition tree. Nodes {f, c} and
{d,e} are reducible, all other nodes are irreducible. Curly braces are omitted to improve
readability.

An internal (i.e., non-leaf) node B of D(T ) with children B1, . . . , Bk corresponds to the
tournament TB = ({1, . . . , k}, �̃) where i �̃ j if and only if Bi � Bj , i.e., TB is the summary
of T |B with respect to the decomposition {B1, . . . , Bk}. The order of TB is thus equal to the
number of children of node B. Moreover, we call an internal node B reducible (respectively,
irreducible) if the tournament TB is reducible (respectively, irreducible).4 If B is reducible,
we assume without loss of generality that the children B1, . . . , Bk are labelled according to
their transitive summary, i.e., Bi � Bj if and only if i < j. In particular, max(TB) = {1}.

Recent results on the modular decomposition of directed graphs (Capelle et al., 2002;
McConnell and de Montgolfier, 2005) imply that the decomposition tree of a tournament
can be computed in linear time.5

Proposition 3. The decomposition tree of a tournament T can be computed in time O(|T |2).
4T |B is reducible (respectively, irreducible) if and only if its summary TB is.
5The representation of a tournament is quadratic in the number of its alternatives.
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The proof consists of two steps. In the first step, a factorizing permutation of the tour-
nament is constructed. A factorizing permutation of T = (A,�) is a permutation of the
alternatives in A such that each component of T is a contiguous interval in the permuta-
tion. McConnell and de Montgolfier (2005) provide a simple algorithm that computes a
factorizing permutation of a tournament in linear time. Furthermore, there exists a fairly
complicated linear-time algorithm by Capelle et al. (2002) that, given a tournament T and
a factorizing permutation of T , computes the decomposition tree D(T ). Since the litera-
ture on composition-consistency in social choice and on modular decompositions in graph
theory is unfortunately not well-connected and for reasons of completeness, we outline both
algorithms in the Appendix.

The concept of a factorizing permutation also yields a simple way to bound the number
of nodes in the decomposition tree.

Lemma 1. The number of internal nodes in the decomposition tree of a tournament T is
at most |T | − 1.

Proof. Let σ(T ) be a factorizing permutation of T and consider a node B in D(T ). Decom-
posing B into new components (the children of B in D(T )) corresponds to making “cuts”
in σ(T ). Furthermore, each cut generates at most two new components.6 As there are
only |T | − 1 possible positions for such a cut, the maximum number of nodes in D(T ) is
1 + 2(|T | − 1) = 2|T | − 1. The bound follows from the observation that D(T ) has exactly
|T | leaves.

4 Computing Solutions via the Decomposition Tree
Let S be a composition-consistent tournament solution and consider an arbitrary tourna-
ment T = (A,�) together with its decomposition tree D(T ). Composition-consistency
implies that

S(T |B) =
⋃

i∈S(TB)

S(T |Bi
) (1)

for each internal node B in D(T ) with children B1, . . . , Bk. The solution set S(T ) can thus
be computed by starting at the root of D(T ) and iteratively applying equation 1. If B is
reducible, we immediately know that S(T |B) = S(T |B1), since 1 is the maximum in the
transitive tournament TB . A straightforward implementation of this approach is given in
Algorithm 1.

Algorithm 1 visits each node of D(T ) at most once. The algorithm for computing
S is only invoked for tournaments TB for which B is irreducible. The order of such a
tournament TB is equal to the number of children of the node B in D(T ). The decomposition
degree of T is defined as an upper bound of this number.

Definition 6. The decomposition degree δ(T ) of a tournament T is given by

δ(T ) = max{|TB | : B is an irreducible internal node in D(T )}.

Proposition 3 implies that δ(T ) can be computed efficiently. The decomposition degree
of the example tournament in Figure 1 is 3.

Let f(n) be an upper bound on the running time of an algorithm that computes S(T )
for tournaments of order |T | ≤ n. Then, the running time of Algorithm 1 can be upper-
bounded by f(δ(T )) times the number of irreducible nodes of D(T ). We thus obtain the
following theorem.

6Cuts can be made simultaneously, in which case the number of new components per cut is smaller.
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Algorithm 1 Compute S(T ) via decomposition tree
1: Compute D(T )
2: S, S′ ← ∅
3: Q← (A)
4: while Q 6= () do
5: B ← Dequeue(Q)
6: if |B| = 1 then
7: S ← S ∪B
8: else
9: if B is reducible then

10: Enqueue(Q,B1)
11: else // B is irreducible
12: for all i ∈ S(TB) do
13: Enqueue(Q,Bi)
14: return S

Theorem 1. Let S be a composition-consistent tournament solution and let f(k) be an
upper bound on the running time of an algorithm that computes S for tournaments of order
at most k. Then, S(T ) can be computed in O(n2) + f(δ) · (n − 1) time, where δ is the
decomposition degree of T and n is the order or T .

Proof. Let T be a tournament and n = |T |. Computing D(T ) requires time O(n2) (Proposi-
tion 3). We now show that Algorithm 1 computes S(T ) in time f(δ(T ))·(n−1). Correctness
follows from composition-consistency of S. The running time can be bounded as follows.
During the execution of the while-loop, each node B of D(T ) is visited at most once. If B
is reducible or a singleton, there is no further computation. If B is irreducible, S(TB) is
computed. As |TB | is upper-bounded by δ(T ), this can be done in f(δ(T )) time. Finally,
Lemma 1 shows that the number of (internal) nodes of D(T ) is at most n − 1. Summing
up, this yields a running time of O(n2) + f(δ(T )) · (n− 1).

In particular, Theorem 1 shows that the computation of S(T ) is fixed-parameter tractable
with respect to the parameter δ(T ).

To get a better understanding of this theorem, consider a composition-consistent tour-
nament solution S such that f(n) is in E = DTIME(2O(n)). This holds, for example, for
the Banks set. For given tournaments T of order n, Theorem 1 then implies that S(T ) can
be computed efficiently (i.e., in time polynomial in n) whenever δ(T ) is in O(logk n). The-
orem 1 is also applicable to tractable tournaments solutions such as the minimal covering
set and the bipartisan set. Although computing these solutions is known to be in P, exist-
ing algorithms rely on linear programming and may be too time-consuming for very large
tournaments. For both concepts, a significant speed-up can be expected for distributions of
tournaments that admit a small decomposition degree.

Generally, decomposing a tournament asymptotically never harms the running time, as
the time required for computing the decomposition tree is only linear in the input size.7

5 Experimental Results
It has been shown in the previous section that computing composition-consistent tourna-
ment solutions is fixed-parameter tractable with respect to the decomposition degree of a

7Checking whether there exists a maximum already requires O(n2) time.
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tournament. While the clustering of alternatives within components has some natural ap-
peal by itself, an important question concerns the value of the decomposition degree for
reasonable and practically motivated distributions of tournaments. In this section, we will
explore this question experimentally using two probabilistic models from social choice the-
ory. Both models are based on a set of voters who entertain preferences over candidates.
Given a finite set of candidates C and an odd number of voters with linear preferences over
C, the majority tournament is defined as the tournament (C,�), where a � b if and only if
the number of voters preferring a to b is greater than the number of voters preferring b to a.

Noise model The first model we consider is a standard model in social choice theory where
it is usually attributed to Condorcet (see, e.g., Young, 1988). Condorcet assumed that there
exists a “true” ranking of the candidates and that the voters possess noisy estimates of this
ranking. In particular, he assumed that there is a probability p > 1

2 , such that for each pair
a, b of candidates, each voter ranks a and b according to the true ranking with probability
p and ranks them incorrectly with probability 1− p.

Spatial Model Spatial models of voting are well-studied objects in social choice theory
(see, e.g., Austen-Smith and Banks, 2000). For a fixed natural number d of issues, we assume
that candidates (i.e., alternatives) as well as voters are located in the space [0, 1]d. The
position of candidates and voters can be thought of as their stance on the d issues. Voters’
preferences over candidates are given by the proximity to their own position according to
the Euclidian distance. We generate tournaments by drawing the positions of candidates
and voters uniformly at random from [0, 1]d.
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Figure 2: Noise model with p = 0.55

The results of our experiments are presented in Figures 2, 3, and 4. The x-axis shows
the number of voters, which goes from 5 to 1985 in increments of 30. In order to facilitate
the comparison of results for a varying number of candidates, the y-axis is labelled with
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the normalized decomposition degree, i.e., the decomposition degree divided by the number
of candidates. Each graph shows the results for a fixed number of candidates, and each
data point corresponds to the average value of 30 instances. Whenever the normalized
decomposition degree is less than one, composition-consistency can be exploited, even for
tournament solutions that already admit fast (say, linear-time) algorithms. The slower
the original algorithm, the more dramatic is the speedup obtained by capitalizing on the
decomposition tree.

Figure 2 shows the results for the noise model with parameter p = 0.55. For any number
of candidates, the decomposition degree goes to zero when the number of voters grows. This
is not surprising because the probability that the tournament is transitive tends to 1 for
any p > 1

2 (and a transitive tournament T has δ(T ) = 0). Interestingly, the decomposition
degree drops abruptly when a certain number of voters is reached.
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Figure 3: Spatial model with d = 2

Figures 3 and 4 show the results for the spatial model for dimensions d = 2 and d = 20.
Surprisingly, the decomposition degree does not significantly increase when moving to a
higher-dimensional space. Similar to the noise model discussed above, δ tends to 0 for
growing n because a population of voters that is evenly distributed in [0, 1]d tends to produce
transitive tournaments.

The results of our experiments show that, even for moderately-sized electorates, tour-
naments in both distributions are highly decomposable and therefore allow significantly
faster algorithms for computing composition-consistent tournament solutions. For exam-
ple, consider the two-dimensional spatial model with 150 candidates and some tournament
solution that can be computed in time 2n. For 500 voters, the (average) normalized de-
composition degree is approximately 0.5. When assuming for simplicity that the decompo-
sition tree is already given, the speed-up factor (i.e., the running time of the original algo-
rithm divided by the running time of the algorithm that exploits composition-consistency)
is 2150

275·(150−1) ≈ 2.5 · 1020.
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Figure 4: Spatial model with d = 20

6 Conclusion
In this paper, we studied the algorithmic benefits of composition-consistent tournament so-
lutions. We defined the decomposition degree of a tournament as a parameter that reflects
its decomposability. Intuitively, a low decomposition degree indicates that the tournament
admits a particularly well-behaved decomposition. Our main result states that computing
any composition-consistent tournament solution is fixed-parameter tractable with respect
to the decomposition degree. This is of particular relevance for tournament solutions that
are known to be computationally intractable such as the Banks set and the tournament
equilibrium set. For example, one corollary of our main result is that the Banks set of
a tournament can be computed efficiently whenever the decomposition degree is polylog-
arithmic in the number of alternatives. We experimentally determined the decomposition
degree of two natural distributions of tournaments stemming from social choice theory and
found that the decomposition degree in many realistic instances is surprisingly low. As a
consequence, the speedup obtained by exploiting composition-consistency when computing
tournament solutions for these instances will be quite substantial.

In future work, it would be interesting to measure the concrete effect of capitalizing
on composition-consistency on the running time of existing algorithms for specific tourna-
ment solutions. Since computing a decomposition tree requires only linear time, it is to
be expected that decomposing a tournament never hurts, and often helps. Composition-
consistency can be further exploited by parallelization and storing the solutions of small
tournaments in a lookup table.
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Budgeted Social Choice: A Framework for Multiple
Recommendations in Consensus Decision Making

Tyler Lu and Craig Boutilier

Abstract

We develop a new framework for social choice problems, budgeted social choice, in which a
limited number of alternatives can be recommended/prescribed to a population of agents. This
limit is determined by some form of budget. Such problems naturally arise in a variety of
contexts. Our model is general, spanning the continuum from pure consensus decisions (i.e.,
standard social choice) to fully personalized recommendation. Our results show that standard
rank aggregation rules are not appropriate for such tasks and that good solutions typically
involve picking diverse alternatives tailored to different agent types. The corresponding opti-
mization problems are shown to be NP-complete, but we develop fast greedy algorithms with
some theoretical guarantees. Experimental results on real-world datasets (APA election and
sushi) show some interesting patterns and the prove the effectiveness of our greedy algorithms.

1 Introduction
Social choice has received considerable attention in AI and computer science in recent years [10, 13,
7]. This is in part due to technological advances that have facilitated an explosion in the availability
of (sometimes implicit) ranking or preference data. Users can, with increasing ease, rate, compare
or rank products (e.g., movies, consumer goods, neighborhoods) and information (e.g., clicking on
search responses or ads, linking to data sources in social media). This has allowed a great degree of
personalization in product recommendation and information provision.

Despite this trend, tailoring the alternatives presented or recommended to specific users can be
difficult for any of a number of reasons, among them privacy concerns (actual or perceived), scarce
data, or the infeasibility of complete personalization. For example, decisions regarding certain types
of public projects (such as highway placement, or park design) may force the choice of a single
option: one cannot build different projects to meet the desires of different individuals. Similarly, a
company designing a product to meet consumer demand must find a single product that maximizes
consumer satisfaction across its target market (assuming sufficient correlation between satisfaction
and revenue/profit). In such settings, a single “consensus” recommendation must be made for the
population as a whole. If such consensus recommendations are made in a way that is sensitive to the
preferences of individuals, we land squarely in the realm of social choice.

There is, of course, a middle ground between pure personalization and pure consensus recom-
mendation. For example, suppose the company can configure its manufacturing facility to produce
three variants of the product in question. Then its aim should be to determine three products that
jointly maximize consumer satisfaction. In the case of public projects, perhaps a small number
of projects can be chosen. In domains like web search, if one has insufficient data about an indi-
vidual making a query (or is reluctant to use it because of privacy concerns), a small number of
responses can be presented if browser “real estate” is limited. In the design of pension plan options,
there are many reasons to limit the number of offerings available to encourage meaningful choice.
In these and numerous other examples, we fall somewhere between making a single consensus
recommendation and making fully personalized recommendations for individuals. Some (perhaps
implicit) aggregation of users must take place—we cannot offer fully personalized offerings to each
individual—placing us in the realm of social choice; but at the same time, we have an opportunity
to do some tailoring of the decisions to the preferences of the aggregated groups, and indeed, make
choices about the precise form of this aggregation to optimize some social choice function.

In this paper, we develop a general model for just such settings. We call the problem at hand
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one of budgeted social choice. Unlike the usual social choice models, in which a single outcome is
selected (or single consensus ranking determined), we allow for the possibility that more than one
option can be offered, and assume that each user will benefit from the best option, according to her
own preferences, among those presented. However, the number of options offered is constrained
by a budget; this is the key factor that prevents us from exploiting pure personalization to meet
the desires of individual users. This budget can take a variety of forms, and we explore several of
them in this work. The budget could be a strict limit on the number of options (e.g., at most three
products can be manufactured, or at most 10 web links can be presented on a page), or on their cost
(e.g., the total expenditure on city parks cannot exceed $3M). We can also adopt a more nuanced
perspective in which the cost of allowing additional options is traded off against the benefit to the
target population (e.g., add a fourth product option if increase in consumer satisfaction outweighs
the cost of a fourth production line; or extend the city parks budget if increase in social welfare is
sufficiently high). Finally, we can consider settings in which the budget is not just a function of the
options “created,” but also of their overall usage or uptake in the population. Our general framework
allows for a fixed charge (e.g., configuring and staffing an assembly line) and per-unit cost (e.g., the
marginal cost of producing a unit of product for a specific individual).

Though the motivations are different, multiple-winner models in voting theory [4, 20] can be
viewed as an instance of our model. In such systems, the goal is to determine a collection of can-
didates (e.g., a parliament) that best represents the “collective interests” of the voters (e.g., based
on principles of proportional representation). Indeed, our “limited choice” model with Borda scor-
ing corresponds directly to Chamberlin and Courant’s [4] proportional representation scheme; in this
way, our budgeted choice model can be used to motivate the application of such proportional models
to ranking and recommendation, under certain assumptions. Also related is the combinatorial public
project problem [19] where given each agent’s valuation over all subsets of alternatives, a limited
number of alternatives must be chosen for everyone. The focus is more on the tension between
approximating social welfare and incentivizing truthfulness (requiring payments from agents).

We begin by outlining a simple model of budgeted social choice in which there is a strict limitK
on the number of candidates that can be made available. We do this to illustrate the general principles
and intuitions underlying our approach and draw connection to proportional representation schemes.
We show that for various social choice objectives, computing the optimal set of K candidates for
a set of preferences in this limited choice model is NP-hard. However, the induced objective is
submodular, and a simple greedy algorithm produces candidate sets whose deviation from optimal is
bounded. Computational experiments on various preference data sets show that the greedy algorithm
is, in fact, very close to optimal in practice.

We then present our general model in which adding alternatives to the available set is costly
(allowing both fixed and per-unit charges) and subject to some form of budget. The limited choice
model is a special case of this costly choice model. The costly choice model with only fixed charges
remains submodular, but when per-unit costs are included, submodularity vanishes. We develop
an integer programming formulation of the general optimization problem (which applies directly to
the limited choice model). We again provide a greedy heuristic algorithm for solving the general
problem which runs in polynomial time. Computational experiments verify its efficacy in practice,
but we have no theoretical bounds on its performance currently.

2 Background
We first review some basic concepts from social choice before defining the class of budgeted social
choice problems (see [11] for further background). We assume a set of agents (or voters) N =
{1, . . . , n} and a set of alternatives (or candidates) A = {a1, . . . , am}. Let ΓA be the set of
rankings (or votes) overA (i.e., permutations overA). Alternatives can represent any outcome space
over which the voters have preferences (e.g., product configurations, restaurant dishes, candidates
for office, public projects, etc.) and for which a single collective choice must be made. Agent `’s
preferences are represented by a ranking v` ∈ ΓA, where ` prefers ai to aj , denoted as ai �v` aj , if
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v`(ai) < v`(aj). We refer to a collection of votes V = (v1, . . . , vn) ∈ ΓnA as a preference profile.
Given a preference profile, there are two main problems in social choice. The first is selecting a

consensus alternative, requiring the design of a social choice function f : ΓnA → A which selects
a “winner” given voter rankings/votes. The second is selecting a consensus ranking [2], requiring a
rank aggregation function f : ΓnA → ΓA. The consensus ranking can be used for many purposes;
e.g., the top-ranked alternative can be taken as the consensus winner, or we might select the top k
alternatives in the consensus ranking in settings where multiple candidates can be chosen (say, par-
liamentary seats, or web search results [10]). Plurality is the simplest, most common approach for
consensus alternatives: the alternative with the greatest number of “first place votes” wins (various
tie-breaking schemes can be adopted). However, plurality fails to account for a voter’s relative pref-
erences for any alternative other than its top ranked (assuming sincere voting). Other schemes, e.g.,
Borda count or single transferable vote, produce winners that are more sensitive to relative prefer-
ences. Among schemes that produce consensus rankings, the Borda ranking [8] and the Kemeny
consensus [15] are especially popular.

Definition 1. Given a ranking v, the Borda count of alternative a is β(a, v) = m − v(a). The
Borda count of a relative to preference profile V is β(a, V ) =

∑
v∈V β(a, v). A Borda ranking

r∗β = r∗β(V ) is any ranking that orders alternatives from highest to lowest Borda count.

One can generalize the Borda count by assigning arbitrary scores to the rank positions:

Definition 2. A positional scoring function (PSF) α : {1, . . . ,m} → R≥0 maps ranks onto scores
s.t. α(1) ≥ · · · ≥ α(m) ≥ 0. Given a ranking v` and alternative a, let α`(a) = α(v`(a)). The
α-score of a relative to profile V is α(a, V ) =

∑
v`∈V α`(a). An α-ranking r∗α = r∗α(V ) is any

ranking that orders alternatives from highest to lowest α-score.

Definition 3. Let 1 be the indicator function, sgn the sign function and r, v two rankings. The
Kendall-tau metric is τ(r, v) =

∑
1≤i<j≤m 1[sgn[(v(ai) − v(aj))(r(ai) − r(aj))] < 0]. Given a

profile V , the Kemeny cost of a ranking r is κ(r, V ) =
∑
v`∈V τ(r, v`). The Kemeny consensus is

any ranking r∗κ = r∗κ(V ) that minimizes the Kemeny cost.

Intuitively, Kendall-tau distance measures the number of pairwise relative misorderings between
an output ranking r and a vote v, while the Kemeny consensus minimizes the total number of such
misorderings across profile V . While positional scoring is easy to implement, much work in com-
putational social choice has focused on NP-hard schemes like Kemeny [10, 3].

Rank aggregation has interesting connections to work on rank learning, much of which concerns
aggregating (possibly noisy) preference information from agents into full preference rankings. For
example, Cohen et al. [6] focus on learning rankings from (multiple user) pairwise comparison data,
while label ranking [13] considers constructing personalized rankings from votes. Often unanalyzed
is why specific rank aggregations should be chosen for particular settings such as these. One can
think of some schemes as a maximum likelihood estimator of some underlying objective ranking
(e.g., for Kemeny [22] and positional scoring rules [7]).

3 The Limited Choice Model
While the use of social choice techniques in applications like web search and recommender systems
is increasingly common, the motivations for producing consensus recommendations for users with
different preferences often varies. Consider, for instance, the motivation for “budgeted” consensus
recommendation discussed in our introduction. If a decision maker can provide a limited set of
K choices to a population of users to best satisfy their preferences, methods like Kemeny, Borda,
etc. could be used to produce an aggregate ranking from which the top K alternatives are taken.
However, there is little rationale for doing so without a deeper analysis of what it means to “satisfy”
the preferences of the user population. In the spirit of our recent work on rank aggregation [17],
we develop a precise decision-theoretic formulation of the budgeted social choice problem. Rather
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than applying existing social choice schemes directly, we derive optimal consensus decisions from
decision-theoretic principles and show how these differ (and relate to) classic aggregation rules.

We first introduce the limited choice problem, a simple version of budgeted social choice in
which one must choose a slate of K alternatives that maximizes some notion of total satisfaction
among a group of agents. We develop the more general budgeted model in the next section. Assume
a set of n voters with preferences over alternatives A as above. Rather than selecting a single con-
sensus alternative, a decision maker is allowed to recommend K alternatives. Each voter realizes
benefit commensurate with its most preferred alternative among the K recommended. For example,
a company may be limited to offeringK products to its target market, where the products are substi-
tutes (so no consumer will use more than one); or a municipality may have budget for K new parks
and citizens draw enjoyment from their most preferred park.

While our goal is to find the best set of K alternatives, the formalization of this model depends
on two key choices: how voter satisfaction with a slate is measured; and how we measure social
welfare. Our general framework can accommodate many measures of utility and social welfare, but
for concreteness we focus on (a) positional scoring (such as Borda) to quantify voter satisfaction;
and (b) the sum of such voter “utilities” as our social welfare metric. In other words, our aim is to
find a slate of size K that maximizes the sum of the positional scores of each voter’s most preferred
candidate in the slate:

Definition 4. Given alternatives A, preference profile V , and PSF α, a K-recommendation set is
any set of alternatives Φ ⊆ A of size K. The α-score of Φ is:

Sα(Φ, V ) =
∑
`∈N

max
a∈Φ

α`(a) . (1)

The optimal K-recommendation set w.r.t. α is:

Φ∗α = argmax
|Φ|=K

Sα(Φ, V ) . (2)

We use Sα(Φ, v) to denote the score w.r.t. a single vote/ranking v. We drop the subscript α from
Sα when it is evident from the context, and use Sβ to denote the special case of Borda scoring.

The objective in Eq. 2 is identical to the Chamberlin and Courant [4] scheme of proportional
representation and results for that scheme apply directly to this variant of the limited choice model,
as we discuss below. While we focus on total positional scoring as our optimization criterion, the
general budgeted framework allows other measures of utility and social desiderata. For example, we
can use maximin-fairness (w.r.t. positional scoring) encoded as:

Φ∗fair = argmax
|Φ|=K

min
`∈N

Sα(Φ, v`) . (3)

Setting α(i) = 1[i = 1] corresponds to a binary satisfaction measure in which a voter is satis-
fied with Φ only if its top alternative is made available. In this case, the optimal Φ∗α corresponds
to selecting the K alternatives with the highest “plurality” score (i.e., greatest number of first-place
“votes”). However, choosing the top K candidates from a consensus ranking using positional scor-
ing is, in general, not appropriate. For any ranking r, let r|K denote the K top-ranked alternatives
in r. The Borda ranking r∗β can produce slates r∗β |K that are a factor of 2 from optimal using our
limited-choice measure, while the α-ranking for arbitrary PSFs can be as much as a factor of K
from optimal.

Proposition 5. For any K we have: (a) inf(m,n,V )
Sβ(r∗β |K,V )

Sβ(Φ∗,V ) = 1/2; and (b)

inf(α,m,n,V )
Sα(r∗α|K,V )
Sα(Φ∗,V ) ≤ 1/K.
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Fig. 1: Example showing that r∗β |K can be factor of 2 worse than optimal. Assume q items {0, 1, . . . , q − K −
1, β1, . . . , βK}, and n = K(q − K − 2) votes. The votes are divided into K blocks, each containing q − K − 2
votes. For each block j ≤ K, item j − 1 is always the top alternative in each vote, and item j (mod K) is the worst. This
means the optimal recommendation set is Φ∗ = {0, . . . ,K − 1}, with Sβ(Φ∗, V ) = (q− 1)n. The jth block of votes has
a structure illustrated in the figure, with two example votes shown: the items j and j (mod K) are fixed in the top/bottom
spots and items β1, . . . , βK are also fixed in positions q/2 − K + 1, . . . , q/2. (Fixed items are shaded.) The remaining
items are arranged in the other positions in the first vote (the non-shaded positions). Starting with one such arrangement
(e.g., the top vote in the figure), each candidate is “rotated downward” one non-shaded position (with wrap around) to pro-
duce the next vote in the block. This is repeated until q −K − 2 votes are constructed for block j (i.e., one vote for each
non-shaded position). Thus, any non-fixed item occupies each non-shaded rank position in exactly one vote in this block

j. Thus, the average score of a non-shaded item is
P
i∈[q−2]\{q/2,...,q/2+K−1} i = −q2+3 q−2+qK+K2−K

−2q+2K+4
< q/2

(whenever q > K + 2, which always holds). Hence the average score of any item in {K, . . . , q −K − 1} (which occupy
only unshaded positions in all blocks) across all blocks is less than q/2. Also observe that the average score of any item in
Φ∗ is less than q/2: item j−1 has score q−1 in block j but has score 0 in block j−2 (mod K) (giving average (q−1)/2
in these two blocks) and has average less than q/2 across all other blocks (since it is an unshaded item in those blocks). But
the average score of βi is at least q/2 (since its position is fixed in all blocks ). Hence the top K items of the Borda ranking
r∗β are β1, . . . , βK . But Sβ(r∗β |K,V ) = (q/2 +K− 1)n, so S(r∗β |K,V )/S(Φ∗, V ) = (q/2 +K− 1)/(q− 1), which
approaches 1/2 from above as q →∞.

Proof Sketch. (a) To obtain a lower bound, we note that the total Borda score of all alternatives is∑
a∈A β(a, V ) = n(0 + 1 + 2 + · · ·+m−1) = nm(m−1)/2. The item a∗β with the highest Borda

count must have a count at least the average, over the alternatives, nm(m−1)/2/m = n(m−1)/2.
Since a∗β is the highest-ranked element in r∗β , we have Sβ(r∗β |K,V ) ≥ n(m − 1)/2. By contrast,
the score of the optimal set Φ∗ is at most n(m − 1). Hence r∗β |K has score that is no worse than a
factor of [n(m− 1)/2]/[n(m− 1)] = 1/2 from optimal. We demonstrate an upper bound realizing
this worst-case error using the example described in Fig. 1.

(b) An upper bound can be demonstrated using an example somewhat similar in spirit to that for
the Borda count as in (a); we omit it due to lack of space. It remains open whether r∗α|K can indeed
be worse than a factor of K from optimal.

These results illustrate that care must be taken in the application of rank aggregation methods to
novel social choice problems. In our limited choice setting, the use of positional scoring rules (e.g.,
Borda) to determine the K most “popular” alternatives can perform extremely poorly. Intuitively,
the optimal slate appeals to the diversity of the agent preferences in a way that is not captured
by “top K” methods. Indeed, this is one of the motivations for the proportional schemes [4, 20].
More importantly, the underlying preference aggregation scheme is defined relative to an explicitly
articulated decision criterion. We defer a detailed discussion for lack of space, but we note that
STV, often used for proportional representation [21] can perform poorly w.r.t. our criterion as well.
Specifically, we can show that the slate produced by STV can be a factor of 2 worse than optimal.

The examples above suggest that determining optimal recommendation sets in the limited choice
model may be computationally difficult. This is the case: the problem is NP-complete even for in
the specific case of determining voter satisfaction using Borda scoring:1

1The NP-hardness of a variant of the Chamberlin and Courant [4] proportional scheme is shown in [21], but the variant
allows for arbitrary misrepresentation scores. The added flexibility in the reduction used means that it does not imply the

59



Theorem 6. Given preference profile V , integer K ≥ 1, and t ≥ 0, deciding whether there exists a
K-recommendation set Φ with (Borda) score Sβ(Φ, V ) ≥ t is NP-complete.

Proof Sketch. Membership in NP is easily verified. For hardness, we reduce an arbitrary hitting
set instance to our problem: given E = {e1, . . . , ep}, a set {B1, . . . , Bq} of subsets of E, and
integer h ≥ 1, is there a C ⊆ E of size at most K such that ∀i ∈ {1, . . . , q}, C ∩ B 6= ∅? We
reduce this to our decision problem, with voters N = {1, . . . , q}, alternatives A = E ∪ {zij : i ∈
[q], j ∈ [

∑q
`=1 |B`|]}, m = |A|, and t = qm −∑q

`=1 |B`|. Each voter ` has a preference ordering
with elements in B` at the top (in arbitrary order), followed by z`1z`2 · · · z`t, and with remaining
alternatives A\B` (in arbitrary order) at the bottom.

Any positive hitting set instance (say, with certificate C) corresponds to positive instance for in
our problem. We simply take Φ = C, and have Sβ(Φ, V ) ≥ ∑q

`=1m − |B`| since, for each voter
`, there is an e ∈ C that is in B` by definition of a hitting set. Summing the scores of the most
preferred alternatives, maxa∈Φm− v`(a) ≥ m− |B`|, over all voters, gives Sβ(Φ, V ) ≥ t.

Suppose we have a negative hitting set instance. Consider any Φ that maximizes Sβ(·, V ). If
Φ does not hit some B` then let a′ = argmina∈Φ v`(a). If a′ 6= z`j for any j then m − v`(a′) <
m −∑q

`=1 |B`| and Sβ(Φ, V ) < t. Otherwise a′ = z`1; but this implies that we can replace each
such z`1 ∈ Φ by some b ∈ B`, which further implies that Φ hits every such B` and is thus a hitting
set solution (contradiction). Hence, Sβ(Φ, V ) < t.

We can formulate this NP-hard problem as an integer program (IP) with m(n+ 1) variables and
1 + mn + n constraints. We note that [20] provide a similar IP for the Chamberlin and Courant
proportional scheme. Let xi ∈ {0, 1}, i ≤ m denote whether alternative ai appears in the recom-
mendation set Φ, and let y`i ∈ {0, 1}, ` ≤ n, i ≤ m denote whether ai is the most preferred element
in Φ for voter `. We then have:

max
xi,y`i

∑
`∈N

m∑
i=1

α`(ai) · y`i (4)

subject to
m∑
i=1

xi ≤ K, (5)

y`i ≤ xi, ∀` ≤ n, i ≤ m (6)
m∑
i=1

y`i = 1, ∀` ≤ n. (7)

Constraint (5) limits the slate to at most K alternatives (a optimal set of size less than K can be
expanded arbitrarily to size K, since score is nondecreasing in size). Constraints (6) and (7) ensure
voters benefit only from alternatives in Φ, and benefit from exactly one such element. The objective
is simply Sα(Φ, V ). An optimal solution will always have y`i = 1 where ai is `’s most preferred
alternative in the set defined by the xi.

The IP may not scale to large problems. Fortunately, this is a constrained submodular maximiza-
tion, which admits a simple greedy algorithm with approximation guarantees [18].

Algorithm Greedy. We receive inputs α, V and integer K > 0. Initially Φ0 ← ∅. We then update
Φ iteratively K times, each time updating the recommendation set by adding the item that increases
score the most, i.e., Φi ← Φi−1 ∪ {argmaxa∈A S(Φi−1 ∪ {a}, V )}. We output ΦK .

Theorem 7. For any given preference profile V , the function S(·, V ) defined over 2A, with
S(∅, V ) = 0, is submodular and non-decreasing. Consequently, the constrained maximization of
Eq. (2) can be approximated within a factor of 1− 1

e by Greedy. That is, S(Greedy,V )
S(Φ∗,V ) ≥ 1− 1

e .

NP-hardness of our limited choice model.
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Proof. Let Φ ⊆ Φ′ ⊆ A, a ∈ A and v ∈ V . It is clear that S(Φ, v) ≤ S(Φ′, v). Since S(·, v) is
non-decreasing for any vote v v, it is non-decreasing over profiles V , i.e., S(Φ′, V ) ≥ S(Φ, V ).

If a is v’s strictly most preferred alternative among those in Φ′, then S(Φ ∪ {a}, v) = S(Φ′ ∪
{a}, v) = α(v(a)). Since S(Φ, v) ≤ S(Φ′, v), this implies S(Φ ∪ {a}, v) − S(Φ, v) ≥ S(Φ′ ∪
{a}, v)− S(Φ′, v). If a is not strictly most preferred by v within the set Φ′, then S(Φ′ ∪ {a}, v) =
S(Φ′, v), hence S(Φ′ ∪ {a}, v) − S(Φ′, v) = 0. Since S(Φ ∪ {a}, v) ≥ S(Φ, v), again we have
S(Φ∪{a}, v)−S(Φ, v) ≥ S(Φ′∪{a}, v)−S(Φ′, v). This implies, by definition, the submodularity
of S(·, v) for any vote v. Since the sum of submodular functions is also submodular, S(·, V ) is
submodular for profiles V . The 1− 1

e approximation ratio follows from [18].

Constructing a slate of K alternatives maximizing total positional score is similar to the K-
medians problem, where at most K facilities (alternatives) need to be located to serve their near-
est customers (voters) while minimizing the total distance between customers and their nearest
facility. Distance corresponds to voter dissatisfaction with alternatives in the slate (i.e., negated
α-score). Most work on K-medians focuses on metric settings—our problem does not have such
an interpretation—and little work has been done on non-metric settings (see, e.g., [1]) especially
w.r.t. ordinal preferences. Facility location is another related problem, though the aim is usually to
minimize the total cost of opening facilities and serving the nearest customers, with no constraints
on the number of facilities. In our setting, the tradeoff between a positional score and the cost of
alternatives is not well-defined unless the score is a surrogate for profit/cost.

Experiments on APA Dataset The American Psychological Association (APA) held a presiden-
tial election in 1980, where roughly 15,000 members expressed preferences for 5 candidates—5738
votes were full rankings. Members roughly divide into “academics” and “clinicians,” who are on
“uneasy terms,” with classes of voters tending to favor one group of candidates over another (candi-
date groups {1, 3} and {4, 5} appeal to different voters, with candidate 2 somewhere in the middle)
[9]. We apply our model to the full-ranking dataset with K = 2 and Borda scoring. We expect
our model to favour “diverse” pairings (with academic-clinician pairings scoring highest). Indeed,
this is what we obtain—the optimal recommendation set is {3, 4} with Sβ = 18182. In fact, the
for highest scoring pairings are all diverse in this sense. Greedy outputs the diverse set {1, 5} with
score 17668, whereas selecting the top two candidates from the Borda or Kemeny rankings gives
{1, 3} with score 17352, an inferior (and non-diverse) pairing. The quality of the Borda/Kemeny
approximations is even worse with more “dramatic” positional scoring (i.e., with scoring functions
that exaggerate the score difference between different positions as discussed below).

Experiments on Sushi Dataset We experiment with a sushi dataset consisting of 10 varieties
of sushi, and 5000 full preference orderings elicited across Japan [14]. In our budgeted (limited
choice) setting, we might imagine a banquet in which only a small selection of sushi types can be
provided to a large number of guests. Table 1 shows the approximation ratios of various algorithms
for different slate sizes K, using an exponentially decreasing PSF αexp(i) = 2m−i. CPLEX was
used to solve IP (4) to determine optimal slates (computation times are shown in the table). We
evaluate our greedy algorithm, random sets of size K (avg. over 20 instances for each K), and
Borda and Kemeny (where we use the top K candidates as the recommendation set). We see that
the Greedy algorithm always finds the optimal slate (and, in fact, does so for all K ≤ 9), yet does
so very quickly (under 1s.) relative to CPLEX optimization. Borda and Kemeny provide decent
approximations, but are not generally optimal. Unsurprisingly, for large K (relative to |A|) random
subsets do well, but perform poorly for small K. Results using Borda scoring are similar except
that, unsurprisingly, random sets yield better approximations, since Borda count penalizes less for
recommending lower-ranked alternatives than the exponential PSF.

In both the APA and sushi dataset, Borda and Kemeny rankings offer good approximations,
though this is likely due, in part, to correlation effects: items that are highly preferred by an agent
of one type are also reasonably preferred by agents of other types. This is in contrast to a situation
(cf. Fig. 1) where one group’s highly ranked candidate is strongly dispreferred by other groups.
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K Greedy Borda Kemeny Random CPLEX (sec.)
2 1.0 1.0 0.932 0.531 49.1
3 1.0 0.986 0.949 0.729 90.38
5 1.0 0.989 0.970 0.813 20.32
7 1.0 1.0 1.0 0.856 13.16

Table 1: Results on the sushi dataset with 10 alternatives and 5000 full rankings. Four algorithms are shown in the columns
along with their approximation ratio for each K. CPLEX solution times are shown in the last column.

4 General Budgeted Social Choice
In the limited choice model, we assume the main bottleneck is the size of the recommendation set
Φ. Once Φ is determined, voters are free to choose their favourite alternative. We can generalize
the problem slightly by assigning costs to the alternatives and limiting the total cost of Φ (rather
than its size). A more significant generalization involves also assuming some cost associated with
each voter that benefits from an element in Φ. For example, a company that decides to manufacture
different product configurations must pay certain fixed production costs for each configuration (e.g.,
capital expenditures); in addition, there are per-unit costs associated with producing each unit of the
product (e.g., labour/material/transporation costs).2

For each alternative a ∈ A, let ta be its fixed cost and ua its unit cost. We assume a total budgetB
that cannot be exceeded by Φ. However, since unit costs vary across a ∈ Φ, a decision maker cannot
simply propose a recommendation set Φ: allowing agents to choose their most preferred alternative
freely may result in exceeding the budget (e.g., if voters all choose expensive alternatives). Instead,
the decision maker produces an assignment of alternatives to agents that maximizes social welfare.

Definition 8. A recommendation function Φ : N → A assigns agents to alternatives. Given PSF α
and profile V , the α-score of Φ is:

Sα(Φ, V ) =
∑
`∈N

α`(Φ(`)) . (8)

Let Φ(N) = {a : Φ−1(a) 6= ∅} be the set recommended alternatives. The cost of Φ is:

C(Φ) =
∑
a∈A

1[a ∈ Φ(N)] · ta +
∑
`∈N

uΦ(`) . (9)

The first component in the cost of Φ corresponds to the fixed costs of the recommended alterna-
tives, and second reflects the total unit costs. We now define the general budgeted problem:

Definition 9. Given alternatives A, profile V , PSF α and budget B > 0, the budgeted social choice
problem is:

max
Φ

Sα(Φ, V ) subject to C(Φ) ≤ B. (10)

We say that the problem is infeasible if every Φ has total cost exceeding B. As in the limited
choice model, we define the problem using PSFs to measure utility and total social welfare as our
optimization criterion; but other variants are possible. We mention a few interesting special cases:

• If we wish to leave some voters unassigned an alternative, we can model this using a dummy
item d with td = ud = 0. Voter preference for d can default to the bottom of each ordering or
can reflect genuine preference for being unassigned. All such problems are feasible.

2The possibility of extending proportional representation schemes to making tradeoffs between representativeness and
committee size is mentioned as an interesting possibility by Chamberlin and Courant [4].
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• When ta = t (i.e., fixed charges are constant) and ua = 0 for all a ∈ A, this corresponds to
the limited choice model for K = bB/tc. Since unit costs are zero, the optimal Φ will always
assign a voter to its preferred alternative, and a recommendation set of size B/t can be used.
If unit costs are constant as well, ua = u, similarly we have K =

⌊
B−nu
t

⌋
.

• When fixed costs vary, but unit costs u = ua are constant, we generalize the limited choice
model slightly: because unit costs are identical, agents can still select their preferred alterna-
tive from a slate (of varying size) whose total fixed cost does not exceed B − nu.

• If every recommendation function Φ satisfies C(Φ) ≤ B (e.g., if all charges are zero), we
are in a fully personalizable setting, and each agent is assigned their their most preferred
alternative.

Input: α, V , B, fixed costs t and unit costs u.
1: Φ← ∅ and A∗ ← ∅
2: Let NΦ denote {` : Φ(`) is undefined}
3: {PHASE 1 : ADD ITEMS WITH BEST SWEET SPOT}
4: loop
5: for a ∈ A\A∗ do
6: J ← {` : a �` r(`) and ua ≥ ur(`)}
7: Na = NΦ ∪ J
8: Ra =

h
α`(a)
ua

i
`∈NΦ

∪
h
α`(a)−α`(Φ(`))
ua−uΦ(`)

i
`∈J

9: SRa ← sort Ra to get (β1/γ1, . . . , β|Ra|/γ|Ra|)
{If γi = 0 then the “ratio” gets put in front of sorted
list. For another denominator γj = 0 we then compare
whether βi > βj .}

10: reorderNa to [`a1 , . . . , `
a
|Na|] so `ai corresponds to βi/γi

11: Let r∗a and i∗a be the max and argmax over i of

{
Pi
j=1 βj

ta+
Pi
j=1 γj

: i ∈ |SRa| and ta +
Pi
j=1 γj ≤

B − C(Φ)} if ∅ then set to undefined.
12: end for
13: if a∗ ← argmaxa∈A\A∗ r

∗
a is undefined then

14: break {all r∗a is undefined—over budget}
15: else
16: append a∗ to A∗

17: update Φ with {(`a∗i , a∗) : 1 ≤ i ≤ i∗a}∪{(`, a∗) :
` ∈ N, a∗ �` Φ(`) and ua∗ ≤ uΦ(`)}

18: end if
19: end loop
20: {PHASE 2: BACKTRACKING}
21: while Φ incomplete do
22: a∗ ← pop A∗

23: remove {(`, a∗) : ` ∈ N,Φ(`) = a∗} from Φ
24: Ã← {a ∈ A : ta +

P
`∈NΦ

ua ≤ B − C(Φ)}
25: if Ã 6= ∅ then
26: a∗ ← argmaxa∈Ã

P
`∈NΦ

α`(a)

27: update Φ with {(`, a∗) : ` ∈ NΦ} and break
28: end if
29: end while
30: return INFEASIBLE if Φ = ∅, otherwise Φ

Fig. 2: The SweetSpotGreedy (SSG) algorithm.

We note that the general problem can
be modified in other ways. For instance,
we may ignore budget, and instead allow
an explicit tradeoff between social wel-
fare (voter happiness) and costs, and sim-
ply maximize total score less total cost of
Φ. In this way, unit cost would not pre-
vent assignment of some more preferred
alternative to a voter if the voter’s sat-
isfaction outweighed the unit cost (once
a fixed charge is incurred) or if it maxi-
mized surplus. This would better reflect
a profit maximization motive in some set-
tings (treating user satisfaction as a mea-
sure of willingness to pay). Our model as
defined above is more appropriate in set-
tings where users of a recommended alter-
native cannot be (directly) charged for its
use (e.g., as in the case of certain public
goods, corporate promotions or incentive
programs, etc.).

Our general budgeted social choice
problem is related to several problems
arising in operations research. When fixed
costs vary but unit costs are constant,
the problem is similar to budgeted maxi-
mum coverage [16], given by a set E of
weighted elements and a family of sub-
sets of E with costs, with the goal of
finding a covering with total cost under
a budget that maximizes total weight of
the covered elements. Our problem is
slightly different: viewing voters as ele-
ments and alternatives as the cover set, we
have a score for each element-alternative
pair. Our problem is more closely related
to the recently defined generalized maxi-
mum coverage problem [5], with a weight
and cost for each cover set-element pair (in

our model, the unit costs would be constant), and a cost for each cover set (i.e., fixed costs). Unlike

63



budgeted social choice, coverage of all elements is not required. As discussed earlier, facility loca-
tion is also similar to our budgeted setting, though it typically places no restrictions on budget (it is
instead absorbed into the objective). Akin to unit costs in our model, [12] studies facility location
when facility costs include the cost of customers being served (cost is assumed concave in number
of customers).

We can formulate the general budgeted problem as an IP similar to IP (4) (with the same number
of variables and constraints):

max
xi,y`i

(4)

subject to

[
m∑
i=1

taixi

]
+

[∑
`∈N

m∑
i=1

uaiy`i

]
≤ B, (11)

and (6), (7).

An approximation algorithm for the general problem is complicated by the existence of unit costs.
We may need to limit the assignment of expensive alternatives, despite “demand” from many voters.
When unit costs are zero (or very low compared to fixed costs), the problem reduces to selecting a
subset of alternatives as discussed above.

Still we develop a greedy heuristic algorithm called SweetSpotGreedy (or SSG). The main
intuition behind our greedy heuristic is to successively “cover” or “satisfy” agents of a certain type
by selecting their most preferred alternative. For a given a ∈ A, we sort voters based on their
ranking of a and then compute the bang-per-buck ratio of assigning a to the first i voters—i.e., total
score divided by total cost of assigning a to these i voters. We pick the index i∗a that maximizes the
bang-per-buck ratio r∗a. This is the sweet spot since the marginal score improvement of assigning
more a to additional voters doesn’t justify the incremental cost of producing more of a. We then add
to the recommendation function Φ that a∗ with the greater ratio r∗a∗ and assign it to the i∗a∗ agents
who prefer it most. We repeat this procedure after removing the previously assigned a, each time
selecting a new a∗ and recommending it to the voters that maximize its bang per buck. See Fig. 2 for
further details. The first phase of the algorithm as described may not produce a feasible assignment
Φ: the budget may be exhausted before all agents are assigned an alternative. A second backtracking
phase produces a feasible solution by rolling back the most recent updates to Φ from Phase 1. Each
time an alternative is rolled back, we try to find an a ∈ A that can be assigned to all unassigned
agents without depleting the budget. If after full backtracking this can’t be achieved, the instance is
infeasible (see Proposition 10).

SSG has running time O(m2n log n). The intuition behind our algorithm is similar in spirit to
the 1 − 1

e − o(1) approximation algorithm for generalized maximum coverage [5]. However, that
algorithm is theoretical, requiring O(m2n) calls to a fully polytime approximation scheme for the
maximum density knapsack problem.

Proposition 10. SSG returns INFEASIBLE iff the instance is infeasible.

Proof. The if direction is obvious, since SSG always maintains feasibility of any solution Φ returned.
If it returns INFEASIBLE, the backtracking phase must be entered and exited with Φ = ∅. This
implies A∗ = ∅ since we have tried to roll back all additions to A∗ only to discover there is no
a ∈ A with ta + n · ua ≤ B; that is, there is no single item assignable to all agents that doesn’t
exceed budget. This obviously implies infeasibility of the instance, since assigning the aminimizing
ta + n · ua to all agents is the lowest cost Φ regardless of score.

As discussed above, when unit costs are zero our problem reduces to selecting a subset Φ ⊆ A
with total fixed cost less than B. When fixed costs are constant, this essentially reduces to the
limited choice problem. In fact, SSG outputs the same recommendation function as that outputted
by Greedy (converting the set to a function in the obvious way).
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Proposition 11. If ua = 0 and ta = 1 for all a ∈ A then SSG outputs the same recommendation as
Greedy. Hence, it has an approximation ratio 1− 1

e .

Proof. To see that SweetSpotGreedy reduces to Greedy notice that in the first iteration of Phase 1,
Φ is empty, and because unit costs are zero, the sweet spot for any a ∈ A is to recommend a to
all ` ∈ N . So Φ gets updated by assigning the alternative a∗1, which maximizes the gain in total
score, to all agents. On the next iteration, again because unit costs are zero, the sweet spot for any
a ∈ A − {a∗1} is to recommend a to all agents ` that prefer it over a∗1. Hence, Φ is updated by
including the best alternative a∗2. This observation holds in all subsequent iterations: the sweet spot
for any unused alternative a is to recommend it to all agents who prefer a over existing elements
of Φ. This is exactly what Greedy does, picking an alternative in each iteration (which is implicitly
recommended to all agents that prefer it over existing alternatives in Φ) that greedily maximizes the
gain in score. The 1− 1

e approximation ratio follows from Theorem 7.

Experiments on Sushi Data We experimented with SweetSpotGreedy on the sushi dataset. In our
first experiment, we randomly generate fixed costs while holding unit costs at zero. This corresponds
to the special case discussed above that only slightly generalized the limited choice model. Integer
fixed costs for the sushi varieties are chosen uniformly at random from [20, 50), while the budget
is set to 100. This means the recommendation set typically contains 2 to 5 items. We compared
the performance of SSG against the optimal solution (computed using the IP above, solved using
CPLEX) on 20 random instances (note that the preference profile is held fixed, corresponding to
the data set). Both Borda scoring and the exponential PSF αexp (see above) were tested and give
similar results. With Borda, SSG is within 99% of the optimal recommendation function on average
(it often attains the optimum, and is never worse than 94% of optimal). Its running times lie in the
range [1.91, 2.34] seconds (with a very simple Python implementation). Meanwhile, CPLEX has an
average solution time of 114 seconds (the range is [69s, 176s]).

In a second experiment, we varied both fixed and unit costs with fixed costs substantially larger
than unit costs. Specifically, integer unit costs were chosen uniformly at random from [1, 4] and
integer fixed costs from [5000, 10000]. We fixed the budget at 35000, which allows roughly 3
unique alternatives to be recommended. We again compare SSG to the optimal recommendation
function on 20 random instances. Using Borda counts, the greedy algorithm gives recommendation
functions that are, on average, within 98% of optimal, while taking 2–5s. to run. In contrast, CPLEX
takes 458s. on average (range [130s, 1058s]) to produce an optimal solution. We achieve similar
results using the exponential PSF, with greedy attaining average performance of 97% of optimal,
and taking 3–6s. while CPLEX averages 321s. (range [131s, 614s]). These experiments show that
SweetSpotGreedy has extremely strong performance, quickly finding excellent approximations to
the optimal recommendation sets, when fixed costs are much larger than unit costs.

5 Conclusion
We have introduced a new class of budgeted social choice problems that spans the spectrum from
genuine consensus (or “one-size-fits-all”) recommendation typically studied in social choice to fully
personalized decision-making. The key feature of our model—the fact that some customization to
the preferences of distinct groups of users may be feasible where complete individuation is not—is
characteristic of many real-world scenarios. Given a diverse array of user preferences, a decision
maker must offer/produce/recommend a limited number of alternatives for the user population. This
naturally leads to social welfare maximization goals whose solutions, crudely speaking, involve
grouping/clustering agents with similar preferences and selecting one alternative for each group.
Our model includes certain schemes for proportional representation as special cases, and indeed
motivates the possible application for proportional schemes to ranking and recommendation. Such
an objective often favours diversity, as opposed to popularity, of the chosen alternatives. This work
can be viewed, for example, as justifying from social choice and decision-theoretic principles, that
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the top few web search results should be diversified so as to appeal to a wide range of user interests.
We showed that the optimization induced by budgeted social choice is NP-hard; but we developed
fast, intuitive greedy algorithms that have, in the case of the special case of limited choice, theo-
retical approximation guarantees. Critically, our greedy algorithms empirically provide excellent
approximations on some real-world ordinal preference datasets.

Extensions of this work include the exploration of several variations of the budgeted model.
For example, one might impose separate budgets for fixed and unit costs. If social welfare acts
as a surrogate for the decision-maker’s revenue/profit or return on investment, and the decision-
maker has other investment options (e.g. a government considering public projects) one may wish
to relax the budget constraints and instead maximize the return on investment per unit cost. Deeper
connections to the proportional voting schemes is also being explored.
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An Algorithm for the Coalitional

Manipulation Problem under Maximin

Michael Zuckerman, Omer Lev, and Jeffrey S. Rosenschein

Abstract

We introduce a new algorithm for the Unweighted Coalitional Manipulation problem
under the Maximin voting rule. We prove that the algorithm gives an approximation
ratio of 1 1

2
to the corresponding optimization problem. This is an improvement over

a previously known algorithm that gave a 2-approximation. We also prove that our
analysis is tight, i.e., there are instances on which a 1 1

2
-approximation is the best

the algorithm can achieve.

1 Introduction

Exploring the computational complexity of, and algorithms for, the manipulation problem
is one of the most important research areas in computational social choice.

In an election, voters submit linear orders (rankings, or profiles) of the candidates (al-
ternatives); a voting rule is then applied to the rankings in order to choose the winning
candidate. In the prominent impossibility result proven by Gibbard and Satterthwaite [4, 5],
it was shown that for any voting rule, a) which is not a dictatorship, b) which is onto the set
of alternatives, and c) where there are at least three alternatives, then there exist profiles
where a voter can benefit by voting insincerely. Submitting insincere rankings in an attempt
to benefit is called manipulation.

There are several ways to circumvent this result, one of which is by using computational
complexity as a barrier against manipulation. The idea behind this technique is as follows:
although there may exist a successful manipulation, the voter must discover it before it
can be used—but for certain voting rules, discovering a successful manipulation might be
computationally hard. This argument was used already in 1989 by Bartholdi et al. [2],
and in 1991 by Bartholdi and Orlin [1], where they proved, respectively, that second-order
Copeland and Single Transferable Vote are both NP-hard to manipulate.

Later, the complexity of coalitional manipulation was studied by Conitzer et al. [3].
In the coalitional manipulation problem, a coalition of potentially untruthful voters try to
coordinate their ballots so as to make some preferred candidate win the election. Conitzer et
al. studied the problem where the manipulators are weighted: a voter with weight l counts
as l voters, each of weight 1. This problem was shown to be NP-hard, for many voting
rules, even for a constant number of candidates. However, it has been argued that a more
natural setting is the unweighted coalitional manipulation (UCM) problem, where all voters
have equal power. In a recent paper [6], Xia et al. established as one of their main results
that UCM is NP-hard under the Maximin voting rule, even for 2 untruthful voters.

In 2009, Zuckerman et al. [7] defined a natural optimization problem for the unweighted
setting (i.e., Unweighted Coalitional Optimization, UCO): finding the minimal number of
manipulators that is sufficient to make some predefined candidate win. It is proven, as a
corollary of their results, that the heuristic greedy algorithm proposed in the paper gives
a 2-approximation to the UCO problem under Maximin. Here, we further study the UCO
problem under Maximin, proposing a new greedy algorithm that gives a 1 1

2 -approximation
to the problem.1 Then we provide an example showing that the approximation ratio of the

1Strictly speaking, our algorithm is for the decision problem, but since the conversion of our algorithm
to one for the optimization problem is straightforward, we consider it an approximation algorithm for the
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algorithm is not better than 1 1
2 .

2 The Maximin Voting Rule, Manipulation and Con-

dorcet winner

An election consists of a set C = {c1, . . . , cm} of candidates, and a set S = {v1, . . . , v|S|} of
voters. Each voter provides a total order on the candidates (i.e., each voter submits a linear
ranking of all the candidates). The setting also includes a voting rule, which is a function
from the set of all possible combinations of votes to C.

The maximin voting rule is defined as follows. For any two distinct candidates x and
y, let N(x, y) be the number of voters who prefer x over y. The maximin score of x is
S(x) = miny 6=x N(x, y). The candidate with the highest maximin score is the winner.

Definition 2.1. In the Constructive Coalitional Unweighted Manipulation
(CCUM) problem, we are given a set C of candidates, with a distinguished candidate
p ∈ C, a set of (unweighted) voters S that have already cast their votes (these are the
non-manipulators), and a set T of (unweighted) voters that have not yet cast their votes
(these are the manipulators). We are asked whether there is a way to cast the votes in T
so that p wins the election.

Definition 2.2. In the Unweighted Coalitional Optimization (UCO) problem we
are given a set C of candidates, with a distinguished candidate p ∈ C, and a set of (un-
weighted) voters S that have already cast their votes (the non-manipulators). We are asked
for the minimal n such that a set T of size n of (unweighted) manipulators can cast their
votes in order to make p win the election.

Remark 2.3. We implicitly assume here that the manipulators have full knowledge about
the non-manipulators’ votes. Unless explicitly stated otherwise, we also assume that ties
are broken adversarially to the manipulators, so that if p ties with another candidate, p
loses. The latter assumption is equivalent to formulating the manipulation problems in
their unique winner version, when one assumes that all candidates with maximal score win,
but asks that p be the only winner.

Throughout this paper we will use the convention, unless explicitly stated otherwise, that
|C| = m, |S| = N and |T | = n. We will denote Ni(x, y) = |{j | x ≻j y,≻j∈ S ∪ {1, . . . , i}}|.
That is, Ni(x, y) will denote the number of voters from S and from the first i voters of
T that prefer x over y (assuming S is fixed, and fixing some order on the voters of T ).
Furthermore, we will denote by Si(c) the accumulated score of candidate c from the voters
of S and the first i voters of T . By definition, for each c ∈ C, Si(x) = miny 6=x Ni(x, y).
Also, we denote for x ∈ C, MINi(x) = {y ∈ C \ {x} | Si(x) = Ni(x, y)}. We denote for
0 ≤ i ≤ n, ms(i) = maxc∈C\{p} Si(c). That is, ms(i) is the maximum score of the opponents
of p after i manipulators have voted.

Definition 2.4. The Condorcet winner of an election is the candidate who, when compared
with every other candidate, is preferred by more voters.

3 The Algorithm

Our algorithm for the CCUM problem under the maximin voting rule is given as Algorithm 1
(see the final page of the paper). It works as follows: fix some order on the manipulators;

optimization problem.
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the current manipulator i ranks p first. He then builds a digraph Gi−1 = (V, Ei−1), where
V = C \ {p}, (x, y) ∈ Ei−1 iff (y ∈ MINi−1(x) and p /∈ MINi−1(x)). He iterates over the
candidates that have not yet been ranked in his preference list. If there are candidates
with an out-degree 0, then the manipulator adds such a candidate who has the lowest
score (among the candidates with an out-degree 0) to his preference list. Note that the
candidates with out-degree 0 are kept in stacks in order to guarantee a DFS-like order
among candidates with the same score. This is needed for Lemma 5.5 to work. Otherwise,
if there are no candidates with out-degree 0, then the algorithm tries to find a cycle with
two adjacent vertices having the lowest score. If it finds such a cycle, then it picks the
front vertex of these two. Otherwise, any candidate with the lowest score is chosen. After
a candidate b is added to the manipulator’s preference list, for each candidate y who has
an outgoing edge (y, b), the algorithm removes all the outgoing edges of y, puts it into the
appropriate stack, and assigns b to be y’s “father” (this assignment is used to analyze the
algorithm).

Note the subtle difference between calculating the scores in Algorithm 1 in this paper,
as compared to in Algorithm 1 in [7]. In the latter, the manipulator i calculates what the
score would be of the current candidate x if he put x at the current place in his preference
list; in the algorithm we are now presenting, manipulator i just calculates Si−1(x). This
difference is due to the fact that here, when we calculate the score of x, we know whether
dout(x) > 0, i.e., we know whether the score of x will grow by 1 if we put it at the current
available place. So we separately compare the scores of candidates with out-degree > 0, and
the scores of candidates with out-degree 0.

Definition 3.1. We refer to an iteration of the main for loop in lines 3–37 of Algorithm 1
as a stage of the algorithm. That is, a stage of the algorithm is a vote of any manipulator.

The intuition behind Algorithm 1 is as follows. The algorithm tries in a greedy manner
to maximize the score of p, and to minimize the scores of p’s opponents. To achieve this,
it always puts p first in the preference lists, making the score of p grow by 1 with each
manipulator. Regarding p’s opponents, it tries first to rank candidates without any outgoing
edges from them, since their score will not grow this way (because their score is achieved
vs. candidates who were already ranked before them). When there are no candidates without
outgoing edges, the algorithm finds the candidate with the minimal score, and ranks it in
the next place in the preference list. After ranking each candidate, the edges in the graph
are updated, so that all candidates whose minimal candidate has already been ranked, will
be with outgoing degree 0. For an edge (x, y), if y has already been ranked, we remove
all the edges going out from x, since if we rank x now, its score won’t go up, and so it
does not depend on other candidates in MINi−1(x). There is no need of an edge (x, y) if
p ∈ MINi−1(x), since for all x ∈ C \ {p}, p is always ranked above x, and so whether y is
ranked above x or not, the score of x will not grow.

Definition 3.2. In the digraph Gi built by the algorithm, if there exists an edge (x, y), we
refer to Ni(x, y) = Si(x) as the weight of the edge (x, y).

4 2-approximation

We first prove that Algorithm 1 has an approximation ratio of 2. We then use this result
in the proof of the 1 1

2 approximation ratio. The proof of Theorem 4.1 via Lemma 4.2 and
Lemma 4.3 is quite similar to the proof of Theorem 3.16 in [7].

Theorem 4.1. Algorithm 1 has a 2-approximation ratio for the UCO problem under the
maximin voting rule.
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To prove the above theorem, we first need the following two lemmas. In the first one we
prove that a certain sub-graph of the graph built by the algorithm contains a cycle passing
through some distinguished vertex. We first introduce some more notation.

Let Gi = (V, Ei) be the directed graph built by Algorithm 1 in stage i+1. For a candidate
x ∈ C\{p}, let Gi

x = (V i
x , Ei

x) be the graph Gi reduced to the vertices that were ranked below
x in stage i + 1, including x. Let V i(x) = {y ∈ V i

x | there is a path in Gi
x from x to y}.

Also, let Gi(x) be the sub-graph of Gi
x induced by V i(x).

Lemma 4.2. Let i be an integer, 0 ≤ i ≤ n − 1. Let x ∈ C \ {p} be a candidate. Denote
t = ms(i). Suppose that Si+1(x) = t + 1. Then Gi(x) contains a cycle passing through x.

Proof. First of all note that for all c ∈ V i(x), Si(c) = t. It follows from the fact that by
definition Si(c) ≤ t. On the other hand, Si(x) = t, and all the other vertices in V i(x) were
ranked below x. Together with the fact that the out-degree of x was greater than 0 when x
was picked, it gives us that for all c ∈ V i(x), Si(c) ≥ t, and so for all c ∈ V i(x), Si(c) = t.
We claim that for all c ∈ V i(x), MINi(c) ⊆ V i(x). If, by way of contradiction, there exists
c ∈ V i(x) s.t. there is b ∈MINi(c) where b /∈ V i(x), then b /∈ V i

x , since otherwise, if b ∈ V i
x ,

then from c ∈ V i(x) and (c, b) ∈ Ei
x we get that b ∈ V i(x). So b /∈ V i

x , which means that b
was ranked by i + 1 above x. After we ranked b we removed all the outgoing edges from c,
and so we chose c before x since dout(c) = 0 and dout(x) > 0 (since the score of x went up
in stage i + 1). This contradicts the fact that c ∈ V i(x) ⊆ V i

x . Therefore, for every vertex
c ∈ V i(x) there is at least one edge in Gi(x) going out from c. Hence, there is at least one
cycle in Gi(x). Since at the time of picking x by voter i + 1, for all c ∈ V i(x), dout(c) > 0,
and by the observation that for all c ∈ V i(x), Si(c) = t, we have that the algorithm picked
the vertex x from a cycle (lines 21–22 of the pseudocode).

In the next lemma we put forward an upper bound on the growth rate of the scores of
p’s opponents.

Lemma 4.3. For all 0 ≤ i ≤ n− 2, ms(i + 2) ≤ ms(i) + 1

Proof. Let 0 ≤ i ≤ n − 2. Let x ∈ C \ {p} be a candidate. Denote t = ms(i). By
definition, Si(x) ≤ t. We would like to show that Si+2(x) ≤ t + 1. If Si+1(x) ≤ t, then
Si+2(x) ≤ Si+1(x)+ 1 ≤ t + 1, and we are done. So let us assume now that Si+1(x) = t + 1.

Let V i(x) and Gi(x) as before. By Lemma 4.2, Gi(x) contains at least one cycle. Let U
be one such cycle. Let a ∈ U be the vertex that was ranked highest among the vertices of
U in stage i + 1. Let b be the vertex before a in the cycle: (b, a) ∈ U . Since b was ranked
below a at stage i + 1, it follows that Si+1(b) = Si(b) ≤ t.

Suppose, for contradiction, that Si+2(x) > t + 1. Then the score of x went up in stage
i + 2, and so when x was picked by i + 2, its out-degree in the graph was not 0. x was
ranked by i + 2 at place s∗. Then b was ranked by i + 2 above s∗, since otherwise, when we
had reached the place s∗, we would not pick x since b would be available (with out-degree
0, or otherwise—with score Si+1(b) ≤ t < t + 1 = Si+1(x))—a contradiction.

Denote by Z1 all the vertices in V i(x) that have an outgoing edge to b in Gi(x). For all
z ∈ Z1, b ∈ MINi(z), i.e., Si(z) = Ni(z, b). We claim that all z ∈ Z1 were ranked by i + 2
above x. If, by way of contradiction, there is z ∈ Z1, s.t. until the place s∗ it still was not
added to the preference list, then two cases are possible:

1. If (z, b) ∈ Ei+1, then after b was added to i + 2’s preference list, we removed all
the outgoing edges of z, and we would put in z (with out-degree 0) instead of x, a
contradiction.

2. (z, b) /∈ Ei+1. Since (z, b) ∈ Ei, we have Si(z) = Ni(z, b). Also since z was ranked by
i+1 below x, it follows that Si(z) = t. So from (z, b) /∈ Ei+1, we have that Si+1(z) = t
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and Ni+1(z, b) = t +1. Therefore, when reaching the place s∗ in the i + 2’s preference
list, whether dout(z) = 0 or not, we would not pick x (with the score Si+1(x) = t + 1)
since z (with the score Si+1(z) = t) would be available, a contradiction.

Denote by Z2 all the vertices in V i(x) that have an outgoing edge in Gi(x) to some
vertex z ∈ Z1. In the same manner we can show that all the vertices in Z2 were ranked
in stage i + 2 above x. We continue in this manner, by defining sets Z3, . . . , where the set
Zl contains all vertices in V i(x) that have an outgoing edge to some vertex in Zl−1; the
argument above shows that all elements of these sets are ranked above x in stage i + 2. As
there is a path from x to b in Gi(x), we will eventually reach x in this way, i.e., there is
some l such that Zl contains a vertex y, s.t. (x, y) ∈ Ei(x).

Now, if (x, y) ∈ Ei+1(x), then since y was ranked by i + 2 above x, we have Si+2(x) =
Si+1(x) = t + 1, a contradiction. And if (x, y) /∈ Ei+1(x), then since (x, y) ∈ Ei(x) we get
that Ni+1(x, y) = t + 1 and Si+1(x) = t, a contradiction.

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. Let opt denote the minimum size of coalition needed to make p win.
It is easy to see that opt ≥ ms(0) − S0(p) + 1. We set n = 2ms(0) − 2S0(p) + 2 ≤ 2opt.
Then, by Lemma 4.3:

ms(n) ≤ ms(0) +
⌈n

2

⌉
= 2ms(0)− S0(p) + 1.

Whereas:
Sn(p) = S0(p) + n = 2ms(0)− S0(p) + 2 > ms(n).

So p will win when the coalition of manipulators is of size n.

5 11
2-approximation

Our next goal is to prove that Algorithm 1 has an approximation ratio of 1 1
2 when there

are no 2-cycles in the graphs built by the algorithm.

Theorem 5.1. For instances where there are no 2-cycles in the graphs Gi built by Algo-
rithm 1, it gives a 1 1

2 -approximation to the optimum.

We first prove the following lemma regarding the length of the cycles in the digraphs
built by the algorithm.

Lemma 5.2. If for all c ∈ C \ {p} it holds that S0(c) <
⌊

N
2

⌋
, then during the run of the

entire algorithm, in the graph built by the algorithm, there will be no cycles of length 2.

Proof. Suppose that for all c ∈ C \ {p} it holds that S0(c) <
⌊

N
2

⌋
. By Lemma 4.3, it holds

for all c ∈ C \ {p} and all 0 ≤ i ≤ n− 2, that Si+2(c) ≤ ms(i) + 1. Then for all 0 ≤ i ≤ n:

Si(c) ≤ ms(0) +
⌈

i

2

⌉
<

⌊
N

2

⌋
+

⌈
i

2

⌉
≤

⌈
N + i

2

⌉
.

Now if, by way of contradiction, there is a cycle of length 2 between vertices x and y
after stage i, then Si(x) = Ni(x, y) <

⌈
N+i

2

⌉
and Si(y) = Ni(y, x) <

⌈
N+i

2

⌉
, and then

Si(y) = Ni(y, x) ≤ ⌊
N+i

2

⌋
. Hence, N + i = Ni(x, y) + Ni(y, x) <

⌈
N+i

2

⌉
+

⌊
N+i

2

⌋
= N + i,

a contradiction.
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Lemma 5.3. Suppose that there are no 2-cycles in the graphs built by the algorithm. Let
x ∈ C \ {p} be a candidate such that Si+1(x) = t + 1 (where t = ms(i)), and let Gi(x)
be as described before Lemma 4.2. For each cycle U in Gi(x), if U exists in Gi+1, i.e.,
after stage i + 1, then there are 3 distinct vertices a, b, c, s.t. (c, b) ∈ U , (b, a) ∈ U and
Si+1(b) = Ni+1(b, a) = Si+1(c) = Ni+1(c, b) = t.

Proof. Let U ⊆ Ei(x) be a cycle which stays also after i + 1 stages. Let a be the vertex
which in stage i + 1 was chosen first among the vertices of U . Let b be the vertex before a
in U , i.e., (b, a) ∈ U , and let c be the vertex before b in U , i.e., (c, b) ∈ U . Since there are
no 2-cycles, a, b, c are all distinct vertices. Recall that for each y ∈ V i(x), Si(y) = t. Since
b was ranked below a in stage i + 1, we have Si+1(b) = Ni+1(b, a) = Ni(b, a) = Si(b) = t.
If c was chosen after b in stage i + 1, then Si+1(c) = Ni+1(c, b) = Ni(c, b) = t and we
are done. We now show that c cannot be chosen before b in stage i + 1. If, by way of
contradiction, c were chosen before b, since after ranking a, dout(b) = 0, it follows that when
c was picked, its out-degree was also 0. Hence, there exists d ∈MINi(c) which was picked by
i+1 before c. And so, Si+1(c) = t. On the other hand, since c was picked before b, we have
Ni+1(c, b) = t + 1 > Si+1(c), and so the edge (c, b) does not exist in Gi+1, a contradiction
to the fact that the cycle U stayed after stage i + 1.

Lemma 5.4. Let x ∈ C \ {p} be a candidate such that Si+1(x) = t + 1 (where t = ms(i)).
Let Gi(x) be as before. Then at least one cycle in Gi(x) that passes through x, will stay
after the stage i + 1, i.e., in Gi+1.

Proof. In Lemma 4.2 we have proved that, in Gi(x) at least one cycle passes through x.
Since x appears in the preference list of i + 1 above all the MINi(x), it follows that each
edge going out of x in Gi(x), stays also in Gi+1. After we added x to the preference list of
i + 1, all the vertices in all the cycles passing through x were added in some order to the
preference list of i + 1, while they were with out-degree 0 at the time they were picked (it
can be proved by induction on the length of the path from the vertex to x). Therefore, their
“father” field was not null when they were picked. We have to prove that there is at least
one cycle whose vertices were added in the reverse order (and then all the edges of the cycle
stayed in Gi+1). Let z1 ∈ C \ {p, x} be some vertex such that (x, z1) ∈ Gi(x) and there is a
path in Gi(x) from z1 to x. Let z2 = z1.father. As observed earlier, z2 6= null. We first show
that when z2 was picked by i + 1, it was with out-degree 0. Indeed, if, by contradiction, we
suppose otherwise, then z2 would have been picked after z1 (the proof is by induction on
the length of the shortest path from vertex to x, that each vertex such that there is a path
from it to x was picked before z2), and this is a contradiction to the fact that z2 = z1.father.
Therefore, the “father” field of z2 after stage i + 1 is not null. Let z3 = z2.father. If z3 = x
then we are done because we have found a cycle x → z1 → z2 → z3 = x which was ranked
in stage i+1 in the reverse order. Otherwise, by the same argument as before, we can show
that when z3 was picked, its out-degree was 0. This way we can pass from a vertex to its
father until we reach p or null. We now show that we cannot reach p this way. Indeed, if, by
contradiction, we reach p, then there is a path from x to p in Gi, and so all the vertices in
this path, including x, were picked when their out-degree was 0, and this is a contradiction
to the fact that the score of x went up in stage i+1. Therefore, we cannot reach p when we
go from a vertex to its father starting with z1. Now, let zj be the last vertex before null in
this path. We would like to show that zj = x. If, by contradiction, zj was picked before x
by voter i + 1, then all the vertices zj−1, . . . , z2, z1 would have been picked before x, when
their out-degree is 0, and then x would have been picked when its out-degree is 0. This is a
contradiction to the fact that x’s score went up in stage i+1. Now suppose by contradiction
that zj was picked after x in stage i + 1. Then all the vertices that have a path from them
to x, including z1, would have been picked before zj in stage i + 1, since the out-degree of
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zj was greater than 0 when it was picked. This is a contradiction to the fact that zj was
picked before z1. So, zj = x. This way we got a cycle x→ z1 → . . .→ zj−1 → x which was
ranked in the reverse order in stage i + 1.

Lemma 5.5. Suppose that there are no 2-cycles in the graphs built by the algorithm. Let
x ∈ C \ {p} be a candidate such that Si+1(x) = t + 1 (where t = ms(i)). Then after stage
i + 2 at least one of the following will hold:

1. There will be a vertex w in Gi+2 s.t. p ∈ MINi+2(w) and there will be a path from x
to w.

2. There will be a vertex w in Gi+2 with Si+2(w) ≤ t, s.t. there will be a path from x to
w.

The proof of this lemma uses the same ideas as the proof of Lemma 5.4, and is omitted
due to space limitations.

The next lemma is central in the proof of Theorem 5.1. It states that the maximum
score of p’s opponents grows rather slowly.

Lemma 5.6. If there are no 2-cycles in the graphs built by the algorithm, then for all i,
0 ≤ i ≤ n− 3 it holds that ms(i + 3) ≤ ms(i) + 1.

Proof. Let i, 0 ≤ i ≤ n − 3. Let x ∈ C \ {p} be a candidate. Denote ms(i) = t. We need
to prove that Si+3(x) ≤ t + 1. If Si+1(x) ≤ t, then similarly to Lemma 4.3 we can prove
that Si+3(x) ≤ t + 1. So now we assume that Si+1(x) = t + 1. By Lemma 4.3, we have that
Si+2(x) = t + 1. Suppose by contradiction that Si+3(x) = t + 2. x was ranked in stage i + 3
at the place s∗. By Lemma 5.5 there exists a vertex w s.t. there is a path in Gi+2 from x to
w, and p ∈ MINi+2(w) or Si+2(w) ≤ t. Then w was ranked in stage i + 3 above the place
s∗, because the score of x went up in stage i + 3, and if, by contradiction, w was not ranked
above the place s∗, then when we got to the place s∗ we would prefer w over x. It is easy to
see that all the vertices that have a path in Gi+2 from them to w, and which were ranked
below w in stage i+3, did not have their scores go up in that stage (since we took them one
after another in the reverse order on their path to w when they were with out-degree 0).
And as x was ranked below w, its score did not go up as well, and so Si+3(x) = Si+2 = t+1,
a contradiction.

We are now ready to prove the main theorem.

Proof of Theorem 5.1. Let opt denote the minimal size of the coalition of manipulators that
can make p win the election. It is easy to see that opt ≥ ms(0)− S0(p) + 1. We shall prove
that Algorithm 1 will find a manipulation for n =

⌈
3ms(0)−3S0(p)+3

2

⌉
≤ ⌈

3
2opt

⌉
. And indeed,

by Lemma 5.6,

ms(n) ≤ ms(0) +
⌈

n

3

⌉
= ms(0) +

⌈
ms(0)− S0(p) + 1

2

⌉
.

Whereas,

Sn(p) = S0(p) + n

= S0(p) + (ms(0)− S0(p) + 1) +
⌈

ms(0)− S0(p) + 1
2

⌉
= ms(0) + 1 +

⌈
ms(0)− S0(p) + 1

2

⌉
> ms(0) +

⌈
ms(0)− S0(p) + 1

2

⌉
≥ ms(n).
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Theorem 5.7. The 1 1
2 -approximation ratio of Algorithm 1 is valid also when there are

2-cycles in the graphs built by the algorithm.

Proof. Due to space constraints, we will only provide a sketch of the proof, and we will omit
the proofs of the lemmas (except of Lemma 5.9).

This following proof will show, in a way, that our algorithm is optimal in dismantling
2-cycles—if there are 2-cycles in Gi, then for every algorithm ms∗(i) ≥ ms(i). Once 2-cycles
have been dismantled (and they cannot return), our algorithm performs a 1 1

2 -approximation
on the number of steps left, and thus, generally a 1 1

2 -approximation on the optimal solution.

Lemma 5.8. If there are no cycles of length 2 in a certain stage of the algorithm run (Gi),
then no 2-cycles will be created in any further iteration—Gj (j > i) will have no 2-cycles.

From now on, we shall assume G0 contains at least one 2-cycle, with a Condorcet winner
a.

Lemma 5.9. If there is more than one 2-cycle at any stage i, there are no 2-cycles at stage
i + 3.

Proof. Suppose b1, b2, . . . , bt are the 2-cycle partners of a. Suppose Si(a) = Ni(a, bk) = x
and Si(bk) = Ni(bk, a) = y.

If x = y, then each Ni(bk, br) = x. In stage i + 1, one vertex (w.l.o.g., a) will have a
score of x + 1, and the rest have a score of x. This is the same situation as before (multiple
2-cycles with a), but with x + 1 6= x. Now we will show that if x 6= y we can eliminate
2-cycles in 2 stages (so if x = y, we need a total of 3 stages).

c>a>bb>c>a
y+1

Figure 1: Dismantling multiple 2-cycles

Between each br, bk there is at least one edge with value y. At stage i + 1, Si+1(a) = x
(as it is the Condorcet winner), some b’s will have a value of y + 1, while some will have a
value of y. Of those with the value y, there will be at least one, bℓ, for which Ni+1(a, bℓ) = x.
This is because some bk will be selected before a, either because dout(bk) = 0 or because it
was according to lines 21–22 of the algorithm, which ensure that at least one bk score will
not change, and it will be selected before a according to line 17. In stage i+2, Si+2(a) = x,
since either bℓ will be selected before a, or if not, this means a was selected when dout(a) = 0,
which occurs when a’s value doesn’t change. Furthermore, if Si+1(br) = y + 1, and br was
selected before bℓ, this means it happened due to dout(br) = 0, and thus Si+2(br) = y + 1,
and if it was selected after bℓ, since a’s dout after bℓ’s selection is 0, if br is selected it is
either before a, when its dout = 0, or after a, and thus Si+2(br) = y + 1. Since Si+2(a) = x,
and there is no c ∈ C such that Si+2 = y + 2, this means there are no 2-cycles in Gi+2.
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Figure 2: Example

Thus, if there is more than one 2-cycle in G0, it will be eliminated in 3 steps at the
most. Now, we wish to show that the algorithm eliminates 2-cycles as fast as possible,
and then maintains its 1 1

2 -approximation. Once the 2-cycles are eliminated the ms is the
same (or less) than the optimal algorithm, and from that step onward our algorithm gives
a 1 1

2 -approximation.

Lemma 5.10. Let b be a’s partner in the 2-cycle in stage Gi. If in Gi there is c ∈ C 6= a, b
such that Ni(a, c) = Si(a), there will be no 2-cycle in Gi+3.

Lemma 5.11. If c ∈ C was not a part of a 2-cycle in Gi, and is a part of a 2-cycle in
Gi+1, there will be no 2-cycles in Gi+4.

Therefore, we can assume that a and b were part of a 2-cycle in G0, and they will be the
only participants of a 2-cycle during the algorithm’s run.

To continue, we need a few definitions. We will define c ∈ C as c ∈ {x ∈ C|x ∈
min

y∈C\a,b
N0(b, y)}. We will define d ∈ C as d ∈ {x ∈ C|x ∈ min

y∈C\a,b
N0(a, y)}.

Lemma 5.12. If N0(b, c) < S0(a), then after N0(b, c)−S0(b)+1 steps there are no 2-cycles,
and ms(N0(b, c)− S0(b) + 1) = ms(0).

Lemma 5.13. Let h = min(N0(b, c), N0(a, d)). For any algorithm, if h ≥ S0(a),
ms∗(S0(a)− S0(b) + 2(h− S0(a))) ≥ h.

Lemma 5.14. Let h = min(N0(b, c), N0(a, d)). Using Algorithm 1, if h ≥ S0(a),
ms(S0(a)− S0(b) + 2(h− S0(a))) = h, and there are no 2-cycles in GS0(a)+2(h−S0(a))+1.

We have shown that if there are multiple 2-cycles in G0, we end up with no 2-cycles
in G3. If there is one, it is abolished, and the ms at the state in which it is abolished
is the smallest possible. From that point on, our algorithm provides a 1 1

2 -approximation
(according to Theorem 5.1).

Now we show that our analysis of Algorithm 1 is accurate.

Theorem 5.15. The 1 1
2 approximation ratio of Algorithm 1 is asymptotically tight.

Proof. Consider the following example (see Figure 2). C =
{p, a1, b1, c1, a2, b2, c2, . . . , al, bl, cl}. Let k be an integer, N

3 ≤ k < N
2 . S0(p) = 0;

for all j, 1 ≤ j ≤ l: S0(aj) = N0(aj , bj) = S0(bj) = N0(bj , cj) = S0(cj) = N0(cj , aj) = k. In
addition, for each j, 1 ≤ j ≤ l − 1: N0(aj , aj+1) = k + 1, and N0(al, a1) = k + 1. When
showing the preferences of the manipulators, we denote by Aj the fragment aj ≻ cj ≻ bj
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of the preference, by Bj the fragment bj ≻ aj ≻ cj , and by Cj the fragment cj ≻ bj ≻ aj .
Consider the following preference list of the manipulators:

p ≻ Al ≻ Al−1 ≻ . . . ≻ A1

p ≻ Al−1 ≻ Al−2 ≻ . . . ≻ A1 ≻ Al

p ≻ Al−2 ≻ Al−3 ≻ . . . ≻ A1 ≻ Al ≻ Al−1

. . .

It can be verified that in the above preference list, the maximum score of p’s opponents
(ms(i)) grows by 1 every m−1

3 stages (starting with k + 1). In addition, p’s score grows by
1 every stage. Therefore, when we apply the voting above, the minimum number of stages
(manipulators) n∗ needed to make p win the election should satisfy n∗ > k + 1 +

⌈
3n∗
m−1

⌉
.

Since
⌈

3n∗
m−1

⌉
< 3n∗

m−1 + 1, the sufficient condition for making p win is:

n∗ > k + 1 +
3n∗

m− 1
+ 1.

So, we have,

(m− 1)n∗ > (m− 1)(k + 2) + 3n∗

(m− 4)n∗ > (m− 1)(k + 2)

n∗ >
(m− 1)(k + 2)

m− 4
.

For large-enough m, (m−1)(k+2)
m−4 < k + 3, and so n∗ = k + 3 would be enough to make p win

the election.
Now let us examine what Algorithm 1 will do when it gets this example as input. One

of the possible outputs of the algorithm looks like this:

p ≻ C1 ≻ C2 ≻ . . . ≻ Cl

p ≻ B2 ≻ B3 ≻ . . . ≻ Bl ≻ B1

p ≻ A3 ≻ A4 ≻ . . . ≻ Al ≻ A1 ≻ A2

p ≻ C4 ≻ C5 ≻ . . . ≻ Cl ≻ C1 ≻ C2 ≻ C3

. . .

It can be verified that in the above preference list, ms(i) grows by 1 every 3 stages, and p’s
score grows by 1 every stage. Therefore, the number of stages n returned by Algorithm 1
that are needed to make p win the election satisfies n > k +

⌈
n
3

⌉
. Since

⌈
n
3

⌉ ≥ n
3 , the

necessary condition for making p win the election is:

n > k +
n

3
.

We then have,

3n > 3k + n

2n > 3k

n >
3
2
k.

So we find that the ratio n
n∗ tends to 1 1

2 as m and N (and k) tend to infinity.
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6 Conclusions and Future Work

We introduced a new algorithm for approximating the UCO problem under the maximin
voting rule, and investigated its approximation guarantees. In future work, it would be
interesting to prove or disprove that Algorithm 1 presented in [7] has an approximation
ratio of 1 1

2 , for those instances where there is no Condorcet winner.2 Another issue is to
implement both algorithms, to empirically measure their performance and compare them in
practice.
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Algorithm 1 Decides CCUM for maximin voting rule
1: procedure Maximin(C, p, XS , n) ⊲ XS is the set of preferences of voters in S, n is the

number of voters in T
2: X ← ∅ ⊲ Will contain the preferences of T
3: for i = 1, . . . , n do ⊲ Iterate over voters
4: Pi ← (p) ⊲ Put p at the first place of the i-th preference list
5: Build a digraph Gi−1 = (V, Ei−1) ⊲ V = C \ {p}, (x, y) ∈ Ei−1 iff

(y ∈ MINi−1(x) and p /∈MINi−1(x))
6: for c ∈ C \ {p} do ⊲ This for loop is used in the analysis
7: if dout(c) = 0 then
8: c.father← p
9: else

10: c.father← null
11: end if
12: end for
13: while C \ Pi 6= ∅ do ⊲ while there are candidates to be added to i-th preference

list
14: Evaluate the score of each candidate based on the votes of S and i − 1 first

votes of T
15: if there exists a set A ⊆ C \ Pi with dout(a) = 0 for each a ∈ A then ⊲ if

there exist vertices in the digraph Gi−1 with out-degree 0
16: Add the candidates of A to the stacks Qj , where to the same stack go

candidates with the same score
17: b← Q1.popfront() ⊲ Retrieve the top-most candidate from the first

stack—with the lowest scores so far
18: Pi ← Pi + {b} ⊲ Add b to i’s preference list
19: else
20: Let s = minc∈C\Pi

{Si−1(c)}
21: if there is a cycle U in Gi−1 s.t. there are 3 vertices a, b, c, s.t. (c, b), (b, a) ∈

U , and Si−1(c) = Si−1(b) = s then
22: Pi ← Pi + {b} ⊲ Add b to i’s preference list
23: else
24: Pick b ∈ C \ Pi s.t. Si−1(b) = s ⊲ Pick any candidate with the lowest

score so far
25: Pi ← Pi + {b} ⊲ Add b to i’s preference list
26: end if
27: end if
28: for y ∈ C \ Pi do
29: if (y, b) ∈ Ei−1 then ⊲ If there is a directed edge from y to b in the

digraph
30: Remove all the edges of Ei−1 originating in y
31: y.father← b ⊲ This statement is used in algorithm analysis
32: Add y to the front of the appropriate stack Qj—according to Si−1(y)
33: end if
34: end for
35: end while
36: X ← X ∪ {Pi}
37: end for
38: XT ← X
39: if argmaxc∈C{Score of c based on XS ∪XT } = {p} then
40: return true ⊲ p wins
41: else
42: return false
43: end if
44: end procedure 78



Complexity of Safe Strategic Voting1

Noam Hazon and Edith Elkind

Abstract

We investigate the computational aspects ofsafe manipulation, a new model of coalitional
manipulation that was recently put forward by Slinko and White [11]. In this model, a po-
tential manipulatorv announces how he intends to vote, and some of the other voterswhose
preferences coincide with those ofv may follow suit. Depending on the number of followers,
the outcome could be better or worse forv than the outcome of truthful voting. A manipu-
lative vote is calledsafeif for some number of followers it improves the outcome fromv’s
perspective, and can never lead to a worse outcome. In this paper, we study the complexity
of finding a safe manipulative vote for a number of common voting rules, including Plurality,
Borda,k-approval, and Bucklin, providing algorithms and hardnessresults for both weighted
and unweighted voters. We also propose two ways to extend thenotion of safe manipulation
to the setting where the followers’ preferences may differ from those of the leader, and study
the computational properties of the resulting extensions.

1 Introduction

Computational aspects of voting, and, in particular, voting manipulation, is an active topic of current
research. While the complexity of the manipulation problemfor a single voter is quite well under-
stood (specifically, this problem is known to be efficiently solvable for most common voting rules
with the notable exception of STV [1, 2]), the more recent work has mostly focused on coalitional
manipulation, i.e., manipulation by multiple, possibly weighted voters. In contrast to the single-
voter case, coalitional manipulation tends to be hard. Indeed, it has been shown to be NP-hard for
weighted voters even when the number of candidates is bounded by a small constant [4]. For un-
weighted voters, nailing the complexity of coalitional manipulation proved to be more challenging.
However, Faliszewski et al. [5] have recently established that this problem is hard for most variants
of Copeland, and Zuckermanet al [13] showed that it is easy for Veto and Plurality with Runoff.
Further, a very recent paper [12] makes substantial progress in this direction, showing, for exam-
ple, that unweighted coalitional manipulation is hard for Maximin and Ranked Pairs, but easy for
Bucklin (see Section 2 for the definitions of these rules).

All of these papers (as well as the classic work of Bartholdi et al. [1]) assume that the set of
manipulators is given exogenously, and the manipulators are not endowed with preferences over the
entire set of candidates; rather, they simply want to get a particular candidate elected, and select
their votes based on the non-manipulators’ preferences that are publicly known. That is, this model
abstracts away the question of how the manipulating coalition forms. However, to develop a better
understanding of coalitional manipulation, it is desirable to have a plausible model of the coalition
formation process. In such a model the manipulators would start out by having the same type of
preferences as sincere voters, and then some agents—those who are not satisfied with the current
outcome and are willing to submit an insincere ballot—wouldget together and decide to coordinate
their efforts.

However, it is quite difficult to formalize this intuition soas to obtain a realistic model of how
the manipulating coalition forms. In particular, it is not clear how the voters who are interested in
manipulation should identify each other, and then reach an agreement which candidate to promote.
Indeed, the latter decision seems to call for a voting procedure, and therefore is itself vulnerable
to strategic behavior. Further, even assuming that suitable coalition formation and decision-making

1To appear in the proceedings of the 3rd International Symposium on Algorithmic Game Theory (SAGT’10)
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procedures exist, their practical implementation may be hindered by the absence of reliable two-way
communication among the manipulators.

In a recent paper [11], Slinko and White put forward a model that provides a partial answer to
these questions. They consider a setting where a single voter v announces his manipulative voteL
(the truthful preferences of all agents are, as usual, common knowledge) to his set of associatesF ,
i.e., the voters whose true preferences coincide with thoseof v. As a result, some of the voters in
F switch to votingL, while others (as well as all voters not inF ) vote truthfully. This can happen
if, e.g.,v’s instructions are broadcast via an unreliable channel, i.e., some of the voters inF simply
do not receive the announcement, or if some voters inF consider it unethical to vote non-truthfully.
Such a situation is not unusual in politics, where a public figure may announce her decision to vote
in a particular manner, and may be followed by a subset of like-minded people. That is, in this
model, the manipulating coalition always consists of voters with identical preferences (and thus
the problem of which candidate to promote is trivially resolved), and, moreover, the manipulators
always vote in the same way. Further, it relies on minimal communication, i.e., a single broadcast
message. However, due to lack of two-way communication,v does not know how many voters will
support him in his decision to voteL. Thus, he faces a dilemma: it might be the case that ifx
voters fromF follow him, then the outcome improves, while if somey 6= x voters fromF switch
to votingL, the outcome becomes even less desirable tov than the current alternative (we provide
an example in Section 2). Ifv is conservatively-minded, in such situations he would choose not to
manipulate at all. In other words, he would viewL as a successful manipulation only if (1) there
exists a subsetU ⊆ F such that if the voters inU switch to votingL, the outcome improves; (2)
for anyW ⊆ F , if the voters inW switch to votingL the outcome does not get worse. Paper [11]
calls any manipulation that satisfies (1) and (2)safe. The main result of [11] is a generalization of
the Gibbard–Satterthwaite theorem [7, 10] to safe manipulation: the authors prove that any onto,
non-dictatorial voting rule with at least 3 alternatives issafely manipulable, i.e., there exists a profile
in which at least one voter has a safe manipulation. However,paper [11] does not explore the
computational complexity of the related problems.

In the first part of this paper, we focus on algorithmic complexity of safe manipulation, as defined
in [11]. We first formalize the relevant computational questions and discuss some basic relationships
between them. We then study the complexity of these questions for several classic voting rules, such
as Plurality, Veto,k-approval, Bucklin, and Borda, for both weighted and unweighted voters. For
instance, we show that finding a safe manipulation is easy fork-approval and for Bucklin, even if
the voters are weighted. In contrast, for Borda, finding a safe manipulation—or even checking that
a given vote is safe—turns out to be hard for weighted voters even if the number of candidates is
bounded by a small constant.

We then explore whether it is possible to extend the model of safe manipulation to settings where
the manipulator may be joined by voters whose preferences differ from his own. Indeed, in real life
a voter may follow advice to vote in a certain way if it comes from a person whose preferences are
similar (rather than identical) to hers, or simply because she thinks that voting in this manner can
be beneficial to her. For instance, in politics, a popular personality may influence many different
voters at once by announcing his decision to vote in a particular manner. We propose two ways
of formalizing this idea, which differ in their approach to defining the set of a voter’s potential
followers, and provide initial results on the complexity ofsafe manipulation in these models.

In our first extension, a manipulatorv may be followed by all voters who rank the same candi-
dates above the current winner asv does. That is, in this model a voteru may followv if any change
of outcome that is beneficial tov is also beneficial tou. We show that some of the positive algo-
rithmic results for the standard model also hold in this moregeneral setting. In our second model,
a voteru may follow a manipulatorv that proposes to voteL, if, roughly, there are circumstances
when votingL is beneficial tou. This model tends to be computationally more challenging: we
show that finding a safe strategic vote in this setting is hardeven for very simple voting rules.

We conclude the paper by summarizing our results and proposing several directions for future
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research.

2 Preliminaries and Notation

An electionis given by a set ofcandidates(also referred to asalternatives) C = {c1, . . . , cm} and
a set ofvotersV = {1, . . . , n}. Each voteri is represented by hispreferenceRi, which is a total
order overC; we will also refer to total orders overC asvotes. For readability, we will sometimes
denote the orderRi by≻i. The vectorR = (R1, . . . , Rn) is called apreference profile. We say that
two votersi andj are of the sametypeif Ri = Rj ; we writeVi = {j | Rj = Ri}.

A voting ruleF is a mapping from the set of all preference profiles to the set of candidates;
if F(R) = c, we say thatc wins underF in R. A voting rule is said to beanonymousif
F(R) = F(R′), whereR′ is a preference profile obtained by permuting the entries ofR. To
simplify the presentation, in this paper we consider anonymous voting rules only. In addition, we
restrict ourselves to voting rules that are polynomial-time computable.

During the election, each voteri submits a voteLi; the outcome of the election is then given
by F(L1, . . . , Ln). We say that a voteri is truthful if Li = Ri. For anyU ⊆ V and a voteL, we
denote byR−U (L) the profile obtained fromR by replacingRi with L for all i ∈ U .

Voting rules We will now define the voting rules considered in this paper. All of these rules assign
scores to all candidates; the winner is then selected among the candidates with the highest score
using atie-breaking rule, i.e., a mappingT : 2C → C that satisfiesT (S) ∈ S. Unless specified
otherwise, we assume that the tie-breaking rule islexicographic, i.e., given a set of tied alternatives,
it selects one that is maximal with respect to a fixed ordering≻.

Given a vectorα = (α1, . . . , αm) with α1 ≥ · · · ≥ αm, thescoresα(c) of a candidatec ∈ C
under apositional scoring ruleFα is given by

∑
i∈V αj(i,c), wherej(i, c) is the position in which

voteri ranks candidatec. Many classic voting rules can be represented using this framework. Indeed,
Plurality is the scoring rule withα = (1, 0, . . . , 0), Veto(also known asAntiplurality) is the scoring
rule withα = (1, . . . , 1, 0), andBordais the scoring rule withα = (m−1, m−2, . . . , 1, 0). Further,
k-approvalis the scoring rule withα given byα1 = · · · = αk = 1, αk+1 = · · · = αm = 0; we will
also refer to(m− k)-approval ask-veto.

Bucklin rulecan be viewed as an adaptive version ofk-approval. We say thatk, 1 ≤ k ≤ m, is
theBucklin winning roundif for any j < k no candidate is ranked in topj positions by at least⌈n/2⌉
voters, and there exists some candidate that is ranked in topk positions by at least⌈n/2⌉ voters. We
say that the candidatec’s score in roundj is hisj-approval score, and hisBucklin scoresB(c) is his
k-approval score, wherek is the Bucklin winning round. TheBucklin winneris the candidate with
the highest Bucklin score. Observe that the Bucklin score ofthe Bucklin winner is at least⌈n/2⌉.
Weighted voters Our model can be extended to the situation where not all voters are equally
important by assigning an integerweightwi to each voteri. To compute the winner on a profile
(R1, . . . , Rn) under a voting ruleF given voters’ weightsw = (w1, . . . , wn), we applyF on a
modified profile which for eachi = 1, . . . , n containswi copies ofRi. As an input to our problems
we usually get avoting domain, i.e., a tupleS = 〈C, V,w,R〉, together with a specific voting rule.
Whenw = (1, . . . , 1), we say that the voters areunweighted. For eachU ⊆ V , let |U | be the
number of voters inU and letw(U) be the total weight of the voters inU .

Safe manipulation We will now formally define the notion of safe manipulation. For the purposes
of our presentation, we can simplify the definitions in [11] considerably.

As before, we assume that the voters’ true preferences are given by a preference profileR =
(R1, . . . , Rn).

Definition 1. We say that a voteL is anincentive to vote strategically, or astrategic votefor i atR
underF , if L 6= Ri and for someU ⊆ Vi we haveF(R−U (L)) ≻i F(R). Further, we say thatL
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is asafe strategic votefor a voteri atR underF if L is a strategic vote atR, and for anyU ⊆ Vi

eitherF(R−U (L)) ≻i F(R) orF(R−U (L)) = F(R).

To build intuition for the notions defined above, consider the following example.

Example 1. SupposeC = {a, b, c, d}, V = {1, 2, 3, 4}, the first three voters have preference
b ≻ a ≻ c ≻ d, and the last voter has preferencec ≻ d ≻ a ≻ b. Suppose also that the voting
rule is2-approval. Under truthful voting,a andb get3 points, andc andd get1 point each. Since
ties are broken lexicographically,a wins. Now, if voter1 changes his vote toL = b ≻ c ≻ a ≻ d,
b gets3 points,a gets2 points, andc gets2 points, sob wins. Asb ≻1 a, L is a strategic vote for
1. However, it is not a safe strategic vote: if players inV1 = {1, 2, 3} all switch to votingL, thenc
gets4 points, whileb still gets3 points, so in this casec wins anda ≻1 c.

A maximalmanipulation is one where all the voters fromVi choose to voteL. We will call the
winner of such profile themaximal manipulation winnerfor L.

3 Computational Problems: First Observations

The definition of safe strategic voting gives rise to two natural algorithmic questions. In the defini-
tions below,F is a given voting rule and the voters are assumed to be unweighted.

• ISSAFE(F): Given a voting domain, a voteri and a linear orderL, is L a safe strategic vote
for i underF?

• EXISTSAFE(F): Given a voting domain and a voteri, can voteri make a safe strategic vote
underF?

The variants of these problems for weighted voters will be denoted, respectively, byWISSAFE(F)
and WEXISTSAFE(F). Note that, in general, it is not clear if an efficient algorithm for
(W)EXISTSAFE(F) can be used to solve (W)ISSAFE(F), or vice versa. However, if the number
of candidates is constant, (W)EXISTSAFE(F) reduces to (W)ISSAFE(F). We formulate the follow-
ing two results for weighted voters; clearly, they also apply to unweighted voters.

Proposition 1. Consider any voting ruleF . For any constantk, if |C| ≤ k, then a polynomial-time
algorithm forWISSAFE(F) can be used to solveWEXISTSAFE(F) in polynomial time.

Proof. In this casei has at mostk! = O(1) different votes, so he can try all of them.

A similar reduction exists when each voter only has polynomially many “essentially different”
votes.

Proposition 2. Consider any scoring ruleFα that satisfies either (i)αj = 0 for all j > k or (ii)
αj = 1 for all j ≤ m − k, wherek is a given constant. For any such rule, a polynomial-time
algorithm forWISSAFE(Fα) can be used to solveWEXISTSAFE(Fα) in polynomial time.

Proof. We consider case (i); case (ii) is similar. There are at mostnk = poly(n) different ways to
fill the top k positions in a vote. Further, if two votes only differ in positionsk + 1, . . . , m, they
result in the same outcome. Thus, to solveWEXISTSAFE(Fα), it suffices to runWISSAFE(Fα) on
poly(n) instances.

Observe that the class of rules considered in Proposition 2 includes Plurality and Veto, as well
ask-approval andk-veto whenk is bounded by a constant.

Further, we note that for unweighted voters it is easy to check if a given manipulation is safe.

Proposition 3. The problemISSAFE(F) is in P for any (anonymous) voting ruleF .
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Proof. SetVi = {i1, . . . , is}. Since our voting rule is anonymous, it suffices to check the conditions
of Definition 1 forU ∈ {{i1}, {i1, i2}, . . . , {i1, . . . , is}}, i.e., fors ≤ n sets of voters.

Together with Propositions 1 and 2, Proposition 3 implies that the problem EXISTSAFE(F) is
in P for Plurality, Veto,k-veto andk-approval for constantk, as well as for any voting rule with a
constant number of candidates.

Note that when voters are weighted, the conclusion of Proposition 3 no longer holds. Indeed,
in this case the number of subsets ofVi that have different weights (and thus may have a different
effect on the outcome) may be exponential inn. However, it is not hard to show that the problem
remains easy when all weights are small (polynomially bounded).

4 Plurality, veto, and k-approval

We will now show that the easiness results fork-approval andk-veto extend to arbitraryk ≤ m and
weighted voters (note that the distinction betweenk-veto and(m − k)-approval only matters for
constantk).

Theorem 4. For k-approval, the problemsWISSAFE andWEXISTSAFE are inP.

Proof. Fix a voterv ∈ V . To simplify notation, we renumber the candidates so thatv’s preference
order is given byc1 ≻v . . . ≻v cm. Denotev’s truthful vote byR. Recall thatVv denotes the set of
voters who have the same preferences asv. Suppose that under truthful voting the winner iscj . For
i = 1, . . . , m, let si(R′) denote thek-approval score ofci given a profileR′, and setsi = si(R).

We start by proving a useful characterization of safe strategic votes fork-approval.

Lemma 1. A voteL is a safe strategic vote forv if and only if the winner inR−Vv (L) is a candidate
ci with i < j.

Proof. Suppose thatL is a safe strategic vote forv. Then there exists ani < j and aU ⊆ Vv such
that the winner inR−U (L) is ci. It must be the case that each switch fromR to L increasesci’s
score or decreasescj ’s score: otherwiseci cannot beatcj after the voters inU change their vote
from R to L. Therefore, ifci beatscj when the preference profile isR−U (L), it continues to beat
cj after the remaining voters inVv switch, i.e., when the preference profile isR−Vv (L). Hence, the
winner inR−Vv (L) is notcj ; sinceL is safe, this means that the winner inR−Vv (L) is cℓ for some
ℓ < j.

For the opposite direction, suppose that the winner inR−Vv (L) is ci for somei < j. Note that
if two candidates gain points when some subset of voters switches fromR to L, they both gain the
same number of points; the same holds if both of them lose points.

Now, if j > k, a switch fromR to L does not lower the score ofcj , so it must increase the score
of ci for it to be the maximal manipulation winner. Further, if a switch fromR to L grants points to
somecℓ 6= ci, then eithersℓ < si or sℓ = si and the tie-breaking rule favorsci overcℓ: otherwise,
ci would not be the maximal manipulation winner.

Similarly, if j ≤ k, a switch fromR to L does not increase the score ofci, so it must lower
the score ofcj . Further, if somecℓ 6= ci does not lose points from a switch fromR to L, then
eithersℓ < si or sℓ = si and the tie-breaking rule favorsci overcℓ: otherwise,ci would not be the
maximal manipulation winner.

Now, consider anyU ⊆ Vv. If sj(R−U (L)) > si(R−U (L)), then cj is the winner. If
si(R−U (L)) > sj(R−U (L)), thenci is the winner. Finally, supposesi(R−U (L)) = sj(R−U (L)).
By the argument above, no other candidate can have a higher score. So, suppose thatsℓ(R−U (L)) =
si(R−U (L)), and the tie-breaking rule favorscℓ overci andcj . Then this would imply thatcℓ wins
in R orR−Vv (L) (depending on whether a switch fromR to L causescℓ to lose points), a contra-
diction. Thus, in this case, too, eitherci or cj wins.
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Lemma 1 immediately implies an algorithm forWISSAFE: we simply need to check that the
input vote satisfies the conditions of the lemma. We now show how to use it to construct an algorithm
for WEXISTSAFE. We need to consider two cases.

j > k:
In this case, the voters inVv already do not approve ofcj and approve of allci, i ≤ k. Thus, no
matter how they vote, they cannot ensure that someci, i ≤ k, gets more points thancj. Hence, the
only way they can change the outcome is by approving of some candidateci, k < i < j. Further,
they can only succeed if there exists ani = k + 1, . . . , j − 1 such that eithersi + w(Vv) > sj

or si + w(Vv) = sj and the tie-breaking rule favorsci over cj . If such ani exists,v has an
incentive to manipulate by swappingc1 andci in his vote. Furthermore, it is easy to see that any
such manipulation is safe, as it only affects the scores ofc1 andci.

j ≤ k:
In this case, the voters inVv already approve of all candidates they prefer tocj , and therefore they
cannot increase the scores of the firstj − 1 candidates. Thus, their only option is to try to lower the
scores ofcj as well as those of all other candidates whose score currently matches or exceeds the
best score amongs1, . . . , sj−1.

SetCg = {c1, . . . , cj−1}, Cb = {cj, . . . , cm}. Let C0 be the set of all candidates inCg whose
k-approval score is maximal, and letsmax be thek-approval score of the candidates inC0. For any
cℓ ∈ Cb, let s′ℓ denote the number of points thatcℓ gets from all voters inV \ Vv; we haves′ℓ = sℓ

for k < ℓ ≤ m ands′ℓ = sℓ − w(Vv) for ℓ = j, . . . , k. Now, it is easy to see thatv has a safe
manipulation if and only if the following conditions hold:

• For all cℓ ∈ Cb eithers′ℓ < smax, or s′ℓ = smax and there exists a candidatec ∈ C0 such that
the tie-breaking rule favorsc overcℓ;

• There exist a setCsafe ⊆ Cb, |Csafe| = k − j + 1, such that for allcℓ ∈ Csafe eithers′ℓ +
w(Vv) < smax or s′ℓ + w(Vv) = smax and there exists a candidatec ∈ C0 such that the
tie-breaking rule favorsc overcℓ.

Note that these conditions can be easily checked in polynomial time by computingsℓ ands′ℓ for all
ℓ = 1, . . . , m.

Indeed, if such a setCsafe exists, voterv can place the candidates inCsafe in positionsj, . . . , k in
his vote; denote the resulting vote byL. Clearly, if all voters inVv vote according toL, they succeed
to elect somec ∈ C0. Thus, by Lemma 1,L is safe. Conversely, if a setCsafe with these properties
does not exist, then for any voteL 6= R the winner inR−Vv (L) is a candidate inCb, and thus by
Lemma 1L is not safe.

We remark that Theorem 4 crucially relies on the fact that we break ties based on a fixed priority
ordering over the candidates. Indeed, it can be shown that there exists a (non-lexicographic) tie-
breaking rule such that finding a safe vote with respect tok-approval combined with this tie-breaking
rule is computationally hard (assumingk is viewed as a part of the input). As the focus of this paper
is on lexicographic tie-breaking, we omit the formal statement and the proof of this fact.

In contrast, we can show that any scoring rule with3 candidates is easy to manipulate safely,
even if the voters are weighted and arbitrary tie-breaking rules are allowed.

Theorem 5. WISSAFE(F) is in P for any voting ruleF obtained by combining a positional scoring
rule with at most three candidates with an arbitrary tie-breaking rule.

Proof. For one candidate, the statement is trivial. With two candidates, every positional scoring rule
is equivalent to Plurality, and under Plurality with two candidates no voter has an incentive to vote
strategically.

Now, suppose that|C| = 3. Consider a voteri and assume without loss of generality that
Ri = (c1, c2, c3). If F(R) = c1, theni has no incentive to vote strategically. We will now consider
the casesF(R) = c2 andF(R) = c3 separately.
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1. F(R) = c2. Suppose thatL is a strategic vote fori. ThenL cannot rankc2 in top two
positions. Indeed, any such manipulation does not decreasec2’s score and does not increase
c1’s score. Thus, ifc2 had a higher score thanc1, this would still be the case no matter how
many voters inVi switch to votingL. Further, if bothc2 andc1 had top scores, thenL could
succeed only if it does not change the scores of either of them. But in this case the score of
c3 does not change either, so the outcome remains the same. Thus, it remains to consider two
cases:L = (c1, c3, c2) andL = (c3, c1, c2). Now, let c = F(R−Vi(L)). If c = c3, L is
not safe. Further, ifc = c2, then we havec2 = F(R−U (L)) for anyU ⊆ Vi, i.e.,L is not
a strategic vote fori. Finally, if c = c1, thenL is a safe strategic vote. Indeed, suppose that
L is not safe, i.e.,F(R−U (L)) = c3 for someU ⊂ Vi. Each switch fromRi to L does not
decreasec3’s score, so in that casec3 would be a winner inR−Vi(L), a contradiction.

2. F(R) = c3. It can be checked that ifL is a strategic vote fori, thenL has to rankc2 first, i.e.,
L ∈ {(c2, c1, c3), (c2, c3, c1)}. If F(R−Vi(L)) = c3, by the same argument as above, there
is no incentive fori to vote forL. Otherwise,L is a safe strategic vote, sincec3 is the least
preferred candidate.

5 Bucklin and Borda

Bucklin rule is quite similar tok-approval, so we can use the ideas in the proof of Theorem 4 to de-
sign a polynomial-time algorithm for finding a safe manipulation with respect to Bucklin. However,
the proof becomes significantly more complicated.

Theorem 6. For the Bucklin rule,WEXISTSAFE is in P.

Interestingly, despite the intuition thatWISSAFE should be easier thanWEXISTSAFE, it turns
out thatWISSAFE for Bucklin is coNP-hard.

Theorem 7. For the Bucklin rule,WISSAFE is coNP-hard, even for a constant number of candi-
dates.

Proof. We give a reduction from SUBSET SUM. Recall that an instance of SUBSET SUM is given by
a set of positive integersA = {a1, . . . , as} and a positive integerK. It is a “yes”-instance if there
is a subset of indicesI ⊆ {1, . . . , s} such that

∑
i∈I ai = K and a “no”-instance otherwise. We

assume without loss of generality thatK <
∑

ai∈A ai.
Given an instance(A, K) of SUBSET SUM with |A| = s and

∑s
i=1 ai = S, we con-

struct an instance ofWISSAFE as follows. SetC = {a, b, c, x, y, z, x′, y′, z′}, and letV =
{v1, . . . , vs, u1, u2, u3, u4}. Table 1 shows the preferences and weights of each voter; observe that
the total weight of all voters is4S. We ask if the voteL = (a, c, b, x, y, z, x′, y′, z′) is a safe strate-

Table 1:

Voter Preference order Weight
vi (x, y, z, a, b, c, x′, y′, z′) ai

u1 (a, c, b, x, y, z, x′, y′, z′) 2S −K − 1
u2 (x, c, b, a, y, z, x′, y′, z′) 1
u3 (y, z, b, a, c, x, x′, y′, z′) K
u4 (x′, y′, z′, a, b, c, x, y, z) S

gic vote forv1 under Bucklin; as we will see, the answer to this question does not depend on the
tie-breaking rule.
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If all voters vote sincerely, thenb wins in round3 with 2S points, and all other voters get less
that2S points in the first three rounds. Note also that the total weight of voters inC \ Vv1 that rank
a first is2S −K − 1, and the total weight of voters inC \ Vv1 that rankc second is2S −K.

Suppose that a group of votersU ⊆ Vv1 votesL. If w(U) < K, thenb remains the winner,
while if w(U) > K thena becomes the winner, as it gets the majority of votes in the first round.
Therefore,L is a strategic vote forv1. However, ifw(U) = K, a only gets2S − 1 points in any
of the first three rounds, whilec gets2S points in the second round. Therefore, in this casec wins,
i.e.,L is not safe forv1. Hence,L is a safe strategic vote forv1 if and only if no subset ofA sums
to K.

For Borda, unlikek-approval and Bucklin, both of our problems are hard when thevoters are
weighted. The proof of the following theorem is similar to that of Theorem 7.

Theorem 8. For the Borda rule,WISSAFE andWEXISTSAFE arecoNP-hard. The hardness result
holds even if there are only5 candidates.

6 Extensions of the Safe Strategic Voting Model

So far, we followed the model of [11] and assumed that the onlyvoters who may change their votes
are the ones whose preferences exactly coincide with those of the manipulator. Clearly, in real life
this assumption does not always hold. Indeed, a voter may follow a suggestion to vote in a certain
way as long as it comes from someone he trusts (e.g., a well-respected public figure), and this does
not require that this person’s preferences are completely identical to those of the voter. For example,
if both the original manipulatorv and his would-be followeru rank the current winner last, it is easy
to see that followingv’s recommendation that leads to displacing the current winner is inu’s best
interests.

In this section, we will consider two approaches to extending the notion of safe strategic voting
to scenarios where not all manipulators have identical preferences. In both cases, we define the set of
potential followers for each voter (in our second model, this set may depend on the vote suggested),
and define a voteL to be safe if, whenever a subset of potential followers votesL, the outcome
of the election does not get worse (and sometimes gets better) from the manipulator’s perspective.
However, our two models differ in the criteria they use to identify a voter’s potential followers. Due
to space constraints, all proofs in this section are omitted.

Preference-Based Extension Our first model identifies the followers of a given voter basedon
the similarities in voters’ preferences.

Fix a preference profileR and a voting ruleF , and letc be the winner under truthful voting. For
anyv ∈ V , let I(v, c) denote the set of candidates thatv ranks strictly abovec. We say that two
votersu andv aresimilar if I(u, c) = I(v, c). A similar setSv of a voterv for a given preference
profileR and a voting ruleF is given bySv = {u | I(u, c) = I(v, c)}. (The setSv depends onR
andF ; however, for readability we omitR andF from the notation).

Note that ifu andv are similar, they rankc in the same position. Further, a change of outcome
from c to another alternative is positive fromu’s perspective if and only if it is positive fromv’s per-
spective. Thus, intuitively, any manipulation that is profitable foru is also profitable forv. Observe
also that similarity is an equivalence relation, and the sets Sv are the corresponding equivalence
classes. In particular, this implies that for anyu, v ∈ V eitherSu = Sv or Su ∩ Sv = ∅.

We can now adapt Definition 1 to our setting by replacingVv with Sv.

Definition 2. A voteL is a strategic vote in the preference-based extensionfor v at R underF if
for someU ⊆ Sv we haveF(R−U (L)) ≻v F(R). Further, we say thatL is a safe strategic vote
in the preference-based extensionfor a voterv atR underF if L is a strategic vote atR underF ,
and for anyU ⊆ Sv eitherF(R−U (L)) ≻v F(R) or F(R−U (L)) = F(R).
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Observe that ifL is a (safe) strategic vote forv atR underF , then it is also a (safe) strategic
vote for anyu ∈ Sv. Indeed,u ∈ Sv impliesSu = Sv and for anya ∈ C we havea ≻u F(R) if
and only ifa ≻v F(R). Note also that we do not requireL 6= Rv: indeed, in the preference-based
extensionL = Rv may be a non-trivial manipulation, as it may induce voters inSv \ {v} to switch
their preferences toRv. That is, a voter may manipulate the election simply by asking other voters
with similar preferences to vote like he does. Finally, it iseasy to see that for any voterv, the setSv

of similar voters is easy to compute.
The two computational problems considered throughout thispaper, i.e., the safety of a given ma-

nipulation and the existence of a safe manipulation remain relevant for the preference-based model.
We will refer to these problems in this setting as ISSAFEpr and EXISTSAFEpr , respectively, and
use prefixW to denote their weighted variants. The problems (W)ISSAFEpr and (W)EXISTSAFEpr

appear to be somewhat harder than their counterparts in the original model. Indeed, while voters
in Sv have similar preferences, their truthful votes may be substantially different, so it now matters
whichof the voters inSv decide to follow the manipulator (rather than justhow manyof them, as in
the original model). In particular, it is not clear if ISSAFEpr (F) is polynomial-time solvable for any
voting ruleF . However, it turns out that both of our problems are easy fork-approval, even with
weighted voters.

Theorem 9. For k-approval, the problemsWISSAFEpr andWEXISTSAFEpr are inP.

In the preference-based model, a voterv follows a recommendation to vote in a particular way
if it comes from a voter whose preferences are similar to those of v. However, this approach does
not describe settings where a voter follows a recommendation not so much because he trusts the
recommender, but for pragmatic purposes, i.e., because theproposed manipulation advances her
own goals. Clearly, this may happen even if the overall preferences of the original manipulator and
the follower are substantially different. We will now propose a model that aims to capture this type
of scenarios.

Goal-Based Extension If the potential follower’s preferences are different fromthose of the ma-
nipulator, his decision to join the manipulating coalitionis likely to depend on the specific manipu-
lation that is being proposed. Thus, in this subsection we will define the set of potential followersF
in a way that depends both on the original manipulator’s identity i and his proposed voteL, i.e., we
haveF = Fi(L). Note, however, that it is not immediately obvious how to decide whether a voter
j can benefit from followingi’s suggestion to voteL, and thus should be included in the setFi(L).
Indeed, the benefit toj depends on which other voters are in the setFi(L), which indicates that the
definition of the setFi(L) has to be self-referential.

In more detail, for a given voting ruleF , an election(C, V ) with a preference profileR, a voter
i ∈ V and a voteL, we say that a voterj is pivotal for a setU ⊆ V with respect to(i, L) if j 6∈ U ,
Rj 6= L andF(R−(U∪{j})(L)) ≻j F(R−U (L)). That is, a voterj is pivotal for a setU if when
the voters inU vote according toL, it is profitable forj to join them. Now, it might appear natural
to define the follower set for(i, L) as the set that consists ofi and all votersj ∈ V that are pivotal
with respect to(i, L) for some setU ⊆ V . However, this definition is too broad: a voter is included
as long as it is pivotal for some subsetU ⊆ V , even if the voters inU cannot possibly benefit from
votingL. To exclude such scenarios, we need to require thatU itself is also drawn from the follower
set. Formally, we say thatFi(L) is a follower setfor (i, L) if it is a maximal setF that satisfies the
following condition:

∀j ∈ F [ (j = i) ∨ (∃ U ⊆ F s. t. j is pivotal forU with respect to(i, L))] (*)

Observe that this means thatFi(L) is a fixed point of a mapping from2V to 2V , i.e., this definition
is indeed self-referential. To see that the follower set is uniquely defined for anyi ∈ V and any vote
L, note that the union of any two sets that satisfy condition (*) also satisfies (*); note also that we
always havei ∈ Fi(L).
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We can now define what it means forL to be astrategic vote in the goal-based extensionand a
safe strategic vote in the goal-based extensionby replacing the conditionU ⊆ Si with U ⊆ Fi(L)
in Definition 2. We will denote the computational problems ofchecking whether a given vote is a
safe strategic vote for a given voter in the goal-based extension and whether a given voter has a safe
strategic vote in the goal-based extension by ISSAFEgl and EXISTSAFEgl , respectively, and use the
prefix W to refer to weighted versions of these problems.

Two remarks are in order. First, it may be the case that even thoughi benefits from proposing to
voteL, he is never pivotal with respect to(i, L) (this can happen, e.g., ifi’s weight is much smaller
that that of the other voters). Thus, we need to explicitly includei in the setFi(L), to avoid the
paradoxical situation wherei 6∈ Fi(L). Second, our definition of a safe vote only guarantees safety
to the original manipulator, but not to her followers. In contrast, in the preference-based extension,
any vote that is safe for the original manipulator is also safe for all similar voters.

The definition of a safe strategic vote in the goal-based extension captures a number of situations
not accounted for by the definition of a safe strategic vote inthe preference-based extension. To see
this, consider the following example.

Example 2. Consider an election with the set of candidatesC = {a, b, c, d, e}, and three voters1,
2, and3, whose preferences are given bya ≻1 b ≻1 c ≻1 d ≻1 e, e ≻2 b ≻2 a ≻2 d ≻2 c, and
d ≻3 a ≻3 b ≻3 c ≻3 e. Suppose that the voting rule is Plurality, and the ties are broken according
to the priority orderd ≻ b ≻ c ≻ e ≻ a.

Under truthful voting,d is the winner, so we haveS1 6= S2. Thus, in the preference-based
extension, a vote that ranksa first is a safe strategic vote for voter2, but a vote that ranksb first is
not. On the other hand, letL be any vote that ranksb first. ThenF1(L) = F2(L) = {1, 2}. Indeed,
if voter 1 switches to votingL, the winner is stilld, but it becomes profitable for voter2 to join her,
and vice versa. On the other hand, it is easy to see that voter3 cannot profit by votingL. It follows
that in the goal-based extensionL is a safe strategic vote for voter1.

From a practical perspective, it is plausible that in Example 2 voters1 and2 would be able
to reconcile their differences (even though they are substantial—voter1 ranks voter2’s favorite
candidate last) and jointly vote forb, as this is beneficial for both of them. Thus, at least in some
situations the model provided by the goal-based extension is intuitively more appealing. However,
computationally it is considerably harder to deal with thanthe preference-based extension.

Indeed, it is not immediately clear how to compute the setFi(L), as its definition is non-
algorithmic in nature. While one can consider all subsets ofV and check whether they satisfy
condition (*), this approach is obviously inefficient. We can avoid full enumeration if have access
to a procedureA(i, L, j, W ) that for each pair(i, L), each voterj ∈ V and each setW ⊆ V can
check if j = i or there is a setU ⊆ W such thatj is pivotal forU with respect to(i, L). Indeed,
if this is the case, we can computeFi(L) as follows. We start withW = V , runA(i, L, j, W ) for
all j ∈ W , and letW ′ to be the set of all voters for whichA(i, L, j, W ) outputs “yes”. We then set
W = W ′, and iterate this step untilW = W ′. In the end, we setFi(L) = W . The correctness of
this procedure can be proven by induction on the number of iterations and follows from the fact that
if a setW contains no subsetU that is pivotal forj, then no smaller setW ′ ⊂ W can contain such a
subset. Moreover, since each iteration reduces the size ofW , the process converges after at mostn
iterations. Thus, this algorithm runs in polynomial time ifthe procedureA(i, L, j, W ) is efficiently
implementable. We will now show that this is indeed the case for Plurality (with unweighted voters).

Theorem 10. Given an election(C, V ) with a preference profileR and unweighted voters, a ma-
nipulatori, and a voteL, we can compute the setFi(L) with respect to Plurality in time polynomial
in the input size.

We can use Theorem 10 to show that under Plurality one can determine in polynomial time
whether a given voteL is safe for a playeri, as well as find a safe strategic vote fori if one exists,
as long as the voters are unweighted.
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Theorem 11. The problemsISSAFEgl andEXISTSAFEgl are polynomial-time solvable for Plurality.

For weighted voters, computing the follower set is computationally hard even for Plurality.
While this result does not immediately imply thatWISSAFEgl and WEXISTSAFEgl are also hard
for Plurality, it indicates that these problems are unlikely to be easily solvable.

Theorem 12. Given an instance(C, V,w,R) of Plurality elections, votersi, j ∈ V and a voteL,
it is NP-hard to decide whetherj ∈ Fi(L).

Just a little further afield, checking whether a given vote issafe with respect to3-approval is
computationally hard even for unweighted voters. This is incontrast with the standard model and
the preference-based extension, where safely manipulating k-approval is easy for arbitraryk.

Theorem 13. ISSAFEgl is coNP-hard for3-approval.

Thus, while the preference-based extension appears to be similar to the original model of [11]
from the computational perspective, the goal-based extension is considerably more difficult to work
with.

7 Conclusions

In this paper, we started the investigation of algorithmic complexity of safe manipulation, as defined
by Slinko and White [11]. We showed that finding a safe manipulation is easy fork-approval for an
arbitrary value ofk and for Bucklin, even with weighted voters. Somewhat surprisingly, checking
whether a given manipulation is safe appears to be a more difficult problem, at least for weighted
voters: while this problem is polynomial-time solvable fork-approval, it iscoNP-hard for Buck-
lin. For the Borda rule, both checking whether a given manipulation is safe and identifying a safe
manipulation is hard when the voters are weighted.

We also proposed two ways of extending the notion of safe manipulation to heterogeneous
groups of manipulators, and initiated the study of computational complexity of related questions.
Our first extension of the model of [11] is very simple and natural, and seems to behave similarly to
the original model from the algorithmic perspective. However, arguably, it does not capture some of
the scenarios that may occur in practice. Our second model isconsiderably richer, but many of the
associated computational problems become intractable.

A natural open question is determining the complexity of finding a safe strategic vote for voting
rules not considered in this paper, such as Copeland, RankedPairs, or Maximin. Moreover, for some
of the voting rules we have investigated, the picture given by this paper is incomplete. In particular, it
would be interesting to understand the computational complexity of finding a safe manipulation for
Borda (and, more generally, for all scoring rules) for unweighted voters. The problem for Borda is
particularly intriguing as this is perhaps the only widely studied voting rule for which the complexity
of unweighted coalitional manipulation in the standard model is not known.

Other exciting research directions include formalizing and investigating the problem of selecting
the best safe manipulation (is it the one that succeeds more often, or one that achieves better results
when it succeeds?), and extending our analysis to other types of tie-breaking rules, such as, e.g.,
randomized tie-breaking rules. However, the latter question may require modifying the notion of
a safe manipulation, as the outcome of a strategic vote becomes a probability distribution over the
alternatives.
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An Empirical Study of Borda Manipulation

Jessica Davies, George Katsirelos, Nina Narodytska, and Toby Walsh

Abstract

We study the problem of coalitional manipulation in elections using the unweighted Borda
rule. We provide empirical evidence of the manipulability of Borda elections in the form of
two new greedy manipulation algorithms based on intuitions from the bin-packing and multi-
processor scheduling domains. Although we have not been able to show that these algorithms
beat existing methods in the worst-case, our empirical evaluation shows that they significantly
outperform the existing method and are able to find optimal manipulations in the vast majority
of the randomly generated elections that we tested. These empirical results provide further
evidence that the Borda rule provides little defense against coalitional manipulation.

1 Introduction
Elections are a well established mechanism to aggregate the preferences of individuals to reach
a consensus decision. New applications of voting and social choice have emerged in the field of
multiagent systems and are used on a daily basis by many people in the form of polls and ratings
systems on the internet. As an election is meant to be a fair way of reaching a decision, it is
important to study the weaknesses of different voting systems with respect to their vulnerability to
manipulation, bribery and control. In this paper we focus on the manipulation problem, where a
coalition of agents votes to ensure a desired outcome rather than reporting their true preferences. It
is assumed that the manipulators act with full knowledge of the votes of the remaining electorate,
but even so, the structure of the voting system may make it difficult to ensure that the desired
candidate wins. No practical voting system can prevent a coalition of enough manipulators from
achieving their goal in all elections. However, some mechanisms may be easier to manipulate than
others. For example, the required size of the coalition may be impractical, especially in real-world
settings where obtaining the cooperation of and coordinating more than two or three people can
be difficult. Even if the number of extra votes isn’t a concern, calculating the required set of
manipulator votes may be computationally infeasible.

In this work we study the voting system based on using the Borda rule to aggregate the votes.
The Borda rule is a positional scoring rule proposed by the French scientist Jean-Charles de Borda
in 1770. Like all positional scoring rules, each voter simply ranks the m candidates according
to their preference. The votes are aggregated by adding a score of m − k to a candidate for
each time it appears kth in a vote. The candidates with the highest aggregated score win the
election. The simplicity of this rule may have contributed to its independent reinvention on at
least one other occasion; political elections in two Pacific island states use slight modifications of
the Borda rule [11]. It is also commonly used in competitions such as the Eurovision song con-
test, the election of the Most Valuable Player in major league baseball, and the Robocup competition.

The susceptibility of Borda elections to manipulation has been strongly suggested by recent
theoretical work. Although the problem is NP-hard if the manipulators’ votes are weighted [6], in
the unweighted case the complexity class is still frustratingly unknown. Xia et al. observe that:

“The exact complexity of the problem [coalition manipulation with unweighted votes]
is now known with respect to almost all of the prominent voting rules, with the glaring
exception of Borda” [17]
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A number of recent theoretical results suggest that manipulation may often be computational
easy [5, 10, 15, 16]. Brelsford et al. [3] showed that weighted (and unweighted) Borda manipulation
has a FPTAS, which means that finding a very close to optimal manipulation can be done in poly-
nomial time. Along these lines, Zuckerman et al. [19] gave a simple greedy algorithm to calculate a
manipulation, that in the unweighted case uses at most one more manipulator than is optimal. In ad-
dition, even Borda himself appears to have recognised that his rule was susceptible to manipulation,
having retorted that:

“My scheme is intended only for honest men”, quoted on page 182 of [2]

More recently, strategic voting was identified in the 1991 presidential candidate elections in
the Republic of Kiribati (where a variant of the Borda rule is used) [11]. This suggests that the
manipulability of the Borda rule is not just a theoretical possibility but a practical reality.

The manipulability of voting rules has also been studied empirically [13, 14]. For example,
Walsh studied the Single Transferable Vote rule, which is theoretically NP-hard to manipulate.
However, he provided ample evidence that in practise, elections using this rule are easy to
manipulate [14]. We provide further empirical evidence that the Borda rule provides little defense
to manipulation, by showing that in many elections, an optimal manipulation can be found (and
often verified) in polynomial time. Our starting point is the greedy algorithm of Zuckerman et
al. [19], which decides the vote of each manipulator in turn by reversing the candidates ordered by
current score. Although this algorithm provides a guarantee that in the worst case it only uses one
more manipulator than is optimal, the theoretical analysis does not extend to answer the question
of how frequently it uses this extra manipulator. Perhaps another greedy algorithm exists that finds
the optimal manipulation much more frequently. If so, it could be used in conjunction with that of
Zuckerman et al. to provide a verified optimal solution whenever it finds a solution using one fewer
manipulator. We introduce two new greedy algorithms, based on intuitions from the bin-packing
and multiprocessor scheduling domains, and provide theoretical and empirical comparison between
their performance and that of Zuckerman et al.’s greedy algorithm. The new algorithms result in a
significant improvement over Zuckerman et al.’s algorithm, allowing the optimal manipulation to
be found and verified quickly on 99% of more than 60,000 randomly generated elections.

The paper continues with the definitions and background in Section 2, followed in Section 3 by
our new greedy algorithms. Section 4 presents the experimental results and we conclude in the last
section.

2 Background
In this section we introduce notation and definitions that will be used throughout the paper.

An election is a pair E = (V,m) where m is the number of candidates. We refer to the
distinguished candidate who the manipulators want to win the election as candidate 1 ≤ d ≤ m;
the other m − 1 candidates are then the competing candidates. V is a set of votes, where a vote is
an ordering of the candidates v = c1 > c2 > ... > cm such that

⋃
cj = {1, ..,m}. Given a vote

v, the score of a candidate i under the Borda rule, denoted s(v, i), equals m − k where ck = i. If
V is a set of votes, then the score of a candidate i given by these votes is s(V, i) = Σv∈V s(v, i).
Given an election E = (V,m), the winners are defined as those candidates 1 ≤ i ≤ m such that
s(V, i) is maximal. A manipulation of an election E = (V,m) is a set of manipulator votes M
such that s(V ∪M,d) ≥ s(V ∪M, i) for all i 6= d. We assume that ties are broken in favour of the
manipulators. The manipulation problem is to find a manipulation such that |M | = n is minimized.
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Sometimes we will refer to a manipulation using n votes as an n-manipulation.

We define some additional notation that will be helpful in describing our greedy algorithms.

Definition 1 Given an election E = (V,m), a number of manipulators n, the gap of candidate
1 ≤ i ≤ m, is defined as gE,n(i) = s(V, d) + n(m− 1)− s(V, i). If the context is clear, we call the
gap of candidate i simply gi.

Intuitively, the gap of a candidate i is the difference between the score the distinguished candidate
receives after the manipulators have voted, and the score of i before the manipulators vote. Without
loss of generality, we assume that the manipulators always rank d first. Note that if gi is negative for
any i, then there is no n-manipulation.

Definition 2 Given an election E = (V,m), an n-manipulation matrix AE,n is an n ×m matrix
such that all elements of column d are equal to m − 1, each row contains all numbers from 0 to
m− 1 and column i sums to at most gE,n(i) for all 1 ≤ i ≤ m.

It is easy to see that such a matrix represents an n-manipulation of the election, where each column
represents a competing candidate, and each row corresponds to the vote of a distinct manipulator.
We will drop the parameters E and n and refer to matrix A when the context is clear. We use the
notationA(i) to denote the ith column ofA, and sum(A(i)) is defined to be the sum of the elements
in A(i).

Observation 1 Given an election E = (V,m) and a number of manipulators n, if Σm−1
i=1 gE,n(i) <

(n/2)(m− 1)(m− 2) then there is no n-manipulation.

This follows directly from Definition 2, since each of the n manipulator votes contributes a total of
Σm−2

k=0 k = (1/2)(m − 1)(m − 2) score to the scores of the competing candidates. In other words,
there must be enough difference between the original scores of the competing candidates and the
achievable score of the distinguished candidate, otherwise an n-manipulation can not exist. We call
the multiset containing n copies of each 0 ≤ k ≤ m− 2 Sn.

The greedy algorithm of Zuckerman et al. [19] is shown in Figure 1, and from now on will
be referred to as REVERSE. The manipulation matrix A starts off empty, and is augmented row
by row until enough manipulators have been added that the distinguished candidate wins. The
sort procedure puts the distinguished candidate first, and then sorts the competing candidates in
increasing order by their current score, in order to create the next manipulator’s vote.

Example 1. Suppose E = (V, 5) where V contains the votes v1 = 1 > 2 > 3 > 4 > 5, v2 =
2 > 3 > 4 > 1 > 5, v3 = 3 > 4 > 1 > 2 > 5 and v4 = 4 > 1 > 2 > 3 > 5, and d = 5.
Then s(V, 5) = 0, and s(V, i) = 10 for all competing candidates i < 5. In order for candidate 5
to win the election, at least 4 manipulators are required since ΣigE,3(i) = 4 ∗ (4 ∗ 3 − 10) = 8
but (n/2)(m − 1)(m − 2) = 1.5 ∗ 4 ∗ 3 = 18. REVERSE will make the first manipulator vote
w1 = 5 > 1 > 2 > 3 > 4 (ordering the competing candidates arbitrarily), at which point, e.g.,
s(V ∪{w1}, 1) = 10 + 3 = 13. The candidates’ scores are shown in Figure 2 after each iteration of
the while loop. Since s(V ∪ {w1, w2, w3, w4}, 5) = 16, REVERSE finds the optimal manipulation.

3 Greedy Algorithms for Borda Manipulation
The definition of manipulation matrix from Section 2 is a useful abstraction, that suggests a connec-
tion to bin-packing or multiprocessor scheduling [4]. Intuitively, the elements of the manipulators
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REVERSE(V,m,d)
1. A[i] ← ∅ for all 1≤i≤m
2. n ← 0
3. while max i{sum(A[i]) + s(V,i)} > sum(A[d]) + s(V,d)
4. w ← sort{i < j⇐⇒ (sum(A[i])+s(V,i) < sum(A[j])+s(V,j) or i=d)}
5. A[i].push(s(w,i)) for all i
6. n ← n + 1
7. return A

Figure 1: The greedy algorithm of Zuckerman et al. [19].

Candidate i 1 2 3 4 5
s(V, i) 10 10 10 10 0

s(V ∪ {w1}, i) 13 12 11 10 4
s(V ∪ {w1, w2}, i) 13 13 13 13 8

s(V ∪ {w1, w2, w3}, i) 16 15 14 13 12
s(V ∪ {w1, w2, w3, w4}, i) 16 16 16 16 16

Figure 2: Scores given by REVERSE, for Example 1.

votes, Sn, must be assigned to the columns of A such that the sum of each column is at most gi.
In the bin-packing problem, a set of objects with sizes between zero and one must be grouped into
a minimum number of bins such that the sum of the objects in each bin is at most one. So in our
case, the set of objects would be Sn, representing the elements whose positions in manipulation
matrix A are initially unknown. One of the main differences is that our matrix A has a constraint on
each row, that it must contain all values from 0 to m − 1, and it is not clear how this translates to
other domains. Luckily, Theorem 3.1 tells us that we don’t have to worry about this constraint. If
a correctly sized matrix B containing n elements equal to j for each 0 ≤ j ≤ m − 1 can be found
such that the column sums are at most the candidate’s gaps and column d contains all the m − 1’s,
then it can always be converted to a manipulation matrix A.

Theorem 3.1 Suppose there exists an n×m matrix B such that the total number of elements in B
equal to k, for each 0 ≤ k ≤ m − 1 is n. Let the sum of the elements in the ith column of B be
gi. Then there is another n×m matrix A with the same set of elements as B and the same column
sums, such that each row contains exactly one element equal to k, for each 0 ≤ k ≤ m− 1.

Proof By induction on n. When n = 1, we have B = [b1,1, ..., b1,m] such that B contains exactly
one element of value k for each 0 ≤ k ≤ m− 1. Therefore, just set A = B.

Assume that the theorem holds for all numbers of rows less than n. We prove that it also holds
for n rows. Let B be an n ×m matrix such that the total number of elements in B equal to k, for
each 0 ≤ k ≤ m− 1 is n. Let the sum of the elements in the ith column be gi.

Define a bipartite graphG = (S∪T,E) such that the set of left-hand vertices is S = {0, ...,m−
1} (these will represent the set of values of the elements of row 1 in A), and the set of right-hand
vertices is T = {1, ...,m} representing the columns ofB. E contains an edge (i, j)k for each i ∈ S,
j ∈ T and 1 ≤ k ≤ n such that i = B(k, j).

Note that there can be up to n edges between two vertices i and j. Since every value appears n
times in B, |{(k, j) : i = B(k, j)}| = n and so the degree of each i ∈ S is exactly n. For each
j ∈ T , the degree will also be n: one edge to each i = B(k, j), 1 ≤ k ≤ n.

Therefore, if we take any P ⊆ S, n|P | edges leave P . Since every vertex in T is also of degree
n, each vertex in the neighbourhood of P , nbhd(P ), can accommodate at most n incoming edges.
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Therefore, |nbhd(P )| is not less than |P |. Since the Hall condition holds [8], there is a perfect
matching in G that assigns each value from 0 to m− 1 to a position in the first row of B, as follows.

Let M = {e1, ..., em} ⊆ E be the set of edges in the matching. For each e = (i, j)k ∈ M , let
A(1, j) = i. SinceM is a matching, each i, 0 ≤ i ≤ m−1 appears in exactly one column, and each
column is assigned exactly one element. Therefore, the first row of A is well defined. Also note that
for each column j, A(1, j) appears in the jth column of B.

Let B′ be the matrix defined by taking B and removing one element equal to A(1, j) from each
column j. Then B′ is an n − 1 ×m matrix containing exactly n − 1 elements equal to i for each
0 ≤ i ≤ m − 1, since the elements removed were one of each value. The column sums for B′ are
gj−A(1, j) for all columns j. By the induction hypothesis, there exists an n−1×mmatrixA′ such
that A′ contains the same elements as B′ and the same column sums, but each row of A′ contains
exactly one element equal to i, for 0 ≤ i ≤ m− 1. Given that we’ve already defined the first row of
A, let the remaining n− 1 rows be A′. Then A contains the same set of values as B, with the same
column sums A(1, j) + (gj −A(1, j)) = gj , and every row of A contains exactly one element equal
to i, for each 0 ≤ i ≤ m− 1.

Therefore, by induction, the theorem holds for all n. 2

If a matrix B exists whose column sums are at most the value of the candidates’ gaps, and
sum(B[d]) = gd, then matrix A gives a manipulation, where each row of A defines the vote of one
of the manipulators. Therefore, we can devise algorithms to discoverB and be assured thatA exists.

However, the manipulation problem has two additional differences to bin-packing. First,
the number of objects in each bin must be exactly n, while bin-packing has no such constraint.
Secondly, each of our bins has a different maximum capacity gi. The former constraint has been
studied in the multiprocessor scheduling domain, where the problem is to schedule jobs on a set of
n processors such that the memory resources are never exceeded and the time to complete all jobs
is minimized [9]. Our problem corresponds to the case where each job takes a unit of processing
time. For each element a ∈ Sn, there is a job with memory requirement equal to a. The number of
processors is equal to the number of manipulators n, and the amount of available memory resource
at time step i is equal to gi. We wish to find a schedule that uses m − 1 time steps, which will be
possible if an n-manipulation exists. Krause et al. consider the case where the memory resource
remains constant over time, and present theoretical analysis of a simple scheduling algorithm that
assigns the jobs one at a time to particular time steps. Their scheduler takes the unassigned job with
largest memory requirements and assigns it to a time step (with at least one processor free), that has
the maximum remaining available memory. If no time step exists that can accommodate this job, a
new time step is added.

Our first greedy algorithm is based on this same intuition, where it translates to giving the largest
scores to the competing candidates that have the least score so far. In this it is similar to REVERSE,
but we are now free to pursue this heuristic strictly, while REVERSE for example decides which
candidate the second voter’s m− 2 should be assigned to after the smaller scores of the first manip-
ulator are assigned. This can sometimes be an advantage, but it may also lead the algorithm to make
more serious mistakes, as we will show.

3.1 Largest Score in Largest Gap
Our first greedy algorithm, LSLG is shown in Figure 3. LSLG takes the number of manipulators as
an argument and returns the matrix B (from Theorem 3.1) if it is able to find an n-manipulation. On
line 1, the matrix B (represented as an array of vectors) is initialized so that every column vector
is empty. On line 2, the column corresponding to the distinguished candidate is filled with the
maximum value, m− 1. On line 3, the array S is initialized with the sorted elements of Sn defined
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LSLG(V,n,d)
// B[i] is the iˆth column of B

1. B[i] ← ∅ for all 1≤i≤m
// B[d] is filled with n m-1’s

2. B[d] ← {m-1,...,m-1}
// Each score is repeated n times in S

3. S ← {m-2,...,m-2,m-3,...,m-3,...,1,...,1,0,...,0}
4. while S 6= {}

// The column of B that contains fewer than n elements,
// with the lowest sum

5. c ← argmin i{sum(B[i]) + s(V,i) : |B[i]| < n}
6. B[c].push(S[0])
7. S ← S - S[0]
8. if sum(B[d]) + s(V,d) ≥ max i{sum(B[i]) + s(V,i)}
9. return B
10.else
11. return Failure

Figure 3: The greedy algorithm based on placing the largest remaining score in the column of A
with the most room.

in Section 2. Each iteration of the while loop on lines 4-7 removes the first (largest) element of S
and pushes it (on line 6) into the column of B that has the lowest sum so far. Note that we use the
notation |B(i)| to denote the current number of elements in the ith column of B. Once all elements
of S have been assigned, the loop terminates and line 8 checks if a valid manipulation has been
produced. If so, B is returned, and if not, the algorithm reports Failure.

The following proposition shows that this algorithm can sometimes find an optimal manipulation
when REVERSE fails, and this is true for an infinite family of instances.

Proposition 1 Let E = (V,m) be an election such that m > 2 is even, d = m, s(V, d) = 0 and
s(V, i) = m

2 + i for all i 6= d. Then LSLG finds an optimal 2-manipulation, but REVERSE produces
a 3-manipulation.

Proof

First, note that two non-manipulator votes are always sufficient to create such an election. Let
σ =< 1, 2, ...,m− 1 > and let

σ′ =<
m

2
+ 1,

m

2
+ 2, ...,

m

2
+
m

2
− 1, 1, 2, ...,

m

2
>

Then σ + σ′ =

<
(

1 +
m

2
+ 1
)
,
(

2 +
m

2
+ 2
)
, ...,

(m
2
− 1 +

m

2
+
m

2
− 1
)
,
(m

2
+ 1
)
, ...,

(
m− 1 +

m

2

)
>

which gives us m
2 + 2x for 1 ≤ x ≤ m

2 − 1 and m
2 + 2x − 1 for 1 ≤ x ≤ m

2 , or in other words,
m
2 + i for all 1 ≤ i ≤ m− 1 (i.e. all i 6= d).

The first vote generated by REVERSE is r1 = m > 1 > 2 > ... > m − 1, after which
s(V ∪ {r1}, i) = m

2 + m − 1 for all competing candidates, which is larger than the score of the
distinguished candidate s(V ∪ {r1},m) = m− 1. Therefore another manipulator is added, without
loss of generality its vote is r2 = m > 1 > 2 > ....m − 1. The resulting scores of the competing
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candidates are s(V ∪ {r1, r2}, i) = m
2 + (m− 1) + (m− i− 1) = (5/2)m− 2− i. So candidate

i = 1 still has larger score than s(V ∪ {r1, r2},m) = 2m− 2. Therefore, REVERSE does not find
a 2-manipulation.

m/2+1

m/2+2

m/2+3

m/2+4

m/2+5

m/2

+

m-2

m/2

+

m-1
m-2

m-2
m-3

m-3
m-4

m/2-1 m/2-2 m/2-2
m/2-3 m/2-3

m/2 m/2-1

0 0

1 2 3 4 5 m-2 m-1

Figure 4: The 2-manipulation generated by LSLG
for the election in Proposition 1

The firstm−1 iterations of LSLGwill place
the kth largest score from S2 into the kth col-
umn of matrix B for 1 ≤ k ≤ m− 1. Note that
the kth largest score is m − 2 − b(k − 1)/2c.
Let Bm−1 be the matrix at this point. Then
sum(Bm−1(i)) + s(V, i) = (m − 2 − b(i −
1)/2c) + m

2 + i for all i < m. The next m− 1
iterations of LSLG will place the kth largest
score from S2 into the kth column of matrix
B for m ≤ k ≤ 2(m − 1). So column i < m
will receive the element m

2 − 1 − d(i − 1)/2e.
Let B2(m−1) be the matrix when the loop ter-
minates. Then sum(B2(m−1)(i)) + s(V, i) =
(m− 2− b(i− 1)/2c) + (m

2 + i) + (m
2 − 1−

d(i−1)/2e) = 2(m−1) for all i < m, while the
achievable score of m is also 2(m− 1). There-
fore, LSLG does find a 2-manipulation. Fig-
ure 4 shows the matrix generated by LSLG (col-
umn d = m is omitted), where the shaded areas
represents the scores s(V, i) for each i < m.

2

Unfortunately, LSLG does not share the guarantee of REVERSE that in the worst case it re-
quires one extra manipulator than is optimal. In fact, Theorem 3.2 shows that the number of extra
manipulators LSLG might require is unbounded.

Theorem 3.2 Let k be positive integer greater than zero and divisible by 36. Let s(V, 1) = 6k,
s(V, 2) = 4k, s(V, 3) = 2k, s(V, 4) = 0 be the scores of four candidates after some non-
manipulators V vote, and let d = 4. Then REVERSE will find the optimal manipulation, using
2k manipulators. However, LSLG requires at least 2k + k/9− 3 manipulators.

Proof First, we should mention that for any k there is a set of votes Vk that gives the specified scores
to the four candidates: Vk is simply 2k votes, all equal to 1 > 2 > 3 > 4. REVERSE will use 2k
manipulators, all voting 4 > 3 > 2 > 1, to achieve a score of 6k for all candidates (the only optimal
manipulation). It remains to argue that LSLG requires more than 2k+k/9−4 manipulators. Assume
for contradiction that we find a manipulation using n = 2k+k/9−4 = 19k/9−4 manipulators. We
will follow the execution of LSLG until a contradiction is obtained. Note that given our definition
of n, since k is divisible by 4 and 9, n−k

2 is an integer.
First, the algorithm will place k 2’s in B[3], at which point sum(B[3]) = 2k + 2k = 4k =

s(Vk, 2). Then it will begin to place 2’s in columns B[2] and B[3] evenly, until all remaining n− k
2’s have been placed into B. At this point, B[2] contains n−k

2 2’s, and the number of 2’s that B[3]
contains is k + n−k

2 = k/2 + n/2 = k/2 + (19k/9− 4)/2 = 14k/9− 2 < 19k/9− 4 = n. So at
this point, B[3] is not full yet and B[2] isn’t either (it has fewer elements than B[3]). Both columns
sum to 4k+ 2(n−k

2 ) = 46k/9− 4 = 5k+ k/9− 4 < 6k. Therefore, the algorithm will start putting
1’s in both B[2] and B[3] evenly, until either their column sums reach 6k or B[3] gets filled. In fact,
B[3] will be filled before its sum reaches 6k, since B[3] requires n−k

2 more elements to be filled, but
at this point, sum(B[2]) = sum(B[3]) = 46k/9− 4 + n−k

2 = 51k/9− 6 = 5k + 2k/3− 6 < 6k.
Now, the algorithm will continue by putting k/3 + 6 1’s into B[2], at which point sum(B[2]) =

51k/9− 6 + k/3 + 6 = 6k. Then the algorithm will start putting 1’s evenly in both B[1] and B[2],
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LSLA(V,n)
1. B[i] ← ∅ for all 1≤i≤m

// B[d] is filled with n m-1’s
2. B[d] ← {m-1,...,m-1}

// Each score is repeated n times in S
3. S ← {m-2,...,m-2,m-3,...,m-3,...,1,...,1,0,...,0}
4. while S 6= {}

// The column of B with highest average desired score
5. c ← argmax i{ [g_i-sum(B[i])] / [n-|B[i]|]] : |B[i]| < n}
6. s ← chooseScore(g_c-sum(B[c]), S)
7. B[c].push(s)
8. S ← S - {s}
9. if sum(B[d]) + s(V,d) ≥ max i{sum(B[i]) + s(V,i)}
10. return B
11.else
12. return Failure

chooseScore(g,S)
1. s ← max{s ∈ S : s ≤ g}
2. if s = None
3. s = S[0]
4. return s

Figure 5: The greedy algorithm based on average desired score, for n manipulators.

until either it runs out of 1’s or B[2] is filled. In fact, the 1’s will run out before B[2] is filled, since
B[2] requires n−(n−k

2 + n−k
2 +k/3+6) = 2k/3−6 more elements, which is equal to the number of

remaining 1’s, but these are spread between B[1] and B[2]. So B[2] will get (2k/3−6)/2 = k/3−3
additional 1’s, for a total of sum(B[2]) = 4k + 2(n−k

2 ) + n−k
2 + k/3 + 6 + k/3 − 3 = 19k/3 −

3 > 19k/3 − 12 = 3n. Since sum(B[2]) > 3n there is no manipulation using n = 19k/9 − 4
manipulators. Therefore, LSLG requires at least n+ 1 = 2k + k/9− 3 manipulators. 2

This result shows the weakness of LSLG, that it only considers the relative sizes of the competing
candidates’ current scores. Therefore if two candidates’ column sums ever become equal during
LSLG, they will often be treated equivalently for the remainder of the iterations. In the example
from Theorem 3.2, this is the fatal mistake, since at the point where sum(B[3]) becomes equal to
sum(B[2]), column 3 requires fewer additional elements before it is filled (i.e. |B[2]| < |B[3]|).
Therefore, it is important for column 3 to receive larger elements than column 2. In fact, all of the
largest elements must be taken by column 3, and none given to column 2. However, LSLG will
begin treating the two equal columns the same, distributing the remaining 2’s evenly between B[2]
and B[3]. This observation motivates our second greedy algorihthm.

3.2 Average Desired Score
The second greedy algorithm is based on the idea that it is not enough to simply assign the largest
scores to the columns of B that have the largest gap. Each column of B also requires exactly
n elements in order to be filled, where n is the number of manipulators currently attempted. To
balance these two requirements, we can look at the remaining gap gi − sum(B[i]) and divide it
by the remaining number of scores that must be added to column i, n − |B[i]|. Notice that if we
had n − |B[i]| scores of this average size available (for each i), we could fill every column of B
perfectly. Since we don’t, a sensible heuristic is to put the largest scores in the columns that have
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j 1 2 3 4 5 6 7 8
S(V1, j) 67 60 59 58 58 52 52 42
S(V2, j) 41 34 30 27 27 26 25 14

Figure 6: Examples where LSLG beats LSLA by finding the optimal number of manipulators vs.
using one extra.

largest average desired score. This algorithm, called LSLA, is shown in Figure 5.

The structure of LSLA is similar to LSLG, so it will not be explained line by line. Note that
on line 5 of LSLA we need some way to break ties between candidates that have the same average
desired score. We could break ties arbitrarily, but we also consider choosing the candidate i with
minimum |B[i]| since this column needs more additional scores. We found experimentally that the
latter tie breaking policy works better overall, although there are some instances where only the
arbitrary policy finds the optimal manipulation. The procedure chooseScore is used to avoid
violating the maximum column sum gi earlier than necessary. Given an array of unassigned scores
and the size of a column’s remaining gap, it returns the largest unassigned score that fits in the
remaining gap. We found experimentally that this was vital to finding the optimal manipulation in
the majority of cases.

We now compare LSLA to the other two greedy algorithms. LSLA behaves similarly to
REVERSE on the instances from Theorem 3.2, and thus it performs better than LSLG on an infi-
nite family of instances. In fact, in the next section we will see that we have never found an instance
for which REVERSE can find an optimal manipulation but LSLA fails. However, cases do exist
where the simpler greedy algorithm LSLG finds the optimal manipulation and LSLA fails. Two
examples are shown in Figure 6, but analysis of these cases has failed to produce a generalizable
pattern. In the next section we provide further experimental evidence of the superiority of LSLA
compared to the other two algorithms.

4 Empirical Comparison
In this section we compare the performance of REVERSE, LSLG and LSLA from a practical
perspective. Our experimental setup is similar to that of Walsh [14]. We consider two methods of
generating non-manipulator votes, the uniform random votes model and the Polya Eggenberger urn
model [1]. In the uniform random votes model, each vote is drawn uniformly at random from all
m! possible votes. In the urn model, votes are drawn from an urn at random, but we place them
back into the urn along with a other votes of the same type. This model attempts to capture varying
degrees of social homogeneity, or the similarity between voters’ preferences. We set a = m!,
which means that there is a 50% chance that the second vote is the same as the first. It would be
interesting to consider varying the degree of vote similarity by experimenting with different values
of a. In future work we also intend to study votes generated from real-world elections, e.g. [7].
We generated election instances for numbers of candidates m and numbers of non-manipulators p
in {22, ..., 27}. We generated 1000 instances for each pair (m, p). Since the votes were generated
randomly, for small numbers of candidates some duplicate instances were produced. The total
number of distinct Uniform elections obtained was 32679, and the number of distinct Urn elections
was 31530.

In order to determine the optimal number of manipulators exactly, we modeled the manipulation
problem as a constraint satisfaction problem (CSP). The model we used comes directly from the
definition of the manipulation matrix A, Definition 2. In this model, there are n × m − 1 finite
domain variables, with domains equal to {0, ...,m − 2} that represent the unknown elements of A.
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m # Inst. REVERSE LSLG LSLA LSLG beat LSLA
4 2771 2611 2573 2771 0
8 5893 5040 5171 5852 2

16 5966 4579 4889 5883 3
32 5968 4243 4817 5879 1
64 5962 3980 4772 5864 3

128 5942 3897 4747 5821 2
Total 32502 24350 26969 32070 11

% 75 83 99 <1

Figure 7: Number of Uniform elections for which each algorithm found an optimal manipulation.

m # Inst. REVERSE LSLG LSLA LSLG beat LSLA
4 3929 3666 2604 3929 0
8 5501 4709 2755 5496 0

16 5502 4357 2264 5477 1
32 5532 4004 2008 5504 0
64 5494 3712 1815 5475 0

128 5571 3593 1704 5565 0
Total 31529 24041 13150 31446 1

% 76 42 99.7 <1

Figure 8: Number of Urn elections for which each algorithm found an optimal manipulation.

There are n ALLDIFF constraints, each over the variables of a row, that ensure each vote is properly
formed. m− 1 constraints over the variables of each column i of A ensure that their sum is at most
gi. Finally, if gi = gj for any two columns i < j, we added a constraint that A[i][0] < A[j][0] over
their row-1 elements. This breaks the symmetry between the two columns and reduces the number
of equivalent solutions to the model. We used the solver Gecode [12] to find a solution to the CSP,
using Domain Over Weighted Degree as the variable ordering heuristic. The timeout for Gecode
was set to one hour, and all experiments were performed on processors of typical contemporary
performance.

We will refer to the number of manipulators used by REVERSE as Nr. We ran the three compet-
ing greedy algorithms, and if this did not determine the optimal manipulation (i.e. none did better
than REVERSE), we checked whether Observation 1 or the fact that gE,Nr−1(i) is negative for some
candidate i allow us to conclude that a (Nr − 1)-manipulation is impossible. If the optimal num-
ber of manipulators was still unknown, we attempted to find an (Nr−1)-manipulation using Gecode.

Uniform Elections Using the combined method described above, we were able to determine
the optimal number of manipulators in 32502 out of the 32679 distinct Uniform elections. The
results are shown in Figure 7, grouped by the number of candidates m. The first column shows
the number of candidates, and the second column shows the number of instances for which
we report results. The next three columns show the number of instances for which each of the
greedy algorithms could find an optimal manipulation. The last column shows the number of
instances on which LSLG found the optimal solution but LSLA did not. These results show
that both LSLG and LSLA provide a significant improvement over REVERSE, solving 83% and
99% of instances to optimality overall. We also notice that REVERSE solves fewer problems to
optimality as the number of candidates increases, while LSLA does not seem to suffer from this
problem as much: LSLA solves 100% of the m = 4 instances and 98% of the 128 candidate
elections. In addition to the results in the table, we mention that in every one of the 32502 instances,
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if REVERSE found an n-manipulation either LSLA did too, or LSLA found an (n−1)-manipulation.

Urn Elections We were able to determine the optimal number of manipulators for 31529 out of
the 31530 unique Urn elections. Figure 8 presents the results, in the same format as Figure 7.
REVERSE solves about the same proportion of the Urn instances as it did of the Uniform instances,
76%. However, LSLG performance drops significantly, and is in fact much worse than REVERSE
at 42% of instances solved. This can be explained by the structure of the Urn elections, which
contain many identical votes. This results in a similar pattern of non-manipulator scores to those
in Theorem 3.2 on which LSLG has pathological behavior. Surprisingly, the good performance of
LSLA is maintained. LSLA found the optimal manipulation on more than 99% of the instances,
dominates REVERSE and only lost one instance to LSLG in this set of experiments.

5 Conclusion
We studied the coalitional manipulation problem in elections using the unweighted Borda rule. We
provided insight into the structure of the solutions that allows us to build algorithms that construct
a manipulation in a manner similar to bin-packing rather than constructing an entire vote at each
step. Using this insight, we proposed two new algorithms, LSLG and LSLA. We have provided no
optimality guarantees for these algorithms. In fact, we show that LSLG may require an unbounded
number of additional manipulators relative to the optimal. However, there are infinite families of
instances in which both algorithms can find the optimal but the algorithm proposed by Zuckerman
et al. [19], which does have a worst-case guarantee, can not. In an empirical evaluation performed
over more than 60000 randomly generated instances, LSLA finds the optimal manipulation in more
than 99% of the cases, is never outperformed by REVERSE and in only 12 instances by LSLG.
This result provides further empirical evidence that the unweighted Borda rule can be manipulated
effectively using relatively simple algorithms.

In future work, we intend to determine whether we can provide theoretical optimality guarantees
for LSLA similar to those that are known for REVERSE and theoretically verify the strict dominance
that we observed empirically. Further, we intend to investigate whether we can extend our
algorithms to always find the optimal number of manipulators for these elections. Another question
that arises from this work is whether similar insights can be developed for other scoring rules.
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Fair Division under Ordinal Preferences:

Computing Envy-Free Allocations of

Indivisible Goods1

Sylvain Bouveret, Ulle Endriss, and Jérôme Lang

Abstract

We study the problem of fairly dividing a set of goods amongst a group of agents,
when those agents have preferences that are ordinal relations over alternative bun-
dles of goods (rather than utility functions) and when our knowledge of those pref-
erences is incomplete. The incompleteness of the preferences stems from the fact
that each agent reports their preferences by means of an expression of bounded size
in a compact preference representation language. Specifically, we assume that each
agent only provides a ranking of individual goods (rather than of bundles). In this
context, we consider the algorithmic problem of deciding whether there exists an
allocation that is possibly (or necessarily) envy-free, given the incomplete preference
information available, if in addition some mild economic efficiency criteria need to be
satisfied. We provide simple characterisations, giving rise to simple algorithms, for
some instances of the problem, and computational complexity results, establishing
the intractability of the problem, for others.

1 Introduction

The problem of fairly dividing a set of goods amongst a group of agents has recently started
to receive increased attention in the AI literature [6, 10, 15, and others]. The study of
the computational aspects of fair division, in particular, finds a natural home in AI; and
fair division is immediately relevant to a range of applications in multiagent systems and
electronic commerce.

To define an instance of a fair division problem, we need to specify the type of goods we
want to divide, the nature of the preferences that individual agents hold, and the kind of
fairness criterion we want to apply when searching for a solution. In this paper, we are
concerned with indivisible goods that cannot be shared: each item needs to be allocated
to (at most) one agent in its entirety. This choice renders fair division a combinatorial
optimisation problem.

Regarding preferences, most work in fair division has made the assumption that the pref-
erences of individual agents can be modelled as utility (or valuation) functions, mapping
bundles of goods to a suitable numerical scale. This assumption is technically convenient,
and it is clearly appropriate in the context of applications with a universal currency, ren-
dering preferences interpersonally comparable. On the other hand, from a cognitive point
of view, assuming such cardinal preferences may be questionable, as it requires an agent
to be able to attach a number to every conceivable state of the world. In this paper, we
make instead the (much weaker, and arguably more realistic) assumption that agents have
ordinal preferences, and for the sake of simplicity we assume that these preferences are strict
orders (which is a common assumption in fair division and voting). That is, each agent i
is equipped with a preference relation ≻i: A ≻i B expresses that agent i prefers the set of
items A over the set of items B.

1This paper will also be presented at the 19th European Conference on Artificial Intelligence (ECAI-
2010).
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The third parameter is the criterion used to define what makes an allocation “fair”.
Restricting attention to ordinal preferences rules out some criteria. For instance, the Rawl-
sian (or egalitarian) approach to fairness ties social welfare to the welfare of the worst-off
agent [16], which presupposes that interpersonal comparison of preferences is possible. In-
stead, we focus on the important criterion of envy-freeness [13]. An allocation is envy-free
if each agent likes the bundle she received at least as much as any of the bundles received
by others. Besides envy-freeness, a secondary criterion we shall be working with is Pareto
efficiency, which also only requires ordinal preferences. An allocation is Pareto efficient if
there is no other allocation making some agents better and no agent worse off.

A challenging aspect of devising methods for fair division with indivisible goods is its
combinatorial nature [9]: the space of possible bundles grows exponentially in the number
of goods. If there are 20 goods, each agent would, in principle, have to rank over one
million bundles. This leads to the following dilemma: either we allow agents to express
any possible preference relation on the set of all subsets of items, and end up with an
exponentially large representation, as in the descending demand procedure of Herreiner and
Puppe [14], which, while of great theoretical interest, is computationally infeasible as soon
as the number of goods is more than a few units; or we restrict the range of preferences
that agents may express. The latter is the path followed by Brams and King [8] and Brams
et al. [7], who address the problem using the following approach: Elicit the preferences ⊲i

of each agent i over single goods (the assumption is that this is a strict linear order) and
induce an (incomplete) preference order ≻i over bundles as follows: for two bundles A and
B, infer A ≻i B if there exists an injective mapping f : (B \ A) → (A \ B) such that
f(a) ⊲i a for any a ∈ B \ A. That is, ≻i ranks A above B if a (not necessarily proper)
subset of A pairwise dominates B, i.e., if A is definitely preferred to B given the limited
information (provided in the form of ⊲i) available—under reasonable assumptions on how
to “lift” preferences from single goods to bundles.2 From a “computational” perspective,
we might say that Brams and coauthors [7, 8] are using ⊲i as a compact representation of
≻i. In fact, their approach coincides precisely with a simple fragment of the language of
conditional importance networks (CI-nets), a compact graphical representation language for
modelling ordinal preference relations that are monotonic [5]. The fragment in question are
the so-called (exhaustive) SCI-nets, which we will define in Section 2.2.

We will model agent preferences using SCI-nets. Each SCI-net induces an incomplete
preference order over bundles, with the intended interpretation that the agent’s true prefer-
ence order is some complete order that is consistent with the known incomplete order. This
requires a nonstandard approach to defining fairness criteria. Here, again, we follow Brams
and King [8] and Brams et al. [7] and define an allocation as being possibly envy-free if it
is envy-free for some set of complete preferences that are consistent with the known incom-
plete preferences; and we say an allocation is necessarily envy-free if it is envy-free under
all possible completions. We define possible and necessary Pareto efficiency accordingly.

The main question we study in this paper is then: Given partially specified agent pref-
erences, modelled in terms of SCI-nets, does there exist an allocation that is possibly (nec-
essarily) envy-free? As the allocation that simply disposes of all goods (i.e., that does not
assign any goods to the agents) is always both possibly and necessarily envy-free, to be in-
teresting, this question needs to be asked under some efficiency requirements. In particular,
we will ask whether there exists such allocations that are complete (i.e., that allocate every
item to some agent) or possibly (necessarily) Pareto efficient.

Some of our results are positive: we are able to provide simple characterisations of
situations in which an allocation of the desired kind exists, and these characterisations

2The problem of lifting preferences over items to sets of items has been studied in depth in social choice
theory [3]. Indeed, pairwise dominance is closely related to the axiom of “(weak) preference dominance”
put forward by Sen in the context of work on formalising freedom of choice [17].
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immediately suggest an algorithm for computing such an allocation. Other results are
negative: deciding existence of an allocation of the desired kind (and thus also computing
such an allocation) often turns out to be intractable.

The remainder of the paper is organised as follows. In Section 2 we define the model
of fair division we shall be working with. In particular, this includes the language used
to specify agent preferences and several fairness and efficiency criteria. In Section 3 we
give the main results of this paper; namely, we show that while it is easy to compute
possibly envy-free allocations that are also complete or possibly Pareto efficient, requiring
necessary envy-freeness makes the problem NP-hard. The concluding Section 4 includes a
short discussion of related work. (For lack of space, some proofs are only sketched.)

2 The model

Let A = {1, . . . , n} be a finite set of agents and G = {x1, . . . , xm} be a finite set of goods
(n ≥ 2 and m ≥ 1). An allocation π : A → 2G is a mapping from agents to sets of goods
such that π(i) ∩ π(j) = ∅ for any two distinct agents i, j ∈ A; thus, goods are indivisible.
An allocation π with π(1) ∪ · · · ∪ π(n) = G is called complete.

In this section, we define criteria for identifying fair (or efficient) allocations of goods.
These criteria will be defined in terms of the preferences of the individual agents over the
bundles they receive.

2.1 Basic terminology and notation

A strict partial order is a binary relation that is irreflexive and transitive. A linear order is
a strict partial order that is complete (i.e., X ≻ Y or Y ≻ X whenever X 6= Y ). A binary
relation ≻ on 2G is monotonic if X ⊃ Y implies X ≻ Y . If ≻ (or ⊲) is a binary relation,
then � (or D) represents the reflexive closure of that relation (i.e., X � Y if and only if
X ≻ Y or X = Y ). Given two binary relations R and R′ on 2G , we say that R′ refines R if
R ⊆ R′.

2.2 Preferences: SCI-nets

The preference relation of each agent i ∈ A is assumed to be a linear order ≻⋆
i over the

bundles (subsets of G) she might receive. However, as argued above, eliciting ≻⋆
i entirely

would be infeasible; so we do not assume that ≻⋆
i is fully known to us (or even to the agents

themselves). Instead, for each agent i we are given a strict partial order ≻i representing our
partial knowledge of ≻⋆

i , and the true preference of i is some complete refinement of ≻i. The
strict partial orders≻i are generated from expressions of a suitable preference representation
language. In this paper, we focus on the language of SCI-nets, i.e., precondition-free CI-nets
in which all compared sets are singletons [5]. We now introduce SCI-nets;3 for full CI-nets
see [5].

Definition 1 (SCI-nets) An SCI-net N on G is a linear order on G, denoted by ⊲N (or
simply ⊲, when the context is clear). A strict partial order ≻ on 2G complies with N , if
(i) ≻ is monotonic and (ii) S ∪ {x} ≻ S ∪ {y} for any x, y such that x ⊲N y and any
S ⊆ G \{x, y}. The preference relation ≻N induced by N is the smallest strict partial order
that complies with N .

As discussed earlier, ≻N is the partial order we obtain when we lift the order ⊲N on G
to an order on 2G by invoking the principles of monotonicity and pairwise dominance, as

3What we call “SCI-nets” here were called “exhaustive SCI-nets” in [5].
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Figure 1: Preference relation induced by SCI-net a ⊲ b ⊲ c ⊲ d. Dotted arcs are obtained
by monotonicity; arcs obtained by transitivity are omitted.

proposed by Brams and coauthors [7, 8]. We can give yet another characterisation of ≻N , in
terms of a utility function: Given SCI-net N and A ⊆ G, for every k ≤ |A| we denote with
AN

(k) the k-most important element of A; i.e., if x ∈ A and #{y ∈ A | y �N x} = k then
AN

(k) = x. Given a vector w = (w1, ..., wm) ∈ (R+)m inducing the additive utility function
uw : 2G → R with uw(A) =

∑
xi∈A wi, and SCI-net N = xθ(1) ⊲ · · · ⊲ xθ(m) (for some

permutation θ of {1, . . . , m}), we say that w and N are compatible if wθ(1) > · · · > wθ(m).

Proposition 1 (Dominance) Given an SCI-net N and bundles A, B ⊆ G, the following
statements are equivalent:

(1) A ≻N B
(2) There exists an injective mapping f : (B \A) → (A \B) such that f(a) ⊲N a for any

a ∈ B \A.
(3) There exists an injective mapping g : B → A such that g(a) DN a for all a ∈ B and

g(a) ⊲N a for some a ∈ B.
(4) Either A ⊃ B, or the following three conditions are satisfied:

• |A| ≥ |B|;
• for every k ≤ |B|, AN

(k) DN BN
(k);

• there exists a k ≤ |B| such that AN
(k) ⊲N BN

(k).
(5) For any w compatible with N we have uw(A) > uw(B).

The proof is simple; we omit it due to space constraints.

2.3 Criteria: envy-freeness and efficiency

For the fair division problems we study, each agent i ∈ A provides an SCI-net Ni. This
gives rise to a profile of strict partial orders (≻N1 , . . . ,≻Nn). For any such profile (whether
it has been induced by SCI-nets or not), we can ask whether it admits a fair solution.

As our agents are only expressing incomplete preferences, the standard notions of envy-
freeness and efficiency need to be adapted. For any solution concept, we may say that it
is possibly satisfied (if some refinement of the preference profile to a profile of linear orders
satisfies it) or that it is necessarily satisfied (if all such refinements do). The following
definitions are a synthesis of those introduced by Brams and King [8] and Brams et al. [7].4

While the results reported in the sequel apply to scenarios where each agent expresses
her preferences in terms of an SCI-net, we state these definitions independently from the
preference representation language in use.

Definition 2 (Modes of envy-freeness) Given a profile of strict partial orders (≻1

, . . . ,≻n) on 2G, an allocation π is called

4Brams and coauthors [7, 8] use a different terminology: our necessarily (resp. possibly) envy-free alloca-
tions correspond to their allocations that are not envy-possible (resp. that are not envy-ensuring), and our
necessarily (resp. possibly) Pareto efficient allocations correspond to their Pareto-ensuring (resp. Pareto-
possible) allocations. We believe that applying the standard modalities of “necessary” and “possible” to
basic fairness and efficiency criteria is the most systematic way of defining these notions.
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(i) possibly envy-free (PEF) if for every i ∈ A there exists a linear order ≻⋆
i refining ≻i

such that π(i) ≻⋆
i π(j) for all j ∈ A;5 and

(ii) necessarily envy-free (NEF) if for every i ∈ A and every linear order ≻⋆
i refining ≻i

we have π(i) ≻⋆
i π(j) for all j ∈ A.

Next we establish alternative characterisations of PEF and NEF allocations, which are more
“computation-friendly”.

Proposition 2 (PEF and NEF allocations) Given (≻1, . . . ,≻n),
• π is NEF if and only if for all i, j, we have π(i) ≻i π(j);
• π is PEF if and only if for all i, j, we have π(j) 6≻i π(i).

Proof. The first point is obvious: π is NEF iff for every i and j, and every ≻⋆
i refining ≻i we

have π(i) ≻⋆
i π(j), i.e., iff π(i) ≻i π(j) holds for every i, j. For the second point, suppose

π(j) ≻i π(i) for some i, j; then π(j) ≻⋆
i π(i) holds for any refinement ≻⋆

i of ≻i, which
implies that π is not PEF. The converse direction is less immediate, because the condition
Ci: “for all j, π(j) 6≻i π(i)” only guarantees that for every i and every j 6= i there exists
an refinement ≻⋆j

i of ≻i such that π(i) ≻⋆j
i π(j). Assume that Ci holds and let the relation

Ri be defined by Ri = [≻i ∪{(π(i), B) | B 6= π(i) and B 6≻i π(i)}]. We show that Ri is
acyclic. First, suppose there is an X such that XRiX . Then by definition of Ri, X ≻i X
(X 6= π(i) by definition of Ri), which cannot be the case since≻i is a well-defined strict order.
Suppose now that there exists an irreducible cycle X1, . . . , Xq of length at least 2 such that
X1RiX2 . . . RiXqRiXq+1 = X1, and Xj 6= Xk for every 1 ≤ j 6= k ≤ q. From the definition
of Ri, for every k ≤ q we have either Xk ≻i Xk+1 or (Xk = π(i) and Xk+1 6≻i π(i)). Because
≻i is acyclic, there is at least one k such that Xk = π(i). Because the cycle is irreducible,
there is at most one k such that Xk = π(i). Therefore, there is exactly one k such that
Xk = π(i); without loss of generality, let k = 1. We have (a) X2 ≻i π(i) and (b) for every
j 6= 1, Xj ≻i Xj+1, that is, X1 = π(i)RiX2 ≻i X3 ≻i . . . ≻i Xq ≻i X1 = π(i). Because
≻i is transitive, X2 ≻i X3 ≻i . . . ≻i Xq ≻i π(i) implies X2 ≻i π(i), which contradicts (a).
Therefore, Ri is acyclic, and its transitive closure R⋆

i is a strict partial order. Take ≻⋆
i to be

any linear order refining R⋆
i . Because Ri contains ≻i, ≻⋆

i refines ≻i; and for every j, because
π(j) 6≻i π(i), by construction of Ri we have that π(i)Riπ(j), therefore also π(i) ≻⋆

i π(j). 2

Example 1 Let m = 5, n = 2, N1 = a ⊲ b ⊲ c ⊲ d and N2 = d ⊲ c ⊲ b ⊲ a. Consider
the allocation π defined by π(1) = {a, d} and π(2) = {b, c}. We have {b, c} 6≻1 {a, d} and
{a, d} 6≻2 {b, c}, therefore π is PEF. However, π is not NEF, but the allocation π′ such that
π′(1) = {a, b} and π′(2) = {c, d} is NEF (hence also PEF).

Recall that for a profile of linear orders (≻⋆
1, . . . ,≻⋆

n) on 2G , an allocation π′ is said to
Pareto-dominate another allocation π if π′(i) �⋆

i π(i) for all i ∈ A and π′(j) ≻⋆
j π(j) for

some j ∈ A.

Definition 3 (Modes of dominance) Given a profile of strict partial orders (≻1, . . . ,≻n)
on 2G and two allocations π and π′,

(i) π′ possibly Pareto-dominates π if π′ Pareto-dominates π for some profile of linear
orders (≻⋆

1, . . . ,≻⋆
n) refining (≻1, . . . ,≻n).

(ii) π′ necessarily Pareto-dominates π if π′ Pareto-dominates π for all profiles of linear
orders (≻⋆

1, . . . ,≻⋆
n) refining (≻1, . . . ,≻n).

5The usual definition of envy-freeness only requires that each agent should be at least as happy with her
share as with the share of anyone else, i.e., that π(i) �⋆

i π(j) holds for all i, j ∈ A. Here, π(i) �⋆
i π(j) and

π(i) ≻⋆
i π(j) are equivalent, because π(i) �⋆

i π(j) is equivalent to π(i) ≻⋆
i π(j) or π(i) = π(j), and of course

we have π(i) 6= π(j).
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We get characterisations of possible and necessary Pareto dominance that are similar as
those of Proposition 2.

Proposition 3 (Pareto dominance) Given (≻1, . . . ,≻n),
• π′ necessarily Pareto-dominates π if and only if (a) for all i, we have π′(i) �i π(i) and
(b) for some i, we have π′(i) ≻i π(i);
• π′ possibly Pareto-dominates π if and only if (c) for all i, we have π(i) 6≻i π′(i) and (d)
for some i, we have π(i) 6�i π′(i).

Proof. For the first point: (a) and (b) together clearly imply that π′ necessarily dominates
π. Conversely, assume π′ necessarily dominates π. Then, by definition, π′ Pareto-dominates
π for all profiles of linear orders refining the partial orders. Exchanging the position of the
two universal quantifiers immediately gives (a). Now, suppose that there is no i such that
π′(i) ≻ π(i). Then for each i there is at least one refinement ≻⋆

i such that π(i) �⋆
i π′(i).

Let P ⋆ = (≻⋆
1, ...,≻⋆

n). P ⋆ refines (≻1, ...,≻n), and for P ⋆, π′ does not Pareto dominate π,
which contradicts the initial assumption, and we are done. The proof for the second point
is similar. 2

Definition 4 (Modes of efficiency) Given a profile of strict partial orders (≻1, . . . ,≻n)
on 2G, an allocation π is called

(i) possibly Pareto efficient (PPE) if there exists no allocation π′ that necessarily Pareto-
dominates π; and

(ii) necessarily Pareto efficient (NPE) if there exists no allocation π′ that possibly Pareto-
dominates π.

Above concepts naturally extend to the case where preferences are modelled using a repre-
sentation language, such as SCI-nets. For example, given a profile of SCI-nets (N1, . . . ,Nn),
an allocation π is PEF if π is PEF for the profile (≻N1 , . . . ,≻Nn).

3 Computing envy-free allocations

In this section, we consider the problem of checking whether, for a given profile of SCI-nets,
there exists an allocation that is (possibly or necessarily) envy-free, and that also satisfies
a secondary efficiency requirement (in particular completeness).

3.1 Possible envy-freeness

We first ask whether a given profile of SCI-nets permits an allocation that is both PEF and
complete. It turns out that there is a very simple characterisation of those profiles that do:
all that matters is the number of distinct goods that are ranked at the top by one of the
agents (in relation to the number of agents and goods). As will become clear in the proof
of this result, the algorithm for computing a complete PEF allocation is also very simple.

Proposition 4 (PEF: general case) If n agents express their preferences over m goods
using SCI-nets and k distinct goods are top-ranked by some agent, then there exists a com-
plete PEF allocation if and only if m ≥ 2n− k.

Proof. First, suppose there are m ≥ 2n − k goods. Executing the following protocol will
result in a PEF allocation of 2n− k of those goods: (1) Go through the agents in ascending
order, ask them to pick their top-ranked item if it is still available and ask them leave the
room if they were able to pick it. (2) Go through the remaining n− k agents in ascending
order and ask them to claim their most preferred item from those still available. (3) Go
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through the remaining agents in descending order and ask them to claim their most preferred
item from those still available. The resulting allocation is PEF, because for no agent the
bundle of (one or two) goods(s) she obtained is pairwise dominated by any of the other
bundles: she either is one of the k agents who received their top-ranked item or she was
able to pick her second item before any of the agents preceding her in the first round were
allowed to pick their second item. The remaining goods (if any) can be allocated to any of
the agents; the resulting allocation remains PEF and is furthermore complete.

Second, suppose there are m < 2n− k goods. Then, by the pigeon hole principle, there
must be at least one agent i who receives an item that is not her top-ranked item x̂i and no
further items beyond that. But then i will necessarily envy the agent who does receive x̂i;
thus, the allocation cannot be PEF. 2

Example 2 Let m = 6, n = 4, N1 = a ⊲ b ⊲ c ⊲ d ⊲ e ⊲ f , N2 = a ⊲ d ⊲ b ⊲ c ⊲ e ⊲ f ,
N3 = b ⊲ a ⊲ c ⊲ d ⊲ f ⊲ e and N4 = b ⊲ a ⊲ c ⊲ e ⊲ f ⊲ d. We have k = 2 and m ≥
2n− k. Therefore, the algorithm returns a complete PEF allocation, namely, if we consider
the agents in the order 1 > 2 > 3 > 4: π(1) = {a}; π(2) = {d, f}; π(3) = {b}; π(4) = {c, e}.
However, if f were unavailable, there would not be any complete PEF allocation.

It is possible to show that Proposition 4 remains true if we require allocations to be PPE
rather than just complete:

Proposition 5 (PPE-PEF: general case) If n agents express their preferences over m
goods using SCI-nets and k distinct goods are top-ranked by some agent, then there exists a
PPE-PEF allocation if and only if m ≥ 2n− k.

Proof. First, any PPE allocation is complete; therefore, if there exists a PPE-PEF
allocation, there also exists a complete PEF allocation. Conversely, if we refine the protocol
given in the proof of Proposition 4 by allowing the last agent in round three to take
all the remaining items at the end, then that protocol returns an allocation that is the
product of sincere choices [8] by the agents for the sequence 1, 2, . . . , n, n, . . . , 1, . . . , 1. By
Proposition 1 of Brams and King [8], any such allocation is PPE. 2

The complexity of determining whether there exists an NPE-PEF allocation is still an open
problem.

3.2 Necessary envy-freeness

Next, we turn attention to the problem of checking whether a NEF allocation exists, given
a profile of SCI-nets. This is a considerably more demanding property than possible envy-
freeness. For instance, it is easy to see that a necessary precondition for the existence of
a complete NEF allocation is that all agents have distinct top-ranked goods (because any
agent not receiving her top-ranked good might envy the agent receiving it, whatever other
goods the two of them may obtain). Another necessary precondition is the following:

Lemma 6 (NEF: necessary condition) If n agents express their preferences over m
goods using SCI-nets and a complete NEF allocation does exist, then m must be a mul-
tiple of n.

Proof. If m is not a multiple of n, then for an allocation to be complete, some agent i
must receive fewer goods than another agent j. But any SCI-net (including that of i) is
consistent with a linear order ranking any bundle of size k above any bundle of size less
than k (for all k). Hence, such an allocation cannot be NEF. 2
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If there are as many goods as there are agents (m = n), then checking whether a complete
NEF allocation exists is easy: it does if and only if all agents have distinct top-ranked goods.
The next most simple case in which there is a chance that a complete NEF allocation might
exist is when there are twice as many goods as agents (m = 2n). We now show that checking
whether such an allocation exists (and computing it) is intractable:

Proposition 7 (NEF: general case) If n agents express their preferences over m goods
using SCI-nets, then deciding whether there exists a complete NEF allocation is NP-complete
(even if m = 2n).

Proof. Membership in NP is straightforward from Proposition 2. Hardness is proved by
reduction from [x3c] (exact cover by 3-sets): given a set S of size 3q, and a collection
C = 〈C1, . . . , Cn〉 of subsets of S of size 3, does there exist a subcollection C′ of C such that
every element of S is present exactly once in C′?

Without loss of generality, we have n ≥ q. To any instance 〈S, C〉 of [x3c] we associate
the following allocation problem:

• 6n objects: 3n “dummy” objects {d1
i , d

2
i , d

3
i |i = 1, . . . , n}, 3q “main” objects {mi|i =

1, . . . 3q} and 3(n− q) “auxiliary” objects {oi|i = 1, . . . 3(n− q)}
• 3n agents {ci, c

′
i, c

′′
i |i = 1, . . . , n}. ci, c′i and c′′i are called agents of type i and if

Ci = {j, k, l}, their preferences are expressed by the following SCI-nets:
ci: d1

i ⊲ d2
i ⊲ d3

i ⊲ mj ⊲ mk ⊲ ml ⊲ o1 ⊲ o2 ⊲ o3 ⊲ . . . ⊲ o3(n−q)−2 ⊲ o3(n−q)−1 ⊲
o3(n−q) ⊲ D ⊲ M ;

c′i: d2
i ⊲ d3

i ⊲ d1
i ⊲ mk ⊲ ml ⊲ mj ⊲ o2 ⊲ o3 ⊲ o1 ⊲ . . . ⊲ o3(n−q)−1 ⊲ o3(n−q) ⊲

o3(n−q)−2 ⊲ D ⊲ M ;
c′′i : d3

i ⊲ d1
i ⊲ d2

i ⊲ ml ⊲ mj ⊲ mk ⊲ o3 ⊲ o1 ⊲ o2 ⊲ . . . ⊲ o3(n−q) ⊲ o3(n−q)−2 ⊲
o3(n−q)−1 ⊲ D ⊲ M ;

where D (resp. M) means “all other dummy (resp. main) objects in any arbitrary
order”. mj, mk and ml will be called “first-level objects” for ci, c′i and c′′i .

Suppose there exists an exact cover C′ of C. C′ contains exactly q subsets, therefore C \C′

contains n− q subsets. Let f : C \ C′ → {1, . . . , n− q} be an arbitrary bijective mapping.
Define the allocation πC′ as follows:

1. every agent gets her preferred dummy object dj
i ;

2. if Ci ∈ C′ then every agent of type i gets her preferred (first-level) main object (we
will call these agents “lucky” ones);

3. if Ci 6∈ C′, every (unlucky) agent of type i gets an auxiliary object: ci gets o3f(i)−2,
c′i gets o3f(i)−1, and c′′i gets o3f(i).

Let us check that πC′ is a complete allocation. Obviously, every dummy object is allocated
(by point 1 above). Since C′ is a cover, every main object is allocated as first-level object
for some agent (by point 2 above). Since f is a bijective mapping, every auxiliary object
is allocated (by point 3 above). Every agent gets exactly 2 objects, so no object can be
allocated twice and the allocation is complete.

Now, we check that πC′ is NEF. Since every agent receives her top-ranked object and
another one, then by Proposition 1, checking that a does not necessarily envy b comes down
to checking that π(a)a

(2) ⊲a π(b)a
(2) (hence comparing only the ranks of the worst objects in

π(a) and π(b)).
• For each lucky agent a, rank(π(a)a

(2)) = 4. Each other agent gets either one main
object or an auxiliary one. In both cases, the rank is obviously worse than 4, hence
preventing a from possibly envying anyone else.

• The worst object received by any unlucky agent a of type i (say w.l.o.g. ci) is her
best one among the triple {o3f(i)−2, o3f(i)−1, o3f(i)}. The worst object received by
another agent of type i (say w.l.o.g. c′i) is another one from the same triple, that is
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obviously worse for ci. Hence no agent of type i can envy any other agent of the
same type. Let b be an agent of type j 6= i (lucky or not). b receives her top-ranked
object dk

j (k ∈ {1, 2, 3}), which is ranked worse than every auxiliary object for a, hence
preventing a from possibly envying b.

Conversely, assume π is a complete NEF allocation. We first note that in π, every agent re-
ceives exactly two objects, among which her preferred object; therefore, in π the assignment
of all dummy objects is completely determined.

Now, suppose there is an agent a that gets a main object m(a) which is not among her
first-level ones. Let mj be one of her first-level objects. Then some agent b receives both
mj and a dummy object, both ranked higher than m(a) in a’s SCI-net. Hence a possibly
envies b. From this we conclude that in π, the second object received by an agent is either
a first-level object, or an auxiliary object.

Moreover, if an agent of type i (say, ci) receives a first-level object, then the other two
agents of type i must also receive a first-level object, for if it is not the case for one of them,
she gets an auxiliary object and possibly envies ci. Therefore, in π, for every i, either all
agents of type i receive a first-level object, or none.

Finally, define Cπ as the set of all Ci such that all the agents of type i receive a first-level
object. π being complete, every main object must be given. Therefore, Cπ is a cover of S.
Because no main object can be given to two different agents, Cπ is an exact cover of S.

The reduction being polynomial, this proves NP-hardness. 2

Example 2, continued. There is no complete NEF allocation, because m is not a multiple
of n. If any one of the four agents is removed, again there is no complete NEF allocation,
because there are two distinct agents with the same top object. If only agents 1 and 3 are left
in, again it can be checked that there is no complete NEF allocation. If only agents 2 and 3
are left in, then there is a complete NEF allocation, namely π(2) = {a, d, e}, π(3) = {b, c, f}.

Proposition 7 extends to the case of PPE allocations:

Proposition 8 (PPE-NEF: general case) If n agents express their preferences over m
goods using SCI-nets, then deciding whether there exists a PPE-NEF allocation is NP-
complete (even if m = 2n).

Proof. Given a sequence s of n agents, we can compute in polynomial time the allocation πs

that corresponds to the product of sincere choices according to s (which is PPE by Brams
and King’s characterisation [8]), and check in polynomial time that it is NEF. Thus s is a
polynomial certificate for the problem, hence membership in NP.

For NP-hardness we can use the same reduction from [x3c]. Since every PPE allocation
is complete, there is a PPE-NEF allocation only if there is a complete NEF allocation,
hence only if there is an exact cover. Conversely, assume that there is an exact cover. Then
the complete and NEF allocation obtained in the proof of Proposition 7 is also PPE by
Brams and King’s characterisation [8], since it is obtained by a sequence of sincere choices
by agents (all the agents in sequence in the first round, then all the lucky agents, and
finally all the unlucky agents). 2

The hardness part of the proofs above extends to the case of NPE allocations (but we do
not know whether the problem is still in NP).

Proposition 9 (NPE-NEF: general case) If n agents express their preferences over m
goods using SCI-nets, then deciding whether there exists an NPE-NEF allocation is NP-hard
(even if m = 2n).
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Proof sketch. The idea of the proof (only sketched due to space constraints) is based on
the same reduction from [x3c]: there is an NPE-NEF allocation only if there is a complete
NEF allocation (since every NPE allocation is complete), hence only if there is an exact
cover. Conversely, if there is an exact cover C′, we can prove by contradiction that the
allocation πC′ is NPE. 2

In the special case of allocation problems with just two agents, a complete NEF allocation
can be computed in polynomial time:

Proposition 10 (NEF: two agents) If there are only two agents and both express their
preferences using SCI-nets, then deciding whether there exists a complete NEF allocation is
in P.

We assume w.l.o.g. that the number of objects is even (m = 2q), for if not we know there
cannot be any complete NEF allocation. We have an exact characterisation of NEF alloca-
tions:

Lemma 11 Let n = 2 and π a complete allocation. π is NEF if and only if for every i = 1, 2
and every k = 1, . . . , q, π gives agent i at least k of her 2k − 1 most preferred objects.

Proof. W.l.o.g., let the preference relation of agent 1 be given by x1 ⊲1 x2 ⊲1 . . . ⊲1 x2q.
Assume that (1) for every i = 1, 2 and every k = 1, . . . , q, π gives agent i at least k among

{x1, . . . , x2k−1}. Let I = {i, xi ∈ π(1)} and J = Ī = {i, xi ∈ π(2)}. Let I = {i1, . . . , iq}
and J = {j1, . . . , jq} with i1 < . . . < iq and j1 < . . . < jq. Let f be the following one-to-one
mapping from I to J : for every k = 1, . . . , q, f(ik) = jk. For every k ≤ q, because of (1),
we have that ik ≤ 2k − 1. Now, since I ∩ J = ∅, J ∩ {1, . . . , 2k − 1} contains at most k − 1
elements, therefore jk ≥ 2k, which implies ik < jk and xik

⊲1 xjk
. Thus f is a one-to-one

mapping from I to J such that for every i ∈ I, agent 1 prefers xi to xf(i). Symmetrically,
we can build a one-to-one mapping g from J to I such that for every j ∈ J , agent 2 prefers
xj to xg(j). This implies that π is NEF.

Reciprocally, assume there exists a k ≤ q such that π gives agent 1 at most k−1 objects
among {x1, . . . , x2k−1}. Then π gives agent 2 at least k objects among {x1, . . . , x2k−1}.
This implies that for any one-to-one mapping f from π(1) to π(2), there is some i ≤ k such
that xf(i) ⊲1 xi, therefore π is not NEF. Symmetrically, if there exists a k ≤ q such that π
gives agent 2 at most k−1 objects among her 2k−1 preferred objects, then π is not NEF. 2

Proof (Proposition 10). Let the preference relation of agent 1 be, w.l.o.g., x1 ⊲1 x2 ⊲1

. . . ⊲1 x2q. From that SCI-net, we build the flow network shown in Figure 2 (edge labels
x/y correspond to the edge lower bound x and capacity y).
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Figure 2: The flow network for one agent.

We build the same flow network
for agent a2 (nodes ak

1 are now called
ak
2) and identify, between the two

networks, the nodes corresponding to
the same objects, the source s, and
the sink t.

We claim (but do not show due to
lack of space) that there is an alloca-
tion π satisfying the condition stated
in Lemma 11 if and only if there is a
feasible flow of value p in the latter
network.
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The problem of finding a feasible flow in a network with lower bounds as well as ca-
pacities is known as the circulation problem and is known to be solvable in (deterministic)
polynomial-time [12]. Hence the problem of deciding whether there exists a complete NEF
allocation for a problem with two agents is in P. 2

4 Conclusion and related work

We have studied the problem of computing envy-free allocations of indivisible goods, when
agents have ordinal preferences over bundles of goods and when we only know their prefer-
ences over single items with certainty. Building on work from the (“non-computational”) fair
division literature, in particular the contributions by Brams et al. [7, 8], we have proposed
a framework in which to study such questions, we have provided a number of alternative
characterisations of the central concepts involved, and we have analysed the computational
complexity of computing allocations of the desired kind.

We have been able to show that computing an allocation that is possibly envy-free is
easy (whether paired with a requirement for completeness or possible Pareto efficiency).
We have also been able to show that computing necessarily envy-free allocations is NP-hard
(whatever the secondary efficiency requirement); only for problems with just two agents there
is a polynomial (but non-trivial) algorithm. The complexity of finding envy-free allocation
that are necessarily Pareto efficient is not fully understood at this stage. In particular, it
is conceivable that deciding the existence of allocations that are both necessarily envy-free
and necessarily Pareto efficient might not even be in NP; we leave the full analysis of this
question to future work.

Future work should also seek to extend our results to nonstrict SCI-nets, where indif-
ference between single goods is allowed. Problems that are still easy with strict SCI-nets,
such as the existence of a complete PEF allocation, could conceivably become NP-complete.
Intuitively, the more indifferences the agents express, the more complete the preference re-
lations and the closer the notions of possible and necessary envy-freeness, which means that
possible envy-freeness will be harder to guarantee.

Our work is part of a growing literature on computational aspects of fair division. In
particular, complexity aspects of envy-freeness have been studied, for example in the works
of Lipton et al. [15] and de Keijzer et al. [11], who address the problem of finding envy-free
and complete (resp. Pareto efficient) allocations, when the agents have numerical additive
preferences. Bouveret and Lang [6] also address the same problem, for various notions of
efficiency, in a context where the agents have utilities expressed in compact form. However,
none of these computational works concerns ordinal preferences, and none have considered
possible or necessary satisfaction of fairness criteria. There is also a related stream of works
on the Santa Claus problem, consisting in computing maxmin fair allocations (see e.g.,
Bansal and Sviridenko [2], Bezáková and Dani [4], Asadpour and Saberi [1]). These works
encode fairness by an egalitarian collective utility function and do not consider envy-freeness.
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A Maximin Approach to
Finding Fair Spanning Trees

Andreas Darmann, Christian Klamler, and Ulrich Pferschy

Abstract

This paper analyzes the computational complexity involved in solving fairness issues
on graphs, e.g., in the installation of networks such as water networks or oil pipelines.
Based on individual rankings of the edges of a graph, we will show under which conditions
solutions, i.e., spanning trees, can be determined efficiently given the goal of maximin
voter satisfaction. In particular, we show that computing spanning trees for maximin
voter satisfaction under voting rules such as approval voting or the Borda count is NP-
hard for a variable number of voters whereas it remains polynomially solvable for a
constant number of voters.

1 Introduction

Spanning trees have first been used in connection with fair division problems in the 1970s for
fairly assigning costs to individuals in a graph theoretical setting (Bird [3]). From this starting
point, a huge body of literature has developed in recent years with a certain vicinity to Social
Choice Theory, often axiomatically motivated (e.g., Bogomolnaia and Moulin [4], Dutta and
Kar [11] and Kar [12]). In this paper we want to strengthen this link to Social Choice Theory
by looking at the maximin voter satisfaction and analyzing the computational complexity of
solution methods based on certain well-known social choice rules.
Many of the current papers use graphs to model certain networks, such as the installation of
water or power networks, oil pipelines, road constructions, or links between different countries.
Costs are assigned to the edges in such a graph and the goal is to connect all nodes (individuals,
countries, etc.) at minimum total cost and fairly assign that cost to the nodes.
In this paper1 we do not consider any monetary costs, be it because they are negligible or because
they are covered by some external source (e.g., the state). Our approach is based on individuals’
preferences over the edges of a graph and we analyze methods that - given those preferences -
fairly, i.e., socially acceptably, install networks. The focus of our analysis, however, does not lie
in the quality of the solution, i.e., in an axiomatic analysis of the solution methods, but in the
computational complexity involved.
An example in that respect could be a village that has to install a sewage or water network or
countries that need to agree on oil pipelines. Each homeowner or country needs to be connected
but obviously there are many different ways to connect everyone. Mathematically the situation
can be represented as a graph, i.e., the nodes are the homeowners and the edges are the connec-
tions between pairs of homeowners, and a solution is a spanning tree. The problem, however, is
that homeowners might have different preferences over which connections (edges) should be used
in the spanning tree. E.g. one homeowner might prefer a certain connection over another con-
nection for environmental reasons, whereas another homeowner might just prefer any connection
further away from his own garden to any connection that is closer to his garden. As we consider
that costs are no issues here, the ordinal rankings over edges by those homeowners are the only
inputs that can be used by any solution method.

1A major part of this work appeared in Darmann et al. [9, 10].
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The quality of different solution methods based on social choice rules has been analyzed in a
previous paper by Darmann et al. [8], extensive studies of social choice rules can be found in
Brams and Fishburn [6], Nurmi [14] and Saari [19] among many others. The goal in this paper,
however, is to look at the computational complexity involved in finding optimal spanning trees
based on such solution methods, i.e., whether such solutions can be found in polynomial time or
not.2 Our main focus will be on methods using scores as in the Borda count or in approval voting
and the basis for evaluating different solutions will be the maximin voter satisfaction (MMVS).
In a completely different setup, namely the consideration of different scenarios to represent uncer-
tainty in Robust Optimization, closely related models of spanning tree problems were considered,
e.g., in Aissi et al. [1] and Kouvelis and Yu [13]. While their works assign arbitrary numerical
values as weights of the edges, we will consider the outcome of voting procedures to compare
edges and trees.
An important differentiation arises from the number of voters considered in the problem, i.e.,
whether this number is fixed or not. Following the results of Aissi et al. [1], it is shown that for
a fixed number of voters, solutions based on MMVS can be found in polynomial time. Things
do change when the number of voters is variable, i.e., the number of voters is part of the input
of the problem. This makes the problem significantly harder in the case of general edge weights
as has been shown by Kouvelis and Yu [13]. However, as far as the NP-hardness results are
concerned, the simple structure of edge weights arising from the respective voting rules requires
a completely different proof technique than their previously known results.
The contribution of this paper is to answer the questions of complexity posed by the application
of voting rules from Social Choice Theory. We show that even under very simple voting structures
such as approval voting, vote-against-t elections and choose-t elections for t ≥ 2, MMVS is NP-
hard. Furthermore we show that MMVS is intractable for both dichotomous and multichotomous
voter preferences. Moreover, irrespective of whether the voters’ preferences are weak or strict
orders on the edge set, MMVS under Borda voting is NP-hard. Only for the two structurally
most simple solution methods under consideration MMVS can be solved in polynomial time,
namely for plurality voting and vote-against-1 election. In fact, our result settles the complexity
status for any reasonable election process: If every voter is allowed to distinguish only one edge in
a positive or negative sense the problem remains polynomially solvable. As soon as two or more
edges receive an appraisal different from the remaining edges, the problem becomes NP-hard.
The paper is structured as follows: We give the formal framework in Section 2 and then restate
and discuss previous results for a fixed number of voters in Section 4. In Section 5 we keep the
number of voters variable and prove our main results.

2 Preliminaries

In order to be able to express preferences, we give some basic definitions for relations; the
terminology is adopted from Roberts [17].
A binary relation % ⊆ A×A on a set A is called complete if ∀a, b ∈ A, a 6= b, (a % b or b % a).
% is reflexive if ∀a ∈ A, a % a. It is called transitive if ∀a, b, c ∈ A, (a % b and b % c) ⇒
a % c. Finally, % is called asymmetric if ∀a, b ∈ A, a % b ⇒ ¬(b % a); and we call it symmetric
if ∀a, b ∈ A, a % b ⇒ b % a. A relation is called weak order if it is complete, reflexive and
transitive. A relation is called strict order, if it is complete, transitive and asymmetric.
Let G = (V, E) be an undirected and connected graph. Let n := |V | and τ be the set of spanning
trees of G. For every voter i, 1 ≤ i ≤ k, we are given a preference relation %i on E. Unless
otherwise stated, %i is assumed to be a weak order on E, consisting of an asymmetric part ≻i and

2P 6= NP is tacitly assumed throughout this paper.
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a symmetric part ∼i respectively. The symmetric part ∼i of %i induces a partition E1, E2, ..., Eq

of E, such that for all j, 1 ≤ j ≤ q, we have e ∼i f for all e, f ∈ Ej . The sets Ej , 1 ≤ j ≤ q, are
called preference classes. In case q = 2 we call %i dichotomous. If q ≥ 3 the order %i is called
multichotomous. Furthermore, we refer to the k-tuple π = (%1, %2, . . . , %k) as a voter preference
profile.
The basic concept used in this work is the one of voters’ scoring functions, which can be un-
derstood as a generalization of the positional scoring procedures (for details concerning these
procedures see Brams and Fishburn [6]).

Definition 2.1 Let 1 ≤ i ≤ k. We call a function vi : E → N0 voter i’s scoring function, if

1. for all e, f ∈ E e %i f ⇔ vi(e) ≥ vi(f), and

2. maxe∈E{vi(e)} is bounded by a polynomial in n.

Definition 2.2 For 1 ≤ i ≤ k let vi be voter i’s scoring function. Voter i’s score (or count) of
tree T ∈ τ is vi(T ) :=

∑
e∈T vi(e).

Hence, voters’ preferences on trees are assumed to be additively separable, i.e., there do not exist
complementaries or synergies between the edges. Many scoring procedures can be embedded
in the framework of voters’ scoring functions. For example, approval voting (see Brams and
Fishburn [5]), plurality voting (see Roberts [18]), vote-against-t elections (presented in Brams
and Fishburn [6]) and Borda voting (see Brams and Fishburn [6] and Vorsatz [22]) can be
formulated within this framework.3

Definition 2.3 Let 1 ≤ i ≤ k. For e, f ∈ E, e 6= f , let

δi(e, f) :=


2 if e ≻i f

1 if e ∼i f

0 otherwise.

Then in Borda voting, voter i’s scoring function is the Borda function bi : E → N0 defined by
bi(e) :=

∑
f∈E\{e} δi(e, f). For e ∈ E we call bi(e) voter i’s Borda4 count of edge e. Voter i’s

Borda count of tree T ∈ τ is bi(T ) :=
∑

e∈T bi(e).

In approval voting, for every voter i the set E is partitioned into a set Si ⊆ E of edges voter i
approves of and a set Sc

i := E \ Si of edges voter i disapproves of.

Definition 2.4 Let 1 ≤ i ≤ k. In approval voting voter i’s scoring function is the function
ai : E → N0 with

ai(e) =

{
1 if e ∈ Si

0 if e ∈ Sc
i .

3The use of scoring functions on edges to obtain scores for spanning trees has not received much attention yet
in the literature. A general axiomatic analysis as surveyed by Barbera et al. [2] might help to provide support for
such a use.

4If ≻i is a strict order on E, we have bi(e) = 2 · |{f ∈ E : e ≻i f}| for e ∈ E. Let δ̂i(e, f) := 1
2
δi(e, f) for

all e, f ∈ E, e 6= f , and let b̂i(e) :=
P

f∈E\{e} δ̂i(e, f) for e ∈ E. Thus b̂i(e) = |{f ∈ E : e ≻i f}|, and hence

b̂i(e) would define voter i’s Borda count of edge e in the canonical way. Note that bi(e) > bi(f) ⇐⇒ b̂i(e) > b̂i(f)

for all e, f ∈ E, e 6= f , and
P

e∈T1
bi(e) >

P
e∈T2

bi(e) ⇐⇒
P

e∈T1
b̂i(e) >

P
e∈T2

b̂i(e) for all T1, T2 ∈ τ . The
function b̂i however does not map from E into the set of non-negative integers but may take rational values as
well. Since this causes some technical inconvenience (i.e., Theorem 4.1 cannot be applied directly), b̂i is omitted
in this work.
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The function ai is called voter i’s approval function. Voter i’s approval count of T ∈ τ is defined
by ai(T ) :=

∑
e∈T ai(e).

Choose-t elections and vote-against-t elections constitute two special cases of approval voting.
A choose-t election5 corresponds to approval voting subject to the requirement that for a fixed
t ∈ N |Si| = t for 1 ≤ i ≤ k. In this context, a choose-1 election is called plurality voting.
Approval voting under the requirement that for a fixed t ∈ N |Sc

i | = t for 1 ≤ i ≤ k is called
vote-against-t election.

3 Problem formulation

With the above preliminaries we are now able to state the maximin voter satisfaction problem.

Definition 3.1 Maximin voter satisfaction problem (MMVS)
Let G = (V, E) be an undirected graph, let I be a set of voters and let π be a voter preference
profile. For i ∈ I let vi be voter i’s scoring function. The maximin voter satisfaction problem
(MMVS) is the following problem:

max
T∈τ

min
i∈I

vi(T )

Maximizing the minimum of such concepts as utility, costs, time, etc. is a very common way
to formalize the idea of fairness. Such a maximin approach to fairness can especially be found
in the literature on networks, scheduling, etc. On the other hand, maximin fairness also has a
certain link to fairness in Social Choice Theory, originally discussed decades ago by Rawls [16].
However, there are also many other approaches to formalize fairness based on proportionality,
equitability, envy-freeness, etc. and used in areas such as mathematics and economics (Brams
and Taylor [7], Thomson [21]).
From a completely different point of view the problem appears in the Operations Research liter-
ature in the context of Robust Optimization. One possibility to model an optimization problem
under uncertainty is the consideration of different scenarios each of which induces different data
for the problem. Maximizing the objective function for the worst-case scenario amounts to a
maximin problem with voters corresponding to scenarios. In this context Aissi et al. [1] refer to
an analogon of MMVS as max-min spanning tree problem while Kouvelis and Yu [13] use the
terminology absolute robust minimum spanning tree problem. In this paper, however, the aim is
to analyze the complexity of aggregating voters’ opinions with the help of special types of voting
procedures.

4 MMVS with a fixed number of voters

In this section the number k of voters is assumed to be a constant integer number. Likewise one
could say that k is not regarded as a part of the input within this section. With this point of
view MMVS is known to be solvable in polynomial time (see Aissi et al. [1]). We restate this
result in the following theorem.

Theorem 4.1 (Aissi et al. [1])
MMVS can be solved in O(n4W k log W ) time, where W ∈ N is an upper bound for the objective
function value.

5In the literature, choose-t elections are also called t-approval voting (Peters et al. [15]) or vote-for-exactly-t
procedures (Brams and Fishburn [6]).
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Noting that for approval voting there is W ≤ n and for Borda voting W ≤ 2nm, this theorem
yields the following corollary.

Corollary 4.2 MMVS under approval voting can be solved in O(n4+k log n) time. MMVS under
Borda voting can be solved in O(n4+kmk log n) time.

However, for the special case of plurality voting MMVS can even be solved in linear time.

Proposition 4.3 MMVS under plurality voting can be solved in O(mk) = O(m) time.

Proof. Given the graph G = (V, E), let E1 := {e ∈ E|vi(e) = 1 for at least one i, 1 ≤ i ≤ k}. If
the subgraph H = (V, E1) is acyclic, then there obviously exists a spanning tree T of G such that
E1 ⊆ T holds. In this case trivially maxT∈τ mini∈I vi(T ) = 1. If on the other hand H contains
a cycle, then clearly there cannot exist a spanning tree T of G with E1 ⊆ T . Thus for each
spanning tree T of G there is an edge of E1 that is not contained in T . Hence for each T ∈ τ we
have mini∈I vi(T ) = 0 which yields maxT∈τ mini∈I vi(T ) = 0.
Calculating the set E1 takes O(mk) = O(m) time, the determination whether H is acyclic or
not can be done in O(m) time. This proves the proposition. �

5 MMVS with a variable number of voters

In this section the number k of voters is not assumed to be constant but may vary instead, i.e., k
is considered to be part of the input. This approach seems to make MMVS significantly harder.
To be more precise, MMVS was shown to be strongly NP-hard for arbitrary scoring functions
by Kouvelis and Yu [13]. The question of the computational complexity of MMVS under the
common voting rules such as approval voting, plurality voting, choose-t elections, vote-against-t
elections and Borda voting is not answered by Kouvelis and Yu [13] though and to the authors’
best knowledge has been open so far.
We improve upon the result of Kouvelis and Yu [13] and show that MMVS is NP-hard even
in case of very basic voting procedures. In particular, MMVS turns out to be NP-hard even
under the simple procedure of approval voting – that is, MMVS remains NP-hard if the range
of the voters’ scoring functions is restricted to {0, 1}.6 We also show that this result still holds
if the number of approved or disapproved edges is some fixed t ≥ 2 (choose-t elections and vote-
against-t elections respectively for t ≥ 2). Moreover, we can show that MMVS is NP-hard under
Borda voting. In contrast to these results, it can easily be shown that MMVS under plurality
voting and vote-against-1 elections can be solved in polynomial time.
The key instrument used in the NP-hardness proofs presented in this section is to reduce the
NP-complete monotone one-in-three 3SAT problem (Schaefer [20]) to the decision problem cor-
responding to MMVS.

Definition 5.1 Monotone one-in-three 3SAT problem (monotone 1-in-3SAT)
GIVEN: A set X of variables and a collection C of clauses over X such that every

clause is made up of exactly three positive literals.
QUESTION: Is there a truth assignment for X such that every clause contains exactly one

true literal?

Remark. Note that in above definition every clause contains exactly three literals all of which
must be positive. That is, in monotone 1-in-3SAT there are no negated literals. Therefore in
monotone 1-in-3SAT the set X of variables corresponds to set of literals over X .

6Note that this implies and sharpens the strong NP-hardness result of Kouvelis and Yu [13].
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Figure 1: Undirected Graph G derived from instance U1 of monotone 1-in-3SAT.

5.1 Approval voting and Borda voting
Our first result shows that MMVS is NP-hard already for weak orders if the voters’ scoring
functions have the simple structure of approval functions.

Theorem 5.1 Under approval voting MMVS is NP-hard.

Proof. We will polynomially transform an arbitrary instance of monotone 1-in-3SAT to an
instance of MMVS with approval voting.
Let U1 be an instance of monotone 1-in-3SAT with X := {x̃1, x̃2, . . . , x̃ℓ} being the set of variables
(= literals) and C := {C̃1, C̃2, . . . , C̃z} being a collection of clauses over X. W.l.o.g. we assume
clause C̃1 to contain the literals x̃1, x̃2, x̃3. We construct the undirected graph G = (V, E) by the
following procedure (see Fig. 1):
Let V = ∅ and E = ∅. For each literal x̃j ∈ X add two nodes αj and ωj to V . For each clause
C̃i ∈ C add node Ci to V . Add node r to V . Next for each literal x̃j ∈ X

• add edge xj to E connecting the nodes αj and ωj

• add edge fj to E connecting αj and r

• add edge gj to E connecting ωj and r

• if x̃j is contained in clause C̃i ∈ C add edge ei,j to E connecting the nodes Ci and αj .

Note that n = |V | = z + 2ℓ + 1 and m = |E| = 3ℓ + 3z.
We now establish the voter preference profile π and the corresponding values of the voters’
approval functions (see Table 1 and 2). First, we introduce voters χj , 1 ≤ j ≤ ℓ, whose approval
functions are given by

aχj (e) =

{
0 if e ∈ {xj , fj}
1 otherwise.
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χ1 χ2 χ3 · · · χℓ

edge aχ1 edge aχ2 edge aχ3 edge aχℓ

x1 0 x2 0 x3 0 xℓ 0
f1 0 f2 0 f3 0 fℓ 0
e1,1 1 e1,1 1 e1,1 1 e1,1 1
... 1

... 1
... 1

... 1
... 1

... 1
... 1

... 1
...

...
...

...
...

...
...

...
xℓ 1 xℓ 1 xℓ 1 xl−1 1

Table 1: Preference profile of voters χj , 1 ≤ j ≤ ℓ, and the values of the corresponding approval
functions.

ci cj1
i cj2

i cj3
i c

fj1
i c

fj2
i c

fj3
i

edge aci edge a
c

j1
i

edge a
c

j2
i

edge a
c

j3
i

edge a
c

fj1
i

edge a
c

fj2
i

edge a
c

fj3
i

xj1 0 xj1 0 xj2 0 xj3 0 fj1 0 fj2 0 fj3 0
xj2 0 ei,j2 0 ei,j1 0 ei,j1 0 ei,j1 0 ei,j2 0 ei,j3 0
x

j3
0 ei,j3 0 ei,j3 0 ei,j2 0 1 1 1
1 1 1 1 1 1 1

other 1 other 1 other 1 other 1 other 1 other 1 other 1

edges
... edges

... edges
... edges

... edges
... edges

... edges
...

1 1 1 1 1 1 1

Table 2: Preference profile (and corresponding approval functions) derived from clause C̃i containing
the literals x̃j1 , x̃j2 , x̃j3 .

c1 c1
1 c2

1 c3
1 cf1

1 cf2
1 cf3

1

edge aci edge a
c

j1
i

edge a
c

j2
i

edge a
c

j3
i

edge a
c

fj1
i

edge a
c

fj2
i

edge a
c

fj3
i

x1 0 x1 0 x2 0 x3 0 f1 0 f2 0 f3 0
x2 0 e1,2 0 e1,1 0 e1,1 0 e1,1 0 e1,2 0 e1,3 0
x3 0 e1,3 0 e1,3 0 e1,2 0 e1,2 1 e1,1 1 e1,1 1

e1,1 1 e1,1 1 e1,2 1 e1,3 1
... 1

... 1
... 1

... 1
... 1

... 1
... 1

... 1
... 1

... 1
... 1

... 1
... 1

... 1
... 1

... 1
... 1

... 1
... 1

... 1
... 1

... 1
... 1

... 1
xℓ 1 xℓ 1 xℓ 1 xℓ 1 xℓ 1 xℓ 1 xℓ 1

Table 3: Preference profile derived from clause C̃1 which is made up of the literals x̃1, x̃2, x̃3.
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The rest of the voter preference profile is established as follows. Let a clause C̃i ∈ C contain the
literals x̃j1 , x̃j2 , x̃j3 – which means node αy and node Ci are adjacent, y ∈ {j1, j2, j3}. Add seven
voters denoted by ci, cj1

i , cj2
i , cj3

i , c
fj1
i , c

fj2
i and c

fj3
i to π. Voter ci assigns value 0 to the edges

xj1 , xj2 , xj3 and value 1 to all other edges. Voter cy
i , y ∈ {j1, j2, j3} assigns value 1 to all edges

but to xy and to the edges ei,u with u ∈ {j1, j2, j3}, u 6= y, which get value 0. And voter c
fy

i ,
y ∈ {j1, j2, j3}, assigns value 0 to the edges fy and ei,y, and assigns value 1 to all the other edges
(see Table 2). To illustrate the voter preference profile π, an example is given in Table 3 with
the preferences and approval functions of the seven voters corresponding to clause C̃1 which is
made up of the literals x̃1, x̃2, x̃3.
Having treated all clauses in the way just described the voter preference profile is made up
of k := ℓ + 7z voters. Note that the instance of MMVS under approval voting defined by
G = (V, E), π and the corresponding approval functions can be constructed in polynomial time
(with respect to the size of U1).

Claim 1. There exists a truth assignment for X such that each clause in C contains exactly one
true literal if and only if there exists a T ∈ τ such that for all p, 1 ≤ p ≤ k, ap(T ) ≥ n−2 holds.

Proof of Claim 1.
“⇒”: For a satisfying truth assignment tS let S be the set of literals set “TRUE” under tS . Create
tree T as follows. Set T = ∅. For all x̃j ∈ S:

• add xj and gj to T

• add ei,j to T for all i, 1 ≤ i ≤ z, for which edge ei,j ∈ G

For all x̃j ∈ X \ S, i.e., literals set “FALSE” in tS , add fj and gj to T . Summarizing, we get for
1 ≤ j ≤ ℓ the following four properties:

1. gj ∈ T

2. xj ∈ T ⇔ x̃j is set “TRUE” under tS

3. xj ∈ T ⇔ ei,j ∈ T for all i : ei,j ∈ G

4. xj ∈ T ⇔ fj /∈ T

Since tS constitutes a satisfying truth assignment, each node Ci, 1 ≤ i ≤ z, is connected to node
r in T . Obviously, all other nodes of V are connected to r in T as well and thus T is connected.
Because of |T | = |S|+ z + ℓ + (ℓ− |S|) = z + 2ℓ we get |T | = n− 1 and hence the subgraph T is
a tree. Due to |T | = n− 1 and property 4. we get aχj (T ) = n− 2 for all j ∈ {1, 2, . . . , ℓ}.
As above, let clause C̃i be made up of the literals x̃j1 , x̃j2 , x̃j3 . The fact that exactly one of
the literals x̃j1 , x̃j2 , x̃j3 is set “TRUE” under tS means exactly one of the edges xj1 , xj2 , xj3 is
contained in T . Together with |T | = n − 1 this yields aci(T ) = n− 2. Let us now consider the
voters cj1

i , cj2
i , cj3

i : W.l.o.g. we may assume that x̃j1 is set “TRUE” under tS . Thus xj1 ∈ T ,
xj2 /∈ T , xj3 /∈ T . Due to property 3. we hence get ei,j1 ∈ T , ei,j2 /∈ T , ei,j3 /∈ T . This implies

a
c

jy
i

(T ) = n− 2

for all y ∈ {j1, j2, j3}.7 Finally, properties 3. and 4. yield a
c

fy
i

(T ) = n− 2 for all y ∈ {j1, j2, j3}.
7Clearly, assuming that instead of x̃j1 either x̃j2 or x̃j3 is set “TRUE” under tS yields a

c
jy
i

(T ) = n−2 as well.
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“⇐”: Let now Q be a spanning tree with ap(Q) ≥ n− 2 for all p, 1 ≤ p ≤ k. Thus for each voter
p in our voter preference profile at most one edge e with ap(e) = 0 is contained in Q. Hence
because of voters χj the edges xj and fj cannot both be contained in Q, 1 ≤ j ≤ ℓ. Analogously
due to voters ci, 1 ≤ i ≤ z, for any clause C̃i made up of some literals x̃j1 , x̃j2 , x̃j3 at most one
of the edges xj1 , xj2 , xj3 is contained in Q. Next we show that for 1 ≤ j ≤ ℓ

xj ∈ Q ⇔ ei,j ∈ Q

holds for all i with ei,j ∈ G.
Assume xj = xj1 ∈ Q and let node Ci be adjacent to nodes αxj1

, αxj2
and αxj3

(i.e., in our
monotone 1-in-3SAT instance clause C̃i is again made up of the literals x̃j1 , x̃j2 , x̃j3). Because of
voter cj1

i we have ei,j2 /∈ Q and ei,j3 /∈ Q. Note that the degree of node Ci equals three and thus
ei,j1 ∈ Q since otherwise Ci would be isolated. Thus xj ∈ Q implies ei,j ∈ Q for all i such that
ei,j ∈ G.
On the other hand, let ei,j1 ∈ Q for some i, 1 ≤ i ≤ z, and some j1, 1 ≤ j1 ≤ ℓ. Now
a

c
j2
i

(Q) ≥ n − 2 implies ei,j3 /∈ Q and a
c

j3
i

(Q) ≥ n − 2 implies ei,j2 /∈ Q. In other words, node

Ci is a leaf. Due to voter c
fj1
i we have fj1 /∈ Q. If there is no u, 1 ≤ u ≤ z, u 6= i, such that

eu,j1 ∈ Q then it is easy to see that xj1 must be contained in Q since otherwise nodes r and Ci

would not be connected. If such an edge eu,j1 is contained in Q, then as a consequence of

a
c

j1
u

(Q) ≥ n− 2

node Cu must be a leaf as well and thus the same argument applies. Hence xj ∈ Q ⇔ ei,j ∈ Q
holds for all i with ei,j ∈ G, 1 ≤ j ≤ ℓ.
But since node Ci is a leaf, 1 ≤ i ≤ z, for each such node there is exactly one j, 1 ≤ j ≤ ℓ, such
that both xj and ei,j are contained in Q. In other words, the truth assignment tS̃ defined by
letting S̃ := {x̃j |xj ∈ Q} be the whole set of literals set “TRUE” under tS̃ is a satisfying truth
assignment for the considered instance of monotone 1-in-3SAT. This proves the claim. ♦
Claim 1 implies that any arbitrary instance of monotone 1-in-3SAT can be reduced to an
instance of MMVS under approval voting. As stated before, the instance of MMVS under
approval voting can be constructed in polynomial time. Thus it is proven that monotone
1-in-3SAT polynomially transforms to MMVS under approval voting. �

Remark. Note that in case of dichotomous preferences the sets of optimal solutions of MMVS
under approval voting and of MMVS under Borda voting obviously coincide.8 Thus from The-
orem 5.1 it follows that, given weak preference orders, MMVS under Borda voting is NP-hard
as well.9

Proposition 5.2 MMVS under Borda voting is NP-hard.

Since dichotomous preferences over the edges induce approval functions in a natural way, it
follows from Theorem 5.1 that MMVS is NP-hard for any dichotomous preferences already.
Furthermore it can easily be shown that MMVS is NP-hard in the cases of multichotomous
preferences as well.

Corollary 5.3 Let π = (%1, %2, . . . , %k) be a voter preference profile such that %i is multichoto-
mous for all 1 ≤ i ≤ k. Then MMVS is NP-hard.

8Therefore the general result shown in [22] that, given dichotomous preferences, Borda’s method and approval
voting are equivalent, applies for MMVS as well.

9We can show that this result still holds if the voters’ preferences are strict orders. I.e., MMVS is also NP-hard
if the voters’ scoring functions are bijections to {1, 2, . . . , m} and thus no two edges receive the same value.
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Proof. Let q > 2 be the number of preference classes. Create a graph H from the graph
G = (V, E) used in the proof of Theorem 5.1 by concatenating a path p of length q−2 to node r.
Let n := |V | and m := |E|. We now derive from the profile π used in the proof of Theorem 5.1
a profile π̃ on the edges of graph H such that π̃ consists of q preference classes in two steps.
Firstly, we derive from π a preference profile π1 on G such that every voter i who disapproves of
three edges in π is in π1 replaced by three voters who disapprove of two edges only. Secondly,
using the profile π1 and path p, we assign the edges of H to the preference classes.
In order to get π1, a voter γ who disapproves of edges {ε1, ε2, ε3} is replaced by the following
three voters: voter γ1 who disapproves of edges {ε1, ε2}, voter γ2 who disapproves of edges
{ε2, ε3} and voter γ3 who disapproves of edges {ε1, ε3}.
Denote the preference classes that make up π̃ by Aij , 0 ≤ j ≤ q − 1, for all voters i, 1 ≤ i ≤ k.
Let these preference classes be such that each edge in Aij be strictly preferred to each edge
in Aij′ for 0 ≤ j′ < j ≤ q − 1. Now for each voter i let Ai0 := {e ∈ E|ai(e) = 0} and let
Ai(q−1) := {e ∈ E|ai(e) = 1} according to π1. Note that |Ai0| = 2 and |Ai(q−1)| = m− 2. Assign
the q − 2 edges of the path p to the classes Aij , 1 ≤ j ≤ q − 2, in an arbitrary way such that
each of these classes contains exactly one edge. Assume Borda voting is being used. Then for
every i, voter i’s Borda values of the edges are given as follows:

bi(e) =


2q + (m− 3) if e ∈ Ai(q−1)

2(j + 1) if e ∈ Aij , 1 ≤ j ≤ q − 2
1 if e ∈ Ai0

Obviously each edge of the path p must be contained in a spanning tree of H . Since 2q+(m−3) >
2 the following two decision problems (D1) and (D2) are equivalent:
(D1) GIVEN: Graph G and preference profile π.

QUESTION: Is there a spanning tree T of G such that ai(T ) ≥ n− 2
for all i, 1 ≤ i ≤ k ?

(D2) GIVEN: Graph H and preference profile π̃.
QUESTION: Is there a spanning tree T1 of H such that

bi(T1) ≥ (n− 2)(2q + (m− 3)) +
∑q−2

j=1 2(j + 1) for all i, 1 ≤ i ≤ k ?
Thus, the corollary follows. �

5.2 Vote-against-t elections and choose-t elections
As a consequence of the proof of Theorem 5.1 in the previous subsection, for any integer t ≥ 2
MMVS under vote-against-t elections is NP-hard as well. The proof of this result uses the same
approach as the one of Theorem 5.1 and is therefore omitted in this paper.

Corollary 5.4 Let t ∈ N, t ≥ 2. Under vote-against-t elections MMVS is NP-hard.

It is worth noting that the above corollary does not hold for MMVS under vote-against-1 elections.
In this case a solution of MMVS can be found in the following way: Remove from the considered
graph G all edges e that have vi(e) = 0 for at least one voter i. If the remaining graph is
connected, then the objective function value is n − 1, otherwise it is n − 2. This observation
yields the following statement.

Proposition 5.5 Under vote-against-1 elections MMVS can be solved in O(mk) time.

From Proposition 4.3 we know that MMVS under plurality voting, i.e., choose-1 elections, can
be solved within the polynomial time bound of O(mk). By a reduction from the classical 3SAT
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problem we can show that, in contrast, MMVS under choose-t elections is NP-hard for each
fixed t ≥ 2. Therefore, as for vote-against-t elections, with the step from t = 1 to t = 2
the computational complexity of MMVS under choose-t elections jumps from polynomial time
solvable to NP-hard.

Theorem 5.6 MMVS under choose-t elections is NP-hard for every fixed t ≥ 2.

6 Conclusion

We have considered the maximin voter satisfaction problem under both the scenarios that the
number of voters is constant and may vary. It is known from Aissi et al. [1] that MMVS is
polynomially solvable when the number of voters is fixed. The main contribution of this paper
has dealt with the question of computational complexity of MMVS in the case of a variable
number of voters. We improve upon an NP-hardness result of Kouvelis and Yu [13] for general
scoring functions by showing that, for a varying number of voters, MMVS is NP-hard under
very basic voting rules already. In particular, we have shown that MMVS is computationally
intractable under approval voting, vote-against-t elections and choose-t elections for t ≥ 2. We
have proven that the problem is NP-hard both in the cases of dichotomous voter preferences
and multichotomous voter preferences. Furthermore, MMVS under Borda voting is NP-hard,
irrespective of the underlying voter preferences constituting weak orders or strict orders on the
set of edges. Among the voting methods under consideration MMVS has turned out to be
polynomially solvable only for the structurally most simple ones: plurality voting and vote-
against-1 elections. Thus, when allowing each voter to approve or disapprove of more than one
edge, the computational complexity of MMVS jumps from polynomial time solvable to NP-hard.
In these NP-hard cases however, it is natural to ask if MMVS is fixed-parameter tractable when
parametrized by the number of voters. Following the approach of Aissi et al. [1], we can show that
MMVS is fixed-parameter tractable under choose-t elections and under vote-against-t elections,
for each t ≥ 2. Whether or not MMVS under Borda voting is fixed-parameter tractable remains
an interesting open question.
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Approximate Judgement Aggregation

Ilan Nehama

Abstract

We analyze judgement aggregation problems in which a group of agents indepen-
dently votes on a set of complex propositions that has some interdependency con-
straint between them (e.g., transitivity when describing preferences). We generalize
the current results by studying approximate judgment aggregation. That is, we relax
the main two constraints assumed in the current literature. We relax the consistency
constraint by measuring the fraction of inputs for which an aggregation mechanism
returns an inconsistent result and we relax the independence constraint by defining
a measure for the dependance of the aggregation for an issue on the votes on other
issues. We define the problem of measuring the impact of such small relaxation on
the class of satisfying aggregation mechanisms and raise the question of whether
there exists an agenda for which the expansion of this class is non-trivial. We show
that the recent works for preference aggregation of Kalai and Mossel fit into this
framework. We prove that, as in the case of preference aggregation, in the case of a
subclass of premise-conclusion agendas, the set of satisfying aggregation mechanisms
does not extend non-trivially when relaxing the constraints.
A corollary from our result for the xor premise-conclusion agenda is a generalization
of the classic result for local property testing of linearity of boolean functions.

Keywords: approximate aggregation, discursive dilemma, premise-conclusion agenda,
inconsistency index, dependency index

1 Introduction

Assume a committee of three referees needs to review a paper for a conference. Each of the
referees judges the paper individually for originality and for quality (assumed to be pass/fail
questions) and approves the paper only if it passes both criteria. The three referees cast
their votes simultaneously and we assume no strategic behavior on their behalf. Now assume
that both the first and second referee think that the paper is original enough and both the
second and third referee think it stands in the quality standards of the conference. Then
we have that although a minority of the committee (one out of three) thinks the paper
should pass, for each issue separately there is a supporting majority (two out of three).
This discrepancy between the majority vote on premises (quality and originality) and the
majority vote on the conclusion (pass) was presented by Kornhauser and Sager in 1986[13]
and was later named ‘The Doctrinal Paradox’. Such discrepancy phenomena can happen
when the ‘accepted opinions’ is restricted to be other sets as well (e.g., Condorcet Paradox
for preference aggregation) and is the subject of a growing body of works in economics,
political science, philosophy, law, and other related disciplines. (A survey of this field can
be found in [14])

Abstract aggregation can be formalized in the following way. There is a committee of
n individuals (also called voters) that needs to decide on m boolean issues (that is, each
question has exactly two possible answers True and False1). Each individual holds an
opinion which is an answer for each of the issues. We denote the answer of the ith voter

The research was supported by a grant from the Israeli Science Foundation (ISF).
1There is some literature also on aggregating non-boolean issues, e.g., [20] and [7], but this is outside the

scope of this paper.
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for the jth issue by Xj
i and the vector of all opinions in the committee (called profile) by

X ∈ ({0, 1}m)n (For the ease of presentation we will identify True with 1 and False with
0). Like in the example above, not all opinions are acceptable (one cannot accept a non-
original paper). We assume a non-empty set X of {0, 1}m called the agenda is given. The
opinions in X are called the consistent opinions and only these opinions are held by voters2.
For instance the conjunction agenda, which is the agenda described in the example, is
defined to be the set {000, 010, 100, 111}3. Another example is the preference agenda.
In this agenda the consistent opinions represent the linear orders over a set of candidates
{c1, c2, . . . , cs} and the issues are the

(
s
2

)
pair-wise comparisons between candidates4,5.

An aggregation mechanism is a function that defines for any profile the aggregated
opinion (F : ({0, 1}m)n → {0, 1}m). There are two desired properties for aggregation mech-
anism, independence and consistency. Independence states that the aggregated opinion
on the jth issue, F j(X) depends solely on the opinions on that issue Xj. Consistency of
the aggregation mechanism states that whenever all the members of the committee hold
consistent opinions, i.e., X ∈ Xn, F returns a consistent opinion as well, i.e., F (X) ∈ X.

For instance, issue-wise majority satisfies independence but also, as can be seen in the
accept-paper example, might lead to an inconsistent result for the conjunction agenda and
hence does not satisfy consistency. Similarly, the Condorcet Paradox[15] shows that, for
the preference agenda, issue-wise majority might lead to an inconsistent result. The nat-
ural question is whether one can find other aggregation mechanisms that satisfy indepen-
dence and consistency. Answering this question, Arrow’s theorem[1] shows that (under mild
and natural constraint6) the only aggregation mechanisms that satisfy independence and
consistency are the dictatorships. For other agendas one can find similar theorems that
characterize the class of consistent and independent aggregation mechanism to be a very
small and unnatural class. For instance, for the conjunction agenda (under the same mild
and natural constraint6) the only aggregation mechanisms that satisfy independence and
consistency are the oligarchies (The oligarchy of a coalition S returns for each issue True
if all voters in S voted True for that issue). In a recent work Dokow and Holzman ([5],[6])
proved a generalization of these results characterizing the set of consistent and independent
aggregation mechanism for several large families of agendas.

Lately there is a series of works coping with impossibility results in Social Choice using
approximations (e.g., [11] and [10]). The version of approximation we define in this work
is studying independence aggregation mechanisms that are almost consistent in the sense
that they return a consistent aggregated opinion for the vast majority of the inputs 7. We
quantify being almost consistent by defining the inconsistency index.

Definition 1.1 (Inconsistency Index).
For an agenda X and an aggregation mechanism F for that agenda, the inconsistency index

2For instance those might be the legal opinions, logic consistent opinions, or rational according to other
criteria so one can assume that any ‘reasonable’ individual should hold only consistent opinions.

3I.e., the third bit ia a conjunction of the first two.
4For instance, for s = 3 the issues are ‘c1

?
>c2’, ‘c2

?
>c3’, and ‘c3

?
>c1’ and the consistent opinions are

{001, 010, 100, 110, 101, 011}.
5A related model that can be found in the literature is ‘Judgement Aggregation’. In this model the issues

are logical propositions over a set of variables and a consistent opinion is an assignment to these variables
(so not every combination of truth values for the proposition is achievable). From our perspective the model
we describe is more general since we allow any agenda. Dokow and Holzman[5] proved that the two models
are equivalent in the sense that each set of consistent opinions can be described using a proposition set
(although not uniquely).

6Pareto - Whenever all the voters hold the same opinion, this is the aggregated opinion.
7In most of this work we leave the independence constraint intact and relax the consistency constraint.

However, as we show in section 6, one can relax the independence constraint as well and get similar results.
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is defined to be the probability to get an inconsistent result.

ICX(F ) = Pr [F (X) /∈ X | X ∈ Xn]

assuming uniform probability over the inputs.

This definition assumes a uniform distribution over the opinions for each voter and
that voters draw their opinions independently (Impartial Culture Assumption). This
assumption, while certainly unrealistic, is the natural choice in this kind of work and is
discussed further in section 2.

In addition we use the usual Hamming distance between two aggregation mechanisms
(dX(F, G) = Pr [F (X) 6= G(X) | X ∈ Xn]) and derive from it a distance between an aggre-
gation mechanism and a collection of aggregation mechanisms (dX(F,G) = min

G∈G
dX(F, G)).

It is easy to see that when F is close to G and G is consistent, F is close to being
consistent, i.e., IC(F ) is small. Our main question is whether there are other aggregation
mechanisms that are close to being consistent (Formally, ICX(F ) 6 dX(F, G))).

For the preference agenda, recent works of Kalai[12] and Mossel[17] prove such bounds

Theorem ([12]). There exists an absolute constant K such that the following holds: For
any ǫ > 0 and any aggregation mechanism F for the preference agenda over 3 candidates
that satisfies: F is balanced8, F is independent, and IC(F ) < Kǫ , there exists an
aggregation mechanism G that satisfies consistency and independence such that d(F, G) < ǫ.

In this paper we prove similar theorems for a family of agendas: premise-conclusion
agendas in which every issue is either a premise or a conclusion of at most two premises. In
a premise-conclusion agendas the issues are divided into two types: premises and conclusions.
Each conclusion j is characterized by a boolean function Φj over the premises and an opinion
is consistent if the answers to the conclusion issues are attained by applying the function
Φj on the answers to the premise issues.

X =
{
x ∈ {0, 1}m | xj = Φj(premises) for every conclusion issue j

}
For instance the conjunction agenda is a premise-conclusion agenda with two premises and
one conclusion and we mark this by notating the agenda as 〈A, B, A ∧B〉 . In some cases
the division to premises and conclusion might be non-unique. For instance for the xor
agenda X = {001, 010, 100, 111} one can define it as a premise-conclusion agenda both as
〈A, B, A⊕B〉 and as 〈A, A⊕C, C〉.

The main result of this paper is:

Theorem (Theorem 4.1). For any ǫ > 0 and n > 1, there exists δ = poly
(

1
n , ǫ

)
, such that

for every premise-conclusion agenda in which each issue is either a premise, or a conclusion
of at most two premises, if F is an aggregation mechanism for X over n voters satisfying
independence and IC(F ) < δ, then there exists an aggregation mechanism G that satisfies
consistency and independence such that d(F, G) < ǫ.
Moreover, one may take δ = Cn−2ǫ5 for some absolute constant C.

From the theorem it follows that, whenever the inconsistency index of is small enough
(O(n−7)), the distance to the class of independent consistent mechanisms is small too
(poly(n)-small. I.e., bounded from above by one over a polynomial of n) and hence proves
that for these agendas the class of satisfying aggregation mechanisms does not expand much
when relaxing the consistency constraint.

8For every pair of candidates, a and b, it holds that the probability that F ranks a above b is exactly
1/2.
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The general statement follows easily from the analysis of three basic cases: The conjunc-
tion agenda 〈A, B, A ∧B〉 , the xor agenda 〈A, B, A⊕B〉 , and the id agenda 〈A, A〉

We use two different techniques in the proofs. For the conjunction agenda we study
influence measures9 of voters on the issue-aggregating functions and for the xor agenda we
use Fourier analysis of the issue-aggregating functions.10

Notice the question of approximate aggregation has a close relation to the field of local
property testing. In this field we query a function at a small number of (random) points
testing for a global property (In our case the property is being a consistent independent
aggregation mechanism). And indeed one can see our characterization for the xor agenda
as a generalization of the result of Blum, Luby, and Rubinfeld ([3], [2]) that shows that a
function f that passes the linearity test with high probability11 is close to linear.

An open question is whether one can find such bounds for any agenda or whether there
exists an agenda for which the class of aggregation mechanisms that satisfy consistency
and independence expands non trivially when we relax the consistency and independence
constraints.

We proceed to describe the structure of the current paper. In Section 2 we describe
the formal model of aggregation mechanisms. In section 3 we give the two main examples
we deal with, preference aggregation and premise-conclusion aggregation. In section 4 we
state the motivation to deal with approximate aggregation, we describe the known results
for preference approximate aggregation by Kalai and Mossel and state our main result
for approximate aggregation for premise-conclusion agendas. In sections 5 we outline the
proof of the main theorem. In section 6 we define a measure that relaxes the independence
constraint and show that any result for approximate aggregation for independent aggregation
mechanisms (which is the case in our main theorem) can be translated to the more general
definition relaxing both constraints. Section 7 concludes.

2 The model

We define the model similarly to [5] (which is Rubinstein and Fishburn’s model [20] for the
boolean case)

We consider a committee of n individuals that needs to decide on m issues. An opinion
is a vector x = (x1, x2, . . . , xm) ∈ {0, 1}m denoting an answer to each of the issues. An
opinion profile is a matrix X ∈ ({0, 1}m)n denoting the opinions of the committee members
so an entry Xj

i denotes the vote of the ith voter for the jth issue, the ith row of it Xi states
the votes of the ith individual on all issues, and the jth column of it Xj states the votes of
each of the individuals on the jth issue. In addition we assume that an agenda X ∈ {0, 1}m

of the consistent opinions is given.
The basic notion in this field is an aggregation mechanism which is a func-

tion that returns an aggregated opinion (not necessarily consistent) for every profile(
F : ({0, 1}m)n → {0, 1}m

)
12.

An aggregation mechanism satisfies Independence (and we say that the mechanism
is independent) if for any two consistent profiles X and Y and an issue j, if Xj = Y j

(all individuals voted the same on the jth issue in both profiles) then (F (X))j = (F (Y ))j

(the aggregated opinion for the jth issue is the same for both profiles). This means that F

9Both the known influence (Banzhaf power index) and a new measure we define:The ignorability of a
voter.

10The proof for the id case is trivial.
11which is equivalent to that the aggregation mechanism for 〈A, B, A⊕B〉 that uses f for each of the

issues has small inconsistency index.
12We define the function for all profiles for simplicity but we are not interested in the aggregated opinion

in cases one of the voters voted an inconsistent opinion.
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satisfies independence if one can find m boolean functions f1, f2, . . . , fm : {0, 1}n → {0, 1}
s.t. F (X) ≡ (

f1(X1), f2(X2), . . . , fm(Xm)
)
. Notice this property is a generalization of the

IIA property for social welfare functions (aggregation mechanism for the preference agenda)
so a social welfare function satisfies IIA iff it satisfies independence as defined here (when
the issues are the pair-wise comparisons). An independent aggregation mechanism satisfies
systematicity if F (X) =

〈
f(X1), . . . , f(Xm)

〉
for some issue aggregating function, i.e., all

issues are aggregated using the same function. We will use the notation
〈
f1, f2, . . . , fm

〉
for

the independent aggregation mechanism that aggregates the jth issue using f j.
The main measure we study in this paper is the inconsistency index ICX(F ) of a

given aggregation mechanism F and a given agenda X (as defined in the introduction).
This measure is a relaxation of the consistency criterion that is usually assumed in current
works13. We defining this measure by

ICX(F ) = Pr [F (X) /∈ X | X ∈ Xn]

assuming uniform distribution of the profiles. In cases the context is clear we omit the
agenda and notate it by IC(F ).

This definition includes two major assumptions on the opinion profile distribution.
First, we assume the voters pick their opinions independently and from the same distri-
bution. Second, we assume a uniform distribution over the (consistent) opinions for each
voter(Impartial Culture Assumption). The uniform distribution assumption, while cer-
tainly unrealistic, is the natural choice for proving ‘lower bounds’ on IC(F ). That means,
proving results of the format ‘Every aggregation mechanism of a given class has inconsis-
tency index of at least ...’. In particular, the lower bound, up to a factor δ, applies also
to any distribution that gives each preference profile at least a δ fraction of the probability
given by the uniform distribution. Note that we cannot hope to get a reasonable bound
result for every distribution. For instance, since for every aggregation mechanism we can
take a distribution on profiles for which it returns a consistent opinion.

2.1 Boolean Functions

Since this work deals with binary functions (for aggregating issues), we need to define several
notions for this framework as well. To ease the presentation, throughout this paper we will
identify True with 1 and False with 0 and use logical operators on bits and bit vectors
(using entry-wise semantics).

Let f : {0, 1}n → {0, 1} be a boolean function. f is the oligarchy of a coalition S if it
is of the form: f(x) =

∏
i∈S

xi. This means that f returns 1 if all the members of S voted

1. We denote by OligOligOlig the class of all 2n oligarchies. Two special cases of oligarchies are
the constant 1 function which is the oligarchy of the empty coalition and the dictatorships
which are oligarchies of a single voter.

f is a linear function if is it of the form f(x) = ⊕
i∈S

xi for some coalition S14. This

means that f returns 1 if an even number of the members of S voted 1. We denote by LinLinLin
the class of all 2n linear functions. Two special cases of linear functions are the constant 1
function which is the xor function over the empty coalition and the dictatorships which are
xor of a single voter.

We say that f satisfies the Pareto criterion is f(0̄) = 0 and f(1̄) = 115. I.e., when all
13F satisfies consistency if IC(F ) = 0.
14An equivalent definition is: ∀x, y : f(x) + f(y) = f(x + y) when the addition is in Z2 and Zn

2 , respec-
tively.

15In the literature this criterion is sometimes referred to as Unanimity, e.g., in [14]. We choose to follow
[6] and refer to it as Pareto to distinguish between it and the unanimity function which is the oligarchy of
{1, 2, . . . , n}.
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the individuals voted unanimously 0 then f should return 0 and similarly for the case of 1.
We define two different measures for the influence of an individual on a function

f : {0, 1}n → {0, 1}. Both definitions use the uniform distribution over {0, 1}n (which is
consistent with the assumption we have on the profile distribution).

• The influence16 of a voter i on f is defined to be the probability that he can flip the
result by changing his vote.

Ii(f) = Pr[f(x) 6= f(x⊕ ei)]

(x⊕ ei : ei = the ith elementary vector. It is equivalent to flipping the ith bit 0 ↔ 1)

• The (zero-)ignorability of a voter i on f is defined to be the probability that f returns
1 when i voted 0.

Pi(f) = Pr[f(x) = 1 | xi = 0)]

(We did not find a similar index defined in the voting literature or in the cooperative
games literature).

In addition we define a distance function over the boolean functions. The distance
between two functions f, g : {0, 1}n → {0, 1} is defined to be the probability of getting a dif-
ferent result (normalized Hamming distance). d(f, g) = Pr [f(x) 6= g(x)]. From this measure
we will derive a distance from a function to a set of functions by d(f,G) = min

g∈G
d(f, g)

One more notation we are using in this paper is x
J

for a binary vector x ∈ {0, 1}n and
a coalition J ⊆ {1, 2, . . . n} for notating the entries of x that correspond to J .

3 Agenda Examples

A lot of natural problems can be formulated in the framework of aggregation mechanisms.
In this paper we concentrate on two examples: (strict) preference aggregation and the class
of premise-conclusion agendas. Among other interesting natural agendas in this framework
that were studied one can find the equivalence agenda[9] and the membership agenda [21][16].

3.1 Preference Aggregation

Aggregation of preferences is one of the oldest aggregation frameworks studied. In this
framework there are s candidates and each individual holds a full strict order over them.
We are interested in Social Welfare Functions which are functions that aggregate n such
orders to an aggregated order. As seen in [18] and [4], this problem can be stated naturally
in our framework by defining

(
s
2

)
issues17.

3.2 Premise-conclusion agendas

In a premise-conclusion agendas the issues are divided into two types: k premises and
(m− k) conclusions. The conclusion issues are boolean functions over the k premises,
Φ : {0, 1}k → {0, 1}m−k. An opinion is consistent if the answers to the conclusion issues
are attained by applying the function Φ on the premise issues.

X =
{
x ∈ {0, 1}m | xj = Φj(x1, . . . , xk) j = k + 1, . . . , m

}
In this paper we prove results to the following two specific premise-conclusion agendas. We
later derive results to a general family of premise-conclusion agendas.

16In the simple cooperative games regime, this is also called the Banzhaf power index of player i in the
game f .

17The issue 〈i, j〉 (for i < j) represents whether an individual prefers ci over cj .
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3.2.1 Conjunction Agenda (Doctrinal Paradox Agenda)

In the (2-premises) conjunction agenda 〈A, B, A ∧B〉 there are three issues to decide on and
the consistency criterion is defined to be that the third issue is a conjunction of the first two.
A common description of the problem is of a group of judges or jurors that should decide
whether a defendant is liable under a charge of breach of contract. Each of them should
decide on three issues: whether the contract was valid (p), whether there was a breach (q)
and whether the defendant is liable (r). In their decision making they are constrained by
the legal doctrine that the defendant is only liable if the contract was valid and if there was
indeed a breach (r ⇐⇒ (p ∧ q)).

3.2.2 Xor Agenda

Similarly, in the (2-premises) xor agenda 〈A, B, A⊕B〉 there are three issues to decide on
and the consistency criterion is defined to be that the third issue is True if the first two
answers are equal. An equivalent way to define this agenda is constraining the number of
True answers to be odd.

4 Approximate Aggregation Results

In this paper we are interested in studying whether relaxing the consistency constraint,
i.e., taking IC(F ) = Pr [F (X) /∈ X | X ∈ Xn] to be small (while restricting ourselves to in-
dependent aggregation mechanisms), extends non-trivially the set of satisfying aggregation
mechanisms, i.e. entails that d(F, C(X)) = min

G∈C(X)
Pr [F (X) 6= G(X) | X ∈ Xn] is small (tak-

ing C(X) to be the class of aggregation mechanisms that satisfies consistency and indepen-
dence). More specifically we are interested in theorems of the following form (For a given
agenda X):

Theorem. For any ǫ > 0 and n > 1, there exists δ = δ
(

1
n , ǫ

)
, such that if F is an aggre-

gation mechanism for X over n voters satisfying independence and IC(F ) < δ, then there
exists an aggregation mechanism G that satisfies consistency and independence such that
d(F, G) < ǫ.

Notice that such a theorem can be trivially satisfied by δ(ǫ, n) = 0. We seek better
bounds. Particulary, we are interested that whenever ǫ is small (e.g., 1

poly(n) ), then so is δ.
E.g., taking δ to be poly

(
1
n , ǫ

)
.

We find the motivation for dealing with the field of approximate aggregation in three
different disciplines.

• The consistent characterization are often regarded as ‘impossibility results’ in the
sense that they ‘permit’ a very restrictive set of aggregation mechanisms. (e.g., Ar-
row’s theorem tells us that there is no ‘reasonable’ way to aggregate preferences).
Extending this theorems to approximate aggregation characterizations sheds light on
these impossibility results by relaxing the constraints.

• The questions of Aggregation Theory have often roots in Philosophy, Law, or Political
Science. Results on approximate aggregations support the discussion that started in
the works of Arrow[1] and Kornhauser and Sager[13] and searches for ways to deal
with scenarios in which it is needed to aggregate such opinions.

• The CS field of Local Property Checking of Boolean Functions deals with the problem
of deciding whether a given function has a given property (e.g., linearity) or whether it
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is ‘far’ from any object having the property. The works in the field consider randomized
algorithms that query the function at points of their choice, and seek algorithms which
query the function at relatively few points (For a survey of this field see [8]). The
question of checking locally for a global property is very close to the framework of
approximate aggregation (whether there exists an aggregation mechanism that is far
from the set of independent and consistent aggregation mechanisms but still does not
fail for most profiles). And indeed, the analysis of such randomized algorithm deals
with very similar expressions to the inconsistency index and hence results from the
field of approximate aggregation can be easily translated to the field of property testing
for the property ‘belongs to the class of consistent aggregation mechanism’. Special
interest should be in results that restrict the aggregation mechanisms to systematic
aggregation mechanisms (For instance Blum, Luby, and Rubinfeld’s result ([3],[2])
can be seen as a result for approximate aggregation using systematic aggregation
mechanisms for the xor agenda.).

The first work studying approximate aggregation was done for the preference agenda over
three candidate by Kalai[12] (although without stating the general framework of approxi-
mate aggregation). In this paper he proved the following bound for approximate aggregation
mechanisms.

Theorem ([12]). There exists an absolute constant K such that the following holds: For
any ǫ > 0 and any aggregation mechanism F for the preference agenda over 3 candidates
that satisfies: F is balanced18, F is independent, and IC(F ) < Kǫ , there exists an
aggregation mechanism G that satisfies consistency and independence such that d(F, G) < ǫ.

This theorem was extended by Mossel[17] for preference agendas over any number of
candidates and non-balanced aggregation mechanisms but with worse dependence of IC(F )
in ǫ (instead of linear as above).

Our main theorem gives bounds for every premise-conclusion agenda in which every
conclusion is a function of at most two of the premises.

Theorem 4.1 (Main theorem).
For any ǫ > 0 and n > 1, there exists δ = poly

(
1
n , ǫ

)
, such that for every premise-conclusion

agenda in which each issue is a premise, a conclusion of one premise, or a conclusion of
two premises, if F is an aggregation mechanism for X over n voters satisfying independence
and IC(F ) < δ, then there exists an aggregation mechanism G that satisfies consistency and
independence such that d(F, G) < ǫ.
Moreover, one may take δ = Cn−2ǫ5 for some absolute constant C.

5 Proof Sketch

We prove this theorem by proving it explicitly for three specific agendas: the id agenda
〈A, A〉, the xor agenda 〈A, B, A⊕B〉 , and the conjunction agenda 〈A, B, A ∧B〉 . Since
every boolean function on two bits can be reduced to one of the cases f(x, y) = x, f(x, y) = y,
f(x, y) = x∧y, and f(x, y) = x⊕ y by negating the inputs and output (which is renaming of
opinions in our framework) we get theorem 4.1 using induction on the number of conclusions.

Below we sketch the proof idea for the xor agenda and conjunction agenda. The proofs
of the more technical lemmas can be found in the full version.

18For every pair of candidates, a and b, it holds that the probability that F ranks a above b is exactly
1/2.
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5.1 Proof for the xor agenda

For the agenda 〈A, B, A⊕B〉 we prove:

Theorem 5.1. For any ǫ < 1
6 and any independent aggregation mechanism F :

If IC(F ) 6 ǫ, then there exists an aggregation mechanism G that satisfies consistency and
independence such that d(F, G) 6 3ǫ.

Proof sketch.
Technique19: The proof uses the Fourier representation of boolean functions. That means
representing the functions as linear combinations of the linear boolean functions.

Given an independent aggregation mechanism F = 〈f, g, h〉 we analyze the expres-
sion E[f(x)g(y)h(xy)] when x and y are sampled uniformly and independently. On one
hand we show that E[f(x)g(y)h(xy)] = 1− 2IC(F ). On the other hand we show that

E[f(x)g(y)h(xy)] =
∑

χ∈Lin
f̂(χ)ĝ(χ)ĥ(χ) when

∣∣∣f̂(χ)
∣∣∣ equals 1− 2 min (d (f, χ) , d (f,−χ)).

Hence, when IC(F ) is small then this sum is close to one and hence there exists a lin-
ear function such that f ,g, and h are close to it (up to negation). Noticing that for any
linear function χ, 〈χ, χ, χ〉 and the permutations of 〈−χ,−χ, χ〉 are consistent independent
aggregation mechanism for this agenda gives us the result.

5.2 Proof for the conjunction agenda

For the agenda 〈A, B, A ∧B〉 we prove:

Theorem 5.2. For any ǫ > 0 and any independent aggregation mechanism F :
If IC(F ) 6 ǫ, then there exists an aggregation mechanism G that satisfies consistency and
independence such that d(F, G) < 5 5

√
n2ǫ.

Proof sketch.
Technique: The main insight in the proof is that we can bound the product of the influence
of a voter on f and the ignorability of the same voter for g (and vice versa) using the
inconsistency index of F by Pi(f) · Ii(g) 6 4IC(F ).

Let F = 〈f, g, h〉 be an aggregation mechanism that satisfies IC(F ) 6 ǫ. In case that f
(or g) is close enough to the constant zero function, F is close to the consistent aggregation
mechanism 〈0, g, 0〉.

Otherwise, we define for a given function f : {0, 1}n → {0, 1} and a coalition J (the
junta), the junta function fJ : {0, 1}n → {0, 1}. It is derived from f in the following way:

fJ(x) = majority {f(y) | yJ = xJ } .

I.e., for a given input, fJ reads only the votes of the junta members, iterates over all the
possible votes for the members outside the junta, and returns the more frequent result
(assuming uniform distribution over the votes of the voters outside J).
We define fJ and gJ with regard to the junta of all the voters with small ignorability for
either f or g. We prove that fJ and gJ are close to f and g, respectively and that there
exists an issue aggregation function h⋆ such that

〈
fJ , gJ , h⋆

〉
is a consistent aggregation

mechanism that is close to F .

There is a known characterization of the consistent independent aggregation mechanism
for the conjunction agenda. (This characterization is a direct corollary from a series of works
in the more general framework of aggregation, E.g., [19], [5]. We include a proof of it in the
full version)

19The proof is similar to the analysis of the BLR (Blum-Luby-Rubinfeld) linearity test done in [2].
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Lemma 5.3.
Let f, g, h : {0, 1}n → {0, 1} be three voting functions satisfying IC(〈f, g, h〉) = 0. Then ei-
ther f = h ≡ 0, or g = h ≡ 0, or f = g = h ∈ Olig.

A corollary from this theorem and theorem 5.2 is a characterization of the approximate
aggregation mechanisms for this agenda. Actually ,in the proof of theorem 5.2 we get a
tighter characterization that distinguishes between the two cases of consistent independent
aggregation mechanism.

6 General Definition of Approximate Aggregation

In this paper we defined approximate aggregation by leaving the independence constraint
intact and relaxing the consistency constraint. In this section we show that under a more
general definition of approximate aggregation that relaxes both constraints we get similar
results for any agenda and hence we do not lose much by restricting ourselves to the narrower
definition.

Let X be an agenda and let F be an aggregation mechanism for that agenda. We define
the dependency index as a measure for ‘not satisfying independence’.

Definition 6.1 (dependency index).
For an agenda X and an aggregation mechanism F for that agenda, the dependency index
DIX(F ) is defined by

DIX(F ) = max
j=1,...,m

DIj,X(F ) when DIj,X(F ) = E
X∈Xn

[
Pr

Y ∈Xn

[
F (X) 6= F (Y )|Xj = Y j

]]
That is, DIj,X(F ) is the probability that the following test for dependence of aggregating
issue j on other issues fails (returns False):

Choose a profile X uniformly at random.
Choose a profile Y that agrees with X on issue j uniformly at random.
Return whether F (X) 6= F (Y )

We are interested in theorems of the form (for a given agenda X):

Theorem. For any ǫ > 0 and n > 1, there exist δ
IC

, δ
DI

> 020, such that if F is an
aggregation mechanism for X over n voters satisfying IC(F ) 6 δIC and DI(F ) 6 δDI , then
there exists an aggregation mechanism G that satisfies consistency and independence such
that d(F, G) < ǫ.

It is easy to see that theorems of this form are generalizations of theorems of the form
we proved in this paper and one can easily derive approximate aggregation results for inde-
pendent aggregation mechanisms (DI(F ) = 0) from theorems of the above general form.

It turns out that one can derive theorems the other way too using the following propo-
sition.21

Proposition 6.1. Let G be an aggregation mechanism for an agenda over m issues that
satisfies DI(G) 6 δ

DI
. Then there exists an independent aggregation mechanism F that

satisfies d(F, G) 6 2mδ
DI

Given a result in the following format (which is the format we proved for in this paper):
Let δ : [0, 1] → [0, 1] be a function s.t. for any ǫ > 0: If F is an aggregation mechanism
satisfying independence and IC(F ) 6 δ(ǫ), then there exists an aggregation mechanism
G that satisfies consistency and independence such that d(F, G) < ǫ.

20We would like δIC , δDI to not be too small. For instance we would like them to be poly
`

1
n

, ǫ
´
.

21Due to space limitations we omit the proof. It can be found in the full version of this paper.
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We will define δ
IC

= 1
2δ

(
ǫ
2

)
, δ

DI
= 1

4m min
(
δ
(

ǫ
2

)
, ǫ

)
. Now, let G be an aggregation

mechanism that satisfies IC(G) 6 δ
IC

and DI(G) 6 δ
DI

. Then based on proposition
6.1 there is an independent aggregation mechanism F such that d(F, G) 6 2mδ

DI
. It

is easy to see that IC(F ) 6 IC(G) + d(F, G) and for any aggregation mechanism H ,
d(G, H) 6 d(F, H) + d(F, G) and hence there exists an aggregation mechanism H that
satisfies consistency and independence such that d(G, H) < ǫ.22

Notice that the dependency of δ
IC

and δ
DI

in ǫ and n (for instance, being polynomial in
these parameters) is ‘inherited’ from the dependency of δ in ǫ and n. Therefore, such result
will be similar in quality to the result for approximate aggregation mechanism that satisfies
independence and we do not lose much by restricting ourselves to studying approximate
aggregation by mechanisms that satisfying independence when analyzing a given agenda.

7 Summary and Future Work

In this paper we defined the issue of approximate aggregation which is a generalization of
the study of aggregation mechanisms that satisfy consistency and independence. We defined
measures for the relaxation of the consistency constraint (inconsistency index IC) and for
the relaxation of the independence constraint (dependency index DI) .

We proved that relaxing these constraints does not extend the set of satisfying aggre-
gation mechanisms in a non-trivial way for any premise-conclusion agenda in which every
conclusion can be stated as a function of at most two of the premises. Particulary we cal-
culated the dependency between the extension of this class (ǫ) and the inconsistency index
(δ(ǫ)) (although maybe not strictly) for any premise-conclusion agenda of three issues. The
relation we proved includes dependency on the number of voters (n). In both the works
that preceded us for preference agendas (Kalai[12] and Mossel[17]) the relation did not in-
clude such a dependency. An interesting question is whether such a dependency is inherent
for premise-conclusion agendas or whether it is possible to prove a relation that does not
depend on n.

A major assumption in this paper is the uniform distribution over the inputs which is
equivalent to assuming i.i.d uniform distribution over the premises. We think that our results
can be extended for other distributions (still assuming voters’ opinions are distributed i.i.d)
over the space over premises’ opinions which seem more realistic.

Immediate extensions for this work can be to extend our result to more complex premise-
conclusion agendas and generalize our results for three issues premise-conclusion agenda and
Kalai and Mossel’s works for the preference agenda to get a unified bound for any three
issues agenda.

A major open question is whether one can find an agenda for which relaxing the con-
straints of independence and consistency extends the class of satisfying aggregation mecha-
nisms in a non-trivial way.
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Complexity of Winner Determination and

Strategic Manipulation in Judgment Aggregation

Ulle Endriss, Umberto Grandi, and Daniele Porello

Abstract

Judgment aggregation is an area of social choice theory that analyses procedures for
aggregating the judgments of a group of agents regarding a set of interdependent
propositions (modelled as formulas in propositional logic). The judgment aggrega-
tion framework gives rise to a number of algorithmic problems, including (1) com-
puting a collective judgment from a profile of individual judgments (the winner
determination problem), and (2) deciding whether a given agent can influence the
outcome of a judgment aggregation procedure in her favour by reporting insincere
judgments (the manipulation problem). We study the computational complexity
of both these problems for two concrete judgment aggregation procedures that are
complete and consistent and that have been argued to be useful in practice: the
premise-based procedure and (a new variant of) distance-based merging. Our re-
sults suggest that manipulating these procedures is significantly harder than solving
the corresponding winner determination problem.

1 Introduction

Judgment aggregation (JA) is an area of social choice theory that analyses procedures for ag-
gregating the judgments of a group of agents regarding a set of interdependent propositions
(List and Puppe, 2009). In JA, we are given a set of propositional formulas (the agenda)
and ask several agents to report which of these formulas they judge to be true. How should
we aggregate this information into a collective judgment? And under what circumstances
will the collective judgment be consistent? To date, most technical contributions to the JA
literature have been of an axiomatic flavour, establishing characterisations and impossibil-
ity theorems (e.g. List and Pettit, 2002; Dietrich, 2006). In recent work, we have begun to
investigate the computational properties of the JA framework (Endriss et al., 2010). Here,
we want to extend the scope of this work and suggest a framework for analysing the com-
putational complexity of two algorithmic problems associated with concrete JA procedures:
the winner determination problem, i.e., the problem of computing the collective judgment
from a profile of individual judgments, and the manipulation problem.

In the context of voting, a player is said to be able to manipulate a voting rule when
there exists a situation in which voting in a manner that does not truthfully reflect her
preferences will result in an outcome that she prefers to the outcome that would be realised
if she were to vote truthfully (Gaertner, 2006). What would constitute an appropriate
definition of manipulation in the context of JA? This is not immediately clear, because in
JA there is no notion of preference. Here, we follow Dietrich and List (2007) and assume
that a player’s individual judgment set is also her most preferred outcome and amongst
any two outcomes she will prefer the one that is “closer” to that most preferred outcome.
We will measure “closeness” using the Hamming distance. So, we will call an aggregation
procedure F manipulable if it permits a situation where an agent can change the outcome
to a judgment set that is closer to her true judgment set by reporting untruthfully. A
procedure that cannot be manipulated is called strategy-proof.

Dietrich and List (2007) show that F is strategy-proof if and only if it is independent
and monotonic. Thus, for a meaningful study of the computational complexity of strategic
manipulation, we have to restrict attention to rules that are not both independent and
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monotonic.1 Furthermore, for this initial study of the subject, we choose to focus on rules
that produce consistent and complete judgment sets. Specifically, we analyse two rules: the
premise-based procedure (Kornhauser and Sager, 1993; Dietrich and Mongin, 2010) and (a
new variant of) distance-based merging (Pigozzi, 2006). For both procedures, we compare
the complexity of manipulation with the complexity of winner determination.

For the premise-based procedure, we show that manipulating the procedure is NP-hard,
while winner determination is possible in polynomial time. Thus, misuse of the procedure
is significantly harder than using it in the intended manner (under the common assumption
that P 6= NP). For distance-based merging, we show that (the decision problem correspond-
ing to) winner determination is in NP and we conjecture that manipulation is Σp

2-complete
(which would place the latter problem at the second level of the polynomial hierarchy).
That is, under the common assumption that the polynomial hierarchy does not collapse,
this would, again, make manipulation considerably harder than winner determination.

The remainder of this paper is organised as follows.2 In Section 2 we recall the framework
of JA and define the winner determination and manipulation problems. The premise-based
procedure is analysed in Section 3 and distance-based merging in Section 4. We conclude
with a brief discussion of related work in Section 5.

2 Judgment Aggregation

In this section we recall the basic formal framework of JA familiar from the literature (List
and Pettit, 2002; Dietrich, 2006; List and Puppe, 2009) and introduce a particular notion
of strategic manipulation originally proposed by Dietrich and List (2007). To make the
problem amenable to a complexity-theoretic investigation, we then formulate manipulation
as a decision problem, and we do the same for the winner determination problem.

2.1 The Basic Framework

We now define the basic framework for JA.3 Let PS be a set of propositional variables,
and LPS the set of propositional formulas built from PS (using the usual connectives ¬,
∧, ∨, →, ↔, and the constants ⊤ and ⊥). If α is a propositional formula, define ∼α, the
complement of α, as ¬α if α is not negated, and as β if α = ¬β. An agenda is a finite
nonempty set Φ ⊆ LPS not containing any doubly-negated formulas that is closed under
complementation (i.e., if α ∈ Φ then ∼α ∈ Φ). Denote with Φ+ the set of positive formulas
in Φ. A judgment set J on an agenda Φ is a subset of the agenda J ⊆ Φ. Define J(ϕ) = 1
if ϕ ∈ J , and J(ϕ) = 0 if ϕ 6∈ J . We call a judgment set J complete if α ∈ J or ∼α ∈ J
for all α ∈ Φ; complement-free if for no α ∈ Φ both α and ∼α are in J ; and consistent
if there exists an assignment that makes all formulas in J true. Denote with J (Φ) the set
of all complete consistent subsets of Φ. Given a set N = {1, . . . , n} of n > 3 agents, denote
with J = (J1, . . . , Jn) a profile of judgment sets, one for each agent.

Definition 1 (Aggregation procedure). A (resolute) aggregation procedure for an agenda
Φ and a set of n individuals is a function F : J (Φ)n → 2Φ.

1Independent and monotonic aggregation procedures are not very attractive: they are either dictatorial
or risk producing inconsistent outcomes unless the agenda is structurally very simple (List and Puppe, 2009).

2We shall assume familiarity with the basics of complexity theory up to the notion of NP-completeness
(see e.g. Papadimitriou, 1994). We also make reference to two complexity classes at the second level of the
polynomial hierarchy: Σp

2 , the class of problems for which a certificate can be verified in polynomial time by
a machine equipped with an NP oracle, and Πp

2, the class of problems that are complements of those in Σp
2.

3Following our earlier work (Endriss et al., 2010), to allow for a precise analysis of the computational
aspects of JA, we make slight changes to the standard framework (see e.g. List and Puppe, 2009): e.g., we
allow for tautologies in the agenda and we make a clear distinction between purely “syntactic” and “logical”
criteria (complement-freeness vs. consistency). We also permit irresolute JA procedures.
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That is, F maps each profile of individual judgment sets to a collective judgment set. (In
Section 4 we will also introduce an irresolute procedure that returns a set of collective
judgment sets.) An aggregation procedure F , defined on an agenda Φ, is said to be complete
(complement-free, consistent) if F (J) is complete (complement-free, consistent) for every
J ∈ J (Φ). Here, we are only interested in procedures that are complete and consistent
(and thus also complement-free). As discussed at length in the literature, these are not easy
criteria to satisfy. The majority rule, for instance, which accepts a formula if and only if
a majority of agents do, fails to satisfy consistency (Kornhauser and Sager, 1993).

Axioms provide a normative framework in which to state what the desirable (or essential)
properties of aggregation procedures are. Important axioms include anonymity, stating
that the procedure should treat all agents the same; neutrality, requiring symmetry with
respect to propositions; independence, postulating that collective acceptance of ϕ should
only depend on individual acceptance patterns of ϕ; and monotonicity, specifying that ad-
ditional support for a collectively accepted formula ϕ should never cause ϕ to get rejected.4

While all of these axioms are intuitively appealing, several impossibility theorems, estab-
lishing inconsistencies between certain combinations of axioms with other desiderata, have
been proved in the literature. The original impossibility theorem of List and Pettit (2002),
for instance, shows that there can be no consistent and complete aggregation procedure
satisfying anonymity, neutrality, and independence.

2.2 Strategic Manipulation

We now define the notion of strategic manipulation for JA sketched in the introduction. Our
definition is an instance of a more general definition proposed by Dietrich and List (2007),
which is based on the idea that we can induce a preference relation over judgment sets by
assuming that an agent’s true judgment set J is her most preferred outcome, and between
any two outcomes the one that is “closer” to J is preferred. One of the most appealing
choices for such a notion of “closeness” is the Hamming distance.

Definition 2 (Hamming distance). Given an agenda Φ, let J, J ′ ∈ 2Φ be two complete and
complement-free judgment sets for Φ. The Hamming distance H(J, J ′) between J and J ′ is
the number of positive formulas on which they differ:

H(J, J ′) =
∑

ϕ∈Φ+

|J(ϕ)− J ′(ϕ)|

That is, H(J, J ′) is an integer between 0 (complete agreement) and |Φ|
2 (complete disagree-

ment). For example, if the agenda is Φ = {p,¬p, q,¬q, p ∧ q,¬(p ∧ q)}, then the Hamming
distance between J = {¬p, q,¬(p∧q)} and J ′ = {p,¬q,¬(p∧q)} is H(J, J ′) = 2. Intuitively,
if Ji is the true judgment set of agent i, then i “prefers” J over J ′ if H(Ji, J) < H(Ji, J

′).

Definition 3 (Manipulability). Let Φ be an agenda, let F : J (Φ)n → 2Φ be an aggregation
procedure for that agenda, and let J = (J1, . . . , Ji, . . . , Jn) ∈ J (Φ)n be a profile. Then F is
said to be manipulable at J, if there exist an alternative judgment set J ′i ∈ J (Φ) for some
agent i ∈ N such that H(Ji, F (J ′i ,J−i)) < H(Ji, F (J)).

That is, by reporting J ′i rather than her truthful judgment set Ji, agent i can achieve the
outcome F (J ′i ,J−i) and that outcome is closer (in terms of the Hamming distance) to her
truthful (and most preferred) set Ji than the outcome F (J) that would get realised if she
were to truthfully report Ji. A procedure that is not manipulable at any profile is called
strategy-proof. Dietrich and List (2007) have shown that a JA procedure is strategy-proof if
and only if it is independent and monotonic. Thus, to study the complexity of manipulation,
we have to restrict ourselves to procedures that are either not independent or not monotonic.

4See (List and Puppe, 2009) or (Endriss et al., 2010) for formal presentations of these axioms.
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2.3 Strategic Manipulation as a Decision Problem

To study the complexity of strategic manipulation, we formulate manipulation as a deci-
sion problem. We propose the following simple definition, parametrised by the judgment
aggregation procedure F under consideration.

Manipulable(F )
Instance: Agenda Φ, judgment set Ji ∈ J (Φ), partial profile J−i ∈ J (Φ)n−1.
Question: Is there a J ′i ∈ J (Φ) s.t. H(Ji, F (J ′i ,J−i)) < H(Ji, F (Ji,J−i))?

That is, agent i is the manipulator and her true judgment set is Ji. The other agents’
judgments are given by J−i. If agent i does not manipulate, then the outcome will be
F (Ji,J−i), and the Hamming distance of this outcome to her most preferred outcome (which
is also Ji) is H(Ji, F (Ji,J−i)). The question we are asking is whether there exists another
judgment set J ′i that agent i could report instead that would lead to an outcome F (J ′i ,J−i)
that is closer to Ji in terms of the Hamming distance. That is, we are asking whether she
can manipulate successfully, rather than how.

2.4 Winner Determination as a Decision Problem

Next, we also formulate winner determination as a decision problem:

WinDet(F )
Instance: Agenda Φ, profile J ∈ J (Φ)n, formula ϕ ∈ Φ.
Question: Is ϕ an element of F (J)?

By solving WinDet once for each formula in the agenda, we can compute the collective
judgment set from an input profile (and, vice versa, any algorithm for computing the col-
lective judgment set can be used to solve WinDet).

3 Premise-based Judgment Aggregation

There are two basic (types of) JA procedures that (can be set up so as to) produce consistent
outcomes that have been discussed in the JA literature from its very beginnings, namely the
premise-based (or issue-based) and the conclusion-based (or case-based) procedure (Korn-
hauser and Sager, 1993; Dietrich and Mongin, 2010). The basic idea is to divide the agenda
into premises and conclusions. In the premise-based procedure, we apply the majority rule
to the premises and then infer which conclusions to accept given the collective judgments
regarding the premises;5 under the conclusion-based procedure we directly ask the agents
for their judgments on the conclusions and leave the premises unspecified in the collective
judgment set. That is, the conclusion-based procedure does not result in complete outcomes,
which is why we shall not consider it any further here. The premise-based procedure, on
the other hand, can be set up in a way that guarantees consistent and complete outcomes,
which provides a usable procedure of some practical interest—despite its well-documented
shortcomings (Kornhauser and Sager, 1993; Pigozzi, 2006).

In this section, we first formally introduce the precise variant of the premise-based pro-
cedure we shall analyse. We then study the complexity of the winner determination and
manipulation problems for this procedure. For ease of exposition, throughout this section,
we shall assume that the number of agents n is odd.

5This is what is commonly understood by “premise-based procedure”. Dietrich and Mongin (2010), who
call this rule premise-based majority voting, have also investigated a more general class of premise-based
procedures in which the procedure used to decide upon the premises need not be the majority rule.
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3.1 Definition of the Procedure

For many JA problems, it will be natural to divide the agenda into premises and conclusions.

Definition 4 (Premise-based procedure). Let Φ = Φp ⊎Φc be an agenda divided into a set
of premises Φp and a set of conclusions Φc, each of which is closed under complementation.
The premise-based procedure PBP : J (Φ)n → 2Φ for Φp and Φc is the function mapping
each profile J = (J1, . . . , Jn) ∈ J (Φ)n to the following judgment set:

PBP(J) = ∆ ∪ {ϕ ∈ Φc | ∆ |= ϕ},
where ∆ = {ϕ ∈ Φp | #{i | ϕ ∈ Ji} > n

2
}

If we want to ensure that the PBP always returns judgment sets that are consistent and
complete, then we have to impose certain restrictions:

• If we want to guarantee consistency, we have to impose restrictions on the premises.
It is well-known that the majority rule is guaranteed to be consistent if and only if
the agenda Φ satisfies the so-called median property, i.e., if every inconsistent subset
of Φ has itself an inconsistent subset of size 6 2 (Nehring and Puppe, 2007; List and
Puppe, 2009). This result immediately transfers to the PBP: it is consistent if and
only if the set of premises satisfies the median property.

• If we want to guarantee completeness, we have to impose restrictions on the conclu-
sions: for any assignment of truth values to the premises, the truth value of each
conclusion has to be fully determined.

Deciding whether a set of formulas satisfies the median property is known to be Πp
2-hard

(Endriss et al., 2010). That is, in its most general form, deciding whether the PBP can be
applied correctly is a highly intractable problem (and, as we shall see, a problem that is most
likely considerably harder than either using or manipulating the PBP). For a meaningful
analysis, we therefore restrict attention to the following case. First, we assume that the
agenda Φ is closed under propositional variables: p ∈ Φ for any propositional variable p
occurring within any of the formulas in Φ. Second, we equate the set of premises with the
set of literals. Clearly, the above-mentioned conditions for consistency and completeness are
satisfied under these assumptions.

So, to summarise, the procedure we consider in this section is defined as follows: Under
the assumption that the agenda is closed under propositional variables, the PBP accepts
a literal ℓ if and only if more individual agents accept ℓ than do accept ∼ℓ, and the PBP
accepts a compound formula if and only if it is entailed by the accepted literals. For
consistent and complete profiles, and under the assumption that n is odd, this leads to a
resolute JA procedure that is consistent and complete.

3.2 Winner Determination

Winner determination is a tractable problem for the premise-based procedure:

Proposition 1. WinDet(PBP) is in P.

Proof. Counting the number of agents accepting each of the premises and checking for each
premise whether the positive or the negative instance has the majority is easy. This deter-
mines the collective judgment set as far as the premises are concerned. Deciding whether
a given conclusion should be accepted by the collective now amounts to a model checking
problem (is the conclusion ϕ true in the model induced by the accepted premises/literals?),
which can also be done in polynomial time.
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3.3 Strategic Manipulation

Manipulating the premise-based procedure, on the other hand, is intractable:

Theorem 2. Manipulability(PBP) is NP-complete.

Proof. We first establish NP-membership. An untruthful judgment set J ′i yielding a pre-
ferred outcome can serve as a certificate. Checking the validity of such a certificate means
checking that (a) J ′i is actually a complete and consistent judgment set and that (b) the
outcome produced by J ′i is better than the outcome produced by the truthful set Ji. As for
(a), checking completeness is easy. Consistency can also be decided in polynomial time: for
every propositional variable p in the agenda, J ′i must include either p or ¬p; this admits only
a single possible model; all that remains to be done is checking that all compound formulas
in J ′i are satisfied by that model. As for (b), we need to compute the outcomes for Ji and
J ′i (by Proposition 1, this is polynomial), compute their Hamming distances from Ji, and
compare those two distances.

Next, we prove NP-hardness by reducing Sat to Manipulability(PBP). Suppose we
are given a propositional formula ϕ and want to check whether it is satisfiable. We will build
a judgment profile for three agents such that the third agent can manipulate the aggregation
if and only if ϕ is satisfiable. Let p1, . . . , pm be the propositional variables occurring in ϕ,
and let q1, q2 be two additional propositional variables. Define an agenda Φ that contains
all atoms p1, . . . , pm, q1, q2 and their negation, as well as m + 2 syntactic variants of the
formula q1 ∨ (ϕ ∧ q2) and their negation. For instance, if ψ := q1 ∨ (ϕ ∧ q2), we might use
the syntactic variants ψ, ψ ∧⊤, ψ ∧⊤∧⊤, and so forth. The judgment profile J is defined
by the following table (the rightmost column has a “weight” of m+ 2):

p1 p2 · · · pm q1 q2 q1 ∨ (ϕ ∧ q2)
J1 1 1 · · · 1 0 0 ?
J2 0 0 · · · 0 0 1 ?
J3 1 1 · · · 1 1 0 1
F (J) 1 1 · · · 1 0 0 0

The judgments of agents 1 and 2 regarding q1 ∨ (ϕ ∧ q2) are irrelevant for our argument, so
they are indicated as “?” in the table (but note that they can be determined in polynomial
time; in particular, J1(q1 ∨ (ϕ ∧ q2)) = 0 for any ϕ).

If agent 3 reports her judgment set truthfully (as shown in the table), then the Hamming
distance between J3 and the collective judgment set will be 1 + (m + 2) = m + 3. Note
that agent 3 is decisive about all propositional variables (i.e., premises) except q1 (which
will certainly get rejected). Now:

• If ϕ is satisfiable, then agent 3 can report judgments regarding p1, . . . , pm that corre-
spond to a satisfying assignment for ϕ. If she furthermore accepts q2, then all m+ 2
copies of q1 ∨ (ϕ ∧ q2) will get accepted in the collective judgment set. Thus, the
Hamming distance from J3 to this new outcome will be at most m + 2, i.e., agent 3
will have manipulated successfully.

• If ϕ is not satisfiable, then there is no way to get any of the m + 2 copies of q1 ∨
(ϕ ∧ q2) accepted (and q1 will get rejected in any case). Thus, agent 3 has no means
of improving over the Hamming distance of m + 3 she can guarantee for herself by
reporting truthfully.

Hence, ϕ is satisfiable if and only if agent 3 can manipulate successfully, and our reduction
from Sat to Manipulability(PBP) is complete.

Thus, manipulating the premise-based procedure is significantly harder than using it—at
least in terms of worst-case complexity (and under the common assumption that P 6= NP).
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4 Distance-Based Judgment Aggregation

Pigozzi (2006) has shown that ideas from belief merging (Konieczny and Pino Pérez, 2002)
can be imported into JA to yield practical aggregation procedures that are complete and
consistent. Specifically, Pigozzi proposes a procedure that works roughly as follows: asso-
ciate with each individual judgment set the model(s) satisfying that judgment set; merge
the resulting set of models to obtain a new collection of models that minimise the sum of the
(minimal) Hamming distances to the individual models; and return a collective judgment
set corresponding to that collection of models. In this section, we introduce a new variant
of this procedure and we study the computational complexity of its winner determination
and manipulation problems.

4.1 A New Procedure: “Syntactic” Distance-based Merging

The merging procedure of Pigozzi (2006) has the drawback of being defined for a somewhat
restricted class of profiles: the agenda is assumed to be closed under propositional vari-
ables and all compound formulas (the integrity constraints) are unanimously accepted (or
rejected) by all agents. Most importantly, the syntactic information contained in the agenda
is discarded by moving the aggregation from the level of formulas to the level of models.
Our own proposal for distance-based merging in JA consists of a syntactic variant of this
procedure, where we merge judgment sets rather than models corresponding to judgment
sets. It is an irresolute procedure, returning a (nonempty) set of collective judgment sets.

Definition 5 (Distance-based procedure). Given an agenda Φ, the distance-based procedure
DBP is the function mapping each profile J = (J1, . . . , Jn) ∈ J (Φ)n to the following set of
judgment sets:

DBP(J) = arg min
J∈J (Φ)

n∑
i=1

H(J, Ji)

A collective judgment set under the DBP minimises the amount of disagreement with the
individual judgment sets. Note that in cases where the majority rule leads to a consistent
outcome, the outcome of the DBP coincides with that of the majority rule (making it
a resolute procedure over these profiles). In all other profiles the consistent judgment sets
that are the closest with respect to the Hamming distance are chosen as collective outcomes.

The DBP can be made resolute by introducing a tie-breaking rule (e.g., a lexicographic
tie-breaking rule). Note that the DBP does not coincide with the procedure of Pigozzi
(2006), even for agendas closed under propositional variables. The main reason is that the
DBP is sensitive to logical correlations between formulas of the agenda: accepting an atom
that is correlated with other formulas in the agenda “counts” more in our procedure than
accepting an independent one. We find this an appealing property for a JA procedure,
since it does not discard the syntactic information contained in the agenda. Also note that
the DBP shares many features with the Kemeny rule for preference aggregation (Kemeny,
1959). We will elaborate more on this similarity in the proof of Lemma 4.

4.2 Winner Determination

Next, we want to analyse the complexity of the winner determination problem for the DBP.
As the DBP is not resolute, we cannot work with the decision problem WinDet(DBP).
The reason is that when there is more than one winning set, each query to WinDet (to
settle the assignment for one formula at a time) may relate to a different winning set. We
therefore formulate a new decision problem specifically for the DBP:
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WinDet⋆(DBP)
Instance: Agenda Φ, profile J ∈ J (Φ)n, formula ϕ ∈ Φ, K ∈ N.
Question: Is there a J⋆ ∈ J (Φ) with ϕ ∈ J⋆ s.t.

∑
J∈JH(J⋆, J) 6 K?

That is, we ask whether there is a J with Hamming distance at most K that accepts ϕ. To
see that this is an appropriate formulation for a decision problem corresponding to the task
of computing some winning set, note that we can compute a winner using a polynomial
number of queries to WinDet⋆(DBP) as follows. We first use it to find the smallest K for
which ϕ1 can be accepted, as well as the smallest K for which ∼ϕ1 can be accepted (n ·m is
an obvious upper bound for K, so this can be done with a polynomial number of queries).
Then we accept either ϕ1 or ∼ϕ1, whichever did yield the smaller K (choose either one
in case of a tie). Now leave K fixed for the rest of the process. Next, substitute ϕ1 with
the appropriate truth value throughout J. Then check whether ϕ2 can be accepted yielding
distanceK; if not, ∼ϕ2 must be acceptable with distanceK. Accept the appropriate formula
and make the appropriate substitutions in J; then continue with ϕ3, and so forth.

Unsurprisingly, the DBP is much more complex a procedure than the PBP. Nevertheless,
as we show next, the complexity of winner determination does at least not exceed NP.

Lemma 3. WinDet⋆(DBP) is in NP.

Proof. We will show that WinDet⋆(DBP) can be modelled as an integer program (without
an objective function). This proves membership in NP (Papadimitriou, 1981).

Suppose we want to answer an instance of WinDet⋆(DBP). The number of subformulas
of propositions occurring in the agenda Φ is linear in the size (not cardinality) of Φ. We
introduce a binary decision variable for each of these subformulas: xi ∈ {0, 1} for the ith
subformula. We first write constraints that ensure that the chosen outcome will correspond
to a consistent judgment set (i.e., that J⋆ ∈ J (Φ)). Note that we can rewrite any formula in
terms of negation, conjunction, and bi-implication without resulting in a superpolynomial
(or even superlinear) increase in size.6 So we only need to show how to encode the constraints
for these connectives. The following table indicates how to write these constraints.

ϕ2 = ¬ϕ1 x2 = 1− x1

ϕ3 = ϕ1 ∧ ϕ2 x3 6 x1 and x3 6 x2 and x1 + x2 6 x3 + 1
ϕ3 = ϕ1 ↔ ϕ2 x1 + x2 6 x3 + 1 and x1 + x3 6 x2 + 1

and x2 + x3 6 x1 + 1 and 1 6 x1 + x2 + x3

Before we continue, consider the following way of rewriting the sum of distances featuring
in the definition of WinDet⋆(DBP):

∑
J∈J

H(J⋆, J) =
n∑

i=1

∑
ϕ∈Φ+

|J⋆(ϕ) − Ji(ϕ)|

=
1
2
·
∑
ϕ∈Φ

n∑
i=1

|J⋆(ϕ)− Ji(ϕ)|

=
1
2
·
∑
ϕ∈Φ

|n · J⋆(ϕ)−
n∑

i=1

Ji(ϕ)|

We will need to bound this sum from above. Now suppose that variables xi with indices
i ∈ {1, . . . ,m} with m = |Φ| are those that correspond to the propositions that are elements
of Φ. Let ai be the number of individuals that accept the ith proposition in Φ (according

6For instance, any occurrence of A ∨ B can be rewritten as ¬(¬A ∧ ¬B). Note that rewriting a formula
with nested bi-implications in terms of ¬ and ∧ alone may result in an exponential blow-up.
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to J). To compute a winner under the DBP, we need to find a consistent judgement set J⋆

(characterised by variables x1, . . . , xm) that minimises the sum |n·x1−a1|+· · ·+|n·xm−am|.
We do this by introducing an additional set of integer variables yi > 0 for i = 1, . . . ,m. We
can ensure that yi = |n · xi − ai| by adding the following constraints:

(∀i 6 m) n · xi − ai 6 yi

(∀i 6 m) ai − n · xi 6 yi

Now the sum 1
2 ·

∑m
i=1 yi corresponds to the Hamming distance between the winning set

and the profile. To ensure it does not exceed K, we can add the following constraint:

1
2
·

m∑
i=1

yi 6 K

Finally, let xi⋆ be the the variable corresponding to the formula ϕ ∈ Φ for which we want to
answer WinDet⋆(DBP). We can force that ϕ gets accepted by adding one last constraint:

xi⋆ = 1

Now, by construction, the integer program we have presented is feasible if and only if the
instance of WinDet⋆(DBP) we have started out with should be answered in the positive.

Our proof also produces an algorithm for performing distance-based merging in practice.
Observe that the following integer program (now with an objective function) can be used
to find (some) winning judgment set under the DBP:

min
m∑

i=1

yi subject to all of the above constraints

The solution can be read off from the values of the xi. Note that the implementation
details of the IP solver used will implicitly determine a tie-breaking rule. If required, other
tie-breaking rules can be implemented explicitly.

Next, we show that the upper bound established by Lemma 3 is tight. Here, the similarity
of the DBP to the Kemeny rule in preference aggregation allows us to build on a known
NP-hardness result from the literature (Bartholdi et al., 1989b; Hemaspaandra et al., 2005).

Lemma 4. WinDet⋆(DBP) is NP-hard.

Proof sketch. We build a reduction from the problem Kemeny Score, as defined by Hemas-
paandra et al. (2005). An instance of this problem consists of a set of candidates C, a profile
of linear orders7 P = (P1, . . . , Pn) over C, a designated candidate c, and a positive integer
K. The Kemeny score of candidate c is given by the following expression:

KemenyScore(c,P) = min{
n∑

i=1

d(Pi, Q) | top(Q) = c}

where d(Pi, Q) is the Hamming distance between preference profiles and top(Q) is the most
preferred candidate. The problem asks whether the Kemeny score of c is less than K.

We now build an instance of WinDet⋆(DBP) to decide this problem. Define an agenda
ΦC in the following way. First add propositional variables pab for all ordered pairs of
candidates a, b in C; these variables can encode a linear order over C as a binary relation

7Although the Kemeny rule is defined for weak orders, the problem is known to remain NP-complete also
in the case of linear orders (Bartholdi et al., 1989b, Lemma 3).
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(where pab stands for a > b). Then addm2 (wherem = |C|) syntactic variants of the formula
pab ∧ pbc → pac for all suitable combinations of ordered pairs of candidates; these formulas
encode the transitivity of the linear order encoded by the first set of variables. Finally, add
an additional variable topc. Given a preference profile P we can build a judgment profile
JP by encoding all strict orders Pi over C in a judgment set JP over ΦC . Due to space
constraints we just show this procedure for a simple example with three candidates:

P = {a > b > c} ⇒ JP = {pab, pbc,¬pca,¬topc, all transitivity constraints}
To conclude, it is sufficient to notice that d(P,Q) = H(JP , JQ) in case P and Q share the
same top candidate, otherwise the difference is 1. It is therefore sufficient to ask a query
to WinDet⋆(DBP) using JP as a profile, a suitable K ′ as a bound, and topc as the fixed
formula ϕ, to obtain an answer to the initial Kemeny Score instance with parameter
K. The key step is to notice that judgment sets encoding intransitive preferences will
not be considered in the minimisation process, since every disagreement on a transitivity
formula will cause a much greater loss in the Hamming distance than what can be gained
by modifying the variables encoding the candidate rankings.

Putting Lemma 3 and 4 together yields a complete characterisation of the complexity of
winner determination under distance-based merging:

Theorem 5. WinDet⋆(DBP) is NP-complete.

4.3 Strategic Manipulation

Next, we discuss the complexity of manipulating the DBP. Note that our definition of
manipulation was tailored to resolute aggregation procedures, while the DBP (in its most
general form) is irresolute and may return a set of winners. One interesting line of research to
pursue in future work would be to define appropriate notions of manipulation and strategy-
proofness for irresolute JA procedures. Here, instead, we shall assume that the DBP comes
with a fixed tie-breaking rule (say, a lexicographic rule, or even the tie-breaking rule implicit
in the IP formulation of the procedure given above, for a specific IP implementation). We do
assume that this tie-breaking rule does not increase the complexity of winner determination
beyond NP (this is the case for the two examples mentioned). Let Manipulability(DBPt)
be the manipulation problem for the DBP with such a fixed tie-breaking rule.

Establishing the precise complexity of manipulation for distance-based merging is cur-
rently an open problem. However, we are able to provide an upper bound:

Lemma 6. Manipulability(DBPt) is in Σp
2.

Proof sketch. To show membership in Σp
2 we need to show that it is possible to verify a

certificate in polynomial time on a machine that has access to an NP oracle. Recall from
the first part of the proof of Theorem 2 that an appropriate certificate is a judgment set J ′i
for the manipulator that is complete and consistent and that produces an outcome that is
closer to the manipulator’s true judgment set Ji than the outcome produced if she reports Ji.
This involves three non-trivial steps, all of which can be resolved by the NP oracle: deciding
consistency of J ′i is in NP (this is just Sat), and computing the winners for Ji and J ′i is also
in NP (by Lemma 3). Thus, the certificate can be verified using three calls to the oracle;
the remainder of the computation is clearly polynomial.

We conjecture that the above bound is tight, i.e., that Manipulability(DBPt) is Σp
2-

complete.8 If this conjecture is correct, then manipulation is significantly harder than
winner determination, also in the case of distance-based merging.

8To the best of our knowledge, there are currently no known results on the complexity of the (presumably)
closely related problem of manipulating Kemeny elections.

148



5 Related Work

We conclude by briefly reviewing some related work regarding (1) alternative notions of
manipulation in JA, (2) other complexity-theoretic questions in JA, (3) manipulation and
strategy-proofness in belief merging, and (4) the complexity of manipulation in voting.

As mentioned earlier, our definition of strategic manipulation in JA is based on the work
of Dietrich and List (2007). This definition crucially rests on the idea that we can induce
a preference ordering over judgment sets from an agent’s true judgment set an a metric
for measuring “closeness”. The Hamming distance is one such metric; Dietrich and List
(2007) also discuss the concept of “closeness-respecting” preferences (and the corresponding
notions of strategic manipulation) in more general terms. Other than that there has been
preciously little work on manipulation in JA to date. One exception is the work of Pigozzi
et al. (2009), who introduce a notion of full manipulability, which asks whether an agent can
change the outcome to fully coincide with her own judgment set by means of an insincere
judgment. But (as clearly recognised by the authors) the guarantee of the absence of full
manipulation is probably a property that is simply too easy to satisfy to lead to interesting
characterisations of JA procedures.

In previous work (Endriss et al., 2010), we have analysed the complexity of another
aspect of the JA framework: for a given set of axioms characterising a class of aggrega-
tion procedures, how hard is it to check whether a given agenda is safe for all procedures
belonging to that class, in the sense that no profile of complete and consistent individual
judgment sets will ever result in a collective judgment set that is not consistent? (Our results
suggest that deciding safety of the agenda is Πp

2-complete for most natural combinations of
the standard axioms.) To the best of our knowledge, this is the only other work on the
computational complexity of JA to date.

The field of belief merging is closely related to judgment aggregation (Konieczny and
Pino Pérez, 2002; Pigozzi, 2006). A definition of strategy-proofness for belief merging op-
erators has been proposed by Everaere et al. (2007), and the same authors have discussed
the problem of manipulation for a range of belief merging operators. While this work does
include the study of the complexity of belief merging, the complexity of manipulation has,
to the best of our knowledge, not yet been addressed in the belief merging literature.

Finally, there are of course close connections between our work and the line of work in
computational social choice that has studied the complexity of both the winner determi-
nation and the manipulation problem for a range of voting rules in depth, starting with
the seminal work of Bartholdi et al. (1989a,b). Some of this work has been reviewed by
Chevaleyre et al. (2007), who give many references. Recent discussion in the literature on
the complexity of manipulation of elections has centred on the question of whether worst-
case results (such as NP-hardness results) are sufficient deterrents against manipulation in
practice (see e.g. Procaccia and Rosenschein, 2007). They probably are not; what is really
needed is a better understanding of the average-case complexity of manipulation. The very
same questions will have to be asked for JA as well; our (worst-case intractability) result
and conjecture are only the first step.
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Multivariate Complexity Analysis of

Swap Bribery

Britta Dorn and Ildikó Schlotter1

Abstract

We consider the computational complexity of a problem modeling bribery in the
context of voting systems. In the scenario of Swap Bribery, each voter assigns a
certain price for swapping the positions of two consecutive candidates in his pref-
erence ranking. The question is whether it is possible, without exceeding a given
budget, to bribe the voters in a way that the preferred candidate wins in the election.
We initiate a parameterized and multivariate complexity analysis of Swap Bribery,
focusing on the case of k-approval. We investigate how different cost functions
affect the computational complexity of the problem. We identify a special case of
k-approval for which the problem can be solved in polynomial time, whereas we
prove NP-hardness for a slightly more general scenario. We obtain fixed-parameter
tractability as well as W[1]-hardness results for certain natural parameters.

1 Introduction

In the context of voting systems, the question of how to manipulate the votes in some way
in order to make a preferred candidate win the election is a very interesting question. One
possibility is bribery, which can be described as spending money on changing the voters’
preferences over the candidates in such a way that a preferred candidate wins, while re-
specting a given budget. There are various situations that fit into this scenario: The act of
remunerating the voters in order to make them change their preferences, or paying money
in order to get into the position of being able to change the submitted votes, but also the
setting of systematically spending money in an election campaign in order to convince the
voters to change their opinion on the ranking of candidates.

The study of bribery in the context of voting systems was initiated by Faliszewski,
Hemaspaandra, and Hemaspaandra in 2006 [12]. Since then, various models have been an-
alyzed. In the original version, each voter may have a different but fixed price which is
independent of the changes made to the bribed vote. The scenario of nonuniform bribery
introduced by Faliszewski [11] and the case of microbribery studied by Faliszewski, Hemas-
paandra, Hemaspaandra, and Rothe in [13] allow for prices that depend on the amount of
change the voter is asked for by the briber.

In addition, the Swap Bribery problem as introduced by Elkind, Faliszewski, and
Slinko [10] takes into consideration the ranking aspect of the votes: In this model, each
voter may assign different prices for swapping two consecutive candidates in his preference
ordering. This approach is natural, since it captures the notion of small changes and com-
prises the preferences of the voters. Elkind et al. [10] prove complexity results for this
problem for several election systems such as Borda, Copeland, Maximin, and approval vot-
ing. In particular, they provide a detailed case study for k-approval. In this voting system,
every voter can specify a group of k preferred candidates which are assigned one point
each, whereas the remaining candidates obtain no points. The candidates which obtain the
highest sum of points over all votes are the winners of the election. Two prominent special
cases of k-approval are plurality, (where k = 1, i.e., every voter can vote for exactly one
candidate) and veto (where k = m− 1 for m candidates, i.e., every voter assigns one point

1Supported by the Hungarian National Research Fund (OTKA 67651).
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Result Reference

k = 1 (plurality) P [10]
k = m− 1 (veto) P [10]
1 ≤ k ≤ m, m or n constant P [10]
1 ≤ k ≤ m, all costs = 1 P Thm. 1
k = 2 NP-complete [2]
3 ≤ k ≤ m− 2, NP-complete [10]

costs in {0, 1, 2}
2 ≤ k ≤ m− 2, NP-complete [2], Prop. 2

costs in {0, 1} and β = 0
2 ≤ k ≤ m− 2 is part of the input, NP-complete [3], Prop. 2

costs in {0, 1} and β = 0, n constant
2 ≤ k ≤ m− 2, NP-complete, W[1]-hard (β) Thm. 3

costs in {δ1, δ2}, δ2 ≥ 2δ1 > 0
1 ≤ k ≤ m FPT (m) Thm. 4
1 ≤ k ≤ m is part of the input FPT (β, n) by kernelization Thm. 5
1 ≤ k ≤ m FPT (β, n, k) by kernelization Thm. 5

Table 1: Overview of known and new results for Swap Bribery for k-approval. The results
obtained in this paper are printed in bold. Here, m and n denote the number of candidates
and votes, respectively, and β is the budget. For the parameterized complexity results, the
parameters are indicated in brackets. If not stated otherwise, the value of k is fixed.

to all but one disliked candidate). Table 1 shows a summary of research considering Swap
Bribery for k-approval, including both previously known and newly achieved results.

This paper contributes to the further investigation of the case study of k-approval that
was initiated in [10], this time from a parameterized point of view. The main goal of
this approach is to find fixed-parameter algorithms confining the combinatorial explosion
which is inherent in NP-hard problems to certain problem-specific parameters, or to prove
that their existence is implausible. This line of research has been pioneered by Downey and
Fellows [9], see also [15, 21] for two more recent monographs, and naturally expands into the
field of multivariate algorithmics, where the influence of “combined” parameters is studied,
see the recent survey by Niedermeier [22]. These approaches seem to be appealing in the
context of voting systems, where NP-hardness is a desired property for various problems,
like Manipulation, Lobbying, Control, or, as in our case, Swap Bribery. However,
NP-hardness does not necessarily constitute a guarantee against such dishonest behavior.
As Conitzer et al. [8] pointed out for the Manipulation problem, an NP-hardness result in
these settings would lose relevance if an efficient fixed-parameter algorithm with respect to
an appropriate parameter was found. Parameterized complexity can hence provide a more
robust notion of hardness. The investigation of problems from voting theory under this
aspect has started, see for example [1, 3, 4, 7, 20].

We show NP-hardness as well as fixed-parameter intractability of Swap Bribery for
certain very restricted cases of k-approval if the parameter is the budget, whereas we identify
a natural special case of the problem which can be solved in polynomial time. By contrast, we
obtain fixed-parameter tractability with respect to the parameter ‘number of candidates’ for
k-approval and a large class of other voting systems, and a polynomial kernel for k-approval
if we consider certain combined parameters.

The paper is organized as follows. After introducing notation in Section 2, we investigate
the complexity of Swap Bribery depending on the cost function in Section 3, where we
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show the connection to the Possible Winner problem, identify a polynomial-time solvable
case of k-approval and a hardness result. In Section 4, we consider the parameter ‘number
of candidates’ and obtain an FPT result for Swap Bribery for a large class of voting
systems. We also consider the combination of parameters ‘number of votes’ and ‘size of the
budget’. We conclude with a discussion of open problems and further directions that might
be interesting for future investigations.

2 Preliminaries

Elections. An election is a triple E = (V, C, E), where V = {v1, . . . , vn} denotes the set of
votes or voters, C = {c1, . . . , cm} is a set of candidates, and E is the election system which
is a function mapping (V, C) to a set W ⊆ C called the winners of the election. We will
express our results for the winner case where several winners are possible, but our results
can be adapted to the unique winner case where W consists of a single candidate only.

In our context, each vote is a strict linear order over the set C, and we denote by
rank(c, v) the position of candidate c ∈ C in a vote v ∈ V .

For an overview of different election systems, we refer to [6]. We will mainly focus
on election systems that are characterized by a given scoring rule, expressed as a vec-
tor (s1, s2, . . . , sm) where m = |C|. Given such a scoring rule, the score of a candidate c in
a vote v, denoted by score(c, v), is srank(c,v). The score of a candidate c in a set of votes V
is score(c, V ) =

∑
v∈V score(c, v), and the winners of the election are the candidates that

receive the highest score in the given votes.
The election system we are particularly interested in is k-approval, which is defined by

the scoring vector (1, . . . , 1, 0, . . . , 0), starting with k ones. In the case of k = 1, this is the
plurality rule, whereas (m − 1)-approval is also known as veto. Given a vote v, we will say
that a candidate c with 1 ≤ rank(c, v) ≤ k takes a one-position in v, whereas a candidate c′

with k + 1 ≤ rank(c′, v) ≤ m takes a zero-position in v.

Swap Bribery, Possible Winner, Manipulation. Given V and C, a swap in some
vote v ∈ V is a triple (v, c1, c2) where {c1, c2} ⊆ C, c1 6= c2. Given a vote v, we say that a
swap γ = (v, c1, c2) is admissible in v, if rank(c1, v) = rank(c2, v) − 1. Applying this swap
means exchanging the positions of c1 and c2 in the vote v, we denote by vγ the vote obtained
this way. Given a vote v, a set Γ of swaps is admissible in v, if the swaps in Γ can be applied
in v in a sequential manner, one after the other, in some order. Note that the obtained vote,
denoted by vΓ, is independent from the order in which the swaps of Γ are applied. We also
extend this notation for applying swaps in several votes, in the straightforward way.

In a Swap Bribery instance, we are given V , C, and E forming an election, a preferred
candidate p ∈ C, a cost function c mapping each possible swap to a non-negative integer,
and a budget β ∈ N. The task is to determine a set of admissible swaps Γ whose total cost is
at most β, such that p is a winner in the election (V Γ, C, E). Such a set of swaps is called a
solution of the Swap Bribery instance. The underlying decision problem is the following.

Swap Bribery
Given: An election E = (V, C, E), a preferred candidate p ∈ C, a cost function c
mapping each possible swap to a non-negative integer, and a budget β ∈ N.
Question: Is there a set of swaps Γ whose total cost is at most β such that p is
a winner in the election (V Γ, C, E)?

We will also show the connection between Swap Bribery and the Possible Winner
problem. In this setting, we have an election where some of the votes may be partial orders
over C instead of complete linear ones. The question is whether it is possible to extend the
partial votes to complete linear orders in such a way that a preferred candidate wins the
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election. For a more formal definition, we refer to the article by Konczak and Lang [18] who
introduced this problem. The corresponding decision problem is defined as follows.

Possible Winner
Given: A set of candidates C, a set of partial votes V ′ = (v′1, . . . , v

′
n) over C,

an election system E , and a preferred candidate p ∈ C.
Question: Is there an extension V = (v1, . . . , vn) of V ′ such that each vi ex-
tends v′i, and p is a winner in the election (V, C, E)?

A special case of Possible Winner is Manipulation (see e.g. [8, 17]). Here, the given
set of partial orders consists of two subsets; one subset contains linearly ordered votes and
the other one completely unordered votes.

Parameterized complexity, Multivariate complexity. Parameterized complexity is a
two-dimensional framework for studying the computational complexity of problems [9, 15,
21]. One dimension is the size of the input I (as in classical complexity theory) and the
other dimension is the parameter k (usually a positive integer). A problem is called fixed-
parameter tractable (FPT) with respect to a parameter k if it can be solved in f(k) · |I|O(1)

time, where f is an arbitrary computable function [9, 15, 21]. Multivariate complexity
is the natural sequel of the parameterized approach when expanding to multidimensional
parameter spaces, see [22]. For example, if we regard two parameters, say k1 and k2, then
the desired FPT algorithm should run in time f(k1, k2) · |I|O(1) for some f .

The first level of (presumable) parameterized intractability is captured by the complexity
class W[1]. A parameterized reduction reduces a problem instance (I, k) in f(k) · |I|O(1) time
to an instance (I ′, k′) such that (I, k) is a yes-instance if and only if (I ′, k′) is a yes-instance,
and k′ only depends on k but not on |I|.

We will use the following W[1]-hard problem [14] for the hardness reduction in this work:

Multicolored Clique
Given: An undirected graph G = (V1 ∪ V2 ∪ · · · ∪ Vk, E) with Vi ∩ Vj = ∅ for
1 ≤ i < j ≤ k where the vertices of Vi induce an independent set for 1 ≤ i ≤ k.
Question: Is there a complete subgraph (clique) of G of size k?

We will also make use of a kernelization algorithm in this work, which is a standard
technique for obtaining fixed-parameter results, see [5, 16, 21]. The idea is to transform the
input instance (I, k) in a polynomial time preprocessing step via data reduction rules into
a “reduced” instance (I ′, k′) such that two conditions hold: First, (I, k) is a yes-instance if
and only if (I ′, k′) is a yes-instance, and second, the size of the reduced instance depends
on the parameter only, i.e., |I ′| + |k′| ≤ g(p) for some arbitrary computable function g.
The reduced instance (I ′, k′) is then referred to as the problem kernel. If in addition g is a
polynomial function, we say that the problem admits a polynomial kernel. The existence of
a problem kernel is equivalent to fixed-parameter tractability of the corresponding problem
with respect to the particular parameter [21].

3 Complexity depending on the cost function

In this section, we focus our attention on Swap Bribery for k-approval. We start with the
case where all costs are equal to 1, for which we obtain polynomial-time solvability.

Theorem 1. Swap Bribery for k-approval is polynomial-time solvable, if all costs are 1.

Proof. Let V be the set of votes and C be the set of candidates. The score of any candidate is
an integer between 0 and |V |. Our algorithm finds out for each possible s∗ with 1 ≤ s∗ ≤ |V |
whether there is a solution in which the preferred candidate p wins with score s∗.
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Given a value s∗, we answer the above question by solving a corresponding minimum
cost maximum flow problem. We will define a network N = (G, s, t, g, w) on a directed
graph G = (D, E) with a source vertex s and a target vertex t, where g denotes the
capacity function and w the cost function defined on E. First, we introduce the vertex sets
A = {av,c | v ∈ V, c ∈ C, rank(c, v) ≤ k}, A′ = {a′v,c | v ∈ V, c ∈ C} and B = {bc | c ∈ C},
and we set D = {s, t, x} ∪ A ∪ A′ ∪ B. We define the arcs E as the union of the sets
ES = {sa | a ∈ A}, EA = {av,ca

′
v,c | rank(c, v) ≤ k}, EA′ = {av,ca

′
v,c′ | rank(c, v) ≤

k, rank(c′, v) > k}, EB = {a′v,cbc | v ∈ V, c ∈ C}, EX = {bcx | c ∈ C, c 6= p}, plus the
arcs bpt and xt. We set the cost function w to be 0 on each arc except for the arcs of EA′ ,
and we set w(av,ca

′
v,c′) = rank(c′, v)− rank(c, v). We let the capacity g be 1 on the arcs of

ES∪EA∪EA′∪EB , we set it to be s∗ on the arcs of EX∪{bpt}, and we set g(xt) = |V |k−s∗.
The soundness of the algorithm and hence the theorem itself follows from the following

observation (for a detailed proof, see the full version): there is a flow of value |V |k on N
having total cost at most β if and only if there exists a set Γ of swaps with total cost at
most β such that score(p, V Γ) = s∗ and score(c, V Γ) ≤ s∗ for any c ∈ C, c 6= p.

Theorem 1 also implies a polynomial-time approximation algorithm for Swap Bribery
for k-approval with approximation ratio δ, if all costs are in {1, δ} for some δ ≥ 1.

Proposition 2 shows the connection between Swap Bribery and Possible Winner.
This result is an easy consequence of a reduction given by Elkind et al. [10]. For the proof
of the other direction, see again the full version.

Proposition 2. The special case of Swap Bribery where the costs are in {0, δ} for
some δ > 0 and the budget is zero is equivalent to the Possible Winner problem.

As a corollary, Swap Bribery with costs in {0, δ}, δ > 0 and budget zero is NP-complete
for almost all election systems based on scoring rules [2]. For many voting systems such as
k-approval, Borda, and Bucklin, it is NP-complete even for a fixed number of votes [3].

We now turn to the case with two different positive costs, addressing 2-approval.

Theorem 3. (1) Swap Bribery for 2-approval, with costs in {1, 2}, is NP-complete.
(2) Swap Bribery for 2-approval, with costs in {1, 2}, is W[1]-hard, if the parameter is
the budget β, or equivalently, the maximum number of swaps allowed.

Proof. We present a reduction from the Multicolored Clique problem. Let F = (V, E)
with the k-partition V = V1 ∪ V2 ∪ · · · ∪ Vk be the given instance of Multicolored
Clique. For each 1 ≤ i < j ≤ k we let Ei,j = {xy | x ∈ Vi, y ∈ Vj , xy ∈ E}. We construct
an instance IF of Swap Bribery as follows.

The set C of candidates will be C =
⋃

i∈[k](Ai ∪ Bi ∪ Ci) ∪ D ∪ G ∪ {p} where Ai =
{aj

v | j ∈ [k], v ∈ Vi}, Bi = {bj
v | j ∈ [k], v ∈ Vi}, and Ci = {ci,j | j ∈ [k]}. (Here and

later, we write [k] for {1, 2, . . . , k}.) Our preferred candidate is p. The sets D = {d1, d2, . . . }
and G = {g1, g2, . . . } will contain dummies and guards, respectively. Our budget will be
β = 6k2−k. Regarding the indices i and j, we will suppose i, j ∈ [k] if not stated otherwise.

The set of votes will be W = WG ∪ WI ∪ WS ∪ WC . Votes in WG will define guards
(explained later), votes in WI will set the initial scores, votes in WS will represent the
selection of

(
k
2

)
edges and k vertices, and finally, votes in WC will be responsible for checking

that the selected edges connect selected vertices. We construct W such that the following
will hold for some fixed even integer K (determined later):

score(p, W ) = K.
score(ci,j , W ) = K + 1 for each i and j,
score(q, W ) = K for each q ∈ ⋃

i∈[k](Ai ∪Bi) ∪G, and
score(d, W ) ≤ 1 for each d ∈ D.
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We define the cost function c such that each swap has cost 1 or 2. We will define each
cost to be 1 if not explicitly stated otherwise. Using that each cost is at least 1, we get
that none of the candidates ranked after the position β + 2 in a vote v can receive non-zero
score in v without violating the budget. Thus, we can represent votes by listing only their
first β + 2 positions. We say that a candidate does not appear in some vote, if he is not
contained in these positions.

Dummies, guards, and truncation. First, let us clarify the concept of dummy
candidates: we will ensure that no dummy can receive more than one score in total, by
letting each d ∈ D appear in exactly one vote. This can be ensured easily by using at most
|W |(β + 2) dummies in total. We will use the sign ∗ to denote dummies in votes.

Now, we define β + 2 guards using the votes WG. We let WG contain votes of the
form wG(h) for each h ∈ [β + 2], each such vote having multiplicity K/2 in WG. We let
wG(h) = (gh, gh+1, gh+2, . . . , gβ+2, g1, g2, . . . gh−1). Clearly, score(g, WG) = K for each g ∈
G, and the total score obtained by the guards in WG cannot decrease. As we will make
sure that our preferred candidate cannot receive more than K scores without exceeding the
budget, this yields that in any possible solution, each guard must have score exactly K.

Using guards, we can truncate votes at any position h > 2 by putting arbitrarily chosen
guards at the positions h, h + 1, . . . , β + 2. This way we ensure that only candidates on the
first h− 1 positions can receive a score in this vote. We will denote truncation at position h
by using a sign † at that position.

Setting initial scores. Using dummies and guards, we define WI to adjust the initial
scores of the relevant candidates as follows. We put the following votes into WI :

(p, ∗, †) with multiplicity K,
(ci,j , ∗, †) with multiplicity K + 1− |Ei,j | for each i 6= j,

(ci,i, ∗, †) with multiplicity K + 1− |Vi| for each i ∈ [k], and
(q, ∗, †) with multiplicity K − 1 for each q ∈ ⋃

i∈[k](Ai ∪Bi).

The preferred candidate p will not appear in any other vote, implying score(p, W ) = K.
Selecting edges and vertices. The set WS consists of the following votes:

wS(i, x) = (∗, ci,i, ai
x, †) for each i ∈ [k] and x ∈ Vi, and

wS(i, j, x, y) = (ci,j , cj,i, aj
x, ai

y, †) for each i < j, x ∈ Vi, y ∈ Vj , xy ∈ E.

The cost of swapping ci,j with cj,i and the cost of swapping ai
x with aj

y in wS(i, j, x, y) is 2.
Checking incidency. The set WC will contain the votes

wC(i, x) = (ai
x, bi−1

x , bi
x, ∗, †) for each i ∈ [k] and x ∈ Vi.

Here i− 1 is taken modulo k. In wC(i, x) we let the cost of swapping ai
x with bi−1

x and also
the cost of swapping bi

x with the neighboring dummy be 2.
It remains to define K properly. To this end, we let K be the minimum even integer not

smaller than the integers |Ei,j | for every 1 ≤ i < j ≤ k and |Vi| for each i ∈ [k]. This finishes
the construction. Note that the initial scores of the candidates are as claimed above.

Construction time. Observe |WG| = (β + 2)K/2, |WI | = O(Kk|V |), |WS | = |E| +
|V |, and |WC | = |V |. Hence, the number of votes is polynomial in the size of the input
graph F . This also implies that the number of candidates is polynomial as well, and the
whole construction takes polynomial time. Note also that β is only a function of k, hence
this yields an FPT reduction as well.

Our aim is to show the following: F has a k-clique if and only if the constructed instance
is a yes-instance of Swap Bribery. This will prove both (1) and (2).
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Direction ⇐=. Suppose that IF is solvable, and there is a set Γ of swaps transforming W
into W ′ with total cost at most β such that p wins in W ′ according to 2-approval. We also
assume w.l.o.g. that Γ is a solution having minimum cost.

As argued above, score(p, W ′) ≤ K and score(g, W ′) ≥ K for each g ∈ G follow directly
from the construction. Thus, only score(p, W ′) = score(g, W ′) = K for each g ∈ G is
possible. Thus, for any i, j ∈ [k], by score(ci,j , W ) = K + 1 we get that ci,j must lose at
least one score during the swaps. Considering ci,i (and the optimality of Γ), this means
that each ci,i is swapped with ai

x by Γ in wS(i, x) for some unique x ∈ Vi. We use the
notation σ(i) to denote this vertex x, i.e. we let σ(i) = x. We will show that the vertices
σ(1), σ(2), . . . , σ(k) form a k-clique in F .

Let us denote by Γvs the set of those swaps in Γ that swap ci,i with ai
σ(i) for some i ∈ [k].

Clearly, Γvs has total cost k.
Let us fix i and j now, assuming i < j. Since both ci,j and cj,i have the same score

in WI as in WΓ
I , ci,j must lose a score due to swaps in wS(i, j, x1, y1) for some x1 and y1,

and similarly, cj,i must lose a score due to swaps in wS(i, j, x2, y2) for some x2 and y2. Let
Γes(i, j) be the swaps applied in these two votes. There are three possibilities for Γes(i, j):

(a) wS(i, j, x1, y1) = wS(i, j, x2, y2), and the swaps in Γes(i, j) transform the vote
(ci,j , cj,i, aj

x1
, ai

y1
, †) into (aj

x1
, ai

y1
, ci,j , cj,i, †) through 4 swaps having total cost 4.

(b) wS(i, j, x1, y1) 6= wS(i, j, x2, y2) and as a result of the swaps in Γes(i, j), ci,j gets to the
third position of wS(i, j, x1, y1), and cj,i gets to the third position of wS(i, j, x2, y2).
In this case, |Γes(i, j)| ≥ 3 and c(Γes(i, j)) ≥ 4.

(c) wS(i, j, x1, y1) 6= wS(i, j, x2, y2) and after the swaps in Γes(i, j), at least one of ci,j and
cj,i is placed on the fourth position in one of the votes wS(i, j, x1, y1) or wS(i, j, x2, y2).
This means |Γes(i, j)| ≥ 4 and c(Γes(i, j)) ≥ 5.

From the above discussion, the cost of the swaps in Γes(i, j) is at least 4. Moreover,
as a result of the swaps in Γes(i, j), the candidates in aj

x1
, ai

y1
, aj

x2
, ai

y2
receive a total of 2

additional scores with respect to their initial score in W .
Let A∗ denote those candidates in

⋃
i∈[k] Ai which receive an additional score as a result

of the swaps in Γvs or in Γes(i, j) for some i < j. The total score gained by the candidates
in A∗ during these swaps is exactly k2. Since the initial score of each candidate in A∗ is K,
we know that the remaining swaps of Γ must force these candidates to lose a total of k2

scores. Observe that this can only happen through swaps applied in WC , and moreover,
each candidate can lose at most one score with such swaps. This implies |A∗| = k2.

Let Γc be the set of swaps in Γ applied in WC , transforming WC into a set of votes W ′
C .

The above discussion yields that score(a, WC) > score(a, W ′
C) holds for each a ∈ A∗. Since Γ

is a solution, we also obtain that score(q, WC) ≤ score(q, W ′
C) must hold for each q ∈⋃

i∈[k] Bi ∪G. We will prove the following claim below.
Claim. c(Γc) ≥ 4k2, and equality can only be reached if

{aj
x | j ∈ [k]} ∩A∗ = ∅ or {aj

x | j ∈ [k]} ⊆ A∗ holds for each x ∈ V . (1)

Using this claim, c(Γ) = c(Γvs) +
∑

i<j c(Γvs(i, j)) + c(Γc) ≥ k + 4
(
k
2

)
+ 4k2 = 6k2 − k = β

follows. Thus, equalities must hold everywhere, resulting in the following consequences.
First, (1) implies that A∗ is the union of sets of the form {a1

x, a2
x, . . . ak

x} for exactly k
vertices x. By ai

σ(i) ∈ A∗, this yields A∗ =
⋃

i,j∈[k]{aj
σ(i)}. Recall that by our construction

of the votes wS(i, x), we know σ(i) ∈ Vi for each i.
Second, note that c(Γes(i, j)) = 4 shows that case (c) cannot happen for the

swaps Γes(i, j). Moreover, from (1) we have |A∗ ∩ Ai| = k for each i ∈ [k], which im-
plies that case (b) can neither happen. Thus, the only possibility is case (a), meaning
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that the swaps of Γes(i, j) transform the vote (ci,j , cj,i, aj
x, ai

y, †) for some x and y into a
vote (aj

x, ai
y, ci,j , cj,i, †). However, by the definition of wS(i, j, x, y) we know x ∈ Vi, y ∈ Vj ,

and xy ∈ E. But from A∗ =
⋃

i,j∈[k]{aj
σ(i)}, we get that only x = σ(i) and y = σ(j) is

possible. Hence, σ(i) and σ(j) are neighboring for each i < j, proving the first direction.
Before proving the other direction, it remains to show our claim. Let us fix some x ∈ V ,

and let us suppose {aj
x | j ∈ [k]}∩A∗ 6= ∅. Let |A∗ ∩{aj

x | j ∈ [k]}| = a∗x, and let c(i) be the
total cost of the swaps in Γc applied to wC(i, x). We are trying to show that

∑
i∈[k] c(i) ≥ 4a∗x

and equality implies a∗x = k.
Recall that ai

x appears only in the vote wC(i, x) = (ai
x, bi−1

x , bi
x, ∗, †) in WC . We will use

0-1 variables αi and βi to denote whether the score of ai
x and bi

x, respectively, are changed in
wC(i, x) as a result of the swaps in Γc. The following are elementary observations (sometimes
we also use that Γc is of minimum cost, and we take i− 1 modulo k):

1. If αi = 1 and βi = 0 then c(i) = 5. (In this case, βi−1 = 0 must hold.)
2. If αi = 0 and βi = 1 then c(i) = 1. (In this case, βi−1 = 1 must hold.)
3. If αi = 0, βi = 0, and βi−1 = 0 then c(i) = 0.
4. If αi = 0, βi = 0, and βi−1 = 1 then c(i) = 3.
5. If αi = 1, βi = 1, and βi−1 = 0 then c(i) = 3.
6. If αi = 1, βi = 1, and βi−1 = 1 then c(i) = 4.
7. If βi = 0 and βi−1 = 1, then αi = 1 is not possible.

First, note that if βi = 1 for every i ∈ [k], then
∑

i∈[k] c(i) = 4a∗x + (k − a∗x) follows
directly by 2 and 6 above. Thus,

∑
i∈[k] c(i) ≥ 4a∗x holds, and equality indeed implies a∗x = k.

Otherwise, let us call a maximal series of indices i, i + 1, . . . , j in [k] a segment, if βi =
βi+1 = · · · = βj−1 = 1 but βj = 0. We think of such series in a cyclic manner, so i > j is
possible. First, observe that the cycle 1, 2, . . . , k can be decomposed into a certain number
of segments and a remaining set H of indices h for which βh = βh−1 = 0. Let us write
I∗ = {i | ai

x ∈ A∗} for the set of indices associated with A∗. From claims 1 and 3, we know∑
h∈H c(h) = 5|I∗ ∩H |.
Now, consider a segment i, i + 1, . . . , j, and let S denote the set of its elements. By

claims 7 and 4 we get αj = 0 and c(j) = 3. Since case 5 above can only apply for i, by
an easy calculation we obtain

∑
h∈S c(h) ≥ c(j) +

∑
h∈S∩I∗ c(h) > 4|S ∩ I∗|. Taking into

account all segments together with the set H , we get
∑

i∈[k] c(i) > 4a∗x. From this, the claim
follows.

Direction =⇒. Let σ(1), σ(2), . . . , σ(k) form a k-clique in F where σ(i) ∈ Vi for each i.
It is straightforward to check that the following swaps of total cost β yield a solution for IF :
1. For each i ∈ [k], swap ci,i with ai

σ(i) in wS(i, σ(i)).

2. For each i < j, swap both ci,j and cj,i with both aj
σ(i) and ai

σ(j) in wS(i, j, σ(i), σ(j)).

3. For each i, j ∈ [k], swap both aj
σ(i) and bj−1

σ(i) with bj
σ(i) and the dummy in wC(i, σ(i)).

Looking into the proof of Theorem 3, we can see that the results hold even if the costs
are uniform in the sense that swapping two given candidates has the same price in any vote,
and the maximum number of swaps allowed in a vote is at most 4. By applying minor
modifications to the given reduction, Theorem 3 can be generalized to hold for the following
modified versions as well.

• If all costs are in {δ1, δ2} such that δ2 ≥ 2δ1 > 0: we only have to replace costs 1 and
2 with new costs δ1 and δ2, respectively.

• If we want p to be the unique winner: we only have to set score(p, W ) = K + 1.
• If we use k-approval for some 3 ≤ k ≤ |C| − 2 instead of 2-approval: it suffices to

insert k − 2 dummies into the first k − 2 positions of each vote.
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Hence, Theorem 3 shows that Swap Bribery remains hard even if we consider such natural
parameters as the maximum number of swaps allowed in a vote, the maximum number of
different possible costs, or the maximum ratio of two different costs to have a fixed value.

4 Other parameterizations

In this section, we will consider different kinds of parameterizations. First, we will look at
the parameter ‘number of candidates’. For this case, the following observation is helpful.

Let Sm = {π1, π2, . . . , πm!} be the set of permutations of size m. We say that an election
system is described by linear inequalities, if for a given set C = {c1, c2, . . . , cm} of candidates
it can be characterized by f(m) sets A1, A2, . . . Af(m) (for some computable function f) of
linear inequalities over m! variables x1, x2, . . . , xm! in the following sense: if ni denotes
the number of those votes in a given election E that order C according to πi, then the
first candidate c1 is a winner of the election if and only if for at least one index i, the
setting xj = nj for each j satisfies all inequalities in Ai.

It is easy to see that many election systems can be described by linear inequalities: any
system based on scoring rules, Copelandα (0 ≤ α ≤ 1), Maximin, Bucklin, Ranked pairs.

Theorem 4. Swap Bribery is FPT if the parameter is the number of candidates, for any
election system described by linear inequalities.

Proof. Let C = {c1, c2, . . . , cm} be the set of candidates given, and let A1, A2, . . . Af(m)

be the sets of linear inequalities over variables x1, . . . , xm! that describe the given election
system E . For some πi ∈ Sm, let vi denote the vote that ranks C according to πi. We
describe the given set V of votes by writing ni for the multiplicity of the vote vi in V .

Our algorithm solves f(m) integer linear programs with variables T = {ti,j | i 6= j,
1 ≤ i, j ≤ m!}. We will use ti,j to denote the number of votes vi that we transform into
votes vj ; we will require ti,j ≥ 0 for each i 6= j. Let V T denote the set of votes obtained
by transforming the votes in V according to the variables ti,j for each i 6= j. Such a
transformation from V is feasible if

∑
j 6=i ti,j ≤ ni holds for each i ∈ [m!] (inequality A).

By an observation in [10], we can compute the price ci,j of transforming the vote vi

into vj in O(m3) time. Transforming V into V T can be done with total cost at most β, if∑
i,j∈[m!] ti,jci,j ≤ β (inequality B).
We can express the multiplicity x′i of the vote vi in V T as x′i = ni +

∑
j 6=i tj,i−

∑
i6=j ti,j .

For some i ∈ [f(m)], let A′
i denote the set of linear inequalities over the variables in T

that are obtained from the linear inequalities in Ai by substituting xi with the above given
expression for x′i. Using the description of E with the given linear inequalities, we know
that the preferred candidate c1 wins in (V T , C, E) for some values of the variables ti,j if
and only if these values satisfy the inequalities of A′

i for at least one i ∈ [f(m)]. Thus, our
algorithm solves Swap Bribery by finding a non-negative assignment for the variables in T
that satisfies both the inequalities A, B, and all inequalities in A′

i for some i.
Solving such a system of linear inequalities can be done in linear FPT time, if the

parameter is the number of variables [19]. By |T | = (m!− 1)m! the theorem follows.

Similarly, we can also show fixed-parameter tractability for other problems if the pa-
rameter is the number of candidates, for example for Possible Winner (this result was
already obtained for several election systems by Betzler et al., [3]), Manipulation (both
for weighted and unweighted voters), several variations of Control (this result was already
obtained for Llull and Copeland voting by Faliszewski et al., [13]), or Lobbying [7] (here,
the parameter would be the number of issues in the election). Since our topic is Swap
Bribery, we will not go into detail here.

Finally, we consider a combined parameter and obtain fixed-parameter tractability.

159



Theorem 5. If the minimum cost is 1, then Swap Bribery for k-approval (where k is
part of the input) with combined parameter (|V |, β) admits a kernel with O(|V |2β) votes and
O(|V |2β2) candidates. Here, V is the set of votes and β is the budget.

Proof. Let V , C, p ∈ C, and β denote the set of votes, the set of candidates, the preferred
candidate, and the budget given, respectively. The idea of the kernelization algorithm is
that not all candidates are interesting for the problem: only candidates that can be moved
within the budget β from a zero-position to a one-position or vice versa are relevant.

Let Γ be a set of swaps with total cost at most β. Clearly, as the minimum possible
cost of a swap is 1, we know that there are only 2β candidates c in a vote v ∈ V for which
score(c, v) 6= score(c, vΓ) is possible, namely, such a c has to fulfill k − β + 1 ≤ rank(c, v) ≤
k + β. Thus, there are at most 2β|V | candidates for which score(c, V ) 6= score(c, V Γ) is
possible; let us denote the set of these candidates by C̃. Let c∗ be a candidate in C \ C̃

whose score is the maximum among the candidates in C \ C̃.
Note that a candidate c ∈ C \ (C̃ ∪ {c∗, p}) has no effect on the answer to the problem

instance. Indeed, if score(p, V Γ) ≥ score(c∗, V Γ), then the score of c is not relevant, and
conversely, if score(p, V Γ) < score(c∗, V Γ) then p loses anyway. Therefore, we can disregard
each candidate in C \ C̃ except for c∗ and p.

The kernelization algorithm constructs an equivalent instance K as follows. In K, nor
the budget, nor the preferred candidate will be changed. However, we will change the value
of k to be β + 1, so the kernel instance K will contain a (β + 1)-approval election2. We
define the set VK of votes and the set CK of candidates in K as follows.

First, the algorithm “truncates” each vote v, by deleting all its positions (together with
the candidates in these positions) except for the 2β positions between k − β + 1 and k + β.
Then again, we shall make use of dummy candidates (see the proof of Theorem 3); we
will ensure score(d, V Γ) ≤ 1 for each such dummy d. Swapping a dummy with any other
candidate will have cost 1 in K. Now, for each obtained truncated vote, the algorithm inserts
a dummy candidate in the first position, so that the obtained votes have length 2β + 1. In
this step, the algorithm also determines the set C̃ and the candidate c∗. This can be done
in linear time. We denote the votes3 obtained in this step by Vr. We do not change the
costs of swapping candidates of C̃ ∪ {c∗, p} in some vote v ∈ Vr.

Next, to ensure that K is equivalent to the original instance, the algorithm constructs
a set Vd of votes such that score(c, Vr ∪ Vd) = score(c, V ) holds for each candidate c in
C̃ ∪ {p, c∗}. This can be done by constructing score(c, V ) − score(c, Vr) newly added votes
where c is on the first position, and all the next 2β positions are taken by dummies. This
way we ensure score(c, Vd) = score(c, V Γ

d ) for any set Γ of swaps with total cost at most β.
If D is the set of dummy candidates created so far, then let CK = C̃ ∪ {p, c∗} ∪D. To

finish the construction of the votes, it suffices to add for each vote v ∈ Vr∪Vd the candidates
not yet contained in v, by appending them at the end (starting from the (2β+1)-th position)
in an arbitrary order. The obtained votes will be the votes VK of the kernel.

The presented construction needs polynomial time. Using the above mentioned argu-
ments, it is straightforward to verify that the constructed kernel instance is indeed equivalent
to the original one. Thus, it remains to bound the size of K.

Clearly, |C̃ ∪ {p, c∗}| ≤ 2|V |β + 2. The number of dummies introduced in the first phase
is exactly |Vr| = |V |. As the score of any candidate in V is at most |V |, the number of votes
created in the second phase is at most (2|V |β + 2)|V |, which implies that the number of
dummies created in this phase is at most (2|V |β + 2)|V | · 2β. Therefore, we obtain |CK | ≤
|V |+ (2|V |β + 2)(2|V |β + 1) = O(|V |2β2), and also |VK | ≤ (2|V |β + 3)|V | = O(|V |2β).

2We use β + 1 instead of β to avoid complications with the case β = 0.
3Actually, these vectors are not real votes in the sense that they do not contain each candidate, but at

the moment we do not care about this.
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Applying similar ideas, a kernel with (|V |+k)β candidates is easy to obtain, which might
be favorable to the above result in cases where k is small.

5 Conclusion

We have taken the first step towards parameterized and multivariate investigations of Swap
Bribery under certain voting systems. We obtained W[1]-hardness for k-approval if the
parameter is the budget β, while Swap Bribery could be shown to be in FPT for a very
large class of voting systems if the parameter is the number of candidates. This revaluates
previous NP-hardness results: Swap Bribery could be computed efficiently if the number
of candidates is small, which is a common setting, e.g. in presidential elections.

However, we have shown this via an integer linear program formulation, using a result by
Lenstra, which does not provide running times that are suitable in practice. Here, it would
be interesting to give combinatorial algorithms that compute an optimal swap bribery. This
might be particularly relevant for a scenario described by Elkind et al. [10], where bribery
is not necessarily considered as an undesirable thing, like in the case of campaigning.

As Elkind et al. [10] pointed out, it would be nice to characterize further natural
polynomial-time solvable cases of Swap Bribery. We provided one such example with
Theorem 1 for k-approval in the case where costs are equal to 1. By contrast, already the
case of two different costs δ1, δ2 with δ2 ≥ 2δ1 > 0 becomes NP-complete for k-approval
(2 ≤ k ≤ m− 2) and W[1]-hard if the parameter is the budget β. We believe that this can
be generalized to the case of two different (arbitrary) positive costs.

There are plenty of possibilities to carry on our initiations. First, there are more pa-
rameterizations to be looked at, and in particular the study of combined parameters in the
spirit of Niedermeier [22], see e.g. [1], is an interesting approach.

Also, we have focused our attention to k-approval, but the same questions could be
studied for other voting systems, or for the special case of Shift Bribery which was shown
to be NP-complete for several voting systems [10], or other variants of the bribery problem
as mentioned in the introduction. For instance, we have only looked at constructive swap
bribery, but the case of destructive swap bribery (when our aim is to achieve that a disliked
candidate does not win) is worth further investigation as well.

Acknowledgments. We thank Rolf Niedermeier for an inspiring initial discussion on this
topic.
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Parameterized Control Complexity in Bucklin Voting and
in Fallback Voting1

Gábor Erdélyi and Michael R. Fellows

Abstract

We study the parameterized control complexity of Bucklin voting and of fallback voting, a voting
system that combines Bucklin voting with approval voting. Electoral control is one of many different
ways for an external agent to tamper with the outcome of an election. We show that even though the
representation of the votes and the winner determination isdifferent, the parameterized complexity of
some standard control attacks is the same. In particular, weshow that adding and deleting candidates in
both voting systems are W[2]-hard for both the constructive and destructive case, parameterized by the
amount of action taken by the external agent. Furthermore, we show that adding and deleting voters in
both Bucklin voting and fallback voting are W[2]-hard for the constructive case, parameterized again
by the amount of action taken by the external agent, and are inFPT for the destructive case.

1 Introduction

The study of algorithmic issues related to voting systems has become an important topic in contemporary
computer science, due to the many applications of deciding between alternatives, or ranking information, in
a wide variety of contexts.

Rich questions inevitably arise about the tractability of the election processes, and their susceptibility to
manipulation. This paper is about this context of research.

We study the complexity of manipulation of elections based on Bucklin voting, and offallback voting, a
voting system that combines Bucklin voting with approval voting.

2 Preliminaries

Many different ways of changing the outcome of an election have been studied with respect to the compu-
tational complexity of the strategy, such asmanipulation[BTT89, BO91, CSL07, HH07, FHHR09b], where
a group of voters casts their votes strategically,bribery [FHH09, FHHR09a], where an external agent bribes
a group of voters in order to change their votes, andcontrol [BTT92, HHR07, FHHR09a, HHR09, ENR09,
FHHR09b, EPR10], where an external agent—which is referredto as “The Chair”—changes the structure of
the election (for example, by adding/deleting/partitioning either candidates or voters).

In this paper, we are concerned withcontrol issuesfor the relatively recently introduced system offallback
voting(FV, for short) [BS09] andBucklin voting(BV, for short). A voting system is said to beimmuneagainst
a certain type of control if it is impossible to affect the outcome of the election via that type of control. If a
voting system is not immune to a type of control, then it is said to besusceptible. When control is possible,
the task of exerting control may still be NP-hard. In this case the voting system is said to beresistantagainst
that type of control. If the chair’s task can be solved in polynomial-time for a type of control then the voting
system is said to bevulnerableto that type of control.

1This work was supported in part by the DFG under grants RO 1202/12-1 (within the European Science Foundation’s EUROCORES
program LogICCC: “Computational Foundations of Social Choice”) and RO 1202/11-1. Work done in part while the first author was
visiting the University of Newcastle.
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We investigate the issues in the framework parameterized complexity. Many voting systems present
NP-hard algorithmic challenges. Parameterized complexity is a particularly appropriate framework in many
contexts of voting systems because it is concerned with exact results that exploit the structure of input dis-
tributions. It is not appropriate in political contexts, for example, to algorithmically determine a winner
“approximately”. The computational complexity of controlproblems under the parameterized complexity
framework has been studied before. Betzler and Uhlmann [BU08] proved that constructive control by delet-
ing candidates in plurality voting is W[2]-hard with respect to the number of deleted candidates, and destruc-
tive control by deleting candidates in plurality voting is W[1]-hard with respect to the number of deleted
candidates. They also proved that constructive control by adding/deleting candidates in Copeland voting is
W[2]-complete with respect to the number of added/deleted candidates. Recently, Liu et al. [LFZL09] proved
that both constructive and destructive control by adding candidates in plurality voting is W[2]-hard with re-
spect to the number of added candidates, constructive control by adding/deleting voters in Condorcet voting
is W[1]-hard, constructive control by adding voters in approval voting is W[1]-hard, and constructive control
by deleting voters in approval voting is W[2]-hard. In all four voter control results they parameterizedby the
natural parameterization, i.e., the number of added/deleted voters.

We study Bucklin voting and fallback voting, a voting systemthat combines Bucklin voting with ap-
proval voting. Fallback voting is the natural voting systemwith an easy winner-determination procedure, that
currently has the most resistances for control attacks (19 out of 22) [EPR10].

2.1 Elections and Electoral Control

An election(C,V) consists of a finite set of candidatesC and a finite collection of votersV who express their
preferences over the candidates inC. A voting system is a set of rules determining the winners of an election.
Votes can be represented in different ways, depending on thevoting system used. We say that a voterv∈V
has a preferenceweak order< onC, if < is transitive(i.e., for any three distinct candidatesx,y,z∈C, x < y
andy< z imply x< z) andcomplete(i.e., for any two distinct candidatesx,y∈C, eitherx< y or y< x). x< y
means that voterv likes x at least as much asy. If ties are excluded in the voters’ preference rankings, this
leads to alinear orderor strict ranking, denoted by≻. A strict ranking is always antisymmetric (i.e., for any
two distinct candidatesx,y∈C eitherx≻ y or y≻ x holds, but not both at the same time) and irreflexive (i.e.,
for eachx∈C the following does not hold:x≻ x). In this paper we will write x y, instead ofx≻ y.

Definition 2.1. Let (C,V) be an election with‖C‖ = m and‖V‖ = n. Define thestrict majority threshold
(SMT, for short) as the value Mt = ⌊n/2⌋+ 1. In Bucklin voting every voter v∈ V has to provide a strict
ranking.

The votes of a voter v are represented as a list of all candidates, where the leftmost candidate is v’s most
preferred candidate, the second candidate from left is v’s second most preferred candidate and so on. In our
constructions, we sometimes also insert a subset B⊆C into such votes, where we assume some arbitrary,
fixed order of the candidates in B (e.g., “c1 B c5 ” means that c1 is the voter’s favourite candidate, c5 is
the voter’s most despised candidate and all b∈ B are in between these two candidates). Let scorei

(C,V)(c)
denote the number of voters who rank candidate c on level i or higher in election(C,V). Define theBucklin
scoreof candidate c as scoreB(c) = min{i |scorei(C,V)(c)≥Mt}, i.e., the smallest level i where the level i score
of c is at least as high as the SMT. The candidate with the lowest Bucklin score is the unique Bucklin winner
of the election. If there are more than one candidates with a lowest Bucklin score, say i, then each candidate
with the highest level i score is the Bucklin winner of the election.

Note that there always exists a Bucklin winner.
Approval voting, introduced by Brams and Fishburn [BF78, BF83] is not a preference based voting sys-

tem. In approval votingeach voter has to vote “yes” or “no” for each candidate and thecandidates with
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the most “yes” votes are the winners of the election. Clearly, approval voting completely ignores preference
rankings.

Brams and Sanver [BS09] introduced two voting systems that combine preference-based with approval
voting in a sense that each voter has to specify his or her approval vector and in addition has to give a strict
ranking for the candidates he or she approved of. One of thesesystems is fallback voting.

Definition 2.2 ([BS09]). Let (C,V) be an election with‖C‖ = m and‖V‖ = n. Define the strict majority
threshold Mt analogously as for BV. Every voter v∈V has to divide the set of candidates C into two subsets
Sv ⊆C indicating that v approves of all candidates in Sv and disapproves of all candidates in C−Sv. Sv is
called v’s approval strategy. In addition, each voter v∈V provides also a strict ranking of all candidates in
Sv.

Representation of votes: Let Sv = {c1,c2, . . . ,ck} for a voter v who ranks the candidates in Sv as follows.
c1 ≻ c2 ≻ ·· · ≻ ck, where c1 is v’s most preferred candidate and ck is v’s least preferred candidate. We denote
the vote v by

c1 c2 · · · ck | C−Sv,

where the approved candidates to the left of the approval line are ranked from left to the right and the
disapproved candidates to the right of the approval line arenot ranked and written as a set C−Sv.

Let score(C,V)(c) = ‖{v∈ V | c∈ Sv}‖ denote the number of voters who approve of candidate c, and let
scorei(C,V)(c) be thelevel i score ofc in (C,V), which is the number of c’s approvals when ranked on position
i or higher.

Winner determination:

1. On the first level, only the highest ranked approved candidates (if they exist) are considered in each
voters’ approval strategy. If there is a candidate c∈C with score1(C,V)(c) ≥ Mt (i.e., c∈C has a strict
majority of approvals on this level), then c is the(unique) level 1 FV winner of the election, and the
procedure stops.

2. If there is no level1 winner, we ”fall back“ to the second level, where the two highest ranked approved
candidates (if they exist) are considered in each voters’ approval strategy. If there is exactly one
candidate c∈C with score2(C,V)(c) ≥ Mt , then c is the(unique) level 2 FV winner of the election, and
the procedure stops. If there are at least two such candidates, then every candidate with the highest
level2 score is alevel 2 FV winner of the election, and the procedure stops.

3. If we haven’t found a level1 or level2 FV winner, we in this way continue level by level until there is
at least one candidate c∈C on a level i with scorei(C,V)(c) ≥ Mt , If there is only one such candidate,
he or she is the(unique) leveli FV winner of the election, and the procedure stops. If there are at least
two such candidates, then every candidate with the highest level i score is alevel i FV winner of the
election, and the procedure stops.

4. If for no i≤ ‖C‖ there is a level i FV winner, every candidate with the highestscore(C,V)(c) is a FV
winner of(C,V) by score.

Note that BV is a special case of FV, where each voter approvesof each candidate. Although BV and
FV seem to be alike, there are significant differences between them. A voting system is said to bemajority-
consistentif the winner of the election is always the majority winner, whenever one exists. (A majority winner
is the candidate who gets ranked first by a strict majority of voters.) Clearly, BV is majority-consistent, if a
majority winner exists he or she is also the unique level 1 Bucklin winner of the election. In contrast, FV is
not majority-consistent. Consider the following electionwith three voters and two candidates:v1 = a | b ,
v2 = | b a , andv3 = | b a . The FV winner of this election is candidatea by score but the majority
winner would be candidateb.

165



We now formally define the computational problems that we study in our paper. In our paper we only
consider the unique-winner model, where we want to have exactly one winner. We consider two different
control types. Inconstructivecontrol scenarios, introduced by Bartholdi, Tovey, and Trick [BTT92], the chair
seeks to make his or her favourite candidate win the election. In adestructivecontrol scenario, introduced by
Hemaspaandra, Hemaspaandra, and Rothe [HHR07], the chair’s goal is to prevent a despised candidate from
winning the election. We will only state the constructive cases. The questions in the destructive cases can be
asked similarly with the difference that we want the distinguished candidatenot to bea unique winner.

We first define control via adding a limited number of candidates.

Name Control by Adding a Limited Number of Candidates.
Instance An election(C∪D,V), whereC is the set of qualified candidates andD is the set of spoiler candi-

dates, a designated candidatec∈C, and a positive integerk.
Parameter k.
Question Is it possible to choose a subsetD′ ⊆D with ||D′|| ≤ k such thatc is the unique winner of election

(C∪D′,V)?

In the following control scenario, the chair seeks to reach his or her goal by deleting (up to a given number
of) candidates.

Name Control by Deleting Candidates.
Instance An election(C,V), a designated candidatec∈C, and a positive integerk.
Parameter k.
Question Is it possible to delete up tok candidates (other thanc) from C such thatc is the unique winner of

the resulting election?

Turning to voter control, we first specify the problem control by adding voters.

Name Control by Adding Voters.
Instance An election(C,V ∪W), whereV is the set of registered voters andW is the set of unregistered

voters, a designated candidatec∈C, and a positive integerk.
Parameter k.
Question Is it possible to choose a subsetW′ ⊆W with ||W′|| ≤ k such thatc is the unique winner of election

(C,V ∪W′)?

Finally, the last problem we consider, control by deleting voters.

Name Control by Deleting Voters.
Instance An election(C,V), a designated candidatec∈C, and a positive integerk.
Parameter k.
Question Is it possible to delete up tok voters fromV such thatc is the unique winner of the resulting

election?

The above defined problems are all natural problems, see the discussions in [BEH+09, BTT92, HHR07,
FHHR09a, HHR09].

2.2 Parameterized Complexity

The theory of parameterized complexity offers toolkits fortwo tasks: (1) the fine-grained analysis of the
sources of the computational complexity of NP-hard problems, according to secondary measurements (the
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parameter) of problem inputs (apart from the overall input sizen), and (2) algorithmic methods for exploiting
parameters that contribute favorably to problem complexity. Formally, a parameterized decision problem is
a languageL ⊆ Σ∗×N. L is fixed-parameter tractable(FPT) if and only if it can be determined, for input
(x,k) of sizen = |(x,k)|, whether(x,k) ∈L in timeO( f (k)nc), for some computable functionf .

A parameterized problemL reducesto a parameterized problemL ′ if there(x,k) can be transformed to
(x′,k′) in FPT time so that(x,k) ∈L if and only if (x′,k′) ∈L ′, wherek′ = g(k) (that is,k′ depends only on
k).

The main hierarchy of parameterized complexity classes is

FPT ⊆W[1]⊆W[2]⊆ ·· · ⊆W[P]⊆ XP.

W[1] is a strong analog of NP, as thek-Step Halting Problem for Nondeterministic Turing Machines is com-
plete forW[1] under the above notion of parameterized problem reducibility. Thek-Clique problem is com-
plete forW[1], and the parameterized Dominating Set problem is complete forW[2]. These two parameterized
problems are frequent sources of reductions that show likely parameterized intractability. See the Downey-
Fellows [DF99] monograph for further background.

2.3 Graphs

Many problems proven to be W[2]-hard are derived from problems concerning graphs. We will prove W[2]-
hardness via parameterized reduction from the problem Dominating Set, which was proved to be W[2]-
complete by Downey and Fellows [DF99]. Before the formal definition of the Dominating Set problem, we
first have to present some basic notions from graph theory.

An undirected graph Gis a pairG = (V,E), whereV = {v1, . . . ,vn} is a finite (nonempty) set of vertices
andE = {{vi,v j}| 1 ≤ i < j ≤ n} is a set of edges.2 Any two vertices connected by an edge are called
adjacent. The vertices adjacent to a vertexv are called theneighboursof v, and the set of all neighbours
of v is denoted byN[v] (i.e., N[v] = {u ∈ V | {u,v} ∈ E}). The closed neighbourhoodof v is defined as
Nc[v] = N[v]∪{v}. The parameterized version of Dominating Set is defined as follows.

Name Dominating Set.
Instance A graphG = (V,E), whereV is the set of vertices andE is the set of edges.
Parameter A positive integerk.
Question DoesG have a dominating set of sizek (i.e., a subsetV ′ ⊆ V with ||V ′|| ≤ k such that for all

u∈V−V′ there is av∈V ′ such that{u,v} ∈ E)?

3 Results

Table 1 shows our results on the parameterized control complexity of FV and BV. The FPT results in Table 1
are in parenthesis because the two results for FV are trivially inherited from the classical P results given by
Erdélyi and Rothe [ER10], and since BV is a special case of FV, BV inherits the FPT upper bound from FV
in both destructive voter cases. We won’t prove the W[2]-hardness results for FV, since BV is a special case
of FV, FV inherits the W[2]-hardness lower bound from BV in all six cases.

In all of our results we will prove W[2]-hardness by parameterized reduction from the W[2]-complete
problem Dominating Set defined in Section 2.3. In these six proofs we will always start from a given Domi-
nating Set instance(G = (B,E),k), whereB = {b1,b2, . . . ,bn} is the set of vertices withn > 2,3 E the set of

2In this paper we will use the symbolV strictly for voters. From the next section on, we will use thesymbolB instead ofV for the
set of vertices in a graphG.

3Note that the assumptionn > 2 can be made without loss of generality, since the problem Dominating Set remains W[2]-complete.
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Fallback Voting Bucklin
Control by Constructive Destructive Constructive Destructive
Adding a Limited Number of Candidates W[2]-hard W[2]-hard W[2]-hard W[2]-hard
Deleting Candidates W[2]-hard W[2]-hard W[2]-hard W[2]-hard
Adding Voters W[2]-hard (FPT) W[2]-hard (FPT)
Deleting Voters W[2]-hard (FPT) W[2]-hard (FPT)

Table 1: Overview of results.

edges in graphG, andk≤ n is a positive integer. In the following constructions, the set of candidates will
always contain the setB which means that for each vertexbi ∈ B we will have a candidatebi in our election.
We will also refer to candidate setNc[bi ], which is the set of candidates corresponding to the vertices in G
that are inNc[bi ].

3.1 Candidate Control

Theorem 3.1. Both constructive and destructive control by adding candidates in BV areW[2]-hard.

Proof. We first prove W[2]-hardness of constructive control by adding candidates. Let (G = (B,E),k) be a
given instance of Dominating Set as described above. Define the election(C,V), whereC = {c,w}∪B∪X∪
Y∪Z with X = {x1,x2, . . . ,xn−1}, Y = {y1,y2, . . . ,yn−2}, Z = {z1,z2, . . . ,zn−1} is the set of candidates,w is
the distinguished candidate, andV is the following collection of 2n+1 voters:

1. For eachi, 1≤ i ≤ n, there is one voter of the form:

Nc[bi ] X c ((B−Nc[bi ])∪Y∪Z∪{w}).

2. There aren voters of the form:
Y c w (B∪X∪Z).

3. There is one voter of the form:
Z w (B∪X∪Y∪{c}).

Note that candidatew is not a unique Bucklin winner of the election(C−B,V), since only candidates
c and w reach the SMT until leveln (namely, exactly on leveln) with scoren(C−B,V)(w) = n+ 1 < 2n =
scoren(C−B,V)(c) thus,c is the unique leveln Bucklin winner of the election(C−B,V). Now, letC−B be the
set of qualified candidates and letB be the set of spoiler candidates.

We claim thatG has a dominating set of sizek if and only if w can be made the unique Bucklin winner
by adding at mostk candidates.

From left to right: SupposeG has a dominating set of sizek. Add the corresponding candidates to the
election. Now candidatec gets pushed at least one position to the right in each of then votes in the first voter
group. Thus, candidatew is the unique Bucklin winner of the election, sincew is the only candidate on level
n who passes the SMT.

From right to left: Supposew can be made the unique Bucklin winner by adding at mostk candidates
denoted byB′. By adding candidates from candidate setB, only votes in voter group 1 are changed. Note that
candidatec has already a score ofn on leveln−1 in voter group 2 thus,c cannot have any more approvals
until level n (else,scoren((C−B)∪B′,V)(c) ≥ n+1 so,c would tie or beatw on leveln). This is possible only if
candidatec is pushed in all votes in voter group 1 at least one position tothe right. This, however, is possible
only if G has a dominating set of sizek.
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For the W[2]-hardness proof in the destructive case, we have to do minor changes to the above con-
struction, and we will change the roles of candidatesc and w4. Let (G = (B,E),k) be a given instance
of Dominating Set as described above. Define the election(C,V), whereC = {c,w}∪B∪X ∪Y∪Z with
X = {x1,x2, . . . ,xn−1}, Y = {y1,y2, . . . ,yn−2}, Z = {z1,z2, . . . ,zn−2} is the set of candidates,c is the distin-
guished candidate, andV is the following collection of 2n+1 voters:

1. For eachi, 1≤ i ≤ n, there is one voter of the form:

Nc[bi ] X c ((B−Nc[bi ])∪Y∪Z∪{w}).

2. There aren voters of the form:
Y c w (B∪X∪Z).

3. There is one voter of the form:
Z w c (B∪X∪Y).

Note that again only candidatesc andw pass the SMT until leveln in election(C−B,V), both passing
it on leveln with scoren(C−B,V)(w) = n+ 1 < 2n+ 1 = scoren(C−B,V)(c) thus,c is the unique Bucklin winner

of the election(C−B,V). Again, letC−B be the set of qualified candidates and letB be the set of spoiler
candidates.

We claim thatG has a dominating set of sizek if and only if c can be prevented from being a unique
Bucklin winner by adding at mostk candidates.

From left to right: SupposeG has a dominating setB′ of sizek. Add the corresponding candidates to
the election. Now candidatec gets pushed at least one position to the right in each of then votes in the first
voter group. Thus, on leveln−1 none of the candidates pass the SMT, andscoren((C−B)∪B′,V)(c) = n+ 1 =
scoren((C−B)∪B′,V)(w), i.e., both candidatesc andw reach the SMT exactly on leveln, and since their leveln
score is equal,c is not a unique Bucklin winner of the election anymore.

From right to left: Supposec can be prevented from being a unique Bucklin winner by addingat mostk
candidates denoted byB′. By a similar argument as in the constructive case, this is possible only ifG has a
dominating set of sizek. ❑

Theorem 3.2. Both constructive and destructive control by deleting candidates in BV areW[2]-hard.

Proof. We will start with the W[2]-hardness proof in the constructive case. Let(G = (B,E),k) be a
given instance of Dominating Set. Define the election(C,V), whereC = {c,w} ∪ B∪ X ∪Y ∪ Z with
X = {x1,x2, . . . ,xn2−∑n

i=1 ||Nc[bi ]||}, Y = {y1,y2, . . . ,yn−1}, Z = {z1,z2, . . . ,zn−2} is the set of candidates,w
is the distinguished candidate, andV is the following collection of 2n+1 voters:

1. For eachi, 1≤ i ≤ n, there is one voter of the form:

Nc[bi ] Xi w ((B−Nc[bi ])∪ (X−Xi)∪Y∪Z∪{c}),

whereXi = {x1+(i−1)n−∑i−1
j=1 ||Nc[b j ]||, . . . ,xin−∑i

j=1 ||Nc[b j ]||}.

2. There aren−1 voters of the form:

Y c (B∪X∪Z∪{w}).
4Here, changing the roles ofc andw means simply that now not candidatew butc is the distinguished candidate.
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3. There is one voter of the form:

(Y−{y1}) c w (B∪X∪Z∪{y1}).

4. There is one voter of the form:
Z w c (B∪X∪Y).

Note that candidatec is the unique leveln Bucklin winner of the election(C,V), since onlyc passes the
SMT on leveln among all candidates.

We claim thatG has a dominating set of sizek if and only if w can be made the unique Bucklin winner
by deleting at mostk candidates.

From left to right: SupposeG has a dominating setB′ ⊆B of sizek. Delete the corresponding candidates.
Now candidatew gets pushed at least one position to the left in each of then votes in the first voter group.
Since candidatec reaches the SMT on leveln andscoren(C−B′,V)(w) = n+2 > n+1 = scoren(C−B′,V)(c), and
no other candidate passes the SMT until leveln, candidatew is the unique Bucklin winner of the resulting
election.

From right to left: Supposew can be made the unique Bucklin winner of the election by deleting at most
k candidates. Since candidatec already passes the SMT on leveln, w has to beatc no later than on leveln.
This is possible only if candidatew is pushed in all votes in voter group 1 at least one position tothe left.
This, however, is possible only ifG has a dominating set of sizek.

For the W[2]-hardness proof in the destructive case in Bucklin, let(G = (B,E),k) be a given instance
of Dominating Set. Define the election(C,V), whereC = {c,w}∪B∪M ∪X ∪Y1∪Y2∪Z1∪Z2 with M =
{m1,m2 . . . ,mk}, X = {x1,x2, . . . ,xn2−∑n

i=1 ||Nc[bi ]||}, Y1 = {y1,1,y1,2, . . . ,y1,n−1},Y2 = {y2,1,y2,2, . . . ,y2,k}, Z1 =
{z1,1,z1,2, . . . ,z1,n−2}, Z2 = {z2,1,z2,2, . . . ,z2,n−2} is the set of candidates,c is the distinguished candidate, and
V is the following collection of 2n+1 voters:

1. For eachi, 1≤ i ≤ n, there is one voter of the form:

Nc[bi ] Xi w M ((B−Nc[bi ])∪ (X−Xi)∪Y1∪Y2∪Z1∪Z2∪{c}),

whereXi = {x1+(i−1)n−∑i−1
j=1 ||Nc[b j ]||, . . . ,xin−∑i

j=1 ||Nc[b j ]||}.

2. There aren voters of the form:

Y1 c Y2 (B∪M∪X∪Z1∪Z2∪{w}).

3. There is one voter of the form:

Z1 w c Z2 (B∪M∪X1∪X2∪Y1∪Y2).

Note that candidatec is the unique leveln Bucklin winner of the election(C,V), since onlyc passes the
SMT on leveln among all candidates.

We claim thatG has a dominating set of sizek if and only if c can be prevented from being a unique
Bucklin winner by deleting at mostk candidates.

From left to right: SupposeG has a dominating setB′ ⊆B of sizek. Delete the corresponding candidates.
Now candidatew gets pushed at least one position to the left in each of then votes in the first voter group.
Since candidatec passes the SMT no earlier than on leveln andscoren(C−B′,V)(w) = n+1= scoren(C−B′,V)(c),
candidatec is not a unique Bucklin winner of the resulting election anymore.
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From right to left: Supposec can be prevented from being a unique Bucklin winner of the election by
deleting at mostk candidates. Note that deleting one candidate from an election can move the strict majority
level of another candidate at most one level to the left. Observe that only candidatew can preventc from
winning the election, sincew is the only candidate other thanc who passes the SMT until leveln+ k. In
election(C,V), candidatew passes the SMT no earlier than on leveln+ 1, candidatec not before leveln.
Candidatew could only preventc from winning by reaching the SMT no later than on leveln. This is possible
only if candidatew is pushed in all votes in voter group 1 at least one position tothe left. This, however, is
possible only ifG has a dominating set of sizek. ❑

Theorem 3.3. Both constructive and destructive control by adding and deleting candidates in FV areW[2]-
hard.

3.2 Voter Control

Theorem 3.4. Constructive control by adding voters in BV isW[2]-hard.

Proof. Let (G = (B,E),k) be a given instance of Dominating Set. Define the election(C,V ∪W), where
C = B∪{w,x}∪Y∪Z, with Y = {y1,y2, . . . ,y∑n

i=1‖Nc[bi ]‖}, Z = {z1,z2, . . . ,zn−1} is the set of candidates,w is
the distinguished candidate, andV ∪W is the following collection ofn+k−1 voters:

1. V is the collection ofk−1 registered voters of the form:

x Z B w Y.

2. W is the collection of unregistered voters, where for eachi, 1≤ i ≤ n, there is one voterwi of the form:

(B−Nc[bi ]) Yi w x (Nc[bi ]∪ (Y−Yi)∪Z),

whereYi = {y(∑i−1
j=1‖Nc[b j ]‖)+1, . . . ,y∑i

j=1‖Nc[b j ]‖}.

Clearly,x is the level 1 Bucklin winner of the election(C,V).
We claim thatG has a dominating set of sizek if and only if w can be made the unique Bucklin winner

by adding at mostk voters fromW.
From left to right: SupposeG has a dominating setB′ of sizek. Add the corresponding voters from setW

to the election (i.e., each voterwi if bi ∈ B′). Now there are 2k−1 registered voters, thus the SMT isMt = k.
Since until leveln only candidatew passes the SMT, namely on leveln, w is the unique Bucklin winner of
the resulting election.

From right to left: Supposew can be made the unique Bucklin winner by adding at mostk voters (denote
these voters byW′). Note thatscore1(C,V∪W′)(x) = k−1. Since if a candidate passes the SMT on level 1, he or

she is the unique winner of the election,k−1 cannot be the SMT. This is only possible, if||W′|| ≥ k−1. If
||W′|| = k−1 thenscoren+1

(C,V∪W′)(w) = k−1 < Mt = k < scoren+1
(C,V∪W′)(x) = 2k−1. In this case candidatew

couldn’t be made the unique Bucklin winner of the election. Thus,||W′|| = k. Note thatscoren(C,V∪W′)(w) =
k > k− 1 = scoren(C,V∪W′)(x) andk is also a strict majority. Since we could makew the unique Bucklin

winner of the election, none of the candidates inB can be ranked on the firstn positions by each voter inW′,
otherwise there would exist a candidateb ∈ B with scoren(C,V∪W′)(b) = k andb would reach the SMT on a
higher level thanw. This is only possible ifG has a dominating set of sizek. ❑
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Theorem 3.5. Constructive control by deleting voters in BV isW[2]-hard.

Proof. To prove W[2]-hardness, we provide again a reduction from Dominating Set. Let (G = (B,E),k)
be a given instance of Dominating Set. Define the election(C,V), whereC = {c,w}∪B∪X∪Y∪Z with
X = {x1, . . . ,x∑n

i=1‖(B−Nc[bi ])‖}, Y = {y1, . . . ,y∑n
i=1‖Nc[bi ]‖}, Z = {z1, . . . ,z(k−1)(n+1)} is the set of candidates,w

is the distinguished candidate, andV is the following collection of 2n+k−1 voters:

1. For eachi, 1≤ i ≤ n, there is one votervi of the form:

Nc[bi ] c Xi ((B−Nc[bi ])∪ (X−Xi)∪Y∪Z) w,

whereXi = {x1+∑i−1
j=1‖(B−Nc[b j ])‖, . . . ,x∑i

j=1‖(B−Nc[b j ])‖}.

2. For eachi, 1≤ i ≤ n, there is one voter of the form:

(B−Nc[bi ]) Yi w (Nc[bi ]∪X∪ (Y−Yi)∪Z∪{c},
whereYi = {y1+∑i−1

j=1‖Nc[b j ]‖, . . . ,y∑i
j=1‖Nc[b j ]‖}.

3. There arek−1 voters of the form:

c Zi (B∪X∪Y∪ (Z−Zi)) w,

whereZi = {z(i−1)(n+1)+1, . . . ,zi(n+1)}.

Note that since candidatew reaches the SMT only on the last level, he or she is not the unique Bucklin
winner of the election.

We claim thatG has a dominating set of sizek if and only if w can be made the unique Bucklin winner
by deleting at mostk voters.

From left to right: SupposeG has a dominating setB′ of sizek. Delete the corresponding voters from the
first voter group (i.e., each votervi if bi ∈ B′). LetV ′ denote the new set of voters. Now on leveln+1 only
candidatew passes the SMT, namely withscoren+1

(C,V ′)(w) = n = Mt . Thus,w is the unique Bucklin winner of
the resulting election.

From right to left: Supposew can be made the unique Bucklin winner by deleting at mostk voters.
Observe that deleting less thank voters would make it impossible for candidatew to be the unique winner of
the election. In that case the SMTMt > n and sincew is ranked last place in all votes except ofn votes, he
would reach the SMT on the last level thus, would not be the unique Bucklin winner of the election. Clearly,
w has to win the election on leveln+1. Now, since for alli with 1≤ i ≤ n scoren+1

(C,V)(bi) = n= scoren+1
(C,V)(w),

eachbi had to loose at least one point on the firstn+ 1 levels. Obviously, we cannot delete voters from the
second voter group, else candidatew wouldn’t reach the SMT on leveln+ 1. So thek voters were deleted
from the first voter group. Since each candidatebi has lost at least one point, this is only possible ifG has a
dominating set of sizek. ❑

Theorem 3.6. Both constructive control by adding and deleting voters in FV areW[2]-hard.

4 Conclusions and Open Questions

In this paper we have studied the parameterized complexity of the control problems for the recently proposed
system offallback votingand ofBucklin voting, parameterized by the amount of action taken by the chair.
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In the case of constructive control, all of the problems are W[2]-hard. A natural question to investigate is
whether these problems remain intractable when parameterized by both the amount of action and some other
measure. We have shown that all four problems of constructive and destructive control by adding or deleting
candidates are hard for W[2]. What is the complexity when the parameter is both the amountof action and the
number of voters? We have also shown that both constructive control by adding and deleting voters are hard
for W[2] in both fallback voting and Bucklin voting, and that both destructive control by adding and deleting
voters are in FPT in both fallback voting and Bucklin voting.What is the complexity of constructive control
parameterized by both the amount of action and the number of candidates?

Acknowledgments: We thank the anonymous COMSOC-2010 referees for their helpful comments on the
preliminary version of this paper.
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[ENR09] G. Erdélyi, M. Nowak, and J. Rothe. Sincere-strategy preference-based approval voting fully resists con-
structive control and broadly resists destructive control. Mathematical Logic Quarterly, 55(4):425–443,
2009.
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Universitätsstr. 1
40225 Düsseldorf, Germany
Email:erdelyi@cs.uni-duesseldorf.de

Michael R. Fellows
PC Research Unit, Office of DVC (Research)
University of Newcastle
Callaghan, NSW 2308, Australia
Email:michael.fellows@newcastle.edu.au

174



Cloning in Elections1

Edith Elkind, Piotr Faliszewski, and Arkadii Slinko

Abstract

We consider the problem of manipulating elections via cloning candidates. In our
model, a manipulator can replace each candidate c by one or more clones, i.e., new
candidates that are so similar to c that each voter simply replaces c in his vote with
the block of c’s clones. The outcome of the resulting election may then depend on
how each voter orders the clones within the block. We formalize what it means for a
cloning manipulation to be successful (which turns out to be a surprisingly delicate
issue), and, for a number of prominent voting rules, characterize the preference
profiles for which a successful cloning manipulation exists. We also consider the
model where there is a cost associated with producing each clone, and study the
complexity of finding a minimum-cost cloning manipulation. Finally, we compare
cloning with the related problem of control via adding candidates.

1 Introduction

In real-life elections with more than two candidates, the winner does not always have broad
political support. This is possible, for example, when the opposing views are represented by
several relatively similar candidates, and therefore the vote in favor of the opposition gets
“split”. For example, it is widely believed that in the 2000 U.S. Presidential election spoiler
candidate Ralph Nader have split votes away from Democratic candidate Al Gore allowing
Republican candidate George W. Bush to win.

One can also imagine scenarios where having several similar candidates may bias the
outcome in their favor. For example, suppose that an electronics website runs a competition
for the best digital camera by asking consumers to vote for their two favorite models from
a given list. If the list contains one model of each brand, and half of the consumers prefer
Sony to Nikon to Kodak, while the remaining consumers prefer Kodak to Nikon to Sony,
then Nikon will win the competition. On the other hand, if each brand is represented by
several similar models, then the “Sony” customers are likely to vote for two models of Sony,
the “Kodak” customers are likely to vote for two models of Kodak, and Nikon receives no
votes.

The above-described scenarios present an opportunity for a party that is interested in
manipulating the outcome of an election. Such a party—most likely, a campaign manager
for one of the candidates—may invest in creating “clones” of one or more candidates in order
to make its most preferred candidate (or one of its “clones”) win the election. A natural
question, then, is which voting rules are resistant to such manipulation, and whether the
manipulator can compute the optimal cloning strategy for a given election.

The first study of cloning was undertaken by Tideman [18], who introduced the concept
of “independence of clones” as a criterion for voting rules. He considered a number of well-
known voting rules, and discovered that among these rules, STV was the only one that
satisfied this criterion. However, STV does not satisfy many other important criteria for
voting rules, e.g., Condorcet consistency. Thus, Tideman [18] proposed a voting rule, the
“ranked pairs rule,” that was both Condorcet-consistent and independent of clones in all but
a small fraction of settings. Subsequently, Zavist and Tideman [19] proposed a modification
of this rule that is completely independent of clones. Later it was shown that some other
voting rules, such as Schulze’s rule [17], are also resistant to cloning.

1This paper in its preliminary form will be presented at AAAI-2010.

175



A related concept of composition consistency as well as its weaker version, cloning con-
sistency, was considered by Laffond at al. [11] and by Laslier [12]. They proved that a
number of tournament solutions such as the Banks Set, the Uncovered Set, the Tournament
Equilibrium Set (TEQ), and the Minimal Covering Set are composition-consistent. They
also demonstrated that various tournament solution concepts and voting rules such as the
Top Cycle, the Slater rule, the Copeland rule, and all scoring rules are not composition-
consistent.

In this paper we take a rather different perspective on cloning: Instead of looking at
cloning as a manipulative action that should be prevented, we view cloning as a campaign
management tool. This point of view raises a number of questions that have not been
considered before(or, have not been considered from this perspective):

What does it mean for cloning to be successful? The campaign manager can pro-
duce clones of existing candidates, but the voters rank them in response. We assume
that clones are similar enough to be ranked as a group by each voter; however, the
order of clones in such groups is specific to a particular voter. Since the campaign
manager cannot control or predict the order of clones in each voter’s ranking, we as-
sume that this order is random (that is, each voter assigns equal probability to each
possible order of the cloned candidates). Thus, the success of a cloning manipulation
is a random event, and we can measure it probability. Let q be some real number be-
tween 0 and 1. We say that manipulation by cloning is q-successful if the probability
of electing the desired candidate is at least q. We focus on two extreme cases: one
where no matter what the voters do, the campaign manager’s preferred candidate p
wins (cloning is 1-successful), and one where there is a non-zero chance that p wins
(by a slight abuse of notation, we will call such cloning is 0-successful).

In which instances of elections can cloning be successful? While previous work
demonstrates that many well-known voting rules are susceptible to cloning, no
attempt has been made to characterize the elections in which a specific candidate can
be made a winner with respect to a given voting rule by means of cloning. However,
from the point of view of a campaign manager who considers cloning as one of the
ways to run the campaign, such characterizations are crucial. Thus, in this paper we
characterize cloning-manipulable elections for several prominent voting rules. Often,
manipulable elections can be characterized in terms of well-known notions of social
choice such as Pareto optimality, Condorcet loser, or Uncovered Set.

Which candidates can be cloned and to what extent? The existing work on cloning
does not place any restrictions on the number of clones that can be introduced, or on
which candidates can be cloned at all. On the other hand, it is clear that in practical
campaign management scenarios these issues cannot be ignored: not all candidates
can be cloned, and creating a clone of a given candidate may be costly. Thus, we
consider settings in which each clone of each candidate comes at some cost, and we
seek a least expensive successful cloning strategy. However, mostly we focus on the
standard model where clones come at zero cost, and on the unit cost model, where all
clones have the same cost.

What is the computational complexity of finding cloning strategies? Finally, we
consider the computational complexity of finding successful cloning strategies. In
practice, it is not sufficient to know that cloning might work: We need to know ex-
actly which strategy to use. We believe that our paper is the first to consider the
computational aspect of cloning. Following the line of work initiated by the semi-
nal papers of Bartholdi, Tovey, and Trick [1, 2], we seek to establish which cloning
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problems are NP-hard for a given voting rule, and which are solvable in polynomial
time.

One might argue that in real-life elections cloning isn’t really a practical campaign man-
agement tool. After all, creating even a single clone may well be too difficult or too costly.
Nonetheless, below we provide two natural examples where our model of cloning is practical
and well-motivated.

First, let us consider an election in which parties nominate candidates for some position,
and each party can nominate several candidates. From the point of view of the voters,
especially those not following the political scene closely, candidates from the same party are
perceived as clones. A party’s campaign manager might attempt to strategically choose the
number of candidates her party should nominate, and, in fact, she might even be able to
affect the number of candidates nominated by other parties (e.g., by accusing them of not
giving the voters enough choice).

Second, let us consider an environment where, as suggested by Ephrati and Rosenschein
in their classic paper [6], software agents vote to choose a joint plan (that is, the candidates
are possible joint plans or steps of possible joint plans). In such a system, the agents can
easily come up with minor variations of the (steps of the) plan, effectively creating clones
of the candidates. (Laslier [12] has given a very similar example regarding a society of
agents choosing a project to implement.) In both cases, the assumption that all clones are
ranked contiguously and the requirement that finding a successful cloning strategy should
be computationally easy are particularly relevant and realistic.

2 Preliminaries

Given a set A of alternatives (also called candidates), a voter’s preference R is a linear order
over A, i.e., a total transitive antisymmetric binary relation over A. An election E with n
voters is given by its set of alternatives A and a preference profile R = (R1, . . . , Rn), where
Ri is the preference of voter i; we write E = (A,R). For readability, we sometimes write
≻i in place of Ri. Also, we denote by |R| the number of voters in the election.

A voting rule F is often defined as a mapping from elections with a fixed set of alterna-
tives A to the set 2A of all subsets of A. However, in this work, we are interested in situations
where the number of alternatives may change. Thus, we require voting rules to be defined
for arbitrary finite sets of alternatives and preference profiles over those alternatives. Most
well-known voting rules (see below) fit this more demanding definition; for ones that do not
(e.g., scoring rules), we explain how to adapt their standard definition to our setting. Thus,
we say that a voting rule F is a mapping from pairs of the form E = (A,R), where A is
some finite set and R is a preference profile over A, to subsets of A. The elements of F(E)
are called the winners of the election E. Thus, we allow an election to have more than
one winner, i.e., we work with social choice correspondences (also called non-unique winner
model.)

In this paper we consider the following voting rules (for all rules described in terms of
scores the winners are the alternatives with the maximum score):

Plurality. The Plurality score ScP (c) of a candidate c ∈ A is the number of voters that
rank c first.

Veto. The Veto score ScV (c) of a candidate c ∈ A is the number of voters that do not rank
c last.

Borda. Given an election (A,R) with |R| = n, the Borda score ScB(c) of a candidate c ∈ A
is given by ScB(c) =

∑n
i=1 |{a ∈ A | c ≻i a}|.

177



k-Approval. For any k ≥ 1, the k-Approval score Sck(c) of a candidate c ∈ A is the number
of voters that rank c in the top k positions. Plurality is simply 1-Approval.

Plurality with Runoff. In the first stage, all but two candidates with the top two Plural-
ity scores are eliminated. Then the winner is the one of the survivors that is preferred
to the other one by at least half of the voters. We may need to break a tie after the
first round, if more than one candidate has the best or the second best score; to this
end we use the parallel universes tie-breaking rule [4].

Maximin. Given an election (A,R) with |R| = n, for any a, c ∈ A, let W (c, a) = |{i |
c ≻i a}|. The Maximin score ScM (c) of a candidate c ∈ A is given by ScM (c) =
mina∈A W (c, a), i.e., it is the number of votes c gets in his worst pairwise contest.

Copeland. The Copeland score ScC(c) of a candidate c ∈ A is |{a | W (c, a) > W (a, c)}| −
|{a | W (a, c) > W (c, a)}|. This is equivalent to saying that for each candidate a, c
gets 1 point if she wins the pairwise contest against a, 0.5 point if there is a tie, and
0 if she loses the contest.2

Many results of this paper are computational and thus we assume the reader is some-
what familiar with standard notions of computational complexity such as classes P and
NP, many-one reductions, NP-hardness and NP-completeness. Our NP-hardness results
typically follow by reductions from Exact Cover by 3-Sets problem, defined below.

Definition 2.1 ([9]). An instance (G,S) of Exact Cover by 3-Sets (X3C) is given by a
ground set G = {g1, . . . , g3K}, and a family S = {S1, . . . , SM} of subsets of G, where |Si| = 3
for each i = 1, . . . , M . It is a “yes”-instance if there is a subfamily S′ ⊆ S, |S′| = K, such
that for each gi ∈ G there is an Sj ∈ S′ such that gi ∈ Sj, and a “no”-instance otherwise.

3 Our Framework

Cloning and independence of clones were previously defined in [14, 18, 19]. However, we
need to modify the definition given in these papers in order to model the manipulator’s
intentions and the budget constraints. We will now describe our model formally.

Definition 3.1. Let E = (A, (R1, . . . , Rn)) be an election with a set of candidates A =
{c1, . . . , cm}. We say that an election E′ = (A′, (R′

1, . . . , R
′
n)) is obtained from E by replac-

ing a candidate cj ∈ A with k clones for some k > 0 if A′ = A \ {cj} ∪ {c(1)
j , . . . , c

(k)
j } and

for each i ∈ [n], R′
i is a total order over A′ such that:

(i) for any a ∈ A \ {cj} and any s ∈ [k] it holds that c
(s)
j ≻′

i a if and only if cj ≻i a;
(ii) for any a, b ∈ A \ {cj} it holds that a ≻′

i b if and only if a ≻i b.

We say that an election E∗ = (A∗,R∗) is cloned from an election E = (A,R) if there is
a vector of non-negative integers (k1, . . . , km) such that E∗ is derived from E by replacing
each cj, j = 1, . . . , m, with kj clones.

Thus, when we clone a candidate c, we replace her with a group of new candidates that
are ranked together in all voters’ preferences. Observe that according to the definition above,
cloning a candidate cj once means simply changing his name to c

(1)
j rather than producing

an additional copy of cj . While not completely intuitive, this choice of terminology simplifies
some of the arguments in the rest of the paper.

The definition above is essentially equivalent to the one given in [19]; the main difference
is that we explicitly model cloning of more than one candidate. However, we still need to

2The original Copeland rule [5] was applied to tournaments and the score was the number of wins.
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introduce the two other components of our model: a definition of what it means for a cloning
to be successful, and the budget.

We start with the former assuming throughout this discussion that the voting rule is
fixed. We observe that the final outcome of cloning depends on the relative ranking of the
clones chosen by each voter, which is not under the manipulator’s control. Thus, a cloning
may succeed for some orderings of the clones, but not for others. The election authorities
may approach this issue from the worst-case perspective, and consider it unacceptable when
a given cloning succeeds for at least one ordering of clones by voters. Alternatively, they can
take an average-case perspective, i.e.., assume that the voters rank the clones randomly and
independently, with each ordering of the clones being equally likely (due to the similarities
among the clones), and consider it acceptable for a cloning manipulation to succeed with
probability that does not exceed a certain threshold. On the other hand, a (cautious)
manipulator would view cloning as successful only if it succeeds for all orderings.

Definition 3.2. Given a positive real 0 < q ≤ 1, we say that a manipulation by cloning (or
simply cloning) is q-successful if (a) the manipulator’s preferred candidate is not a winner
of the original election, and (b) a clone of the manipulator’s preferred candidate is a winner
of the cloned election with probability at least q.

The two approaches discussed above are special cases of this framework. Indeed, a
cloning succeeds for all orderings if and only if it is 1-successful, and it succeeds for some
ordering if and only if it is q-successful for some q > 0 no matter how small it is; we abuse
notation by referring to such cloning as 0-successful. Saying that cloning is 0-successful is
equivalent to saying that the cloning would be successful if the manipulator could dictate
each voter how to order the clones. We will use this observation very often as it simplifies
proofs.

Observe that, according to our definition, the manipulator succeeds as long as any one
of the clones of the preferred candidate wins. This assumption is natural if the clones
represent the same company (e.g., Coke Light and Coke Zero) or political party. However, if
a campaign manager has created a clone of his candidate simply by recruiting an independent
candidate to run on a similar platform, he may find the outcome in which this new candidate
wins less than optimal. We could instead define success as a victory by the original candidate
(i.e., the clone c(1)), but, at least for neutral voting rules, this is essentially equivalent to the
previous definition. Indeed, any preference profile in which the original candidate wins can
be transformed into one in which some clone wins, by switching their order in each voter’s
preferences so c(1) wins with the same probability as any other clone.

Note that our definition of q-successful cloning is similar in spirit to that of [7], where
voters are bribed to increase their probabilities of voting as the briber wants.

Another issue that we need to address is that of the costs associated with cloning.
Indeed, the costs are an important aspect of realistic campaign management, as the manager
is always restricted by the budget of the campaign. The most general way to model the
cloning costs for an election with the initial set of candidates A = {c1, . . . , cm} is via a price
function p : [m] × Z+ → Z+ ∪ {0} ∪ {∞}, where p(i, j) denotes the cost of producing the
j-th copy of candidate ci. Note that p(i, 1) corresponds to not producing additional copies
of i, so we require p(i, 1) = 0 for all i ∈ [m]. We remark that it is natural to assume that
all costs are non-negative (though some of them may equal zero); the assumption that all
costs are integer-valued is made for computational reasons. This is not a real restriction as
monetary values are discrete.

We assume that for some positive integer t the marginal cost of introducing an additional
cloned candidate becomes constant, that is, p(i, j) = p(i, t) for j > t. This ensures that
the price function is succinctly representable. Thus our cost function is in fact a mapping
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p : [m]× [t] → Z+ ∪ {0}∪ {∞}. The two natural special cases of our model defined below—
Zero Cost and Unit Cost models—satisfy this condition.

Definition 3.3. An instance of the q-Cloning problem for q ∈ [0, 1] is given by the initial
set of candidates A = {c1, . . . , cm}, a preference profile R over A, a manipulator’s preferred
candidate c ∈ A, a parameter t > 1, a price function p : [m] × [t] → Z+ ∪ {0} ∪ {∞}, a
budget B, and a voting rule F . We ask if there exists a q-successful cloning with respect to
F that costs at most B.

For most voting rules that we consider, it is easy to bound the number of clones needed for
0-successful or 1-successful cloning (if one exists); moreover, this bound is usually polynomial
in n and m. We focus on two natural special cases of q-Cloning:

1. Zero Cost (ZC): p(i, j) = 0 for all i ∈ [m], j ∈ Z+. In this case we would like to
decide whether an election is manipulable at all.

2. Unit Cost (UC): p(i, j) = 1 for all i ∈ [m], j ≥ 2. This model assumes that creating
each new clone has a fixed cost equal for all candidates.

We say that an election E is q-manipulable by cloning with respect to a voting rule F if
there is a q-successful manipulation by cloning with respect to F in the ZC model. Further,
we say that E is manipulable by cloning with respect to F if it is 0-manipulable with respect
to F , and strongly manipulable by cloning with respect to F if it is 1-manipulable with
respect to F .

In the rest of the paper, we discuss the complexity of the q-Cloning problem for a
number of well-known voting rules, focusing on the ZC and UC models. Clearly, hardness
results for these special cases also imply hardness results for the general model. Somewhat
less obviously, hardness results for the ZC q-Cloning imply hardness results for UC q-
Cloning: it suffices to set B = ∞.

Note that for polynomial-time computable voting rules 0-Cloning is clearly in NP.
After a moment’s thought, we can also see that q-Cloning for such rules is in Σp

2 , the
second level of the polynomial hierarchy, for q = 1, and is in NPPP for q ∈ (0, 1). However,
in this paper we are interested in P-membership and NP-hardness results only.

4 Plurality and Similar Rules

In this section we focus on q-Cloning for Plurality, Plurality with Runoff, Veto, and Max-
imin. Surprisingly, these four rules exhibit very similar behavior with respect to cloning.

4.1 Plurality

We start by considering Plurality, which is arguably the simplest voting rule.

Theorem 4.1. An election is manipulable with respect to Plurality if and only if the ma-
nipulator’s preferred candidate c does not win, but is ranked first by at least one voter.
Moreover, for Plurality 0-cloning can be solved in linear time.

It is not too hard to strengthen Theorem 4.1 from 0-manipulability to q-manipulability
for any q < 1.

Theorem 4.2. For any q < 1, a Plurality election is q-manipulable if and only if the
manipulator’s preferred candidate c does not win, but is ranked first by at least one voter.
However, no election is strongly manipulable.
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4.2 Veto and Plurality with Runoff

The Veto rule exhibits extreme vulnerability to cloning.

Theorem 4.3. Any election is strongly manipulable with respect to Veto. Moreover, for
Veto both 0-cloning and 1-cloning can be solved in linear time.

We now consider Plurality with Runoff. Observe first that cloning any alternative cannot
change what happens in the runoff: indeed, if a beats c in their pairwise contest, a would
also beat any clone of c in the runoff, and if a loses to c in their pairwise contest, a would
also lose in the runoff to any clone of c. Thus, if an alternative c is a Condorcet loser, i.e.,
for any a ∈ A\{c} a strict majority of voters prefers a to c, then c cannot be made a winner
by cloning. If it is not a Condorcet loser, then it wins at least one pairwise contest, say
against w. Then, if c and w get to the runoff, c would win the election. Further, c and w
have a non-zero probability to reach the runoff if both are ranked first at least once. Taken
together, these two considerations lead to the following criterion.

Theorem 4.4. An election is manipulable with respect to Plurality with Runoff if and only
if

(1) the manipulator’s preferred candidate c is not a current winner, and

(2) c is not a Condorcet loser and both c and some alternative w that does not beat c in
their pairwise election are ranked first by at least one voter each.

Moreover, for Plurality with Runoff 0-cloning can be solved in polynomial time.

As for Plurality, we can characterize q-manipulability for q ∈ [0, 1]. The following theorem
can be proved similarly to Theorem 4.2.

Theorem 4.5. For any q < 1, an election is q-manipulable with respect to Plurality with
Runoff if and only if it is manipulable with respect to it. However, no election is strongly
manipulable.

4.3 Maximin

Consider the following election that will be used in this section. Let E = (A,R) with
A = {a1, . . . , ak}, R = (R1, . . . , Rk), where for i ∈ [k] the preferences of the i-th voter
are given by ai ≻i ai+1 ≻i . . . ≻i ak ≻i a1 ≻i . . . ≻i ai−1. We will refer to any election
that can be obtained from E by renaming the candidates as a k-cyclic election. In this
election, for any i = 1, . . . , k, there are k− 1 voters that prefer ai−1 to ai (where we assume
ak+1 = a1). Thus, the Maximin score of each candidate in A is 1. Further, this remains true
if we add arbitrary candidates to the election, no matter how the voters rank the additional
candidates. This means that, given a candidate a ∈ A, by cloning a and telling the voters to
order the clones as in a cyclic election, we can ensure that the Maximin score of any clone
of a is 1: in an election with n voters, we create n clones of a and consider the situation
where the voters’ preferences over those clones form an n-cyclic election. This construction
enables us to prove the following result.

Theorem 4.6. An election is manipulable by cloning with respect to Maximin if and only
if the manipulator’s preferred candidate c does not win, but is Pareto-optimal. Further, for
Maximin 0-cloning can be solved in linear time. No election is strongly manipulable

It is not clear if one can strengthen the result of Theorem 4.6 to q-manipulability for
0 < q < 1. This amounts to the following question: suppose that for a fixed n we randomly
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draw n permutations of {1, . . . , k}. Let P (n, k) be the probability that for each i ∈ [k] there
is a j ∈ [k] such that j precedes i in at least n − 1 permutations. Is it the case that the
probability P (n, k) approaches 1 as k →∞? Our computations show3 that this is unlikely
to be the case. For (n, k) = (5, 20) there was only one success out of 106 random trials
and only three for (n, k) = (5, 50). For both (n, k) = (7, 20) and (n, k) = (7, 50) not a
single random trial out of 106 trials was successful. This means that, even if Maximin is
q-manipulable for q > 0, the number of clones needed would be astronomical.

5 Borda, k-Approval, and Copeland

We now consider Borda, k-Approval, and Copeland rules, for which cloning issues get sig-
nificantly more involved.

5.1 Borda Rule

For Borda rule, just as for Maximin, Pareto-optimality of the manipulator’s favorite alter-
native is necessary and sufficient for the existence of successful manipulation by cloning.
However, Borda and Maximin exhibit different behavior with respect to strong manipula-
bility. Moreover, from the point of view of finding an optimal-cost cloning, Borda appears
to be harder to deal with than Maximin.

Theorem 5.1. An election is manipulable by cloning with respect to Borda if and only if
the manipulator’s preferred candidate c does not win, but is Pareto-optimal. Moreover, UC
0-Cloning for Borda can be solved in linear time.

Briefly, an optimal cloning manipulation for Borda in the UC model is to clone c suf-
ficiently many times and ask all voters to order the clones in the same way. However, for
q > 0, cloning c is not necessarily optimal.

Strengthening Theorem 5.1 to q-manipulability for some constant q, or to strong manip-
ulability appears to be difficult. We will first characterize the elections that can be strongly
manipulated with respect to Borda by cloning the manipulator’s favorite candidate.

Proposition 5.2. An election is strongly manipulable with respect to Borda by cloning the
manipulator’s preferred candidate c if and only if any candidate whose Borda score is higher
than that of c loses to c in a pairwise contest.

The proof of Proposition 5.2 indicates which orderings of the clones are the most prob-
lematic for the manipulator: these are the orderings that, roughly speaking, grant each clone
the same number of points. But this is exactly the expected outcome if the orderings are
generated uniformly at random! Thus, our proof shows that for Borda, Pareto optimality of
the manipulator’s most preferred candidate c is insufficient for q-manipulability with q > 0
by cloning c only. However, cloning a different candidate may be a better strategy: Suppose
that c is Pareto-optimal, and, moreover, the original preference profile contains a candidate
c′ that is ranked right under c by all voters (one can think of this candidate as an “inferior
clone” of c; however, we emphasize that it is present in the original profile). Then one can
show that by cloning c′ sufficiently many times we can make c a winner with probability
1. However, cloning c itself does not have the same effect if the voters order the clones
randomly or adversarially to the manipulator. This is illustrated by the following example.

Example 5.3. Let us consider the following Borda election: C = {a, b, c, d}, there are four
voters v1, v2, v3, v4, and the preference orders of the voters are:

3We are grateful to Danny Chang for his help with these.
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v1 : a ≻ c ≻ b ≻ d
v2 : a ≻ c ≻ b ≻ d
v3 : a ≻ c ≻ b ≻ d
v4 : d ≻ c ≻ b ≻ a

ScB(a) = 9
ScB(b) = 4
ScB(c) = 8
ScB(d) = 3

The winner here is a with 9 points. However, cloning b into three clones b1, b2, b3 is a 1-
manipulation in favor of c since the new score of a is 15 while the new score of c is 16, no
matter how clones are ordered. At the same time, no amount of cloning of c can have the
same effect. Indeed, after splitting c into k + 1 clones, the expected score of each clone of c
is 4(2 + k/2) = 8 + 2k, whereas a’s score is 9 + 3k.

This shows that in general, we may need to clone several candidates that are placed
between c and its “competitors” in a large number of votes, and determining the right
candidates to clone might be difficult. Indeed, it is not clear if a 1-successful manipulation
can be found in polynomial time. We thus propose determining the complexity of identifying
strongly manipulable profiles with respect to Borda as an open problem.

A related question that is not answered by Theorem 5.1 is the complexity of 0-Cloning
in the general cost model. Note that there is a certain similarity between this problem and
that of strong manipulability: in both cases, it may be suboptimal to clone c. Indeed, for
general costs, we can prove that q-Cloning is NP-hard for any rational q.

Theorem 5.4. For Borda, q-Cloning in the general cost model is NP-hard for any q ∈
[0, 1]. Moreover, this is the case even if p(i, j) ∈ {0, 1,∞} for all i ∈ [m], j ∈ Z+.

The cost function used in the proof of Theorem 5.4 is very similar to the UC model,
except that we are not allowed to clone some of the alternatives.

5.2 k-Approval

Plurality, k-approval and Borda are perhaps the best-known representatives of a large family
of voting rules known as scoring rules, i.e., rules in which each voter grants each candidate a
certain number of points that depends on that candidate’s position in the voter’s preference
order. (Formally, Plurality, k-Approval, and Borda are families of scoring rules.) It would be
interesting to characterize scoring rules vulnerable to manipulation by cloning. Recall that
one can define a scoring rule Fw for any vector w = (w(1), . . . , w(m)) with w(i) ∈ R+ ∪{0}
for i ∈ [m] (usually, though not always, it is also required that w(1) ≥ · · · ≥ w(m)) as
follows: given a preference profile (R1, . . . , Rn) over a set of alternatives A of size m, the
Fw-score of each alternative c ∈ A is given by

Scw(c) =
n∑

i=1

w(pos(c, i)),

where pos(c, i) is the position of c in Ri, i.e., pos(c, i) = |{a ∈ A | a ≻i c}|+1. As usual, the
winners are the alternatives with the maximum score. Note, however, that this description
does not fit our definition of a voting rule, as it only works for a fixed number of alternatives.
To fix this, we will now define scoring rules for infinite rather than finite vectors.

Definition 5.5. Given a profile (R1, . . . , Rn) over a set of alternatives A and a monotone
sequence w = (w(1), . . . , ), i.e., one that satisfies either (i) w(1) ≤ w(2) ≤ . . . or (ii)
w(1) ≥ w(2) ≥ . . . , we define the Fw-score of c ∈ A as Scw(c) =

∑n
i=1 w(|A|−pos(c, i)+1)

if w is non-decreasing and Scw(c) =
∑n

i=1 w(pos(c, i)) if w is non-increasing. The winners
under Fw are the alternatives with the maximum Fw-score.
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Observe that the Borda rule corresponds to the non-decreasing sequence (0, 1, 2, 3, . . . )
and Plurality corresponds to the non-increasing sequence (1, 0, . . . ), i.e., we need to consider
both non-increasing and non-decreasing sequences to capture well-known scoring rules.

Now, we have observed that even though both Borda and Plurality are susceptible to
manipulation by cloning, they exhibit very different behavior with respect to the cloning
procedure. Indeed, under Plurality the winner will suffer from cloning, while under Borda
her position will usually strengthen (at least as long as we are focusing on manipulability
rather than strong manipulability). Further, while no election is strongly manipulable with
respect to Plurality, there is a large category of elections that are strongly manipulable with
respect to Borda. Thus, an interesting research direction is to determine the relationship
between the properties of the sequence w and the manipulability of the corresponding
scoring rule (compare with the work of Hemaspaandra and Hemaspaandra [10] on voter
manipulation of scoring rules).

However, this problem is far from being trivial. Indeed, we will now demonstrate that
there is a family of scoring rules for which deciding whether a given election is susceptible to
cloning is computationally hard. Specifically, this is the case for k-Approval for any k ≥ 2.
We start by showing this for k = 2; subsequently, we will generalize our result to the case
k > 2. Our proof gives a reduction from the problem Dominating Set, defined below.

Definition 5.6. An instance of the Dominating Set problem is a triple (V, E, s), where
(V, E) is an undirected graph and s is an integer. We ask if there is a set W ⊆ V such that
(a) |W | ≤ s and (b) for each v ∈ V we have v ∈ W or (v, w) ∈ E for some w ∈ W .

Lemma 5.7. For 2-Approval, it is NP-hard to decide whether a given election is manipulable
by cloning.

It is not hard to modify the construction in the proof of Lemma 5.7 for the case k > 2.

Theorem 5.8. For any given k ≥ 2, it is NP-hard to decide whether a given election is
manipulable by cloning with respect to k-Approval.

One can also use ideas in the proof of Theorem 5.8 to show that it is NP-hard to decide
whether an election is strongly manipulable with respect to k-Approval.

Theorem 5.9. For any given k ≥ 2, it is NP-hard to decide whether a given election is
strongly manipulable by cloning with respect to k-Approval.

5.3 Copeland

For an election E with a set of candidates A, its pairwise majority graph is a directed graph
(A, X), where X contains an edge from a to b if more than half of the voters prefer a to b;
we say that a beats b if (a, b) ∈ X . If exactly half of the voters prefer a to b, we say that a
and b are tied (this does not mean that their Copeland scores are equal).

For an odd number of voters, the graph (A, X) is a tournament, i.e., for each pair
(a, b) ∈ A2, a 6= b, we have either (a, b) ∈ X or (b, a) ∈ X . In this case, we can make use of
a well-known tournament solution concept of Uncovered Set [16, 8, 13], defined as follows.
Given a tournament (A, X), a candidate a is said to cover another candidate b if a beats b
as well as every other candidate beaten by b. The Uncovered Set of (A, X) is the set of all
candidates not covered by other candidates.

It turns out that if the number of voters is odd, the Uncovered Set coincides with the
set of candidates that can be made Copeland winners by cloning.

Theorem 5.10. For any q ∈ [0, 1], an election E with an odd number of voters is q-
manipulable with respect to cloning if and only if the manipulator’s preferred candidate c
does not win, but is in the Uncovered Set of the pairwise majority graph of E.
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For elections with an even number of voters, the situation is significantly more compli-
cated. The notion of Uncovered Set can be extended to pairwise majority graphs of arbitrary
elections in a natural way (see, e.g. [3]): we say that u covers c if u beats c and all alterna-
tives beaten by c, and, in addition, c loses to all alternatives that beat u. In particular, this
means that u does not cover c if it is beaten by some alternative that is tied with c. This
definition generalizes the one for the odd number of voters, However, for an even number
of voters, the condition that c is in the Uncovered Set turns out to be necessary, but not
sufficient for manipulability by cloning.

Example 5.11. Consider an election with A = {a, b, c, u, w}. Suppose that a beats u, u
beats b, b beats w, w beats a, u and w beat c, and any other pair of candidates is tied.
Note that by McGarvey theorem [15] there are voters’ preferences that produce this pairwise
majority graph. It is easy to see that in this election c cannot be made a winner by cloning
even though it is not covered.

Instead, we can characterize cloning-manipulable profiles in terms of the properties of the
induced (bipartite) subgraph of (A, X) whose vertices are, on the one hand, the candidates
that are tied with c, and, on the other hand, the candidates that beat c as well as all
candidates beaten by c. However, it is not clear if this characterization leads to a polynomial-
time algorithm. We omit the details due to space constraints.

On the other hand, finding an optimal-cost cloning manipulation is hard even in the UC
model.

Theorem 5.12. For Copeland, UC q-Cloning is NP-hard for each q ∈ [0, 1].

6 Conclusions

We have provided a formal model of manipulating elections by cloning, characterized manip-
ulable and strongly manipulable profiles for many well-known voting rules, and explored the
complexity of finding a minimum-cost cloning manipulation. The grouping of voting rules
according to their susceptibility to manipulation differs from most standard classifications
of voting rules: e.g., scoring rules behave very differently from each other, and Maximin is
more similar to Plurality than to Copeland. Future research directions include designing
approximation algorithms for the minimum-cost cloning under voting rules for which this
problem is known to be NP-hard, and extending our results to other voting rules.
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On Problem Kernels for Possible Winner
Determination Under the k-Approval Protocol1

Nadja Betzler2

Abstract

The POSSIBLE WINNER problem asks whether some distinguished candidate may become
the winner of an election when the given incomplete votes (partial orders) are extended into
complete ones (linear orders) in a favorable way. Under thek-approval protocol, for every
voter, the bestk candidates of his or her preference order get one point. A candidate with
maximum total number of points wins. The POSSIBLE WINNER problem fork-approval is
NP-complete even if there are only two votes (andk is part of the input). In addition, it is NP-
complete for every fixedk ∈ {2, . . . , m− 2} with m denoting the number of candidates if the
number of votes is unbounded. We investigate the parameterized complexity with respect to the
combined parameterk and “number of incomplete votes”t, and with respect to the combined
parameterk′ := m − k andt. For both cases, we use kernelization to show fixed-parameter
tractability. However, we show that whereas there is a polynomial-size problem kernel with
respect to(t, k′), it is very unlikely that there is a polynomial-size kernel for (t, k). We provide
additional fixed-parameter algorithms for some special cases.

1 Introduction

Voting situations arise in political elections, multi-agent systems, human resource departments, etc.
This includes scenarios in which one is interested in findinga small group of winners (or losers),
such as awarding a small number of grants, picking out a limited number of students for a graduate
school, or voting for a committee with few members. Such situations are naturally reflected by a
variant of approval voting, thek-approvalvoting system, where every voter gives one point to each
of thek alternatives/candidates which he or she likes best and the candidates having the most points
in total win. On the one side,k-approval extendsplurality where a voter gives one point to one
candidate, that isk = 1, and, on the other side, it extendsvetowhere a voter gives one point to all
but one candidate, that is,k′ = 1 for k′ := m− k andm candidates.

At a certain point in the decision making process one might face the situation that the voters
have made up their minds “partially”. For example, for the decision about the Nobel prize for peace
in 2009, a committee member might have already known that he (or she) prefers Obama and Bono
to Berlusconi, but might have not decided on the order of Obama and Bono yet. This immediately
leads to the question whether, given a set of “partial preferences”, a certain candidate may still win.
The formalization of this question leads to the POSSIBLE WINNER problem.

The POSSIBLEWINNER problem has been introduced by Konczak and Lang [16] and since then
its computational complexity has been studied for several voting systems [2, 3, 5, 18, 19]. Even for
the comparatively simplek-approval voting, it turned out that POSSIBLE WINNER is NP-complete
except for the special cases of plurality and veto [3], that is, for anyk greater than one and smaller
than the number of candidates minus one. A multivariate complexity study showed that it is NP-
complete if there are only two voters whenk is part of the input but fixed-parameter tractable with
respect to the “number of candidates” [5]. In contrast, for the approval voting variant where each
voter can assign a point toup tok candidates, it can easily be seen that POSSIBLE WINNER can be
solved in polynomial-time. A prominent special case of POSSIBLEWINNER is the MANIPULATION

1To appear inProceedings of the 35th International Symposium on Mathematical Foundations of Computer Science
(MFCS 2010), Brno, Czech Republic, August 2010.

2Supported by the DFG, research project PAWS, NI 369/10.
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problem, where the input consists of a set of linear orders and a set of completely unspecified votes.
Fork-approval, it is easy to see that MANIPULATION is solvable in polynomial time for unweighted
votes but for weighted votes it is NP-complete for all fixedk 6= 1 [15].

The above described hardness results motivate a multivariate analysis with respect to the com-
bined parameter “number of voters”and “number of candidates to which a voter gives one/zero
points” fork-approval. Can we efficiently solve POSSIBLE WINNER in the case that these parame-
ters are both small? Directly related questions are whetherwe can ignore or delete candidates which
are not relevant for the decision process and how to identifysuch candidates. In this context, param-
eterized algorithmics [11, 17] provides the concept of kernelization by means of polynomial-time
data reduction rules that “preprocess” an instance such that the size of the “reduced” instance only
depends on the parameters [6, 14].

In this work, we use kernelization to show the fixed-parameter tractability of POSSIBLEWINNER

for k-approval in two “symmetric” scenarios. First, we considerthe combined parameter “number of
incomplete votes”t and“number of candidates to which every voter gives zero points” k′ := m− k
for m candidates (directly extending the veto voting system withk′ = 1). Making use of a simple
observation we show that POSSIBLEWINNER admits a polynomial-size problem kernel with respect
to (t, k′) and provide two algorithms: one with exponential running time factor2O(k′) in case of
constantt and one with exponential running time factor2O(t) in case of constantk′. Second, we
consider the combined parametert andk, wherek denotes the “number of candidates to which
a voter gives a point”. We observe that here one cannot argue symmetrically to the first scenario.
Using other arguments, we give a superexponential-size problem kernel showing the fixed-parameter
tractability of POSSIBLEWINNER with respect to(t, k). For the special case of 2-approval, we give
an improved polynomial-size kernel withO(t2) candidates. Using a methodology due to Bodlaender
et al. [7], our main technical result shows that POSSIBLE WINNER is very unlikely to admit a
polynomial-size problem kernel with respect to(t, k).

2 Preliminaries

A linear voteis a transitive, antisymmetric, and total relation on a setC of candidates andpartial
vote a transitive and antisymmetric relation on a setC of candidates. We use> to denote the
relation between candidates in a linear vote and≻ to denote the relation between candidates in
a partial vote. We often specify a subsetD ⊆ C of candidates instead of single candidates in
a partial vote; for a candidatee ∈ C \ D andD = {d1, . . . , ds}, the meaning of “e ≻ D” is
“{e ≻ d1, e ≻ d2, . . . , e ≻ ds}”. A linear votevl extendsa partial votevp if vp ⊆ vl, that is, for
everyi, j ≤ m, from ci ≻ cj in vp it follows thatci > · · · > cj in vl. An extensionE of a set of
partial votesV p = {vp

1 , . . . , vp
n} is a mapping fromV p to a set of linear votesV l := {vl

1, . . . , v
l
n}

such thatvl
i extendsvp

i for everyi. Given a set of partial votesV p on C, a candidatec ∈ C is a
possible winnerif there exists awinning extensionE, that is,c wins inE with respect to a considered
voting system. For any voting systemR, the underlying decision problem is defined as follows.

POSSIBLE WINNER

Given: A set of candidatesC, a set of partial votesV onC, and a distinguished candidatec ∈ C.
Question: Is there an extensionE of V such thatc wins with respect toR in E?

We focus on the voting systemk-approvalwhere, given a setV of linear votes on a setC of candi-
dates, the firstk candidates within a vote get one point and the remaining candidates get zero points.
For every candidatec′ ∈ C, one sums up the points over all votes fromV to obtain itsscores(c′)
and the candidates with maximum score win. We call the firstk positions of a voteone-positions
and the remaining positionszero-positions. All results are given for theunique winnercase, that
is, looking for a single candidate with maximum score, but can be adapted easily to hold for the
“co-winner” case where several candidates may get the maximum score and all of them win.
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A parameterized problemL is a subset ofΣ∗ × Σ∗ for some finite alphabetΣ [11, 17]. An in-
stance of a parameterized problem consists of(x, p) wherep is called the parameter. We mainly
consider “combined” parameters which are tuples of positive integers. A parameterized prob-
lem is fixed-parameter tractableif it can be solved in timef(|p|) · poly(|x|) for a computable
function f . A kernelization algorithm consists of a set of(data) reduction rulesworking as fol-
lows [6, 14, 17]. Given an instance(x, p) ∈ Σ∗ × Σ∗, they output in time polynomial in|x| + |p|
an instance(x′, p′) ∈ Σ∗ × Σ∗ such that the following two conditions hold. First,(x, p) is a yes-
instance if and only if(x′, p′) is a yes-instance (termedsoundness). Second,|x′| + |p′| ≤ g(|p|)
whereg is a computable function. Ifg is a polynomial function, then we say that the parameterized
problem admits apolynomial kernel.

Some of the reduction rules given in this work will not directly decrease the instance size by
removing candidates or votes but instead only decrease the number of possible extensions of a vote,
for example, by “fixing” candidates. Tofix a candidate at a certain position means to specify its
relation to all other candidates. Clearly, a candidate may not be fixed at every position in a specific
partial vote. To take this into account, an important concept is the notation ofshiftinga candidate.
More precisely, we say a candidatec′ can shift a candidatec′′ to the left (right) in a partial votev if
c′′ ≻ c′ (c′ ≻ c′′) in v, that is, settingc′ to a one-position (zero-position) implies settingc′′ to a one-
position (zero-position) as well. For every candidatec′ ∈ C and a partial votev ∈ V , letL(v, c′) :=
{c′′ ∈ C | c′′ ≻ c′ in v} andR(v, c′) := {c′′ ∈ C | c′ ≻ c′′ in v}. Then, fixing a candidatec′ ∈ C
as good as possiblemeans to addL(v, c′) ≻ c′ ≻ C \ (L(v, c′) ∪ {c′}) to v. Analogously, fixing a
candidateas bad as possibleis realized by addingC \ (R(v, c′) ∪ {c′}) ≻ c′ ≻ R(v, c′) to v. If a
candidatec′ ∈ C is fixed in all partial votes, this implies that also its scores(c′) is fixed.

The votes of an input instance of POSSIBLEWINNER can be partitioned into a (possibly empty)
set of linear votes, calledV l, and a set of proper (non-linear) partial votes, calledV p. We state all
our results for the parametert := |V p|. All positive results also hold for the parameter number of
total votesn := |V l|+ |V p|. Due to the space restrictions, several (parts of) proofs are deferred to
a full version of this work.

3 Fixed number of zero-positions

For(m−k′)-approval withk′ < m, k′ denotes the number of zero-positions. We give a polynomial
kernel with respect to(t, k′) for POSSIBLE WINNER wheret is the number of partial votes. In
addition, we provide two parameterized algorithms for special cases.

3.1 Problem kernel

Consider a POSSIBLE WINNER instance with candidate setC, vote setV = V l ∪ V p, and distin-
guished candidatec ∈ C for (m − k′)-approval. We start with a simple reduction rule that is a
crucial first step for all kernelization results in this work.

Rule 1. For every votevi ∈ V p, if |L(vi, c)| < m− k′, fix c as good as possible invi.

The soundness and polynomial-time running time of Rule 1 is easy to verify. The condi-
tion |L(vi, c)| < m − k′ is crucial since otherwisec might shift a candidatec′ to a one-position
whereasc is assigned to a zero position and this could causec′ to beatc. After applying Rule 1,
the score ofc is fixed at the maximum possible value since it makes one pointin all votes in which
this is possible. Now, for every candidatec′ ∈ C \ {c}, by counting the points thatc′ makes within
the linear votesV l, compute the number of zero positions thatc′ must assume within the partial
votesV p such that it is beaten byc. Let this number bez(c′) andZ+ := {c′ ∈ C \ {c} | z(c′) > 0}.
Since there are onlytk′ zero positions inV p, one can observe the following.

Observation 1. In a yes-instance,
∑

c′∈C\{c} z(c′) ≤ tk′ and|Z+| ≤ tk′.
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Initialization:
For everyD′ ∈ D \ {(d1, . . . , dp)}, setT (0, D′) = 0.
SetT (0, (d1, . . . , dp)) = 1.

Update:
For0 ≤ i ≤ t− 1,
for everyD′ = (d′1, . . . , d

′
p) ∈ D,

T (i + 1, D′) = 1 if there are two candidateszg, zh that can take the zero-positions invi+1

andT (i, D′′) = 1 with D′′ := {d′′1 , . . . , d′′p} and
d′′j = d′j for j ∈ {1, . . . , q} \ {g, h}, d′′g ≤ d′g + 1, andd′′h ≤ d′h + 1.

Output:
“yes” if T (t, (0, . . . , 0)) = 1, “no” otherwise

Figure 1: Dynamic programming algorithm for(m− 2)-approval.

Observation 1 provides a simple upper bound for the number ofcandidates inZ+. By formu-
lating a data reduction rule bounding the number of remaining candidates and replacing the linear
votesV l by a bounded number of “equivalent votes” we can show the following theorem. The basic
idea is that since a remaining candidate fromC \ (Z+ ∪ {c}) can be set arbitrarily in every vote
without beatingc, it is possible to replace the set of all remaining candidates bytk′2 “representative
candidates”.

Theorem 1. For (m − k′)-approval,POSSIBLE WINNER with t partial votes admits a polynomial
kernel with at mosttk′2 + tk′ + 1 candidates.

3.2 Parameterized algorithms

We give algorithms running in2O(p) ·poly(n, m) time withp denoting eitherk′ or t where the other
parameter is of constant value. Note that the kernelizationfrom the previous subsection does not
imply such running times.

Constant number of partial votes.For two partial votes, there can be at most2k′ candidates that
must take a zero-position in a yes-instance (see Observation 1). Branching into the two possibilities
of taking the zero-position in the first or in the second vote for every such candidate, results in a
search tree of size22k′

= 4k′
. For every “leaf” of the search tree it is easy to check if there is a

corresponding extension. Using similar arguments, one arrives at the following.

Proposition 1. For a constant numbert of partial votes,POSSIBLEWINNER for (m−k′)-approval
can be solved in2t2k′ · poly(n, m) time.

Constant number of zero-positions.For constantk′ the existence of an algorithm with running time
2O(t) · poly(n, m) seems to be less obvious than for the case of constantt. We start by giving a
dynamic programming algorithm for(m − 2)-approval. Employing an idea used in [4, Lemma 2],
we show that it runs in4t · poly(n, m) time and space.

As in the previous subsection, fixc according to Rule 1 such that it makes the maximum possible
score and letZ+ := {z1, . . . , zp} denote the set of candidates that take at least one zero-position in
a winning extension. Letd1, . . . , dp denote the corresponding number of zero-positions that must
be assumed and letD := {(d′1, . . . , d′p) | 0 ≤ d′j ≤ dj for 0 ≤ j ≤ p}. Then, the dynamic
programming tableT is defined byT (i, D′) for 1 ≤ i ≤ t andD′ = (d′1, . . . , d

′
p) ∈ D. Herein,

T (i, D′) = 1 if the partial votes from{v1, . . . , vi} can be extended such that candidatezj takes at
leastdj − d′j zero-positions for1 ≤ j ≤ p; otherwiseT (i, D′) = 0. Intuitively, d′j stands for the
number of zero-positions whichzj must still take in the remaining votes{vi+1, . . . , vt}. Clearly, if
T (t, (0, . . . , 0)) = 1 for an instance, then it is a yes-instance. The dynamic programming algorithm
is given in Figure 1. By further extending it to work for any constantk′ we can show the following.
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Theorem 2. For (m − 2)-approval witht partial votes,POSSIBLE WINNER can be solved in4t ·
poly(n, m) time andO(t·4t) space. For(m−k′)-approval witht partial votes,POSSIBLEWINNER

can be solved in2O(t) · poly(n, m) time for constantk′.

4 Fixed number of one-positions

We study POSSIBLEWINNER for k-approval with respect to the combined parameterk and numbert
of partial votes. The problem can be considered as “filling”tk one-positions such that no candidate
beatsc. In the previous section, we exploited that the number of candidates that must take a zero-
position is already bounded by the combined parametert and “number of zero-positions” in a yes-
instance (Observation 1). Here, we cannot argue analogously: Our combined parameter(t, k) only
bounds the number of one-positions but there can be an unbounded number of candidates that may
take a one-position in different winning extensions of the partial votes. Hence, we argue that if there
are too many candidates that can take a one-position, then there must be several choices that lead
to a valid extension. We show that it is sufficient to keep a setof “representative candidates” that
can take the required one-positions if and only if this is possible for the whole set of candidates.
This results in a problem kernel of super-exponential size showing fixed-parameter tractability with
respect to(t, k). We complement this result by showing that it is very unlikely that there is a kernel
of polynomial size. In addition, we give a polynomial kernelwith O(t2) candidates for2-approval.

4.1 Problem kernels

We first describe a kernelization approach for POSSIBLE WINNER for k-approval in general and
then show how to obtain a better bound on the kernel size for 2-approval.

Problem kernel for k-approval. In order to describe more complicated reduction rules, we assume
that a considered instance is exhaustively reduced with respect to some simple rules. To this end, we
fix the distinguished candidatec as good as possible by Rule 1 (using thatm− k′ = k). Afterwards,
we apply a simple reduction rule to get rid of “irrelevant” candidates and check whether an instance
is a trivial no-instance:

Rule 2. First, for every candidatec′ ∈ C \ {c}, if making one point in the partial votes causesc′

not to be beaten byc, then fixc′ as bad as possible in every vote. Second, compute the setD of
candidates that can be deleted: For every candidatec′ ∈ C \ {c}with |L(v, c′)| > k for all v ∈ V p,
if the scores(c′) is at leasts(c), then output “no solution”, otherwise addc′ to D. DeleteD and
replaceV l by an equivalent set.

The soundness of Rule 2 is easy to see: Every candidate fixed bythe first part cannot be as-
signed to a one-position in any winning extension. For the second part, every winning extension of
an unreduced instance can easily be transformed into a winning extension for the reduced one by
deleting the candidates specified by Rule 2 andvice versa. A set of equivalent linear votes can be
found according to [3, Lemma 1]3.

In the following, we assume that Rule 2 has been applied, thatis, all remaining candidates can
make at least one point in an extension without beatingc. To state further reduction rules, a partial
vote v is represented as a digraph with vertex set{c′ | c′ ∈ C \ {c} and|L(v, c′)| < k}. All
other candidates are considered as “irrelevant” for this vote since they cannot take a one-position.
The vertices are organized intok levels. For0 ≤ j ≤ k − 1, let Lj(v) := {c′ | c′ ∈ C \
{c} and|L(v, c′)| = j} containing all candidates that shift exactlyj candidates to a one-position if
they are assigned to the best possible position. There is a directed arc fromc′ to c′′ if and only if
c′′ ∈ L(v, c′). Figure 2 displays an example for the representation of a partial vote for 3-approval.

3Herein, it might be necessary to add one new candidate. However, this will not affect the following analysis and will be
discussed in more detail in the full version of this work.
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v : a ≻ b ≻ d ≻ x,
e ≻ f,
g ≻ f ≻ y ≻ c,
a ≻ h

Figure 2: Example for 3-approval: Partial votev (left-hand side) and corresponding digraph with
levels0, 1, and2. Arcs following by transitivity are omitted. Note thatx, y, andc do not appear in
the digraph since they are irrelevant forv.

In general, the number of candidates per level is unbounded.However, for some cases it is easy
to see that one can “delete” all but some representative candidates. The following reduction rule
provides such an example using the fact that in any vote a candidate from the first level can be set to
an arbitrary one-position without shifting any other candidate.

Rule 3. For v ∈ V p with |L0(v)| ≥ tk, consider any subsetL′ ⊆ L0(v) with |L′| = tk. Add
L′ ≻ C \ L′ to v.

To see the soundness of Rule 3 consider a winning extensionE for a non-reduced instance and
a votev ∈ V p with |L0(v)| ≥ tk. Since there aretk one-positions in the partial votes, there must be
at leastk candidates fromL′ not having assumed a one-position within the othert−1 votes. Setting
thesek candidates to the one-positions inv leads to a winning extension of the reduced instance.
The other direction is obvious.

If Rule 3 applies to all partial votes, then in a reduced instance at mostt2k candidates are not
fixed at zero-positions inV p and the remaining candidates can be deleted by Rule 2. Hence,we
consider the situation that there is a partial votev with |L0(v)| < tk. Then, we cannot ignore the
candidates from the other levels but replace them by a bounded number of representatives. We first
discuss how to find a set of representatives for 2-approval and then extend the underlying idea to
work for generalk.

For 2-approval, for a votev with |L0(v)| < 2t, it remains to bound the size ofL1(v). This is
achieved by the following reduction rule: Fix all but2t in-neighbors of every candidate fromL0(v)
at zero-positions. To see the soundness, we show, given a winning extensionE for the non-reduced
instance, how to obtain a winning extensionE′ for v after the reduction (the other direction is
obvious). Clearly, inE(v) the first position must be assigned to a candidatec′ from L0(v) andc′

can also be assigned to the first position inE′(v). If there is another candidate fromL0(v) that
takes the second position inE(v), one can do the same inE′(v). Otherwise, distinguish two cases.
First,c′ has less than2t in-neighbors, then the reduction rule has not fixed any candidate that shiftsc′

to the first position and thusv can be extended in the same way as inE. Second,c′ has at least2t in-
neighbors. Since there are only2t one-positions and2t non-fixed in-neighbors, the second position
of v can be assigned to a candidate that does not take a one-position in any other vote ofE.

Altogether, for2-approval, one ends up with up to4t2 non-fixed candidates per vote and hence
with O(t3) non-reduced candidates in total. For generalk, extend this approach iteratively by bound-
ing the number of candidates for every level:

Rule 4. Consider a partial votev ∈ V p with |L0(v)| < tk. Start withi = 1 and repeat untili = k.
- For every candidatec′ ∈ Li(v), if there are more thantk candidates inLi(v) which have the same
neighborhood asc′ in L0(v) ∪ L1(v) ∪ · · · ∪ Li−1(v), fix all buttk of them as bad as possible.
- Seti := i + 1.

Using Rule 4 one can show the following.

Theorem 3. For k-approval,POSSIBLE WINNER admits a problem kernel with size bounded by a
computable function ink and the number of partial votest.
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Improved problem kernel for 2-approval. As discussed above, the kernelization as stated fork-
approval in general leads to a polynomial kernel withO(t3) candidates for2-approval. To give a
kernel withO(t2) candidates, we use some properties of bipartite graphs. Fora bipartite graph(G∪
H, E) with vertex setG ∪ H and edge setE ⊆ {{g, h} | g ∈ G andh ∈ H}, amatchingdenotes
a subsetM ⊆ E such that for alle, e′ ∈ M , e ∩ e′ = ∅. A vertex contained ine for ane ∈ M is
calledmatching vertexand, for{g, h} ∈ M , g andh arematching neighbors. A maximum matching
is a matching with maximum cardinality. Theopen neighborhoodof a vertexg ∈ G is denoted
by N(g) := {h | {g, h} ∈ E} and, forG′ ⊆ G, N(G′) :=

⋃
g∈G′ N(g).

Lemma 1. For a bipartite graph(G ∪H, E) with maximum matchingM , there is a partition ofG
into G1 ⊎G2, such that the following holds. First, all neighbors ofG1 are part ofM . Second, every
vertex fromG2 has a matching neighbor outsideN(G1).

Now, we employ Lemma 1 to design a reduction rule. Note that similar arguments are used in
several works, see [9, 17]. In the following, we assume that Rule 1 and Rule 2 have been applied.
We define a bipartite graph(G ∪ H, E) as follows. For a partial profile with partial votesV p

and candidate setC, let V ′ := {v′ ∈ V p | |L0(v′)| < 2t}. For everyv′i ∈ V ′, for 1 ≤ j ≤
|L0(v′i)|, add a vertexgj

i to G. Intuitively, for every candidate that can take a first position in v′i
there is a corresponding vertex inG. If a candidate can take the first position in several votes, then
there are several vertices corresponding to this candidate. The vertex setH contains one vertex
for every candidate from(

⋃
v′∈V ′ L1(v′)) \ (

⋃
v′∈V ′ L0(v′)). There is an edge betweengj

i ∈ G
andh ∈ H if setting the candidate corresponding toh to the second position inv′i shifts the candidate
corresponding togj

i to the first position. Now, we can state the following.

Rule 5. Compute a maximum matchingM in (G ∪H, E). Fix every candidate corresponding to a
non-matched vertex inH as bad as possible in every vote fromV ′.

Lemma 2. Rule 5 is sound and can be carried out inO(|E| · |G ∪H |+ |V | · |C|) time.

Proof. A winning extension for an instance reduced with respect to Rule 5 is also a winning exten-
sion for an unreduced instance. Now, we show the other direction. Given a winning extensionE for
an unreduced instance, we construct a winning extensionEr for a reduced instance. Since Rule 5
does not fix any candidate which can take the first position in at least one vote, the first positions
in Er can be assumed by the same candidates as inE. It remains to fix the second positions without
beatingc. For every votevi, let ge

i denote the candidate that takes the first position invi in E. For
the corresponding vertexge

i one can distinguish two cases: First,ge
i ∈ G1. In this case, none of the

neighbors ofge
i have been fixed and, thus, the candidate which takes the second position invi in E

can also take the second positionEr. Second,ge
i ∈ G2. In this case, set the candidate corresponding

to the matching neighbor fromge
i to the second position. Now, it is not to hard to see thatc wins

in Er : The only candidates that possibly make more points inEr than inE are the candidates corre-
sponding to the matching neighbors of vertices fromG2. Due to the matching property, every such
candidate makes at most one point inV ′. By definition,G only contains vertices that can make at
least one point and for all votes fromV p \ V ′ one can easily find a winning extension which does
not assign the “matching-candidates” to one-positions (see Rule 2). It follows thatc also wins in the
extensionEr. The claimed running time follows since a maximum bipartitematching can be found
in O(|E| · |G ∪H |) time.

Bounding the size of candidates in level 0 by Rule 3 and the (remaining) candidates in level 1
by Rule 5 one arrives at the following.

Theorem 4. For 2-approval witht partial votes,POSSIBLE WINNER admits a polynomial kernel
with less than4t2 candidates.
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4.2 Kernel lower bound

In the previous subsection, we provided a kernel of super-exponential size with respect to(t, k)
for POSSIBLE WINNER underk-approval. Here, we complement this result by showing that for
k-approval, POSSIBLE WINNER cannot have a polynomial kernel with respect to(t, k) under some
reasonable assumptions from classical complexity theory.To this end, we apply a method introduced
by Bodlaender et al. [7] and Fortnow and Santhanam [13] whichis briefly described in the following.

Definition 1. [7] A composition algorithmfor a parameterized problemL ⊆ Σ∗×N is an algorithm
that receives as input a sequence((x1, p), . . . , (xq, p)) with (xi, p) ∈ Σ∗ ×N for each1 ≤ i ≤ q,
uses time polynomial in

∑q
i=1 |xi|+ p, and outputs(y, p′) ∈ Σ∗ ×N with

• (y, p′) ∈ L ⇔ (xi, p) ∈ L for some1 ≤ i ≤ q and

• p′ is polynomial inp.

A parameterized problem iscompositionalif there is a composition algorithm for it. Note that
this definition directly extends to parameters that are constant-size tuples of integers. For a parame-
terized problemL, theunparameterized versionLu is the language{x#1k | (x, k) ∈ L} where1
is an arbitrary fixed letter inΣ and# /∈ Σ.

Theorem 5. [7, 13] Let L be a compositional parameterized problem whose unparameterized ver-
sion is NP-complete. Then, unlesscoNP ⊆ NP / poly, there is no polynomial kernel forL.

For POSSIBLE WINNER parameterized with respect to(t, k), it is easy to see that the unparam-
eterized version is NP-complete as well. Hence, the main work to apply Theorem 5 is to achieve a
composition algorithm. Composition algorithms have been provided for several fundamental com-
binatorial problems, see for example [8, 10]. In particular, Dom et al. [10] introduced a general
framework to build composition algorithms employing so-called “identifiers”. One of the necessary
conditions to apply this framework, is the existence of an algorithm running in2pγ · poly time for
the considered parameterp and a fixed constantγ. Considering the combined parameter “number of
ones”k and “number of partial votes”t for POSSIBLEWINNER underk-approval, there is no known
algorithm running in2(tk)γ ·poly time. Hence, we apply the following overall strategy (whichmight
be also useful for other problems).

Overall strategy. We employ a proof by contradiction. Assume that there is a polynomial kernel
with respect to(t, k). Then, since for POSSIBLE WINNER there is an obvious brute-force algorithm
running inmtk · poly(n, m) time form candidates andn votes, there must be anAlgorithm S with
running timepoly(t, k)tk · poly(n, m) < 2(tk)γ · poly(n, m) for an appropriate constantγ. In the
next paragraph, we use the existence of AlgorithmS to design a composition algorithm for the com-
bined parameter(t, k). Since it is easy to verify that the unparameterized versionof POSSIBLEWIN-
NER is NP-complete, it follows from Theorem 5 that unlesscoNP ⊆ NP / poly there is no poly-
nomial kernel with respect to(t, k), a contradiction under the assumption thatcoNP * NP / poly.
Altogether, it remains to give a composition algorithm.

Composition algorithm. Consider a sequence((x1, (t, k)), . . . , (xq, (t, k))) of q POSSIBLE WIN-
NER instances fork-approval. To simplify the construction, we make two assumptions. First, we
assume that there is no “obvious no-instance”, that is, an instance in which a candidatec′ is not
beaten byc even if c′ makes zero points in all of the partial votes. This does not constitute any
restriction since such instances can be found and removed intime polynomial in

∑q
i=1 |xi|. Second,

we assume that forxj , 1 ≤ j ≤ q, within the partial votes the distinguished candidate makes zero
points in every extension. Since it follows from known constructions [3, 5] that the unparameterized
version of the problem remains NP-complete for this case, this assumption leads to a non-existence
result for this special case and thus also for the general case.
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The overall structure of the composition algorithm is described as follows. Ifq > 2(tk)γ

for γ
as specified for AlgorithmS, the composition algorithm appliesS to every instance. This can be
done within the running time bound required by Definition 1. Hence, in the following, we assume
that the number of instances is at most2(tk)γ

. As suggested by Dom et al. [10], this can be used
to assign an “identifier” of sufficiently small size to every instance. Basically, the identifiers, which
will be realized by specific sets of candidates, rely on the binary representation of the numbers
from {1, . . . , q}. The size of an identifier will be linear ins := ⌈log q⌉ which is polynomial in the
combined parameter(t, k) sinceq ≤ 2(tk)γ

.

Now, we provide a composition algorithm for the case thatq ≤ 2(tk)γ

. Compose the sequence
of instances to one big instance

(X, (3s + 4, 2t)) with X = (C, V l ∪ V p, c)

as follows. For1 ≤ i ≤ q, let xi be(Ci, V
l
i ∪ V p

i , ci). Then,

C :=
⊎

1≤i≤q

(Ci \ {ci}) ⊎ {c} ⊎D ⊎ Z ⊎A ⊎B

with

• D := {d0
0, . . . , d

0
s} ∪ {d1

0, . . . , d
1
s},

• Z :=
⋃

1≤j≤t Zj with Zj := {z0
h,j | 0 ≤ h ≤ s} ∪ {z1

h,j | 0 ≤ h ≤ s},
• A := {a1, . . . , aq}, and

• a setB with |B| := 2s + 3− k.

The candidates fromD andZ will be used as identifiers for the different instances. Morespecifically,
every instancexi is uniquely identified by the binary code of the integeri = b0·20+b1·21+· · ·+bs·2s

with bh ∈ {0, 1} leading to the following definition.

Definition 2. A subsetDi ⊂ D identifiesxi whend1
h ∈ Di if and only ifbh = 1 andd0

h ∈ Di if
and only ifbh = 0.

Let Di := D \Di. Similarly, for every1 ≤ j ≤ t, the setZi,j denotes the candidates fromZj

that identifyi, that is,

Zi,j := {z0
h,j | h ∈ {0, . . . , s} andbh = 0} ∪ {z1

h,j | h ∈ {0, . . . , s} andbh = 1}.
Let Zi,j := Zj \ Zi,j denote the remaining candidates fromZj.

The set of partial votesV p consists of two subsetsV p
1 andV p

2 , both containingt partial votes.
The basic idea is that a winning extension ofV p

1 “selects” an instancexi and there is a winning
extension forxi if and only if V p

2 can be extended such thatc wins. The setV p
1 contains the vote

{Zi,1 ∪Di ∪ Zi,t ≻ ai | 1 ≤ i ≤ q}, D ∪ Z ∪A ≻ C \ (D ∪ Z ∪A),

meaning that the vote contains the constraintsZi,1 ∪ Di ∪ Zi,t ≻ ai for everyi. Furthermore, for
everyj ∈ {2, . . . , t}, the setV p

1 contains the vote

{Zi,j ∪Di ∪ Zi,j−1 ≻ ai | 1 ≤ i ≤ q}, D ∪ Z ∪A ≻ C \ (D ∪ Z ∪A).

The setV p
2 consists of the partial votesv1, . . . , vt. Every votevj ∈ V p

2 “composes” the votes
vj

i for i ∈ {1, . . . , q} wherevj
i denotes thejth vote from instancexi after deletingci. Then, for

j ∈ {1, . . . , t}, the votevj is

B ≻ (C \B), {vj
i | 1 ≤ i ≤ q}, {Di ≻ Ci \ {ci} | 1 ≤ i ≤ q}, C \ (A∪Z ∪{c}) ≻ A∪Z ∪{c}.

One can construct a setVl of linear votes polynomial in|C| and |V p| such that the following
hold [3, Lemma 1].
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V p
1 : Zw,1 > Dw > Zw,t > aw > C \ (Zw,1 ∪Dw ∪ Zw,t)

Zw,j > Dw > Zw,j−1 > aw > C \ (Zw,j ∪Dw ∪ Zw,j−1) for 2 ≤ j ≤ t
V p

2 : B > Dw > wj > C \ (B ∪Dw ∪ (Cw \ {cw})) for 1 ≤ j ≤ t

Figure 3: Extension forX in which c wins. For a winning extensionE(xw) = w′
1, . . . , w

′
t of xw,

letwj denotes the linear order given byw′
j restricted to the candidates fromCw\{c}. The remaining

subsets of candidates are fixed in any transitivity preserving order.

• For i ∈ {1, . . . , q}, the maximum partial score of every candidatec′ ∈ Ci \ {ci} equals the
maximum partial score ofc′ in xi.

• For every candidate fromA ∪D ∪B, the maximum partial score ist.

• For every candidate fromZ, the maximum partial score is one.

Lemma 3. The constructed instanceX is a yes-instance for(3s + 4)-approval if and only if there
is ani ∈ {1, . . . , q} such thatxi is a yes-instance fork-approval.

Proof. “⇐”: Assume there is an instancexw for which c is a possible winner. LetE(xw) =
w1, . . . , wt denote a winning extension forxw and recall thatCw denotes the set of candidates
from xw. Then, extend the partial votes fromX as indicated in Figure 3. Since there are3s + 4
one-positions per vote,|Di| = s + 1, and |B| = 2s + 3 − k, in every extended vote fromV p

2 ,
there arek one-positions that are assumed by candidates fromCw \ {cw}. Because of this and due
to the equivalence of the partial orders in the corresponding votes, the candidates fromCw \ {cw}
make exactly the same number of points in the extension forX as inE(xw) and are beaten byc.
The remaining “instance candidates”, namely,

⋃
i6=w Ci \ {ci} do not make any points in the given

extension and thus are beaten byc. The candidates fromD can be partitioned into the two disjoint
subsetsDw andDw. The candidates fromDw maket points inV p

2 and zero points inV p
1 whereas

the candidates fromDw make zero points inV p
2 andt points inV p

1 . Thus, all candidates fromD are
beaten byc. Regarding the candidates fromZj , every candidate appears either inZw,j or in Zw,j

and thus makes exactly one point and is beaten byc. Clearly, all candidates fromA ∪ B are also
beaten byc. Hence,c is a possible winner forX .

Finally, we briefly discuss that fixing the order within the given subsets of candidates in Figure 3
can be done without violating the restriction provided by the partial orders. Forvj in V p

2 such an
extension is

B > Dw > wj > Dw >
⋃
i6=j

Ci \ {ci} > A > Z > {c}

where, the candidates fromB, Dw, Dw, A, andZ can be fixed in an arbitrary order since there are
not any internal constraints invj . The remaining candidates from

⋃
i6=w Ci \ {ci} can be ordered

such thatCi \ {ci} > Cs \ {cs} for i > s, i 6= w, ands 6= w and withinCi \ {ci}, for every
i 6= w, the candidates can be ordered according to any extension ofvj

i . A “complete” extension for
the votes fromV p

1 can be obtained similarly.

“⇒”: Consider an extension ofX in which c wins. First, by proving the following claim, we show
that withinV p

1 one instancexw must be “selected”.

Claim: There must be aw ∈ {1, . . . , q} such that every candidate fromDw is assigned to a one-
position in every extended vote fromV p

1 whereas every candidate fromDw makes zero points inV p
1 .

Proof of Claim:Since there are3s+4 one-positions per vote, inV p
1 there are altogether3st+4t one-

positions that must be filled. The candidates fromZ can take at most2st + 2t of them since|Z| =
2t(s + 1) and each candidate fromZ can make at most one point without beatingc. By using
some argumentation including the votes fromV p

2 , we can show that the candidates fromD can
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take at mostst + t of the one-positions inV p
1 in a winning extension: In every vote fromV p

2 , by
construction, the first2s + 3 − k positions are assumed by candidates fromB and the remaining
s+ k +1 one-positions can only be assigned to candidates from

⋃
1≤i≤q Ci \ {ci}∪D. Since every

candidate from
⋃

1≤i≤q Ci \ {ci} shifts s + 1 candidates fromD to the left by assuming a one-
position, it directly follows that the total number of one-positions assumed by candidates fromD
within V p

2 is at leastt(s + 1). Since|D| = 2s + 2 and every candidate fromD can make at mostt
points, the candidates fromD can take at mostt(2s + 2)− t(s + 1) = st + t of the one-positions
in V p

1 in a winning extension.
Summarizing, in a winning extension, inV p

1 at most3st + 3t one-positions can be assigned to
candidates fromD ∪ Z. Hence, at leastt one-positions must be assigned to candidates fromA.
Furthermore, a candidateai from A shifts3s+3 candidates fromD∪Z to one-positions ifai takes
a one-position. Thus, at most one candidate fromA can take a one-position in an extended vote. It
follows that in every votevj ∈ V p

2 exactly one candidateai from A must take a one position thereby
shifting the candidates fromZi,j ∪Di ∪ Zi,j−1 (or Zi,1 ∪Di ∪ Zi,t for j = 1) to one-positions.

Now, we show for1 ≤ j ≤ t−1 that if the candidateaw ∈ A takes a one-position invj , thenaw

also takes a one-position invj+1. Assume that invj , aw and thus also the candidates fromZw,j take
a one-position. As discussed above, invj+1 a candidate fromA must shifts + 1 further candidates
from Zj . Since every candidate fromZ can make at most one point, the set of these candidates must
be disjoint fromZw,j. The only set of candidates fulfilling this isZw,j and is shifted only byaw.
Analogously, ifaw takes a one-position invt, then it also must take a one-position inv1 because of
the candidates fromZt. This finishes the proof of the Claim.

Now, as direct consequence of the Claim, withinV p
2 each candidate fromDw can still maket

points whereas the candidates fromDw cannot make any points without beatingc. Hence, in every
vote fromV p

2 , we can only set candidates fromCw to the one-positions since setting any other
candidates would shift a candidate fromDw. This means that one can extendV p

2 such that, in every
vote,k one-positions are assigned to candidates fromCw \ {cw} without beatingc. Since the partial
relations between the candidates inCw \ {cw} are the same in theith vote ofxw andX andc makes
zero points in both cases, a winning extension forX directly gives a winning extension forxw .

By using Lemma 3 it is easy to verify that the given composition algorithm fulfills all require-
ments of Definition 1. Hence, Theorem 6 follows from our overall strategy.

Theorem 6. For k-approval,POSSIBLE WINNER parameterized by the combined parameterk and
“number of partial votes” does not admit a polynomial problem kernel unlessNP ⊆ coNP / poly.

5 Outlook

We provided fixed-parameter tractability results based on kernelization. It seems interesting whether
similar results can be obtained for “more general” problemssuch as SWAP BRIBERY [12] or the
counting version of POSSIBLEWINNER[1]. Another interesting scenario might be as follows. Given
a numbers of winners in the input, for example, the size of a committee,one is interested in thes
candidates such that each of them has more points than the remaining candidates. For this scenario,
the negative results for POSSIBLEWINNER for k-approval as given in this work and related work [3,
5] can be adapted by addings− 1 fixed candidates that always win, but as to the algorithmic results,
it is open whether they extend to this scenario.
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Possible Winners When New Alternatives Join:
New Results Coming Up!

Lirong Xia, Jérôme Lang, and Jérôme Monnot

Abstract

In a voting system, sometimes multiple new alternatives will join the election after the voters’
preferences over the initial alternatives have been revealed. Computing whether a given alter-
native can be a co-winner when multiple new alternatives join the election is called thepossible
co-winner with new alternatives (PcWNA)problem, introduced by Chevaleyre et al. [5, 6]. In
this paper, we show that the PcWNA problems areNP-complete for the Bucklin, Copeland0,
and Simpson (a.k.a. maximin) rule, even when the number of new alternatives is no more than
a constant. We also show that the PcWNA problem can be solved in polynomial time for plu-
rality with runoff. For the approval rule, we define three different ways to extend a linear order
with new alternatives, and characterize the computationalcomplexity of the PcWNA problem
for each of them.

1 Introduction

In many real-life situations, a set of voters have to choose acommon alternative out of a set that
can grow during the process. For instance, when a committee want to decide which proposal should
be granted, some applications might arrive late (due to unexpected delay in mailing system, etc).
Suppose that we have already elicited the preference of the voters (members in the committee) on
the initial proposals. It is important for the applicants toknow whether they are already out (so
that they can submit the same proposal to other founding sources right away without waiting for the
committee members to make the final decision). A recent paperby Chevaleyre et al. [5] considers
the following problem:suppose that the voters’ preferences about a set of initial alternatives have
already been elicited, and we know that a given numberk of new alternatives will join the election;
we ask who among the initial alternatives can possibly win the election in the end. This problem
is a special case of thepossible winner problem[9, 12, 11, 3, 4, 2], restricted to the case where the
incomplete profile consists of a collection of full rankingsover the initial alternatives (nothing being
known about the voters’ preferences about the new alternatives), somehow dual of another special
case of the problem where the incomplete profile consists of acollection of full rankings over all
alternatives for a subset of voters (nothing being known about the remaining voters’ preferences),
which itself is equivalent to the coalitional manipulationproblem. The problem is also related to
control by adding candidates [1], as discussed in [5].

Chevaleyre et al. [5, 6] investigated the complexity of computing possible winners with new al-
ternatives, and laid the focus on scoring rules, obtaining both polynomiality andNP-completeness
results, depending on the scoring rule used and the number ofnew alternatives. Their results, how-
ever, did not go beyond scoring rules. Here we go further and give results for several other common
rules, especially some common rules that are based onpairwise elections. After giving some back-
ground in Section 2, each of the following sections is devoted to the PcWNA problem for a specific
voting rule. In Section 3, we focus on approval voting. Sincethe notion of a complete profile (includ-
ing the new alternatives) extending a partial profile over the initial alternatives is not straightforward,
we propose three possible definitions, which we think are thethree most reasonable definitions. We
show that PcWNA problems are trivial for two of these definitions, andNP-complete for the third
one. In Sections 4, 5 and 6 we show that the problem isNP-complete for, respectively, the Bucklin
rule, the Copeland rule, and the Simpson (a.k.a. maximin) rule, and finally in Section 7 we focus
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on plurality with runoff, for which the problem is inP (due to the space constraint, the proof of this
result is omitted).

2 Preliminaries

Let C be the set ofalternatives(or candidates), with|C| = m. Let I(C) denote the set of votes.
Most often, the set of votes is the set of all linear orders over C. An n-profileP is a collection ofn
votes for somen ∈ N, that is,P ∈ I(C)n. A voting ruler is a mapping that assigns to each profile
a set of winning alternatives, that is,r is a mapping from{∅} ∪ I(C) ∪ I(C)2 ∪ . . . to 2C . Some
common voting rules are listed below. For all of them (exceptthe approval rule),I(C) is the set of
all linear orders overC; for the approval rule, the set of votes is the set of all subsets of C, that is,
I(C) = {S : S ⊆ C}.
(Positional) scoring rules: Given ascoring vector~v = (v(1), . . . , v(m)), for any voteV ∈ L(C)
and anyc ∈ C, lets(V, c) = v(j), wherej is the rank ofc in V . For any profileP = (V1, . . . , Vn), let
s(P, c) =

∑n
i=1 s(Vi, c). The rule will selectc ∈ C so thats(P, c) is maximized. Some examples of

positional scoring rules areBorda, for which the scoring vector is(m−1, m−2, . . . , 0); l-approval
(l ≤ m), for which the scoring vector isv(1) = . . . = v(l) = 1 andvl+1 = . . . = vm = 0; and
plurality, for which the scoring vector is(1, 0, . . . , 0).
Approval : Each voter submits a set of alternatives (that is, the alternatives that are “approved”
by the voter). The winner is the alternative approved by the largest number of voters. Note that
the approval rule is different from thel-approval rule, in that for thel-approval rule, a voter must
approvel alternatives, whereas for the approval rule, a voter can approve an arbitrary number of
alternatives.
Bucklin : The Bucklin score of an alternativec is the smallest numbert such that more than half of
the votes rankc among topt positions. The alternatives that have the lowest Bucklin score win. (We
do not consider any further tie-breaking for Bucklin.)
Copelandα (0 ≤ α ≤ 1): For any two alternativesci andcj , we can simulate apairwise election
between them, by seeing how many votes preferci to cj , and how many prefercj to ci; the winner
of the pairwise election is the one preferred more often. Then, an alternative receives one point for
each win in a pairwise election,α points for each tie, and zero point for each loss. The alternatives
that have the highest scores win.
Simpson (a.k.a. maximin): LetNP (ci, cj) denote the number of votes that rankci ahead ofcj in P .
The Simpson score of alternativec ∈ C in profileP is defined asSimP (c) = min{NP (c, c′) : c′ ∈
C \{c}}. A Simpson winner forP is an alternativec0 ∈ C such thatSimP (c0) = max{SimP (c) :
c ∈ C}.
Plurality with runoff : The election has two rounds. In the first round, all alternatives are eliminated
except the two with the highest plurality scores. In the second round (runoff), the winner is the
alternative that wins the pairwise election between them.

Let C denote the set of original alternatives, letY denote the set of new alternatives. For any
linear orderV overC, a linear orderV ′ overC ∪ {V } extendV , if in V ′, the pairwise comparison
between any pair of alternatives inC is the same as inV . That is, for anyc, d ∈ C, c ≻V d if and
only if c ≻V ′ d.

Given a voting ruler, an alternativec, and a profileP overC, we are asked whether there exists
a profileP ′ overC ∪ Y such thatP ′ is an extension ofP andc ∈ r(P ′). This problem is called the
possible co-winner with new alternatives (PcWNA)problem [5, 6].

Similarly, we let PWNAdenote the problem in which we are asked whetherc is a possible
(unique) winner, that is,r(P ′) = {c}. Up to now, the PcWNA and PWNA problems are well-
defined for all voting rules studied in this paper (except theapproval rule). For the approval rule, we
will introduce three types of extension, and discuss the computational complexity of the PcWNA
and PWNA problems under these extensions.
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In this paper, allNP-hardness results are proved by reductions from the Exact Cover by 3-Sets
problem (denoted by X3C) or the 3-DIMENSIONAL MATCHING problem (denoted by 3DM). An
instanceI = (S,V) of X3C consists of a setV = {v1, . . . , v3q} of 3q elements andt ≥ q 3-sets
S = {S1, . . . , St} of V , i.e., for anyi ≤ t, Si ⊆ V and |Si| = 3. For anyv ∈ V , let dI(v)
denote the number of 3-sets containing elementv in instanceI. Let ∆(I) = maxv∈V dI(v). We
are asked whether there exists a subsetJ ⊆ {1, . . . , t} such that|J | = q and

⋃
j∈J Sj = V (indeed,

the setsSj for j ∈ J form a partition ofV). This problem is known to beNP-complete, even
if ∆(I) ≤ 3 (problem [SP2] page 221 in [8]). In this paper, we will use a special case of 3DM
that is also a special case of X3C, defined as follows.1 GivenA, B, X , whereA = {a1, . . . , aq},
B = {b1, . . . , bq}, X = {x1, . . . , xq}, T ⊆ A × B × X , T = {S1, . . . , St} with t ≥ q. We are
asked whether there existsM ⊆ T such that|M | = q and for any(a1, b1, x1), (a2, b2, x2) ∈ M , we
havea1 6= a2, b1 6= b2, andx1 6= x2. That is,M corresponds to an exact cover ofV = A ∪B ∪X .
This problem with the restriction where no element ofA∪B ∪X occurs in more than 3 triples (i.e,
∆(I) ≤ 3) is known to be NP-complete (problem [SP1] page 221 in [8]).

It is straightforward to check that the PcWNA (respectively, PWNA) problems for all voting
rules studied in this paper are in NP, because given an extension of a profileP , it is polynomial to
verify if the given alternativec is a co-winner (respectively, unique winner) for all rules studied in
this paper (again, we discuss the approval rule separately). Therefore, in this paper we only show
NP-hardness proofs.

To prove that the PcWNA and PWNA problems areNP-hard, we first prove that another useful
special case of 3DM (as well as X3C) remainsNP-complete.

Proposition 1 3DM is NP-complete, even ifq is even,t = 3q/2, and∆(I) ≤ 6.

Proof of Proposition 1: Let I = (T, A×B ×X) be an instance of 3DM withA = {a1, . . . , aq},
B = {b1, . . . , bq}, X = {x1, . . . , xq}, T ⊆ A × B × X , T = {S1, . . . , St} and∆(I) ≤ 3. We
next show how to build an instanceI ′ = (T ′, A′ × B′ × X ′) of 3DM in polynomial time, with
|A′| = |B′| = |X ′| = q′, T ′ ⊆ A′ × B′ × X ′ and|T ′| = t′ such thatq′ is even,t′ = 3q′/2, and
∆(I ′) ≤ 6.

• If q is odd, then we add to the instance 3 new elements{a′1, b′1, x′1} with A′ = A ∪ {a′1},
B′ = B ∪ {b′1}, X ′ = X ∪ {x′1} and one new triplet(a′1, b

′
1, x

′
1).

• Suppose thatq is even. If t > 3q/2, then we add6(t − 3q/2) new elements
{a′1, . . . , a′2(t−3q/2)} to A, {b′1, . . . , b′2(t−3q/2)} to B, {x′1, . . . , x′2(t−3q/2)} to X and2(t − 3q/2)
new triples{S′

1, . . . , S
′
2(t−3q/2)}, where for anyi ≤ 2(t − 3q/2), S′

i = (a′i, b
′
i, x

′
i). If t < 3q/2,

then we add3q/2− t dummy triples toT by duplicating3q/2− t triples ofT once each. We note
thatt ≥ q implies thatt ≥ 3q/2− t.

It is easy to check inI ′, q′ is even,t′ = 3q′/2, and∆(I ′) ≤ 6. The size of the input of the new
instance is polynomial in the size of the input of the old instance. Moreover,I is a yes-instance if
and only ifI ′ is also a yes-instance. �

3 Approval

Since the input of the approval rule is different from the input of other voting rules studied in this
paper, we have to define the set of possible extensions of an approval profile overC. Let PC =
(V1, . . . , Vn) be an approval profile overC, where eachVi is a subset ofC. An extension ofPC over
C ∪ Y is a collection(V ′

1 , . . . , V ′
n) whereV ′

i ⊆ C ∪ Y is an extension ofVi. Now, we have to define
what it means to say thatV ′ ⊆ C ∪ Y is an extension ofV ⊆ C. We can think of three natural
definitions:

1Generally, 3DM is not a special case of X3C.
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Definition 1 (extension of an approval vote, definition 1)V ′ ⊆ C ∪ Y is an extension ofV ⊆ C
if V ′ ∩ C = V .

In other words, under this definition,V ′ is an extension ofV if V ′ = V ∪ Y ′, whereY ′ ⊆ Y .
This definition coincides with the definition used in [10] (namely, Definition 4.3) for the control
of approval voting by adding candidates. The problem with Definition 1 is that it assumes that
any alternative approved inV is still approved inV ′. However, in some contexts, extending the
choice with alternatives ofY may change the “approval threshold”. Moreover, since we have more
alternatives, this threshold should either stay the same ormove upwards: some alternatives that were
approved initially may become disapproved. This leads to the following definition of extension:

Definition 2 (extension of an approval vote, definition 2)V ′ ⊆ C ∪ Y is an extension ofV ⊆ X
if one of the following conditions holds: (1)V = V ′; (2) V ′ ∩ Y 6= ∅ andV ′ ∩ C ⊆ V .

Lastly, we may also allow the acceptance threshold to move downwards, even though the set
of alternatives grows, especially in the case where the new alternatives are particularly bad, thus
rendering some alternatives inC acceptable after all. This leads to the third definition of extension:

Definition 3 (extension of an approval vote, definition 3)V ′ ⊆ C ∪ Y is an extension ofV ⊆ C
if one of the following conditions holds: (1)V ′ ∩ C ⊂ V andV ′ ∩ Y 6= ∅; (2) V ⊂ V ′ ∩ C, and
Y \ V ′ 6= ∅; (3) V ′ ∩ C = V .

Under Definition 3, either the threshold moves upward, in which case all alternatives which were
disapproved inV are still disapproved inV ′, and obviously, at least one alternative inY is approved;
or the threshold moves downward, in which case all alternatives that were approved inV are still
approved inV ′, and obviously not all alternatives inY are approved. Note that in the case where
V ′ ∩ C = V , the threshold can have moved upward, or downward, or remained the same2.

Let us give a brief summary of the three definitions of extension. Definition 1 assumes that the
threshold cannot move; Definition 2 assumes that the threshold can stay the same or move upward
(because the set of alternatives grows); and Definition 3 assumes that the threshold can stay the same,
move upward, or move downward. Next, we show an example that illustrates these definitions. Let
C = {a, b, c, d}, Y = {y1, y2}, andV = {a, b}.

• V ′
1 = {a, b} andV ′

2 = {a, b, y1} are extensions ofV under any definition;
• V ′ = {a, y1} is an extension ofV under definitions 2 and 3 but not under definition 1 (the

threshold has moved upward, sinceb was approved inV and is no longer approved inV ′);
• V ′ = {a, b, c, y1} is an extension ofV under definition 3 but neither under definitions 1 nor 2

(the threshold has moved downward, sincec was not approved inV and becomes approved inV ′ –
note that, intuitively,y2 must be a very unfavored alternative for this to happen);

• V ′ = {a, b, c} is an extension ofV under definitions 3 but neither under definitions 1 nor 2,
for the same reason as above;

• V ′ = {a} is not an extension ofV under any of the definitions: to haveb disapproved inV ′

and approved inV , the threshold has to move upward, which cannot be the case ifno alternative of
Y is approved;

• V ′ = {a, b, c, y1, y2} is not an extension ofV under any of the definitions: to havec disap-
proved inV and approved inV ′, the threshold has to move downward, which cannot be the caseof
all alternatives ofY are disapproved;

2The rationale behind Definition 3 is that the threshold may depend on the average quality of candidates, and therefore
may go down after some bas new candidates have been added. Forinstance, suppose a voter hates red meat, and has the
preference relationtofu ≻ fish ≻ chicken ≻ beef ≻ mutton; if the initial set of candidates is{tofu, fish,
chicken}, it is perfectly reasonable that he should approve{tofu, fish }, while he would approve{tofu, fish,
chicken} afterbeef andmutton have been added in the set of candidates. This is perfectly inagreement with the notion
of sincere ballot in approval voting (see,e.g., [7] and references therein).
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• V ′ = {a, c, y1} is not an extension ofV under any of the definitions: the threshold cannot
simultaneously move upward and downward.

It is straightforward to check that the PcWNA and PWNA problems are inP for approval under
definition 1: an alternativec ∈ C is a possible (co-)winner inP if and only if it is a (co-)winner for
approval inP (this is because for anyV ∈ P , the scores of alternatives inC will not change from
V to its extensionV ′). However, when we adopt definition 2 of extension, the problems become
NP-complete.

Theorem 1 Under Definition 2, PcWNA and PWNA problems areNP-complete for the approval
rule.

Proof of Theorem 1: We first prove the hardness of the PcWNA problem by a reductionfrom
X3C. For any X3C instanceI = (S,V), we construct the following PcWNA instance.

Alternatives: V ∪ {c} ∪ Y , whereY = {y1, . . . , yt−q}.
Votes: for anyi ≤ t, we have a voteVi = Si; and we have an additional voteVt+1 = {c}. That

is, P = (V1, . . . , Vt, Vt+1).
Suppose the X3C instance has a solution, denoted by{Si1 , . . . , Siq}. Then, take the following

extensionP ′ of P : for anyj ≤ q, let V ′
ij

= Vij . For anyi ≤ t such thati 6= ij for anyj ≤ q, we let
V ′

i be a singleton containing exactly one of the new alternatives. LetV ′
p+1 = {c}. For anyv ∈ V ,

becausev appears exactly in oneSij , v is approved by exactly one voter. So isc. Now, there are
exactlyt − q votesVi wherei is not equal to one of theij ’s. Therefore, the total approval score of
the new alternatives ist− q, and it suffices to approve every new alternative exactly once. Therefore
c is a co-winner inP ′, and thus a possible co-winner inP .

Conversely, supposec is a possible co-winner forP and letP ′ be an extension ofP for which
c is a co-winner. We note thatc is approved at most once inP ′. Therefore, every alternative in
V ∪Y must be approved at most once. Without loss of generality, assume that every voteV ′

i in P ′ is
either of the formVi or of the form{yj} (if not, remove every alternative (except oneyj) from V ′

i ;
c will still be a co-winner in the resulting profile). Since we havet− q new alternatives, each being
approved at most once inP ′, we have at leastq votesV ′

i in P ′ such thatV ′
i = Vi. If we had more

thanq votesV ′
i such thatV ′

i = Vi, then more than3q points would be distributed to3q alternatives
and one of them would get at least 2, which means thatc would not be a co-winner inP ′. Therefore
we have exactlyq votesV ′

i such thatV ′
i = Vi, and3q points distributed to3q alternatives; since

none of them gets more than one point, they get one point each,which implies that the collection of
all Si such thatVi = V ′

i forms an exact cover ofC.
For the PWNA problem, we add one more voteVt+2 = {c} to the profileP . �
Now, let us consider Definition 3. Notice that the profileP ′ where every voter addsc to her

vote (if she was not already voting forc) is an extension ofP , and obviouslyc is a co-winner in
P ′, therefore every alternative ofC is a possible co-winner forP , which means that the problem is
trivial.

4 Bucklin

Theorem 2 The PWNA and PcWNA problems areNP-complete for Bucklin, even when there are
three new alternatives.

Proof of Theorem 2: We prove theNP-hardness of the PcWNA problem by a reduction from the
special case of 3DM mentioned in Proposition 1. Given any 3DMinstance where|A| = |B| =
|X | = q, q is even,t = 3q/2, and no element inA ∪B ∪X appears in more than 6 elements inT ,
we construct a PcWNA instance as follows. Without loss of generality, assumeq ≥ 5; otherwise the
instance 3DM can be solved in linear time.
Alternatives: A∪B ∪X ∪Y ∪D∪{c}, whereY = {y1, y2, y3} is the set of new alternatives, and
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D = {d1, . . . , d9q2} is the set of auxiliary alternatives.
Votes: For anyi ≤ 2q + 1, we define a voteVi. Let P = (V1, . . . , V2q+1). Instead of defining
these votes explicitly, below we give the properties thatP satisfies. The votes can be constructed in
polynomial time.

(i) For anyi ≤ q, c is ranked in the first position. SupposeSi = (a, b, x). Then, leta, b, x be
ranked in the(3q + 1)th, (3q + 2)th, and(3q + 3)th positions inVi, respectively.

(ii) For any i such thatq < i ≤ 3q/2 = t, c is ranked in the(3q + 4)th position. Suppose
Si = (a, b, x). Then, leta, b, x be ranked in the(3q + 1)th ,(3q + 2)th, and(3q + 3)th positions in
Vi, respectively.

(iii) For any i such that3q/2 < i ≤ 2q + 1, let c be ranked in the(3q + 4)th position, and no
alternative inA ∪B ∪X is ranked in the(3q + 1)th, (3q + 2)th, or(3q + 3)th position inVi.

(iv) For anyj ≤ 3q, vj is ranked within top3q + 3 positions for exactlyq + 1 times inP .
(v) For anyd ∈ D, d is ranked within top3q + 4 positions at most once.
The existence of a profileP that satisfies (iv) is guaranteed by the assumption that in the 3DM

instance,q ≥ 5, no element is covered more than 6 times, and there are enoughpositions within top
3q + 3 positions in all votes to fit in all alternatives inC, with each alternative appearsq + 1 times.
We note that there are in total9q2 auxiliary alternatives, and the total number of top3q +4 positions
in all votes is(3q + 4)(2q + 1) < 9q2. Therefore, (v) can be satisfied. It follows that there exists a
profileP that satisfies (i), (ii), (iii), (iv), and (v), and such a profile can be constructed in polynomial
time (by first putting the alternatives to their positions defined in (i), (ii), and (iii), then filling out
the positions using remaining alternatives to meet conditions (iv) and (v)). The Bucklin score ofc is
3q + 4 in P . For anyj ≤ q, the Bucklin score ofaj (resp.,bj , xj ) is at most3q + 3 in P , and for
anyj ≤ 9q2, the Bucklin score ofdj ∈ D is at least3q + 4 in P . Observe that the Bucklin score of
any alternative cannot be decreased in any extension ofP .

Suppose that the 3DM instance has a solution, denoted by{Sj : j ∈ J}, whereJ ⊆ {1, . . . , t}.
For anyj ∈ J , we letV ′

j be the extension ofVj in which y1, y2, y3 are ranked in the(3q + 1)th,
(3q + 2)th, and(3q +3)th positions, respectively. For anyj ∈ {1, . . . , 2q + 1} \ J , we letV ′

j be the
extension ofVj where{y1, y2, y3} are ranked in the bottom positions. LetP ′ = (V ′

1 , . . . , V ′
2q+1). It

follows that inP ′, the Bucklin score ofc is 3q + 4, and the Bucklin score of any other alternative is
at least3q + 4. Therefore,c is a co-winner for Bucklin forP ′, which means that there is a solution
to the PcWNA instance.

Conversely, suppose that there is a solution to the PcWNA instance, denoted byP ′ =
(V ′

1 , . . . , V ′
2q+1). We recall that in order forc to be a co-winner, the Bucklin score of any alter-

native inA∪B ∪X must be at least3q +4 (since the Bucklin score ofc cannot decrease inP ′). We
note that there are only three new alternatives, and the(3q+1)th, (3q+2)th, and(3q+3)th positions
in Vi are occupied by some alternatives inD. It follows that for everya ∈ A and everyi such that
t < i ≤ 2q + 1, it cannot be the case thata is ranked within top3q + 3 positions inVi, anda is
ranked lower than the(3q + 3)th position inV ′

i . Therefore, for everya ∈ A, there existsi ≤ t such
thata is ranked within top3q + 3 positions inVi, and is ranked lower than the(3q + 3)th position
in V ′

i . It follows that in each of suchV ′
i wherea is ranked lower than the(3q + 3)th position, the

new alternatives must be ranked within top3q + 3 positions. Therefore, each new alternative must
be ranked within top3q + 3 positions inV1, . . . , Vt for q times (one for eacha ∈ A). Becausec is
a co-winner, no alternative inY is ranked within top3q + 3 positions inP ′ for more thanq times.
Therefore, in exactlyq votes inP ′, the alternatives inY are ranked within top3q + 3 positions. We
let {V ′

i1 , . . . , V
′
iq
} denote these votes.

We claim that{Si1 , . . . , Siq} is a solution to the 3DM instance. If not, then there existse ∈
B ∪ X that does not appear in anySij . However, it follows thate is ranked within top3q + 3
positions for exactlyq times, which means that the Bucklin score ofe is at most3q + 3. Therefore,
the Bucklin score ofe is lower than the Bucklin score ofc. This contradicts the assumption thatc is
a co-winner forP ′. Therefore, the PcWNA problem isNP-hard for Bucklin.
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For PWNA, we make the following changes. In conditions (i) and (ii) thatP should satisfy, we
require thata, b, x are in the(3q + 2)th, (3q + 3)th, and(3q + 4)th positions, respectively. �

5 Copeland0
For any profileP , the Copeland score of an alternativec ∈ C in profile P is denoted by
CSP (c) = |{c′ ∈ C : NP (c, c′) > n/2}| (recall that we focus on Copeland0, which means that
the tie in a pairwise election gives 0 point to both participating alternatives). We have the following
straightforward observation.

Property 1 For any profileP ′ overC ∪ {y} that is an extension of profileP , the following inequal-
ities hold:

∀c ∈ C, CSP (c) ≤ CSP ′(c) ≤ CSP (c) + 1 (1)

We prove that a useful restriction of X3C remainsNP-complete.

Proposition 2 X3C is NP-complete, even ift = 2q − 2 and∆(I) ≤ 6.

Proof of Proposition 2: The proof is similar to the proof for Proposition 1. LetI = (S,V) be
an instance of X3C, whereV = {v1, . . . , v3q} andS = {S1, . . . , St}. We next show how to build
an instanceI ′ = (S′,V ′) of X3C in polynomial time, with|V ′| = 3q′ and |S′| ≤ 6 such that
t′ = 2q′ − 2 and∆(I ′) ≤ 6.

• If t < 2q − 2, then we add2q − 2− t dummy 3-sets toS by duplicating2q − 2 − t sets ofS
once each. It follows fromt ≥ q that2q − 2− t ≤ q − 2 < t.

• If t > 2q−2, then we add3(t−2q+2) new elementsv′1, . . . , v′3(t−2q+2) andt−2q+2 3-sets
{v′1, v′2, v′3}, . . . , {v′3(t−2q+2)−2, v

′
3(t−2q+2)−1, v

′
3(t−2q+2)}.

The size of the input of the new instance is polynomial in the size of the input of the old instance.
Moreover,I is a yes-instance if and only ifI ′ is also a yes-instance. Finally, in the new instanceI ′,
we have:|V ′| = |V| = 3q andt′ = |S′| = t+(2q−2− t) = 2q−2 = 2q′−2 in the first case, while
3q′ = |X ′| = 3q+3(t−2q+2) = 3(t−q+2) andt′ = |S′| = t+(t−2q+2) = 2(t−q+1) = 2(q′−1)
in the second case. Moreover,dI′(v) ≤ 2dI(v) ≤ 6 if v ∈ V , anddI′(v) = 1 if v ∈ V ′ \ V . �

Theorem 3 The PcWNA problem isNP-complete for Copeland0, even when there is one new alter-
native.

Proof of Theorem 3: The proof is by a reduction from X3C. LetI = (S,V), wheret = 2q−2 and
∆(I) ≤ 6 be an instance of X3C as described in Proposition 2. As previously, assumeq ≥ 8; hence
∆(I) ≤ q − 2. For any X3C instance, we construct the following PcWNA instance for Copeland0.
Alternatives: V ∪ D ∪ Y ∪ {c}, whereD = {d1, . . . , dt} andY = {y} is the set of the new
alternative.
Votes: For anyi ≤ t, we define the following2t votes.

Vi = [di ≻ (D \ {di}) ≻ (V \ Si) ≻ c ≻ Si]

V ′
i = [rev(Si) ≻ rev(V \ Si) ≻ rev(D \ {di}) ≻ c ≻ di]

Here the elements in a set are ranked according to the order oftheir subscripts, i.e., ifSi =
{v2, v5, v7}, then the elements are ranked asv2 ≻ v5 ≻ v7. For any setX such thatX ⊂ V
or X ⊂ D, let rev(X) denote the linear order where the elements inX are ranked according to the
reversed order of their subscripts. For example, rev({v2, v5, v7}) = v7 ≻ v5 ≻ v2.

We also define the followingt = 2q − 2 votes.

W1 = . . . = Wq−1 = [V ≻ D ≻ c]
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W ′
1 = . . . = W ′

q−1 = [rev(D) ≻ rev(V) ≻ c]

Let P = (V1, V
′
1 , . . . , Vt, V

′
t , W1, W

′
1, . . . , Wq−1, W

′
q−1).

We note that there are3t votes in the instance. We recall that by assumption,3t/2 = 3q− 3. We
make the following observations on the functionNP .

• For anyd ∈ D, d beatsc: this holds becauseNP (c, d) = 1.
• For anyv ∈ V , v beatsc: this holds becauseNP (c, v) = dI(v) ≤ q − 2 < 3q − 3.
• For anyd ∈ D andv ∈ V , d andv are tied: this holds becauseNP (v, d) = t+q−1 = 3q−3.
• For anyv, v′ ∈ V (v′ 6= v), v andv′ are tied: this holds becauseNP (v, v′) = t+q−1 = 3q−3,

because for anyi ≤ q, v ≻ v′ either inVi or in V ′
i .

• For anyd, d′ ∈ D (d′ 6= d), d andd′ are tied: this holds becauseNP (d, d′) = 3q − 3.
From these observations we have the following calculation on the Copeland scores:
• CSP (c) = 0.
• For anyv ∈ V , CSP (v) = 1.
• For anyd ∈ D, CSP (d) = 1.
Now, assume thatI = (S,V) is a yes-instance of X3C; hence, there existsJ ⊂ {1, . . . , t} with

|J | = q and
⋃

j∈J Sj = V . Next, we show how to makec a co-winner by introducing one new
alternativey.

• For anyj ∈ J , we letṼj = [dj ≻ D \ {dj} ≻ V \ Sj ≻ c ≻ y ≻ Sj ] be the completion ofVj .
• For anyi ≤ t, we let Ṽ ′

i = [rev(Si) ≻ rev(V \ Si) ≻ rev(D \ {di}) ≻ c ≻ y ≻ di] be the
completion ofV ′

i .
• For any vote not mentioned above, we puty in the top position.
• Finally, letP ′ denote the profile obtained in the above way.
It follows thaty loses toc in their pairwise election, and for any other alternativec′ ∈ C (c′ 6= y

andc′ 6= c), c′ andy are tied in their pairwise election. Therefore, the Copeland score is 1 forc,
any alternative inV , and any alternative inD; the Copeland score ofy is 0. It follows thatc is a
co-winner.

Next, we show how to convert a solution to the PcWNA instance to a solution to the X3C
instance. LetP ′ = (Ṽ1, . . . , Ṽt, Ṽ

′
1 , . . . , Ṽ ′

t , W̃1, W̃
′
1, . . . , W̃q−1, W̃

′
q−1) be a profile with the new

alternative, such thatc becomes a co-winner according to the Copeland0 rule. We denoteP ′
1 =

(Ṽ1, . . . , Ṽt), P ′
2 = (Ṽ ′

1 , . . . , Ṽ ′
t ) andP ′

3 = (W̃1, W̃
′
1, . . . , W̃q−1, W̃

′
q−1). It follows from the above

observations on Copeland scores of alternatives in profileP and inequalities (1) of Property 1, that
CSP ′(c) = 1, ∀c′ ∈ D ∪ V , CSP ′(c) = 1 and CSP ′(y) ≤ 1.

We now claim the following.
(a) ∀v ∈ V , NP ′(v, y) ≤ 3q − 3, NP ′(y, c) = 3q − 2 and∀d ∈ D, NP ′(d, y) = 3q − 3.

NP ′
2
(c, y) = t = 2q − 2. Moreover, for anyi ≤ q, c ≻ y ≻ di in Ṽ ′

i .
(b) ∀v ∈ V , NP ′

2∪P ′
3
(v, y) ≥ NP ′

2∪P ′
3
(c, y).

For (a). Sincec is a co-winner forP ′, c must beaty in their pairwise election. Meanwhile, any
c′ ∈ V ∪ D cannot beaty in their pairwise elections. Therefore, we must have thatNP ′(c, y) ≥
3q − 2, and for anyc′ ∈ V ∪ D, NP ′(c′, y) ≤ 3q − 3. For anydi ∈ D, in profile P ′, we have
thatdi ≻ c except inṼ ′

i , which means thatNP ′(di, y) ≥ NP ′(c, y)− 1 by transitivity in each vote.
Hence,3q− 3 ≥ NP ′(di, y) ≥ NP ′(c, y)− 1 ≥ 3q− 3, which means thatNP ′(di, y) = 3q− 3 and
NP ′(c, y) = 3q− 2. From these equalities, we deduce that∀d ∈ D, NP ′(d, y) = NP ′(c, y)− 1 and
then, for anyi ≤ t, we have thatc ≻ y ≻ di in Ṽ ′

i .
For (b). Since inP ′, v ≻ c except for some votes inP ′

1, we have that for allv ∈ V ,
NP ′

2∪P ′
3
(v, y) ≥ NP ′

2∪P ′
3
(c, y).

Let J = {j ≤ t : c ≻ y in Ṽj}. We will prove that|J | = q and∪j∈JSj = V . First, note that
|J | ≤ q because|J | = NP ′

1
(c, y) ≤ NP ′(c, y)−NP ′

2
(c, y) = q from item(a).

Now, for anyv ∈ V let Jv = {j ≤ t : y ≻ v in Ṽj}. We claim: ∀v ∈ V , J ∩ Jv 6= ∅.
Otherwise, there existsv∗ ∈ V with J ∩ Jv∗ = ∅. This means thatc ≻ y impliesv∗ ≻ y in votes in
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P ′
1. Hence,NP ′

1
(v∗, y) ≥ NP ′

1
(c, y). By adding this inequality with the inequality in item(b) (let

v = v∗), we obtain thatNP ′(v∗, y) ≥ NP ′(c, y). Now, combining the inequalities in item (a), we
have that3q − 3 ≥ NP ′(v∗, y) ≥ NP ′(c, y) = 3q − 2, which is a contradiction. Therefore, for all
v ∈ V , J ∩ Jv 6= ∅. Finally, since|V| = 3q, |Si| = 3 and|J | ≤ q, we deduce that|J | = q and
J = {j ≤ t : c ≻ y ≻ Sj in Ṽj}. Also, because for allv ∈ V , J ∩ Jv 6= ∅, we have

⋃
j∈J Sj = V .

In conclusion,I = (S,V) is a yes-instance of X3C. This completes theNP-hardness proof for the
PcWNA problem for Copeland0. �

6 Simpson

To prove theNP-hardness of the PcWNA problem for Simpson, we first make the following obser-
vation, whose proof is straightforward.

Property 2 Let P be a profile overC, P ′ be a profile overC ∪ {y}, P ′ is an extensionP . The
following (in)equalities hold:

(i) ∀c ∈ C, SimP ′(c) = min{SimP (c), NP ′(c, y)}.
(ii) ∀c ∈ C, SimP ′(c) ≤ SimP (c).

Theorem 4 PcWNA and PWNA problems areNP-complete for Simpson, even when there is one
new alternative.

Proof of Theorem 4: We first prove theNP-hardness for the PcWNA problem by a reduction
from X3C. LetI = (S,V) with t = 2q − 2 and∆(I) ≤ 6 be an instance of X3C as described in
Proposition 2. Without loss of generality, assumeq ≥ 8; in particular, we deduce∆(I) ≤ q−2. We
define a PcWNA instance for Simpson as follows:
Alternatives: V ∪ {c, d} ∪ {y}, wherey is the new alternative.
Votes: For anyi ≤ t, we define the following vote.Vi = [(V \ Si) ≻ d ≻ c ≻ Si]. For any
j ≤ q − 1, we define the following vote.W1 = · · · = Wq−1 = [c ≻ rev(V) ≻ d]. We also let
Wq = [rev(V) ≻ d ≻ c]. Let P1 = (V1, . . . , Vt), P2 = (W1, . . . , Wq), andP = P1 ∪ P2.

We make the following observation on the Simpson scores of the alternatives beforey is added.
• SimP (c) = q − 1. Indeed,NP (c, d) = q − 1 and∀v ∈ V , NP (c, v) = q − 1 + dI(v) ≥ q.
• SimP (d) ≤ 6 ≤ q − 2. This is because for anyv ∈ V , v is covered by the 3-sets for no more

thanq − 2 times (the assumption of the input X3C instance), which means that inP1, d ≻ v for at
mostq − 2 times, i.e.,NP (d, v) = dI(v) ≤ 6 ≤ q − 2.

• For anyv ∈ V , SimP (v) ≥ q. Actually, NP (v, d) = NP (v, c) = t − dI(v) + q ≥ 3q −
2 − (q − 2) ≥ q. Now, assumev = vi. If i < j, thenNP (v, vj) = NP1(v, vj) ≥ t − dI(v) ≥
2q − 2− (q − 2) = q and if j > i, NP (v, vj) = NP2(v, vj) = q.

Now, assume thatI = (S,V) is a yes-instance of X3C; hence, there is aJ ⊂ {1, . . . , t} with
|J | = q and

⋃
j∈J Sj = V . We show how to makec a co-winner by introducing one new alternative

y.
• For anyj ∈ J , we letV ′

j = [(V \ Sj) ≻ d ≻ c ≻ y ≻ Sj ].
• For anyj ∈ {1, . . . , t} \ J , we letV ′

j = [y ≻ (V \ Sj) ≻ d ≻ c ≻ Sj ].
• For anyj ≤ q − 1, we letW ′

j = [c ≻ y ≻ rev(V) ≻ d].
• Let W ′

q = [y ≻ rev(V) ≻ d ≻ c].
• Finally, letP ′ = (V ′

1 , . . . , V ′
t , W ′

1, . . . , W
′
q).

In P ′, the Simpson score ofy is q− 1 (via c), becauset = 2q− 2, which means thatt− q + 1 =
q− 1; the Simpson score ofc is q− 1 (via d); the Simpson score ofd is no more thanq− 1 (via any
of v ∈ V); and the Simpson score of anyv ∈ V is q − 1 (via y). Therefore,c is a co-winner for the
Simpson rule.

Next, we show how to convert a solutionP ′ to the above PcWNA instance for the Simpson rule
to a solution to the X3C instance. LetP ′ = (V ′

1 , . . . , V ′
t , W ′

1, . . . , W
′
q) with P ′

1 = (V ′
1 , . . . , V ′

t ) and
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P ′
2 = (W ′

1, . . . , W
′
q) be a profile such thatc becomes a co-winner according to the Simpson rule

when alternativey is introduced.
We make the following observations.
(a) ∀v ∈ V , NP ′(v, y) ≤ q − 1,
(b) NP ′(y, c) ≤ q − 1 andNP ′(y, d) ≥ q,
(c) y ≻ c in W ′

q.
For item(a): Sincec is a winner, we have that for anyv ∈ V , SimP ′(v) ≤ SimP ′(c). Thus,

using Property 2,SimP (c) = q − 1 andSimP (v) ≥ q. We have the following calculation.

min{NP ′(v, y), q} = SimP ′(v) ≤ SimP ′(c) ≤ SimP (c) = q − 1

For item(b): First from(a), we deduce that for anyv ∈ V , NP ′(y, v) ≥ t + q−NP ′(v, y) > q.
Thus, we obtain:

SimP ′(y) = min{NP ′(y, c), NP ′(y, d)} ≤ SimP ′(c) ≤ SimP (c) = q − 1 (2)

Now, assumeNP ′(y, d) ≤ q − 1. Then,NP ′
2
(d, y) = q − NP ′

2
(y, d) ≥ q − NP ′(y, d) ≥ 1.

Hence, there existsi ≤ q such that inW ′
i , we have that for anyv ∈ V , v ≻ d ≻ y. Moreover,

NP ′
1
(d, y) = t−NP ′

1
(y, d) ≥ 2q − 2 − (q − 1) = q − 1. Let J0 ⊆ {1, . . . , t} (with |J0| = q − 1)

be the subscripts of arbitraryq − 1 votes inP ′
1, whered ≻ y. Because|V| = 3q and |Sj | = 3,

there existsv∗ ∈ V \ ⋃
j∈J0

Sj . We deduce that for allj ∈ J0, v∗ ≻ y in V ′
j . In conclusion,

NP ′(v∗, y) ≥ |J0|+ 1 = q, which contradicts item(a). Using inequality (2), item(b) follows.
For item(c): Otherwise, by the definition ofWq, we deduce:

∀v ∈ V , NP ′
2
(v, y) ≥ 1 (3)

On the other hand, usingNP ′
1
(y, c) ≤ NP ′(y, c) and item(b), we haveNP ′

1
(c, y) = t −

NP ′
1
(y, c) ≥ t − NP ′(y, c) ≥ t − (q − 1) = q − 1. Let J0 ⊆ {1, . . . , t} (with |J0| = q − 1)

be the subscripts of arbitraryq − 1 votes inP ′
1, wherec ≻ y. We haveV \ ⋃

j∈J0
Sj 6= ∅ since

|V| = 3q and|Si| = 3. Hence, there existsv∗ ∈ V \⋃
j∈J0

Sj such that:

NP ′
1
(v∗, y) ≥ |J0| = q − 1 (4)

Summing up inequalities (3) (letv = v∗) and (4), we get obtain a contradiction with item(a).
From items(b) and(c), we getNP ′

1
(y, c) = NP ′(y, c)−NP ′

2
(y, c) ≤ q− 1− 1 = q− 2. Thus,

NP ′
1
(c, y) = t − NP ′

1
(y, c) ≥ t − (q − 2) = q. Let J denote the subscripts of arbitraryq votes in

P ′
1 wherec ≻ y. We claim

⋃
j∈J Sj = V . Otherwise, there existsv∗ ∈ V \ ⋃

j∈J Sj . It follows
that for anyj ∈ J , v∗ ∈ (V \ ⋃

j∈J Sj) ⊆ V \ Sj , which means thatv∗ ≻ c ≻ y in Vj . Hence,
NP ′(v∗, y) ≥ NP ′

1
(v∗, y) ≥ |J | = q, which contradicts item(a). In conclusion,I = (S,V) is a

yes-instance of X3C. Therefore, PcWNA isNP-complete for Simpson.
For the PWNA problem, we make the following change. LetWq = [rev(V) ≻ c ≻ d]. Then,

before the new alternative is introduced, the Simpson scoreof c is q. Then, similarly we can prove
theNP-hardness of the PWNA problem. �

7 Plurality with runoff

In this section, we focus on possible co-winners, which means that ties are never broken, neither in
the first round nor in the second round. If a tie occurs in the first round, then all possible compatible
second rounds are considered: for instance, if the plurality scores, ranked in decreasing order, are
x1 7→ 8, x2 7→ 6, x3 7→ 6, x4 7→ 5 . . ., then the set of co-winners contains the majority winner
betweenx1 andx2 and the majority winner betweenx1 andx3.
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Proposition 3 Determining whetherc ∈ C is a possible (co-)winner for plurality with runoff is in
P.

The proof does not present any particular difficulty, and dueto the lack of space, we only give a
very brief sketch for the PcWNA problem. It proceeds in two steps as follows. Let�P

M be the weak
majority relation induced by a profileP . Let P be a profile overC. c is a possible co-winner inP if
and only if one of the following two conditions hold:

1. There exists a completionP ′ of P such thatc and somed ∈ C \{c} are possible second round
competitors, andc �P ′

M d.
2. There exists a completionP ′ of P such thatc and somey ∈ Y are possible second round

competitors, andc �P ′
M y.

For each of these two conditions we can find equivalent, polynomial-time computable character-
izations.

For the PWNA problem, the algorithm is similar: we need to make sure that the pairs of alterna-
tives that enter the second round must be(c, d), wherec ≻P

M d.

8 Conclusion

In this paper we have gone much beyond existing results on thecomplexity of the possible
(co-)winner problem with new alternatives. While [5, 6] focused on scoring rules, we have identified
three new rules for which the PcWNA problem isNP-complete (Bucklin, Copeland, and Simpson).
We also showed that the PcWNA problem has a polynomial time algorithm for plurality with runoff,
and as far as approval voting is concerned, we have given three definitions of the extension of a
profile to new alternatives and shown that depending on the chosen definition, the problem can be
trivial or NP-complete. Our NP-completeness proofs and algorithms for the PcWNA problems can
also be extended to the PWNA problems for approval, Bucklin,Simpson, and plurality with runoff.
The results are summarized in the following table.

Voting rule PcWNA PWNA
Borda P [6]

2-approval P [6]
l-approval (l ≥ 3) NP-complete2 [6]

Approval
P (Definition 1)
NP-complete (Definition 2)
Trivial (Definition 3)

Bucklin NP-complete2

Copeland0 NP-complete3 ?
Simpson NP-complete3

Plurality with runoff P

Table 1: Complexity of PcWNA and PWNA problems for some common voting rules.

An obvious and interesting direction for future research isstudying the computational complex-
ity of the PcWNA (PWNA) problems for more common voting rules, including Copelandα (for
someα 6= 0), ranked pairs, and voting trees. Even for Copeland0, the complexity of the PWNA
problem still remains open.

2Even with 3 new alternatives.
3Even with 1 new alternative.
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Bypassing Combinatorial Protections:
Polynomial-Time Algorithms for Single-Peaked

Electorates∗

Felix Brandt, Markus Brill, Edith Hemaspaandra, and Lane A. Hemaspaandra

Abstract

For many election systems, bribery (and related) attacks have been shown NP-hard using con-
structions on combinatorially rich structures such as partitions and covers. It is important to
learn how robust these hardness protection results are, in order to find whether they can be
relied on in practice. This paper shows that for voters who follow the most central political-
science model of electorates—single-peaked preferences—those protections vanish. By using
single-peaked preferences to simplify combinatorial covering challenges, we show that NP-
hard bribery problems—including those for Kemeny and Llull elections—fall to polynomial
time. By using single-peaked preferences to simplify combinatorial partition challenges, we
show that NP-hard partition-of-voters problems fall to polynomial time. We furthermore show
that for single-peaked electorates, the winner problems for Dodgson and Kemeny elections,
though Θp

2-complete in the general case, fall to polynomial time. And we completely clas-
sify the complexity of weighted coalition manipulation for scoring protocols in single-peaked
electorates.

1 Introduction
Elections are perhaps the most important framework for preference aggregation. An election (rule)
is a mapping that takes as input the preferences of the voters with respect to the set of candidates
(alternatives) and returns a set of “winners,” which is some subset of the candidate set. Elections
are central in preference aggregation among humans—in everything from political elections to se-
lecting good singers on popular television shows. Elections are rapidly increasing in importance in
electronic settings such as multiagent systems, and have been used or proposed for such varied tasks
as recommender systems and collaborative filtering [23], web spam reduction and improved web-
search engines [12], and planning [13]. In electronic settings, elections may have huge numbers of
voters and alternatives.

One natural worry with elections is that agents may try to slant the outcome, for example, by
bribing voters. Motivated by work from economics and political science showing that reasonable
election systems always allow manipulations of certain types, starting in 1989, Bartholdi, Tovey,
and Trick [3, 4] made the thrilling suggestion that elections be protected via complexity theory—
namely, by making the attacker’s task NP-hard. This line has been active ever since, and has resulted
in NP-hardness protections being proven for many election systems, against such attacks as bribery
(the attacker has a budget with which to buy and alter voters’ votes [16]), manipulation (a coalition
of voters wishes to set its votes to make a given candidate win [3]), and control (an agent seeks
to make a given candidate win by adding/deleting/partitioning voters or candidates [4]). The book
chapter [18] surveys such NP-hardness results, which apply to many important election systems
such as plurality, single transferable vote, and approval voting.

In the past few years, a flurry of papers have come out asking whether the NP-hardness protec-
tions are satisfying. In particular, the papers explore the possibility that heuristic algorithms may
do well frequently or that approximation algorithms may exist. The present paper questions the
NP-hardness results from a completely different direction. In political science, perhaps the most

∗This paper appeared in the proceedings of AAAI-2010.
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“canonical” model of electorates is the unidimensional single-peaked model, in which the electorate
has preferences over some one-dimensional spectrum (e.g., “very liberal through very conservative”)
along which the candidates are also located, and in which each voter’s preferences (loosely put) have
a peak, with affinity declining as one moves away from the peak. A brilliant paper by Walsh [26]
recently asked whether NP-hardness protections against manipulation fall apart if electorates are
single-peaked. For the case Walsh looked at, the answer he proved is “no”; he looked at a par-
ticular NP-hardness manipulation protection and proved it holds even for single-peaked societies.
Faliszewski et al. [17], inspired by Walsh’s work, looked at a range of election systems and came
to the sharply differing conclusion that for many crucial cases, NP-hardness protections against
manipulation and control vanish for single-peaked electorates.

Those two papers [17, 26] are the only two papers we know of that study the implications of
single-peakedness on the complexity of manipulation and control. The present paper seeks to take
this young line of research in new directions, and to improve one existing direction, via the following
contributions:

(1) We show that checking who the winner is in Dodgson, Young, and Kemeny elections, which
is Θp

2-complete in the general case, is in polynomial time for single-peaked electorates.
(2) We for the first time study the effect of single-peaked electorates on the complexity of

bribery. We show that many NP-hardness protections against bribery in the general case vanish
for single-peaked electorates. To show this, we give polynomial-time bribery algorithms for single-
peaked electorates in many settings. Our polynomial-time algorithms apply to approval voting and to
the rich range of “weak-Condorcet consistent” election systems and even to systems that are merely
known to be weak-Condorcet consistent when the electorate is single-peaked, including weakBlack,
weakDodgson, Fishburn, Kemeny, Llull, Maximin, Schwartz, Young, and two variants of Nanson
elections.

The practical lesson is that we should be very skeptical about NP-completeness results if our
electorate may have limitations (such as single-peakedness) on the ensembles of votes it produces.

(3) We for the first time study the effects of single-peaked electorates on the complexity of
control by partition of voters, in which the voters are partitioned into two groups that vote on the
candidates in “primary” elections, and only the winners of the primaries compete in the final election.
This is one of the seven types of control introduced in the seminal control paper of Bartholdi et al.
[4], but control by partition of voters has not been previously addressed for the single-peaked case.
We show that some known NP-hardness protections against control-by-partition vanish for single-
peaked electorates

The shared technical theme here and in the bribery case is that single-peakedness can be used
to tame the combinatorial explosion (of partitions and covers) that in the general case protected
elections from attack, and in particular single-peakedness yields polynomial-time attack algorithms.

(4) Our final contribution is a strong extension of an important result from Faliszewski et al.
[17]. For the broad class of election systems known as scoring protocols, Faliszewski et al. gave a
complete characterization of the computational complexity of the (weighted, coalition) manipulation
problem in the case of single-peaked elections with three candidates. Such characterizations are
important as they tell both which systems are manipulable and what it is about the systems that
makes them manipulable. We extend this by providing, for single-peaked electorates, a complete
characterization of easy manipulability of scoring protocols.

Proofs omitted due to space constraints can be found in the full version of this paper [6].

2 Preliminaries
Election Systems, Preferences, and weakCondorcet-Consistency An election system is a map-
ping from a finite set of candidates C and a finite list V of voter preferences over those candidates
to a collection W ⊆ C called the winner set. For all but one of the election systems we cover, each
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voter’s preference is a linear order (by which we always mean a strict linear order: an irreflexive,
antisymmetric, complete, transitive relation) over the candidates. For the election system called
approval voting, each voter votes by a bit-vector, approving or disapproving of each candidate sep-
arately. Voter’s preferences are input as a list of ballots (i.e., votes), so if multiple voters have the
same preference, the ballot of each will appear separately in V .

We now very briefly describe the election systems considered in this paper. In approval voting,
preferences are approval vectors, and each candidate who gets the highest number of approvals
among the candidates belongs to the winner set. In all the other systems we use, voters will vote by
linear orders. A candidate is said to be a Condorcet winner (respectively, weak Condorcet winner), if
that candidate is preferred to each other candidate by a strict majority (respectively, by at least half)
of the voters. In Condorcet voting the winners are precisely the set of Condorcet winners. In the
election system weakCondorcet, the winners are precisely the set of weak Condorcet winners. It has
been known for two hundred years that some election instances have neither Condorcet winners nor
weak Condorcet winners [7]. And of course, no election instance can have more than one Condorcet
winner, whereas there might be several weak Condorcet winners.

For a rational number α ∈ [0, 1], Copelandα is the election system where for each pair of distinct
candidates we see who is preferred between the two by a strict majority of the voters. That one gets
one “Copeland point” from the pairwise contest and the other gets zero “Copeland points.” If they
tie in their pairwise contest (which can happen only when the number of voters is even), each gets
α points. Copeland1 is known as Llull elections, a system defined by the mystic Ramon Llull in the
thirteenth century, and is known to be remarkably resistant, computationally, to bribery and control
attacks [19].

An important class of elections is the class of scoring protocols. Each scoring protocol has a
fixed number m of candidates and is defined by a scoring vector α = (α1, α2, . . . , αm), α1 ≥
α2 ≥ . . . ≥ αm. Voters’ votes are linear orders, and each voter contributes α1 points to his or her
most preferred candidate, α2 points to his or her next most preferred candidate, and so on. Each
candidate whose total number of points is at least as great as the totals of each other candidate is
a winner. For example, m-candidate plurality voting is the scoring protocol defined by the scoring
vector α = (1, 0, . . . , 0). And m-candidate Borda voting is the scoring protocol defined by the
scoring vector α = (m− 1,m− 2, . . . , 0).

In Black elections (respectively, weakBlack elections), if there is a Condorcet winner (respec-
tively, if there are weakCondorcet winners), then that defines the winners, and otherwise Borda’s
method is used to select the winners. Black elections were introduced by Black [5] and weak-
Black elections (somewhat confusingly called Black elections there) were introduced by Fishburn
[20]. In Dodgson elections (respectively, weakDodgson elections), whichever candidates can by the
fewest repeated transpositions of adjacent candidates in voters’ orders become Condorcet winners
(respectively, weakCondorcet winners) are the winners. Dodgson elections were introduced in the
1800s by Dodgson and weakDodgson elections (somewhat confusingly called Dodgson elections
there) were introduced by Fishburn [20]. In Young elections (respectively, strongYoung elections),
whichever candidates can by the deletion of the fewest voters become weakCondorcet (respectively,
Condorcet) winners are the winners. Young elections were introduced by Young and strongYoung
elections (somewhat confusingly called Young elections there) were introduced by Rothe et al. [25].

Nanson elections are runoff methods based on Borda’s scoring protocol. In Nanson’s original
definition, a series of Borda elections is held and all candidates who at any stage have not more
than the average Borda score are excluded unless all candidates have identical Borda scores, in
which case these candidates are declared the winners of the election. There exist two variants of
Nanson due to Fishburn and Schwartz, which exclude candidates with the lowest Borda score and
candidates whose Borda score is less than the average score, respectively. Maximin (a.k.a. Simpson)
elections choose those candidates that fare best in their worst pairwise comparison against any other
candidate. The remaining three election systems are based on the pairwise majority relation. In
Schwartz elections (sometimes also called the top cycle), the winners are defined as the maximal
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elements of the asymmetric part of the transitive closure of the majority relation. The winners in
Fishburn elections are the maximal elements of the Fishburn relation F , which is defined by letting
a F b if every candidate that beats a in a pairwise comparison also beats b and there exists a
candidate that beats b but not a. Finally, Kemeny elections are based on the smallest number of
reversals in the voters’ pairwise preferences such that the majority relation becomes transitive and
complete. The Kemeny winners are the maximal elements of such minimally modified majority
relations.

An important notion in this paper is that of being weakCondorcet-consistent. An election system
is said to be weakCondorcet-consistent (which we earlier wrote, equivalently, as weak-Condorcet
consistent), if on every input that has at least one weak Condorcet winner, the winners of the
election system are exactly the set of weak Condorcet winners. Some of our bribery results will
hold for all election systems that are weakCondorcet-consistent, and even for all election systems
that when restricted to single-peaked electorates are weakCondorcet-consistent on those.

Fishburn [20] has noted that the election systems weakBlack, weakDodgson, Fishburn, Max-
imin, and Young are weakCondorcet-consistent. We add to that the observation that Llull elec-
tions are easily seen from their definition to be weakCondorcet-consistent. We also make the
(new) observation that the election systems Kemeny, Schwartz, and the two variants of Nanson
are weakCondorcet-consistent when restricted to single-peaked electorates. (By Fishburn [20] and
Niou, those systems are known not to be weakCondorcet-consistent in the general case.) We also
observe that Black, Dodgson, strongYoung, the original version of Nanson, and for each α ∈ [0, 1),
Copelandα elections are not weakCondorcet-consistent even when restricted to single-peaked elec-
torates.

Single-Peaked Preferences This paper’s theme is that combinatorial protections crumble for the
case of single-peaked electorates. We now briefly define what single-peaked preferences are and
what their motivation is. The single-peaked preference model was introduced over half a century ago
by Black [5] and has been influential ever since. The model captures the case where the electorate
is polarized by a single issue or dimension, and each voter’s utility along that dimension has either
one peak or just rises or just falls. Candidates have positions (locations) along that dimension. And
a voter’s preferences (in the linear order model) simply order the candidates by utility (except with
no ties allowed). Since the utility curves are very flexible, what this amounts to is that there is an
overall societal ordering L of the candidates, and each voter can be placed in some location such that
for all the candidates to his or her right the preferences drop off and the same to the left, although
within that framework, the right and the left candidates can be interspersed with each other. A
picture will make this clearer. Figure 1 shows an electorate with four voters and five candidates,
in which society’s polarization is on a (liberal-to-conservative) axis. From the picture, we can see
that v1 has preferences c5 > c4 > c3 > c2 > c1, v2 has preferences c1 > c2 > c3 > c4 > c5,
v3 has preferences (note the interleaving) c2 > c3 > c1 > c4 > c5, and v4 has preferences
c4 > c5 > c3 > c2 > c1.

Formally, there are many equivalent ways to capture this behavior, and we use the following as
our definition. A collection V of votes (each a linear ordering Pi of the candidates) over candidate
set C is said to be single-peaked exactly if there exists a linear ordering L over C such that for each
triple of candidates a, b, and c, it holds that (aL bL c ∨ cL bLa)⇒ (∀i) [aPi b⇒ b Pi c].

The single-peaked model has been intensely studied, and has both strengths and limitations. On
the positive side, it is an excellent rough model for a wide range of elections. Votes on everything
from American presidential elections to US Supreme Court votes to hiring votes within a CS de-
partment are often shockingly close to reflecting single-peaked preferences. It certainly is a vastly
more reasonable model in most settings than is assuming that all voters are random and independent,
although the latter model has been receiving a huge amount of study recently. In fact, a wide range
of scholarly studies have argued for the value of the single-peaked model [5, 10, 24], and the model
is one of the first taught to students in positive (i.e., theoretical) political science courses. On the
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Figure 1: Example of a single-peaked electorate of four voters

other hand, some electorates certainly are driven by multidimensional concerns, and even a heavily
unidimensional electorate may have a few out-of-the-box voters.

The single-peaked model also makes sense for approval voting [17]: There, a voter intuitively
may be thought to have some utility threshold starting at which he or she approves of candidates.
What this means is that each voter’s “approved” candidates must be contiguous within society’s
linear order L.

Although we will assume that society’s linear order is part of the input in our single-peaked
winner, bribery, manipulation, and control problems, we mention in passing that given an election
instance, one can in polynomial time tell whether the voters are single-peaked and when so can also
in polynomial time compute a societal linear order instantiating the single-peakedness (Bartholdi
and Trick [2] and Doignon and Falmagne [11] for linear-order preferences and Faliszewski et al.
[17] for approval preferences).

3 Bypassing Winner-Problem Complexity
The main results sections of this paper study whether single-peakedness bypasses complexity-
theoretic protections against attacks on elections. Before moving to those sections, we quickly
present some results showing that single-peakedness also bypasses the complexity results some sys-
tems have for even telling who won. Unlike the “protection from attack” complexity-shield bypass-
ings, which are in some sense bad news (for the security of the election systems), these “winner-
hardness” complexity-shield bypassings are good news—taming the complexity of election systems
such as Dodgson and Kemeny for the single-peaked case, despite the fact that they are known to
have NP-hard winner problems in the general case.

For a given election system E , the winner problem takes as input an election, (C, V ), and a
candidate p ∈ C, and asks if p is a winner in the election whose candidates are C and whose votes
are V . When we speak of the single-peaked case of the winner problem, the input will also contain a
linear order L relative to which the election is single-peaked. Note that the weakCondorcet winner
problem is in P in the general case and thus certainly in the single-peaked case. Furthermore,
something used often in our paper’s proofs is the following standard fact about Condorcet voting
and medians.

Fact 1. Associate each voter with the candidate at the top of that voter’s preference ordering. If
we order the voters with respect to L in terms of that association, then if ‖V ‖ is odd, the weak-
Condorcet and Condorcet winner set is the top preference of the median voter, and if ‖V ‖ is even,
the weakCondorcet winner set is the set of all candidates who in L fall in the range, inclusively,
between the top preferences of the two median voters (and if those two coincide, then that candidate
is the Condorcet winner and otherwise there is no Condorcet winner).
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An immediate consequence is the well-known fact that for single-peaked elections, there is al-
ways at least one weak Condorcet winner (we are tacitly here assuming C 6= ∅). Since we earlier
noted that the winner problem is in P for weakCondorcet elections, the following holds.

Theorem 1. For each election system E that is weakCondorcet-consistent when restricted to single-
peaked electorates, the winner problem is in P when restricted to single-peaked elections.

Of course, for many such systems the winner problem is obviously in P even in general. Yet we
do get some interesting consequences from Theorem 1.

Corollary 1. When restricted to single-peaked electorates, the winner problems for Kemeny, Young,
and weakDodgson elections are in P.

In contrast, the general-case Kemeny winner problem problem was proven by Hemaspaandra
et al. [22] to be Θp

2-complete. And we prove in the full version of this paper that the general-case
winner problems for Young and weakDodgson elections are Θp

2-complete as well. Thus, Theorem 1
implies sharp complexity simplifications for these three election systems.

The “identify with weakCondorcet” approach that just worked on Young and weakDodgson
elections does not apply to Dodgson and strongYoung elections. However, we have constructed
direct algorithms that solve their winner problems in polynomial time in the single-peaked case.

Theorem 2. When restricted to single-peaked electorates, the winner problems for Dodgson and
strongYoung elections are in P.

Our algorithm that shows this for Dodgson elections is a good example of the general technical
theme of this paper: That single-peakedness often precludes combinatorial explosion. In this par-
ticular case, single-peakedness simplifies the seemingly exponential-sized search space over “series
of exchanges to provide upper bounds on Dodgson scores,” and will allow us to instead search over
a polynomial-sized possibility space related to a particular, simple set of exchanges happening and
limited to at most two voters.

Both claims in Theorem 2 contrast directly with the known Θp
2-completeness of the general

case Dodgson [21] and strongYoung [25] winner problems, and thus reflect a substantial complexity
simplification that holds when electorates are single-peaked.

4 Bribery of Single-Peaked Elections
This section shows that single-peakedness undercuts many, although not all, NP-hardness protec-
tions for bribery problems.

All bribery notions presented here, except negative approval bribery, are from the paper that
started the complexity-theoretic study of bribery [16]. Given an election system E , the E-bribery
problem takes as input C, V , p ∈ C, and k ∈ {0, 1, 2, . . .}, and asks if, by changing the votes of at
most k members of V , p can be made a winner of this election with respect to E . That is the basic
bribery problem. And it can be modified by any combination of the following items: “$” means
each voter has a price (belonging to {1, 2, 3, . . .}) and the question is whether there is some set of
voters whose total price is at most k such that by changing their votes we can make p be a winner.
The intuition for prices is that some voters can be swayed more easily than others. “Weighted”
means each vote has a weight (belonging to {1, 2, 3, . . .}), and each weight w vote is bribed as an
indivisible object, but when applying E , is viewed as w identical “regular” votes. For the case where
V consists of linear orders, by “negative” we mean that if we bribe a voter then after the bribe the
voter must not have p as his or her top choice unless p already was the top choice before the bribe.
The intuition is that in negative bribery one is trying to stay under the radar by not directly helping
one’s candidate. For approval-vector votes, by “negative” we mean that when you bribe a voter,
his or her after-bribe vector can approve p only if his or her before-bribe vector approved p. By
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“strongnegative” we mean that when you bribe a voter the voter after being bribed cannot approve p.
These can occur in any combination, e.g., we can speak of Llull-negative-weighted-$bribery.

When we speak of the single-peaked case of any of the above, we require that all bribes must
result only in votes that are consistent with the input societal order L.

4.1 Approval-Bribery Results
As our main result for approval-bribery, we prove that the bribery protection that complexity gives
there fails on single-peaked electorates.

Theorem 3 (Faliszewski et al. [16]). Approval-bribery is NP-complete.

Theorem 4. Approval-bribery is in P for single-peaked electorates.

The specific technical reason we can obtain polynomial-time bribery algorithms is that the NP-
hardness proofs were based on the combinatorially rich structure of covering problems (whose core
challenge is the “incomparability” of voters), but we use single-peakedness to create a “directional”
attack on covering problems that has the effect of locally removing incomparability.

By the same general approach—using a “directional” attack to in the single-peaked setting tame
the incomparability challenges of covering problems—we can establish the following two additional
cases in which NP-hard bribery problems fall to P for the single-peaked case.

Theorem 5. 1. Approval-negative-bribery and approval-strongnegative-bribery are NP-
complete.

2. For single-peaked electorates, approval-negative-bribery and approval-strongnegative-
bribery are in P.

4.2 Llull-Bribery and Kemeny-Bribery Results
We now state the following eight-case result. The P cases below are proved by direct algorithmic
attacks using the connection between weakCondorcet and median voters, and the NP-complete cases
are shown by using the problem to capture a partition instance.

Theorem 6. For single-peaked electorates, weakCondorcet-weighted-$bribery, weakCondorcet-
negative-weighted-bribery, and weakCondorcet-negative-weighted-$bribery are NP-complete, and
the remaining five weakCondorcet bribery cases are in P.

Theorem 6 is most interesting not for what it says about weakCondorcet elections, but for its
immediate consequences on other election systems, since all weakCondorcet-consistent election
systems coincide for single-peaked electorates due to the nonemptiness of the set of weakCondorcet
winners.

Corollary 2. Let E be any election system that is weakCondorcet-consistent on single-peaked inputs.
Then the three NP-completeness and five P results of Theorem 6 hold (for single-peaked electorates)
for E .

From our discussions earlier in the paper, Corollary 2 applies to the Llull, Kemeny, Young,
weakDodgson, Maximin, Schwartz, weakBlack, Fishburn, and the two variants of Nanson election
systems. In light of this, Corollary 2 is quietly establishing a large number of claims about NP-
hardness shields failing for single-peaked electorates. For example, we have the following claims.

Theorem 7 (Faliszewski et al. [16]). Llull-bribery, Llull-$bribery, Llull-weighted-bribery, and Llull-
weighted-$bribery are each NP-complete.

217



Theorem 8 (follows from Corollary 2). For single-peaked electorates, Llull-bribery, Llull-$bribery,
Llull-weighted-bribery, and Llull-weighted-$bribery are each in P.

To the best of our knowledge, bribery of Kemeny elections has never been studied. Note, how-
ever, that the winner problem for any election system E many-one reduces to each of the eight types
of bribery problems mentioned in Theorem 6, except with “weakCondorcet” replaced by “E .” This
holds because we can ask whether the preferred candidate wins given the bribe limit of 0, and this
captures the winner problem. So, from the known Θp

2-completeness of the winner problem for Ke-
meny elections [22], we have the following result, which gives us eight contrasts of hardness (three
between Θp

2-hardness and NP membership and five between Θp
2-hardness and P membership).

Theorem 9 (corollary, in light of the comments just made, to Hemaspaandra et al. [22]). For Kemeny
elections, all eight types of bribery mentioned in Theorem 6 are Θp

2-hard.

Theorem 10 (follows from Corollary 2). For single-peaked electorates, Kemeny-weighted-$bribery,
Kemeny-negative-weighted-bribery, Kemeny-negative-weighted-$bribery are NP-complete, and the
remaining five types of bribery of Kemeny elections are in P.

5 Control of Single-Peaked Electorates
The control problems for elections ask whether by various types of changes in an election’s structure
a given candidate can be made a winner. The types of control that were introduced by Bartholdi
et al. [4], and that (give or take some slight refinements) have been studied in subsequent papers, are
addition/deletion/partition of voters/candidates. However, the only previous paper that studied the
complexity of control for single-peaked electorates, Faliszewski et al. [17], focused exclusively on
additions and deletions of candidates and voters.

We for the first time study the complexity of partition problems for the case of single-peaked
electorates. And we show that for a broad range of election systems the control by partition of
voters problem is in P for single-peaked electorates. Among the systems we do this for are Llull
and Condorcet elections, whose control by partition of voters problem is known to be NP-complete
for general electorates. Our proofs again work by using single-peakedness to tame combinatorial
explosion—in this case, the number of partitions that must be examined is reduced from an expo-
nential number of partitions to a polynomial number of classes of partitions each of which can be
checked as a block.

The control by partition of voters problem for an election system E takes as input an election
instance (C, V ) and a candidate c ∈ C and asks whether there is a partition of votes (V1, V2) such
that if the “appropriate candidates” move forward from the preliminary elections (C, V1) and (C, V2)
to a final election in which those candidates are voted on by V , then c “wins.” How one clarifies the
quoted strings determines the precised type of voter control one studies. In particular, one can study
the nonunique-winner model or the unique-winner model. And as to the “appropriate candidates”
move forward means, one can study the Ties Promote (TP) model (all winners of the preliminary
elections move forward) or the Ties Eliminate (TE) model (only unique winners move forward).
Our results hold for all four combinations of these models.

We will briefly mention control results about adding and deleting voters and candidates. The
definitions of those are just what one would expect, and we refer the reader to Faliszewski et al. [19]
for those definitions. The following is our main result for this section.

Theorem 11. For weakCondorcet elections, (constructive) control by partition of voters is in P for
single-peaked electorates.

The technical challenge here is the exponential number of partitions, and our algorithm circum-
vents this by using single-peakedness to allow us to in effect structure that huge number of partitions
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into a polynomial number of classes of partitions such that for each class we can look just at the class
rather than having to explore each of its member partitions. Let us note some consequences of this
theorem.

Corollary 3. Let E be any election system that is weakCondorcet-consistent on single-peaked inputs.
Then for election system E , (constructive) control by partition of voters is in P for single-peaked
electorates. In particular, this holds for the election systems Llull, Kemeny, weakDodgson, Maximin,
Schwartz, weakBlack, Fishburn, and the two variants of Nanson.

For Llull elections, this provides a clear contrast with the known NP-completeness for that same
control type in the general case. We now state a result that will quickly give us a number of additional
contrasts between general-case control complexity and single-peaked control complexity.

Theorem 12. For weakCondorcet elections, (constructive) control by adding voters and (construc-
tive) control by deleting voters are each in P for single-peaked electorates.

The full version of this paper contains similar results for Condorcet elections.

6 Manipulation of Single-Peaked Electorates
Faliszewski et al. [17] completely characterized, for three-candidate elections, which scoring proto-
cols have polynomial-time constructive coalition weighted manipulation problems and which have
NP-complete constructive coalition weighted manipulation problems. We achieve a far more sweep-
ing dichotomy theorem—our result applies to all scoring protocols, regardless of the number of
candidates. In the constructive coalition weighted manipulation problem, the input is the candidate
set C, the nonmanipulative voters (each a preference order over C and a weight), the manipulative
voters (each just a weight), and a candidate p ∈ C, and the question is whether there is a way of
setting the preferences of the manipulative voters such that p is a winner under the given election
rule when all the manipulative and nonmanipulative voters vote in a weighted election.

Our extension of this three-candidate, single-peaked electorate result to the case of any scor-
ing protocol over single-peaked electorates is somewhat complicated. Yet, since it is a complete
characterization—a dichotomization of the complexities, in fact—it is in some sense simply reflect-
ing the subtlety and complexity of scoring systems.

Theorem 13. Let α = (α1, α2, . . . , αm) be an m-candidate scoring protocol and consider the
constructive coalition weighted manipulation problem for single-peaked electorates.

• If α2 > αbm−1
2 c+2 and there exist integers m1,m2 > 0, i1, i2 > 1 such that m1 +m2 + 1 =

m, i1 ≤ m1 + 1, i2 ≤ m2 + 1, and (α1 − αi1)(α1 − αi2) > (αi1 − αi1+1)(αi2 − αi2+1),
then the problem is NP-complete.

• If α2 = αbm−1
2 c+2 and α1 > α2 > αm and (α2 > αm−1 or α1 − αm > 2(α2 − αm)), then

the problem is NP-complete.

• In all other cases, the problem is in P.

The “P” cases of Theorem 13’s dichotomy align with our theme of single-peakedness often
foiling combinatorial protections.

7 Related Work and Additional Discussion
The two papers most related to our work are Walsh [26] and Faliszewski et al. [17]. Walsh’s paper
first raised the issue of the effect of single-peaked electorates on manipulation, and for the particular
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case he looked at—weighted coalition manipulation under single transferable vote elections—he
showed that manipulation remains hard even for single-peaked electorates. Faliszewski et al. showed
cases where single-peakedness removes complexity shields against manipulation, and also opened
the study of (nonpartition) control. Our paper in contrast with Walsh’s stresses cases where single-
peakedness removes combinatorial protections. And we go beyond Faliszewski et al. by for the first
time studying bribery of single-peaked electorates and partition-control of single-peaked electorates.

Although [26] and [17] are by far the most related work, other work is much worth mentioning.
Bartholdi and Trick [2], Doignon and Falmagne [11], and Escoffier et al. [14] provided efficient
algorithms for finding single-peaked orderings. And Conitzer [8] studied the effect of single-peaked
electorates on preference elicitation. Two of the papers just mentioned [14, 8] raise the issue of
nearly single-peaked electorates, and we commend as a particularly important open issue the ques-
tion of what effect nearly single-peaked electorates have on complexity.

The literature now contains many papers on the complexity (when single-peaked preferences are
not assumed) of manipulation and control (as a pointer to those, see [18] and the citations therein),
and contains a few papers on the younger topic of the complexity of bribery (e.g., Faliszewski et al.
[16] and Faliszewski et al. [19]). Although the nonunique-winner model and the unique-winner
model very typically have the same complexity results, Faliszewski et al. [15] (drawing also on
Conitzer et al. [9]) show that this is not always the case.

A worry that comes immediate to the minds of social choice theorists can be expressed as fol-
lows: Since it is known that, for single-peaked electorates, “median voting” leaves voters with voting
sincerely being an optimal strategy, single-peaked elections are not interesting in terms of other elec-
tion systems, since median voting should be used. A detailed discussion of this worry would itself
fill a paper. But we briefly mention why the above objection is not as serious as it might at first
seem. First, the nonmanipulability claims regarding single-peaked elections and median voting are
about manipulability, and so say nothing at all about, for example, control. Indeed, weakCondorcet
in effect is a type of median voting on single-peaked electorates, and our partition of voters al-
gorithm makes it clear that control can be exercised in interesting ways. Second, even if median
voting does have nice properties, the simple truth is that in the real world, society—for virtually
all elections and electorates—has chosen (perhaps due to transparency, comfort, or tradition) to use
voting systems that clash sharply with median voting. The prominence of plurality voting is the
most dramatic such case. So since in the real world we do use a rich range of election systems,
it does make sense to understand their behavior. Third, one must be very careful with terms such
as “strategy-proof.” The paper people most commonly mention as showing that median voting is
strategy-proof is Barberà [1]. But that paper’s results are about “social choice functions” (election
rules that always have exactly one winner), not—as this paper is—about election rules that select a
set of winners. So one cannot simply assume that for our case median voting (say, weakCondorcet
elections) never gives an incentive to misrepresent preferences. We should further stress that discus-
sions of strategy-proofness typically assume that manipulators come in with complete preference
orders, but in the Bartholdi et al. [3] model (which this paper and most complexity papers use when
studying manipulation), the manipulative coalition is a blank slate with its only goal being to make
a certain candidate p be a winner.)

8 Conclusions
The theme of this paper is that single-peaked electorates often tame combinatorial explosion. We
saw this first for the case of the winner problem. In that case, this taming is good. It shows that
for single-peaked electorates, election systems such as Kemeny have efficient winner algorithms,
despite their Θp

2-hardness in the general case. But then for bribery and control (and in part, ma-
nipulation), we saw many cases where NP-hard problems fell to polynomial time for single-peaked
electorates, via algorithms that bypassed the general-case combinatorial explosions of covers and
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partitions. Since those NP-hardness results were protections against attacks on elections, our results
should serve as a warning that those protections are at their very core dependent on the extreme flex-
ibility of voter preference collections the general case allows. For single-peaked electorates, those
protections vanish.
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The Efficiency of Fair Division with

Connected Pieces

Yonatan Aumann and Yair Dombb

Abstract

We consider the issue of fair division of goods, using the cake cutting abstraction, and
aim to bound the possible degradation in social welfare due to the fairness require-
ments. Previous work has considered this problem for the setting where the division
may allocate each player any number of unconnected pieces. Here, we consider the
setting where each player must receive a single connected piece. For this setting, we
provide tight bounds on the maximum possible degradation to both utilitarian and
egalitarian welfare due to three fairness criteria – proportionality, envy-freeness and
equitability.

1 Introduction

Cake Cutting. The problem of fair division of goods is the subject of extensive literature
in the social sciences, law, economics, game theory and more. The famous “cake cutting”
problem abstracts the fair division problem in the following way. There are n players wishing
to divide between themselves a single “cake”. The different players may value differently the
various sections of the cake, e.g. one player may prefer the marzipan, another the cherries,
and a third player may be indifferent between the two. The goal is to obtain a “fair” division
of the cake amongst the players. There are several possible definitions to what constitutes a
“fair” division, with proportionality, envy-freeness and equitability being the major fairness
criteria considered (these notions will be defined in detail later). Many previous works
considered the problem of obtaining a fair devision under these (and other) criteria.

Social Welfare. While fairness is clearly a major consideration in the division of goods,
another important consideration is the social welfare resulting from the division. Clearly,
a division may be envy-free but very inefficient, e.g. in the total welfare it provides to the
players. Accordingly, the question arises what, if any, is the tradeoff between these two
desiderata? How much social welfare does one have to sacrifice in order to achieve fairness?
The answer to this question may, of course, depend on the exact definition of fairness, on
the one hand, and the social welfare of interest, on the other.

The first analysis of such questions was provided in [CKKK09], where Caragiannis et
al. consider the three leading fairness criteria – proportionality, envy-freeness and equi-
tability – and quantify the possible loss in utilitarian social welfare due to such fairness
requirements. Here we continue this line of research, extending the results in two ways.
Firstly, the [CKKK09] analysis allows dividing the cake into any number of pieces, pos-
sibly even infinite. Thus, each player may get a collection of pieces, rather than a single
one. While this may be acceptable in some cases, it may not be so in others, or at least
highly undesirable , e.g. in the division of real estate, where players naturally prefer getting
a connected plot. Similarly, in the cake scenario itself, allowing unconnected pieces may
lead to a situation where, in Stromquist’s words [Str80], “a player who hopes only for a
modest interval of the cake may be presented instead with a countable union of crumbs”.
Accordingly, in this work, we focus on divisions in which each player gets a single connected
piece of the cake. In addition, we consider both the utilitarian and the egalitarian social
welfare functions, whereas Caragiannis et al. considered only utilitarian welfare. For each
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of these welfare functions, we give tight bounds on the possible loss in welfare due to the
three fairness criteria.

1.1 Definitions and Notations

We consider a rectangular cake that can be divided by making parallel cuts. The cake can
thus be represented by the interval [0, 1], where each cut is some point p ∈ [0, 1]. The cake
needs to be divided to n players (we use the notation [n] for the set {1, . . . , n}), each of
which has a valuation function vi(·) assigning a non-negative value to every possible interval
of the cake. As customary, we require that for all i, vi(·) is a nonatomic measure on [0, 1]
having vi(0, 1) = 1. Every set of valuation functions {vi(·)}n

i=1 defines an instance of the
cake cutting problem.

Since we consider only divisions in which every player gets a single connected interval,
a division of the cake to n players can be represented by a vector

x = (x1, . . . , xn−1, π) ∈ [0, 1]n−1 × Sn

with 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn−1 ≤ 1. Here, xi determines the position of the i-th cut, and
π is a permutation that determines which piece is given to which player. For convenience,
we denote x0 = 0 and xn = 1, so we can write that player i ∈ [n] receives the interval
(xπ(i)−1, xπ(i)). We use the notation ui(x) for the utility that player i gets in the division x,
i.e. ui(x) = vi(xπ(i)−1, xπ(i)). We denote by X the set of all possible division vectors, and
note that X is a compact set.

Fairness Criteria. We say that a division x ∈ X is:

• Proportional if every player gets at least 1
n of the cake (by her own valuation).

Formally, x is a proportional division if for all i ∈ [n], ui(x) ≥ 1
n .

• Envy-Free if no player prefers getting the piece alloted to any of the other players.
Formally, x is an envy-free division if for all i 6= j ∈ [n], ui(x) = vi(xπ(i)−1, xπ(i)) ≥
vi(xπ(j)−1, xπ(j)).

• Equitable if all the players get the exact same utility in x (by their own valuations).
Formally, x is an equitable division if for all i, j ∈ [n], ui(x) = uj(x).

Stromquist [Str80], showed that for every instance of the cake cutting problem there exists
an envy-free division with connected pieces. Since one can easily observe that every envy-
free division is in particular proportional, this implies that such proportional divisions also
always exist. In this paper we show (Theorem 6) that equitable divisions also always exist
for connected pieces (for the case where players need not get a single interval, this is well
known).

Social Welfare Functions. For a division x ∈ X , we denote by u(x) the utilitarian social
welfare of x, i.e.

u(x) =
∑
i∈[n]

ui(x) .

Likewise, we denote by eg(x) the egalitarian social welfare of x, which is

eg(x) = min
i∈[n]

ui(x) .

Note that both these social welfare functions are continuous and thus have maxima in X .
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The Price of Fairness. As described above, we aim to quantify the degradation in
social welfare due to the different fairness requirements. This is captured by the notion
of Price of Fairness, in its three forms – Price of Proportionality, Price of Envy-freeness
and Price of Equitability, defined as follows. The Price of Proportionality (resp. Envy-
Freeness, Equitability) of a cake-cutting instance I, with respect to some predefined social
welfare function, is defined as the ratio between the maximum possible social welfare for the
instance, taken over all possible divisions, and the maximum social welfare attainable when
divisions must be proportional (resp. envy-free, resp. equitable). When considering divisions
with connected pieces, this restriction is applied to both maximizations. For example, if
XEF ⊆ X is the set of all (connected) envy-free divisions of an instance, the egalitarian
Price of Envy-Freeness for this instance is

maxx∈X eg(x)
maxy∈XEF eg(y)

.

In this work we show bounds on the maximum utilitarian and egalitarian Price of Propor-
tionality, Envy-Freeness and Equitability of any instance.

1.2 Results

We analyze the utilitarian and egalitarian Price of Proportionality, Envy-Freeness and Eq-
uitability for divisions with connected pieces. We provide tight bounds (in some cases, up to
an additive constant factor) for all six resulting cases. The results are summarized in Table
1; the last row presents the relevant previous results by Caragainnis et al. in [CKKK09], for
comparison. The meaning of the upper bounds is that the respective price of fairness of any
possible instance is never greater than the bound. The meaning of the lower bound is that
there exists an instance that exhibits at least this price of fairness (for the respective class).

Price of: Proportionality Envy-Freeness Equitability

Utilitarian UB:
√

n
2 + 1− o(1) UB: n connected

LB:
√

n
2 LB: n− 1 + 1

n pieces
Egalitarian 1 n

2 1 (this work)
(tight)

Utilitarian UB: 2
√

n− 1 UB: n− 1
2 UB: n non-connected

LB:
√

n
2 LB:

√
n

2 LB: (n+1)2

4n pieces [CKKK09]

Table 1: All results

Utilitarian Welfare. For the utilitarian social welfare, we show an upper bound of
√

n
2 +

1 − o(1) on the price of envy-freeness, for any possible instance. This, we believe, is the
first non-trivial upper bound on the Price of Envy-Freeness. It seems that such bounds
are hard to obtain since on the one hand we need to consider the “best” possible envy-free
division, while on the other hand no efficient method for explicitly constructing any envy-
free divisions is known. We show that the same upper bound also applies to the Price of
Proportionality.

For the Price of Equitability, we show that it is always bounded by n (though simple,
this does require a proof since an equitable division need not even give each player 1/n).
We also provide an almost matching lower bound, showing that for any n there exists an
instance with utilitarian Price of Equitability arbitrarily close to n− 1 + 1

n .

225



Egalitarian Welfare. When considering the egalitarian social welfare, we show that there
is no price for either proportionality or equitability. That is, for any instance there exist
both proportional and equitable divisions for which the minimum amount any player gets
is no less than if there were no fairness requirements. While perhaps not surprising, the
proof for the Price of Equitability is somewhat involved, especially since we require that the
divisions be with connected pieces. We note that we are not aware of any previous proof
that altogether establishes the existence of an equitable division with connected pieces.

For the Price of Envy-Freeness, we show that it is bounded by n/2, and provide a
matching family of instances that exhibits this price, for any n.

Paper Organization. In Section 2, we present bounds on the Price of Proportionality and
the Price of Envy-Freeness. We begin in 2.1 by presenting the upper bound on the utilitarian
Price of Envy-Freeness, and complement it by an example already given in Caragiannis et
al. [CKKK09], which is tight up to a small additive factor. Both these upper and lower
bounds apply also to the utilitarian Price of Proportionality. In 2.2 we show a simple upper
bound of n

2 for the egalitarian Price of Envy-Freeness, together with a matching (tight)
lower bound. We also show that the egalitarian Price of Proportionality is trivially 1. In
Section 3 we present bounds on the Price of Equitability. In addition to the (mentioned
above) proof that the egalitarian price is 1, we provide a simple upper bound of n on the
utilitarian Price of Equitability, together with a lower bound of n− 1 + 1

n . In Section 4 we
consider the reverse question to that of the Price of Fairness – namely, how much fairness
may one have to give up to achieve social optimality. Finally, we conclude this work and
present some open questions in Section 5.

1.3 Related Work

The problem of fair division dates back to the ancient times, and takes many forms. The
piece of property to be divided may be divisible or indivisible: Divisible goods can be “cut”
into pieces of any size without destroying their value (like a cake, a piece of land, or an
investment account), while indivisible goods must be given in whole to one person (e.g. a
car, a house, or an antique vase). Since such items cannot be divided, the problem is
usually to divide a set of such goods between a number of players. Fair division may also
relate to the allocation of chores (of which every party likes to get as little as possible); this
problem is of a somewhat different flavor from goods allocation, and also has the divisible
and indivisible variants.

Modern mathematical treatment of fair division started at the 1940s [Ste49], and was
initially concerned mainly with finding methods for allocation of divisible goods. Differ-
ent algorithms – both discrete and continuous (“moving knife algorithms”) – were pre-
sented (e.g. [Str80, EP84] and [BT95], which also surveys older algorithms), as well as
non-constructive existence theorems [DS61, Str80]. In the past fifteen years, several books
appeared on the subject [BT96, RW98, Mou04]. Following the evaluation and cut queries
model suggested by Robertson and Webb [RW98], much attention was given to the question
of lower bounds on the number of steps or cuts required for such divisions in this and other
models [MIBK03, EP06, SW03, Str08, Pro09]. In particular, Stromquist [Str08] proves that
no finite protocol (even unbounded) can be devised for an envy-free division of a cake among
three or more people in which each player receives a connected piece. However, we note
that this result applies only to the model presented in that work (which resembles the one
suggested by Robertson and Webb), and not for cases where, for example, some mediator
has full information of the players’ valuation functions and proposes a division based on this
information.
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Unlike most of the work on cake cutting, the different notions of the price of fairness
are not concerned with procedures for obtaining divisions, but rather with the existence of
divisions with different properties (relating to social optimality and fairness). These notions,
namely the Price of Proportionality, the Price of Envy-Freeness and the Price of Equitability,
were first presented in a recent paper by Caragiannis et al. [CKKK09]. This line of work has
some resemblance to the line of work on the Price of Stability [ADK+04], which attracted
much attention in the past decade. The work in [CKKK09] analyzes the price of fairness (via
the above three measures) with the utilitarian welfare function for divisible and indivisible
goods and chores, giving tight bounds (up to a constant multiplicative factor) in most cases.
However, unlike in this work, no special attention was given to the case of connected pieces
in divisible goods. The results of [CKKK09] for divisible goods are summarized in the last
row of Table 1.

2 The Price of Envy-Freeness and Proportionality

2.1 Utilitarian Welfare

Theorem 1. For every cake-cutting instance with n players, the utilitarian Price of Envy-
Freeness with connected pieces is bounded from above by

√
n

2 + 1− o(1).

In fact, we prove an even stronger claim: The above bound applies not only to the
distance of the “best” envy-free division from utilitarian optimality, but also to the distance
from (utilitarian) optimality of any envy-free division.

Proof. Let x be an envy-free division of the cake, and u(x) =
∑

i∈[n] ui(x) its utilitar-
ian social welfare. We show that any other division to connected pieces y has u(y) ≤(√

n
2 + 1− n

4n2−4n+2
√

n

)
· u(x). Our proof is based on the following key observation:

Assume that for some i ∈ [n], ui(y) ≥ α · ui(x). Since i values any other piece
in the division x at most as much as her own, it has to be that in y, i gets
an interval that intersects pieces that belonged to at least ⌈α⌉ different players
(possibly including i herself).

We will say that in the division y, player i gets the j-th cut of x if in y, i is given
a piece starting at a point p < xj and ending at the point p′ > xj . A more formal
statement of our observation is therefore that if in y, i gets at most α cuts of x, it holds that
ui(y) ≤ (α + 1) · ui(x). We can thus bound the ratio u(y)

u(x) by the solution to the following
optimization problem, which aims to find values {ui(x)}n

i=1 and {αi}n
i=1 (the number of cuts

of x each player gets) that maximize this ratio.

maximize
∑n

i=1 (αi + 1)ui(x)∑n
i=1 ui(x)

(1)

subject to
n∑

i=1

αi = n− 1

ui(x) ≥ 1
n

∀1 ≤ i ≤ n (2)

(αi + 1)ui(x) ≤ 1 ∀1 ≤ i ≤ n (3)
αi ∈ {0, . . . , n− 1} ∀1 ≤ i ≤ n

(2) is a necessary condition for the envy-freeness of x that provides a lower bound for the
denominator, and (3) is equivalent to ui(y) ≤ 1.
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We therefore concentrate on bounding the solution to the above optimization problem.
To this end, the following observations are useful:

1. For any choice of values {ui(x)}n
i=1, the optimal assignment for the αi variables is

greedy, i.e. giving each player i, in non-increasing order of ui(x) the maximum possible
value for αi that does not violate any of the constraints. (This holds since otherwise
there are players i, j with ui(x) > uj(x) and αj ≥ 1 such that increasing αi by one at
the expense of αj is feasible and yields an increase of ui(x)−uj(x) > 0 in the numerator
of (1), without affecting the denominator.) We thus can divide the players into two
groups: Those with “high” ui(x) values, who receive strictly positive αi values, and
those with “low” ui(x) values, for which αi = 0.

2. Since the players with low ui(x) values add the same amount to both the numerator
and the denominator in the objective function, maximum is obtained when these values
are minimized; i.e. in the optimal solution ui(x) = 1

n for all these players.

3. The solution to the problem above is clearly bounded from above by the solution to
the same problem where the αi variables need not have integral values. Clearly, in the
optimal solution to such a problem, all the players with αi > 0 have (αi +1)ui(x) = 1.

We can thus bound the solution to our optimization problem by the solution to the
following problem. Let K be a variable that denotes the number of players that will have
αi > 0; by observation (3) above, for every such player, (αi + 1)ui(x) = 1, and thus their
total contribution to the numerator is K. We therefore seek a solution for:

maximize
K + (n−K) · 1

n∑K
i=1 ui(x) + (n−K) · 1

n

(4)

subject to
K∑

i=1

(
1

ui(x)
− 1

)
= n− 1 (5)

K ≤ n

It can be verified (e.g. using Lagrange multipliers) that for any value of K ≤ n this is
maximized when ui(x) = uj(x) for all i, j ∈ [K], i.e. when ui(x) = K

n−K+1 for all i ∈ [K].
We thus conclude that the maximum solution to the above problem maximizes the ratio

K + (n−K) · 1
n

K · K
n+K−1 + (n−K) · 1

n

;

by elementary calculus this is maximized at K =
√

n, where the value is

(n
√

n + n−√
n)(n +

√
n− 1)

n2 + (n−√
n)(n +

√
n− 1)

=
(n2

√
n− n

√
n + 1

2n) + (2n2 − 2n +
√

n)− 1
2n

2n2 − 2n +
√

n

=
√

n

2
+ 1− n

4n2 − 4n + 2
√

n
=
√

n

2
+ 1− o(1) ,

as stated.

Since every envy-free division is in particular proportional, we immediately get that the
bound on the utilitarian Price of Envy-Freeness also applies to the Price of Proportionality:

Corollary 2. For every cake-cutting instance with n players, the utilitarian Price of Pro-
portionality in connected pieces is bounded from above by

√
n

2 + 1− o(1).
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We conclude by showing that these bounds are essentially tight (up to a small additive
factor). The construction we show is identical to the one in [CKKK09], and we provide it
here again for completeness.

Proposition 3. The utilitarian Price of Proportionality (and thus also the utilitarian Price
of Envy-Freeness) in connected pieces is larger than

√
n

2 .

Proof. For some integer m, consider n = m2 players with the following valuation functions.
For i = 1, . . . ,

√
n, player i assigns a value of 1 to the piece ( i−1√

n
, i√

n
) and 0 to the rest

of the cake (we call these players the “focused players”). All other players (players i =
(
√

n + 1), . . . , n, the “indifferent players”) assign a uniform value to the entire cake. In any
proportional division, the indifferent players must get a total of at least n−√n

n of the physical
cake, and their total utility is less than 1. This leaves the focused players with at most 1√

n

of the physical cake, and so they obtain (together) a total utility of at most 1; the utilitarian
value of a proportional division is therefore less than 2. On the other hand, the division
giving each of the focused players the entire interval they desire (and leaving nothing to the
indifferent players) has a utilitarian social welfare of

√
n. The Price of Proportionality for

this case is therefore larger than
√

n
2 , as stated.

2.2 Egalitarian Welfare

Proposition 4. For every cake-cutting instance, the egalitarian Price of Proportionality is
1.

Proof. Let x be a proportional division, and y the egalitarian optimal division. By pro-
portionality, every player i has ui(x) ≥ 1

n , and thus eg(x) ≥ 1
n . Since y is the egalitarian

optimal division, we have that for every i ∈ [n], ui(y) ≥ eg(y) ≥ eg(x) ≥ 1
n ; this implies

that y is proportional as well.

Theorem 5. The egalitarian Price of Envy-Freeness for cake-cutting instances with n play-
ers and connected pieces is n

2 . In particular, this is also an upper bound on the egalitarian
Price of Envy-Freeness for n players and non-connected pieces.

Proof. First, note that if the egalitarian optimal division is itself envy-free, the Price of
Envy-Freeness is 1, and that every division with egalitarian welfare of 1

2 is envy-free. We
therefore assume that this is not the case, and that in the egalitarian optimal y division
some player i has ui(y) < 1

2 . Let x be some envy-free division, then x is in particular
proportional and thus has ui(x) ≥ 1

n ; the upper bound follows.
It remains to show a lower bound for the connected case. Let ǫ > 0 be an arbitrarily small

constant, and consider n players with the following valuation functions. For i = 1, . . . , (n−1),
player i assigns a value of 1

2 + ǫ to the piece (i − ǫ, i + ǫ) (her “favorite piece”), a value of
1
2 − ǫ to the piece (1 − 2i+1

2n − ǫ, 1− 2i+1
2n + ǫ) (her “second-favorite piece”), and value of 0

to the rest of the cake. Finally, player n assigns a uniform value to the entire cake.
In order for player n to get utility of α, this player needs to receive an α fraction of

the cake (in physical size). However, every connected piece of physical size at least 1
n + 2ǫ

necessarily contains some other player’s “favorite piece”, and it is immediate that if a single
player receives the entire favorite piece of another player, there is envy. Thus, in every
envy-free division of the cake, player n gets utility of less than 1

n +2ǫ. However, there exists
a division in which every player gets utility of at least 1

2 − ǫ. Such a division is achieved
by giving players i = 1 . . . ⌊n−1

2 ⌋ their favorite pieces, players i = (⌊n−1
2 ⌋ + 1) . . . (n − 1)

their second-favorite pieces, and player n the interval (1
2 + ǫ, 1) (the remaining parts of the

cake can be given to any of the players closest to them). The stated bound follows as ǫ
approaches zero.
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3 The Price of Equitability

In order to talk about the Price of Equitability, we first have to make sure that the concept is
well-defined. When non-connected pieces are concerned, it is known that every cake cutting
instance has an equitable division [DS61]. However, the proof of Dubins and Spanier allows
a “piece” of the cake to be any member of the σ-algebra of subsets, which is quite far from
our restricted case of pieces that are all single intervals. Another result by Alon [Alo87]
establishes the existence of an equitable division giving every player exactly 1

n by each
measure; however, such a division may require up to n2 − 1 cuts. The question thus arises
whether equitable divisions with connected pieces always exist; to the best of our knowledge,
this question has not been addressed before, and we answer it here to the affirmative.
Furthermore, we show that such a division requires no sacrifice of egalitarian welfare.

Theorem 6. For every cake-cutting instance there exists an equitable division of the cake
with connected pieces. Furthermore, there always exists such a division in which the egali-
tarian social welfare is as high as possible in any division with connected pieces.
This holds even for cake cutting instances that do not have vi(0, 1) = 1 for all i (i.e. even if
some players’ valuation of the entire cake is not 1).

Proof. Recall that the egalitarian welfare is a continuous function and X is compact, and
thus eg(·) has a maximum in X ; we denote OPT = maxx∈X eg(x). We also denote by
Y ⊂ X the set of divisions with egalitarian value OPT , i.e.

Y =
{

y = (y1, . . . , yn−1, π) ∈ X
∣∣ eg(y) = OPT

}
.

We note that Y is a compact set; this follows from the fact that it is a closed subset
of X (which is compact itself). To show that Y is closed, we show that Y = X \ Y is
open. Let z ∈ Y be some division not in Y ; then the division z must have egalitarian
value smaller than OPT and in particular there must exist a player i and ǫ > 0 such that
ui(z) ≤ OPT − ǫ. Since player i’s valuation of the cake is a nonatomic measure, there
must exist δL, δR > 0 such that extending i’s piece to the interval (zπ(i)−1 − δL, zπ(i) + δR)
increases i’s utility (compared to the original division z) by less than ǫ. Therefore, in the
ball of radius δ = min{δL, δR} around z (e.g. in L∞), every division still gives i utility
smaller than OPT , and thus this ball does not intersect Y . It thus follows that Y is an
open set, and so Y is closed and compact.

Recall that our aim is to show that Y contains an equitable division; to that end, we
define a function ∆ : Y → R by setting

∆(y) = max
i,j∈[n]

{
ui(y)− uj(y)

}
= max

i∈[n]

{
ui(y)−OPT

}
.

We complete the proof by showing that for any ǫ, there exists a devision y(ǫ) ∈ Y , such
that ∆(y(ǫ)) ≤ ǫ. Since Y is a compact set and ∆(·) is continuous, the image of Y is also
compact. We therefore conclude that there must be some y∗ ∈ Y with ∆(y∗) = 0 (since the
image of Y is in particular a closed subset of R containing a point p < ǫ for every ǫ > 0);
such y∗ is clearly equitable.

It remains to prove that for any ǫ, y(ǫ) exists. We prove this by induction on the number
of players n. For n = 1 there is only one possible division, which obtains exactly OPT for
the single player. Assume for n− 1, we prove for n. Let y be any division in Y (assuming
w.l.o.g. that y uses the identity permutation). We first construct a division y′ such that for
i = 1, . . . , n−1, ui(y′) = OPT , by sequentially moving the border y′i (between players i and
i + 1) to the left as far as possible while keeping that ui(y′) ≥ OPT . This is possible since
in y, ui(y) ≥ OPT and the borders only need to move to the left. Consider the resulting
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y′. If un(y′) ≤ OPT + ǫ we are finished; otherwise, let y′′ be the division obtained from
y′ by moving the border y′′n−1 (between players n − 1 and n) as far right as necessary so
that un(y′′) = OPT + ǫ. Now, omit the rightmost piece (that of player n), and consider
the (n − 1)-player cake cutting problem, on the remaining cake. (Note that the players’
valuation of the entire new cake need not be identical to their valuation of the original cake,
and that the new cake has a different set Y ′ of egalitarian-optimal divisions.)

Now, it cannot be the case that for this new problem the egalitarian maximum is more
than OPT , as that would induce an egalitarian maximum greater than OPT for the entire
problem. On the other hand, egalitarian value of OPT is clearly attainable, as it is obtained
by y′′ (reduced to the first n− 1 players). Hence, OPT is also the egalitarian maximum for
the new (n− 1)-player problem. Thus, by the inductive hypothesis, there exists a division
for this problem that obtains egalitarian welfare OPT and such that no player gets more
than OPT +ǫ. Combining this solution with the piece (y′′n−1, 1) given to player n, we obtain
y(ǫ) ∈ Y , such that no player gets more than OPT + ǫ.

Theorem 7. The utilitarian Price of Equitability in connected pieces is upper-bounded by
n, and for any n there is an example in which it is arbitrarily close to n− 1 + 1

n .

Proof. We begin by showing an upper bound on the utilitarian Price of Equilibility. From
Theorem 6 we have that there always exists an equitable egalitarian-optimal division with
connected pieces. Since there also always exists a proportional division (whose egalitarian
social welfare is at least 1

n ), the egalitarian-optimal division must have an egalitarian social
welfare of at least 1

n and thus a utilitarian social welfare of at least 1. Clearly, the maximum
utilitarian social welfare attainable in any non-equitable division is less than n, and thus
the utilitarian Price of Equitability is also less than n.

For the lower bound, fix some small ǫ > 0 and consider n players with the following
valuation functions. For i = 1, . . . , (n − 1), player i assigns value of 1 to the interval
( i

n − ǫ, i
n + ǫ) and 0 to the rest of the cake. Finally, player n assigns uniform value to the

entire cake.
Since any connected piece of (physical) size 1

n +2ǫ necessarily contains the entire desired
piece of at least one player i ∈ [n− 1], the utility of player n in any equitable division must
be strictly smaller than 1

n + 2ǫ; the utilitarian welfare of such a division is therefore smaller
than 1+2nǫ. Now, consider the following (non-equitable) division: give player 1 the interval
(0, 1

n + ǫ), players i = 2, . . . , (n− 1) the interval ( i−1
n + ǫ, i

n + ǫ), and player n the interval
(n−1

n + ǫ, 1). The utilitarian welfare of this division is n − 1 + 1
n − ǫ. By appropriately

choosing ǫ, the Price of Equitability can be arbitrarily close to n− 1 + 1
n .

4 Trading Fairness for Efficiency

The work on the Price of Fairness is concerned with the trade-off between two goals of
cake division: Fairness, and efficiency (in terms of social welfare). However, the results
we presented so far, as well as the results in [CKKK09], concentrate on one direction of
this trade-off, namely how much efficiency may have to be sacrificed to achieve fairness.
We now turn to look at the analogue question of how much fairness may have to be given
up to achieve social optimality; sadly, it seems that at least for the connected-pieces case,
the results are somewhat pessimistic, except for equitability and proportionality with the
egalitarian welfare.

In order to answer such questions, one first has to quantify unfairness. The following
definitions seem natural:

We say that a division x:

• is α-unproportional if some player i ∈ [n] has ui(x) ≤ 1
α·n .
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• has envy of α if there exist players i, j ∈ [n] for which

vi(xπ(j)−1, xπ(j)) ≥ α · vi(xπ(i)−1, xπ(i)) = α · ui(x) ,

i.e. if some i feels that j 6= i received a piece worth α-times more than the one she got.

• is α-inequitable if there are players i, j ∈ [n] with ui(x) ≥ α · uj(x).

Using these “unfairness” notions, we can obtain the following simple results:

Proposition 8. There are cake-cutting instances where an utilitarian-optimal division is
necessarily infinitely unfair, by all three measures above.

Proof. Consider the cake cutting instance from the proof of Proposition 3. In this instance,
the unique utilitarian-optimal division gives no cake at all to the “indifferent players”;
it follows that this division is infinitely unproportional and inequitable, and has inifinite
envy.

We already know (Proposition 4 and Theorem 6) that egalitarian optimality is not in
conflict with neither proportionality nor equitability. However, this is not the case for envy:

Proposition 9. There are cake-cutting instances where an egalitarian-optimal division nec-
essarily has envy arbitrarily close to n− 1, and this is the maximum possible envy for such
divisions.

Proof. Let ǫ > 0 be an arbitrarily small constant, and consider n players with the following
valuation functions, which are fairly similar to those in the proof of Theorem 5. For i =
1, . . . , (n− 1), player i assigns a value of 1− 1

n − ǫ to the piece (i− ǫ
2 , i + ǫ

2 ) (her “favorite
piece”), a value of 1

n +ǫ to the piece (1− 2i+1
2n − ǫ

2 , 1− 2i+1
2n + ǫ

2 ) (her “second-favorite piece”),
and value of 0 to the rest of the cake. Finally, player n assigns uniform value to the entire
cake.

It is clear that there is no way for the egalitarian value to exceed 1
n + ǫ: In order for that

to happen, player n must get a connected piece of physical size larger than 1
n + ǫ, which

must contain the entire favorite piece of some player i < n, and so player i can get utility at
most 1

n + ǫ. However, egalitarian welfare of 1
n + ǫ can be easily achieved, and in such case

player n indeed devours the entire favorite piece of some player i < n; this player receives a
piece worth (in her eyes) only 1

n + ǫ while she values the piece n receives as worth 1− 1
n − ǫ.

The envy in every egalitarian-optimal division is therefore n−1−ǫn
1+ǫn , which can be arbitrarily

close to n− 1 with an appropriate choice of ǫ.
Since the egalitarian-optimal division is always proportional, every player must get at

least 1
n of the cake in it; therefore, in this player’s view, another player may get at most

n−1
n . It thus follows that in every such division the maximum possible envy is n− 1.

5 Conclusions and Open Problems

In this work we analyzed the possible degradation in social welfare due to fairness require-
ments, when requiring that each player obtain a single connected piece. We obtain that
the results vary considerably, depending on the fairness criteria used, and the social welfare
function in consideration. The bounds range from provably no degradation for propor-
tionality and equitability under the egalitarian welfare, through an O(

√
n) degradation for

envy-freeness and proportionality under the utilitarian welfare, to an O(n) degradation for
equitability under the utilitarian welfare and for envy-freeness under the egalitarian welfare.
We have also seen that if we seek to trade fairness to achieve social optimality, the “exchange
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rate” may (at the worst case) be infinite for utilitarian welfare (for all three fairness criteria),
or linear for egalitarian welfare and envy-freeness.

Many open questions await further research, including:

• Small number of connected pieces. One motivation for considering cake cutting with
connected pieces is the desire to avoid situations where a player receives “a pile of
crumbs” for his fair share of the cake. On the other hand, requiring that each player
receives a single connected interval may be too strict a requirement. A natural middle
ground is to require that each player receives only a small number of pieces, e.g. a
constant number. The question thus arises to bound the degradation to the social
welfare under such requirements. In such an analysis it would be interesting to see
how the bounds on degradation behave as a function of the number of permissible
pieces.

• The Egalitarian Price of Fairness with non-connected pieces. [CKKK09] provide
bounds on the Price of Fairness using the utilitarian welfare function, for the setting
that non-connected pieces are permissible. Bounding the egalitarian Price of Fairness
in this setting remains open. A trivial upper bound on the Price of Envy-freeness is
n
2 , and we have examples of instances where this price is strictly larger than 1, but
obtaining tight bounds seems to require additional work and techniques.

• The egalitarian Price of Proportionality and Price of Equitability for indivisible goods.
[CKKK09] provide analysis for the utilitarian Price of Fairness for such goods. A
simple example can be constructed to show a tight bound of n

2 for the egalitarian
Price of Envy-Freeness for this case. It thus remains open to determine the egalitarian
Price of Proportionality and Equitability for such goods.

• The Price of Fairness for connected chores. As we already mentioned, fair division of
chores has a somewhat different flavor from division of goods, and may require some-
what different techniques. One possible motivation for requiring connected division of
chores may be, for example, a case in which a group of gardeners need to maintain
a large garden, and so would like to give each of them one (connected) area to be
responsible for.

Acknowledgement. We thank Ariel Procaccia for providing helpful comments on an
earlier draft of this work.
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Truth, Justice, and Cake Cutting1

Yiling Chen, John K. Lai, David C. Parkes, and Ariel D. Procaccia

Superman: “I’m here to fight for truth, justice, and the American way.”
Lois Lane: “You’re gonna wind up fighting every elected official in this country!”

Superman (1978)

Abstract

Cake cutting is a common metaphor for the division of a heterogeneous divisible
good. There are numerous papers that study the problem of fairly dividing a cake;
a small number of them also take into account self-interested agents and consequent
strategic issues, but these papers focus on fairness and consider a strikingly weak
notion of truthfulness. In this paper we investigate the problem of cutting a cake
in a way that is truthful and fair, where for the first time our notion of dominant
strategy truthfulness is the ubiquitous one in social choice and computer science. We
design both deterministic and randomized cake cutting algorithms that are truthful
and fair under different assumptions with respect to the valuation functions of the
agents.

1 Introduction
The need for resource allocation arises in many AI domains, and in particular in multiagent
systems. This has led to a wide interest in the field known as Multiagent Resource Allocation,
and to various applications of resource allocation techniques (see the survey by Chevalyere
et al. [7]). Resource allocation problems deal with either divisible or indivisible resources,
where the distinction is based on whether any fraction of a resource can be given to an
agent.

Cutting a cake is often used as a metaphor for allocating a divisible good. The difficulty
is not cutting the cake into pieces of equal size, but rather that the cake is not uniformly
tasty: different agents prefer different parts of the cake, depending, e.g., on whether the
toppings are strawberries or cookies. The goal is to divide the cake in a way that is “fair”;
the definition of fairness is a nontrivial issue in itself, which we discuss in the sequel. The
cake cutting problem dates back to the 1940s, and for over sixty years has attracted the
attention of mathematicians, economists, and political scientists. While most of the work
in artificial intelligence, and computer science in general, has focused on the allocation of
indivisible resources, recent years have seen an increasing interest among computer scientists
in the allocation of divisible resources (see, e.g, [9, 10, 15]).

Slightly more formally, the cake is represented by the interval [0, 1]. Each of n agents
has a valuation function over the cake, which assigns a value to every given piece of cake
and is additive. The goal is to find a partition of the cake among the agents (while possibly
throwing a piece away) that satisfies one or several fairness criteria. In this paper we consider
the two most prominent criteria. A proportional allocation is one where the value each agent
has for its own piece of cake is at least 1/n of the value it assigns to the entire cake. An

1A version that is similar to this extended abstract will appear in the proceedings of AAAI’10. The full
version of the paper, which includes all omitted proofs and a longer exposition, will shortly be available
online. The paper was presented in the Harvard EconCS seminar (February 2010) and in a workshop on
prior-free mechanism design in Guanajuato, Mexico (May 2010).
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envy-free (EF) allocation is one where the value each agent assigns to its own piece of cake
is at least as high as the value it assigns to any other agent’s piece of cake. There is a rather
large body of literature on fairly cutting a cake according to these two criteria (see, e.g., the
books by Robertson and Webb [16] and Brams and Taylor [6]).

So far we have briefly discussed “justice”, but have not yet mentioned “truth.” Taking
the game-theoretic point of view, an agent’s valuation function is its private information,
which is reported to a cake cutting algorithm. We would like an algorithm to be truthful, in
the sense that agents are motivated to report their true valuation functions. Like fairness,
this idea of truthfulness also lends itself to many interpretations. One variation, referred to
as strategy-proofness in previous papers by Brams et al. [4, 5], assumes that an agent would
report its truthful valuation rather than lie if there exist valuations of the other agents such
that reporting truthfully yields at least as much value as lying. In the words of Brams et
al., “...the players are risk-averse and never strategically announce false measures if it does
not guarantee them more-valued pieces. ... Hence, a procedure is strategy-proof if no player
has a strategy that dominates his true value function.” [5, page 362].

The foregoing notion is strikingly weak compared to the notion of truthfulness that is
common in the social choice literature. Indeed, strategy-proofness is usually taken to mean
that an agent can never benefit by lying, that is, for all valuations of the other agents
reporting truthfully yields at least as much value as lying. Put another way, truth-telling
is a dominant strategy. This notion is worst-case, in the sense that an agent cannot benefit
by lying even if it is fully knowledgeable of the valuations of the other agents. It is also
the predominant one in the computer science literature, and in particular in the algorithmic
mechanism design literature [14]. In order to prevent confusion we will avoid using the
term “strategy-proof,” and instead refer to the former notion of Brams et al. as “weak
truthfulness” and to the latter standard notion as “truthfulness.”

To illustrate the difference between the two notions, consider the most basic cake cutting
algorithm for the case of two agents, the Cut and Choose algorithm.2 Agent 1 cuts the cake
into two pieces that are of equal value according to its valuation; agent 2 then chooses
the piece that it prefers, giving the other piece to agent 1. This algorithm is trivially
proportional and EF.3 It is also weakly truthful, as if agent 1 divides the cake into two
pieces that are unequal according to its valuation then agent 2 may prefer the piece that is
worth more to agent 1. Agent 2 clearly cannot benefit by lying. However, the algorithm is
not truthful. Indeed, consider the case where agent 1 would simply like to receive as much
cake as possible, whereas the single-minded agent 2 is only interested in the interval [0, ε]
where ε is small (for example, it may only be interested in the cherry). If agent 1 follows
the protocol it would only receive half of the cake. Agent 1 can do better by reporting that
it values the intervals [0, ε] and [ε, 1] equally, since then it would end up with almost the
entire cake by choosing to cut pieces [0, ε], [ε, 1].

In this paper we consider the design of truthful and fair cake cutting algorithms. To
the best of our knowledge we are the first to do so. However, there is a major obstacle
that must be circumvented: regardless of strategic issues, and when there are more than
four agents, even finding a proportional and EF allocation in a bounded number of steps
with a deterministic algorithm is a long-standing open problem! See [15] for an up-to-date
discussion.4 We shall therefore restrict ourselves to specific classes of valuation functions
where efficiently finding fair allocations is a non-issue; the richness of our problem stems
from our desire to additionally achieve truthfulness.

2This algorithm is described here with the agents taking actions; equivalently, the algorithm acts on
behalf of agents using the reported valuations.

3Proportionality and envy-freeness coincide if there are two agents and the entire cake is allocated.
4To be precise, previous algorithmic work assumed that the entire cake has to be allocated, but this does

not seem to be a significant restriction in the context of fairness.
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Our results. We first consider deterministic algorithms. We restrict ourselves to the case
where the agents hold piecewise uniform valuation functions, that is, each agent is interested
in a collection of subintervals of [0, 1] with the same marginal value for each fractional piece
in each subinterval. This is the case when some parts of the cake satisfy a certain property
and an agent desires as much of these parts as possible. Our main result is a deterministic
algorithm for any number of agents that is truthful, proportional, EF, and polynomial-time.
The proof requires many ingredients, including an application of the classic Max-Flow Min-
Cut Theorem.

We next consider randomized algorithms. We slightly relax truthfulness by asking that
the algorithm be truthful in expectation, that is, an agent cannot hope to increase its expected
value by lying for any reports of other agents. For general valuations, we present a simple
randomized algorithm that is truthful in expectation, and always outputs an allocation that
is proportional and EF. We further establish that this algorithm is tractable under the
relatively weak assumption that the agents hold piecewise linear valuation functions, that
is where the marginal value in each subinterval of interest is a linear function.

Related work. We have recently learned of an independent working paper by Mossel and
Tamuz that asks similar questions about truthful and fair cake cutting [13], but they focus
on existence theorems. In particular, under general assumptions they show that there exists
a mechanism that is truthful in expectation and guarantees each agent a value of more than
1/n in expectation. The results are then extended to the case of indivisible goods. The
technical overlap between the two papers is very small; we refer the reader’s attention to
this overlap in a footnote in Section 4.

Thomson [17] showed that in general a truthful and Pareto-optimal algorithm must be
dictatorial in the slightly different setting of pie-cutting. Note that Pareto-optimality is not
a fairness property and neither implies, nor is implied by, envy-freeness or proportionality.

Our deterministic algorithm is related to a method proposed by Bogomolnaia and
Moulin [3] in the context of the random assignment problem, and the network flow tech-
niques we employ in our analysis generalize the reinterpretation of this method in terms of
network flow due to Katta and Sethuraman [11]. We elaborate in Section 3.

2 Preliminaries

We consider a heterogeneous cake, represented by the interval [0, 1]. A piece of cake is a
finite union of subintervals of [0, 1]. We sometimes abuse this terminology by treating a
piece of cake as the set of the (inclusion-maximal) intervals that it contains. The length
of the interval I = [x, y], denoted len(I), is y − x. For a piece of cake X we denote
len(X) =

∑
I∈X len(I).

The set of agents is denoted N = {1, . . . , n}. Each agent i ∈ N holds a private valuation
function Vi, which maps given pieces of cake to the value agent i assigns them. Formally, each
agent i has a value density function, vi : [0, 1] → [0,∞), that is piecewise continuous. The
function vi characterizes how agent i assigns value to different parts of the cake. The value
of a piece of cake X to agent i is then defined as Vi(X) =

∫
X
vi(x)dx =

∑
I∈X

∫
I
vi(x)dx.

We note that the valuation functions are additive, i.e. for any two disjoint pieces X and
Y , Vi(X ∪ Y ) = Vi(X) + Vi(Y ), and non-atomic, that is Vi([x, x]) = 0 for every x ∈ [0, 1].
The last property implies that we do not have to worry about the boundaries of intervals,
i.e., open and closed intervals are identical for our purposes. We further assume that the
valuation functions are normalized, i.e. Vi([0, 1]) =

∫ 1

0
vi(x)dx = 1.

A cake cutting algorithm is a function f from the valuation function of each agent to
an allocation (A1, . . . , An) of the cake such that the pieces are pairwise disjoint. For each
i ∈ N the piece Ai is allocated to agent i, and the rest of the cake, i.e., [0, 1] \ ⋃i∈N Ai,
is thrown away. Here we are assuming free disposal, that is, the algorithm can throw away
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Figure 1: An illustration of special value density functions.

resources without incurring a cost.
We say that an allocation A1, . . . , An is proportional if for every i ∈ N , Vi(Ai) ≥ 1/n,

that is, each agent receives at least a (1/n)-fraction of the cake according to its own valuation.
We say that an allocation is envy-free (EF) if for every i, j ∈ N , Vi(Ai) ≥ Vi(Aj), i.e., each
agent prefers its own piece of cake to the piece of cake allocated to any other agent. A
proportional (resp., EF) cake cutting algorithm always returns a proportional (resp., EF)
allocation.

Note that when n = 2 proportionality implies envy-freeness. Indeed, Vi(Ai)+Vi(A3−i) ≤
1, and hence if Vi(Ai) ≥ 1/2 then Vi(A3−i) ≤ 1/2. Under the free disposal assumption the
converse is not true. For example, an allocation that throws away the entire cake is EF but
not proportional. In general, when n > 2 proportionality neither implies nor is implied by
envy-freeness.5

A cake cutting algorithm f is truthful if when an agent lies it is allocated a piece of
cake that is worth, according to its real valuation, no more than the piece of cake it was
allocated when reporting truthfully. Formally, denote Ai = fi(V1, . . . , Vn), and let V be a
class of valuation functions. The algorithm f is truthful if for every agent i, every collection
of valuations functions V1, . . . , Vn ∈ V, and every V ′i ∈ V, it holds that Vi(fi(V1, . . . , Vn)) ≥
Vi(fi(V1, . . . , Vi−1, V

′
i , Vi+1, . . . , Vn)).

3 Deterministic Algorithms and Piecewise Uniform
Valuations

As noted in the introduction, in general there are no known bounded deterministic propor-
tional and EF cake cutting algorithms for more than four agents, even if one is not concerned
about strategic issues. Therefore, in this section we restrict ourselves to a specific class of
valuation functions.

We say that a valuation function Vi is piecewise constant if and only if its corresponding
value density function vi is piecewise constant, that is [0, 1] can be partitioned into a finite
number of intervals such that vi is constant on each interval (see Figure 1(a)). We say that
Vi is piecewise uniform if moreover vi is either some constant c ∈ R+ (the same one across
intervals) or zero. See Figure 1(b) for an illustration.

Piecewise uniform valuation functions imply that agent i ∈ N is uniformly interested in
a finite union of intervals, which we call its reference piece of cake and denote by Ui. For
example, in Figure 1(b), Ui = [0, 0.25] ∪ [0.6, 0.85]. Given a piece of cake X, it holds that
Vi(X) = len(X ∩ Ui)/len(Ui). From the computational perspective, the size of the input to
the cake cutting algorithm is the number of bits that define the boundaries of the intervals
in the agents’ reference pieces of cake.

5If free disposal is not assumed, that is, the entire cake is allocated, then envy-freeness implies propor-
tionality for any n.
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In the rest of this section we assume that the valuation functions are piecewise uniform.
We believe that piecewise uniform valuations are very natural. An agent would have such a
valuation function if it is simply interested in pieces of the good that have a certain property,
e.g., a child only likes portions of the cake that have chocolate toppings, and wants as much
cake with chocolate toppings as possible. We consider more general valuations in the next
section on randomized algorithms.

3.1 A deterministic algorithm

Before introducing our algorithm we present some required notation. Let S ⊆ N be a subset
of agents and let X be a piece of cake. Let D(S,X) denote the portions of X that are valued
by at least one agent in S. Formally, D(S,X) =

(⋃
i∈S Ui

) ∩ X, and is itself a union of
intervals.

Let avg(S,X) = len(D(S,X))/|S| denote the average length of intervals in X desired
by at least one agent in S. We say that an allocation is exact with respect to S and X
if it allocates to each agent in S a piece of cake of length avg(S,X) comprised only of
desired intervals. Clearly this requires allocating all of D(S,X) since the total length of
allocated intervals is avg(S,X) · |S| = len(D(S,X)). Suppose S = {1, 2} and X = [0, 1]: if
U1 = U2 = [0, 0.2] then agents 1 and 2 receiving [0, 0.1] and [0.1, 0.2] respectively is an exact
allocation; but if U1 = [0, 0.2], U2 = [0.3, 0.7] then there is no exact allocation.

The deterministic algorithm for n agents with piecewise uniform valuations is a recursive
algorithm that finds a subset of agents with a certain property, makes the allocation decision
for that subset, and then makes a recursive call on the remaining agents and the remaining
intervals. Specifically, for a given set of agents S ⊆ N and a remaining piece of cake to be
allocated X, we find the subset S′ ⊆ S of agents with the smallest avg(S′, X). We then give
an exact allocation of D(S′, X) to S′. We recurse on S \S′ and the intervals not desired by
any agent in S′, i.e. X \D(S′, X). The pseudocode of the algorithm is given as Algorithm
1.

Algorithm 1 (V1, . . . , Vn)

1. SubRoutine({1, . . . , n}, [0, 1], (V1, . . . , Vn))

SubRoutine(S, X, V1, . . . , Vn):

1. If S = ∅, return.

2. Let Smin ∈ argmin
S′⊆S

avg(S′, X) (breaking ties arbitrarily).

3. Let E1, . . . , En be an exact allocation with respect to Smin, X (breaking ties arbitrarily). For
each i ∈ Smin, set Ai = Ei.

4. Subroutine(S \ Smin, X \D(Smin, X), (V1, . . . , Vn)).

In particular, Steps 2 and 3 of SubRoutine imply that if S = {i} then Ai = D(S,X).
For example, suppose X = [0, 1], U1 = [0, 0.1], U2 = [0, 0.39], and U3 = [0, 0.6]. In this
case, the subset with the smallest average is {1}, so agent 1 receives all of [0, 0.1] and we
recurse on {2, 3}, [0.1, 1]. In the recursive call, set {2} has average 0.39 - 0.1 = 0.29, set {3}
has average 0.6 - 0.1 = 0.5, and set {2, 3} has average (0.6 − 0.1)/2 = 0.25. As a result,
the entire set {2, 3} is chosen as the set with smallest average, and an exact allocation of
[0.1, 1.0] is given to agents 2 and 3. One possible allocation is to give agent 2 [0.1, 0.35] and
agent 3 [0.35, 0.6]. Note that, if agent 1 uniformly values [0, 0.2] instead, the first call would
choose {1, 2} as the subset with the smallest average, equally allocating [0, 0.39] between
agents 1 and 2 and giving the rest, [0.39, 0.6], to agent 3.

An analysis of the two agent algorithm. To gain intuition, consider the case of two
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Figure 2: The flow network induced by the example.

agents; designing truthful, proportional and EF algorithms even for this case is nontrivial.
Assume that len(U1) ≤ len(U2) for ease of presentation. If in addition, len(U1) > len(U1 ∪
U2)/2 then set {1, 2} has the smallest average and we divide U1∪U2 exactly, with each agent
getting all of Ui \ U3−i and sharing U1 ∩ U2 in a way that len(A1) = len(A2). Otherwise,
agent 1 gets all of U1 and agent 2 gets U2 \ U1. The algorithm tries to give both agents
the same length, with each agent always getting at least half of its desired intervals, leading
to proportionality and EF because of piecewise uniform valuations. For sufficient overlap
in desired intervals, each receives exactly half of U1 ∪ U2. For totally disjoint reference
pieces, each receives just its reference piece. We defer a discussion of truthfulness to the
general algorithm; the crux here is to note that each agent i receives all of Ui \ U3−i, and
the algorithm precludes overclaims through providing a nonincreasing share of Ui ∩U3−i as
len(Ui) increases.

Exact Allocations and Maximum Flows. Before turning to properties of truthfulness
and fairness, we point out that so far it is unclear whether Algorithm 1 is well-defined. In
particular, the algorithm requires an exact allocation E with respect to the subset Smin and
X, but it remains to show that such an allocation exists, and to provide a way to compute
it. To this end we exploit a close relationship between exact allocations and maximum flows
in networks.

For a given set of agents S ⊆ N and a piece of cake to be allocated X, define a graph
G(S,X) as follows. We keep track of a set of marks, which will be used to generate nodes
in G(S,X). First mark the left and right boundaries of all intervals that are contained
in X. For each agent i ∈ N and subinterval in Ui, mark the left and right boundaries of
subintervals that are contained in Ui ∩ X. When we have finished this process, each pair
of consecutive markings will form an interval such that each agent will either uniformly
value the entire interval or value none of the interval. In G(S,X), create a node for each
interval I formed by consecutive markings, and add a node for each agent i ∈ N , a source
node s, and a sink node t. For each interval I, add a directed edge from source s to I with
capacity equal to the length of the interval. Each agent node is connected to t by an edge
with capacity avg(S,X). For each interval-agent pair (I, i), add a directed edge with infinite
capacity from node I to the agent i if agent i desires interval I.

For example, suppose U1 = [0, 0.25] ∪ [0.5, 1] and U2 = [0.1, 0.4]. If X = [0, 1] then
the interval markings will be {0, 0.1, 0.25, 0.4, 0.5, 1}. Agent 1 values [0, 0.1], both agents
value [0.1, 0.25], agent 2 values [0.25, 0.4], neither agent values [0.4, 0.5] and agent 1 values
[0.5, 1]. It holds that len(D({1, 2}, [0, 1])) = 0.9. Average values are 0.75, 0.3 and 0.45 for
sets {1}, {2} and {1, 2} respectively. See Figure 2 for an illustration of the induced flow
network.
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Lemma 1. Let S ⊆ N , and let X be a piece of cake. There is a flow of size len(D(S,X))
in G(S,X) if and only if for all S′ ⊆ S, avg(S′, X) ≥ avg(S,X).

Below we only prove the “if” direction, which is the one we need, using an application
of the classic Max-Flow Min-Cut Theorem (see, e.g., [8]).

Proof of “if”. Assume that for all S′ ⊆ S, avg(S′, X) ≥ avg(S,X). By the Max-Flow Min-
Cut Theorem, the minimum capacity removed from a graph in order to disconnect the source
and sink is equal to the size of the maximum flow. The only edges with finite capacity in
G(S,X) are the ones that connect agent nodes to the sink, and the ones that connect the
source to the interval nodes.

Construct a candidate minimum cut by disconnecting some set of agent nodes T ⊆ S
from the sink at cost |T | · avg(S,X) and then disconnecting all the (s, I) connections to
interval nodes I desired by an agent i ∈ S \T . This means that the total additional capacity
we need to remove is len(D(S \ T,X)), the total length of intervals desired by at least one
agent in S \ T . By assumption, this is at least |S \ T | · avg(S,X). As a result, this cut has
capacity of at least |T | · avg(S,X) + |S \T | · avg(S,X) = |S| · avg(S,X) = len(D(S,X)).

The following lemma establishes that this flow of size len(D(S,X)) in G(S,X) is, in
particular, characterizing an exact allocation. We omit the proof, which follows from the
construction of the network.

Lemma 2. Let S ⊆ N , and let X be a piece of cake. There exists an exact allocation with
respect to S,X if and only if there exists a maximum flow of size len(D(S,X)) in G(S,X).

By combining Lemma 1 and Lemma 2 we see that the algorithm is indeed well-defined:
if S has the smallest average then there exists an exact allocation with respect to S,X.6

Moreover, we obtain a tractable algorithm for computing an exact allocation, by computing
the maximum flow and deriving an exact allocation. A maximum flow can be computed
in time that is polynomial in the number of nodes, that is, polynomial in our input size
(see, e.g., [8]). We remark without proof that it is also possible to implement Step 2 of
SubRoutine in polynomial time, using similar (but slightly more involved) network flow
arguments. Therefore, Algorithm 1 can be implemented in polynomial time.

Truthfulness and fairness. Our main tool in proving that Algorithm 1 is truthful, pro-
portional and EF is the following lemma (we omit its proof).

Lemma 3. Let S1, . . . , Sm be the ordered sequence of agent sets with the smallest average
as chosen by Algorithm 1 and X1, . . . , Xm be the ordered sequence of pieces to be allocated
in calls to SubRoutine. That is, X1 = [0, 1], X2 = X1 \ D(S1, X1), . . . , Xm = Xm−1 \
D(Sm−1, Xm−1). Then for all i > j, avg(Si, Xi) ≥ avg(Sj , Xj), and agents that are members
of later sets receive weakly more in desired lengths.

Envy-freeness now follows immediately from the lemma. Indeed, consider an agent
i ∈ N . By “chosen” we mean that the agent was part of the subset with smallest average.
The agent does not envy agents chosen in the same call to SubRoutine since all agents
receive the same length in desired intervals and their valuations are piecewise uniform. By
Lemma 3, the agent does not envy agents chosen in earlier calls because the amount agents
receive weakly increases with each call. The agent does not envy agents chosen in later calls
because all intervals desired by the agent are removed from consideration when the agent
receives its allocation.

6Note that the network in Figure 2 does not satisfy the average minimality requirement and does not
provide a corresponding exact allocation.
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We provide a sketch of truthfulness, which follows by showing that an agent i ∈ N has no
incentive to change the choice of Smin and cannot profitably manipulate the exact allocation
for a given Smin.

1. Manipulations that change Smin. Consider two subcases.

(a) When i reports truthfully, Smin = S′, i /∈ S′. An agent cannot affect avg(T,X)
if i /∈ T , so the agent cannot cause some other S′′, i /∈ S′′ to be chosen. The
agent can cause S′′, i ∈ S′′, to be chosen, but then avg(S′′, X) ≤ avg(S′, X) and
it follows from Lemma 3 that the agent does not gain.

(b) When i reports truthfully, Smin = S′, i ∈ S′. Assume without loss of gener-
ality that |S| ≥ 2. In this case, all agents in S′, including i, receive exactly
avg(S′, X) = k in intervals. Agent i can cause selection of some S′′ by misstating
its valuation. If i ∈ S′′, then avg(S′′, X) ≥ k for this to be profitable. If i /∈ S′′,
then S′′ was not chosen when i reports truthfully, so avg(S′′, X) ≥ k. In either
case, agents j ∈ S′ \ {i} previously received k, but now receive at least k by
observing that avg(S′′, X) ≥ k and applying Lemma 3. Agent i receives at most
len(D(S′, X)) minus the intervals received by agents j ∈ S′ \ {i}.7 These agents
receive weakly more if i manipulates, and thus, manipulations are not profitable.

2. Manipulations that change the exact allocation for a given Smin, i ∈ Smin. By defini-
tion each agent in Smin receives exactly avg(Smin, X) in desired intervals. If agent i
decreases this value, it receives strictly less. If agent i increases this value by lying,
then other agents receive more of the actual D(Smin, X), leaving less for agent i.

We omit the proof of proportionality, but it follows after establishing that no desired pieces
are thrown away. Overall, we have the following theorem.

Theorem 4. Assume that the agents have piecewise uniform valuation functions. Then
Algorithm 1 is truthful, proportional, EF, and polynomial-time.

Relation to work on the random assignment problem. Consider a setting where
indivisible items must be assigned to agents. In the random assignment problem items
can be assigned to agents randomly, i.e., a random assignment is a probability distribution
over deterministic assignments. A random assignment that gives an item to an agent with
probability p can be interpreted as assigning a p-fraction of the item to the agent. Crucially,
in the papers discussed below the assumption is that each agent is only interested in receiving
one item.

Bogomolnaia and Moulin [3] consider the random assignment problem when the agents
have dichotomous preferences over the items, in the sense that for each agent the set of items
can be partitioned into acceptable and unacceptable items (where all acceptable items have
value 1 and unacceptable items have value 0). They provide a random assignment method
called the egalitarian assignment solution and show that it is truthful, EF, and satisfies
other highly desirable properties.

Interestingly, the cake cutting problem under piecewise uniform valuation functions is
similar to a random assignment problem, as one can mark the beginning and end of each
agent’s desired intervals and treat the subintervals between consecutive marks as items.
However, there are two fundamental differences between our setting and [3]. First, in our
setting agents are interested in receiving as much of their desired “items” as possible (rather
than just one item). Second, in our setting dichotomous preferences would mean that agents

7Lemma 3 also applies to agent i, but since it lies, it may receive intervals that are not desired and
outside of D(S′, X).
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value all desired subintervals equally, which is clearly not the case since these subintervals
have different lengths.8 Nevertheless, it turns out that the egalitarian assignment solution
is very similar to the special case of Algorithm 1 under this strong assumption. Katta
and Sethuraman [11] observe that the egalitarian assignment solution can be computed in
polynomial time using network flow techniques, so our arguments above are an independent
generalization of this observation. Interestingly, it is noted in [11] that the egalitarian assign-
ment solution is identical to another independent algorithm for finding a lexicographically
optimal flow in a network due to Megiddo [12].

In earlier work Bogomolnaia and Moulin [2] study random assignments under strict ordi-
nal preferences, and propose a solution that satisfies a weaker notion of truthfulness (which
does not imply truthfulness in our setting) as well as envy-freeness and other properties. In
terms of the agents’ preferences this setting is incomparable to ours since agents may be in-
different between subintervals. However, in our setting agents cannot hold arbitrary ordinal
preference profiles over subintervals between consecutive marks, since if two agents desire
two subintervals, both agents would value the longer subinterval more than the shorter.

The results of [2] were extended by Katta and Sethuraman [11] to the case where agents
are allowed to be indifferent between items. While the assumptions of [11] regarding prefer-
ences are weaker than ours, they establish that in this more general setting even Bogomolnaia
and Moulin’s weaker notion of truthfulness is in fact incompatible with envy-freeness and
an additional efficiency requirement; the algorithm that they propose satisfies the last two
properties and hence is not (even weakly) truthful.

4 Randomized Algorithms and Piecewise Linear Valu-
ations

In the previous section we saw that designing deterministic truthful and fair algorithms is
not an easy task, even if the valuation functions of the agents are rather restricted. In this
section we shall demonstrate that by allowing randomness we can obtain significantly more
general results.

A randomized cake cutting algorithm outputs a random allocation given the reported
valuation functions of the agents. There are very few previous papers regarding randomized
algorithms for cake cutting. A rare example is the paper by Edmonds and Pruhs [9],
where they give a randomized algorithm that achieves approximate proportionality with
high probability. We are looking for a more stringent notion of fairness. We say that a
randomized algorithm is universally proportional (resp., universally EF ) if it always returns
an allocation that is proportional (resp., EF).

One could also ask for universal truthfulness, that is, require than an agent may never
benefit from lying, regardless of the randomness of the algorithm. A universally truthful
algorithm is simply a probability distribution over deterministic truthful algorithms. How-
ever, asking for both universal fairness and universal truthfulness would not allow us to
enjoy the additional flexibility that randomization provides. Therefore, we slightly relax
our truthfulness requirement. Informally, we say that a randomized algorithm is truthful in
expectation if, for all possible valuation functions of the other agents, the expected value
an agent receives for its allocation cannot increase by lying, where the expectation is taken
over the randomness of the algorithm.

We remark that while truthfulness in expectation seems natural, fairness (i.e., propor-
tionality and envy-freeness) is something that we would like to hold ex-post ; fairness is a

8In general no discretization of the cake would necessarily yield subintervals of equal length that corre-
spond to dichotomous preferences. If we assume that desired intervals have rational endpoints then such
a discretization can be found, but the number of subintervals would be exponentially large, leading to
computational intractability.
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property of the specific allocation that is being made, and continues to be relevant after
the algorithm has terminated. Interestingly enough, if we were to turn this around, then
achieving universal truthfulness and envy-freeness/proportionality in expectation is trivial:
simply allocate the entire cake to a uniformly random agent!

4.1 A randomized algorithm

In order to design a randomized algorithm that is truthful in expectation, universally propor-
tional, and universally EF, we consider a very special type of allocation. In the following we
will not require the free disposal assumption, that is, we will consider partitions X1, . . . , Xn

of the cake such that
⋃

iXi = [0, 1]. We say that a partition X1, . . . , Xn is perfect if for all
i, j ∈ N , vi(Xj) = 1/n. Consider the following randomized algorithm.

Algorithm 2 (V1, . . . , Vn)
1. Find a perfect partition X1, . . . , Xn.

2. Draw a random permutation π over N .

3. For each i ∈ N , set Ai = Xπ(i).

Lemma 5. Algorithm 2 is truthful in expectation, universally proportional, and universally
EF.9

Proof. The fact that the algorithm is universally proportional and universally EF follows
from the definition of perfect partitions: every agent has value 1/n for every piece!

We turn to truthfulness in expectation. The value an agent i ∈ N obtains by reporting
truthfully is exactly 1/n. If agent i lies then the algorithm may choose a different partition
X ′1, . . . , X

′
n. However, for any partition X ′1, . . . , X

′
n the expected value of agent i when given

a random piece is ∑
j∈N

1
n
· Vi(X ′j) =

1
n

∑
j∈N

Vi(X ′j)

 =
1
n
,

where the second equality follows from the fact that the valuation functions are additive.

Finding perfect partitions. Lemma 5 holds much promise, in that it is valid for all
valuation functions. But there still remains the obstacle of actually finding a perfect par-
tition given the valuation functions of the agents. Does such a partition exist, and can
it be computed? More than two decades ago, Noga Alon [1] proved that if the valuation
functions of the agents are defined by the integral of a continuous probability measure then
there exists a perfect partition; this is a generalization of his famous theorem on necklace
splitting. Unfortunately, Alon’s elegant proof is nonconstructive (which is unusual for a
proof in combinatorics), and to this day there is no known constructive method under gen-
eral assumptions on the valuation functions. This is not surprising since a perfect partition
induces an EF allocation, and finding an EF allocation in a bounded number of steps for
more than four agents is an open problem.

To obtain a computational method, we consider valuation functions that are piecewise
linear. A valuation function Vi is considered piecewise linear if and only if its corresponding
value density function vi is piecewise linear on [0, 1]. Piecewise linear valuation functions
are significantly more general than the class of piecewise constant valuation functions. A
piecewise linear valuation function can be concisely represented by the intervals on which
vi is linear, and for each interval the two parameters of the linear function. The following

9Mossel and Tamuz [13] make the same observation.
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lemma provides us with a tractable method of finding a perfect partition when the agents
have piecewise linear valuation functions.

Lemma 6. Assume that the agents have piecewise linear valuation functions. Consider the
following procedure. We make a mark at 0 and 1, and for each agent i ∈ N make a mark
at the left and right boundaries of each interval where vi is linear. Next, we divide each
interval Ij between two consecutive marks into 2n consecutive and connected subintervals
I1
j , . . . , I

2n
j of equal length. For each such Ij and every i ∈ N add the subintervals Ii

j and
I2n−i+1
j to Xi. Then the overall partition is perfect.

The lemma’s proof is omitted. By combining Lemma 6 with Lemma 5 we obtain the
following result.

Theorem 7. Assume that the agents have piecewise linear valuation functions. Then there
exists a randomized algorithm that is truthful in expectation, universally proportional, uni-
versally EF, and polynomial-time.

5 Discussion
We have made progress on truthful and fair algorithms for cake cutting. In unpublished
work, we show the nonexistence of simpler methods that make only contiguous allocations
(and look closer to generalizations of the classic cut-and-choose algorithm) even for two
agents both of whom are uniformly interested in a single (but different) subinterval. In future
work we would like to generalize the deterministic algorithm to piecewise constant valuations
and drop the free-disposal assumption. For practical settings, allowing more expressiveness
(e.g., piecewise linear but a requirement that intervals are above some threshold length)
seems important.
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Online Cake Cutting

Toby Walsh

Abstract

We propose an online form of the cake cutting problem. This models situations where
players arrive and depart during the process of dividing a resource. We show that well
known fair division procedures like cut-and-choose and the Dubins-Spanier moving
knife procedure can be adapted to apply to such online problems. We propose some
desirable properties that online cake cutting procedures might possess like online
forms of proportionality and envy-freeness, and identify which properties are in fact
possessed by the different online cake procedures.

1 Introduction

Congratulations. Today is your birthday so you take a cake into the office to
share with your colleagues. At tea time, people slowly start to arrive. However,
as some people have to leave early, you cannot wait for everyone to arrive before
you start sharing the cake. How do you proceed fairly?

This is an example of what we call an online cake cutting problem. Most previous studies
of cake cutting procedures have assumed that all the players are available at the time of
the division. Here, players arrive and depart (either with their cake or perhaps after they
have eaten their cake) as the cake is being divided. Such online problems occur in the real
world as in our birthday example, but also on the internet where agents are often connecting
asynchronously.

Online cake cutting poses some new challenges. On the one hand, the online aspect of
such problems makes fair division more difficult than in the offline case. How can we ensure
that a player does not envy another player when we may have to distribute cake to the
second player before the first player is present (and we can hope to determine information
about their valuation function)? On the other hand, the online aspect of such problems may
make fair division easier than in the offline case. If players don’t see cake that has already
been distributed before they arrive, perhaps they do not envy it?

2 Online cake cutting

As is common in the literature [2], we will often assume that each player is risk averse so
they maximize the minimum value of the cake that they will receive, regardless of what
the other players do. A risk averse player will not choose a strategy that could yield more
value if it also entails the possibility of getting less value. We will also usually assume that
each player is ignorant of the value functions of the other players. We disuss relaxing these
assumptions in the conclusions.

We formulate cake cutting as dividing the unit interval between the different players,
where each player has a (typically additive and continuous) valuation function on the in-
tervals that they are allocated. We do not suppose that players assigns the same value
to the whole cake. Although we can normalize the valuation functions, we shall see that
is not necessary as all the cake cutting procedures are scale invariant. Depending on the
application, we may demand that players receive a continuous slice of cake or some union
of slices.
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In an online cake cutting problem, the players arrive in some given order. Players are
allocated their cake and then depart. The order in which players depart can be fixed or
can be change according to how they value the cake. For example, the player present who
most values a cut slice of cake might be the next to depart. Alternatively, the player to
depart might always be the player who arrived the longest time ago. We will assume that
at least one player departs before the last player arrives (otherwise we can formulate this
as an offline cake cutting procedure). To prevent trivial allocations, we also assume that
at least one player receives some cake. However, we do not assume that all players receive
cake or that all the cake is allocated. Formally an online cake cutting problem is defined
by a procedure which given the valuation functions of the players who are present in the
room and the number of players who will take part in total either allocates some cake to
one of the present players (who then departs) or indicates that we wait until the next player
arrives. This can model both a fixed arrival and departure order, as well as one in which
the order depends on the valuation functions.

An important dimension of online cake cutting is what is known and by whom about
the total number of players. For example, the total number of players might be known
by all players. On the other hand, the players might only know a bound on the total
number of players (e.g. you’ve invited 20 work colleagues to share your birthday cake but
not all of them might turn up). However, there are several other possibilities (e.g. certain
players might have complete certainty about n whilst others have complete uncertainty).
In addition, an interesting generalization is when cake is being allocated before the total
number of players is fixed.

3 Desirable properties

What properties do we want from an online cake cutting procedure? The literature on cake
cutting studies various notions of fainerness like proportionality and envy freeness, as well as
various forms of strategy proofness. The generalization of cake cutting to an online setting
gives rise to some natural extensions of these notions.

3.1 Proportionality

A cake cutting procedure is proportional iff each of the n players assigns at least 1
n of the

total value to their piece(s). Unfortunately, as we shall show, online cake cutting procedures
cannot always be proportional. Suppose you only like icing. The problem is that you may
not be able to prevent all the cake that is iced being distributed before you enter the room.
We therefore consider weaker forms of proporitionality that are achievable. One more limited
form of proportionality is that any player receives a fair proportion of the cake that remains
when they arrive. A cake cutting procedure is forward proportional iff each player assigns
at least r

n−k of the total value of the cake to their pieces where r is the fraction of the total
value assigned by the player to the (remaining) cake when they arrive and k is the number
of players who have already left at this point.

3.2 Envy freeness

A stronger notion of fairness is envy freeness. A cake cutting procedure is envy free iff
no player values another player’s pieces more than their own. Note that envy freeness
implies proportionality but not vice versa. With online cake cutting, envy freeness is also
impossible to achieve in general. We therefore consider weaker forms of envy freeness that
are achievable. A cake cutting procedure is forward envy free iff no player values the pieces
of cake allocated to other players after their arrival more than their own. Players can,
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however, value the cake allocated to players who have already departed more than our own
cake. This models situations where, for instance, we do not envy cake we don’t see being
allocated, or players eat their cake before departing and we do not envy cake that has already
been eaten. Note that forward envy freeness implies forward proportionality but not vice
versa. Similarly, envy freeness implies forward envy freeness but not vice versa. An even
weaker form of envy freeness is when a player does not envy cake that is allocated to other
players whilst they are in the room. A cake cutting procedure is immediately envy free iff
no player values the pieces of cake allocated to another player after their arrival and before
their departure more than their own. Note that forward envy freeness implies immediate
envy freeness but not vice versa.

3.3 Equitability

Another fairness property is equitability. A cake cutting procedure is equitable iff all players
assign the same value to the pieces of cake to which they are allocated (and so no player
envies anothers valuation). For 3 or more player, equitability and envy freeness can be
incompatible [2]. Equitability is a difficult property to achieve, even more so in our online
setting. Unlike proportionality or envy freeness, there seems little merit in considering
weaker forms of equitability. Either all players assign the same value to their allocated cake
or they do not. There is no advantage to ignoring the value of the cake allocated to players
who have already departed.

3.4 Efficiency

Another important notion is efficiency. Efficiency is also called Pareto optimality. A cake
cutting procedure is Pareto optimal iff there is no other allocation to the one returned
that is more valuable for one player and at least as valuable for the others. Note that
Pareto optimality does not in itself ensure fairness since allocating all the cake to one player
is Pareto optimal. A cake cutting procedure is weakly Pareto optimal iff there is no other
allocation to the one returned that is more valuable for all players. A cake cutting procedure
that is Pareto optimal is weakly Pareto optimal but not vice versa.

3.5 Strategy proofness

Another consideration is whether players have an incentive to act truthfully. A cake cutting
procedure is weakly truthful iff a player will do at least as well by telling the truth whatever
valuations are held by the other players [1]. A stronger notion (often called strategy proof-
ness in social choice) is that players must not be able to profit even when they know how
others value the cake. As in [3], we say that a cake cutting procedure is truthful iff there
are no valuations where a player will do better by lying.

4 Other properties

We consider some other properties of (online) cake cutting procedures.

4.1 Surjectivity

This property has been studied in social choice but appears to have received less attention
in fair division. It indicates whether the cake can be divided in every possible way. A cake
cutting procedure is surjective iff there are valuation functions for the players such that
every possible partition of the cake into n pieces is possible. Note that this definition only
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considers allocations where each player receives one continuous slice of cake. However, the
definition of surjectivity could be easily extended to allocations where players can receive
multiple slices. Our definition of surjectivity also ignores which player receives a particular
slice. If an online cake cutting procedure is surjective, then there is an arrival ordering of
the players and valuation functions such that any given player can receive a particular slice.

4.2 Scale invariance

Players may have different scales for their valuation functions. Scale invariance indicates
that this is unimportant. A cake cutting procedure is scale invariant iff the allocation of
cake is unchanged when a player’s valuation is uniformly multiplied by a constant factor. It
turns out that scale invariance is not difficult to achieve. Indeed, all the online cake cutting
procedures we shall consider here are scale invariant.

4.3 Sequentiality

In some situations we may want cake to be cut from one end. This may be the case, for
instance, when the cake represents time on a shared device. An onlike cake cutting procedure
is sequential iff the slice given to any player is to the left of any slice given to a player who
is later to depart.

4.4 Order monotonicity

A player’s allocation of cake typically depends on their arrival order. We say that a cake
cutting procedure is order monotonic iff a player’s valuation of their cake does not decrease
when they are moved earlier in the arrival ordering (and all other players have the same
arrival ordering). Note that as the moved player can receive cake of greater value, players
who depart after them may now receive cake with less value. A positive interpretation of
order monotonicity is that players are encouraged to participate as early as possible. On
the other hand, players who have to arrive late may receive less value.

5 General results

The fact that some players may depart before others arrive place some fundamental limita-
tions on the fairness of online cake cutting procedures.

Theorem 1. No online cake cutting procedure is proportional, envy free or equitable.

Proof: Suppose the procedure is proportional. Then every player is allocated some cake.
As the cake cutting procedure is online, at least one player departs before the final player
arrives. Since the valuation function of the final player to arrive is not known when the
first player departs, the cake allocated to the first player to depart cannot depend on the
valuation function of the final player to arrive. Similarly, the valuation function of the final
player to arrive cannot change who is the first player to depart. Consider the situation in
which the final player to arrive has a valuation function that only values the cake allocated
to the first player to depart. Whatever cake is allocated to the final player to arrive will be
of no value to them. Hence the cake cutting procedure cannot be proportional.

Suppose the procedure is envy free. We consider the case where all players have valu-
ation functions that assign some value to every slice. Every player is allocated some cake
otherwise they will envy the players who are allocated cake (and by assumption a cake
cutting procedure must allocate cake to at least one player). As before, the cake allocated
to the first player to depart cannot depend on the valuation function of the final player to
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arrive. We now modify the valuation function of the last player to arrive so that the value
of the cake remaining when the first player departs is 1

n2 of the value it was before. Even if
we allocate all the remaining cake to the last player to arrive, the value of this cake cannot
now equal the value they assign to the cake allocated to the first player to depart. Hence
the last player to arrive will envy the first player to depart. By a similar argument, the
procedure cannot be equitable. ♥

Online cake cutting procedures can, however, possess many of the other properties.

Theorem 2. Online cake cutting procedures can be forward proportional, forward envy free,
weakly Pareto optimal, truthful, scale invariant, sequential and order monotonic.

Proof: Consider the online cake cutting procedure which allocates all the cake to the first
player to arrive. ♥

Unfortunately, allocating all the cake to one player is not very fair to the other players.
We therefore consider some specific online cake cutting procedures which divide the cake
more equitably. It remains an important open problem to identify natural axioms that these
procedures satisfy which are not satisfied by the trivial allocation of all cake to one player.

6 Online Cut-and-Choose

The cut-and-choose procedure for two players dates back to antiquity. It appears nearly
three thousand years ago in Hesiod’s poem Theogeny where Prometheus divides a cow and
Zeus selects the part he prefers. Cut-and-choose is also enshrined in the United Nation’s 1982
Convention of the Law of the Sea where it is put forward to divide the seabed for mining.
In cut-and-choose, one player cuts the cake and the other takes the “half” that they most
prefer. Cut-and-choose is proportional, envy free, Pareto optimal, weakly truthful, and
surjective. However, it is not equitable, nor it is truthful.

We can use cut-and-choose as the basis of an online cake cutting procedure. The first
player to arrive cuts the cake and waits for the next player to arrive. Either the next player
to arrive chooses this piece and departs, or the next player to arrive declines this piece and
the waiting player takes this piece and departs. If more players are to arrive, the remaining
player cuts the cake and we repeat the process. Otherwise, the remaining player is the last
player to be allocated cake and departs with whatever is left. We assume that all players
know how many players will arrive.

Running Example:. Suppose there are three players, the first player values only [ 12 , 1],
the second player values only [13 , 1], and the third player values only [0, 3

4 ]. We suppose
that they uniformly value slices within these intervals. If we operate the online version of
cut-and-choose, the first player will arrive and cut off the slice [0, 2

3 ] as they assign this slice
1
3 the total value of the cake. The second player then arrives. As they assign this slice with
1
2 the total value of the cake and they are only expecting 1

3 of the total, the second player
is happy to take this slice and depart. The first player then cuts off the slice [ 23 , 5

6 ] as they
assign this 1

3 of the total value of the cake (and 1
2 of the value remaining after the second

player departed with their slice). The third player then arrives. As they assign the slice [23 , 5
6 ]

with all of the total value of the remaining cake and they are only expecting 1
2 of whatever

remains, the third player is happy to take this slice and depart. The first player now takes
what remains, the slice [ 56 , 1]. It can be claimed that everyone is happy as the first player
received a “fair” proportion of the cake, whilst the other two players received slices that were
of even greater proportional value to them.

This online version of the cut-and-choose procedure has many (but not all) of the desir-
able properties described earlier.
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Theorem 3. The online cut-and-choose procedure is forward proportional, immediately envy
free, weakly truthful, surjective, scale invariant and sequential. However, it is not propor-
tional, (forward) envy free, equitable, (weakly) Pareto optimal, truthful or order monotonic.

Proof: Consider the player cutting the cake. As they are risk averse, and as there is
a chance that they will have to take the slice of cake that they cut, they will cut a slice
that is at least 1

k of the total remaining value where k is the number of players still to be
allocated cake. Similarly they will not cut a slice that is more than 1

k of the total remaining
value for fear that the next player to arrive will take it, leaving behind cake that if it is
divided proportionally gives them a slice of small value. Hence, the procedure is forward
proportional and weakly truthful. It is also immediately envy free since each slice that
the cutting player sees being allocated has the same value. To demonstrate surjectivity,
consider the partition that allocates the ith player with the slice [ai, ai+1] where a1 = 0 and
an+1 = 1. We construct a valuation for the ith player (i < n − 1) that assigns a value 0
to [0, ai], a value 1 to [ai, ai+1], a value 0 to [ai+1, ai+2], a value n − i to [ai+2, 1]. For the
n − 1th player, we construct a valuation function that assigns a value 0 to [0, an−1], and
values of 1 to both [an−1, an] and [an, 1]. Finally, we construct a valuation function for the
nth player that assigns a value 0 to [0, an], and a value of 1 to [an, 1]. With these valuation
functions, the ith player gets the slice [ai, ai+1]. Finally, it is easy to see that the procedure
is scale invariant and sequential.

To show that this procedure is not proportional, (forward) envy free, equitable, (weakly)
Pareto optimal truthful or order monotonic consider 4 players and a cake in which the first
player places a value of 3 units on [0, 1

4 ], 1 unit on [14 , 3
4 ] and 8 units on [34 , 1], the second

player places a value of 0 units on [0, 1
4 ], 4 units on [14 , 1

2 ], 8 units on [12 , 5
8 ], and 0 units on

[ 58 , 1], the third player places a value of 6 units on [0, 1
4 ] 0 units on [14 , 1

2 ], 1 unit on [12 , 5
8 ],

2 units on [58 , 3
4 ], and 3 units on [34 , 1], and the fourth player places a value of 0 units on

[0, 1
4 ], 9 units on [14 , 1

2 ], 1 unit on [12 , 3
4 ], and 2 units on [34 , 1].

If we apply the online cut-and-choose procedure, the first player will cut off and keep
the slice [0, 1

4 ], the second player will cut off and keep [14 , 1
2 ], The third player will now cut

the cake into two pieces: [ 12 , 3
4 ] and [34 , 1]. The fourth player will take the slice [34 , 1], leaving

the third player with the slice [12 , 3
4 ]

The procedure is not proportional as the fourth player only receives 1
6 of the total value

of the cake, not (forward) envy free as the first player envies the fourth player, and not
equitable as players receive cake of different value. The procedure is not (weakly) Pareto
optimal as allocating the first player with [34 , 1], the second player with [12 , 3

4 ], the third
player with [0, 1

4 ], and the fourth player with [14 , 1
2 ] gives all players a slice of greater value.

The proceure is not truthful as the second player can get a larger and more valuable
slice by misrepresenting their preferences and cutting the cake into the slice [ 14 , 5

8 ]. Finally,
the procedure is not order monotonic as the value of the cake allocated to the fourth player
decreases from 2 units to 3

2 units when they arrive before the third player. ♥

7 Online moving knife

Another class of procedure for cutting cakes uses one or more moving knives. For example,
in the Dubins-Spanier procedure for n players [6], a knife is moved across the cake from left
to right. When a player shouts “stop”, the cake is cut and this player takes the piece to the
left of the knife. The procedure then continues with the remaining n− 1 players until just
one player is left (who takes whatever remains). This procedure is proportional but is not
envy-free. However, only the first n−2 players to be allocated slices of cake can be envious.

We can use the Dubins-Spanier procedure as the basis of an online moving knife proce-
dure. The first k players (k ≥ 2) to arrive perform one round of a moving knife procedure
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to select a slice of the cake. Whoever chooses this slice, departs. At this point, if all players
have arrived, we continue the moving knife procedure with k − 1 players. Alternatively the
next player arrives and we start again a moving knife procedure with k players. As before,
we assume that all players know how many players will arrive.

Running Example:. Consider again the example in which there are three players, the first
player values only [12 , 1], the second player values only [13 , 1], and the third player values only
[0, 3

4 ]. If we operate the online version of the moving knife procedure, the first two players
will arrive and perform one round of the moving knife procedure. The second player will be
the first to call “cut” and will depart with the slice [0, 5

9 ] (as this has 1
3 of the total value

of the cake for them). The third player will now arrive and perform a round of the moving
knife procedure with the first player using the remaining cake, [59 , 1]. The third player will
be the first to call “cut” and will depart with the slice [59 , 47

72 ] (as this has 1
2 the total value

of the remaining value for them). The first player will then depart with what remains, the
slice [4772 ]. It can be claimed that everyone is happy as the second and third players received
a “fair”’ proportion of the cake that was left when they first arrived, whilst the first player
received an even greater proportional value.

This online version of the moving knife procedure has the same desirable properties as
the online version of the cut-and-choose procedure.

Theorem 4. The online moving knife procedure is forward proportional, immediately envy
free, weakly truthful, surjective, scale invariant and sequential. However, it is not propor-
tional, (forward) envy free, equitable, (weakly) Pareto optimal, truthful or order monotonic.

Proof: Suppose j players (j > 1) have still to be allocated cake. Consider any player who
has arrived. They will call “cut” as soon as the knife reaches 1

j of the value of the cake left
for fear that they will will receive cake of less value at a later stage. Hence, the procedure
is weakly truthful and forward proportional. The procedure is also immediately envy free
as they will assign less value to any slice that is allocated after their arrival and before their
departure. To demonstrate surjectivity, consider the partition that allocates the ith player
with the slice [ai, ai+1] where a1 = 0 and an+1 = 1. We construct a valuation for the ith
player (i < n) that assigns a value 0 to [0, ai], a value 1 to [ai, ai+1], a value n− i to [ai+1, 1].
Finally, we construct a valuation function for the nth player that assigns a value 0 to [0, an],
and a value of 1 to [an, 1]. With these valuation functions, the ith player gets the slice
[ai, ai+1]. Finally, it is easy to see that the procedure is scale invariant and sequential.

To show that this procedure is not proportional, (forward) envy free, equitable, (weakly)
Pareto optimal truthful consider again the example with 4 players used in the last proof.
We suppose that k = 2 (i.e. at any one time, two players are watching the knife). The
first player calls “cut” and departs with the slice [0, 1

4 ]. The second player calls “cut” and
departs with the slice [14 , 1

2 ]. Finally, the third player calls “cut” and departs with the slice
[ 12 , 2

4 ], leaving the fourth player with the slice [34 , 1].
The procedure is not proportional as the fourth player only receives 1

6 of the total value
of the cake, not (forward) envy free as the first player envies the fourth player, and not
equitable as players receive cake of different value. The procedure is not (weakly) Pareto
optimal as allocating the first player with [34 , 1], the second player with [12 , 3

4 ], the third
player with [0, 1

4 ] and the fourth player with [14 , 1
2 ] gives all players a slice of greater value.

The proceure is not truthful as the second player can get a larger and more valuable
slice by misrepresenting their preferences and not calling “cut” until the knife is about to
reach 5

8 th of the way along the cake.
Finally, to show that the procedure is not order monotonic consider 3 players and a cake

in which the first player places a value of 2 units on each of [0, 1
3 ], [13 , 2

3 ], and [23 , 1], the
second player places a value of 0 units on [0, 1

3 ], 3 units on each of [13 , 2
3 ] and [23 , 1], and the
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third player places a value of 2 units on [0, 1
6 ], 0 units on each of [16 , 1

3 ] and [13 , 2
3 ], and 4 units

on [23 , 1]. As before, we suppose that k = 2 (i.e. at any one time, two players are watching
the knife). The first player calls “cut” and departs with the slice [0, 1

3 ]. The second player
calls “cut” and departs with the slice [13 , 2

3 ], leaving the third player with the slice [23 , 1].
On the other hand, if the third player arrives ahead of the second player then the value of
the cake allocated to them drops from 4 units to 2 units. Hence the procedure is not order
monotonic. ♥

8 Online Mark-and-Choose

A possible drawback of both of the online cake cutting procedures proposed so far is that
the first player to arrive can be the last player to depart. What if we want a procedure in
which players can depart soon after they arrive? The next procedure has such a property.
Players will depart as soon as the next player arrives (except for the last player to arrive
who takes whatever cake remains). However, the new procedure is no longer sequential. It
may not allocated cake from one end. In addition, the new procedure does not necessarily
allocate continuous slices of cake.

In the online mark-and-choose procedure, the first player to arrive marks the cake into
n pieces. The second player to arrive selects one piece to give to the first player who then
departs. The second player then marks the remaining cake into n − 1 pieces and waits for
the third player to arrive. The procedure repeats in this way until the last player arrives.
The last player to arrive selects which of the two halves marked by the penultimate player
should be allocated to the penultimate player. The last player then takes whatever remains.

Running Example:. Consider again the example in which there are three players, the first
player values only [12 , 1], the second player values only [13 , 1], and the third player values only
[0, 3

4 ]. If we operate the online version of the mark-and-choose procedure, the first player will
arrive and mark the cake into 3 equally valued pieces: [0, 2

3 ], [23 , 5
6 ], and [56 , 1], The second

player then arrives and selects the least valuable piece for the first player to take. In fact,
both [ 23 , 5

6 ] and [ 56 , 1] are each worth 1
4 of the total value of the cake to the second player.

They will therefore choose between them arbitrarily. Suppose the second player decides to
give the slice [23 , 5

6 ] to the first player. Note that the first player assigns this slice with 1
3

of the total value of the cake. This leaves behind two sections of cake: [0, 2
3 ] and [ 56 , 1].

The second player then marks what remains into two equally valuable pieces: the first is the
interval [0, 7

12 ] and the second contains the two intervals [ 7
12 , 2

3 ] and [ 56 , 1]. The third player
then arrives and selects the least valuable piece for the second player to take. The first piece
is worth 7

12 of the total value of the cake to the third player. As this is over half the total
value, the other piece must be worth less. In fact, the second piece is worth 1

4 of the total
value. The third player therefore gives the second piece to the second player. This leaves the
third player with the remaining slice [0, 7

12 ]. It can again be claimed that everyone is happy
as the first players received a “fair”’ proportion of the cake that was left when they arrived,
whilst both the second and third player received an even greater proportional value.

This procedure again has the same desirable properties as the online version of the
cut-and-choose and moving knife procedures.

Theorem 5. The online mark-and-choose procedure is forward proportional, immediately
envy free, weakly truthful, surjective, and scale invariant. However, it is not proportional,
(forward) envy free, equitable, (weakly) Pareto optimal, truthful, order monotonic or sequen-
tial.

Proof: Any player marking the cake will divide it into slices of equal value (for fear that
they will be allocated one of the less valuable slices). Similarly, a player selecting a slice for
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another player will select the slice of least value to them (to maximize the value that they
will receive next). Hence, the procedure is weakly truthful and forward proportional. The
procedure is also immediately envy free as they will assign less value to the slice that they
select for the departing player than the value of the slices that they mark. To demonstrate
surjectivity, consider the partition that allocates the ith player with the slice [ai, ai+1] where
a1 = 0 and an+1 = 1. We construct a valuation for the ith player (i < n) that assigns a
value 0 to [0, ai], a value 1 to [ai, ai+1], a value n − i to [ai+1, 1]. Finally, we construct a
valuation function for the nth player that assigns a value 0 to [0, an], and a value of 1 to
[an, 1]. With these valuation functions, the ith player gets the slice [ai, ai+1]. Finally, it is
easy to see that the procedure is scale invariant.

To show that this procedure is not proportional, (forward) envy free, equitable, (weakly)
Pareto optimal or truthful consider again the example with 4 players used in the last two
proofs. The first player marks and is assigned the slice [0, 1

4 ] by the second player. The
second player then marks and is assigned the slice [14 , 1

2 ]. The third player then marks and
is assigned the slice [ 12 , 3

4 ], leaving the fourth player with the slice [34 , 1].
The procedure is again not proportional as the fourth player only receives 1

6 of the total
value of the cake, not (forward) envy free as the first player envies the fourth player, and not
equitable as players receive cake of different value. The procedure is not (weakly) Pareto
optimal as allocating the first player with [34 , 1], the second player with [12 , 3

4 ], the third
player with [0, 1

4 ], and the fourth player with [14 , 1
2 ] gives all players a slice of greater value.

The proceure is not truthful as the second player can get a larger and more valuable
slice by misrepresenting their preferences and marking the cake into the slices [ 14 , 5

8 ], [58 , 3
4 ],

and [34 , 1]. In this situation, the third player will allocate the second player with the slice
[ 14 , 5

8 ] which is of greater value to the second player. It is also easy to see that the procedure
is not sequential.

Finally, to show that the procedure is not order monotonic consider 3 players and a cake
in which the first player places a value of 4 units on each of [0, 1

3 ], [13 , 2
3 ] and [23 , 1], the second

player places a value of 0 units on [0, 1
3 ], 6 units on [13 , 2

3 ], and 3 units on each of [23 , 5
6 ], and

[ 56 , 1], and the third player places a value of 2 unit on [0, 1
6 ], 0 units on each of [16 , 1

3 ] and
[ 13 , 2

3 ], and 5 units on each of [23 , 5
6 ] and [56 , 1]. The first player marks and is allocated the

slice [0, 1
3 ]. The second player marks and is allocated the slice [13 , 2

3 ], leaving the third player
with the slice [ 23 , 1]. On the other hand, suppose the third player arrives ahead of the second
player. In this case, the third player marks the cake into two slice, [ 13 , 5

6 ] and [56 , 1]. The
second player allocates the third player the slice [56 , 1]. Hence, the value of cake allocated
to the third player drops from 10 units to 5 units when they go second in the arrival order.
Hence the procedure is not order monotonic. ♥

9 Bounded number of players

One variation of online cake cutting is when the number of players is not known but all
players have the (same) upper bound, nmax on the number of persons to be allocated cake.
We consider three cases: players know their arrival position and when the last player arrives;
players do not know their arrival position but do know when the last player arrives; players
do not know when the last player arrives.

9.1 Known arrival order and last player

In this case, each player knows how many players have arrived before them, and players
know when no more players are to arrive. In this case, we can still operate the online cut-
and-choose procedure. Given the risk averse nature of the players, each player will cut off a
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slice of cake of value 1
nmax−k of the total where k is the number of players who have already

been allocated cake.

9.2 Unknown arrival order but known last player

In this case, players do not know how many players have arrived before them, but do
know when no more players are to arrive. We can again operate the online cut-and-choose
procedure. The first player will cut off a slice of cake of value 1

nmax−k of the total where k
is the number of players already allocated cake (e.g. in the first round, the first player cuts
off a slice of value 1

nmax
of the total, if this is accepted by the second player, they then cut

off a slice of value 1
nmax−1 of the total, and so on).

We can suppose that the second player to arrive will look at the cake and deduce they
are the second player to arrive (since they will assign the total value of the cake to the two
pieces). If they are not the last player to arrive, they will accept the offered slice if it is
greater than or equal to 1

nmax
of the total. If they are the last player to arrive, they will

accept the offered slice if it is greater than or equal to 1
2 of the total. Otherwise, if there

are no more players are to arrive, they will take whatever cakes remain. If there are more
players to arrive, they will cut off a new slice of value 1

nmax−j of the total where j is the
number of players already allocated cake (e.g. the second player first cuts off a slice of value

1
nmax−1 of the total, if this is accepted by the next player to arrive, the second player then
cuts off a slice of value 1

nmax−2 of the total, and so on).
We can suppose that the third (or any later) player to arrive can only deduce that they

are not the first or second player to arrive. If they are not the last player to arrive, they will
accept the offered slice if it is greater than or equal to 1

nmax−1 of the total. If they are the
last player to arrive, they will accept the offered slice if it is greater than or equal to 1

2 of the
total. Otherwise, if there are no more players are to arrive, they will take whatever cakes
remain. If there are more players to arrive, they will cut off a new slice of value 1

nmax−j of
the total where j is the number of players already allocated cake (e.g. they first cut off a
slice of value 1

nmax−2 of the total, if this is accepted by the next player to arrive, they then
cut off a slice of value 1

nmax−3 of the total, and so on).

9.3 Unknown last player

In the third case, players do know when no more players are to arrive. We now have a
potential deadlock problem in operating the online cut-and-choose procedure. We need
some mechanism to ensure that the last player to arrive is allocated cake. One option is to
introduce a clock. If a player waits longer than a certain time, then they can take whatever
cake remains. With this modification, we can again operate the online cut-and-choose
procedure.

9.4 Moving knife procedures

We can also use the online moving knife procedure when there is only a bound on the number
of players to be allocated cake. The results are very similar to the online cut-and-choose
procedure, and depend on whether players know when the last player arrives and on whether
players know how many players have been allocated cake before them.
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10 Related work

There is an extensive literature on fair division and cake cutting procedures. See, for in-
stance, [2] for an introduction. There has, however, been considerably less work on fair
division problems similar to those considered here.

Thomson considers a generalization of fair division problems where the number of players
may increase [7]. He explores from an axiomatic perspective whether it is possible to have
a procedure in which players’ allocations are monotonic (i.e. their values do not increase as
the number of players increase) combined with other common properties like weak Pareto
optimality.

Cloutier et al. consider a different generalization of the cake cutting problem in which the
number of players is fixed but there are multiple cakes [5]. This can model situations where,
for example, players wish to choose shifts across multiple days. Note that this problem can
be reduced to multiple single cake cutting problems unless the players’ valuations across
cakes are linked (e.g. you prefer the same shift each day compared to different shifts).

A number of authors have studied distributed mechanisms for fair division (see, for
example, [4]). In such mechanisms, players typically agree locally on deals to exchange
some of the goods in their possession. The usual goal is to identify conditions under which
the system converges to a fair or envy free allocation.

11 Conclusions

We have proposed an online form of the cake cutting problem. This permits us to explore
the concept of fair division when players arrive and depart during the process of dividing
a resource. It can be used to model situations, such as on the internet, when we need to
divide resources asynchronously. There are many possible future directions for this work.
One extension would be to indivisible goods. Another extension would be to undesirable
goods (like chores) where we want as little of them as possible. In addition, it would
be interesting to consider variants of the online cake cutting problem where players have
information about the valuation functions of the other players.
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Three Hierarchies of Simple Games

Parameterized by “Resource” Parameters

Tatiana Gvozdeva, Lane A. Hemaspaandra, and Arkadii Slinko

Abstract

This paper contributes to the program of numerical characterization and classifica-
tion of simple games outlined in the classic monograph of von Neumann and Mor-
genstern (1944). We suggest three possible ways to classify simple games beyond
the classes of weighted and roughly weighted games. To this end we introduce three
hierarchies of games and prove some relations between their classes. We prove that
our hierarchies are true (i.e., infinite) hierarchies. In particular, they are strict in
the sense that more of the key “resource” (which may, for example, be the size or
structure of the “tie-breaking” region where the weights of the different coalitions
are considered so close that we are allowed to specify either winningness or nonwin-
ningness of the coalition), yields the flexibility to capture strictly more games.

1 Introduction

A simple game is a mathematical object that is used in economics and political science
to describe the distribution of power among coalitions of players [10, 11]. Recently simple
games have been studied as access structures of secret sharing schemes [2]. They have
also appeared in a variety of mathematical and computer science contexts under various
names, e.g., monotone boolean [5] or switching functions and threshold functions [6]. Simple
games are closely related to hypergraphs, coherent structures, Sperner systems, clutters,
and abstract simplicial complexes. The term “simple” was introduced by von Neumann and
Morgenstern (1944) because in this type of games players strive not for monetary rewards
but for power, and each coalition is either all-powerful or completely ineffectual. However
these games are far from being simple.

An important class of simple games—well studied in economics—is the weighted majority
games [10, 11]. In such a game every player is assigned a real number, his weight. The
winning coalitions are the sets of players whose weights total at least q, a certain threshold.
However, it is well known that not every simple game has a representation as a weighted
majority game [10]. The first step in attempting to characterize nonweighted games was the
introduction of the class of roughly weighted games [9]. Formally, a simple game G on the
player set P = [n] = {1, 2, . . . , n} is roughly weighted if there exist nonnegative real numbers
w1, . . . , wn and a real number q, called the quota, not all equal to zero, such that for X ∈ 2P

the condition
∑

i∈X wi > q implies X is winning, and
∑

i∈X wi < q implies X is losing.
This concept realizes a very common idea in social choice that sometimes a rule needs an
additional “tie-breaking” procedure that helps to decide the outcome if the result falls on
a certain “threshold.” Taylor and Zwicker [9] demonstrated the usefulness of this concept.
Rough weightedness was studied by Gvozdeva and Slinko [4], where it was characterized in
terms of trading transforms, similar to the characterization of weightedness by Elgot [3] and
Taylor and Zwicker [8].

It might seem that nonweighted games and even games without rough weights are weird.
However, an important observation of von Neumann and Morgenstern [10, Section 53.2.6]
states that they “correspond to a different organizational principle that deserves closer
study.” In some of these games, as they noted, all the minimal winning coalitions are
minorities and at the same time “no player has any advantage over any other” (e.g., the
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Fano game introduced later). This is an attractive feature for secret sharing as in the case
of large number of users it is advantageous to keep minimal authorized coalitions relatively
small. This is may be why weighted threshold secret sharing schemes were largely ignored
and were characterized only recently [1].

The parameter of the first hierarchy reflects the balance of power between small and
large coalitions; the larger this parameter the more powerful some of the small coalitions
are. Gvozdeva and Slinko [4] proved that for a game G that is not roughly weighted there
exists a certificate of nonweightedness (see the definition in Section 2) of the form

T = (X1, . . . , Xj , P ; Y1, . . . , Yj , ∅), (1)

where X1, . . . , Xj are winning coalitions of G, P is the grand coalition, and Y1, . . . , Yj are
losing coalitions. However, sometimes it is possible to have more than one grand coalition
in the certificate. This may occur when coalitions X1, . . . , Xj are small but nonetheless
winning.

A certificate of nonweightedness of the form

T = (X1, . . . , Xj , P
ℓ; Y1, . . . , Yj , ∅ℓ) (2)

will be called ℓ-potent of length j + ℓ. Each game that possesses such a certificate will be
said to belong to the class of games Aq, where q = ℓ/(j + ℓ). The parameter q can take
values in the open interval (0, 1

2 ). We will show that Ap ⊇ Aq for any p and q such that
0 < p ≤ q < 1

2 and that the inclusion Ap ⊇ Aq is strict as soon as p < q.
Another hierarchy emerges when we allow several thresholds instead of just one in the

case of roughly weighted games. We say that a simple game G belongs to the class Bk, k ∈
{1, 2, 3, . . .}, if there are k thresholds 0 < q1 ≤ q2 ≤ · · · ≤ qk and any coalition with total
weight of players smaller than q1 is losing, any coalition with total weight greater than qk

is winning . We also impose an additional condition that, if a coalition X has total weight
w(X) which satisfies q1 ≤ w(X) ≤ qk, then w(X) = qi for some i. All games of the class
B1 are roughly weighted. In fact, as we’ll prove in Section 4 almost all roughly weighted
games to this class: B1 is exactly the class of roughly weighted games with nonzero quota.
We will show that the Fano game [4] belongs to B2 but does not belong to B1. We prove
that B-hierarchy is strict, that is,

B1 ( B2 ( · · · ( Bℓ ( · · · ,

with the union of these classes being the class of all simple games.
Yet another way to capture more games is by making the threshold “thicker.” We here

will not use a point but rather an interval [a, b] for the threshold, a ≤ b. That is, all coalitions
with total weight less than a will be losing and all coalitions whose total weight is greater
than b winning. This time—in contrast with the k limit of Bk—we do not care how many
different values weights of coalitions falling in [a, b] may take on. A good example of this
situation would be a faculty vote, where if neither side controls a 2/3 majority (calculated
in faculty members or their grant dollars), then the Dean would decide the outcome as he
wished. We can keep weights normalized so that the lower end of the interval is fixed at 1.
Then the right end of the interval α becomes a “resource” parameter. Formally, a simple
game G belongs to class Cα if all coalitions in G with total weight less than 1 are losing
and every coalition whose total weight is greater than α is winning. We show that the
class of all simple games is split into a hierarchy of classes of games {Cα}α∈[1,∞) defined by
this parameter. We show that as α increases we get strictly greater descriptive power, i.e.,
strictly more games can be described, that is, if α < β, then Cα ( Cβ. In this sense the
hierarchy is strict. This strict hierarchy result, and our strict hierarchy results for hierarchies
A and B, have very much the general flavor of hierarchy results found in computer science:
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more resources yield more power (whether computational power to accept languages as in a
deterministic or nondeterministic time hierarchy theorem, or as is the case here, description
flexibility to capture more games).

The strictness of the latter hierarchy was achieved because we allowed games with arbi-
trary (but finite) numbers of players. The situation will be different if we keep the number
of players n fixed. Then there is an interval [1, s(n)] such that all games with n players
belong to Cs(n) and s(n) is minimal with this property. There will be also finitely many
numbers q ∈ [1, s(n)] such that the interval [1, q] represents more n-player games than any
interval [1, q′] with q′ < q. We call the set of such numbers the nth spectrum and denote it
Spec(n). We also call a game with n players critical if it belongs to Cα with α ∈ Spec(n)
but does not belong to any Cβ with β < α. We calculate the spectrum for n < 7 and also
produce a set of critical games, one for each element of the spectrum. We also try to give a
reasonably tight upper bound for s(n).

All three of our hierarchies provide measures of how close a given game is to being a
simple weighted voting game. That is, they each quantify the nearness to being a simple
weighted voting game (e.g., hierarchies B and C quantify based on the extent and structure
of a “flexible tie-breaking” region). And the main theme and contribution of this paper
is that we prove for each of the three hierarchies that allowing more quantitative distance
from simple weighted voting games yields strictly more games, i.e., the hierarchies are proper
hierarchies.

2 Preliminaries

Definition 1. A simple game is a pair G = (P, W ), where W is a subset of the power set
2P satisfying the monotonicity condition:

if X ∈ W and X ( Y ⊆ P , then Y ∈ W ,

and W /∈ {∅, 2P} (nontriviality assumption).

Elements of the set W are called winning coalitions. We also define the set L = 2P \W
and call elements of this set losing coalitions. A winning coalition is said to be minimal if
every its proper subset is a losing coalition. Due to monotonicity, every simple game is fully
determined by the set of its minimal winning coalitions. A player which does not belong to
any minimal winning coalitions is called dummy.

For X ⊆ P we will denote its complement P −X as Xc.

Definition 2. A simple game is called proper if X ∈ W implies that Xc ∈ L and is called
strong if X ∈ L implies that Xc ∈ W . A simple game that is proper and strong is called a
constant-sum game.

The following definition is given as it has appeared in [4].

Definition 3. A simple game G = (P, W ) is called roughly weighted if there exist non-
negative real numbers w1, . . . , wn and a nonnegative real number q, not all equal to zero,
such that for X ∈ 2P the condition

∑
i∈X wi < q implies X ∈ L and

∑
i∈X wi > q implies

X ∈ W . We say that [q; w1, . . . , wn] is a rough voting representation for G; the number q
is called the quota.

Example 1 (The Fano game). This important example first appeared in [10, Section 53.2.6].
Let P = [7] be identified with the set of seven points of the projective plane of order two,
called the Fano plane. Let us take the seven lines of this projective plane as minimal winning
coalitions:

{1, 2, 3}, {3, 4, 5}, {1, 5, 6}, {1, 4, 7}, {2, 5, 7}, {3, 6, 7}, {2, 4, 6}. (3)
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We will denote them by X1, . . . , X7, respectively. This, as is easy to check, defines a
constant-sum game the Fano. As we will see slightly later, it has no rough voting represen-
tation. As we can see from the list of minimal winning coalitions they are all minorities,
yet symmetry makes all players equal in this example.

We remind the reader that a sequence of coalitions

T = (X1, . . . , Xj ; Y1, . . . , Yj) (4)

is a trading transform [9] if the coalitions X1, . . . , Xj can be converted into the coalitions
Y1, . . . , Yj by rearranging players. This can also be expressed as

|{i : a ∈ Xi}| = |{i : a ∈ Yi}| for all a ∈ P .

We say that the length of T is j.

Definition 4. A trading transform (X1, . . . , Xj; Y1, . . . , Yj) with all coalitions X1, . . . , Xj

winning and all coalitions Y1, . . . , Yj losing is called a certificate of nonweightedness. This
certificate is said to be potent if the grand coalition P is among X1, . . . , Xj and the empty
coalition is among Y1, . . . , Yj.

Elgot proved (using a different terminology) that the existence of a certificate of non-
weightedness implies that the game is not weighted and that every nonweighted game has
one. Taylor and Zwicker [9] showed that for a nonweighted game with n player this cer-
tificate can be found of length at most 22n

; Gvozdeva and Slinko [4] lowered this bound to
(n + 1)2

1
2n log2 n.

Theorem 1 (Criterion of rough weightedness [4]). A simple game G with n players is
roughly weighted iff for no positive integer j ≤ (n + 1)2

1
2n log2 n does there exist a potent

certificate of nonweightedness of length j.

In Example 1 the following eight winning coalitions X1, . . . , X7, P of the Fano game can
be transformed into the following eight losing coalitions: Xc

1 , . . . , X
c
7 , ∅. So the sequence

(X1, . . . , X7, P ; Xc
1 , . . . , X

c
7 , ∅) (5)

is a potent certificate of nonweightedness for this game. So the game is not roughly weighted,
thanks to Theorem 1.

Theorem 2 ([4]). The following games are roughly weighted:

• every game with 4 or less players,

• every strong or proper game with 5 or less players, and

• every constant sum game with 6 or less players.

Definition 5 ([9], p. 6). We say that a player p in a game is a dictator if p belongs to
every winning coalition and to no losing coalition. If all coalitions containing player p are
winning, this player is called a passer. A player p is called a vetoer if p is contained in the
intersection of all winning coalitions.

Proposition 1 ([4]). Suppose G is a simple game with n players. Then G is roughly
weighted if any one of the following three conditions holds:

(a) G has a passer.
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(b) G has a vetoer.

(c) G has a losing coalition that consists of n− 1 players.

Due to Proposition 1(a) there is one trivial way to make any game roughly weighted.
This can be done by adding an additional player and making her a passer. Then we can
introduce rough weights by assigning weight 1 to the passer and weight 0 to any other player
and setting the quota equal to 0. Note, that if the original game is not roughly weighted,
then such rough representation is unique. In our view, adding a passer trivializes the game
but does not make it closer to a weighted majority game; this is why in definitions of our
hierarchies B and C we disallow thresholds to be equal 0.

As in [4] we would like to represent trading transforms algebraically. Let T = {−1, 0, 1}
and let T n = T ×T × · · ·T (n times). With any pair (X, Y ) of subsets X, Y ∈ [n] we define

vX,Y = χ(X)− χ(Y ) ∈ T n,

where χ(X) and χ(Y ) are the characteristic vectors of subsets X and Y , respectively.
Let now G = (P, W ) be a simple game. We will associate an algebraic object with G. For

any pair (X, Y ), where X is winning and Y is losing, we put the pair in correspondence with
the vector vX,Y . The set of all such vectors we will denote I(G) and will call the ideal of the
game. Saying that (X1, . . . , Xj ; Y1, . . . , Yj) is a certificate of nonweightedness is equivalent
to saying that the following vector sum of the ideal is 0: vX1,Y1 +vX2,Y2 + · · ·+vXj ,Yj = 0.
An ℓ-potent certificate (X1, . . . , Xj , P

ℓ; Y1, . . . , Yj , ∅ℓ) will be represented as

vX1,Y1 + vX2,Y2 + · · ·+ vXj ,Yj + ℓ · 1 = 0,

where 1 is a vector whose entries are each 1.

3 The A-Hierarchy

This hierarchy of classes Aα tries to capture the richness of the class of games that do
not have rough weights, and does so by introducing a parameter α ∈ (0, 1

2 ). As we al-
ready discussed, the larger this parameter the more power is given to some relatively small
coalitions. Our method of classification is based on the existence of potent certificates of
nonweightedness for such games [4].

Definition 6. Let q be a rational number. A game G belongs to the class Aq of A-hierarchy
if G possesses a potent certificate of nonweightedness

(X1, . . . , Xm; Y1, . . . , Ym), (6)

with ℓ grand coalitions among X1, . . . , Xm and ℓ empty coalitions among Y1, . . . , Ym, such
that q = ℓ/m. If α is irrational,we set Aα =

⋂
q<α Aq.

It is easy to see that, if q ≥ 1
2 , then Aq is empty. Indeed, suppose q ≥ 1

2 and Aq is not
empty. Then there is a game G with a certificate of nonweightedness

T = (X1, . . . , Xk, Pm; Y1, . . . , Yk, ∅m) (7)

with m ≥ k. This is not possible since m copies of P contain more elements than are
contained in the sets Y1, . . . , Yk taken together and so (7) is not a trading transform. So
our hierarchy consists of a family of classes {Aα}α∈(0, 12 ). We would like to show that this
hierarchy is strict, that is, a smaller parameter captures more games.
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Proposition 2. If 0 < α ≤ β < 1
2 , then Aα ⊇ Aβ.

Proof. It is sufficient to prove this statement when α and β are rational. Suppose that
we have a game G in Aβ that possesses a certificate of length n1 with k1 grand coalitions
and β = k1/n1. Let α = k2/n2. We can then represent these numbers as β = m1/n and
α = m2/n, where n = lcm (n1, n2). Since α ≤ β, we have m2 ≤ m1. Since n = n1h and
m1 = k1h for some integer h, we can now combine h certificates for G to obtain one with
length n and m1 grand coalitions. We reclassify the m1−m2 grand coalitions into ordinary
winning coalitions, and we will get a certificate for G of length n with m2 grand coalitions.
So G ∈ Aα.

We say that a game G is critical for Aα if it belongs to Aα but does not belong to any
Aβ with β > α.

Theorem 3. If 0 < α < β < 1
2 , then Aα ) Aβ.

Proof. First, we will construct a two-parameter family of simple games. For any integers
a ≥ 2 and b ≥ 2 let G = ([a2 + a + b + 1], W ) be a simple game for which a coalition X
is winning, exactly if |X | > a2 + 1 or X contains a subset whose characteristic vector is a
cyclic permutation of (1, . . . , 1︸ ︷︷ ︸

a+1

, 0, . . . , 0︸ ︷︷ ︸
a2+b

).

Let X1, . . . , Xa2+a+b+1 be winning coalitions, whose characteristic vectors are cyclic
permutations of (1, . . . , 1︸ ︷︷ ︸

a+1

, 0, . . . , 0︸ ︷︷ ︸
a2+b

). Also let Y1, . . . , Ya2+a+b+1 be losing coalitions, whose

characteristic vectors are cyclic permutations of

(1, . . . , 1︸ ︷︷ ︸
a

, 0, 1, . . . , 1︸ ︷︷ ︸
a

, 0, 1, . . . , 1︸ ︷︷ ︸
a

, 0, . . . , 1, . . . , 1︸ ︷︷ ︸
a

, 0, 0, 1, 0, . . . , 0︸ ︷︷ ︸
b−1

),

where there are a groups of symbols 1, . . . , 1︸ ︷︷ ︸
a

, 0.

This game possesses the following potent certificate of nonweightedness

T = (X1, . . . , Xa2+a+b+1, P
a2−a; Y1, . . . , Ya2+a+b+1, ∅a2−a). (8)

So G ∈ A a2−a

2a2+b+1

. Let us prove that G is critical for this class, that is, it does not belong to

any Aq′ for q′ > q. Note that the vectors vi = vXi,Yi belong to the ideal of this game. Note
also that the sum of all coefficients of vi is vi · 1 = a − a2 and that for any other vector
v ∈ I(G) from the ideal of this game we have v · 1 ≥ a− a2.

Suppose G also has a potent certificate of nonweightedness

(A1, . . . , As, P
t; B1, . . . , Bs, ∅t). (9)

with q′ = t
t+s > a2−a

2a2+b+1 = q. The latter is equivalent to a2+a+b+1
a2−a > s

t . Let ui = vAi,Bi ∈
I(G), then (9) can be written as

u1 + u2 + · · ·+ us + t · 1 = 0.

As ui·1 ≥ a−a2, taking the dot product of both sides with 1 we get t(a2+a+b+1) ≤ s(a2−a),
which is equivalent to a2+a+b+1

a2−a ≤ s
t , so we have reached a contradiction.

We will now show that any rational number between 0 and 1
2 is representable as a2−a

2a2+1+b

for some positive integers a ≥ 2 and b ≥ 2. Let p
q ∈ (0, 1

2 ). Then q − 2p > 0 and it is
possible to choose a positive integer k such that k2p(q− 2p)− kq− 3 > 0. Take a = kp and
b = k2p(q − 2p)− kq − 1. Substituting these values we get a2−a

2a2+1+b = p
q .
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4 B-Hierarchy

The B-hierarchy generalizes the idea behind rough weightedness to allow more “points of
flexibility.”

Definition 7. A simple game G = (P, W ) belongs to Bk if there exist real numbers 0 <
q1 ≤ q2 ≤ · · · ≤ qk, called thresholds, and a weight function w : P → R≥0 such that

(a) if
∑

i∈X w(i) > qk, then X is winning,

(b) if
∑

i∈X w(i) < q1, then X is losing,

(c) if q1 ≤
∑

i∈X w(i) ≤ qk, then w(X) =
∑

i∈X w(i) ∈ {q1, . . . , qk}.
Games from Bk will be sometimes called k-rough.

The condition 0 < q1 in Definition 7 is essential. If we allow the first threshold q1 be
zero, then every simple game can be represented as a 2-rough game. To do this we assign
weight 1 to the first player and 0 to everyone else. It is also worthwhile to note that adding
a passer does not change the class of the game, that is, a game G belongs to Bk iff the
game G′ obtained from G by adding a passer belongs to Bk. This is because a passer can be
assigned a very large weight. Thus B1 consists of the roughly weighted simple games with
nonzero quota.

Example 2. We know that the Fano game is not roughly weighted. Let us assign weight
1 to every player of this game and select two thresholds q1 = 3 and q2 = 4. Then each
coalition whose weight falls below the first threshold is in L, and each coalition whose total
weight exceeds the second threshold is in W . If a coalition has total weight of three or four,
i.e., its weight is equal to one of the thresholds, it can be either winning or losing. Thus the
Fano is a 2-rough game.

Theorem 4. For every natural number k ∈ N+, there exists a game in Bk+1 \ Bk.

Proof. We will construct a simple game that is a (k + 1)-rough but not k-rough. Let
Gk+1,n = ([n], W ) be a simple game with n = 2k+4 players. We have k+2 types of players
with the ith type consisting of two elements 2i − 1 and 2i. The set of minimal winning
coalitions of this game is Wm = {{2i− 1, 2i} | i = 1, 2, . . . , k + 2}.

If we assign weight 1 to every player, then Gk+1,n is (k + 1)-rough game with thresholds
q1 = 2, q2 = 3, . . . , qk+1 = k + 2. Let us assume that this game is j-rough for some
j < k+1, and let w be the new weight function and let r1, . . . , rj be the new thresholds. By
max{a, b} let us denote the element of the set {a, b}, that has the bigger weight (relative to
w). We know that w(max{2i− 1, 2i}) ≥ r1/2 > 0 for each type i. Consider losing coalition
{max{1, 2}, max{3, 4}} with one player from the first type and one from the second type.
It has weight

w({max{1, 2}, max{3, 4}}) = w(max{1, 2}) + w(max{3, 4}) ≥ r1

2
+

r1

2
= r1.

Assume the worst-case scenario, i.e., that w({max{1, 2}, max{3, 4}}) is equal to r1. Let us
then create a new losing coalition {max{1, 2}, max{3, 4}, max{5, 6}} by adding a new player
from the third type. It is easy to see that

r1 = w({max{1, 2}, max{3, 4}}) < w({max{1, 2}, max{3, 4}, max{5, 6}}).

So the weight of the new coalition is at least r2. Assume the worst-case scenario again, and
make the weight of {max{1, 2}, max{3, 4}, max{5, 6}} be equal to r2. Proceed by adding a
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player from the next type to the losing coalition in this manner. At the jth step we will
have

rj =w({max{1, 2}, . . . , max{2j + 1, 2j + 2}}) <

w({max{1, 2}, . . . , max{2j + 1, 2j + 2}, max{2j + 3, 2j + 4}}).

The coalition that was constructed last is losing since it does not contain two players
from the same type. So it cannot have weight greater then rj , which it does. This is a
contradiction. Thus Gk+1,n is not j-rough for any j < k + 1.

In all examples above the number of thresholds of a simple game is equal to the cardi-
nality of the largest losing coalition minus the cardinality of the smallest minimal winning
coalition plus one. This is not always the case.

Example 3. Let G = ([7], W ) be a simple game with minimal winning coalitions
{1, 2}, {6, 7}, {3, 4, 5} and all coalitions of four players except {2, 3, 4, 6}. This game is not
roughly weighted, because we have the following potent certificate of nonweightedness

T ={{1, 2}7, {3, 4, 5}9, P ; {2, 3, 5}3, {2, 3, 4}3,

{2, 3, 6}, {2, 3, 7}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}6, ∅}.

Let us assign weight 0 to the third player and 1
2 to everyone else. Then the following hold:

• w({1, 2}) = w({6, 7}) = w({3, 4, 5}) = 1 and w({2, 3, 4, 6}) = 3
2 .

• If X is winning coalition with four or more players, then w(X) ≥ 3
2 .

• If X is losing coalition with three players, then w(X) ∈ {1, 3
2}.

• If X is losing coalition with fewer than three players, then w(X) ≤ 1.

Thus G is a 2-rough game with thresholds 1 and 3
2 . Note that the third player has weight

zero but he is not a dummy.

5 C-hierarchy

Let us consider another extension of the idea of rough weightedness. This time we will
use a threshold interval instead of a single threshold or (as in B-hierarchy) a collection of
threshold points. It is convenient to “normalize” the weights so that the left end of our
threshold interval is 1. We do not lose any generality by doing this.

Definition 8. We say that a simple game G = (P, W ) is in the class Cα, α ∈ R≥1, if there
exists a weight function w : P → R≥0 such that for X ∈ 2P the condition w(X) > α implies
that X is winning, and w(X) < 1 implies X is losing. Games from Cα will be sometimes
called roughα.

The roughly weighted games with nonzero quota form the class C1. From Example 2 we
can conclude that the Fano game is in C4/3 (by giving each player weight 1/3). We also note
that adding or deleting a passer does not change the class of the game.

Definition 9. We say that a game G is critical for Cα if it belongs to Cα but does not belong
to any Cβ with β < α.

It is clear that if α ≤ β, then Cα ⊆ Cβ. However, we can show more.
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Proposition 3. Let c and d be natural numbers with 1 < d < c. Then there is a simple
game G that is roughc/d, but that for each α < c/d is not roughα.

Proof. Define a game G = (P, W ), where P = [cd]. Similarly to the proof of Theorem 4 we
have c types of players with d players in each type and the different types do not intersect.
Winning coalitions are sets with more than c + 1 players and also sets having at least d
players from the same type. By ij we will denote the ith player of jth type.

If we assign weight 1/d to each player, then the lightest winning coalition (d players
from the same type) has weight 1 and the heaviest losing coalition has weight c/d. Thus G
belongs to Cc/d.

Let us show that G is not roughα for any α < c/d. Suppose G is roughα relative to a
weight function w. Let max{1j, . . . , dj} be the element of the set {1j, . . . , dj} that has the
biggest weight relative to w.

For any type j we know that w(max{1j, 2j , . . . , dj}) ≥ 1
d . The coalition

Y = {max{11, . . . , d1}, . . . , max{1c, . . . , dc}}
is losing by definition. Moreover, it has weight w(Y ) ≥ c/d. So c/d is the smallest number
that can be taken as α so that G is roughα.

Theorem 5. For each 1 ≤ α < β, it holds that Cα ( Cβ.

Proof. We know that Cα ⊆ Cβ . If β is a rational number, then by Proposition 3 there exists
a game G that is roughβ but is not roughα. If β is an irrational number, then choose a
rational number r, such that α < r < β. By Proposition 3 there exists a game G that is
roughr but is not roughα. So Cα ( Cr. All that remains to notice is that Cr ⊆ Cβ .

Theorem 6. Let G be a simple game that is not roughly weighted and is critical for Ca.
Suppose G also belongs to Aq for some 0 < q < 1

2 . Then

a ≥ 1− q

1− 2q
.

Proof. Obviously we can assume that q is rational. Since G is in Aq, it possesses a certificate
of nonweightedness T of the kind

T = (X1, . . . , Xt, P
s; Y1, . . . , Yt, ∅s).

Suppose we have a weight function w : P → R≥0 instantiating G ∈ Cα. Then since w(Xi) ≥ 1
and w(P ) ≥ a, we have

w(X1) + · · ·+ w(Xt) + sw(P ) ≥ t + sa. (10)

On the other hand, w(Yi) ≤ a and

w(Y1) + · · ·+ w(Yt) ≤ ta. (11)

From these two inequalities we get t+sa ≤ ta or a ≥ t
t−s . Since q = s

t+s we obtain a ≥ 1−q
1−2q ,

which proves the theorem.

6 Degrees of Roughness of Games with Small Number
of Players

First, we will derive bounds on the largest number s(n) of the spectre Spec(n).
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Theorem 7. 1
2

⌊
n
2

⌋ ≤ s(n) ≤ n−2
2 .

Proof. Let G be a game with n players. Without loss of generality we can assume that G
doesn’t contain passers. Moreover the maximal value of s(n) is achieved on games that are
not roughly weighted. By Proposition 1 the biggest losing coalition contains at most n− 2
players and the smallest winning coalition has at least two players. If we assign weight 1

2 to
every player, then G is in C(n−2)/2.

We can use a game similar to the one from Theorem 4 to prove the lower bound. Suppose
our game has n players. If n is odd, then one player will be a dummy. The remaining 2

⌊
n
2

⌋
players will be divided into

⌊
n
2

⌋
pairs: {1, 2}, {2, 3}, . . . , {m − 1, m}, where m =

⌊
n
2

⌋
.

These pairs are declared minimal winning coalitions. Given any weight function w we have
w(max{2i− 1, 2i}) ≥ 1

2 for each i. Then

w({max{1, 2}, . . . , max{m− 1, m}) ≥ m

2
,

while this coalition is losing. So s(n) ≥ m/2 which proves the lower bound.

Now let us calculate the spectra for n ≤ 6. By Theorem 2 all games with four players
are roughly weighted. Since we may assume that the game does not have passers we may
assume that the quota is nonzero. Hence we have Spec(4) = {1}.

Let G = ([n], W ) be a simple game. The problem of finding the smallest α such that
G ∈ Cα is a linear programming question. Indeed, let Wmin and Lmax be the set of minimal
winning coalitions and the set of maximal losing coalitions, respectively. We need to find
the minimum α such that the following system of linear inequalities is consistent:{

w(X) ≥ 1 for X ∈ Wmin,

w(Y ) ≤ α for Y ∈ Lmax.

This is equivalent to the following optimization problem:

Minimize: wn+1.
Subject to:

∑
i∈X wi ≥ 1 and

∑
i∈Y wi − wn+1 ≤ 0; X ∈ Wmin, Y ∈ Lmax.

Theorem 8. Spec(5) =
{
1, 6

5 , 7
6 , 8

7 , 9
8

}
.

Proof. Let G be a critical game with five players. If G has a passer, then as was noted, the
passer can be deleted without changing the class of G, hence G ∈ C1. If G has no passers
and does not belong to C1, then it is not roughly weighted. By Theorem 2 each game that
is not roughly weighted is not strong (recall Definition 2) and is not proper. Thus we have
a winning coalition X such that Xc is also winning and a losing coalition Y such that Y c is
also losing.

By Proposition 1 we may assume that the cardinalities of both X and Y are 2. Without
loss of generality we assume that X = {1, 2} and Xc = {3, 4, 5}. Note that Y cannot be
contained in Xc as otherwise Y c contains X and is not losing. So without loss of generality
we assume that Y = {1, 5}, Y c = {2, 3, 4}.

We have two levels of as yet unclassified coalitions, which can be set either losing or
winning:

level 1 : {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 5}, {2, 4, 5},
level 2 : {1, 3}, {1, 4}, {2, 5}, {3, 5}, {4, 5}.

We wrote Maple code using the “LPSolve” command. First we choose losing coalitions
on level 1 and delete all subsets of them from level 2. We add every unclassified coalition
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α Minimal winning coalitions and maximal losing coalitions Weight representation
9
8

Wmin = {{1, 2}, {1, 3, 5}, {1, 4, 5}, {3, 4, 5}}, w1 = 5
8 , w2 = 3

8 , w5 = 4
8 ,

Lmax = {{1, 5}, {1, 3, 4}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}} w3 = w4 = 2
8

8
7

Wmin = {{1, 2}, {2, 5}, {1, 3, 4}, {3, 4, 5}}, w1 = w5 = 3
7 , w2 = 4

7 ,
Lmax = {{1, 3, 5}, {1, 4, 5}, {2, 3, 4}} w3 = w4 = 2

7

7
6

Wmin = {{1, 2}, {1, 4, 5}, {3, 4, 5}}, w1 = w2 = 3
6 ,

Lmax = {{1, 3, 4}, {1, 3, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}} w3 = w4 = w5 = 2
6

6
5

Wmin = {{1, 2}, {1, 3}, {1, 4}, {2, 5}, {3, 5}, {4, 5}}, w1 = w5 = 3
5 ,

Lmax = {{1, 5}, {2, 3, 4}} w2 = w3 = w4 = 2
5

Table 1: Examples of critical simple games for every number of 5th spectrum

from level 1 to winning coalitions. After that we choose losing coalitions on level 2. We run
through all possible combinations of losing coalitions on both levels and solve the respective
linear programming problems.

The results of these calculations are displayed in Table 1.

Theorem 9. The 6th spectrum Spec(6) is the set
1,

3

2
,
4

3
,
5

4
,
6

5
,
7

6
,
8

7
,
9

7
,
9

8
,
10

9
,
11

9
,
11

10
,
12

11
,
13

10
,
13

11
,
13

12
,
14

11
,
14

13
,
15

13
,
15

14
,
16

13
,
16

15
,
17

13
,
17

14
,
17

15
,
17

16
,
18

17

ff
.

Proof. Is omitted due to lack of space. The code and the list of critical games are available
from the authors.

7 Conclusion and Further Research

Economics has studied extensively weighted majority games. This class was previously
extended to the class of roughly weighted games [9, 4]. However, many games are not even
roughly weighted and some of these games are important both for theory and applications.
In this paper we introduce three hierarchies, each of which partitions the class of games
without rough weights according to some parameter that can be viewed as capturing some
resource - either a measure of our flexibility on the size and structure of the tie-breaking
region or allowing certain types of certificates of nonweightedness. It is important to look
for further connections between the classes of the three hierarchies, and we commend that
direction to the interested reader.

In this paper we studied only the C-spectrum here. Some interesting questons about
this spectrum still remain, especially the bounds for s(n) are of considerable interest. It is
interesting to study both the A-spectrum and B-spectrum as well.
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Optimal Partitions in Additively Separable

Hedonic Games1

Haris Aziz, Felix Brandt, and Hans Georg Seedig

Abstract

We conduct a computational analysis of partitions in additively separable hedonic
games that satisfy standard criteria of fairness and optimality. We show that com-
puting a partition with maximum egalitarian or utilitarian social welfare is NP-hard
in the strong sense whereas a Pareto optimal partition can be computed in polyno-
mial time when preferences are strict. Perhaps surprisingly, checking whether a given
partition is Pareto optimal is coNP-complete in the strong sense, even when prefer-
ences are symmetric and strict. We also show that checking whether there exists a
partition which is both Pareto optimal and envy-free is Σp

2-complete. Furthermore,
checking whether there exists a partition which is both envy-free and Nash stable is
NP-complete when preferences are symmetric.

1 Introduction

Ever since the publication of von Neumann and Morgenstern’s Theory of Games and Eco-
nomic Behavior in 1944, coalitions have played a central role within game theory. The
crucial questions in coalitional game theory are which coalitions can be expected to form
and how the members of coalitions should divide the proceeds of their cooperation. Tradi-
tionally the focus has been on the latter issue, which led to the formulation and analysis of
concepts such as the core, the Shapley value, or the bargaining set. Which coalitions are
likely to form is commonly assumed to be settled exogenously, either by explicitly specifying
the coalition structure, a partition of the players in disjoint coalitions, or, implicitly, by as-
suming that larger coalitions can invariably guarantee better outcomes to its members than
smaller ones and that, as a consequence, the grand coalition of all players will eventually
form.

The two questions, however, are clearly interdependent: the individual players’ payoffs
depend on the coalitions that form just as much as the formation of coalitions depends on
how the payoffs are distributed.

Coalition formation games, as introduced by Drèze and Greenberg (1980), provide a
simple but versatile formal model that allows one to focus on coalition formation as such.
In many situations it is natural to assume that a player’s appreciation of a coalition structure
only depends on the coalition he is a member of and not on how the remaining players are
grouped. Initiated by Banerjee et al. (2001) and Bogomolnaia and Jackson (2002), much of
the work on coalition formation now concentrates on these so-called hedonic games.

The main focus in hedonic games has been on notions of stability for coalition structures
such as Nash stability, individual stability, contractual individual stability, or core stability
and characterizing conditions under which they are guaranteed to be non-empty (see, e.g.,
Bogomolnaia and Jackson, 2002; Burani and Zwicker, 2003). The most prominent examples
of hedonic games are two-sided matching games in which only coalitions of size two are
admissible (Roth and Sotomayor, 1990).

1A preliminary version of this work was invited for presentation in the session ‘Cooperative Games and
Combinatorial Optimization’ at the 24th European Conference on Operational Research (EURO 2010) in
Lisbon. This material is based on work supported by the Deutsche Forschungsgemeinschaft under grants BR-
2312/6-1 (within the European Science Foundation’s EUROCORES program LogICCC) and BR 2312/7-1.
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General coalition formation games have also received attention from the artificial intel-
ligence community, where the focus has generally been on computing partitions that give
rise to the greatest social welfare (see, e.g., Sandholm et al., 1999). The computational
complexity of hedonic games has been investigated with a focus on the complexity of com-
puting stable partitions for different models of hedonic games (Ballester, 2004; Dimitrov
et al., 2006; Cechlárová, 2008). We refer to Hajduková (2006) for a critical overview.

Among hedonic games, additively separable hedonic games (ASHGs) are a particularly
natural and succinct representation in which each player has a value for any other player
and the value of a coalition to a particular player is computed by simply adding his values
of the players in his coalition.

Additive separability satisfies a number of desirable axiomatic properties (Barberà et al.,
2004). ASHGs are the non-transferable utility generalization of graph games studied by Deng
and Papadimitriou (1994). Sung and Dimitrov (2010) showed that for ASHGs, checking
whether a core stable, strict-core stable, Nash stable, or individually stable partition exists
is NP-hard. Dimitrov et al. (2006) obtained positive algorithmic results for subclasses of
additively separable hedonic games in which each player divides other players into friends
and enemies. Branzei and Larson (2009) examined the tradeoff between stability and social
welfare in ASHGs.

Contribution In this paper, we analyze concepts from fair division in the context of
coalition formation games. We present the first systematic examination of the complexity
of computing and verifying optimal partitions of hedonic games, specifically ASHGs. We
examine various standard criteria from the social sciences: Pareto optimality, utilitarian
social welfare, egalitarian social welfare and envy-freeness (see, e.g., Moulin, 1988).

In Section 3, we show that computing a partition with maximum egalitarian social welfare
is NP-hard. Similarly, computing a partition with maximum utilitarian social welfare is NP-
hard in the strong sense even if preferences are symmetric and strict.

In Section 4, the complexity of Pareto optimality is studied. We prove that checking
whether a given partition is Pareto optimal is coNP-complete in the strong sense even for
strict and symmetric preferences. By contrast, we present a polynomial-time algorithm
for computing a Pareto optimal partition when preferences are strict. Thus, we identify a
natural problem in coalitional game theory where verifying a possible solution is presumably
harder than actually finding one.2 Our computational hardness results imply computational
hardness of equivalent problems for hedonic coalition nets (Elkind and Wooldridge, 2009).

In Section 5, we consider complexity questions regarding envy-free partitions. We show
that checking whether there exists a partition which is both Pareto optimal and envy-free
is Σp2-complete. We present an example which exemplifies the tradeoff between satisfying
stability (such as Nash stability) and envy-freeness and use the example to prove that
checking whether there exists a partition which is both envy-free and Nash stable is NP-
complete even when preferences are symmetric.

Our computational hardness results imply computational hardness of equivalent prob-
lems for hedonic coalition nets (Elkind and Wooldridge, 2009).

2 Preliminaries

In this section, we provide the terminology and notation required for our results.
2This is also the case for an unrelated problem in social choice theory (Hudry, 2004).
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2.1 Hedonic games

A hedonic coalition formation game is a pair (N,P) where N is a set of players and P is a
preference profile which specifies for each player i ∈ N the preference relation %i, a reflexive,
complete and transitive binary relation on set Ni = {S ⊆ N | i ∈ S}.

The statement S �i T means that i strictly prefers S over T . Also S ∼i T means that
i is indifferent between coalitions S and T . A partition π is a partition of players N into
disjoint coalitions. By π(i), we denote the coalition in π which includes player i.

A game (N,P) is separable if for any player i ∈ N and any coalition S ∈ Ni and for any
player j not in S we have the following: S∪{j} �i S if and only if {i, j} �i {i}; S∪{j} ≺i S
if and only if {i, j} ≺i {i}; and S ∪ {j} ∼i S if and only if {i, j} ∼i {i}.

We consider utility-based models rather than purely ordinal models. In additively sepa-
rable preferences, a player i gets value vi(j) for player j being in the same coalition as i and
if i is in coalition S ∈ Ni, then i gets utility

∑
j∈S\{i} vi(j).

A game (N,P) is additively separable if for each player i ∈ N , there is a utility function
vi : N → R such that vi(i) = 0 and for coalitions S, T ∈ Ni, S %i T if and only if∑
j∈S vi(j) ≥

∑
j∈T vi(j).

A preference profile is symmetric if vi(j) = vj(i) for any two players i, j ∈ N and is
strict if vi(j) 6= 0 for all i, j ∈ N such that i 6= j. We consider ASHGs (additively separable
hedonic games) in this paper. Unless mentioned otherwise, all our results are for ASHGs.
For any player i, let F (i) = {j | vi(j) > 0} be the set of players which i strictly likes.
Similarly, let E(i) = {j | vi(j) < 0} be the set of players which i strictly dislikes.

2.2 Fair and optimal partitions

In this section, we formulate concepts from the social sciences especially the economics and
the fair division literature for the context of hedonic games. For a utility-based hedonic
game (N,P) and partition π, we will denote the utility of player i ∈ N by uπ(i). The
different notions of fair or optimal partitions are defined as follows.3

1. The utilitarian social welfare of a partition is defined as the sum of individual utilities
of the players: uut(π) =

∑
i∈N uπ(i). A maximum utilitarian partition maximizes the

utilitarian social welfare.

2. The elitist social welfare is given by the utility of the player that is best off: uel(π) =
max{uπ(i) | i ∈ N}. A maximum elitist partition maximizes the utilitarian social
welfare.

3. The egalitarian social welfare is given by the utility of the agent that is worst off:
ueg(π) = min{uπ(i) | i ∈ N}. A maximum egalitarian partition maximizes the egali-
tarian social welfare.

4. An ordered utility vector associated with partition π is given by
(uπ(p(1)), . . . , uπ(p(n))) where p is a permutation of players such that
uπ(p(i)) ≤ uπ(p(j)) where p(i) ≤ p(j). Then a partition π with the maximum
leximin social welfare is one which has lexicographically the greatest ordered utility
vector. We refer to π as a maximum leximin partition.

5. A partition π of N is Pareto optimal if there exists no partition π′ of N which Pareto
dominates π, that is for all i ∈ N , π′(i) %i π(i) and there exists at least one player
j ∈ N such that j ∈ N , π′(j) �j π(j).

3All welfare notions considered in this paper (utilitarian, elitist, egalitarian, and leximin) are based on
the interpersonal comparison of utilities. Whether this assumption can reasonably be made is debatable.
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6. Envy-freeness is a notion of fairness. In an envy-free partition, no player has an
incentive to replace another player.

For the sake of brevity, we will consider all the notions described above as optimality
criteria although envy-freeness is more concerned with fairness. We consider the following
computational problems with respect to the optimality criteria defined above.

Optimality: Given (N,P) and a partition π of N , is π optimal?
Existence: Does an optimal partition for a given (N,P) exist?
Search: If an optimal partition for a given (N,P) exists, find one.

Existence is trivially true for all criteria of optimality concepts. By the definitions,
it follows that there exist partitions which satisfy maximum utilitarian social welfare, eli-
tist social welfare, egalitarian social welfare and leximin ordering respectively. The partition
consisting of the grand coalition and the partition of singletons satisfy envy-freeness. During
our computational analysis, we will assume familiarity of the reader with basic computa-
tional complexity classes. We recall that a problem is said to be NP-hard in the strong
sense if it remains so even when its numerical parameters are bounded by a polynomial in
the length of the input.

3 Complexity of maximizing social welfare

In this section, we examine the complexity of maximizing social welfare in ASHGs. Our
first result is the following one.

Theorem 1. Computing a maximum utilitarian partition is NP-hard in the strong sense
even with symmetric and strict preferences.

Proof. We prove Theorem 1 by a reduction from the MaxCut problem. Before defining
the MaxCut problem, recall that a cut is a partition of the vertices of a graph into two
disjoint subsets. The cut-set of the cut is the set of edges whose end points are in different
subsets of the partition. In a weighted graph, the weight of the cut is the sum of the weights
of the edges in the cut-set. Then, MaxCut is the following problem:

MaxCut
INSTANCE: An undirected weighted graph G = (V,E) with a weight function w : E → R+

and an integer k.
QUESTION: Does there exist a cut of weight at least k in G?

We present a polynomial-time reduction from MaxCut to UtilSearch, the problem
of computing a maximum utilitarian partition. Consider an instance I of MaxCut with
a connected undirected graph G = (V,E) and positive weights w(i, j) for each edge (i, j).
Let W =

∑
(i,j)∈E w(i, j). We show that if there is there a polynomial-time algorithm for

computing a maximum utilitarian social welfare partition, then we have a polynomial-time
algorithm for MaxCut.

Consider the following method which in polynomial time reduces I to an instance I ′

of UtilSearch. I ′ consists of |V | + 2 players N = {m1, . . . ,m|V |, s1, s2}. For any two
players mi and mj , vmi

(mj) = vmj
(mi) = −w(i, j). For any player mi and player sj ,

vmi(sj) = vsj (mi) = W . Also vs1(s2) = vs2(s1) = −W (|V |+ 1).
We first prove that partition π∗ with maximum utilitarian social welfare u∗ consists

of exactly two coalitions with s1 and s2 in different coalitions. We do so by proving two
claims. The first claim is that every player mi is either in a coalition with s1 or s2. Assume
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this is not true and there exists a partition π such that uut(π) = u∗ and mi is not in the
same coalition with s1 or s2. Then, if mi joins π(s1), uut(π) increases at least by 2W
and it decreases by at most 2

∑
j∈N w(i, j) < 2W . Therefore, uut(π) increases which is a

contradiction. The second claim is that s1 and s2 are in different coalitions in π∗. Assume
this is not true and there exists a partition π with utilitarian social welfare u∗ such that
s1 and s2 are together in a coalition. Then the welfare of π can be increased by at least
2(|V | + 1)(W ) − 2|V |W = 2W if s2 breaks up and forms a singleton coalition. This is a
contradiction.

We are now ready to present the reduction. Assume there exists a polynomial-time
algorithm which computes a feasible maximum utilitarian social welfare partition π. From
the two claims above, we can assume that partition π has two coalitions with s1 and s2
in different coalitions. Then, uut(π) = 2(X +

∑
mi /∈π(mj)

−vmi(mj)) where X = −W +
(|V | + 1)W ≥ 2W if |V | ≥ 2. We also know that

∑
mi /∈π(mj)

−vmi(mj)) < W . We can
obtain a cut (A,B) from π where A = {i | mi ∈ π(s1)} and B = {i | mi ∈ π(s2)}.
Let the weight of the cut (A,B) be c. We know that c ≤ c∗ where c∗ is the weight
of the maxcut for instance I. It is now shown that (A,B) is a maxcut if and only if
uut(π) = u∗. Assume uut(π) = u∗ but (A,B) is a not a maxcut. In that case there
exists a maxcut (C,D) such that

∑
i∈C,j∈D w(i, j) >

∑
i∈A,j∈B w(i, j). Therefore, there

exists a partition π′ = {{s1 ∪ {mi | i ∈ A}}, {s2 ∪ {mi | i ∈ B}}} where uut(π′) =
2(X +

∑
mi /∈π′(mj)

−vmi(mj)) > 2(X +
∑
mi /∈π(mj)

−vmi(mj)). This is a contradiction as
uut(π) = u∗.

Now assume that (A,B) is a maxcut but uut(π) < u∗. Then there exists another
partition π∗ such that uut(π′) = 2(X +

∑
mi /∈π′(mj)

−vmi
(mj)) = u∗. Therefore, the graph

cut corresponding to π∗ has a bigger maxcut value than (A,B) which is a contradiction.

Computing a maximum elitist partition is much easier.

Proposition 1. There exists a polynomial-time algorithm to compute a maximum elitist
partition.

Proof. Recall that for any player i, F (i) = {j | vi(j) > 0}. Let f(i) =
∑
j∈F (i) vi(j). Both

F (i) and f(i) can be computed in linear time. Let k ∈ N be the player such that f(k) ≥ f(i)
for all i ∈ N . Then π = {{{k} ∪ F (k)}, N \ {{k} ∪ F (k)}} is a partition which maximizes
the elitist social welfare.

As a corollary, we can verify whether a partition π has maximum elitist social welfare
by computing a partition π∗ with maximum elitist social welfare and comparing uel(π) with
uel(π∗). Just like maximizing the utilitarian social welfare, maximizing the egalitarian social
welfare is hard:

Theorem 2. Computing a maximum egalitarian partition is NP-hard in the strong sense.

Proof. We provide a polynomial-time reduction from the following NP-hard problem (Woeg-
inger, 1997):

MaxMinMachineCompletionTime
INSTANCE: A set of m identical machines M = {M1, . . . ,Mm}, a set of n independent
jobs J = {J1, . . . , Jn} where job Ji has processing time pi.
OUTPUT: Allot jobs to the machines such that the minimum processing time (without
machine idle times) of all machines is maximized.
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Let I be an instance of MaxMinMachineCompletionTime and let P =
∑n
i=1 pi.

From I we construct an instance I ′ of EgalSearch. The ASHG for instance I ′ consists of
N = {i | Mi ∈ M} ∪ {si | Ji ∈ J} and the preferences of the players are as follows: for all
i = 1, . . .m and all j = 1, . . . , n let vi(sj) = pj and vsj

(i) = P . Also, for 1 ≤ i, i′ ≤ m, i 6= i′

let vi(i′) = −(P +1) and for 1 ≤ j, j′ ≤ n, j 6= j′ let vsj
(vsj′ ) = 0. Each player i corresponds

to machine Mi and each player sj corresponds to job Jj .
Let π be the partition which maximizes ueg(π). We show that players 1, . . . ,m are in

separate coalitions and each player sj is in π(i) for some 1 ≤ i ≤ m. We do so by proving
two claims. The first claim is that for i, j ∈ {1, . . .m} such that i 6= j, we have that i /∈ π(j).
Assume there exist exactly two players i and j for which this is not the case. Then we know
that uπ(i) = −(P+1)+

∑
sj∈π(i) pj . Since

∑
sj∈π(i) pj ≤ P , we know that uπ(i) = uπ(j) < 0,

uπ(a) ≥ 0 for all a ∈ N \ {i, j} and thus ueg(π) < 0. However, if i deviates and forms a
a singleton coalition in new partition π′, then uπ′(i) = 0 and uπ′(j) ≥ 0 and the utility of
other players has not decreased. Therefore, ueg(π′) ≥ 0 which is a contradiction.

The second claim is that each player sj is in a coalition with a player i. Assume this was
not the case so that there exists at least one such player sj . Since we already know that all
is are in separate coalitions, then uπ(a) > 0 for all a ∈ N \ {sj} and ueg(π) = uπ(sj) = 0.
Then sj can deviate and join π(i) for any 1 ≤ i ≤ m to form a new partition π′. By that,
the utility of no player decreases and uπ′(sj) > 0. If this is done for all such sj , we have
ueg(π′) > 0 for the new partition π′ which is a contradiction.

A job allocation Alloc(π) corresponds to a partition π where sj is in π(i) if job Jj is
assigned to Mi for all j and i. Note that the utility uπ(i) =

∑
sj∈π(i) vi(sj) =

∑
sj∈π(i) pj

of a player corresponds to the total completion time of all jobs assigned to Mi according
to Alloc(π). Let π∗ be a maximum egalitarian partition. Assume that there is another
partition π′ and Alloc(π′) induces a strictly greater minimum completion time. We know
that uπ∗(sj) = uπ′′(sj) = P for all 1 ≤ j ≤ n and uπ∗(i) ≤ P for all 1 ≤ i ≤ m. But then
from the assumption we have ueg(π′) > ueg(π∗) which is a contradiction.

Since a maximum leximin partition is also a maximum egalitarian partition, we have the
corollary that computing a partition with maximum leximin social welfare is NP-hard.

4 Complexity of Pareto optimality

We now consider the complexity of computing a Pareto optimal partition. The complexity
of Pareto optimality has already been considered in several settings such as house alloca-
tion (Abraham et al., 2005). Bouveret and Lang (2008) examined the complexity of Pareto
optimal allocations in resource allocation problems. We show that checking whether a par-
tition is Pareto optimal is hard even under severely restricted settings.

Theorem 3. The problem of checking whether a partition is Pareto optimal is coNP-
complete in the strong sense, even if preferences are symmetric and strict.

Proof. The reduction is from E3C (EXACT-3-COVER) to deciding whether a given
partition is Pareto dominated by another partition or not. We recall the E3C problem.

E3C (EXACT-3-COVER):
INSTANCE: A pair (R,S), where R = {1, . . . , r} is a set and S is a collection of subsets of
R such that |R| = 3m for some positive integer m and |s| = 3 for each s ∈ S.
QUESTION: Is there a sub-collection S′ ⊆ S which is a partition of R?

It is known that E3C remains NP-complete even if each r ∈ R occurs in at most three
members of S. Let (R,S) be an instance of E3C where R is a set and S is a collection of
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z1 z2 z3 z4 z5 z6 · · · z|R|−2 z|R|−1 z|R|

y1 y2 y3 y|S|

x1 x2 x3 x|S|

w1 w2 w3 w|S|

· · ·

1

3 3 3 3

3 3 3 3

−1 −1 −1 −1

Figure 1: A graph representation of an ASHG derived from an instance of E3C. The (sym-
metric) utilities are given as edge weights. Some edges and labels are omitted: All edges
between any ys and zr have weight 1 if r ∈ s. All zr

′
, zr
′′

with r′ 6= r′′ are connected with
weight 1

|R|−1 . All other edges missing in the complete undirected graph have weight −4.

subsets of R such that |R| = 3m for some positive integer m and |s| = 3 for each s ∈ S.
(R,S) can be reduced to an instance ((N,P), π), where (N,P) is an ASHG defined in the
following way. Let N = {ws, xs, ys | s ∈ S} ∪ {zr | r ∈ R}. The players preferences are
symmetric and strict and are defined as follows:

• vws(xs) = vxs(ys) = 3 for all s ∈ S
• vys(ws) = vys(ws

′
) = −1 for all s, s′ ∈ S

• vys(zr) = 1 if r ∈ s and vys(zr) = −1 if r /∈ s and

• vzr (zr
′
) = 1/(|R| − 1) for any r, r′ ∈ R

• va(b) = −4 for any a, b ∈ N and a 6= b for which va(b) is not already defined,

The partition π in the instance ((N,P), π) is {{xs, ys}, {ws} | s ∈ S}} ∪ {{zr | r ∈ R}}.
We see that the utilities of the players are as follows: uπ(ws) = 0 for all s ∈ S; uπ(xs) =
uπ(ys) = 3 for all s ∈ S; and uπ(zr) = 1 for all r ∈ R.

Assume that there exists S′ ⊆ S such that S′ is a partition of R. Then we prove that π
is not Pareto optimal and there exists another partition π′ of N which Pareto dominates π.
We form another partition

π′ = {{xs, ws} | s ∈ S′}∪{{ys, zi, zj , zk} | s ∈ S′∧i, j, k ∈ s}∪{{xs, ys}, {ws} | s ∈ (S\S′)}}.

In that case, uπ′(ws) = 3 for all s ∈ S′; uπ′(ws) = 0 for all s ∈ S\S′; uπ(xs) = uπ(ys) = 3
for all s ∈ S; and uπ(zr) = 1+2/(|R|−1) for all r ∈ R. Whereas the utilities of no player in
π′ decreases, the utility of some players in π′ is more than in π. Since π′ Pareto dominates
π, π is not Pareto optimal.

We now show that if there exists no S′ ⊆ S such that S′ is a partition of R, then π is
Pareto optimal. We note that −4 is a sufficiently large negative valuation to ensure that
if va(b) = vb(a) = −4, then a, b ∈ N cannot be in the same coalition in a Pareto optimal
partition. For the sake of contradiction, assume that π is not Pareto optimal and there
exists a partition π′ which Pareto dominates π. We will see that if there exists a player
i ∈ N such that uπ′ > uπ, then there exists at least one j ∈ N such that uπ′ < uπ. The
only players whose utility can increase are {xs | s ∈ S}, {ws | s ∈ S} or {zr | r ∈ R}.
We consider these player classes separately. If the utility of player xs increases, it can only
increase from 3 to 6 so that xs is in the same coalition as ys and ws. However, this means
that ys gets a decreased utility. The utility of ys can increase or stay the same only if it
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forms a coalition with some zrs. However in that case, to satisfy all zrs, there needs to exist
an S′ ⊆ S such that S′ is a partition of R.

Assume the utility of a player ws for s ∈ S increases. This is only possible if ws is in the
same coalition as xs. Clearly, the coalition formed is {ws, xs} because coalition {ws, xs, ys}
brings a utility of 2 to ys. In that case ys needs to form a coalition {ys, zi, zj , zk} where
s = {i, j, k}. If ys forms a coalition {ys, zi, zj , zk}, then all players ys

′
for s′ ∈ (S \{s}) need

to form coalitions of the form {ys′ , zi′ , zj′ , zk′} such that s′ = {i′, j′, k′}. Otherwise, their
utility of 3 decreases. This is only possible if there exists a set S′ ⊆ S of R such that S′ is
a partition of R.

Assume that there exists a partition π′ that Pareto dominates π and utility of a player
uπ′(zr) > uπ(zr) for some r ∈ R. This is only possible if each zr forms the coalition of
the form {zr, zr′ , zr′′ , ys} where s = {r, r′, r′′}. This can only happen if there exists a set
S′ ⊆ S of R such that S′ is a partition of R.

The fact that checking whether a partition is Pareto optimal is coNP-complete has no
obvious implications on the complexity of computing a Pareto optimal partition. In fact
we present a polynomial-time algorithm to compute a partition which is Pareto optimal for
strict preferences.

Theorem 4. For strict preferences, a Pareto optimal partition can be computed in polyno-
mial time.

Proof. We first describe the algorithm. Set RemainingPlayers to N and set i to 1. Take any
player li ∈ RemainingPlayers and form a coalition Si in which players j ∈ RemainingPlayers
such that vli(j) > 0 are added. Player li will be called the leader of coalition Si. Remove Si
from RemainingPlayers. Increment i by 1 and repeat until RemainingPlayers = ∅. Return
{S1, . . . , Sm}.

We now prove the correctness of the algorithm via induction on the number of coalitions
formed. The induction hypothesis is: Consider the kth first formed coalitions S1, . . . , Sk.
Assume, there exists a partition π′ 6= π, such that π′ Pareto dominates π. Then S1, . . . , Sk ∈
π′. Less formally and in other words, the hypothesis can be stated as follows: Assume that
the first k coalitions S1, . . . , Sk have formed. Then neither of the following can happen:

1. Some players from S1, . . . , Sk move out of their respective coalitions and cause a Pareto
improvement.

2. Some players from N \⋃i∈{1,...,k} Si move to players in coalitions S1, . . . , Sk and cause
a Pareto improvement.

Base case: Consider the coalition S1. Then l1, the leader of S1 has no incentive to leave.
If he leaves with a subset of players in S1, he can only become less happy. Other players
from S1 cannot leave S1 because their leaving makes at least one player less happy. The
only possibility left is if S1 joins B ⊆ (N \ S1) to cause a Pareto improvement. We know
that this is not possible as player l1 would be worse off. Similarly, no player j can move
from N \ S1 and cause a Pareto improvement because l1 becomes worse off.
Induction step: Assume that the hypothesis is true. Then we prove that the same holds
for the formed coalitions S = S1, . . . , Sk, Sk+1. By the hypothesis, we know that player
cannot leave coalitions S1, . . . , Sk and cause a Pareto improvement and since preferences
are strict, no player can move from N \⋃

i∈{1,...,k} Si move to coalitions in S1, . . . , Sk and
cause a Pareto improvement as at least one player in Sk+1 dislike him.

Now consider Sk+1. The leader of Sk+1 is lk+1. We first show that lk+1 cannot cause
a Pareto improvement by moving to a coalition outside of Sk+1. This is clear because lk+1

can only lose utility when he leaves coalition Sk+1 with a subset of or all of the players.
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Similarly, other players in Sk+1 cannot move out of Sk+1 without decreasing the payoff of
some player in Sk+1. Similarly, since the preferences are strict, no player can move from
N \⋃

i∈{1,...,k+1} Si and cause a Pareto improvement.

A standard criticism of Pareto optimality is that it can lead to inherently unfair allo-
cations. To address this criticism, the algorithm can be modified to obtain less lopsided
partitions. Whenever an arbitrary player is selected to become the ‘leader’ among the re-
maining players, choose a player that does not get extremely high elitist social welfare among
the remaining players. Nevertheless, even this modified algorithm may output an partition
that fails to be individually rational.4

Another natural algorithmic question is to check whether it is possible for all players
to attain their maximum possible utility at the same time. We observe that this problem
can be solved in polynomial time for any separable game. We will omit the details of the
algorithm but the general idea behind the algorithm is to build up coalitions and ensure
that a player i and F (i), all the player i likes are in the same coalition. While ensuring this,
if there is a player j and a player j′ ∈ E(j) (disliked by j), then return ‘no.’

5 Complexity of envy-freeness

Envy-freeness is a well-sought criterion in resource allocation, especially cake cutting.
Lipton et al. (2004) proposed envy-minimization in different ways and examined the com-
plexity of minimizing envy in resource allocation settings. Bogomolnaia and Jackson (2002)
mentioned envy-freeness in hedonic games but focused on stability in hedonic games. We
already know that envy-freeness can be easily achieved by the partition of singletons.5

Therefore, in conjunction with envy-freeness, we seek to satisfy other properties such as
stability or Pareto optimality. A partition is Nash stable is there is no incentive for a player
to be deviate to another (possibly empty) coalition. For symmetric ASHGs, it is known
that Nash stable partitions always exists and they correspond to partitions for which the
utilitarian social welfare is a local optimum (see, e.g., Bogomolnaia and Jackson, 2002).
We now show that for symmetric ASHGs, there may not exist any partition which is both
envy-free and Nash stable.

Example 1. Consider an ASHG (N,P) where N = {1, 2, 3} and P is defined as follows:
v1(2) = v2(1) = 3, v1(3) = v3(1) = 3 and v2(3) = v3(2) = −4. Then there exists no partition
which is both envy-free and Nash stable.

We use the game in Example 1 as a gadget to prove the following.6

Theorem 5. For symmetric preferences, checking whether there exists a partition which is
both envy-free and Nash stable is NP-complete in the strong sense.

Proof. The problem is clearly in NP since envy-freeness and Nash stability can be verified
in polynomial time. We reduce the problem from E3C. Let (R,S) be an instance of E3C
where R is a set and S is a collection of subsets of R such that |R| = 3m for some positive
integer m and |s| = 3 for each s ∈ S. (R,S) can be reduced to an instance (N,P) where
(N,P) is an ASHG defined in the following way. Let N = {ys | s ∈ S}∪{zr1 , zr2 , zr3 | r ∈ R}.
We set all preferences as symmetric. The players preferences are as follows:

4It can be shown that, for general preferences, computing a partition that is Pareto optimal and individ-
ually rational at the same time is weakly NP-hard.

5The partition of singletons also satisfies individual rationality.
6Example 1 and the proof of Theorem 5 also apply to the combination of envy-freeness and individual

stability and to that of envy-freeness and contractual individual stability where individual stability and
contractual individual stability are variants of Nash stability (Bogomolnaia and Jackson, 2002).
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• For all r ∈ R, vzr
1
(zr2) = vzr

2
(zr1) = 3, vzr

1
(zr3) = 3 and vzr

2
(zr3) = vzr

3
(zr2) = −4.

• For all s = {i, j, k} ∈ S, vzi
1
(zj1) = vzi

1
(zk1 ) = vzj

1
(zk1 ) = vys(zi1) = vys(zj1) = vys(zk1 ) =

1.

• For all a, b ∈ N for which valuations have not been defined, va(b) = vb(a) = −4

We note that −4 is a sufficiently large negative valuation to ensure that if va(b) = vb(a) =
−4, then a and b will get negative utility if they are in the same coalition. We show that
there exists an envy-free and Nash stable partition for (N,P) if and only if (R,S) is a ‘yes’
instance of E3C.

Assume that there exists S′ ⊆ S such that S′ is a partition of R. Then there exists a
partition π = {{ys, zi1, zj1, zk1} | s = {i, j, k} ∈ S′} ∪ {{zr2}, {zr3} | r ∈ R} ∪ {{s} | s ∈ S \ S′}.
It is easy to see that partition π is Nash stable and envy-free. Players zr1 and zr3 both had
an incentive to be with each other when they are singletons. However, each zr1 now gets
utility 3 by being in a coalition with zr

′
1 , zr

′′
1 and ys where s = {r, r′, r′′} ∈ S. Therefore

zr1 has no incentive to be with zr3 and zr3 has no incentive to join {zr′1 , zr
′

1 , z
r′′
1 , ys} because

vzr
3
(zr
′

1 ) = vzr
3
(zr
′′

1 ) = vzr
3
(ys) = −4. Similarly, no player is envious of another player.

Assume that there exists no partition S′ ⊆ S of R such that S′ is a partition of R. Then,
there exists at least one r ∈ R such that zi1 is not in the coalition of the form {zr1 , zr

′
1 , z

r′′
1 , ys}

where s = {r, r′, r′′} ∈ S. Then the only individually rational coalitions which zr1 can form
are the following {zr1}, {zr1 , zr3}, {zr1 , zr2} or {zr1 , zr

′
1 } where r, r′ ∈ s for some s ∈ S. In the

first case, zr1 wants to deviate to {zr3}. In the second case, zr2 is envious and wants to replace
zr3 . In the third case, zr3 is envious and wants to replace zr2 . In the fourth case, zr3 is envious
and wants to replace zr

′
1 . Therefore, there exists no partition which is both Nash stable and

envy-free.

While the existence of a Pareto optimal partition and an envy-free partition is guaran-
teed, we show that checking whether there exists a partition which is both envy-free and
Pareto optimal is hard (Corollary 1). To prove the result, we first define the resource allo-
cation setting. A resource allocation problem is a tuple (I,X,w) where I is a set of players
(agents), X is the set of indivisible objects and w : I ×X → (R) is the weight function. A
resource allocation a : I → 2X is such that for all i and j 6= i, a(i) ∩ a(j) = ∅. A resource
allocation a dominate a′ if and only if 1) for all a(i) %i a

′(i) and 2) there exists i such
that a(i) %i a

′(i). A resource allocation is Pareto optimal if it is not dominated by another
resource allocation.

Theorem 6. (Theorem 2, de Keijzer et al. (2009)) The problem ∃-EEF-ADD of checking
the existence of an envy-free and Pareto optimal resource allocation is Σp2-complete.

We can use the result from de Keijzer et al. (2009) to prove the following.

Corollary 1. Checking whether there exists a partition which is both Pareto optimal and
envy-free is Σp2-complete.

Proof. The problem has a yes instance if there exists an envy-free partition that Pareto
dominates every other partition. Therefore the problem is in the complexity class NPNP =
Σp2. We now prove that the problem is Σp2-hard. We provide a polynomial-time reduction ∃-
EEF-ADD to the problem of checking whether there exists a partition which is both Pareto
optimal and envy-free.

Consider an instance (I,X,w) of a resource allocation problem. Let W =∑
i∈I,xj∈X |w(i, xj)|. The instance (I,X,w) can be reduced to an instance of an ASHG

G where N = I ∪X and
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• For all i ∈ I, xj ∈ X, vi(xj) = w(i, xj) and vxj (i) = 0.

• For all xj , xk, vxi(xj) = vxj (xi) = 0.

• For all i, j ∈ I, vi(j) = vj(i) = −W |I ∪X|.
It is clear that for any Pareto optimal partition π, there exist no i, j ∈ I ⊂ N such that

i 6= j and j ∈ π(i). Assume that this were not the case and there exist i, j ∈ I ⊂ N such
that i 6= j and j ∈ π(i). Then i and j both get negative value because

∑
k∈π(i) vi(k) =∑

k∈(π(i)\{j}) vi(k) − W < 0 and
∑
k∈π(i) vj(k) =

∑
k∈(π(i)\{i}) vj(k) − W < 0. Then i

and j can be separated to form singletons to get another partition π′, where the value of
every other player k ∈ (N \ {i, j}) gets the same value while i and j get at least zero value.
Therefore there is a one-to-one correspondence between any such partition π and allocation
a where a(i) = π(i) \ {i}. It now easy to see that π is Pareto optimal and envy-free in G if
and only if a is a Pareto optimal and envy-free allocation.

The results of this section show that, even though envy-freeness can be trivially satisfied
on its own, it becomes much more delicate when considered in conjunction with other
desirable properties.

6 Conclusions

In this paper, we studied the complexity of partitions in additively separable hedonic games
that satisfy standard criteria of fairness and optimality. We showed that computing a
partition with maximum egalitarian or utilitarian social welfare is NP-hard in the strong
sense whereas a Pareto optimal partition can be computed in polynomial time when pref-
erences are strict. Interestingly, checking whether a given partition is Pareto optimal is
coNP-complete even in the restricted setting of strict and symmetric preferences. We also
showed that checking the existence of partition which satisfies not only envy-freeness but an
additional property like Nash stability or Pareto optimality is computationally hard. The
complexity of computing a Pareto optimal partition for ASHGs with general preferences
is still open. Since the grand coalition has special significance in coalitional game theory,
it would be interesting to study the complexity of checking whether the grand coalition is
Pareto optimal. Other directions for future research include approximation algorithms to
compute maximum utilitarian or egalitarian social welfare for different representations of
hedonic games.
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Fractional Solutions for NTU-Games

Péter Biró1 and Tamás Fleiner2

Abstract

In this paper we survey some applications of Scarf’s Lemma. First, we introduce the
notion of fractional core for NTU-games, which is always nonempty by the Lemma.
Stable allocation is a general solution concept for games where both the players and
their possible cooperations can have capacities. We show that the problem of finding
a stable allocation, given a finitely generated NTU-game with capacities, is always
solvable by a variant of Scarf’s Lemma. Finally, we describe the interpretation of
these results for matching games.

1 Introduction

Complex social and economic situations can be described as games where the players may
cooperate with each other. Most studies in cooperative game theory focus on the issue of
how the participants form disjoint coalitions, and sometimes also on the way the members
of coalitions share the utilities of their cooperations among themselves (in case of games
with transferable utility). However, in reality, an agent in the market (or any individual in
some social situation) may be involved in more than one cooperation at a time, moreover,
a cooperation may be performed with different intensities. For instance, an employer can
have several employees and their working hours can be different (but within some reasonable
limits).

Scarf [20] proved that every balanced NTU-game (i.e, cooperative game with non-
transferable utilities) has a nonempty core. His theorem was based on a lemma, which
became known as Scarf’s Lemma, as its importance has been recognised for its own right.

In this paper, we give a new interpretation of the fractional solutions which are obtained
by the Scarf algorithm for different settings. First we consider the original setting of the
Lemma for finitely generated NTU-games, and we describe the meaning of the output in
terms of fractional core. We show the correspondence between this notion and the concept
of fractional stable matchings for hypergraphs. We conclude Section 2 by explaining how
the normality of a hypergraph implies the nonemptiness of the core for the corresponding
NTU-games. In Section 3, we define the stable allocation problem for hypergraphs, which
corresponds to the problem of finding a fractional core for NTU-games where the players
can be involved in more than one coalition and the joint activities can be performed at
different intensity levels (up to some capacity constrains). We show that a variant of the
Scarf Lemma implies the existence of the latter solution as well. In Section 4, we apply
these results for matching games and we derive some well-known theorems in this context.
Finally, we present some important open problems and new research directions.

2 Fractional core - fractional stable matchings

In this section, first we describe Scarf’s Lemma and we give a new interpretation of the
fractional results obtained by the Lemma.

1Supported by EPSRC grant EP/E011993/1 and by OTKA grant K69027.
2Supported by OTKA grant K69027.
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2.1 Definitions, preliminaries

We recall the definition of n-person games with nontransferable utility (NTU-game for short).

Definition 1. An NTU-game is given by a pair (N, V ), where N = {1, 2, . . . , n} is the set
of players and V is a mapping of a set of feasible utility vectors, a subset V (S) of RS to
each coalition of players, S ⊆ N , such that V (∅) = ∅, and for all S ⊆ N , S 6= ∅:
a) V (S) is a closed subset of RS

b) V (S) is comprehensive, i.e. if uS ∈ V (S) and ũS ≤ uS then ũS ∈ V (S)

c) The set of vectors in V (S) in which each player in S receives no less than the maximum
that he can obtain by himself is a nonempty, bounded set.

One of the most important solution concepts is the core.

Definition 2. A utility vector uN ∈ V (N) is in the core of the game, if there exists no
coalition S ⊆ N with a feasible utility vector ũS ∈ V (S) such that uN

i < ũS
i for every player

i ∈ S. Such a coalition is called blocking coalition.

An NTU-game (N, V ) is superadditive if V (S) × V (T ) ⊆ V (S ∪ T ) for every pair of
disjoint coalitions S and T . In what follows, we restrict our attention to superadditive
games.

Partitioning games are special superadditive games. Given a set of basic coalitions
B ⊆ 2N , that contain all singletons (i.e. every single player has the right not to cooperate
with the others), a partitioning game (N, V,B) is defined as follows: if ΠB(S) denotes the
set of partitions of S into basic coalitions, then V (S) can be generated as:

V (S) = {uS ∈ RS |∃π = {B1, B2, . . . , Bk} ∈ ΠB(S) : uS ∈ V (B1)× V (B2)× · · · × V (Bk)}

This means that uS is a feasible utility vector of S if there exist a partition π of S into
basic coalitions such that each utility vector uS|Bi can be obtained as a feasible utility vector
by basic coalition Bi in π.

Given an NTU-game (N, V ), let U(S) be the set of Pareto optimal utility vectors of the
coalition S, i.e. uS ∈ U(S) if there exists no ũS ∈ V (S), where uS 6= ũS and uS ≤ ũS .

A utility vector uS ∈ V (S) is separable if there exist a proper partition π of S into
subcoalitions S1, S2, . . . , Sk such that uS|Si is in V (Si) for every Si ∈ π. A utility vector
that is non-separable, Pareto-optimal and in which each player receives no less than the
maximum that he can obtain by himself is called an efficient vector. A coalition S is essential
if V (S) contains an efficient utility vector. In other words, a coalition S is essential, if its
members can obtain an efficient utility vector that is not achievable independently by its
subcoalitions. The set of essential coalitions is denoted by E(N, V ).

We say that a coalition S is not relevant if for every utility vector uS ∈ V (S) there exists
a proper subcoalition T ⊂ S such that uS |T is in V (T ). The set of relevant coalitions is
denoted by R(N, V ). The idea behind this notion is that if a non-relevant coalition S is
blocking with a utility vector uS , then one of its subcoalitions, say T1, must be also blocking
with utility vector uT1 = uS |T1 . Moreover, if T1 is not relevant or uT1 is separable, then we
can find another coalition T2 ⊂ T1, such that uT2 = uT1 |T2 = uS |T2 , an so on. Continuing
this argument, it is clear that there must be a relevant coalition Ti ⊂ S, that is blocking
with a non-separable vector uTi = uS|Ti . This observation implies the following Proposition:

Proposition 1. A utility vector uN ∈ V (N) is in the core if and only if it is not blocked by
any relevant coalition with an efficient utility vector.
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Obviously, if a coalition is not essential, then it cannot be relevant either. In a par-
titioning game, the set of essential coalitions must be a subset of the basic coalitions by
definition.

Proposition 2. For every partitioning game (N, V,B), R(N, V,B) ⊆ E(N, V,B) ⊆ B holds.

Scarf [20] observed that the previously introduced notions are purely ordinal in character:
they are invariant under a continuous monotonic transformation of the utility function of
any individual. Hence, without loss of generality, we may assume that U{i} = {0} for every
singleton, and all the efficient utility vectors are nonnegative. Moreover, the discussion can
be carried out on an abstract level with the outcomes for each individual represented by
arbitrary ordered sets, as we describe this in detail below.

Suppose that in order to obtain a particular non-separable vector uS,k in U(S), the
members of S have to perform a joint activity, say aS,k. Let AS denote the set of activities
that yield efficient utility vectors in U(S). The preference of a player over the possible
activities in which he can be involved is determined by the utilities that he obtains in these
activities. Formally, we suppose that aS,k ≤i aT,l ⇐⇒ uS,k

i ≤ uT,l
i for any pair of activities

aS,k and aT,l, where i ∈ S and i ∈ T .
Considering an efficient utility vector uN,l of the grandcoalition N , the non-separability

implies that uN,l corresponds to a joint activity aN,l of the entire set of players. Otherwise,
if uN,l is separable, then uN,l can be obtained as a direct sum of independent efficient utility
vectors of essential subcoalitions that form a partition of the grandcoalition. This can be
considered as a set of independent activities of the subcoalitions. An outcome of the game,
denoted by X then can be regarded as a partition π of the players and a set of activities Aπ

performed independently by the coalitions in π, so let X = (π, Aπ). An outcome X is judged
by a player i according to the activity he is involved in, denoted by ai(X). An outcome is
in the core of the game, or in other words, it is stable if there exist no blocking coalition
S and an activity aS,k that is strictly preferred by all of its members, i.e., aS,k >i ai(X)
for every i ∈ S. (This is equivalent to the blocking condition uN,l

i < ũS
i , if the outcome X

corresponds to the utility vector uN,l.)

uS,1

uS,2

uS,3

uS,4

uS,k

Figure 1: Approximation with finite number of efficient utility vectors.

An NTU-game is finitely generated if for every essential coalition S, U(S) contains a
finite number of vectors. Here, the preference order of a player over the set of activities, in
which he can be involved, can be represented by preference lists. As Scarf observed in [20]

285



and [21], a general NTU-game can be approximated by a finitely generated NTU-game (see
an illustration in Figure 1). Here, we will not discuss this question in details.

If for every essential coalition S, in a given NTU-game, U(S) contains only one single
vector, uS then an outcome of the game is simply a partition, since each essential coalition
has only one activity to perform. So here, instead of activities, each player has a preference
order over the essential coalitions in which he can be a member. These games are called
coalition formation games (cfg for short), and an outcome that is in the core of the game
is called a core-partition. The following example illustrates a cfg.

Example 1. Suppose that we are given 6 players: A, B, C, D, E and F , and 4 possible basic
coalitions with corresponding joint activities. The first activity, b (bridge) can be played by
A, B, C and D, the second one, p (poker) can be played by C, D and E. Finally, B can play
chess with C (denoted by c1) and D can play chess with F (denoted by c2). The preferences
of the players over the joint activities are as follows.

D

A

B

C

E

F

Activities Participants Players Preference lists
b : {A, B, C, D} B : b c1

p : {C, D, E} C : p b c1

c1 : {B, C} D : b p c2

c2 : {D, F}

Here, {p, {A}, {B}, {F}} is a core-partition, since b is not blocking because C prefers his
present coalition p to b, similarly, c1 is not blocking because C prefers playing poker with D
and E to playing chess with B, and c2 is not blocking because D also prefers playing poker
to playing chess with F . One can easily check that {b, {E}, {F}} is also a core-partition, but
the partition {c1, c2, {A}, {E}} is not in the core, since p and b are both blocking coalitions.

2.2 Fractional core by Scarf’s Lemma

First, we present Scarf’s Lemma [20] and then we introduce the notion of fractional core.
The following description of the Lemma is due to Aharoni and Fleiner [1] (here [n] denotes
the set of integers 1, 2, . . . , n, and δi,j = 1 if i = j and 0 otherwise).

Theorem 3 (Scarf, 1967). Let n, m be positive integers, and b be a vector in Rn
+. Also

let A = (ai,j), C = (ci,j) be matrices of dimension n × (n + m), satisfying the following
three properties: the first n columns of A form an n × n identity matrix (i.e. ai,j = δi,j

for i, j ∈ [n]), the set {x ∈ Rn+m
+ : Ax = b} is bounded, and ci,i < ci,k < ci,j for any

i ∈ [n], i 6= j ∈ [n] and k ∈ [n + m] \ [n].
Then there is a nonnegative vector x in Rn+m

+ such that Ax = b and the columns of C
that correspond to supp(x) form a dominating set, that is, for any column i ∈ [n + m] there
is a row k ∈ [n] of C such that ck,i ≤ ck,j for any j ∈ supp(x).

Let the columns of A and C correspond to the efficient utility vectors (or equivalently
to some activities) of the essential coalitions in a finitely generated NTU-game as follows.
If the k-th columns of A and C correspond to the utility vector uS,l, then let ai,k be 1 if
i ∈ S and 0 otherwise, (so the k-th column of A is the membership vector of coalition S).
Furthermore, let ci,k = uS,l

i if i ∈ S and ci,k = M otherwise, where M is a sufficiently large
number. We set ci,i = u

{i}
i = 0 and ci,j = 2M if i 6= j ≤ n. Finally, let b = 1N . By applying

Scarf’s Lemma for this setting, we obtain a solution x that we call a fractional core element
of the game. We refer to the set of fractional core elements as the fractional core of the
game.
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What is the meaning of a fractional core element? Let us suppose first, that a fractional
core element x is integer, so xi ∈ {0, 1} for all i. In this case we show that x gives a utility
vector uN that is in the core of the game. Let uN be the utility vector of N received by
summing up those independent essential utility vectors for which x(uS,k) = 1, then uN is
obviously in V (N) by superadditivity. To prove that uN must be in the core of the game,
let uS,k be an essential utility vector, with x(uS,k) = 0. By the statement of Scarf’s Lemma,
there must be a player i and an essential utility vector uT,l, such that i ∈ T , x(uT,l) = 1
and uS,k

i ≤ uT,l
i , so S cannot be a blocking coalition with the efficient utility vector uS,k.

In other words, the Ax = 1N condition of the solution says that x gives a partition
π of N and a set of activities Aπ that are performed (we say that aS,k is performed, i.e.
aS,k ∈ Aπ, if x(uS,k) = 1, implying that S is a coalition in partition π). Let X = (π, Aπ)
be the corresponding outcome, and let aS,k be an activity not performed, (i.e. aS,k /∈ Aπ).
Then, by Scarf’s Lemma there must be a player i of S for which the performed activity,
ai(X) he is involved in is not worse than aS,k, i.e., aS,k ≤i ai(X), thus S cannot be a
blocking coalition with activity aS,k.

In the non-integer case, we shall regard x(uS,k) as the intensity at which the activity aS,k

is performed by coalition S. The Ax = 1N condition means that each player participates
in activities with total intensity 1, including maybe the activity that this player performs
alone. The domination condition says that for each activity, which is not performed with
intensity 1, there exists a member of the coalition who is not interested in increasing the
intensity of this activity, since he is satisfied by some other preferred activities that fill his
remaining capacity. Formally, if x(uS,k) < 1 then there must be a player i in S such that∑

aT,l≥iaS,k x(uT,l) = 1.
In Example 1, x(p) = 1

3 , x(b) = 2
3 is a fractional core element, since for each activity

there is at least one player who is not interested in increasing the intensity of that activity.
In our corresponding technical report [5] we illustrate with an example that the fractional
core of a game may admit a unique fractional core element where the intensities of certain
activities can be arbitrary small nonnegative values.

2.3 Fractional stable matching for hypergraphs

For a finitely generated NTU-game, the problem of finding a stable outcome is equivalent
to the stable matching problem (sm for short) for a hypergraph, as defined by Aharoni
and Fleiner [1]. Here, the vertices of the hypergraph correspond to the players, the edges
correspond to the efficient vectors (or to activities being performed by the players concerned),
and the preference of a vertex over the edges it is incident with comes from the preference
of the corresponding player over the activities he can be involved in. This is called a
hypergraphic preference system. A matching corresponds to a set of joint activities performed
by certain coalitions that form a partition of the grandcoalition together with the singletons
(i.e. with the vertices not covered by the matching). A matching M is stable if there exist
no blocking edge, i.e. an edge e /∈ M such for that every vertex v covered by e, either v is
unmatched in M or strictly prefers e to the edge that covers v in M . The corresponding set
of activities gives a stable outcome, since there exist no blocking coalition with an activity
that is strictly preferred by all of its members. Note that different activities performed by
the same players are represented by multiple edges in the corresponding hypergraph. A
hypergraph which represents the efficient utility vectors of a cfg is simple (i.e, does not
contain multiple edges and loops). 3

3We shall note that Aharoni and Fleiner [1] supposed in their model that the preferences of the players
are strict (i.e., no player is indifferent between any pair of activities). In the literature on stable matching,
the setting where players may have ties in their lists is referred to as stable matching problem with ties. In
this case, a matching M is (weakly) stable if it does not admit a blocking edge (where the definition of a
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The notion of a fractional stable matching for an instance of sm for a hypergraph was
defined by Aharoni and Fleiner [1] as follows. A function x assigning non-negative weights
to edges of the hypergraph is called a fractional matching if

∑
v∈h x(h) ≤ 1 for every vertex

v. A fractional matching x is called stable if every edge e contains a vertex v such that∑
v∈h,e≤vh x(h) = 1. The existence of a fractional stable matching can be verified by Scarf’s

Lemma just like the existence of a fractional core element. Actually, these two notions are
basically equivalent.

To show the equivalence formally, we consider the polytope of intensity vectors {x|Ax =
1N , x ≥ 0} on the one hand, where A is the membership-matrix of the efficient utility
vectors (or the corresponding activities) of dimension n × (n + m) as defined by Scarf’s
Lemma. On the other hand, the fractional matching polytope is {x|Bx ≤ 1N , x ≥ 0}, where
B is the vertex-edge incidence matrix of the hypergraph of dimension n × m. Obviously,
A = (In|B), so the difference is only the n× n identity matrix, i.e. the membership-matrix
of the singletons. So, there is a natural one-to-one correspondence between the elements of
the two polytopes: if xm is a fractional matching of dimension m, then let x̄v = 1N −Axm

be a vector of dimension n, that gives the unfilled intensities of the players (or in other
words, the intensities of the single activities). The direct sum of these two independent
vectors, x is an intensity vector of dimension n +m, and vice versa. The stability condition
is equivalent to the domination condition of Scarf’s Lemma.

Aharoni and Fleiner [1] showed that a fractional stable matching can be assumed to be
an extremal point of the fractional matching polytope. This fact comes from a statement
similar to the following Proposition:

Proposition 4. If x is a fractional core element of a finitely generated NTU-game, and
x =

∑
αix

i, where αi > 0 for all i,
∑

αi = 1 and xi satisfies the Axi = 1N and xi ≥ 0
conditions, then each xi must be a fractional core element.

The proof of this Proposition is obvious, since supp(xi) ⊆ supp(x), that implies the
dominating property of the fractional core element.

Corollary 5. For any finitely generated NTU-game, there exists a fractional core element
that is an extremal point of the polytope {x|Ax = 1N , x ≥ 0}.

Corollary 5 implies that if, for a given finitely generated NTU-game, all the extremal
points of the above polytope are integers (or, in other words, the polytope has the integer
property) then the game has a nonempty core.

2.4 Normality implies the nonemptiness of the core

The definition of a normal hypergraph is due to Lovász [19]. If H is a hypergraph and H ′

is obtained from H by deleting edges, then H ′ is called a partial hypergraph of H . The
chromatic index χe(H) of a hypergraph H is the least number of colours sufficient to colour
the edges of H so that no two edges with the same colour have a vertex in common. Note
that the maximum degree, ∆(H) (that is, the maximum number of edges containing some
one vertex) is a lower bound for the chromatic index. A hypergraph H is normal if every
partial hypergraph H ′ of H satisfies χe(H ′) = ∆(H ′). Obviously, the normality is preserved
by adding or deleting multiple edges or loops. The following theorem of Lovász [19] gives
an equivalent description of normal hypergraphs.

blocking edge is the same as described above). However, an instance of sm with ties can be always derived
to another instance of sm (with no ties) by simply breaking the ties arbitrary, and a matching that is stable
for the derived instance is (weakly) stable for the original one. The same applies for the core and fractional
core in the context of NTU-games. In fact, the Scarf algorithm starts with a perturbation of matrix C in
the case that any player is indifferent between two activities she may be involved in (i.e., when her utilities
in these two activities are the same for her).
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Theorem 6 (Lovász). The fractional matching polytope of a hypergraph H has the integer
property if and only if H is normal.

Suppose that for a finitely generated NTU-game the set of essential coalitions forms a
normal hypergraph. The hypergraph of the corresponding sm must be also normal, since
it is obtained by adding multiple edges and by removing the loops. By Theorem 6, the
fractional matching polytope, {x|Bx ≤ 1N , x ≥ 0} has the integer property, and so has
the polytope of intensity vectors, {x|Ax = 1N , x ≥ 0} as it was discussed previously. This
argument and Corollary 5 verify the following Lemma 7.

Lemma 7. If, for a finitely generated NTU-game, the set of essential coalitions, E(N, V )
forms a normal hypergraph, then the core of the game is nonempty.

By Lemma 7 and Proposition 2 the following holds.

Theorem 8. If the set of basic coalitions, B forms a normal hypergraph, then every finitely
generated NTU-game (N, V,B) has a nonempty core.

Let AB denote the membership-matrix of the set of basic coalitions B. The fact that the
integer property of the polytope {x|ABx = 1N , x ≥ 0} implies the nonemptiness of every
NTU-game (N, V,B) was proved first by Vasin and Gurvich [23], and independently, by
Kaneko and Wooders [14]. Later, Le Breton et al. [18], Kuipers [17] and Boros and Gurvich
[8] observed independently that the integer property of the polytope {x|ABx = 1N , x ≥ 0}
is equivalent to the integer property of the matching polytope {x|ABx ≤ 1N , x ≥ 0}, and to
the normality of the corresponding hypergraph.

3 Fractional b-core with capacities - stable allocations

In what follows, we introduce the notion of fractional b-core element as a solution of Scarf’s
Lemma with the original settings. Let the same matrices A and C of dimension n× (n+m)
correspond to the set of effective utility vectors (or activities) in a finitely generated NTU-
game as it was described in the previous section. The only modification is that now b is an
arbitrary vector of Rn

+ (instead of 1N ). Let x ∈ Rn+m
+ be referred to as a fractional b-core

element if x is a solution of the Scarf Lemma for the above setting.
Here, b(i) is an upper bound for the total intensity at which player i is capable to

perform activities, since
∑

i∈S x(uS,l) = b(i). The domination condition of the Lemma says
that for every activity aT,k, there exists some player i who is not interested in increasing
the intensity of aT,k, because his remaining intensity is filled with better activities, i.e., if
uT,k corresponds to activity aT,k, then

∑
uS,l

i ≥uT,k
i

x(uS,l) = b(i).
In fact, to produce a fractional core element (in other words, a fractional 1N -core element)

with the algorithm of Scarf, we perturb not just matrix C (in case of indifferences), but
also the vector 1N , to avoid the degeneracy. The standard nondegeneracy assumption
provides that all variables associated with the n columns of a feasible basis for the equations
Ax̃ = b̃ = 1N + εN are strictly positive. Thus, the perturbation uniquely determines the
steps of Scarf algorithm. By rounding the final fractional b̃-core element x̃, a fractional core
element x is found. The following simple Lemma says that the fractional b-core element has
the scaling property.

Lemma 9. Given a finitely generated NTU-game, and a positive constant λ. Suppose that
b′ = λ · b, then x is a fractional b-core element if and only if x′ = λ ·x is a fractional b′-core
element.
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Let us suppose that the intensities of the activities in the finitely generated NTU-game
are constrained by capacities. Formally, for each joint activity aS,l and for the corresponding
utility vector uS,l, there may exist a nonnegative capacity c(uS,l) for which x(uS,l) ≤ c(uS,l)
is required.

The stable allocation problem can be defined for hypergraphs as follows. Suppose that
we are given a hypergraph H and for each vertex v a strict preference order over the edges
incident with v (again, this corresponds to the preferences of the players over the activities in
which they can be involved). Suppose, that we are given nonnegative bounds on the vertices
b : V (H) → R+ and nonnegative capacities on the edges c : E(H) → R+. A nonnegative
function x on the edges, is an allocation if x(e) ≤ c(e) for every edge e and

∑
v∈h x(h) ≤ b(v)

for every vertex v. An allocation is stable if every unsaturated edge e (i.e., every edge e with
x(e) < c(e)) contains a vertex v such that

∑
v∈h,e≤vh x(h) = b(v). In this case we say that

e is dominated at v. If every bound and capacity is integral then we refer to this problem
as the integral stable allocation problem.

Theorem 10. Every stable allocation problem for hypergraphs is solvable.

Proof. Suppose that we are given a given a hypergraph H . Let V (H) = {v1, v2, . . . , vn}
be the set of vertices and let E(H) = {e1, e2, . . . , em} be the set of edges. We define the
extended membership-matrix A, and the extended preference-matrix C of size (n + m) ×
(n + 2m) as follows.

The left part of A is an identity matrix of size (n + m) × (n + m), (i.e. ai,j = δi,j for
i, j ∈ [n + m]). At the bottom of the right side there is another identity matrix of size
m×m, so an+i,n+m+j = δi,j for i, j ∈ [m]. Finally, at the top of the right side we have the
vertex-edge incidence matrix of H (i.e. ai,n+m+j = 1 if vi ∈ ej and 0 otherwise for i ∈ [n]
and j ∈ [m]).

The top-right part of C correspond to the preference of the vertices (that is the preference
of the players over the activities). We require the following two conditions:

• ci,n+m+j < ci,n+m+k whenever vi ∈ ej ∩ ek and ej <vi ek;

• ci,n+m+j < ci,n+m+k whenever vi ∈ ej \ ek.

Furthermore, suppose that cn+i,n+m+i < cn+i,n+m+j for every i 6= j ∈ [m] in the
bottom-right part of C. Finally, let the left part of C be such that it satisfies the conditions
of Scarf’s Lemma. The constant vector, b ∈ Rn+m

+ is given by the bounds and capacities,
so let bi = b(vi) for i ∈ [n] and bn+j = c(ej) for j ∈ [m].

We shall prove that the fractional core element x, obtained by Scarf’s Lemma, gives
a stable allocation, xe by simply taking the last m coordinates of x. Here, xe

j is equal
to xe(ej) that is the weight of the edge ej (or equivalently, this is the intensity at which
the corresponding activity is performed). If x̄v and x̄e are the vectors obtained by taking
the [1, . . . , n] and [n + 1, . . . , n + m] coordinates of x, then these vectors correspond to the
remaining weights of the vertices and edges (or the remaining intensities of the players and
the activities), respectively.

Obviously, xe is an allocation by Ax = b, since the first n equations preserve the∑
v∈h xe(h) ≤ b(v) condition for every vertex v, and the last m equations preserve

xe(e) ≤ c(e) for every edge e.
To prove stability, let us consider an unsaturated edge ej and let us suppose that the

corresponding dominating row by the lemma has index k. First we show, that i ∈ [n]. From
Ax = b, obviously x̄e(ek) + xe(ek) = c(ek) for every edge ek. Since xe(ej) < c(ej), then
x̄e(ej) > 0, thus the assumptions on C imply that i 6= n + j, for other i ∈ [n + m] \ [n]
the contradiction is trivial. If i ∈ [n], then e is dominated at vi, since x̄v(vi) = 0 by the
assumptions on C, and the Ax = b condition for the i-th row together with the statement
of the lemma imply

∑
vi∈h,ej≤vi

h xe(h) = b(vi).
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4 Matching games

Matching games can be defined as partitioning NTU-games, where the cardinality of each
basic coalition is at most 2. For simplicity, in this section we suppose that no player is
indifferent between two efficient utility vectors, so their preferences over the joint activities
are strict. If a matching game is finitely generated, then the problem of finding an outcome
that is in the core is equivalent to a sm for a graphic preference system, where the edges of
the graph correspond to efficient utility vectors (and to joint activities).

4.1 Stable matching problem

If the graph of a matching game is simple (i.e, if it contains no multiple edges and loops)
then the problem of finding a core-partition for the resulting cfg is called stable roommates
problem. Otherwise, if the graph has multiple edges then we may refer to sm as stable
roommates problem with multiple activities.

Let us suppose the set of players N can be divided into two parts, say M and W , such
that every two-member basic coalition contains one member from each side (so if {m, w} ∈ B
then m ∈ M and w ∈ W ). In this case, we get a two-sided matching game (in the general
nonbipartite case the matching game is called one-sided).

If a two-sided matching game is finitely generated then the corresponding graphic rep-
resentation of the sm is bipartite. For bipartite graphs, the following Proposition is well-
known.

Proposition 11. Every bipartite graph is normal.

Proposition 11 and Theorem 8 imply the following result.

Theorem 12. Every finitely generated two-sided matching game has a nonempty core.

Theorem 12 was proved for every two-sided matching game, originally called central
assignment game, by Kaneko [13]. For the corresponding cfg-s, called stable marriage
problems, this result was proved by Gale and Shapley [11].

A one-sided matching game can have an empty core, even for a cfg, as Gale and Shap-
ley [11] illustrated with an example. However the half-integer property of the fractional
matching polytope implies the existence of stable half-solutions. The following statement is
due to Balinski [4].

Theorem 13. The fractional matching polytope for every graph has only half-integer ex-
tremal points.

As Aharoni and Fleiner [1] showed, Theorem 13 and Corollary 5 imply that for every
matching game there exists a so-called half-core element, that is a fractional core element x
with the half-integer property, i.e. xi ∈ {0, 1

2 , 1}.
Theorem 14. If a matching game is finitely generated then it always has a half-core element.

For cfg-s, the fact that for every instance of sm there exists a stable half-matching was
proved by Tan [22]. Finally we note that an easy consequence of Theorem 13 and Lemma
9 is that for every finitely generated matching game, there always exists an integer 2N -core
element.
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4.2 Stable allocation problem for graphs

The stable allocation problem was introduced by Bäıou and Balinski [3] for bipartite graphs.
The integer version, where the allocation x is required to be integer on every edge for integer
bounds and capacities, was called the stable schedule problem by Alkan and Gale [2] (however
they considered a more general model, the case of so-called substitutable preferences).

Biró and Fleiner [6] generalised the algorithm of Bäıou and Balinski [3] for nonbipartite
graphs, resulting in a weakly polynomial algorithm that finds a half-integral stable allo-
cation for any given instance of integral stable allocation problem. Dean and Munshi [9]
strengthened this result by giving a strongly polynomial algorithm for the same problem.
But we shall note that the existence of a stable half-integer allocation is a consequence of
Theorem 10.

Theorem 15. For every integral stable allocation problem in a graph there exists a half-
integral stable allocation. If the graph is bipartite, then every integral stable allocation prob-
lem is solvable.

Proof. Suppose that we have a stable allocation x that has some weights that are not half-
integers. We create another stable allocation x′ with half-integer weights as follows. If x(e)
is not integer then let v be the vertex where e is dominated. Since b(v) is integer, there must
be another edge, f that is incident with v and has non-integer weight. Moreover, f cannot
be dominated at v. By this argument, it can be verified that the edges with non-integer
weights form vertex-disjoint cycles, moreover, in each such a cycle the fractional parts of
the weights are ε and 1 − ε alternately. If a cycle is odd, then ε must be 1

2 . If a cycle is
even, then ε can be modified to be 0 (or 1) in such a way that the obtained allocation x′

remains stable and has only half-integer weights.
If the graph is bipartite, thus has no odd cycle, then x′ has only integer weights, so x′ is

an integral stable allocation .

In [5] we give an integral stable allocation problem for a graph and we illustrate how a
half-integer stable allocation can be obtained with the Scarf algorithm.

5 Further directions

Guarantees for solvability. The original goal of Scarf [20] was to give a necessary con-
dition for the nonemptiness of the core for general NTU-games (and this condition was the
balancedness of the game). As we described in Section 3, if the coalition structure of an
NTU-game can be represented with a normal hypergraph then the core of the game is always
nonempty (regardless of the players’ preferences). The bipartite graph is an easy example
for normal hypergraphs, and so every two-sided matching game has nonempty core. But
what other games have this property? Our claim is that certain network games also have a
coalition structure where the underlying hypergraph is normal.
Understanding Scarf’s results. Scarf proved his Lemma in an algorithmic way. Is there
some deeper reasons for the correctness of the Lemma (and a more general interpretation
of the algorithm)? What is the relation of this result to other fundamental theorems, such
as the Sperner Theorem? There are some recent papers [15, 10] attempting to answer this
question, but yet, there still are many open problems regarding this issue.

Also, it would be interesting to know how the Scarf algorithm works for special games.
For instance, does the Scarf algorithm run in polynomial time for matching games?

At the beginning of the Scarf algorithm we perturb matrix C and vector b. By doing
so, the steps in the algorithm and the final output are fully determined. Can we output
every core element of a given NTU-game by using a suitable perturbation? How does the
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perturbation effect the solution, we obtain by the algorithm? For stable marriage problem
we observed that using small epsilons for men and larger epsilons for women we always
get the man-optimal stable matching. Can we output each stable matching by a suitable
perturbation? Is that true that the smaller epsilon we give to a woman the better partner
she is going to get in the resulting stable matching?
Further application of Scarf Lemma. It is possible that the contribution of the par-
ticipants are not equal in a cooperation. Imagine an internal project of a company where
the hours allocated to the employees involved can be different (e.g., a project manager may
have less work load than an engineer in terms of working hours). We can facilitate this
option easily for any stable matching or stable allocation problem (that we may call stable
allocation problem with contributions). We only need to use contribution vectors rather than
membership vectors when defining matrix A in Scarf’s Lemma, and the existence of a stable
solution is guaranteed. But can we find a stable integral solution in polynomial time for,
say, two-sided matching games?
Practical applications. As Gale and Shapley [11] envisaged, stable matching problems
turned out to be very useful models for real applications in two-sided markets. Centralised
matching schemes have been established worldwide to allocate residents to hospitals, stu-
dents to schools, and so on. In most cases, a stable solution can be found by the classical
Gale-Shapley algorithm. However, there are some special features, such as the presence of
couples in the residence allocation program, that can make the problem unsolvable (or even
if a stable matching exists, the problem of finding one can be NP-hard). Although if the
ratio of the couples is relatively small in a large market then a stable matching exists with
high probability and sophisticated heuristics may be able to find such solutions (see e.g.,
[16] and [7]). A new heuristic for this problem could be based on the Scarf algorithm for a
stable allocation problem, where a hyperedge would represent an application from a couple
to a pair of hospitals. If the solution obtained by the Scarf algorithm is integral then it
would correspond to a stable matching. We illustrate this application with an example in
[5].
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Dependence in Games and
Dependence Games

Davide Grossi and Paolo Turrini

Abstract

The paper provides a formal analysis of a notion of dependence between players in
a game. We will show: first, how this notion of dependence allows for an elegant
characterization of a property of reciprocity for the outcomes of a game; and second,
how it can be used to ground new cooperative solution concepts for strategic games,
where coalitions can force outcomes only in the presence of reciprocal dependences.

1 Introduction

The paper outlines a theory of dependence for strategic games. It moves from the following
definition of dependence, inspired by foundational literature on multi-agent systems (see
for instance [2, p.4]): player i depends on player j for reaching outcome s, within a given
game, if and only if j plays a strategy, in the profile determining s, which is a best response
(or a dominant strategy) not for j itself, but instead for i (Definition 8).

The aim of the paper is to provide a thorough analysis of the above definition. Con-
cretely, it presents two results. First, it shows that this notion of dependence allows for the
characterization of an original notion of reciprocity for strategic games (Theorem 1). Second,
it shows that this notion of dependence can be fruitfully applied to ground cooperative
solution concepts. These solution concepts are characterizable as the core of a specific class
of coalitional games—here called dependence games—where coalitions can force outcomes
only in the presence of reciprocity (Theorems 2 and 3). The paper generalizes and extends
results presented in [3].

2 Dependence in games

The section introduces some preliminary notions and notation from game theory and
proceeds to the definition and analysis of the notion of dependence.

2.1 Preliminary definitions and notation

The present section introduces the basic game-theoretic notions used in the paper. All
definitions will be based on an ordinal notion of preference. Our main sources are [5] and
[4].

Definition 1 (Game) A (strategic form) game is a tuple G = (N,S,Σi,�i, o) where: N is a set of
players; S is a set of outcomes; Σi is a set of strategies for player i ∈ N; �i is a total preorder on S;
o :
�

i∈N Σi → S is a bijective function from the set of strategy profiles to S. Strategy profiles will
be denoted σ, σ′, . . . .

We will also make use of the notion of sub-game.

Definition 2 (Sub-game of a strategic game) LetG = (N,S,Σi,�i, o) be a game, σ be a strategy
profile, and C ⊆ N. The subgame of G defined by σC is a game G ↓ σc = (N′,S′,Σ′i ,�′i , o′) such
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that: N′ = N − C; S′ = S − {s | ∃σ′ .. s = o(σ′)  σ′C , σC}; for all i ∈ N − C, Σ′i = σi;
for all i ∈ N − C, Σ′i =�i; o′ :

�
i∈N−C Σi → S′ is a bijection such that for all σ′ ∈ �i∈N−C Σi,

o′(σ′) = o(σ′, σC).

To put it in words, a subgame of G is nothing but what it is obtained from G once the
strategies of a set of players in C are fixed, or what is still ‘left to play’ once the players in C
have made their choice.

As to the solution concepts, we will work with Nash equilibrium, which we will refer to
also as best response equilibrium (BR-equilibrium), and the dominant strategy equilibrium
(DS-equilibrium).

Definition 3 (Equilibria) Let G be a game. A strategy profile σ is: a BR-equilibrium (Nash
equilibrium) iff ∀i ∈ N,∀σ′i ∈ Σi : o(σ) �i o(σ′i , σ−i); it is a DS-equilibrium iff ∀i ∈ N, σ′ ∈�

i∈N Σi : o(σi, σ′−i) �i o(σ′).

In addition to the games in strategic form (Definition 1) we will also work with coalitional
games, i.e., cooperative games with non-transferable pay-offs abstractly represented by
effectivity functions [4].

Definition 4 (Coalitional game) A coalitional game is a tuple C = (N,S,E,�i) where: N is a set
of players; S is a set of outcomes; E is function E : 2N → 22S ; �i is a total preorder on S.

An effectivity function associates to a coalition a set of sets of outcomes and the fact that
X ∈ E(C) is usually understood as the coalition C being able to force the interaction to end
up in an outcome in X. This intuition can be given a concrete semantics in terms of strategic
games, from which a coalitional games can be obtained in a canonical way (cf. [4]). These
games in particular will be object of study in Section 3.

Definition 5 (Coalitional games from strategic ones) Let G = (N,S,Σi,�i, o) be a game. The
coalitional game CG = (N,S,EG,�i) of G is a coalitional game where the effectivity function EG is
defined as follows:

X ∈ EG(C)⇔ ∃σC∀σC o(σC, σC) ∈ X.

As it can be observed from the translation, the effectivity function of CG contains those sets
in which a coalition C can force the game to end up, no matter what strategies C decides to
play.

Finally we consider the standard solution concept for coalitional games.

Definition 6 (The Core) Let C = (N,S,E,�i) be a coalitional game. We say that a state s is
dominated in C if for some C and X ∈ E(C) it holds that x �i s for all x ∈ X, i ∈ C. The core of C, in
symbols CORE(C) is the set of undominated states.

Intuitively, the core is the set of those states in the game that are stable, i.e., for which there
is no coalition that is at the same time able and interested to deviate from them.

2.2 Dependence

We will work with the following notion of dependence: a player i depends on a player j
for the realization of an outcome s, i.e., of the strategy profile σ such that o(σ) = s, when, in
order for σ to occur, j has to favour i, that is, it has to play in i’s interest. To put it otherwise, i
depends on j for σwhen, in order to achieve σ, j has to do a favour to i by playing σ j (which
is obviously not under i’s control). This intuition is made clear in the following definition:
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g ¬g
g 3, 3, 3 2, 4, 2
¬g 4, 2, 2 1, 1, 0

g

g ¬g
g 2, 2, 4 0, 1, 1
¬g 1, 0, 1 1, 1, 1

¬g

Figure 1: A three person Prisoner’s dilemma.

Definition 7 (Best for someone else) Assume a game G = (N,S,Σi,�i, o) and let i, j ∈ N. 1)
Player j’s strategy in σ is a best response for i iff ∀σ′, o(σ) �i o(σ′j, σ− j). 2) Player j’s strategy in
σ is a dominant strategy for i iff ∀σ′, o(σ j, σ′− j) �i o(σ′).

Definition 7 generalizes the standard definitions of best response and dominant strategy by
allowing the player holding the preference to be different from the player whose strategies
are considered.

Definition 8 (Dependence) Let G = (N,S,Σi,�i, o) be a game and i, j ∈ N. 1) Player i BR-
depends on j for strategy σ—in symbols, iRBR

σ j—if and only if σ j is a best response for i in σ.
2) Player i DS-depends on j for strategy σ—in symbols, iRDS

σ j—if and only if σ j is a dominant
strategy for i.

Intuitively, i depends on j for profile σ in a best response sense if, in σ, j plays a strategy
which is a best response for i given the strategies in σ− j (and hence given the choice of i
itself), and similarly for dominant strategy dependence.

In general, relations RBR
σ and RDS

σ do not enjoy any particular structural property. How-
ever, the following simple fact is of interest as it shows a direct connection between depen-
dence graphs and underlying games.

Fact 1 (Reflexive dependencies) Let G be a game and (N,Rx
σ) be its dependence structure for

outcome σ with x ∈ {BR,DS}. It holds that Rx
σ is reflexive iff σ is an x-equilibrium.

The proof is omitted for space reasons. The relation of dependence acquires interest for
cooperative interaction when a structural property, namely the presence of cycles, suggests
the possibility of players acting for each other. The following three sections study this
property.

2.3 Cycles

As also emphasized by related contributions (see for instance [1]), cycles in dependence
graphs represent the possibility of social interaction between players of a do-ut-des (give-
to-get) type. In a cycle, the first player of the cycle could be prone to do what the last
player asks since it can obtain something from the second player who, in turn, can obtain
something from the third and so on.

Definition 9 (Dependence cycles) Let G = (N,S,Σi,�i, o) be a game, (N,Rx
σ) be its dependence

structure for profile σ with x ∈ {BR,DS}, and let i, j ∈ N. An Rx
σ-dependence cycle c of length k − 1

in G is a tuple (a1, . . . , ak) such that: a1, . . . , ak ∈ N; a1 = ak; ∀ai, a j with 1 ≤ i , j < k, ai , a j;
a1Rx

σa2Rx
σ . . .Rx

σak−1Rx
σak. Given a cycle c = (a1, . . . , ak), its orbit O(c) = {a1, . . . , ak−1} denotes the

set of its elements.

In other words, cycles are sequences of pairwise different players, except for the first and
the last which are equal, such that all players are linked by a dependence relation. Note
that the definition allows for cycles of length 1, whose orbit is a singleton, i.e., loops. Those
are the cycles occurring at reflexive points in the graph.
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(g, g, g) (¬g, g, g)

(¬g,¬g, g) (¬g,¬g,¬g)

1 2

3

1 2

1 2

1 2

3 3

3

Figure 2: Some BR-dependences of Example 1.

Cycles become of particular interest in games with more than two players, so let us
illustrate the definition by the following example.

Example 1 (Cycles in three person games.) Consider the following three-person variant of the
Prisoner’s dilemma. A committee of three juries has to decide whether to declare a defendant in a trial
guilty or not. All the three juries want the defendant to be found guilty, however, all three prefer that
the others declare her guilty while she declares her innocent. Also, they do not want to be the only
ones declaring her guilty if the other two declare her innocent. They all know each other’s preferences.
Figure 1 gives a payoffmatrix for such game. Figure 2 depicts some cyclic BR-dependencies inherent
in the game presented. Player 1 is Row, player 2 Column, and player 3 picks the right or left table.
Among the ones depicted, the reciprocal profiles are clearly (g, g, g), (¬g,¬g,¬g) (which is also
universal) and (¬g, g, g), only the last two of which are Nash equilibria (reflexive). Looking at the
cycles present in these BR-reciprocal profiles, we notice that (g, g, g) contains the 2 × 3 cycles of
length 3, all yielding the partition {{1, 2, 3}} of the set of players {1, 2, 3}. Profile (¬g, g, g), instead,
yields two partitions: {{1}, {2}, {3}} and {{1}, {2, 3}}. The latter is determined by the cycles (1, 1) and
(2, 3, 2) or (1, 1) and (3, 2, 3). Finally, profile (¬g,¬g, g) is such that both 1 and 2 depend on 3. Yet,
neither of them plays a best response strategy.

The notion of reciprocity obtains a formal definition in the following section.

2.4 Reciprocity

Depending on the properties of the dependence cycles of a given profile, we can distin-
guish between several notions of reciprocity capturing different ways in which players are
interconnected via a dependence structure.

Definition 10 (Types of reciprocity in profiles) Let G be a game and (N,Rx
σ) be its dependence

structure with x ∈ {BR,DS} and σ be a profile, and C ⊆ N.

i) A profile σ is x-reciprocal if and only if there exists a partition P(N) of N such that each element
p of the partition is the orbit of some Rx

σ-cycle, i.e., a cycle in the directed graph (N,Rx
σ);
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ii) A profile σ is partially x-reciprocal in C (or C-x-reciprocal) if and only if C is the orbit of some
Rx
σ-cycle, i.e., a cycle in the directed graph (N,Rx

σ);

iii) A profile σ is trivially x-reciprocal if and only if it yields only x-cycles whose orbits are
singletons;

iv) A profileσ is fully x-reciprocal if and only if it yields an x-cycle with orbit N (i.e., a Hamiltonian
cycle) or, equivalently, if and only if it is N-x-reciprocal.

Let us explain the above definitions by referring to BR-dependence. A profile σ is BR-
reciprocal if all players belong to some cycle of BR-dependence. Along the same lines, a
profile σ is partially BR-reciprocal in coalition C (or C-BR-reciprocal) if the all the members
of C are linked by a cycle of BR-dependence. This means, intuitively, that independently on
whether the players outside of coalition C are linked by dependencies or not, the members
of C are in a situation of reciprocity in which everybody plays a dominant strategy for
somebody else in the coalition. To put it yet otherwise, a profile is reciprocal when the
corresponding dependence relation, be it a BR- or DS-dependence, clusters the players
into non-overlapping groups whose members are all part of some cycle of dependencies
(including degenerate ones such as reflexive links). It is partially reciprocal if its dependence
graph contains at least one cycle. Finally, trivial and full BR-reciprocity refer to two extreme
cases of BR-reciprocity. In the first case the cycles are loops, that is, all players play their
own dominant strategy, in the second case there exists one Hamiltonian cycle, that is, all
players are connected to one another by a path of BR-dependence. For example, inspecting
the BR-dependencies in the Prisoner Dilemma (Figure 3) it can be observed that: (U,L) is
fully BR-reciprocal, (D,R) is trivially BR-reciprocal, (U,R) is {2}-BR-reciprocal and (D,L) is
{1}-BR-reciprocal.

It is worth noting that x-reciprocity is a more demanding requirement than C-x-
reciprocity as it is easy to see that if σ is x-reciprocal, then for each C ∈ P(N) σ is C-x-
reciprocal. Also, here below we report a few simple but relevant facts concerning the
logical relationship between DS- and BR-reciprocity.

Fact 2 (DS- vs. BR-reciprocity) Let G be a game and (N,Rx
σ) be its dependence structure with

x ∈ {BR,DS}, σ be a profile, and C ⊆ N. The following holds:

i) σ is C-BR-reciprocal iff σC is BR-reciprocal in G ↓ σC;

ii) σ is C-BR-reciprocal iff σC is DS-reciprocal in G ↓ σ′
C

for any σ′;

iii) if σ is C-DS-reciprocal, then σ is C-BR-reciprocal, but not vice versa;

iv) if σ is DS-reciprocal, then σ is BR-reciprocal, but not vice versa.

The proof is omitted for space reasons. The first claim suggests that a C-DS-reciprocal
profile σ can be referred to simply by the partial profile σC without loss of information. The
second and third claims point out, as expected, that DS-reciprocity is a stronger notion than
BR-reciprocity.

2.5 Reciprocity and equilibrium

We provide a characterization of reciprocity as defined in Definition 10 in terms of standard
solution concepts. However, we first have to complement the set of notions provided in
Section 2.1 with the notion of permuted game.
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(U,L) (U, R)

(D,R)(D,L)

1 2 1 2

1 2 1 2

Figure 3: BR-dependences in the Prisoner Dilemma: 1 and 2 denote row and column.

Definition 11 (Permuted games) Let G = (N,S,Σi,�i, o) be a game and µ : N 7→ N a bijection
on N. The µ-permutation of game G is the game Gµ = (Nµ,Sµ,Σµ,�µi , oµ) such that: Nµ = N;
Sµ = S; for all i ∈ N, Σ

µ
i = Σµ(i); for all i ∈ N, �µi =�i; oµ :

�
i∈N Σµ(i) → S is such that

oµ(µ(σ)) = o(σ) with µ(σ) denoting the permutation of σ according to µ.

Intuitively, a permuted game Gµ is therefore a game where the strategies of each player are
redistributed according to µ in the sense that i’s strategies become µ(i)’s strategies, where
players keep the same preferences over outcomes, and where the outcome function assigns
same outcomes to same profiles.

Example 2 (Two horsemen [6]) “Two horsemen are on a forest path chatting about something. A
passerby M, the mischief maker, comes along and having plenty of time and a desire for amusement,
suggests that they race against each other to a tree a short distance away and he will give a prize of
$100. However, there is an interesting twist. He will give the $100 to the owner of the slower horse.
Let us call the two horsemen Bill and Joe. Joe’s horse can go at 35 miles per hour, whereas Bill’s
horse can only go 30 miles per hour. Since Bill has the slower horse, he should get the $100. The
two horsemen start, but soon realize that there is a problem. Each one is trying to go slower than the
other and it is obvious that the race is not going to finish. [. . . ] Thus they end up [. . . ] with both
horses going at 0 miles per hour. [. . . ] However, along comes another passerby, let us call her S ,
the problem solver, and the situation is explained to her. She turns out to have a clever solution. She
advises the two men to switch horses. Now each man has an incentive to go fast, because by making
his competitor’s horse go faster, he is helping his own horse to win!" [6, p. 195-196].

Once the game of the example is depicted as the left-hand side game in Figure 4, it is
possible to view the second passerby’s solution as a bijection µ which changes the game
to the right-hand side version. Now Row can play Column’s moves and Column can play
Row’s moves. The result is a swap of (D,L) with (U,R), since (D,L) in Gµ corresponds

L R
U 0, 0 1, 0
D 0, 1 1, 0

G

L R
0, 0 0, 1
1, 0 1, 0

Gµ

Figure 4: The two horsemen game and its transposition.
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to (U,R) in G and vice versa. On the other hand, (U,L) and (D,R) stay the same, as the
exchange of strategies do not affect them. As a consequence, profile (D,R), in which both
horsemen engage in the race, becomes a dominant strategy equilibrium.

On the ground of these intuitions, it is possible to obtain a simple characterization of
the different notions of reciprocity given in Definition 10 as the existence of equilibria in
appropriately permuted games.

Theorem 1 (Reciprocity in equilibrium) Let G be a game and (N,Rx
σ) be its dependence struc-

ture with x ∈ {BR,DS} and σ be a profile. It holds that:

i) σ is x-reciprocal iff there exists a bijection µ : N 7→ N s.t. σ is a x-equilibrium in the permuted
game Gµ;

ii) • σ is partially BR-reciprocal in C (or C-BR-reciprocal) iff there exists a bijection µ : C 7→ C
s.t. σC is a BR-equilibrium in the permuted subgame (G ↓ σC)µ;

• σ is partially DS-reciprocal in C (or C-DS-reciprocal) iff there exists a bijection µ :
C 7→ C s.t. σC is a DS-equilibrium in all permuted subgames (G ↓ ρC)µ, for ρC ∈�

j∈C ρ j and ρ j ∈ Σ j;

iii) σ is trivially x-reciprocal iff σ is an x-equilibrium in Gµ where µ is the identity over N;

iv) σ is fully x-reciprocal iff there exists a bijection µ : N 7→ N s.t. σ is a x-equilibrium in the
permuted game Gµ and µ is such that {(i, j) | i ∈ N & j = µ(i)} is a Hamiltonian cycle in N.

The proof is omitted for space reasons. From the foregoing result, it follows that permu-
tations can be fruitfully viewed as ways of implementing—in a social software sense [6]—a
reciprocal profile. This is terminology is worth casting in the following definition.

Definition 12 (Implementation as game permutation) Let G be a game, (N,Rx
σ) be its depen-

dence structure in σ with x ∈ {BR,DS}, and µ : N 7→ N and µ′ : C 7→ C with C ⊆ N be two
bijections. We say that:

i) µ x-implements σ iff σ is an x-equilibrium in Gµ;

ii) • µ′ C-BR-implements σ iff σC is an BR-equilibrium in (G ↓ σC)µ
′ ;

• µ′ C-DS-implements σ iff σC is a DS-equilibrium in all (G ↓ ρC)µ
′ .

Intuitively, implementation is here understood as a way of transforming a game in such
a way that the desirable outcomes, in the transformed game, are brought about at an
equilibrium point. In this sense we talk about BR- or DS-implementation. The difference
between the two arises in the implementation of partial agreements where the locality
of partial BR-reciprocity becomes apparent vis-à-vis the global character of partial DS-
reciprocity.

3 Solving dependencies: dependence games

The previous section has shown how reciprocity can be given two corresponding formal
characterization: existence of cycles in a dependence structure, and existence of equilibria
in a suitably permuted game (Theorem 1). In the present section we take the notion of
reciprocity as the basis upon which to define two new solution concepts, of a cooperative
kind, for games in strategic form.
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L R
U 2, 2 0, 3
D 3, 0 1, 1

Gµ

L R
2, 2 3, 0
0, 3 1, 1

Gν

Figure 5: Agreements between the prisoners

3.1 Agreements

The intuition is that, given a reciprocal profile (of some sort according to Definition 10), the
players can fruitfully agree to transform the game by some suitable permutation of strategy
sets.

Definition 13 (Agreements and partial agreements) Let G be a game, (N,Rx
σ) be its depen-

dence structure in σ with x ∈ {BR,DS}, and let i, j ∈ N. A pair (σ, µ) is:

i) an x-agreement for G if σ is an x-reciprocal profile, and µ : N 7→ N a bijection which x-
implements σ;

ii) a partial x-agreement in C (or a C-x-agreement) for G, if σ is a C-x-reciprocal profile and
µ : C 7→ C a bijection which C-x-implements σ.

The set of x-agreements of a gameG is denoted x-AGR(G) and the set of partial x-agreements, that is
the set of pairs (σ, µ) for which there exists a C such that µC-x-implements σ, is denoted x-pAGR(G).

Intuitively, a (partial) agreement, of BR or DS type, can be seen as the result of coordination
(endogenous, via the players themselves, or exogenous, via a third party like in Example
2) selecting a desirable outcome and realizing it by an appropriate exchange of strategies.

Example 3 (Agreements in PD) In the game Prisoner’s Dilemma two DS-agreements can be
observed, whose permutations give rise to the games depicted in Figure 5. Agreement ((D,R), µ)
withµ(i) = i for all players, is the standard DS-equilibrium of the strategic game. But there is another
possible agreement, where the players swap their strategies: it is ((U,L), ν), for which ν(i) = N\{i}.
Here Row plays cooperatively for Column and Column plays cooperatively for Row. Of the same
kind is the agreement arising in Example 2. Notice that in such example, the agreement is the result
of coordination mediated by a third party (the second passerby). Analogous considerations can also
be done about Example 1 where, for instance, ((g, g, g), µ) with µ(1) = 2, µ(2) = 3, µ(3) = 1 is a
BR- agreement.

As we might expect, BR- and DS-agreements are related in the same way as BR- and
DS-reciprocity (Fact 2). In what follows we will focus only on DS-agreements and partial
DS-agreements so, whenever we talk about agreements and partial agreements, we mean
DS-agreements and partial DS-agreements, unless stated otherwise.

3.2 Dominance

As there can be several possible agreements in a game, the natural issue arises of how to
order them. We will do that by defining a natural notion of dominance between agreements,
but first we need some auxiliary notions.

Definition 14 (C-candidates and C-variants) Let G = (N,S,Σi,�i, o) be a game and C a non-
empty subset of N. An agreement (σ, µ) for G is a C-candidate if C is the union of some members
of the partition induced by µ, that is: C =

⋃
X where X ⊆ Pµ(N). An agreement (σ, µ) for G is a
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C-variant of an agreement (σ′, µ′) if σC = σ′C and µC = µ′C, where µC and µ′C are the restrictions
of µ to C. As a convention we take the set of ∅-candidate agreements to be empty and an agreement
(σ, ν) to be the only ∅-variant of itself.

In other words, an agreement (σ, µ) is a C-candidate if {C,C} is a bipartition of Pµ(N), and it
is a C-variant of (σ′, µ′) if it differs from this latter at most in its C-part. We can now define
the following notions of dominance between agreements and between partial agreements.

Definition 15 (Dominance) Let G = (N,S,Σi,�i, o) be a game and C ⊆ N be a coalition. We say
that:

i) An agreement (σ, µ) is dominated iff for some coalition C there exists a C-candidate agreement
(σ′, µ′) for G such that for all agreements (ρ, ν) which are C-variants of (σ′, µ′), o(ρ) �i o(σ)
for all i ∈ C.

ii) A partial agreement (σC, µ) in C is dominated iff for some coalition D ⊆ N there exists (τD, ν)
which is a D-agreement such that for all σ′, τ′, o(τD, τ′D) �i o(σC, σ′C) for all i ∈ D.

The set of undominated agreements of G is denoted DEP(G) and the set of undominated partial
agreements is denoted pDEP(G).

Intuitively, an agreement is undominated when a coalition C can force all possible agree-
ments to yield outcomes which are better for all the members of the coalition, regardless
of what the rest of the players can agree to do, that is, regardless of the C-variants of their
agreements. A partial agreement in coalition C is undominated when C can, by means of
a partial permutation, force the game to end up in a set of states which are better for the
member of the coalition no matter what the players in C do.

It is worth stressing the critical difference between the two notions of dominance. This
difference resides in the fact that while dominance between agreements only considers
deviations which are the results of agreements, dominance between partial agreements
considers any form of possible deviation.

Example 4 (Dominance between partial agreements) In the three persons Prisoner Dilemma
(see Figure 1), ((g1, g2), (µ(1) := 2, µ(2) := 1)) is a partial DS-agreement in {1, 2}. This
agreement, which represents a form of dependence-based cooperation between 1 and 2 dominates
the partial DS-agreement in N—on a trivially DS-reciprocal profile—((¬g1,¬g2,¬g3), (µ(1) :=
1, µ(2) := 2, µ(3) := 3)). In fact, it is undominated, since even the partial DS-agreement in N
((g1, g2, g3), (µ(1) := 2, µ(2) := 3, µ(3) := 1)) (which is also a DS-agreement) does not dominate it.

3.3 Dependence-based coalitional games

Now the question is, can we characterize the notion of dominance for agreements and
partial agreements (Definition 15) in terms of a suitable notion of stability in appropriately
defined games?

In order to answer this question we proceed as follows. First, starting from a gameG, we
consider its representation CG as a coalitional game as illustrated in Section 2.1 (Definition
5). As Definition 5 abstracts from dependence-theoretic considerations we refine it in two
ways, corresponding to the two different sorts of dependence upon which we want to build
the coalitional game:

1. The first refinement is obtained by defining a coalitional game CGDEP capturing the
intuition that coalitions form only by means of agreements (Definition 13). Such
games are called dependence games.
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2. The second one is obtained by defining a coalitional game CGpDEP capturing the intu-
ition that coalitions form only by means of partial agreements (Definition 13). Such
games are called partial dependence games.

Having done this, we show that the core of CGDEP coincides with the set of undominated
agreements of G (Theorem 2) and, respectively, that the core of CGpDEP coincides with the set
of undominated partial agreements ofG (Theorem 3). We thereby obtain a game-theoretical
characterization of Definition 15.

3.3.1 Dependence games

Definition 16 (Dependence games from strategic ones) Let G = (N,S,Σi,�i, o) be a game.
The dependence game CGDEP = (N,S,EGDEP,�i) of G is a coalitional game where the effectivity
function EGDEP is defined as follows:

X ∈ EGDEP(C) ⇔ ∃σC, µC ..
∃σC, µC : [((σC, σC), (µC, µC)) ∈ AGR(G)]
 [∀σC, µC : [((σC, σC), (µC, µC)) ∈ AGR(G)
 o(σC, σC) ∈ X]].

where µ : N→ N is a bijection.

This somewhat intricate formulation states nothing but that the effectivity function EGDEP(C)
associates with each coalition C the states which are outcomes of agreements (and hence of
reciprocal profiles), and which C can force via partial agreements (σC, µC) regardless of the
partial agreements (σC, µC) of C.

We have the following theorem.

Theorem 2 (DEP vs. CORE) Let G = (N,S,Σi,�i, o) be a game. It holds that, for all agreements
(σ, µ):

(σ, µ) ∈ DEP(G) ⇔ o(σ) ∈ CORE(CGDEP).

where µ : N→ N.

The proof is omitted for space reasons. Put it otherwise, here is what Theorem 2 states.
Given a gameG, a profile σwhich is partially DS-implemented by µ (Definition 12) forms an
undominated partial agreement (σ, µ) if and only if σ is in the core of the dependence game
of G. By taking Definition 10 and Theorem 1 into the picture, we thus see that Theorem 2
connects three apparently rather different properties of a strategic game G: the existence of
reciprocal profiles, the existence of DS-equilibria in permutations of G, and the core of the
dependence game built on G.

3.3.2 Partial dependence games

Definition 17 (Partial dependence games from strategic ones) Let G = (N,S,Σi,�i, o) be a
game. The partial dependence game CGpDEP = (N,S,EGpDEP,�i) of G is a coalitional game where the

effectivity function EGpDEP is defined as follows:

X ∈ EGpDEP(C) ⇔ ∃σC, µC ..

(σC, µC) ∈ pAGR(G)
 [∀σC : o(σC, σC) ∈ X]].

where µC : C→ C is a bijection.
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Partial dependence games are defined by just looking at the set of outcomes that each
coalition can force by means of a partial agreement. Unlike Definition 16, Definition 17
is much closer to the standard definition of coalitional games based on strategic ones
(Definition 5).

Like for dependence games, we have a characterization of the set of undominated partial
agreements.

Theorem 3 (pDEP vs. CORE) LetG = (N,S,Σi,�i, o) be a game. It holds that, for all agreements
(σ, µ):

(σ, µ) ∈ pDEP(G) ⇔ o(σ) ∈ CORE(CGpDEP).

where µ : C→ C is a bijection with C ⊆ N.

The proof is omitted for space reasons. Like Theorem 2, Theorem 3 establishes a precise
connection between the notions of partial reciprocity in a strategic game G, the existence of
DS-equilibria in all permuted subgames of G, and the core of the partial dependence game
built on G.

3.4 Coalitional, dependence, partial dependence effectivity

The coalitional gameCG built on a strategic gameG and its dependence-based counterparts
CGDEP and CGpDEP are clearly related. The following fact shows how.

Fact 3 (Effectivity functions related) The following relations hold:

i) For all G: EGpDEP ⊆ EG;

ii) It does not hold that for all G: EGDEP ⊆ EGpDEP; nor it holds that for all G: EGpDEP ⊆ EGDEP;

iii) It does not hold that for all G: EGDEP ⊆ EG; nor it holds that for all G: EG ⊆ EGDEP.

The proof is omitted for space reasons. The fact shows that dependence games are not just a
refinement of coalitional ones, which instead holds for partial dependence games. In other
words dependence-based effectivity function considerably modify the powers assigned to
coalitions by the standard definition of coalitional games on strategic ones (Definition 5).

4 Conclusions

The contribution of the paper is two-fold. On the one hand it has been shown that central
dependence-theoretic notions such as the notion of cycle are amenable to a game-theoretic
characterization (Theorem 1). On the other hand dependence theory has been demonstrated
to give rise to types of cooperative games where solution concepts such as the core can be
applied. The relation between the various forms of cooperative games where coalitions
undertake agreements (dependence and partial dependence) have been analyzed, together
with the dominance they induce on agreements (Theorem 2 and 3).
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Optimization of Payments in Dominant Strategy
Mechanisms

for Single-Parameter Domains1

Victor Naroditskiy, Maria Polukarov, and Nicholas R. Jennings

Abstract

The paper studies dominant strategy mechanisms in anonymous single-parameter allocation
domains with monetary payments. Given a mechanism design problem with a fixed allocation
function (e.g., efficient allocation), we seek an optimal payment function. Restricting atten-
tion to “constant-dependent” allocation functions, we present a general technique for finding
an optimal payment function for any mechanism design problem. By construction, the opti-
mal payment function is piecewise linear, proving the existence of piecewise linear optimal
payment functions.

1 Introduction

Mechanism design, traditionally studied in economics, is now a rapidly growing field in computer
science (e.g., see [12, 16]). Generally, it deals with problems where multiple self-interested partic-
ipants take actions to optimize individual utilities basedon theincentivesprovided to them. The
overlap of computer science and mechanism design is natural: reasoning about incentives is un-
avoidable in many fundamental computer science problems—e.g., peer-to-peer networks, packet
routing, and resource allocation. To this end, the termalgorithmic mechanism designwas intro-
duced by Nisan and Ronen [11] to refer to the study of incentives in computer science scenarios.
At the same time, some classic mechanism design solutions rely on computationally efficient ap-
proximations and implementations to be of practical use (e.g., computationally efficient VCG-like
combinatorial auctions [5]).

This paper interfaces computer science and mechanism design in yet another way: instead of
considering a particular domain and designing a mechanism with certain properties, we are looking
for a general, unified technique that takes a mechanism design problem as an input, and outputs
an optimal mechanism to this problem. While this goal, in general, may sound unrealistic, this
work shows it can be effectively achieved for a wide class of problems insingle-parameter domains
where agents have private types expressed by single numbers. Examples include recently studied
problems of surplus-maximizing allocation of free resources [10, 7] and fair task imposition [13]
as well as problems of surplus-maximization and fairness inmore general models where resources
are not free. Furthermore, our—at first glance, purely algorithmic—approach enables derivation of
theoretical results that provide a base for the following contributions:

• Characterization. We formulate sufficient conditions for the existence of(piecewise) linear
optimal mechanisms in single-parameter domains (Theorem 2).

• Existence. We identify a class of mechanism design problems characterized by aconstant-
dependentallocation function (to be defined), and prove the above conditions hold for each
problem in this class (Theorem 3).

• Construction. We develop an algorithm that finds an optimal mechanism for any given prob-
lem in this class (Theorem 2 and Figure 4).

1Helpful discussions with Geoffroy de Clippel, Sergey Kushnarev, Lyle Ramshaw, Warren Schudy, and Meinolf Sellmann
are gratefully acknowledged.
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We start with preliminaries and related work in Section 2, and present our main theorems in Sec-
tion 3. These results provide a general and powerful tool foranalysis of mechanism design problems
in single-parameter domains: as the existence and construction results apply toanyproblem with
constant-dependent allocation, the algorithm for finding an optimal mechanism is unified within this
class of problems. In Section 4, we demonstrate the strengthof this approach on two central mech-
anism design problems of (i) surplus-maximizing resource allocation and (ii) fair task imposition.
First, we re-derive the mechanisms for surplus-maximizingallocation of free items by Moulin [10]
and Guo and Conitzer [7] and fair imposition of a single task by Porteret al. [13]. We note that our
solution is not analytical but algorithmic; that is, we provide systems of linear equations whose—
unique—solutions coincide with the mechanisms obtained in [10, 7]and [13], for each particular
problem instance. However, in the latter case, this approach also allowed us to easily find an ana-
lytical solution. Second, we use our method to obtain an optimal mechanism for fair imposition of
multiple tasks, for which no closed form has been previouslyfound. Furthermore, in Section 5 we
apply our technique to open problems. Specifically, we extend the consideration to scenarios where
objects have costs and provide first algorithms for computing optimal mechanisms for surplus max-
imizing allocation and fair imposition in these generalized settings. Finally, our work suggests
several directions for future research outlined in Section6.

2 Preliminaries and Related Work

Informally, amechanismrefers to a procedure for making decisions (or, choices) involving multiple
agents. Suppose one item needs to be allocated among a group of agents. A mechanism might collect
bids from each agent, give the item to the highest bidder, andcharge him his bid: this mechanism is
a first-price auction, and the choice made defines an allocation.

Mechanism design is concerned with finding the best way of making decisions in a given sce-
nario (e.g., allocation). The “best” way is specified by properties the decision must satisfy: e.g., the
mechanism should be fair, the agent with the highest value should be allocated, the revenue of the
seller should be maximized. Crucially, quality of a decision depends on private information called
typesof the agents (e.g., their values for the item). Therefore, amechanism must ensure the agents
have the incentive to reveal their types truthfully: without knowing the true types, there is no way to
know how good a decision is. We studystrategy-proofmechanisms that make it in each agent’s best
interest to truthfully reveal his type—regardless of whether the other agents do so or not. This—the
strongest—concept of truthfulness is calleddominant strategy.

Implementation in dominant strategies is virtually impossible without restrictions on agents’
types. In fact, for unrestricted types (i.e., different value for each possible choice) only dictatorial
choice functions are implementable [6]. One way to get out ofthe impossibility is by introducing
monetary payments which are added to agent’s valuation of the chosen alternative: in this case,
agents are said to havequasi-linear utilities. A mechanism is therefore defined by a choice rulef
and a payment schemet—both are functions of the agents’ types.

However, even with money (a.k.a. transferable utilities),the set of implementable mechanisms
is rather limited—the only such mechanisms are weighted VCG[14], which motivates further re-
strictions on agents’ types. In this work, we focus on single-parameter domains: we restrict our
attention to allocation domains where agent’s type represents the value for being allocated—in this
context, it is intuitive to refer to the choice rule as theallocation function. It is known that in these
settings, any allocation function that is monotone2 in the agent’s report, is implementable:

Theorem 1 (e.g., see [12] p. 229)A mechanism(f, t) is implementable if and only if for each agent
i: (i) fi is monotone invi; (ii) ti = h(v−i) − τ(v−i) if fi = 1 (i.e., i is allocated) andti = h(v−i)

2In words, monotonicity offi in vi means that if an agent is allocated when he reportsvi he is also allocated when he
reportsv′i ≥ vi.
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otherwise (fi = 0), whereτ(v−i) = supvi|fi(vi,v−i)=0 vi defines thecritical value.3,4

Thus, any pair of functions(f, t) that satisfy the conditions in Theorem 1, defines a strategy-proof
(i.e., truthful) mechanism. In this work, we take a monotoneallocation function as an input and look
for an optimal (according to provided properties) payment function of the form above. We develop
a general algorithmic method for finding optimal payments for an important class of allocation
functions we term “constant-dependent”: in particular,efficient5 allocation functions in settings of
consideration fall in this class.

A dominant strategy mechanism does not make any assumptionsabout the values of the agents:
desirable properties (e.g., efficiency, individual rationality, no subsidy) of the mechanism must hold
for all possible values the agents may have. These properties can be expressed as a system of
constraints to be met for each possible profilev of agents’ valuations and (optionally) an objective
function (e.g., revenue maximization). In this work, we take the allocation function as an input and
optimize the payment function. Using the characterizationabove, the only degree of freedom in
designing payments is the functionh : Rn−1 → R. Thus, the problem of finding optimal payments
can be stated as

optimizeh:Rn−1→R objective value s.t. ∀ v ∈ Rn

objective value is achieved

properties hold

At the first glance, this problem is hard: optimization is over functions and there is an infinite num-
ber of constraints. However, in this paper we propose an algorithmic approach that makes it possible
to effectively tackle such problems. Our technique exploits and makes explicit the linearity structure
present in many standard mechanism design problems. As a result, the existence of (piecewise) lin-
ear optimal payment functions follows immediately. For some important allocation problems, this
method offers an easy way to find the optimal payment functionanalytically, by solving a simple
system of linear equations (see, for example, the results in4.2). For a general problem in this class,
it provides an algorithm for finding an optimal mechanism computationally.

Most related to our work is the literature on optimizing rebates in VCG mechanisms. In [10]
and [7], the authors independently discover the optimal VCGredistribution mechanism for allocat-
ing free homogenous items. VCG redistribution schemes havealso been designed for a public good
domain [1]. A similar result has been derived in [2] in the context of allocating a single item. An
alternative objective of fairness was considered in [13] for task imposition scenarios. In this paper,
we provide a general approach for addressing all of these problems.

The model of allocating homogeneous items that have costs was considered in [3, 9], although
for a different purpose—to compare “random priority” and “average cost” mechanisms. We are the
first to obtain (algorithmic) solutions for surplus-maximization and fairness in this setting.

We are aware of only one other attempt to approach mechanism design problems
algorithmically—that of Automated Mechanism Design (AMD)[15]. However, AMD applies when
the space of agents’ types is finite and a prior over the types is available. In contrast, we deal with in-
finite types spaces and no priors. Our method is based on partitioning the space of value profiles into
a finite number of convex regions, on each of which, as we prove, a linear optimal payment function
can be defined. A similar idea was exploited in [4]; however, there the partitioning is heuristic and
does not result in an optimal mechanism.

3An agenti is allocated if and only if his report is above the critical value τ(v−i).
4In stating the theorem, we restricted attention toanonymouspayment functions: payment functions that do not depend

on agent’s identity.
5An allocation is efficient if the items are assigned to the agents who value them the most.
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3 Optimization, Linearity and Partition

In this section, we present our main results: Theorem 2 provides sufficient conditions for the ex-
istence of a piecewise linear optimal mechanism, and Theorem 3 constructively proves these con-
ditions hold for the class of constant-dependent allocations (to be defined). We start by formally
stating the problem in 3.1 and explaining the idea of our solution in 3.2. The theorems appear in 3.3
and 3.4.

3.1 Setting

We consider single-parameter domains where each ofn agents desires one unit of a (homogenous)
good, andv ∈ Rn

+ represents the agents’ valuations for consuming the good (or, item). Monetary
transfers are possible, and agents’ utilities are quasi-linear. The value profiles are such thatv1 ≥
v2 ≥ . . . ≥ vn (this is without loss of generality for anonymous mechanisms), and since the values
are non-negative, one can scale all vectors to be in the interval [0, 1]. We denote the space of value
profiles byV = {v ∈ Rn | 1 ≥ v1 ≥ v2 ≥ . . . ≥ vn ≥ 0} and define vectorv−i ∈ Rn−1 to indicate
values of the agents other thani. The space of all such(n− 1)-dimensional vectors is the same for
eachi, and is denoted byW .

An outcomeis a pair(f, t) ∈ {0, 1}n × Rn, wherefi indicates whether agenti is allocated
(gets the item), andti represents thepaymenthe receives (ti can be negative, in which case agenti
pays that amount); the total utility of agenti from the outcome(f, t) is given byui = fivi + ti. A
mechanismis defined by a pair of functionsf : Rn

+ → {0, 1}n andt : Rn
+ → Rn that determine the

allocation and payments for each possible report from the agents regarding their value for the item.
We take as an input an allocation functionf satisfying the monotonicity condition in Theorem 1.
This determines the critical value,τ(v−i), for each agenti, and the only remaining degree of freedom
is the functionh(v−i) that adjusts payments to the agents. In some applications, it is intuitive to view
τ as the price for being allocated andh as the rebate distributed back to all agents; henceforth, we
refer toh as therebate function.

Our goal is to findoptimal rebatesthat guarantee the best possible value of a given objective
function and satisfy given constraints for each possible vector of agents’ valuations—that is, provide
a dominant strategy implementation. The objective of optimization may be, for example, maximiza-
tion of social surplus (i.e., redistributing back as much ofthe budget surplus as possible when there
is no auctioneer), some measure of fairness (e.g., maximizing the lowest utility), or minimization
of budget deficit. Desirable properties of mechanisms (e.g., no subsidy, individual rationality,k-
fairness) are specified as constraints in the optimization problem. Some combinations of properties
(e.g., no subsidy and2-fairness) may be impossible to implement: this is identified by the lack of a
feasible solution to the optimization problem.

3.2 Linear properties

Our approach exploits the linear structure which characterizes standard mechanism design problems.
Typical constraints (e.g., individual rationality, no subsidy, k-fairness) and objectives (e.g., utility
maximization, deficit minimization) are linear in values and payments of the agents. For example,
the no subsidy (or weak budget balance) constraint requiresthesumof payments to the agents to be
non-positive; utilitarian objective function maximizes thesumof agents’ values and payments. This
linearity structure lies at the heart of the idea presented next.

Consider the following illustrative example. Recall that we are after an optimal rebate function
h : Rn−1 → R. In the simplest case with2 agents, the domain of the rebate function is the real
interval between0 and1. The space of values is atrianglegiven by the extreme points(0, 0), (1, 0),
and(1, 1) shown in Figure 1(a)—recall that the value vectors are non-decreasing, and thus only the
bottom half of the unit square is relevant. Suppose that allocation is fixed for all profiles of values
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Figure 1:Single allocation region and optimal linear rebate function.

(e.g., agent 1 is always allocated and agent 2 is never allocated) and that constraints are linear inv
andh. Indeed,h is a function ofv itself, but it is a variable in our problem. For a finite set of points
v ∈ V we can talk of a finite set of values of the rebate functionh(w), wherew corresponds tov−i

for agenti. It is easy to show that a linear constraint is satisfied everywhere on a convex region if and
only if it is satisfied on its extreme points: in our example, enforcing linear constraints on the profiles
(0, 0), (1, 0) and(1, 1) guarantees that they are satisfied for all profilesv ∈ R2 | 1 ≥ v1 ≥ v2 ≥ 0.
Note that constraints for these profiles involve exactly tworebatesh(0) andh(1): thereby, restricting
the optimization problem to constraints for these extreme profiles gives a linear program with two
variables, which we call̂h(0) and ĥ(1). Also, since this restricted linear program includes only
a subset of constraints from the original mechanism design problem, its optimal objective value
provides an upper (in the case of maximization) bound on the objective value of the original problem
(in problems with no objectives, if the original problem hasa feasible solution, so does the restricted
problem.) Now, having solved therestricted problemby computing the rebateŝh(0) andĥ(1), the
equation of the line on which these two points lie provides uswith a—linear—rebate functionh:
that is, for an arbitrary pointw ∈ W , we can defineh(w) = a1w1 + b, where the coefficientsa1, b

are obtained by solving the system of two linear equations:ĥ(0) = a10+b andĥ(1) = a11+b. The
rebate function is the line segment connecting points(0, ĥ(0)) and(1, ĥ(1)) (see Figure 1(b)).This
function is linear inv, so all constraints remain linear.These constraints are satisfied on the extreme
points of a convex region, and therefore hold everywhere on this region. Thus, we can “expand” an
optimal solution to the restricted problem to a feasible solution to the original problem, and achieve
the same objective value. Since the objective value of the restricted problem was an upper bound
on the objective of the original problem, the constructed solution is optimal and the upper bound it
tight. Finally, note that we were able to linearly combine rebate valuesh(0) andh(1) in the rebate
space because there were exactly two (i.e.,n) of them.

In more general cases, allocation may not be linear on the whole value space. For instance,
consider the allocation rule that allocates to agent 1 if hisvalue is abovek ∈ (0, 1) and never
allocates to agent 2. The value space is partitioned into 2 allocation regions: agent 1 is not allocated
in the region to the left ofv1 = k and is allocated in the region to the right (see Figure 2(a)).
Constraints for the extreme points(0, 0), (k, 0), (1, 0), (k, k), and(1, 1) of the allocation regions
include three rebateŝh(0), ĥ(k), andĥ(1). Proceeding as we did in the previous example we would
have to linearly connect the values of these rebates. However, in general, three points do not lie on
the same line, as is illustrated in Figure 2(b). A natural idea is to define two linear rebate functions:
one connectinĝh(0) to ĥ(k) and the other connectinĝh(k) to ĥ(1) (see Figure 3(b)). We refer to
these functions asha andhb: thus,h(w) = ha(w) if 0 ≤ w1 ≤ k andh(w) = hb(w) if k ≤ w1 ≤ 1.
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Figure 2:Two allocation regions and rebates in corresponding extreme points.
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Figure 3:Refinement of allocation regions and optimal piecewise linear rebate function.

In order for constraints to be linear on a region, for each agent i the choice of the rebate function
(ha or hb) must be constant throughout the region. The allocation region to the right ofv1 = k does
not satisfy this condition: the rebate for agent 1 is given byha for v2 ≤ k and byhb for v2 ≥ k.
However, we canrefine the allocation regions alongv2 = k to fix this problem. In Figure 3(a),
the regions are labeled with the rebate function used by eachagent. Partitioning alongv2 = k
introduced a new extreme point:(1, k). However,ĥ(0), ĥ(k), andĥ(1) are still the only rebates
used by constraints on the extreme points. Two line segmentspassing through the points(0, ĥ(0)),
(k, ĥ(k)) and(k, ĥ(k)), (1, ĥ(1)), respectively, define the—piecewise linear—rebate function (see
Figure 3(b)). As before, this implies that the constraints are linear inv on each region of this—
refined—partition, and since they are satisfied on the extreme points of each region, they hold for all
points of each region.

Next, we generalize this idea and formalize conditions on partitions into regions of the value
spaceV and the rebate spaceW , which we prove to be sufficient for the existence of an optimal
mechanism with piecewise linear rebates.

3.3 Linearly consistent partitions

We need the following definitions.
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Definition 1 A setPX of polytopes is called apartitionof the polytopeX if the polytopes do not
overlap:p ∩ q = ∅, ∀ p, q ∈ PX , and cover exactly the polytopeX :

⋃
p∈PX

p = X .

Definition 2 The partitionPX refinesthe set of polytopesQ if for all p ∈ PX , q ∈ Q, their
intersection is either empty orp: p ∩ q = ∅ ∨ p ∩ q = p.

We are interested in partitions that consist of convex polytopes. A convexd-dimensional polytope
p can be defined as a finite intersection of halfspaces:p = {x ∈ Rd | Ax ≥ b}, whereA ∈ Rk×d,
b ∈ Rk, k is the number of halfspaces.6 In the examples we provided, the rebate space is 1-
dimensional and intersections of halfspaces specify line segments. The partitionPW in Figure 3(b)
is given by 2 polytopesk ≥ w1 ≥ 0 and1 ≥ w1 ≥ k. Recall the corresponding partitionPV

of the value spaceV in Figure 3(a). Crucially, for each agenti, the choice of the rebate function
is fixed on eachvalue regionq ∈ PV (see Figure 3(a)). Stating the property mathematically, we
obtain∀q ∈ PV , ∀i ∈ {1, . . . , n} there existsp ∈ PW | v−i ∈ p, ∀v ∈ q. Observation 1 below
characterizes the partitions of the value space that satisfy this property: it notes thatPV must refine
a set of polytopeslift (PW ) which is obtained by “lifting” the partitionPW of then− 1 dimensional
spaceW to then-dimensional spaceV .

Definition 3 A set of polytopeslift (PW ) in the value spaceV is said to be obtained bylifting the
partition PW of the rebate spaceW if

lift (PW ) =
[

(A,b)∈PW

n[
i=1

V ∩ (Av−i ≥ b)

Note that each polytope(A, b) ∈ PW addsn (possibly overlapping) polytopes tolift (PW ). In our
example in Figures 3(a) and 3(b), lifting the polytopek ≥ w1 ≥ 0 yields overlapping polytopes
k ≥ v1 ≥ v2 ≥ 0 and1 ≥ v1 ≥ v2 ≥ 0; k ≥ v2.

Observation 1 Let PV andPW be partitions of the value and the rebate space, respectively. The
condition∀q ∈ PV , ∀i ∈ [1, n], ∃p ∈ PW | v−i ∈ p, ∀v ∈ q is satisfied whenPV refineslift (PW ).

Next we derive additional conditions that would let us definerebate functionshp for rebate regions
p ∈ PW so that each such function is linear and{hp | p ∈ PW } is optimal. For linearity, we need
each polytopep in the rebate partition to have exactlyn extreme points. For optimality, we need
to guarantee the linearity of constraints on each of the value regions. This is formally stated in
Definition 4 and below. Finally, Theorem 2 shows the sufficiency of these conditions.

We refer to the union of extreme points of the partitionPX of a polytopeX as P̂X . Given
the partitionPV of the value space, theprojectionof its extreme points into the rebate spaceW is
defined as follows:

ΠW (P̂V ) =
[

v∈P̂V

n[
i=1

v−i

Definition 4 PartitionsPV andPW are calledlinearly consistentif: (i) all polytopesq ∈ PV and
p ∈ PW are convex;(ii) ΠW (P̂V ) = P̂W ; (iii) PV refines both the set of polytopeslift (PW ) and the
allocation partitionP a

V as defined by the allocation functionf7; and (iv) each polytope inPW has
n extreme points.

Consider the graph of a rebate function(w, h(w)). Note that anyn rebate values can be described
by a linear rebate function: indeed, there exists an(n− 1) dimensional hyperplane passing through
n points inRn. Therefore, partitioning the rebate space into polytopes each havingn extreme points
lets us define a linear rebate function on each polytope. Finally, setting the rebates on extreme points
P̂W accordingly to the optimal solution to the optimization problem, restricted tôPV , implies the
optimality of rebates for linearly consistent partitions.

6Thus, a pair(A, b) defines a polytope inRd.
7That is, for anyv1, v2 in the same allocation regionqa ∈ P a

V , f(v1) = f(v2).
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Theorem 2 Given linearly consistent partitionsPV andPW , let{ĥ(w) | w ∈ P̂W } denote the set of
rebates from an optimal solution to the restricted problem and letp̂ denote the set ofn extreme points
of a polytopep ∈ PW . For each polytope, define a linear rebate functionhp(w) =

∑n−1
i=1 ap

i wi + bp

with coefficientsap ∈ Rn−1, bp ∈ R given by a solution to the system of linear equations{ĥ(w) =∑n−1
i=1 ap

i wi + bp | w ∈ p̂}. Then, the following rebate function isoptimal: for w ∈ p, h(w) =
hp(w).

By Theorem 2, if one can partition spacesV andW in a linearly consistent way, an optimal, piece-
wise linear, mechanism follows immediately. Next, we present an algorithm for finding such par-
titions for an important class of, what we call,constant-dependentallocation functions: these, in
particular, include commonly desirable efficient allocations.

3.4 Constant-dependent allocations

We start with a definition.

Definition 5 An allocation function is called constant-dependent if there exists a finite set of con-
stantsC = {c1, . . . , cq}, such that the allocation is constant on each of the regions defined by
hyperplanes of the formvi = c | c ∈ C. For C = ∅, the allocation is constant on the whole space
of agents’ valuations.

In Figure 4, we present thepartition algorithm and show that it defines linearly-consistent partitions
of the value and rebate spaces for a given constant-dependent allocation function (Theorem 3).

Algorithm partition
Input: polytopeX
1. partitionX alongxi = c ∀c ∈ C, i ∈ {1, . . . , dim(X)} /* denote the partition byP g

X */
2. for each hyperrectanglep ∈ P g

X

for each pair(i, j) of dimensionsi, j ∈ {1, . . . , dim(X)}, i 6= j,
partitionp alongxi = axj + b wherea, b ∈ R define the diagonal
from the lower left to the upper right corner of projection onto thei-j plane

Figure 4:Linearly-consistent partitions.

Theorem 3 For a constant-dependent allocation, the partitionsPV = partition(V ) and PW =
partition(W ) are linearly-consistent.

Constant-dependent allocation functions may not be monotone. Since a dominant-strategy imple-
mentation is possible only for monotone allocation functions (see Theorem 1), we only consider the
ones that are.

In the following sections, we demonstrate that the algorithmic technique described in Theo-
rems 2 and 3 can be applied to a wide class of mechanism design problems. In particular, we
consider the surplus-maximizing allocation and fair imposition problems and show that our method
provides an easy way of obtaining mechanisms for the (previously studied) case with free objects.
Moreover, uniqueness of the mechanisms follows immediately from the uniqueness of the optimal
solution to the restricted problem. These results are presented in Section 4. Finally, in Section 5, we
extend the consideration to the open problem where items have costs.
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4 “Free” Homogeneous Objects

In this section, we apply our technique to two central mechanism design problems in single-
parameter domains. We start by re-deriving the results on surplus-maximizing allocation of free
items by Moulin [10] and Guo and Conitzer [7] and fair imposition of a single task by Porteret
al. [13]. We then proceed to show that an optimal mechanism for fair imposition of multiple tasks,
for which no closed form has been previously derived, can be easily obtained using our method.

4.1 Surplus-maximizing allocation

See online appendix at http://users.ecs.soton.ac.uk/vn/comsoc.pdf

4.2 Fair imposition

See online appendix at http://users.ecs.soton.ac.uk/vn/comsoc.pdf

5 Allocation with Costs

In this section, we apply our technique to solve open mechanism design problems. Specifically, we
consider more realistic scenarios where items are not free.This generalization significantly compli-
cates the setting for both surplus-maximizing allocation and fair imposition problems, which have
not been previously tackled for items with costs. We observethat the generalized model still falls
in the framework of single-parameter domains with constant-dependent allocation, and Theorem 3
holds. Given this, we provide the first algorithm for computing optimal mechanisms for these sce-
narios.

5.1 Motivation

We consider a setting where (identical) items must be assigned to the agents, assuming each agent
wants exactly one item, and the items have (increasing marginal) costs. The goal, as before, may be
either to maximize the social surplus or to achievek-fairness.

The allocation problem with increasing marginal costs is a simple and fundamental example of
the problem of the commons [8], in which multiple participants, acting independently to optimize
their own objectives, will ultimately deplete a shared limited resource even when it is clear that it
is not in anyone’s long-term interest for this to happen. Increasing marginal costs model decreasing
returns to every agent as the number of allocated items increases. For instance, consider mem-
bership in a free gym. As the gym becomes more crowded, the utility each member derives from
exercising there decreases. Membership in the gym corresponds to an item in our model. Cost of
item i represents the marginal disutility of the members, which increases as the gym becomes more
crowded.

Allocating items with increasing unit costs also arises in other familiar contexts, such as schedul-
ing and disaster management. For example, consider multiple teams willing to be deployed in a dis-
aster response. Each team has information (i.e., private value) about different regions of the affected
area and can judge how much their region needs help. For teamsto operate, they need commu-
nication frequencies for intra-team communication. The number of frequencies is limited and the
more frequencies are allocated, the higher is the noise. Thegoal of a disaster response manager is
to solicit truthful evaluations of situations in each team’s region and to allocate frequencies to teams
in the regions that need help the most. Additional frequencies should be allocated as long as the
benefit derived from deploying an extra team outweighs the cost corresponding to the increase in
noise on the communication channel. More generally, agentscould be either emergency responders
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or sensor networks. The important part is that each agent is self-interested and maximizes its own
utility, which is the case, for example, when agents are owned by different companies.

5.2 Setting

The setting ofallocation with costsis defined by a triple〈n, c, v〉, wheren is the number of agents
each desiring one unit of a homogenous good,c is the vector of marginal costs for producing each
additional unit (item), andv ∈ Rn

+ represents the agents’ valuations for consuming the item. The
marginal cost is increasing in the number of items, i.e.c1 ≤ c2 ≤ . . . ≤ cn, and value profiles are
such that1 ≥ v1 ≥ v2 ≥ . . . ≥ vn ≥ 0. Monetary transfers are possible, and agents’ utilities are
quasi-linear.

In contrast to the case with free items, the number of allocated agents isnot fixed but depends
on c andv: we do not assign the item to an agent whose value for the item is lower than its cost.
An efficient mechanism in this setting will maximize the total value of agents minus the total cost;
the number of items allocated this way ism(v, c) = maxi(i | vi ≥ ci) and the value of the efficient
allocation is

∑
i≤m(v,c)(vi − ci).

Finally, we assume that at least one, but no more thann − 1 items, are allocated:c1 < v1 and
cn = 1. It is easy to see that the efficient allocation in this setting is constant-dependent and defined
by setC = {c1, . . . , cn−1}. Hence, Theorem 3 implies.

5.3 Mechanisms

We now formulate the surplus-maximizing allocation and fair imposition problems in this domain.
First, we modify the surplus ratio as follows:

S(c) = min
v∈V

Pm(v,c)
i=1 vi −m(v, c)τa +

Pn
i=1 h(v−i)Pm(v,c)

i=1 (vi − ci)

whereτa is the critical value of an allocated agent. Note that we fix the cost vectorc and consider
the worst ratio over all possible value profiles: we do not take the minimum over costs as that
would obviously result in zero ratio—when the firstn− 1 costs are the same, the ratio is zero. The
surplus-maximizing allocation problem is then defined by the following optimization program:

max
S∈R, r:Rn−1→R

S s.t. ∀ v ∈ V (1)

m = argmaxi(vi ≥ ci) (2)

τa = max{vm+1, cm} (3)
nX

i=1

h(v−i)−mτa ≤ −
X
i≤m

ci (4)

h(v−i) ≥ 0 ∀i (5)X
i≤m

(vi)−mτa +

nX
i=1

h(v−i) ≥ S
X
i≤m

(vi − ci) (6)

Here, (2) determines the number of items in an efficient allocation for the profilev, and corre-
sponding critical values are defined by (3). The no-deficit property is enforced in (4): the payments
collected from the agents must cover the costs of the allocated items. Constraint (5) guarantees that
the utility of each agent is non-negative (recall from the previous section that enforcing the non-
negativity of rebates is equivalent). Finally, as before, (6) ensures that the ratio is satisfied under all
value profiles.
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Similarly, we modify the fair imposition problem as follows: ∀ v ∈ V ,

m = argmaxi(vi ≥ ci) (7)

τa = max{vm+1, cm} (8)

h(v−i) ≥ mvk

n
∀i (9)

nX
i=1

h(v−i)−mτa ≤ −
X
i≤m

ci (10)

We have observed that the efficient allocation is constant-dependent in this model (as defined by
the set of costs). Therefore, apiecewise linearsurplus-maximizing and ak-fair mechanisms are
obtained by solving (1)-(6) and (7)-(10), respectively, for the subset of profile valueŝV as defined
in 3, and linearly combining the rebate values in these—extreme—points on each of the regions of
partition they define on spaceW .

6 Open Questions

Our work suggests several directions for future research. First, the characterization result in Theo-
rem 2 can potentially be used to conclude the existence of linear optimal mechanisms in classes of
problems, other than those with constant-dependent allocations: here, combinatorial auctions with
single-minded bidders may be of particular interest; another extension is to public good settings.
Second, a more general question in this context is about the necessity of conditions in Theorem 2.
These conditions imply the existence of a partition of the space of agents’ types, with certain proper-
ties: is it the case that if no such partition exists, an optimal linear mechanism does not exist either?
Finally, an optimal partition may be complicated: in the setting of allocation with costs, the space
is partitioned into

(
2n−2
n−1

)
n! regions, wheren is the number of agents. For smalln, we empirically

observed that most of the regions are required for an optimalmechanism, but it is likely that merging
some of the regions does not decrease the solution quality too much. The tradeoff between efficiency
and optimality remains open for further study.

References
[1] Martin J Bailey. The demand revealing process: To distribute the surplus.Public Choice, 91(2):107–26,

April 1997.

[2] Ruggiero Cavallo. Optimal decision-making with minimal waste: Strategyproof redistribution of vcg
payments. InAAMAS’06, Hakodate, Japan, 2006.

[3] H. Crès, H. Moulin, and HEC Groupe. Commons with increasing marginal costs: random priority versus
average cost.Int. econ. review, 44:1097–1115, 2003.

[4] Geoffroy de Clippel, Victor Naroditskiy, and Amy Greenwald. Destroy to save. InEC’09, 2009.

[5] S. De Vries, R.V. Vohra, Center for Mathematical Studiesin Economics, and Management Science. Com-
binatorial auctions: A survey.INFORMS Journal on Computing, 15(3):284–309, 2003.

[6] A. Gibbard. Manipulation of voting schemes: A general result. Econometrica, 41:587–601, 1973.

[7] Mingyu Guo and Vincent Conitzer. Worst-case optimal redistribution of vcg payments. InEC’07, pages
30–39, New York, NY, USA, 2007. ACM.

[8] G. Hardin. The tragedy of the commons.Science, 162(3859):1243–1248, December 1968.

[9] R. Juarez. The worst absolute surplus loss in the problemof commons: random priority versus average
cost.Economic Theory, 34(1):69–84, 2008.

[10] Herve Moulin. Almost budget-balanced vcg mechanisms to assign multiple objects.Journal of Economic
Theory, 144(1):96–119, 2009.

317



[11] Noam Nisan and Amir Ronen. Algorithmic mechanism design (extended abstract). InSTOC ’99: Pro-
ceedings of the thirty-first annual ACM symposium on Theory of computing, pages 129–140, New York,
NY, USA, 1999. ACM.

[12] Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay V. Vazirani. Algorithmic Game Theory. Cam-
bridge University Press, New York, NY, USA, 2007.

[13] Ryan Porter, Yoav Shoham, and Moshe Tennenholtz. Fair imposition. Journal of Economic Theory,
118(2):209 – 228, 2004.

[14] Kevin Roberts. The characterization of implementablesocial choice rules.In Jean-Jacques Laffont,
editor, Aggregation and Revelation of Preferences, 1979.

[15] Tuomas Sandholm. Automated mechanism design: A new application area for search algorithms. InIn
Proceedings of the International Conference on Principlesand Practice of Constraint Programming (CP
03), Kinsale, County. Springer, 2003.

[16] Yoav Shoham and Kevin Leyton-Brown.Multiagent Systems: Algorithmic, Game-Theoretic, and Logical
Foundations. Cambridge University Press, December 2008.

Victor Naroditskiy
School of Electronics and Computer Science
University of Southampton
Highfield, Southampton SO17 1BJ, United Kingdom
Email:vn@ecs.soton.ac.uk

Maria Polukarov
School of Electronics and Computer Science
University of Southampton
Highfield, Southampton SO17 1BJ, United Kingdom
Email:mp3@ecs.soton.ac.uk

Nicholas R. Jennings
School of Electronics and Computer Science
University of Southampton
Highfield, Southampton SO17 1BJ, United Kingdom
Email:nrj@ecs.soton.ac.uk

318



Strong Implementation of Social Choice

Functions in Dominant Strategies

Sven O. Krumke and Clemens Thielen

Abstract

We consider the classical mechanism design problem of strongly implementing social
choice functions in a setting where monetary transfers are allowed. In contrast to
weak implementation, where only one equilibrium of a mechanism needs to yield
the desired outcomes given by the social choice function, strong implementation
(also known as full implementation) means that a mechanism is sought in which
all equilibria yield the desired outcomes. For strong implementation, one cannot
restrict attention to incentive compatible direct revelation mechanisms via the Rev-
elation Principle, so the question whether a given social choice function is strongly
implementable cannot be answered as easily as for weak implementation.
When considering Bayes Nash equilibria, the Augmented Revelation Principle states
that it suffices to consider mechanisms in which the set of types of each agent is a
subset of the set of her possible bids. Moreover, given some additional data, such a
mechanism can be constructed by an iterative procedure via selective elimination of
undesired equilibria in finitely (but possible exponentially) many steps. For dominant
strategies as the equilibrium concept, however, no such results have been known so
far. We close this gap by showing a variant of the Augmented Revelation Principle for
dominant strategies and a selective elimination procedure for constructing the desired
mechanisms in polynomially many steps. Using these results, we then show that
strong implementability in dominant strategies can be decided in nondeterministic
polynomial time. This complements the results obtained in the companion paper
by Thielen and Westphal [7], where an efficient polynomial time algorithm for the
problem is given when one restricts to strong implementation by incentive compatible
direct revelation mechanisms.

1 Introduction

Mechanism design is a classical area of noncooperative game theory and microeconomics,
which studies how privately known preferences of several people can be aggregated towards
a social choice. Applications include the design of procedures for elections and for decid-
ing upon public projects. Recently, the study of the Internet has fostered the interest in
algorithmic aspects of mechanism design [5].

In the classical social choice setting considered in this paper, there are n selfish agents,
which must make a collective decision from some finite set X of possible social choices.
Each agent i has a private value θi ∈ Θi (called the agent’s type), which influences the
preferences of all agents over the alternatives in X . Formally, this is modeled by a valuation
function Vi : X × Θ → Q for each agent i, where Θ = Θ1 × · · · × Θn. Every agent i re-
ports some information si from a set Si of possible bids of i to the mechanism designer who
must then choose an alternative from X based on these bids. The goal of the mechanism
designer is to implement a given social choice function f : Θ → X , that is, to make sure
that the alternative f(θ) is always chosen in equilibrium when the vector of true types is
θ = (θ1, . . . , θn). To achieve this, the mechanism designer hands out a payment Pi(θ) to
each agent i, which depends on the bids. Each agent then tries to maximize the sum of her
valuation and payment by choosing an appropriate bid depending on her type. A mecha-
nism Γ = (S1, . . . , Sn, g, P ) is defined by the sets S1, . . . , Sn of possible bids of the agents,
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an outcome function g : S1 × · · · × Sn → X , and the payment scheme P = (P1, . . . , Pn).
In the most common concept called weak implementation, the mechanism Γ is said to

implement the social choice function f if some equilibrium of the noncooperative game
defined by the mechanism yields the outcomes specified by f . An important result known
as the Revelation Principle (cf. [2, p. 884]) states that a social choice function is weakly
implementable if and only if it can be truthfully implemented by an incentive compatible
direct revelation mechanism, which means that f can be implemented by a mechanism with
Si = Θi for all i and truthful reporting as an equilibrium that yields the outcome specified
by f . As a result, the question whether there exists a mechanism that weakly implements a
given social choice function f can be easily answered in time polynomial in |Θ| by checking
for negative cycles in complete directed graphs on the agents’ type spaces with changes of
valuations as edge weights (cf. [1, 4, 6]).

The more robust concept of implementation called strong implementation (also known as
full implementation) requires that not only one, but all equilibria of a mechanism yield the
desired outcomes. Hence, a strong implementation does not rely on the implicit assumption
that the agents always play the “desired” equilibrium if there is more than one. For strong
implementation, the Revelation Principle does not hold, so one cannot, in general, restrict
attention to direct revelation mechanisms and truthful implementations when trying to
decide whether a social choice function is strongly implementable.

When considering Bayes Nash equilibria as the equilibrium concept, a generalization
of the Revelation Principle called the Augmented Revelation Principle [3] states that it
suffices to consider augmented revelation mechanisms, in which the set Θi of types of each
agent i is a subset of the set Si of her possible bids. Moreover, it was shown in [3] that one
can always obtain an augmented revelation mechanism that strongly implements a strongly
implementable social choice function f via the selective elimination procedure that starts
with an incentive compatible direct revelation mechanism and some additional data on its
equilibria and iteratively eliminates all the finitely many equilibria that do not yield the
outcomes specified by f . To do so, one of the agents is given a new bid, so her set of
possible bids is enlarged by one element. Since the procedure always stops after finitely
many iterations, this also implies that the sets Si can always be chosen to be finite.

For dominant strategies as the equilibrium concept, however, no such results have been
known so far and it has not even been clear that one can restrict to finite sets of possible bids
or polynomially sized payments. Hence, also the complexity of deciding whether a given
social choice function f is strongly implementable in dominant strategies has remained open.

2 Our Contribution

We prove a variant of the Augmented Revelation Principle for dominant strategy equilibria.
Our result implies that, as in the case of Bayes Nash equilibria, one can always restrict
to augmented revelation mechanisms when trying to decide strong implementability of so-
cial choice functions in dominant strategies. Moreover, we present a selective elimination
procedure for constructing augmented revelation mechanisms in finitely many steps when
dominant strategies are considered. In contrast to the case of Bayes Nash equilibria, where
the number of steps needed for selective elimination of all undesired equilibria of an incentive
compatible direct revelation mechanism can be exponential, we show that our procedure for
dominant strategies always terminates after polynomially many steps, which implies that
only a polynomial number of possible bids for each agent is needed. Based on this result, we
show that the payments in a strong implementation can always be chosen to be of polyno-
mial encoding length and present a method for deciding strong implementability of a given
social choice function in nondeterministic polynomial time. Doing so, we prove the first
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upper bound on the computational complexity of this classical mechanism design problem.
We suspect that a matching lower bound can be proved as well, i.e., that deciding strong
implementability of a social choice function in dominant strategies is NP-complete.

3 Problem Definition

We are given n agents identified with the set N = {1, . . . , n} and a finite set X of possible
social choices. For each agent i, there is a finite set Θi of possible types and we write
Θ = Θ1 × · · · × Θn. The true type θi of agent i is known only to the agent herself. Each
agent i has a valuation function Vi : X × Θ → Q, where Vi(x, θ) specifies the value that
agent i assigns to alternative x ∈ X when the types of the agents are θ ∈ Θ. A social choice
function in this setting is a function f : Θ → X that assigns an alternative f(θ) ∈ X to
every vector θ of types.

Definition 1. A mechanism Γ = (S1, . . . , Sn, g, P ) consists of a set Si of possible bids for
each agent i, an outcome function g : S → X and a payment scheme P : S → Qn, where
S := S1 × · · · × Sn.

A strategy for agent i in the mechanism Γ is a function αi : Θi → Si that defines a
bid αi(θi) ∈ Si for every possible type θi of agent i. A strategy profile (in the mechanism Γ)
is an n-tuple α = (α1, . . . αn) containing a strategy αi for each agent i.

Definition 2. Given a mechanism Γ = (S1, . . . , Sn, g, P ), a vector θ ∈ Θ of types of all
agents, and a vector s−i ∈ S−i of bids of all agents except i, the utility from a bid si ∈ Si

for agent i is defined as

UΓ
i (s−i, si|θ) := Vi(g(s−i, si), θ) + Pi(s−i, si).

A bid s̄i ∈ Si of an agent i is called a dominant bid for type θi ∈ Θi if it maximizes the
utility of an agent i of type θi for every possible vector s−i ∈ S−i of bids of the other agents
and every possible vector θ−i ∈ Θ−i of types of the other agents, i.e., if

UΓ
i (s−i, s̄i|θ) ≥ UΓ

i (s−i, si|θ) ∀s−i ∈ S−i, θ−i ∈ Θ−i, si ∈ Si.

A pair (θ, s) ∈ Θ× S of a type vector θ ∈ Θ and bid vector s ∈ S is called a dominant pair
if si is a dominant bid for θi for every i ∈ N . The strategy profile α is a dominant strategy
equilibrium of Γ if (θ, α(θ)) is a dominant pair for every θ ∈ Θ.

Definition 3. The mechanism Γ = (S1, . . . , Sn, g, P ) strongly implements the social choice
function f if Γ has at least one equilibrium and every equilibrium α of Γ satisfies g ◦α = f .
The social choice function f is called strongly implementable if there exists a mechanism Γ
that strongly implements f .

Definition 4. A mechanism Γ = (S1, . . . , Sn, g, P ) is called a direct revelation mechanism if
Si = Θi for all i ∈ N . The direct revelation mechanism (Θ1, . . . , Θn, f, P ) defined by a social
choice function f and a payment scheme P will be denoted by Γ(f,P ). A direct revelation
mechanism Γ(f,P ) is called incentive compatible if truthful reporting is a dominant strategy
equilibrium of Γ(f,P ).

Definition 5. A mechanism Γ = (S1, . . . , Sn, g, P ) is called augmented revelation mecha-
nism if Si = Θi ∪ Ti for all i ∈ N and arbitrary sets Ti.

Definition 6 (Strong Implementability Problem).
INSTANCE: The number n of agents, the set X of possible social choices, the sets Θi

of possible types of the agents, the valuation functions Vi : X × Θ → Q,
and the social choice function f : Θ → X.

QUESTION: Is f strongly implementable in dominant strategies?
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To encode an instance of Strong Implementability, we need to do the following: For every
valuation function Vi : X ×Θ → Q, we need to store |X | · |Θ| rational numbers. The social
choice function f : Θ → X has encoding length |Θ| · log(|X |). Thus, the encoding length of
an instance of Strong Implementability is in Ω(|X | · |Θ| · n).

4 The Augmented Revelation Principle for Dominant

Strategies

In this section, we prove the Augmented Revelation Principle for dominant strategies and
present our selective elimination procedure that, given an incentive compatible direct reve-
lation mechanism Γ(f,P ) and some data on it equilibria, constructs an augmented revelation
mechanism that strongly implements f by an iterative procedure that stops after polyno-
mially many steps.

Theorem 1 (Augmented Revelation Principle for dominant strategies). If a social choice
function f : Θ → X is strongly implementable in dominant strategies, then f can be strongly
implemented in dominant strategies by an augmented revelation mechanism in which truthful
reporting is an equilibrium.

Proof. Given a mechanism Γ = (S1, . . . , Sn, g, P ) that strongly implements f in dominant
strategies, we construct an augmented revelation mechanism Γ̄ = (S̄1, . . . , S̄n,
ḡ, P̄ ) that strongly implements f similar to the proof of the Augmented Revelation Principle
for Bayes Nash equilibria given in [3]. Additionally, we have to define the new payment
scheme P̄ in terms of the given payment scheme P since the proof in [3] focused on the case
without payments.

Given an arbitrary equilibrium α = (α1, . . . , αn) of Γ, we define S̄i := Θi ∪ Ti, where

Ti := {si ∈ Si | si /∈ image(αi)},
and image(αi) = {αi(θi) | θi ∈ Θi} denotes the image of the function αi : Θi → Si. We
consider the functions φi : S̄i → Si given by

φi(s̄i) :=
{

αi(θi) if s̄i = θi for θi ∈ Θi

s̄i if s̄i ∈ Ti

and define the outcome function ḡ : S̄ → X as ḡ := g ◦ φ, where φ = (φ1, . . . , φn). The
payment scheme P̄ : S̄ → Q is defined analogously as P̄ := P ◦ φ.

To show that Γ̄ strongly implements f in dominant strategies, suppose that ᾱ =
(ᾱ1, . . . , ᾱn) is an equilibrium of Γ̄ and again consider the strategy profile α∗ = (α∗

1, . . . , α
∗
n)

in Γ given by α∗
i := φi ◦ ᾱi. As before, we then have g ◦ α∗ = g ◦ φ ◦ ᾱ = ḡ ◦ ᾱ and

P ◦ α∗ = P ◦ φ ◦ ᾱ = P̄ ◦ ᾱ and claim that α∗ is an equilibrium of Γ.
Since every φj : S̄j → Sj is surjective, we can choose s̄j ∈ S̄j with φj(s̄j) = sj for each

j ∈ N and each sj ∈ Sj . Then, for all i ∈ N, θ ∈ Θ, s−i ∈ S−i, and si ∈ Si,

UΓ
i (s−i, α

∗
i (θi)|θ) = Vi(g(s−i, α

∗
i (θi)), θ) + Pi(s−i, α

∗
i (θi))

= Vi(ḡ(s̄−i, ᾱi(θi)), θ) + P̄i(s̄−i, ᾱi(θi))
≥ Vi(ḡ(s̄−i, s̄i), θ) + P̄i(s̄−i, s̄i)
= Vi(g(s−i, si), θ) + Pi(s−i, si)
= UΓ

i (s−i, si|θ),
where the inequality follows since ᾱ is an equilibrium of Γ̄. Thus, α∗ is an equilibrium of
Γ as claimed. So since Γ strongly implements f , it follows that f = g ◦ α∗ = ḡ ◦ ᾱ, i.e.,
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the equilibrium ᾱ yields the outcomes specified by f . Hence, it just remains to show that
truthful bidding is an equilibrium of Γ̄. But this follows easily since, for every θ ∈ Θ, we
have ḡ(θ) = (g ◦ φ)(θ) = g(α(θ)) and P̄ (θ) = (P ◦ φ)(θ) = P (α(θ)) and α is an equilibrium
of Γ.

We now present our selective elimination procedure for dominant strategies. To this end,
we need the following definition:

Definition 7. A dominant bid θ̄i ∈ Θi for type θ̃i ∈ Θi of agent i ∈ N in a direct revelation
mechanism Γ(f,P ) can be selectively eliminated if there exists a nonempty subset N̄ ⊆ N \{i}
of the other agents such that the following holds: For S̄j := Θj∪{s̄j} for j ∈ N̄ , S̄j := Θj for
j ∈ N \ N̄ , and S̄ := S̄1 × · · · × S̄n, there exist functions h : S̄ → X and P̄j : S̄ → Q, j ∈ N ,
with h|Θ = f and (P̄j)|Θ = Pj such that:

1. For some θ̃−i ∈ Θ−i and some bid vector θ̄−(N̄∪{i}) ∈ Θ−(N̄∪{i}) of the agents not in
N̄ ∪ {i}

Vi(h(s̄N̄ , θ̄−(N̄∪{i}), θ̃i), θ̃) + P̄i(s̄N̄ , θ̄−(N̄∪{i}), θ̃i)

> Vi(h(s̄N̄ , θ̄−(N̄∪{i}), θ̄i), θ̃) + P̄i(s̄N̄ , θ̄−(N̄∪{i}), θ̄i).

2. For all j ∈ N, θ ∈ Θ, s ∈ S̄ \Θ

Vj(h(s−j , θj), θ) + P̄j(s−j , θj) ≥ Vj(h(s−j , sj), θ) + P̄j(s−j , sj).

A dominant pair (θ, θ′) ∈ Θ2 can be selectively eliminated if the dominant bid θ′i ∈ Θi for
type θi ∈ Θi can be selectively eliminated for some i ∈ N .

Here, each agent j ∈ N̄ is given a new bid s̄j . The function h extends f to the enlarged
set S̄ of possible bids by specifying the outcomes chosen when at least one agent chooses
a non-type message. Similarly, the functions P̄j extend the payment functions Pj to S̄.
The first condition says that, for some type vector θ̃−i ∈ Θ−i of the other agents and
some bid vector θ̄−(N̄∪{i}) of the agents not in N̄ ∪ {i}, agent i can increase her utility by
bidding her true type θ̃i instead of θ̄i in the case that the agents in N̄ choose their new
non-type messages. Thus, θ̄i is not a dominant bid for type θ̃i anymore. On the other hand,
the second condition ensures that all pairs (θ, θ) ∈ Θ2 stay dominant pairs, so truthful
reporting is preserved as an equilibrium.

Definition 8. A dominant pair (θ, θ′) ∈ Θ2 in the direct revelation mechanism Γ(f,P ) is
called bad if f(θ) 6= f(θ′). Γ(f,P ) satisfies the selective elimination condition if every bad
dominant pair can be selectively eliminated.

The idea behind Definition 8 is the following observation, which follows immediately
from the definitions:

Observation 1. A direct revelation mechanism Γ(f,P ) with at least one dominant strategy
equilibrium has a bad dominant strategy equilibrium if and only if there exists a bad dom-
inant pair (θ, θ′) ∈ Θ2 in Γ(f,P ). In particular, an incentive compatible direct revelation
mechanism Γ(f,P ) has a bad dominant strategy equilibrium if and only if there exists a bad
dominant pair (θ, θ′) ∈ Θ2 in Γ(f,P ).

Hence, selectively eliminating all bad dominant pairs will lead to elimination of all bad
equilibria. The difference to the case of Bayes Nash equilibria discussed in [3] is that one
does not need to consider complete equilibria α and check whether they can be selectively
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eliminated. Here, one has to consider only bad dominant pairs (θ, θ′) ∈ Θ2. While there are
potentially exponentially many bad equilibria, the number of bad dominant pairs (θ, θ′) ∈ Θ2

is bounded by |Θ|2, which is polynomial in the encoding length of the input. This observation
will play a crucial role when we show that Strong Implementability is in NP when considering
dominant strategies.

Theorem 2. Suppose that the social choice function f : Θ → X is strongly implementable
in dominant strategies. Then there exists an incentive compatible direct revelation mecha-
nism Γ(f,P ) that satisfies the selective elimination condition.

Proof. Theorem 1 states that there exists an augmented revelation mechanism Γ =
(S1, . . . , Sn, g, P ) that strongly implements f in dominant strategies and in which truth-
ful reporting is an equilibrium. In particular, this implies that g|Θ = f , and we claim that
the direct revelation mechanism Γ(f,P|Θ) is as required.

Incentive compatibility of Γ(f,P|Θ) follows directly from the fact that truthful reporting
is an equilibrium in Γ. To show that Γ(f,P|Θ) satisfies the selective elimination condition,
consider a bad dominant pair (θ, θ′) ∈ Θ2 in Γ(f,P|Θ) (if none exists, we are done). Since Γ
strongly implements f , it can have no bad equilibria and, thus, (θ, θ′) cannot be a dominant
pair in Γ. Hence, there must be an agent i, a vector θ̃−i ∈ Θ−i of types of the other agents,
and a vector s̄ ∈ S of bids such that

UΓ
i (s̄−i, s̄i|θi, θ̃−i) > UΓ

i (s̄−i, θ
′
i|θi, θ̃−i).

Moreover, since truthful reporting is an equilibrium in Γ, we know that

UΓ
i (s̄−i, θi|θi, θ̃−i) ≥ UΓ

i (s̄−i, s̄i|θi, θ̃−i),

so we obtain

UΓ
i (s̄−i, θi|θi, θ̃−i) > UΓ

i (s̄−i, θ
′
i|θi, θ̃−i). (1)

Moreover, since (θ, θ′) is a dominant pair in Γ(f,P|Θ), we know that s̄j /∈ Θj for at least one
j 6= i. Hence, the set N̄ := {j 6= i : s̄j /∈ Θj} is nonempty. We now set S̄j := Θj ∪ {s̄j}
for j ∈ N̄ , S̄j := Θj for j ∈ N \ N̄ , and S̄ := S̄1 × · · · × S̄n as in the definition of selective
elimination. The function h : S̄ → X is defined as the restriction of g to S̄ ⊆ S and
it satisfies h|Θ = g|Θ = f . Analogously, the functions P̄j : S̄ → Q are defined as the
restrictions of the Pj to S̄ ⊆ S and we have (P̄j)|Θ = (Pj)|Θ. Defining θ̄j := s̄j ∈ Θj

for all j /∈ (N̄ ∪ {i}), it is now immediate that the dominant bid θ′i for type θi of agent i
can be selectively eliminated, i.e., that Conditions 1 and 2 in the definition of selective
elimination are satisfied: Condition 1 follows directly from (1) and the definitions, and
Condition 2 follows since truthful reporting is an equilibrium in Γ. Thus, the bad dominant
pair (θ, θ′) ∈ Θ2 can be selectively eliminated.

We are now ready to present our selective elimination procedure for constructing aug-
mented revelation mechanisms. This procedure is used to prove the following theorem, which
is states that the selective elimination condition is also sufficient for strong implementability:

Theorem 3. Suppose that there exists an incentive compatible direct revelation mecha-
nism Γ(f,P ) that satisfies the selective elimination condition. Then the social choice func-
tion f : Θ → X is strongly implementable in dominant strategies.

Proof. We start with the direct revelation mechanism Γ(f,P ) and proceed inductively to
selectively eliminate all bad dominant pairs (θ, θ′) ∈ Θ2 in Γ(f,P ) one by one without intro-
ducing any new dominant pairs by augmenting the mechanism appropriately. Since there

324



can only be finitely many bad dominant pairs, the procedure stops after a finite number
of steps with an augmented revelation mechanism without bad dominant pairs and, thus,
without bad equilibria. In fact, the procedure stops after a polynomial number of steps since
there can only be |Θ|2 many bad dominant pairs in Γ(f,P ).

We describe a representative stage of this iterative procedure. From the previous itera-
tion, we are given an augmentation Γ = (S1, . . . , Sn, g, P ′) of Γ(f,P ) with Si = Θi∪Ti for all
i ∈ N , and θ′ ∈ Θ for every dominant pair (θ, θ′) of Γ. Let (θ, θ′) be a bad dominant pair
of Γ. Let i ∈ N be such that the dominant bid θ′i for type θi of agent i can be selectively
eliminated, and suppose that ∅ 6= N̄ ⊆ N \ {i}, S̄ = S̄1 × · · · × S̄n with S̄j = Θj ∪ {s̄j} for
j ∈ N̄ and S̄j = Θj for j ∈ N \ N̄ , h : S̄ → X , and P̄j : S̄ → Q are as in the definition of
selective elimination. Consider the mechanism Γ̃ = (S̃1, . . . , S̃n, g̃, P̃ ) with

S̃j := Sj ∪ {s̄j} for j ∈ N̄ ,

S̃j := Sj for j ∈ N \ (N̄ ∪ {i}),
S̃i := Si ∪ {CFL}.

Hence, each agent j ∈ N̄ is given a new bid s̄j (a flag), and agent i is given a new counter-
flag CFL. We set g̃|S := g and P̃|S := P ′, i.e., outcomes and payments associated with bids
from the previous stages are left unchanged. Outcomes and payments associated with the
new bids are defined as follows:

1. If the bid vector is in S̄, the outcome and the payments are given by h and the P̄j ,
respectively, i.e., g̃(s) := h(s) for s ∈ S̄ and P̃j(s) := P̄j(s) for s ∈ S̄, j ∈ N. Note that
this definition agrees with the outcomes and payments of the previous stages when
the bid vector is in Θ since g̃|Θ = f and (P̃j)|Θ = P .

2. If some agents ∅ 6= Ñ ⊆ N̄ choose their new bids, agent i does not choose her new
counterflag CFL, but some agents j ∈ ˜̃N ⊆ N \ Ñ choose bids in Tj = Sj \ Θj , then
outcome and payments are as if each agent k ∈ Ñ had chosen a fixed type θ0

k ∈ Θk,
but each agent k ∈ Ñ is charged ǫ > 0 for choosing her new bid s̄k if agent i chooses
a bid in Ti = Si \Θi.

3. If at least two agents Ñ ⊆ N̄ , |Ñ | ≥ 2, choose their new bids and agent i chooses CFL,
then outcome and payments are as if agent i had reported a fixed type θ0

i ∈ Θi.

4. If no agent in N̄ chooses her new bid, but agent i chooses CFL, then outcome and
payments are as if agent i had reported θ0

i ∈ Θi, but agent i is charged ǫ > 0 for
choosing CFL.

5. If exactly one agent k ∈ N̄ chooses her new bid and agent i chooses CFL, then outcome
and payments are as if agent i had reported θ0

i ∈ Θi and agent k had reported θ0
k ∈ Θk,

but agent k is charged ǫ > 0.

We now have to show that truthful reporting is still an equilibrium in Γ̃, (θ, θ′) is not a
dominant pair anymore, and there are no new dominant bid pairs in Γ̃ (or, equivalently,
no new dominant bids). Note that, since the outcomes and payments associated with bids
from the previous stages are left unchanged, any new dominant bid of an agent would have
to be one of the agent’s new bids.

Claim 1. Truthful reporting is an equilibrium in Γ̃.

Proof. We consider a fixed agent j ∈ N and show that truthful reporting is a dominant
strategy for j in Γ̃.
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As long as the other agents bid a vector in S−j∪S̄−j , truthful reporting is always optimal
for agent j among all bids in Sj ∪ S̄j by Condition 2 in the definition of selective elimination
and since truthful reporting is an equilibrium in Γ. When agent j bids a new bid (if she
has one), this can only lead to some agents being charged ǫ as long as the other agents still
bid a vector in S−j ∪ S̄−j . Hence, truthful reporting is always optimal among all bids of
agent j in this case.

If the vector of bids of the other agents is not in S−j ∪ S̄−j , some agents choose new bids
and some agents choose previously added bids. Hence, Case 2 in the definition of Γ̃ applies
when agent i does not choose CFL, and Case 3,4, or 5 applies when agent i chooses CFL. But
outcomes and payments in each of these cases are equivalent to the outcome and payments
resulting from some bid vector in S ∪ S̄, except that some agents are possibly charged ǫ.
Hence, truthful reporting is optimal for agent j by the case considered above.

Claim 2. (θ, θ′) is not a dominant pair in Γ̃.

Proof. Follows immediately from Case 1 in the definition of Γ̃ and the definition of selective
elimination.

Claim 3. There is no dominant bid s̄k for any type θk ∈ Θk of any agent k ∈ N̄ in Γ̃.

Proof. If agent k has type θk and chooses the bid s̄k, consider the situation in which no
other agent j ∈ N̄ \ {k} chooses her new bid and agent i chooses CFL. Then, by Cases 4
and 5 in the definition of Γ̃, agent k could increase her utility by ǫ > 0 by bidding θ0

k instead
of s̄k for every possible vector θ−k of types of the other agents.

Claim 4. CFL is not a dominant bid for any type θi ∈ Θi of agent i in Γ̃.

Proof. If agent i has type θi and chooses the bid CFL, consider the situation in which no
agent j ∈ N̄ chooses her new bid. Then, by Case 4 in the definition of Γ̃, agent i could
increase her utility by ǫ > 0 by bidding θ0

i instead of CFL for every possible vector θ−i of
types of the other agents.

By inductive application of the claims, the final mechanism obtained after eliminating
all bad dominant pairs (θ, θ′) in Γ(f,P ) has no bad dominant pairs, but truthful reporting is
still an equilibrium. Hence, this mechanism strongly implements f in dominant strategies,
which proves the theorem.

Theorem 4. The social choice function f : Θ → X is strongly implementable in domi-
nant strategies if and only if there exists an incentive compatible direct revelation mecha-
nism Γ(f,P ) that satisfies the selective elimination condition.

Theorem 4 is the main ingredient needed for the proof of our complexity result on Strong
Implementability in the next section. The following lemma resolves one last formal problem
resulting from the definition of selective elimination: Giving all agents in N̄ a new bid could
yield an exponentially large space S̄ of possible bids in the definition of selective elimination.
This can, however, only happen if some of the agents have only one possible type, and the
behavior of such agents cannot impose restrictions on the implementability of a social choice
function since the types of these agents are common knowledge.

Lemma 1. Let Z ⊆ N denote the set of agents whose type space consists of only one
element, i.e., |Θj | = 1 for every j ∈ Z. Consider the instance of Strong Implementa-
bility for the agents in N \ Z given by the valuations V −Z

i : X × Θ−Z → Q defined by
V −Z

i (x, θ−Z) := Vi(x, θ−Z , θZ) and the social choice function f−Z : Θ−Z → X defined by
f−Z(θ−Z) := f(θ−Z , θZ), where θZ is the unique type vector of the agents in Z. Then f is
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strongly implementable in dominant strategies if and only if f−Z is strongly implementable
in dominant strategies.

Proof. Suppose that f is strongly implementable in dominant strategies. Then, by Theo-
rem 1, there exists an augmented revelation mechanism Γ = (S1, . . . , Sn, g, P ) that strongly
implements f in dominant strategies and in which truthful reporting is an equilibrium.
Without loss of generality, we assume that N \ Z = {1, . . . , z} with z := |N \ Z| and
consider the mechanism Γ−Z = (S−Z

1 , . . . , S−Z
z , g−Z , P−Z) defined by

S−Z
i := Si for i = 1, . . . , z

g−Z(s1, . . . , sz) := g(s1, . . . , sz, θZ)
P−Z

i (s1, . . . , sz) := Pi(s1, . . . , sz, θZ).

Then α−Z = (α−Z
1 , . . . α−Z

z ) 7−→ (α−Z
1 , . . . , α−Z

z , idΘZ ) = α defines an injective map from
the set of strategy profiles in Γ−Z to the set of strategy profiles in Γ, and α−Z is an
equilibrium in Γ−Z if and only if α is an equilibrium in Γ (here, we use that truthful bidding
is a dominant strategy in Γ for each agent in Z). Moreover, we have g−Z ◦ α−Z = g−Z if
and only if g ◦ α = g. Hence, since Γ strongly implements f , it follows that Γ−Z strongly
implements f−Z .

Conversely, assume that f−Z is strongly implementable and denote an augmented reve-
lation mechanism that strongly implements it in dominant strategies and in which truthful
reporting is an equilibrium by Γ−Z = (S−Z

1 , . . . , S−Z
z , g−Z , P−Z). We define a mecha-

nism Γ = (S1, . . . , Sn, g, P ) for all agents as follows:

Si := S−Z
i for i = 1, . . . , z

Si := Θi = {θi} for i ∈ Z

g(s1, . . . , sz, θZ) := g−Z(s1, . . . , sz)
Pi(s1, . . . , sz, θZ) := P−Z

i (s1, . . . , sz) for i = 1, . . . , z

Pi(s1, . . . , sz, θZ) := 0 for i ∈ Z

Then α = (α1, . . . αz , idΘZ ) 7−→ (α1, . . . , αz) = α−Z defines a bijection between the set of
strategy profiles in Γ and the set of strategy profiles in Γ−Z , and α is an equilibrium in Γ if
and only if α−Z is an equilibrium in Γ−Z . Again, we have g−Z ◦ α−Z = g−Z if and only if
g ◦ α = g. Hence, since Γ−Z strongly implements f−Z , Γ strongly implements f .

Lemma 1 shows that, when trying to decide strong implementability of a social choice
function f in dominant strategies, one can disregard all agents that have only one possible
type by considering the equivalent problem of strong implementability of the social choice
function f−Z . Hence, we may from now on assume that |Θj| ≥ 2 for every agent j ∈ N .
With this assumption, the cardinality of the set S̄ in the definition of selective elimination
is only quadratic in |Θ|:

|S̄| =
∏
j∈N̄

(|Θj |+ 1)︸ ︷︷ ︸
≤2|Θj |

·
∏

j∈N\N̄

|Θj | ≤ 2|N |−1︸ ︷︷ ︸
≤∏

n
j=1 |Θj |

n∏
j=1

|Θj | ≤ (
n∏

j=1

|Θj|)2 = |Θ|2.

5 Solving Strong Implementability in Nondeterministic
Polynomial Time

In this section, we use our results on augmented revelation mechanisms and selective elimi-
nation to show that Strong Implementability can be decided in nondeterministic polynomial
time when dominant strategies are considered.
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Suppose we are given a yes-instance of Strong Implementability, i.e., an instance with a
strongly implementable social choice function f . Theorem 4 then tells us that there exists an
incentive compatible direct revelation mechanism Γ(f,P ) satisfying the selective elimination
condition. We denote the set of all bad dominant pairs (θ, θ′) by D ⊆ Θ2. Similarly, for
each i ∈ N , we denote the set of all pairs (θ̃i, θ̄i) ∈ Θ2

i such that θ̄i is a dominant bid for
type θ̃i of agent i by Di ⊆ Θ2

i .
Since Γ(f,P ) satisfies the selective elimination condition, we know that each bad dom-

inant pair (θ, θ′) ∈ D can be selectively eliminated. Suppose that, for every (θ, θ′) ∈ D,(
i(θ,θ′), N̄ (θ,θ′), h(θ,θ′), θ̃

(θ,θ′)
−i(θ,θ′) , θ̄

(θ,θ′)
−(N̄∪{i(θ,θ′)})

)
is the data which, together with appropriate

payment functions P̄
(θ,θ′)
j for j ∈ N , can be used to selectively eliminate the bad dominant

pair (θ, θ′).
Similarly, suppose that, for every i ∈ N and every pair (θ̃i, θ̄i) ∈ Θ2

i \ Di (i.e., for
every pair (θ̃i, θ̄i) of types of agent i such that θ̄i is not a dominant bid for type θ̃i),(
θ̃
(θ̃i,θ̄i)
−i , θ̄

(θ̃i,θ̄i)
−i

)
is a pair of a type vector and a bid vector of the other agents such that

U
Γ(f,P )
i

(
θ̄
(θ̃i,θ̄i)
−i , θ̃i|θ̃(θ̃i,θ̄i)

−i , θ̃i

)
> U

Γ(f,P )
i

(
θ̄
(θ̃i,θ̄i)
−i , θ̄i|θ̃(θ̃i,θ̄i)

−i , θ̃i

)
.

The possible payment functions Pj : Θ → Q of the mechanism Γ(f,P ) and the func-

tions P̄
(θ,θ′)
j : S̄(θ,θ′) → Q are then given by the solutions of the system of linear inequalities

in the variables Pj(θ) for j ∈ N, θ ∈ Θ and P̄
(θ,θ′)
j (s) for j ∈ N, (θ, θ′) ∈ D, s ∈ S̄(θ,θ′) \ Θ

displayed on Page 11. Note that the values P̄
(θ,θ′)
j (s) for s ∈ Θ do not need to appear in

the system since we require that (P̄ (θ,θ′)
j )|Θ = Pj for all j ∈ N, (θ, θ′) ∈ D.

Inequalities (2) and (3) encode exactly which bids θ̄i ∈ Θi are dominant bids for any
type θ̃i of an agent i in Γ(f,P ) (in particular, (3) encodes incentive compatibility of Γ(f,P ))
and (4) corresponds to Condition 1 in the definition of selective elimination. Inequalities (5)
and (6) correspond to Condition 2, where (6) is stated separately since it involves the
variable Pj(s−j , θj) instead of P̄

(θ,θ′)
j (s−j , θj) as in (5).

Note that there are only polynomially many variables and inequalities in this system and
all coefficients have polynomial encoding length. Hence, we can find a relative interior point
of the polyhedron defined by the system, which corresponds to a solution of the original
system with strict inequalities in (2) and (4), in polynomial time (e.g., by using the ellipsoid
method). In particular, this shows that all the values Pj(θ) and P̄

(θ,θ′)
j (s) can be chosen to

have polynomial encoding length, which proves the following Theorem:

Theorem 5. The social choice function f : Θ → X is strongly implementable in
dominant strategies if and only if there exists an incentive compatible direct revela-
tion mechanism Γ(f,P ) of polynomial encoding length that satisfies the selective elimina-
tion condition. In this case, for every (fixed) bad dominant pair (θ, θ′) of Γ(f,P ), the
data (i, N̄ , h, θ̃−i, θ̄−(N̄∪{i})) needed to selectively eliminate (θ, θ′) can be chosen to have
polynomial encoding length.

Using Theorem 5, we can now state our nondeterministic polynomial time algorithm for
Strong Implementability and, thus, prove the main result of this section:

Theorem 6. Strong Implementability ∈ NP.

Proof. Assume that the given social choice function f is strongly implementable in
dominant strategies. Then, by Theorem 5, there exists an incentive compatible di-
rect revelation mechanism Γ(f,P ) of polynomial encoding length that satisfies the selec-
tive elimination condition. Moreover, for every bad dominant pair (θ, θ′) of Γ(f,P ), the
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data
(
i(θ,θ′), N̄ (θ,θ′), h(θ,θ′), θ̃

(θ,θ′)
−i(θ,θ′) , θ̄

(θ,θ′)
−(N̄∪{i(θ,θ′)})

)
needed to selectively eliminate (θ, θ′) can

be chosen to have polynomial encoding length. Now consider the following nondeterministic
algorithm for verifying that f is strongly implementable:

Algorithm 1.
1. Guess the (polynomially many) values Pj(θ).

2. For every i ∈ N , guess the set Di of all pairs (θ̃i, θ̄i) of types θ̃i ∈ Θi and dominant
bids θ̄i ∈ Θi for type θ̃i in Γ(f,P ).

3. Guess the set D ⊆ Θ2 of all bad dominant pairs in Γ(f,P ).

4. For every i ∈ N and every pair (θ̃i, θ̄i) ∈ Θ2
i \Di, guess the pair (θ̃(θ̃i,θ̄i)

−i , θ̄
(θ̃i,θ̄i)
−i ) of a

type vector and a bid vector of the other agents such that

U
Γ(f,P )
i

(
θ̄
(θ̃i,θ̄i)
−i , θ̃i|θ̃(θ̃i,θ̄i)

−i , θ̃i

)
> U

Γ(f,P )
i

(
θ̄
(θ̃i,θ̄i)
−i , θ̄i|θ̃(θ̃i,θ̄i)

−i , θ̃i

)
.

5. For every (θ, θ′) ∈ D, guess the data
(
i(θ,θ′), N̄ (θ,θ′), h(θ,θ′), θ̃

(θ,θ′)
−i(θ,θ′) , θ̄

(θ,θ′)
−(N̄∪{i(θ,θ′)})

)
needed to selectively eliminate the bad dominant pair (θ, θ′).

6. Check all the (polynomially many) inequalities in the system displayed on Page 11.

Since all the values Pj(θ) and the data needed for selective elimination of each of the
polynomially many bad dominant pairs (θ, θ′) ∈ D have polynomial encoding length, Algo-
rithm 1 runs in polynomial time, which proves the claim.
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A Combinatorial Algorithm for Strong

Implementation of Social Choice Functions

Clemens Thielen and Stephan Westphal

Abstract

We consider algorithmic aspects of the classical mechanism design problem of im-
plementing social choice functions. We show how an adaption of the well-known
negative cycle criterion for weak implementability can be used to decide the question
of implementability in the strong sense when one restricts to incentive compatible
direct revelation mechanisms. We derive an efficient combinatorial algorithm that
computes the payments of an incentive compatible direct revelation mechanism that
strongly implements a given social choice function in dominant strategies or decides
that none exist.
Our result complements the results obtained in the companion paper of Krumke
and Thielen [3], where a nondeterministic polynomial time algorithm for the more
general problem of deciding of strong implementability via indirect mechanisms is
given. This more general problem is expected to be NP-complete.

1 Introduction

One of the central problems considered in mechanism design is the implementation of social
choice functions. In this problem, there are n selfish agents, which must make a collective
decision from some finite set X of possible social choices (or outcomes). Each agent i has a
private value θi (called the agent’s type) that belongs to a finite set Θi (called the agent’s
type space) and influences the preferences of all agents over the alternatives in X . Formally,
this is modelled by a valuation function Vi : X × Θ → Q for each agent i, which specifies
a valuation Vi(x, θ) that agent i assigns to outcome x ∈ X when the vector of types of all
agents is θ ∈ Θ = Θ1×· · ·×Θn. The type space Θi of agent i is public knowledge, but only
agent i knows the true value of θi. Every agent i reports a claimed value θ′i ∈ Θi (a bid) for
her type, and the resulting collective decision is given by a social choice function f : Θ → X
that maps vectors of bids of the agents to outcomes in X . A mechanism Γ(f,P ) in this
setting is given by a payment Pi(θ′) to each agent i that depends on the vector θ′ of bids
and is used to motivate the agents to report their types truthfully.

When the concept of weak implementation is used, a mechanism is said to implement
the social choice function f if truthfully reporting her type is a dominant strategy for every
agent, i.e., it maximizes the sum of the agent’s valuation and her payment for every possible
behavior of the other agents and for every possible vector θ of true types.† The more robust
concept of implementation called strong implementation (also known as full implementation)
additionally requires that all other dominant strategy equilibria of the mechanism yield the
same outcomes as truthful reporting, so the desired social choices are obtained independently
of the equilibrium that is actually played by the agents.

It is easy to see that weak implementation of a given social choice function can be ex-
pressed as a system of linear inequalities, in which the variables correspond to the payments.
Rochet [6] observed that this system can be interpreted as the problem of finding node po-
tentials in complete, directed graphs on the agents’ type spaces with changes of valuations
as arc weights. Hence, an implementation exists if and only if there is no negative cycle in

†Note that there are also other notions of implementation, e.g., implementation in Bayes Nash equilib-
rium. In this paper, we only consider implementation in dominant strategies.
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these graphs. Later, it was shown by Gui et al.[2] that it suffices to consider node potentials
in smaller graphs on the set X of possible outcomes.

In this paper, we show how the above node potential interpretations of the weak imple-
mentability problem can be adapted for deciding also strong implementation. Here, some
of the inequalities in the linear system have to be fulfilled with strict inequality, i.e., a point
in the relative interior of the corresponding polyhedron is sought. We show how such a
point can be found by an efficient combinatorial algorithm that perturbates a node poten-
tial corresponding to a weak implementation such that the reduced cost of some arcs in the
graphs becomes strictly positive, which corresponds to the strict inequalities in the system.
To do so, all arcs whose inequalities are already strictly fulfilled are deleted and depth first
search is used to find nodes with no outgoing arcs, whose potential can then be perturbated.
Furthermore, we use contraction techniques to handle cycles of weight zero. Using these
methods, our algorithm computes the payments of a strong implementation of the given
social choice function or decides that none exist. The running time is linear in |Θ|, which
usually is the largest part of the input. In public project settings, for example, |Θ| can be
quite large, whereas |X | is usually two (the project is either done or not).

We remark that there is also a more general definition of a mechanism, where each
agent i is allowed to bid a value si from an arbitrary set Si of bids instead of just reporting
a claimed value for her type. A classical result known as the Revelation Principle (cf. [4,
p. 871]) states that, when considering weak implementation, it imposes no loss of generality
to restrict to incentive compatible direct revelation mechanisms as defined above. For strong
implementation, it is known that it suffices to consider augmented revelation mechanisms,
in which the set Θi of types of each agent i is a subset of the set Si of her possible bids
(cf. [5] for Bayesian equilibria and the companion paper of Krumke and Thielen [3] for
dominant strategies). Most strongly implementable social choice functions can, however, be
strongly implemented via incentive compatible direct revelation mechanisms. Thus, since the
general problem of deciding strong implementability via augmented revelation mechanisms
is expected to be computationally intractable (until recently, it was not even known to
belong to NP and it is suspected to be NP-complete, cf. [3]), it makes sense to restrict to
incentive compatible direct revelation mechanisms also for strong implementation.

2 The Algorithm

We now present our algorithm for strong implementation of social choice functions. Formally,
the problem is defined as follows:

Definition 1 (The Strong Implementability Problem).
INSTANCE: The number n of agents, the set X of possible social choices, the sets Θi of

possible types of the agents, the valuation functions Vi : X × Θ → Q, and
the social choice function f : Θ → X.

TASK: Compute payments Pi : Θ → Q, i = 1, . . . , n, to the agents such that the
mechanism Γ(f,P ) strongly implements f , or decide that none exist.

The encoding length of an instance of Strong Implementability can be calculated as
follows: For every valuation function Vi : X × Θ → Q, we need to store |X | · |Θ| rational
numbers. The social choice function f : Θ → X has encoding length |Θ| · log(|X |). Thus,
the encoding length of an instance of Strong Implementability is in Ω(|X | · |Θ| · n).

We start our analysis by formulating a system of linear inequalities whose solutions
correspond to the values of payment functions Pi needed to implement a social choice func-
tion f . Denoting the (n − 1)-dimensional vector resulting from an n-vector v when the
i-th component is deleted by v−i := (v1, . . . , vi−1, vi+1, . . . , vn), this linear system in the
variables Pi(θ′), i = 1, . . . , n, θ′ ∈ Θ, can be written as follows:
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For all i ∈ N , (θi, θ
′
i) ∈ Θ2

i , and θ−i, θ
′
−i ∈ Θ−i:

Vi(f(θ′i, θ
′
−i), θ) + Pi(θ′i, θ

′
−i) ≤ Vi(f(θi, θ

′
−i), θ) + Pi(θi, θ

′
−i) (1)

For all i ∈ N and (θi, θ
′
i) ∈ Θ2

i with f(θi, θ̄−i) 6= f(θ′i, θ̄−i) for some θ̄−i ∈ Θ−i,
there exists θ−i, θ

′
−i ∈ Θ−i such that:

Vi(f(θ′i, θ
′
−i), θ) + Pi(θ′i, θ

′
−i) < Vi(f(θi, θ

′
−i), θ) + Pi(θi, θ

′
−i) (2)

Here, the Inequalities (1) encode that truthfully reporting her type is a dominant strat-
egy for each agent i: For every type θi of agent i, reporting θi truthfully is at least as good
as reporting any other possible type θ′i, no matter what the type vector θ−i and the bid
vector θ′−i of the other agents are. Hence, the first half of the system encodes that the social
choice function f is weakly implemented by the mechanism Γ(f,P ). For strong implementa-
tion, the payments must additionally satisfy the strict Inequalities (2), which encode that
there are no dominant strategies for any agent that yield outcomes different from the ones
obtained by truthful reporting: If the second condition in the system was violated for some
pair (θi, θ

′
i), bidding θ′i would always be optimal for agent i when her type is θi, and she

could change the outcome by bidding θ′i instead of θi in the case that the vector of types of
the other agents is θ̄−i and they report their types truthfully.

We now reformulate the system in order to be able to solve it efficiently via shortest path
computations in directed graphs. For every agent i ∈ N and every fixed pair (θ−i, θ

′
−i) ∈ Θ2

−i

of a type vector and a bid vector of the other agents, we define a function c
(θ−i,θ

′
−i)

i : Θ2
i → Q

by
c
(θ−i,θ

′
−i)

i (θi, θ
′
i) := Vi(f(θi, θ

′
−i), θ)− Vi(f(θ′i, θ

′
−i), θ) ∀ θi, θ

′
i ∈ Θi.

Using this notation, we can rewrite the above system of inequalities as follows:

For all i ∈ N , (θi, θ
′
i) ∈ Θ2

i , and θ−i, θ
′
−i ∈ Θ−i:

Pi(θ′i, θ
′
−i)− Pi(θi, θ

′
−i) ≤ c

(θ−i,θ
′
−i)

i (θi, θ
′
i) (3)

For all i ∈ N and (θi, θ
′
i) ∈ Θ2

i with f(θi, θ̄−i) 6= f(θ′i, θ̄−i) for some θ̄−i ∈ Θ−i,
there exists θ−i, θ

′
−i ∈ Θ−i such that:

Pi(θ′i, θ
′
−i)− Pi(θi, θ

′
−i) < c

(θ−i,θ
′
−i)

i (θi, θ
′
i) (4)

Observe that the left-hand sides of the Inequalities (3) and (4) are independent of the
type vector θ−i of all agents except i. Defining

c
θ′−i

i (θi, θ
′
i) := min

θ−i∈Θ−i

c
(θ−i,θ

′
−i)

i (θi, θ
′
i) = min

θ−i∈Θ−i

(
Vi(f(θi, θ

′
−i), θ)− Vi(f(θ′i, θ

′
−i), θ)

)
and

c̄
θ′−i

i (θi, θ
′
i) := max

θ−i∈Θ−i

c
(θ−i,θ

′
−i)

i (θi, θ
′
i) = max

θ−i∈Θ−i

(
Vi(f(θi, θ

′
−i), θ) − Vi(f(θ′i, θ

′
−i), θ)

)
for θi, θ

′
i ∈ Θi, we can, thus, rewrite the system of inequalities as

For all i ∈ N , (θi, θ
′
i) ∈ Θ2

i , and θ′−i ∈ Θ−i:

Pi(θ′i, θ
′
−i)− Pi(θi, θ

′
−i) ≤ c

θ′−i

i (θi, θ
′
i) (5)

For all i ∈ N and (θi, θ
′
i) ∈ Θ2

i with f(θi, θ̄−i) 6= f(θ′i, θ̄−i) for some θ̄−i ∈ Θ−i,
there exists θ′−i ∈ Θ−i such that:

Pi(θ′i, θ
′
−i)− Pi(θi, θ

′
−i) < c̄

θ′−i

i (θi, θ
′
i) (6)
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Observe that, whenever c
θ′−i

i (θi, θ
′
i) < c̄

θ′−i

i (θi, θ
′
i) for some θ′−i ∈ Θ−i, the second condi-

tion follows automatically from the first one for this pair (θi, θ
′
i). Hence, the system reduces

to

For all i ∈ N , (θi, θ
′
i) ∈ Θ2

i , and θ′−i ∈ Θ−i:

Pi(θ′i, θ
′
−i)− Pi(θi, θ

′
−i) ≤ c

θ′−i

i (θi, θ
′
i) (7)

For all i ∈ N and (θi, θ
′
i) ∈ Θ2

i with f(θi, θ̄−i) 6= f(θ′i, θ̄−i) for some θ̄−i ∈ Θ−i

and cθ̄−i

i (θi, θ
′
i) = c̄

θ̄−i

i (θi, θ
′
i) for all θ̄−i ∈ Θ−i with f(θi, θ̄−i) 6= f(θ′i, θ̄−i),

there exists θ′−i ∈ Θ−i such that f(θi, θ
′
−i) 6= f(θ′i, θ

′
−i) and

Pi(θ′i, θ
′
−i)− Pi(θi, θ

′
−i) < c

θ′−i

i (θi, θ
′
i). (8)

Moreover, for every fixed agent i and θ′−i ∈ Θ−i, consider a pair (θi, θ
′
i) ∈ Θ2

i of types of
agent i such that f(θi, θ

′
−i) = f(θ′i, θ

′
−i) =: x ∈ X . Then we have

c
θ′−i

i (θi, θ
′
i) = min

θ−i∈Θ−i

(
Vi(f(θi, θ

′
−i), θ)− Vi(f(θ′i, θ

′
−i), θ)

)
= min

θ−i∈Θ−i

(
Vi(x, θ) − Vi(x, θ)

)
= 0

and analogously c
θ′−i

i (θ′i, θi) = 0. Hence, the Inequalities (7) corresponding to (θi, θ
′
i) imply

that

Pi(θ′i, θ
′
−i)− Pi(θi, θ

′
−i) ≤ 0 and Pi(θi, θ

′
−i)− Pi(θ′i, θ

′
−i) ≤ 0,

which yields Pi(θ′i, θ
′
−i) = Pi(θi, θ

′
−i). Thus, for fixed i and fixed θ′−i ∈ Θ−i, the pay-

ment Pi(θi, θ
′
−i) does in fact only depend on the outcome f(θi, θ

′
−i) chosen when agent i

bids θi. Hence, for every x ∈ X that results as the outcome f(θi, θ
′
−i) for some θi ∈ Θi, we

can define
P

θ′−i

i (x) := Pi(θi, θ
′
−i) for some θi ∈ Θi with f(θi, θ

′
−i) = x.

Writing
C(θi, θ

′
i) := {θ′−i ∈ Θ−i : f(θi, θ

′
−i) 6= f(θ′i, θ

′
−i)},

we can, thus, write our system of inequalities as

For all i ∈ N , (θi, θ
′
i) ∈ Θ2

i , and θ′−i ∈ Θ−i with f(θi, θ
′
−i) 6= f(θ′i, θ

′
−i):

P
θ′−i

i (f(θ′i, θ
′
−i))− P

θ′−i

i (f(θi, θ
′
−i)) ≤ c

θ′−i

i (θi, θ
′
i) (9)

For all i ∈ N and (θi, θ
′
i) ∈ Θ2

i with C(θi, θ
′
i) 6= ∅ and c

θ′−i

i (θi, θ
′
i) = c̄

θ′−i

i (θi, θ
′
i)

for all θ′−i ∈ C(θi, θ
′
i): There exists θ′−i ∈ C(θi, θ

′
i) such that

P
θ′−i

i (f(θ′i, θ
′
−i))− P

θ′−i

i (f(θi, θ
′
−i)) < c

θ′−i

i (θi, θ
′
i). (10)

As observed above, the left-hand sides of Inequalities (9) and (10) are now independent of
θi and θ′i as long as the respective outcomes f(θi, θ

′
−i) and f(θ′i, θ

′
−i) do not change. Defining

Kθ′−i(x) := {θi ∈ Θi : f(θi, θ
′
−i) = x} for every x ∈ X , W (θ′−i) := {x ∈ X : Kθ′−i(x) 6= ∅},

and
c
θ′−i

i (x, x′) := min
θi,θ

′
i∈Θi:

f(θi,θ
′
−i)=x

f(θ′i,θ
′
−i)=x′

c
θ′−i

i (θi, θ
′
i)
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for all x, x′ ∈ W (θ′−i), the system can be written as

For all i ∈ N , θ′−i ∈ Θ−i, and x, x′ ∈ W (θ′−i) with x 6= x′:

P
θ′−i

i (x′)− P
θ′−i

i (x) ≤ c
θ′−i

i (x, x′) (11)

For all i ∈ N and (θi, θ
′
i) ∈ Θ2

i with C(θi, θ
′
i) 6= ∅ and c

θ′−i

i (θi, θ
′
i) = c̄

θ′−i

i (θi, θ
′
i)

for all θ′−i ∈ C(θi, θ
′
i): There exists θ′−i ∈ C(θi, θ

′
i) such that θi ∈ Kθ′−i(x), θ′i ∈

Kθ′−i(x′) and

P
θ′−i

i (x′)− P
θ′−i

i (x) < c
θ′−i

i (θi, θ
′
i). (12)

Now observe that, whenever θi ∈ Kθ′−i(x), θ′i ∈ Kθ′−i(x′), and c
θ′−i

i (x, x′) < c
θ′−i

i (θi, θ
′
i)

for some θ′−i ∈ Θ−i, the second condition follows automatically from the first one for this
pair (θi, θ

′
i). Hence, we just have to consider the second condition for the pairs (θi, θ

′
i) for

which c
θ′−i

i (x, x′) = c
θ′−i

i (θi, θ
′
i) for all θ′−i ∈ Θ−i, x, x′ with θi ∈ Kθ′−i(x) and θ′i ∈ Kθ′−i(x′).

Thus, the system can be rewritten as

For all i ∈ N , θ′−i ∈ Θ−i, and x, x′ ∈ W (θ′−i) with x 6= x′:

P
θ′−i

i (x′)− P
θ′−i

i (x) ≤ c
θ′−i

i (x, x′) (13)

For all i ∈ N and (θi, θ
′
i) ∈ Θ2

i with C(θi, θ
′
i) 6= ∅, c

θ′−i

i (θi, θ
′
i) = c̄

θ′−i

i (θi, θ
′
i)

for all θ′−i ∈ C(θi, θ
′
i), and c

θ′−i

i (x, x′) = c
θ′−i

i (θi, θ
′
i) for all θ′−i ∈ C(θi, θ

′
i),

x, x′ ∈ W with θi ∈ Kθ′−i(x) and θ′i ∈ Kθ′−i(x′): There exists θ′−i ∈ C(θi, θ
′
i)

such that θi ∈ Kθ′−i(x), θ′i ∈ Kθ′−i(x′) and

P
θ′−i

i (x′)− P
θ′−i

i (x) < c
θ′−i

i (x, x′). (14)

Finally, the second condition in the system can be reformulated as follows: All conditions
on the pairs (θi, θ

′
i) do in fact only depend on the second value θ′i through the corresponding

outcomes f(θ′i, θ
′
−i). In particular, the values

c
θ′−i

i (θi, x
′) := c

θ′−i

i (θi, θ
′
i) for some θ′i ∈ Kθ′−i(x′)

c̄
θ′−i

i (θi, x
′) := c̄

θ′−i

i (θi, θ
′
i) for some θ′i ∈ Kθ′−i(x′)

are well-defined for all x ∈ W (θ′−i). Defining

C(θi, x
′) := {θ′−i ∈ Θ−i : x′ ∈ W (θ′−i), f(θi, θ

′
−i) 6= x′},

we can, hence, rewrite the system as

For all i ∈ N , θ′−i ∈ Θ−i, and x, x′ ∈ W (θ′−i) with x 6= x′:

P
θ′−i

i (x′)− P
θ′−i

i (x) ≤ c
θ′−i

i (x, x′) (15)

For all i ∈ N , θi ∈ Θi, and x′ ∈ X such that C(θi, x
′) 6= ∅, c

θ′−i

i (θi, x
′) =

c̄
θ′−i

i (θi, x
′) for all θ′−i ∈ C(θi, x

′), and c
θ′−i

i (f(θi, θ
′
−i), x

′) = c
θ′−i

i (θi, x
′) for all

θ′−i ∈ C(θi, x
′): There exists θ′−i ∈ C(θi, x

′) such that f(θi, θ
′
−i) = x and

P
θ′−i

i (x′)− P
θ′−i

i (x) < c
θ′−i

i (x, x′). (16)
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Having reformulated the system as above, we can now solve it efficiently via shortest path
computations. For every agent i and every fixed vector θ′−i ∈ Θ−i of bids of the other agents,

the Inequalities (15) corresponding to i and θ′−i are exactly equivalent to the values P
θ′−i

i (x),
x ∈ W (θ′−i), defining a node potential in the complete, directed graph Gi(θ′−i) on the

set W (θ′−i) with the cost of the arc from outcome x to x′ given as c
θ′−i

i (x, x′). Thus, we can

compute a solution P
θ′−i

i (x), x ∈ W (θ′−i), of the Inequalities (15) by computing the shortest
path distances from an arbitrary node x to all other nodes in the graph Gi(θ′−i) for every
i ∈ N and every θ′−i ∈ Θ−i. This can be done efficiently with the Bellman-Ford Algorithm
(cf. for example [7]). In the case that one of the graphs Gi(θ′−i) contains a negative cycle
(so we cannot compute a node potential in this graph), the Inequalities (15) do not have
a solution, which implies that the given social choice function f cannot be implemented
at all (not even weakly). Otherwise, the shortest path distances P

θ′−i

i (x), x ∈ W (θ′−i),
computed by the Bellman-Ford Algorithm yield payments Pi(θ′) solving Inequalities (1) of
the original system (and, thus, weakly implementing the social choice function f) by setting

Pi(θ′) := P
θ′−i

i (f(θ′)) for all i = 1, . . . , n, θ′ ∈ Θ.

For strong implementation, we now show how we can modify a solution of the Inequal-
ities (15) obtained by shortest path computations such that it also satisfies the strict In-
equalities (16) and, hence, corresponds to payments P of a mechanism Γ(f,P ) that strongly
implements f . This is done via the following procedure:

For every agent i and every θ′−i ∈ Θ−i, we again consider the graph Gi(θ′−i) and the

corresponding payments P
θ′−i

i (x) for x ∈ W (θ′−i). We delete all arcs (x, x′) from Gi(θ′−i) for
which the corresponding Inequality (15) is already fulfilled with strict inequality. After doing
so, we also delete all isolated nodes, i.e., all nodes x with empty adjacency list Adj(x). In the
remaining graph, which contains only arcs for which the corresponding Inequality (15) holds
with equality, we then search for a node x with no outgoing arcs, i.e., with Adj+(x) = ∅.
For such a node x, the value

ǫ(x) := min
x′∈W (θ′−i)

(
c
θ′−i

i (x, x′)− P
θ′−i

i (x′) + P
θ′−i

i (x)
)

is strictly positive, so we can lower P
θ′−i

i (x) by ǫ(x)/2 without violating any of the inequalities
in our system. After doing so, all inequalities which were fulfilled with strict inequality before
are still fulfilled with strict inequality, but, additionally, all the inequalities corresponding
to arcs with end node x are now fulfilled with strict inequality, so we can delete these arcs
and the node x from the graph Gi(θ′−i).

To find a node x in Gi(θ′−i) with Adj+(x) = ∅, we use depth-first search (DFS) starting
with an arbitrary node in the graph. Doing so, we either find a node with no outgoing arcs,
or we discover a directed cycle. In the first case, we lower the payment of the node as in the
procedure described above and continue the DFS-procedure at the node considered before
as long as there are still nodes remaining in the graph. In the case that we find a directed
cycle C, all Inequalities (15) on C are fulfilled with equality and adding them up yields

0 =
∑

(xk,xl)∈C

(
P

θ′−i

i (xl)− P
θ′−i

i (xk)
)

=
∑

(xk,xl)∈C

c
θ′−i

i (xk, xl), (17)

where the first equality follows since C is a cycle. On the other hand, if the strict Inequal-
ity (16) corresponding to i and θ′−i was fulfilled for any arc on C, we would obtain

0 =
∑

(xk,xl)∈C

(
P

θ′−i

i (xl)− P
θ′−i

i (xk)
)

<
∑

(xk,xl)∈C

c
θ′−i

i (xk, xl),
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contradicting (17). Hence, the strict Inequality (16) cannot be satisfied for any arc on the
cycle C. In this case, we contract all nodes on C to a single supernode and continue the
DFS-procedure at this new node (see Figure 1).

When the above procedure terminates, every arc (x, x′) in the complete, directed graph
on W (θ′−i) is either contained in a cycle of arcs for which the corresponding Inequalities (15)
are fulfilled with equality (so the Inequality (15) of (x, x′) cannot be made strict in this
graph), or the inequality corresponding to (x, x′) is fulfilled with strict inequality.

Algorithm 1 summarizes the above discussion. For each agent i, the algorithm first
calculates the set A of pairs (θi, x

′) ∈ Θi × X for which some strict Inequality (16) must
hold. Then, for every possible bid vector θ′−i ∈ Θ−i of the other agents, it calculates
the set W (θ′−i) and a node potential in the complete, directed graph on W (θ′−i) via the
Bellman-Ford Algorithm and perturbates this node potential such that each arc (x, x′) is
either contained in a cycle of arcs for which the corresponding Inequalities (15) are fulfilled
with equality, or the inequality corresponding to (x, x′) is fulfilled with strict inequality.
The pairs (θi, x

′) ∈ Θi×X for which some strict Inequality (16) holds are then deleted from
A, and the algorithm continues with the next bid vector θ′−i ∈ Θ−i of the other agents. If
the set A is still nonempty after processing all possible vectors θ′−i ∈ Θ−i, the remaining
pairs (θi, x

′) ∈ A are pairs for which the second condition of the system cannot be satisfied,
so the system does not have a solution. Otherwise, the algorithm continues with the next
agent i. As a node in a graph can represent several outcomes due to previous contractions,
the outcomes corresponding to each node u are stored in a set Outcomes(u).

The DFS-procedure used to find a node x in Gi(θ′−i) with Adj+(x) = ∅ is implemented in
the procedure PROCESS-GRAPH (Algorithm 2). π(v) and color(v) denote the predecessor
and the current state (GRAY = already visited, WHITE = not yet visited) of a node v,
respectively. A stack-like data structure S is used to store the nodes to be processed next. It
supports the operations FIRST(S) (returns first element of S), PUSH FRONT(S, v) (inserts
v as first element of S), and REMOVE(S, v) (deletes v from S). More details on depth-first
can be found in Cormen et al. [1].

a b

cd e

s

(a) DFS finds a cycle.

e

s

(b) Contraction of the cy-
cle

e

s

(c) Graph after contrac-
tion

Figure 1: Contraction of a cycle to a supernode

Algorithm 1.

1: for all i ∈ N do
2: for all θ′−i ∈ Θ−i, θi ∈ Θi, x′ ∈ X do

3: c
θ′−i

i (θi, x
′) := min

θ−i∈Θ−i

(
Vi(f(θi, θ

′
−i), θ)− Vi(x′, θ)

)
4: c̄

θ′−i

i (θi, x
′) := max

θ−i∈Θ−i

(
Vi(f(θi, θ

′
−i), θ)− Vi(x′, θ)

)
5: end for
6: //Calculate the sets C(θi, x

′)
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7: for all θ′−i ∈ Θ−i do
8: Kθ′−i(x) := {θi ∈ Θi : f(θi, θ

′
−i) = x} for x ∈ X .

9: W (θ′−i) := {x ∈ X : Kθ′−i(x) 6= ∅}
10: for all θi ∈ Θi, x

′ ∈ W (θ′−i) do
11: if f(θi, θ

′
−i) 6= x′ then

12: C(θi, x
′) := C(θi, x

′) ∪ {θ′−i}
13: end if
14: end for
15: end for
16: //Find the set A of pairs (θi, x

′) ∈ Θi ×X for which one inequality must be strict
17: A := Θi ×X
18: for all θ′−i ∈ Θ−i do
19: for all (x, x′) ∈ W (θ′−i)×W (θ′−i) do

20: c
θ′−i

i (x, x′) := min
θi∈K

θ′−i (x)

c
θ′−i

i (θi, x
′)

21: end for
22: for all θi ∈ Θi, x′ ∈ X do
23: if C(θi, x

′) = ∅, c
θ′−i

i (θi, x
′) 6= c̄

θ′−i

i (θi, x
′), or c

θ′−i

i (f(θi, θ
′
−i), x

′) 6= c
θ′−i

i (θi, x
′)

then
24: A := A \ {(θi, x

′)}
25: end if
26: end for
27: end for
28: for all θ′−i ∈ Θ−i do
29: Choose x ∈ W (θ′−i) arbitrarily.
30: Apply the Bellman-Ford Algorithm to the complete, directed graph G with node

set W := W (θ′−i), arc costs c(x, x′) := c
θ′−i

i (x, x′), and start node x.
31: if G contains a negative cycle then
32: STOP: f cannot be implemented at all.
33: else
34: Denote the node potential obtained by the Bellman-Ford Algorithm by P .
35: V (G) := ∅, E(G) := ∅
36: for all (x, x′) ∈ W ×W with x 6= x′ do
37: if P (x′)− P (x) = c(x, x′) then
38: V (G) := V (G) ∪ {x, x′}
39: E(G) := E(G) ∪ {(x, x′)}
40: end if
41: end for
42: G := (V (G), E(G))
43: PROCESS-GRAPH(G, W, c, P )
44: end if
45: for all (x, x′) ∈ W ×W with x 6= x′ do
46: if P (x′)− P (x) < c(x, x′) then
47: for all θi ∈ Kθ′−i(x) do
48: A := A \ {(θi, x

′)}
49: end for
50: end if
51: end for
52: for all θ′i ∈ Θi do
53: Pi(θ′i, θ

′
−i) := P (f(θ′i, θ

′
−i))
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54: end for
55: end for
56: if A 6= ∅ then
57: STOP: No payments Pi(θ′) exist such that Γ(f,P ) strongly implements f .
58: end if
59: end for
60: STOP: The mechanism Γ(f,P ) with payments Pi(θ′) strongly implements f .

Algorithm 2. PROCESS-GRAPH(G, W, c, P )

1: for all u ∈ V (G) do
2: color(u) := WHITE
3: π(u) := NIL
4: Outcomes(u) := {u}
5: end for
6: while w ∈ V (G) exists do
7: S := {w}
8: while S not empty do
9: u =FIRST(S)

10: color(u) := GRAY
11: if Adj+(u) = ∅ then
12: PERTURBATE(u, W, S, c, P )
13: else
14: for all v ∈ Adj+(u) do
15: if color(v) = WHITE then
16: π(v) := u
17: PUSH FRONT(S, v)
18: end if
19: end for
20: for all v ∈ Adj+(u) do
21: if color(v) = GRAY then
22: CONTRACT(u, v, S)
23: break
24: end if
25: end for
26: end if
27: end while
28: end while

Algorithm 3. PERTURBATE(u, W, S, c, P )

1: ǫ := min
x∈ Outcomes(u)

min
x′∈W

c(x, x′)− P (x′) + P (x)

2: for all x ∈ Outcomes(u) do
3: P (x) := P (x)− ǫ/2
4: end for
5: for all w ∈ Adj−(u) do
6: Adj+(w) := Adj+(w) \ {u}
7: end for
8: V (G) := V (G) \ {u}
9: REMOVE(S, u)
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Algorithm 4. CONTRACT(u, v, S)

1: C := {v}
2: w := u
3: repeat
4: C := C ∪ {w}
5: w := π(w)
6: until w = v
7: //Introduce new supernode vC

8: V (G) := V (G) ∪ {vC}
9: color(vC) := WHITE

10: π(vC) := π(v)
11: Outcomes(vC) := ∅
12: for all w ∈ C do
13: Outcomes(vC) := Outcomes(vC) ∪ Outcomes(w)
14: Adj+(vC) := Adj+(vC) ∪ (Adj+(w) \ C)
15: Adj−(vC) := Adj−(vC) ∪ (Adj−(w) \ C)
16: REMOVE(S, w)
17: end for
18: for all w ∈ Adj+(vC) do
19: Adj−(w) := Adj−(w) ∪ {vC}
20: Adj−(w) := Adj−(w) \ C
21: end for
22: for all w ∈ Adj−(vC) do
23: Adj+(w) := Adj+(w) ∪ {vC}
24: Adj+(w) := Adj+(w) \ C
25: end for
26: V (G) := V (G) \ C
27: PUSH FRONT (S, vC)

Theorem 1. Algorithm 1 correctly computes the payments P of a mechanism Γ(f,P ) that
strongly implements the given social choice function f in dominant strategies or decides that
no such payments exist. The algorithm runs in time O(n · |Θ| · |X |3).
Proof. For every fixed θ′−i ∈ Θ−i, the arc costs c(x, x′) calculated in the algorithm are given
by

c
θ′−i

i (x, x′) = min
θi∈K

θ′−i (x)

c
θ′−i

i (θi, x
′)

= min
θi∈K

θ′−i (x)

min
θ−i∈Θ−i

(
Vi(f(θi, θ

′
−i), θ)− Vi(x′, θ)

)
= min

θi,θ
′
i∈Θi:

f(θi,θ
′
−i)=x

f(θ′i,θ
′
−i)=x′

min
θ−i∈Θ−i

(
Vi(f(θi, θ

′
−i), θ)− Vi(f(θ′i, θ

′
−i), θ)

)
,

which equals the arc costs c
θ′−i

i (x, x′) used in the discussion above. Hence, correctness of
the algorithm follows from the arguments preceding the algorithm.

The running time can be estimated as follows: For each agent i, the calculation of the
sets C(θi, x

′) and the set A needs time at most O(|Θ−i| · |Θi| · |X |2) = O(|Θ| · |X |2). In the
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for-loop starting in Line 28, the application of the Bellman-Ford Algorithm to the graph G in
Line 30 needs time O(|W |3) ≤ O(|X |3). In the procedure PROCESS-GRAPH(G, W, c, P )
in Line 43, at most |W | ≤ |X | contraction or perturbation steps are made since each
such step reduces the number of nodes in the graph by at least one. Each call of the
procedure CONTRACT(u, v, S) needs time at most |W |2 ≤ |X |2 since each adjacency list
and each set Outcomes(·) contains at most |W | nodes and there are at most |W | nodes in the
cycle C. Each call of the procedure PERTURBATE(u, W, c, P ) needs time at most |W |2 ≤
|X |2 as well. Thus, the overall time needed for the procedure PROCESS-GRAPH(G, W, c, P )
is at most O(|X |3). Since every iteration of the loop except for the Bellman-Ford Algorithm
and the call of PROCESS-GRAPH(G, W, c, P ) needs time at most O(|Θi|·|X |2), this implies
that the overall time required for the for-loop starting in Line 28 is at most O(|Θ−i| · |Θi| ·
|X |3) = O(|Θ| · |X |3). Since there are n agents, we obtain an overall running time of
n · O(|Θ| · |X |2) + n · O(|Θ| · |X |3) = O(n · |Θ| · |X |3) as claimed.

As already shown, the Weak Implementability Problem can be solved in the same way
by just leaving out the steps needed to make sure that the strict inequalities in our system
are fulfilled. Hence, the resulting algorithm solves the Weak Implementability Problem in
time O(n · |Θ| · |X |3).
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Algorithms for Pareto Stable Assignment

Ning Chen and Arpita Ghosh

Abstract

Motivated by online matching marketplaces, we study stability in a many-to-many
market with ties and incomplete preference lists. When preference lists contain ties,
stable matchings need not be Pareto optimal. We consider the algorithmic question
of computing outcomes that are both Pareto optimal and stable in a many-to-many
two-sided market with ties and incomplete lists, where agents on both sides can have
multi-unit capacities, as well as trade multiple units with the same neighbor.
Our main result is a fast algorithm for computing Pareto-stable assignments for this
very general multi-unit matching problem with arbitrary preference lists on both
sides, with running time that is polynomial in the number of agents in the market,
rather than the sum of capacities of all agents.

1 Introduction

A fundamental solution concept in the context of two-sided matching marketplaces is that
of stability, introduced by Gale and Shapley in their seminal work on stable marriage [10].
In the marriage model, there are n men and n women, each with a strict preference ranking
over all members of the other side: a matching between the men and women is stable if there
is no unmatched man-woman pair who both prefer each other to their current partners. The
concept of stability has had enormous influence both on the design of real world matching
markets [25] as well as its theory [27] — a number of variants of the stable matching problem
have been studied, relaxing or generalizing different assumptions in the original model.

One particularly practical generalization is to relax the requirement of strict and com-
plete preferences over all alternatives to accommodate indifferences and intolerance — a
man can have an incomplete preference list, i.e., he need not rank all women, and can have
ties, i.e., he can be indifferent between some women in his preference list (and similarly for
women). The introduction of ties and incomplete lists dramatically changes the properties
and structure of the set of stable matchings relative to the Gale-Shapley marriage model,
and often leads to interesting algorithmic and computational questions in the context of
choosing amongst the large set of stable matchings. For instance, man or woman-optimal
stable matchings1 are no longer well-defined [27]; stable matchings need not all have the
same cardinality, and the problem of finding the maximum cardinality stable matching
becomes NP-hard [16].

One of the most important differences that arises due to indifferences in preference lists,
however, is that stability no longer guarantees Pareto optimality2, an observation that has
received a great deal of attention in the economics literature (see, for example, [2, 7, 1, 29,
8, 9]). When preference lists contain ties, not all stable matchings are Pareto optimal and
in fact, as [8] demonstrates, simply using a matching returned by the Gale-Shapley deferred
acceptance algorithm can cause quite a severe loss in efficiency. A natural question, then, is
whether one can find a matching which is both stable and Pareto optimal when preferences
may contain ties. This question has recently been addressed for the many-to-one matching

1The outcome of the man-proposing deferred acceptance algorithm with strict complete preferences is a
man-optimal stable matching.

2A simple example consists of two men and two women, where i1 strictly prefers j1 to j2, but all other
nodes are indifferent amongst their possible partners. The matching (i1, j2), (i2, j1) is stable, but not Pareto
optimal since i1 can be reassigned to j1 and i2 to j2 without making anyone worse off.
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model — Erdil and Ergin [8, 9] give an algorithm that finds a Pareto-stable many-to-one
matching, with runtime that is polynomial in the total capacity of all agents.

In this paper, we study the problem of efficiently computing a Pareto-stable outcome in
a very general many-to-many setting with indifferences: agents on both sides can have multi-
unit capacities, as well as trade multiple units with the same neighbor. (Observe that here,
unlike the many-to-one setting, the total capacity of nodes in the graph is not restricted to
be polynomial in the size of the graph.) The many-to-many setting has attracted growing
interest in the economics literature both because of an increasing number of applications (in-
deed, a number of online marketplaces are many-to-many since both buyers and sellers have
multi-unit demand and supply), and more importantly because of fundamental theoretical
differences from the well understood many-to-one setting. We focus here on a computational
problem that arises from allowing nodes on both sides to have multi-unit capacities— while
a naive adaptation of the many-to-one algorithm would return a Pareto-stable assignment,
it would do so in time that grows polynomially with the total capacity of all nodes in the
graph, rather than the size of the graph itself. We therefore seek a strongly polynomial time
algorithm for the problem of computing a Pareto optimal stable assignment.

The computer science literature on algorithms for stable matching in the presence of
ties and incomplete lists has largely focused on the problems of deciding the existence
of, and computing, strongly-stable and super-stable matchings [15], and computing stable
matchings with large size or weight. While the problem of finding a strongly stable matching
if it exists can be solved in polynomial time [15, 17] and the resulting outcomes are indeed
Pareto optimal, such matchings need not always exist, making them an unsuitable solution
concept practically. Also, the problem of finding the maximum cardinality stable matching
is NP-hard [16]. The solution concept of Pareto stability offers a strict refinement of the
set of stable matchings, and in addition, has the important property that it always exists,
and, as we show, can be computed efficiently. Given that choosing a globally optimal stable
matching is difficult, Pareto-stable matchings, which are locally optimal, are a natural choice
amongst stable matchings — a stable matching which is not Pareto optimal unnecessarily
compromises efficiency, since it is possible to make some agents strictly better off without
compromising the welfare of any other agents.

1.1 Our Results

Our main result is an algorithm that finds a Pareto-optimal stable assignment, with running
time that is polynomial in the number of nodes in the graph, for a many-to-many two-sided
market where: (i) all nodes can have ties and incomplete preference lists over the other
side, (ii) nodes on both sides have multi-unit capacities, (iii) there can be multiple edges
between a pair (i, j) (i.e., multiple units can be assigned between i and j). While ties and
incomplete lists motivate Pareto stability, the actual technical challenge arises due to the
multi-unit node capacities, which, unlike in the many-to-one setting of [8, 9], need not be
polynomial in the size of the graph.

With unit capacity (matching), a fairly straightforward application of standard notions
of augmenting paths and cycles from network flows [18] leads to an algorithm that finds
Pareto-optimal stable matchings [29]. A naive approach to the many-to-many matching
problem is to simply make identical copies of nodes, one for each unit of its capacity,
and compute a Pareto-stable matching for this equivalent instance, using the algorithm
for the relatively simple unit supply/demand setting. However, the size of this instance is
proportional to the total capacity of all nodes, and therefore will not give us a strongly
polynomial time algorithm. Instead, we construct a sequence of modified networks with
one copy of a node for each level in its preference list (the number of levels in a preference
list cannot exceed the number of nodes)— this allows us to correctly define the notion of
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”improvement edges” (§4.1) when nodes have multiunit capacities. The second challenge is
to ensure that once all Pareto-improvements at a certain preference level for a particular
node have been found, the reassignments made by the algorithm for a different node or level
does not reintroduce Pareto-improvements for this node and preference level (Example 4.1
demonstrates that this can indeed happen for a only slightly different (and perhaps more
natural) network construction). We use maximum flow computations on a series of carefully
designed augmented networks such that increases in flow preserve stability and correspond
to Pareto improvements in the assignment, and there are no remaining Pareto improvements
after all networks have been executed once. The algorithm and its proof of correctness are
given in Section 4.

Applications. The many-to-many matching problem has recently attracted growing in-
terest because of a number of applications such as job markets where applicants seek mul-
tiple part-time positions [6], auto markets [12], as well as electronic marketplaces such as
eBay, and online advertising exchanges. A specific application in the electronic marketplace
setting is in the context of social lending [4], which is a large and rapidly expanding mar-
ketplace for matching lenders and borrowers directly without the use of traditional financial
intermediaries. In the social lending marketplace, lenders have preferences over borrowers
since they each represent investments with different risk levels— so a lender might prefer to
invest in some borrowers more than others, even amongst the set of acceptable borrowers.
While lenders have explicit preferences over borrowers, the interest rates offered by lenders
can be used to define a preference ranking over lenders for the borrower side of the graph as
well. The question of how to clear this two-sided matching market leads immediately to our
problem of efficiently computing Pareto-stable assignments, since both lenders and borrow-
ers have multiunit capacities (lending budgets and desired loan amounts respectively [4]),
with preferences that are incomplete and contain ties3. The need for computational effi-
ciency is particularly striking in this setting, since an algorithm that is polynomial in the
total capacity of the instance, i.e., the total volume of loans in the market, as opposed to
the total number of agents (lenders and borrowers) is clearly not efficient.

The social lending site Zopa, with over 400,000 members and $50 million in loans, al-
ready uses a centralized matching system where lenders can specify bids for each category
(arranged by credit-rating) of borrowers and a total budget, but not preferences across
categories4. Our algorithm would permit offering a more expressive bidding language for
lenders, which allows specifying preferences across categories in addition to the total budget
and bids, by providing a solution for the market-clearing problem.

1.2 Related Work

Two-sided matchings have been studied extensively since the seminal work of Gale and
Shapley on stable marriage [10]. There is now a vast literature studying various aspects of
the original stable marriage model as well as many of its variants, such as ties in preference
lists, incomplete preferences, and weighted edges, as well as non-bipartite versions such as
the roommate model. For a nice review of the very large economics literature on the subject,
see the book by Roth and Sotomayor [27] and the survey by Roth [25]; for an introduction
to the computer science literature addressing algorithmic and computational questions, see,
for instance, [11, 3, 14].

3Ties are ubiquitous in social lending, since lenders can often only distinguish between borrowers by
credit-rating. Preference lists can be incomplete since some borrowers, for instance those with poor credit
rating, may not be acceptable to a lender.

4A lender can specify separate budgets for each category, but clearly this is a strict subset of the expres-
siveness offered by allowing budgets along with preferences over categories
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The papers most relevant to our work from the stable matching literature are the fol-
lowing. Sotomayor [29] proposes Pareto-stable matchings as a natural solution concept for
a many-to-many marketplace and studies structural aspects of Pareto-stable matchings. As
previously discussed, Erdil and Ergin [8, 9] study the algorithmic question of finding Pareto-
optimal matchings for the many-to-one setting and give an algorithm whose running time
is polynomial in the sum of capacities of all nodes in the graph.

The many-to-many stable matching problem is far less well-studied, with a small, but
growing, body of research, motivated by practical settings such as electronic marketplaces,
and job markets where some agents might seek multiple part-time positions [6]. The general-
ization to multi-unit node capacities on both sides is nontrivial: as Echenique and Oviedo [6]
show, even a small number of agents with multi-unit capacity drastically alter the properties
of matchings compared to the many-to-one setting. Much of the literature on many-to-many
stable matchings focuses on settings without indifferences: Hatfield and Kominers [12] study
stability in very general model with bilateral contracts and prove necessary conditions for
the existence of stable matchings as well as results regarding the structure of the set of
stable matchings. Echenique and Oviedo [6] show the equivalence of different solution con-
cepts under strong substitutability for many-to-many matching, also in a setting with strict
preferences. Finally, Malhotra [19] studies the algorithmic question of finding strongly stable
matchings, if they exist, in a many-to-many matching model with ties and complete lists.

2 Model

There is an underlying bipartite graph M with nodes, or agents, (A, B) and edge set E.
The existence of an edge (i, j) means agents i ∈ A and j ∈ B are mutually willing to be
matched with, or assigned to, each other.

Each node in M has a capacity constraint, which is the maximum number of units that
it can trade with its neighbors: we denote by this capacity by ci. We will assume that
the capacities ci are integers, that is, the capacities are discrete rather than continuous
(this assumption is easily justifiable for the natural applications of stable assignment). The
presence of node capacities allows us to assume, without loss of generality, that |A| = |B| =
n, since dummy nodes with ci = 0 can be added to the market to ensure that there is an
equal number of nodes on both sides.

We use the term assignment as a generalization of matching to our many-to-many setting
to mean a multi-unit pairing between the nodes in A and B. A feasible assignment X =
(xij)(i,j)∈E , where xij ≥ 0 is the number of units assigned between i ∈ A and j ∈ B, satisfies
capacity constraints on both sides, that is,

∑
j xij ≤ ci and

∑
i xij ≤ cj . Note that both

inequalities can be strict in a feasible assignment, that is, a node’s capacity need not be
exhausted completely. When all nodes have unit capacity, a feasible assignment is identical
to a bipartite matching.

Preference Model. Each node i ∈ A (respectively j ∈ B) has a preference list Pi ranking
its neighbors {j ∈ B : (i, j) ∈ E} (respectively {i ∈ A : (i, j) ∈ E}). The preference lists are
allowed to have ties, i.e., a node can be indifferent amongst any subset of its neighbors. Since
a node’s preference list is restricted to the set of its neighbors, the preference list is naturally
incomplete. For example, a possible preference list for node i is Pi = ([j1, j2], [j3, j5]): that
is, i is indifferent between j1 and j2, and prefers either of them to j3, j5, which i is indifferent
amongst, and finds all other partners unacceptable.

Definition 2.1 (Level function). We use the function Li(·) to encode the preference list
of a node i ∈ A over individual nodes in B: for each j ∈ Pi, Li(j) ∈ {1, . . . , n} gives the
ranking of j in i’s preference list. That is, for any j, j′ ∈ Pi, if Li(j) < Li(j′), then i strictly
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prefers j to j′; if Li(j) = Li(j′), then i is indifferent between j and j′. (In the example
above, Li(j1) = Li(j2) = 1 and Li(j3) = Li(j4) = Li(j5) = 2.)

The definition of the level function Lj(·) for each j ∈ B is symmetric.

The preferences of nodes over individual neighbors define a natural ranking over sets of
neighbors, which we use to define the preference of a node over sets of neighbors: Given
sets of neighbors S and S′, arrange the nodes in S and S′ in decreasing order of rank in
i’s preference list. i prefers S to S′ if and only if jl � j′l for each l (using ∅ to make the
sets equal-sized if one set has fewer neighbors than the other). Note that this is only a
partial order, and specifically, some sets may not be comparable— for example, i cannot
compare (or equivalently, is indifferent between) the sets {j1, j4} and {j2, j3}, where jl is
at level l in i’s preference list. This model of preferences for nodes with multi-unit capacity
is both natural and has the advantage that nodes continue to only express preferences over
individuals, and is exactly that used by Erdil and Ergin [8, 9] in their work on Pareto-
stability for many-to-one matchings. We note that the choice of preference model over sets
is relevant only to the Pareto optimality component of our discussion, and does not matter
for stability, which is a pairwise solution concept and is not affected by preferences over sets.

3 Pareto-Stability

We first state the definition of stability for assignment; again, we use the term stable assign-
ment to make the distinction with the unit-capacity setting, where an assignment reduces
to a matching.

Definition 3.1 (Stable assignment). We say that an assignment X = (xij) is stable if there
is no blocking pair (i, j), i ∈ A and j ∈ B, (i, j) ∈ E, satisfying the one of the following
conditions:

• Both i and j have leftover capacity;

• i has leftover capacity and there is i′, xi′j > 0, such that j strictly prefers i to i′; or j
has capacity remaining and there is j′, xij′ > 0, such that i prefers j to j′;

• There are i′ and j′, xij′ > 0 and xi′j > 0, such that i strictly prefers j to j′ and j
strictly prefers i to i′.

Note that both members of a blocking pair must strictly prefer each other to their
current partners. A stable assignment always exists, and can be found using a variant of
Gale-Shapley algorithm [10] for computing stable matchings. We next define Pareto optimal
assignments.

Definition 3.2 (Pareto-optimal assignment). Given assignment X = (xij), let xi(α) =∑
j: Li(j)≤α xij be the total number of units of i’s capacity that is assigned at levels better

than or equal to level α, and xj(β) =
∑

i: Lj(i)≤β xij be the total number of assigned units of
j’s capacity that are better than or equal to level β. We say that X = (xij) is Pareto-optimal
if there is no other feasible assignment Y = (yij) such that yi(α) ≥ xi(α) and yj(β) ≥ xj(β),
for all α, β, and at least one of the inequalities is strict.

Recall from §1 that when preference lists contain ties, a stable matching need not be
Pareto optimal. This leads naturally to the concept of Pareto stable matchings [29], which
combines both Pareto-optimality and stability to provide a stronger solution concept to
choose from amongst the set of stable matchings. (Note that the presence of ties in preference
lists cannot be addressed by the standard trick of breaking ties using small perturbations:
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if ties are broken arbitrarily, the set of stable matchings with respect to the new strict
preferences can be strictly smaller than the set of stable matchings with respect to the
original preferences with ties— that is, artificial tiebreaking does not preserve the set of
stable matchings in the original problem.)

Definition 3.3. A Pareto-stable assignment is a feasible assignment that is both stable and
Pareto optimal.

Augmenting Paths and Cycles. Given the connection between assignment and network
flow, it is not surprising that the existence of augmenting paths and cycles in an assignment is
closely related to whether it can be improved, i.e., its Pareto optimality. The main difference
in the context of stable matching is that nodes have preferences in addition to capacities:
thus, augmenting paths and cycles must improve not just the size of an assignment, but also
its quality, as determined by node preferences. We first define augmenting paths and cycles
in the context of stable assignment.

Definition 3.4 (Augmenting Path). Given an assignment X = (xij), we say that
[i0, j1, i1, . . . , jℓ, iℓ, jℓ+1] is an augmenting path if (i) xi0 < ci0 and xjℓ+1 < cjℓ+1 , (ii)
xikjk

> 0 and xik−1jk
< cik−1jk

for k = 1, . . . , ℓ, and (iii) Lik
(jk) ≥ Lik

(jk+1) and
Ljk

(ik−1) ≤ Ljk
(ik) for k = 1, . . . , ℓ.

Definition 3.5 (Augmenting Cycle). Given an assignment X = (xij), we say that
[i1, j2, i2, . . . , jℓ, iℓ, j1, i1] is an augmenting cycle if (i) xikjk

> 0 and xik−1jk
< cik−1jk

for k = 1, . . . , ℓ, (ii) Lik
(jk) ≥ Lik

(jk+1) and Ljk
(ik−1) ≤ Ljk

(ik) for k = 1, . . . , ℓ, where
i0 = iℓ and jℓ+1 = j1, and (iii) at least one of the above inequalities is strict. If ik is such
a node (resp. jk), we say it is an augmenting cycle associated with ik (resp. jk) at level
Lik

(jk) (resp. Ljk
(ik)).

The following easy lemma implies that if a stable assignment has no augmenting paths
or cycles, then it must be Pareto stable (a similar result for Pareto-stable matching was
shown in [29].)

Lemma 3.1. Any assignment X that has no augmenting path or cycle is Pareto-optimal.

4 Computing a Pareto-Stable Assignment

We now give a strongly polynomial time algorithm to compute a Pareto-stable assignment.
Note that if X is a stable assignment, reassigning according to any augmenting path or cycle
of X preserves stability, i.e., any assignment Y that Pareto dominates a stable assignment
X is stable as well [9]. This, together with Lemma 3.1, suggests that starting with a stable
assignment, and then making improvements to it using augmenting paths and cycles until
no more improvements are possible, will result in a Pareto stable assignment.

How do we find such augmenting paths and cycles? First consider the simplest case
with unit capacity, i.e., ci = cj = 1 for all i, j; here, an assignment degenerates to a
matching. Given an existing matching, define a new directed bipartite graph with the same
nodes, where all forward edges are “weak improvement” edges with respect to the existing
matching, and backward edges correspond to the pairings in current matching. Then we
are able to find augmenting paths by introducing a source and sink that link to unmatched
nodes on each side. For cycles, since we need strict improvement for at least one node, we
consider subgraphs, one for each node, which only consists of strict improvement edges for
that node; then any cycle in the subgraph containing that node gives an augmenting cycle.
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For our general case where ci ≥ 1, however, note that even the concept of improvement
edges for a node is not well defined — since a node can have multiple partners in an assign-
ment, a particular edge can present an improvement for some part of that node’s capacity
and not for some others. For instance, suppose that node i (with ci = 2) is matched to
nodes j1 and j3, and suppose that i strictly prefers j1 to j2 to j3. Then, (i, j2) would only
represent an improvement relative to (i, j3), but not with respect to (i, j1), both of which
exist in the current assignment.

An obvious way to fix this problem is to make copies of each node, one for each unit of its
capacity, in which case improvement edges are well-defined– each unit of flow is associated
with a unique neighbor in any assignment. However, note that this new graph has size∑

i ci +
∑

j cj , consequently computing a Pareto-stable assignment in time polynomial in∑
i ci +

∑
j cj , which, alas, is exponential in the size of the input.

4.1 Construction of Networks

In order to define improvement edges in this setting with multiple units of supply and
demand, we will create a new augmented bipartite graph from the original bipartite graph
and preference lists of nodes. The vertex set consists of copies of each node, where each copy
represents a level on that node’s preference list. We then define forward and backward edges
between the vertices: forward edges are the (weak) improvement edges, while there is one
backward edge for every feasible pair (i, j), i ∈ A, j ∈ B, corresponding to their respective
levels in the others’ preference list. This augmented graph, which is assignment-independent
and depends only on the preference lists of the nodes, is then used to define a sequence of
networks with assignment-dependent capacities, which allow us to find augmenting paths
and cycles. The constructions are described formally below.

Definition 4.1. Given the preference lists of nodes, we construct a directed graph G as
follows.

• Vertices: For each node i ∈ M (either in A or B), we introduce n new vertices
T (i) = {i(1), . . . , i(n)}, where i(α) corresponds the α-th level of the preference list of
i. (If i has k < n levels in his preference list, it suffices to introduce only k vertices
i(1), . . . , i(k); here, we use n levels for uniformity.)

• Edges: For each pair (i, j) ∈ E(M), let α = Li(j) and β = Lj(i). We add a backward
edge between i(α) and j(β), i.e. j(β) → i(α). Further, we add a forward edge i(α′) →
j(β′) for every pair of vertices i(α′) and j(β′) satisfying α′ ≥ α and β′ ≥ β.

The following figure shows an example of the construction, where the first figure gives
the input instance (the number on each node is its supply/demand).

Definition 4.2 (Network H). Given graph G and an assignment X, we define network
H(X) as follows. We assign capacity infinity to all forward edges in G, and capacity xij

to the backward edge between T (i) and T (j). We include a source s and a sink t; further,
for each i ∈ A and j ∈ B, we add an extra vertex hi and hj, respectively. We connect
s → hi with capacity ci − xi, and hj → t with capacity cj − xj, where xi =

∑
j xij and

xj =
∑

i xij . Further, we connect hi → i(α) with capacity infinity for α = 1, . . . , n, and
connect j(β) → hj with capacity infinity for β = 1, . . . , n.

We will use the network H to find augmenting paths with respect to an existing stable
assignment X . Observe that the only edges from the source with nonzero capacity are those
that connect to a node i ∈ A with leftover capacity; similarly, the only edges to the sink with
nonzero capacity are from a node j ∈ B with leftover capacity. Sending flow from s to t in
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Figure 1: Construction of graph G.

H therefore involves increasing the total size of the assignment, exactly as in an augmenting
path for X . In fact, as we will show in Proposition 4.1, after finding the maximum flow in
H and updating the assignment accordingly, there are no remaining augmenting paths in
the new assignment.

Definition 4.3 (Networks Hi,α and Hj,β). Given the graph G and X, let G(X) be the
network where all forward edges in G are assigned capacity infinity, and all backward edges
are assigned capacity xij. We use G(X) define the networks Hi,α(X) and Hj,β(X) for each
i ∈ A and j ∈ B, and α, β = 1, . . . , n, as follows.

To get network Hi,α(X) from G(X), we add a source s and a sink t, and connect s → j(β)
with capacity infinity for each vertex j(β) satisfying α > Li(j) and β ≥ Lj(i) (an equivalent
definition is that we connect s → j(β) if there is an edge i(α) → j(β) and α > Li(j)).
Further, we connect j(β) → t with capacity xij for each j(β) satisfying α ≤ Li(j) and
β = Lj(i).

The network Hj,β(X) is defined symmetrically. That is, we include a source s and a
sink t, and connect s → i(α) with capacity xij for each vertex i(α) satisfying α = Li(j)
and β ≤ Lj(i). Further, we connect i(α) → t with capacity infinity for each i(α) satisfying
α ≥ Li(j) and β > Lj(i).

We will use the networks Hi,α and Hj,β to find augmenting cycles associated with
i and j at level α and β, respectively. Consider any flow from s to t in Hi,α, say
[s, j1(β1), i1(α1), . . . , i2(α2), j2(β2), t], we know that α > Li(j1) (i.e. i strictly prefers j1 to
all its neighbors at level α) and Lj1(i1) = β1 ≥ Lj1(i) (i.e. j1 weakly prefers i to i1). Further,
we have α ≤ Li(j2) (this implies that i strictly prefers j1 to j2) and Lj2(i2) ≤ β2 = Lj2(i)
(i.e. j2 weakly prefers i2 to i). That is, flows from s to t in Hi,α correspond to augmenting
cycles for node i at levels less than or equal to α in X (a symmetric argument holds for
graph Hj,β). We will show in Proposition 4.2 that once we compute the maximum flow in
Hi,α, there are no remaining augmenting cycles for node i at level α (note, not level α or
below).
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4.2 Algorithm

Pareto Stable Assignment (Pareto-Assignment)

1. Let X be an arbitrary stable assignment

2. Construct networks H, Hi,α and Hj,β, for each i ∈ A, j ∈ B, and α, β =
1, . . . , n given X

3. For H, Hi,α and Hj,β constructed above (H to be executed first)

(a) Compute a maximum flow F = (fuv) from s to t (if there is no flow from

vertex u to v, set fuv = 0)

(b) For each forward edge i(α) → j(β), let xij = xij + fi(α)j(β)

(c) For each backward edge j(β) → i(α), let xij = xij − fj(β)i(α)

(d) If the graph is Hi,α

• Let xij = xij + fsj(β) for each edge s → j(β)

• Let xij = xij − fj(β)t for each edge j(β) → t

(e) If the graph is Hj,β

• Let xij = xij − fsj(β) for each edge s → i(α)

• Let xij = xij + fj(β)t for each edge i(α) → t

(f) Update the capacities for the next graph to be executed according to

the new assignment X

4. Output X (denoted by X∗)

To prove that Pareto-Assignment indeed computes a Pareto-stable assignment, we
need to show two main things — first, that the resulting assignment is feasible, stable, and
all nodes’ assignments are weakly enhanced through the course of the algorithm.

Second, we need to show that no further Pareto improvements are possible when the
algorithm terminates, i.e., X∗ is Pareto optimal. Note that the assignment X changes
through the course of the algorithm, and therefore we need to show that, for instance, no
other augmenting paths can be found after the network H has been executed, even though
the assignment X that was used to define the network H has been changed (and similarly
for all augmenting cycles). That is, while we compute maximum flows in H(X) to find
all augmenting paths for a given assignment X , we need to show that no new augmenting
paths have showed up in the updated assignments X ′ computed by the algorithm. Similarly,
finding (i, α) augmenting cycles via Hi,α(X) for some assignment X does not automatically
imply that no further (i, α) augmenting cycles will ever be found in any of the (different)
assignments X ′ computed through the course of the algorithm, since the assignments of all
nodes can change each time when a maximum flow is computed, leading to the possibility of
new valid s-t paths, and therefore possibly new augmenting cycles. Note that this is hardly
obvious, and in fact, as Example 4.1 demonstrates, that this does not happen is due to a
careful choice of the construction of the networks Hi,α, Hj,β .

Example 4.1. Suppose there are four nodes i1, i2, i3, k in A and five nodes j1, j2, j3, j4, j5
in B. All nodes except k have unit capacity and are indifferent between all possible partners
(i.e., have only one level in their preference list). Node k has capacity 2, and preference list
([j1, j5], [j3, j4], j2). Suppose we start with the (stable) assignment X0 where k is matched
to j2, j3, and the remaining assignments are (i1, j1), (i2, j4), (i3, j5) (note there are no aug-
menting paths in X0). Consider finding the maximum flow in network Hi,α without the link
j2 → t for α = 2. In this network, the total capacity of edges incident to the sink is 1, thus
we can send at most one unit flow, for example k → j1 → i1 → j2 → k → j4 → i2 → j3 → t
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(note that the two k’s here correspond to different vertices in T (k) in the network).
After reassigning assignment according to this flow, we obtain the new assignment X ′

(i1, j2), (i2, j3), (i3, j5), (k, j1), (k, j4). But observe that X ′ still has an augmenting cycle
at level 2 for node k: k → j5 → i3 → j4 → k. However, with the original definition
of Hi,α, which links j2 → t, the maximum flow consists of pushing flow along the paths
k → j1 → i1 → j2 → t and k → j5 → i3 → j4 → i2 → j3 → t, leading to the new
assignment X ′′ = (i1, j2), (i2, j3), (i3, j4), (k, j1), (k, j5) which has no remaining augmenting
cycles for k.

The Pareto-optimality of the assignment X∗ returned by the algorithm follows from the
following two claims.

Proposition 4.1. There is no augmenting path after graph H is executed in Step 3 of
Pareto-Assignment.

Proposition 4.2. There is no augmenting cycle associated with i (resp. j) at level α (resp.
β) after graph Hi,α (resp. Hj,β) is executed in step 3 of Pareto-Assignment.

Together, these two propositions imply that the outcome returned by Pareto-
Assignment is indeed a Pareto-optimal assignment. Note that the construction of each
graph H, Hi,α and Hj,β is in polynomial time. In total there are O(n2) such graphs with
O(n2) vertices each. For each graph H, Hi,α and Hj,β , its maximum flow can be computed in
strongly polynomial time O(n6) with respect to its number of vertices O(n2) [18]. Therefore,
the running time of the algorithm is in O(n8). This gives us our main result:

Theorem 4.1. Algorithm Pareto-Assignment computes a Pareto-stable assignment in
strongly polynomial time O(n8), where n is the total number of nodes in the bipartite graph
M .

5 Remarks

In one-to-one matching, the solution concepts of pairwise stability, core, and setwise stability
all coincide, but this is not the case with many-to-many matching [27]. For our preference
model for many-to-many matching, the core is not a suitable solution concept, since match-
ings in the core need not be pairwise stable ([28], Fig.1a), and the strong core need not exist
([27], §5.7) (it is easy to adapt the examples in these references to our model of preferences
over sets). We also note that Pareto stability is incomparable with set-wise stability (both of
which are strictly stronger than pairwise stability) in the sense that neither solution concept
is stronger than the other— an easy example shows set-wise stable matchings need not be
Pareto-optimal, and vice versa. The problem of computing set-wise, rather than pairwise,
stable matchings, appears to be a challenging algorithmic question, and we leave it as an
open problem for future work.
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Stable Marriage Problems with Quantitative

Preferences

Maria Silvia Pini, Francesca Rossi, K. Brent Venable, and Toby Walsh

Abstract

The stable marriage problem is a well-known problem of matching men to women so
that no man and woman, who are not married to each other, both prefer each other.
Such a problem has a wide variety of practical applications, ranging from matching
resident doctors to hospitals, to matching students to schools or more generally to
any two-sided market. In the classical stable marriage problem, both men and women
express a strict preference order over the members of the other sex, in a qualitative
way. Here we consider stable marriage problems with quantitative preferences: each
man (resp., woman) provides a score for each woman (resp., man). Such problems
are more expressive than the classical stable marriage problems. Moreover, in some
real-life situations it is more natural to express scores (to model, for example, profits
or costs) rather than a qualitative preference ordering. In this context, we define
new notions of stability and optimality, and we provide algorithms to find marriages
which are stable and/or optimal according to these notions. While expressivity
greatly increases by adopting quantitative preferences, we show that in most cases
the desired solutions can be found by adapting existing algorithms for the classical
stable marriage problem.

1 Introduction

The stable marriage problem (SM) [5] is a well-known problem of matching the elements of
two sets. It is called the stable marriage problem since the standard formulation is in terms
of men and women, and the matching is interpreted in terms of a set of marriages. Given
n men and n women, where each person expresses a strict ordering over the members of
the opposite sex, the problem is to match the men to the women so that there are no two
people of opposite sex who would both rather be matched with each other than their current
partners. If there are no such people, all the marriages are said to be stable. In [4] Gale and
Shapley proved that it is always possible to find a matching that makes all marriages stable,
and provided a polynomial time algorithm which can be used to find one of two extreme
stable marriages, the so-called male-optimal or female-optimal solutions. The Gale-Shapley
algorithm has been used in many real-life scenarios, such as in matching hospitals to resident
doctors [12], medical students to hospitals, sailors to ships [8], primary school students to
secondary schools [13], as well as in market trading [14].

In the classical stable marriage problem, both men and women express a strict preference
order over the members of the other sex in a qualitative way. Here we consider stable
marriage problems with quantitative preferences. In such problems each man (resp., woman)
provides a score for each woman (resp., man). Stable marriage problems with quantitative
preferences are interesting since they are more expressive than the classical stable marriage
problems, since in classical stable marriage problem a man (resp., a woman) cannot express
how much he (resp., she) prefers a certain woman (resp., man). Moreover, they are useful in
some real-life situations where it is more natural to express scores, that can model notions
such as profit or cost, rather than a qualitative preference ordering. In this context, we
define new notions of stability and optimality, we compare such notions with the classical
ones, and we show algorithms to find marriages which are stable and/or optimal according
to these notions. While expressivity increases by adopting quantitative preferences, we show
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that in most cases the desired solutions can be found by adapting existing algorithms for
the classical stable marriage problem.

Stable marriage problems with quantitative preferences have been studied also in [6, 7].
However, they solve these problems by looking at the stable marriages that maximize the
sum of the weights of the married pairs, where the weights depend on the specific criteria
used to find an optimal solution, that can be minimum regret criterion [6], the egalitarian
criterion [7] or the Lex criteria [7]. Therefore, they consider as stable the same marriages
that are stable when we don’t consider the weights. We instead use the weights to define new
notions of stability that may lead to stable marriages that are different from the classical
case. They may rely on the difference of weights that a person gives to two different people
of the other sex, or by the strength of the link of the pairs (man,woman), i.e., how much
a person of the pair wants to be married with the other person of the pair. The classical
definition of stability for stable marriage problems with quantitative preferences has been
considered also in [2] that has used a semiring-based soft constraint approach [3] to model
and solve these problems.

The paper is organized as follows. In Section 2 we give the basic notions of classical
stable marriage problems, stable marriage problems with partially ordered preferences and
stable marriage problems with quantitative preferences (SMQs). In Section 3 we introduce
a new notion of stability, called α-stability for SMQs, which depends on the difference of
scores that every person gives to two different people of the other sex, and we compare it
with the classical notion of stability. Moreover, we give a new notion of optimality, called
lex-optimality, to discriminate among the new stable marriages, which depends on a voting
rule. We show that there is a unique optimal stable marriage and we give an algorithm to
find it. In Section 4 we introduce other notions of stability for SMQs that are based on the
strength of the link of the pairs (man,woman), we compare them with the classical stability
notion, and we show how to find marriages that are stable according to these notions with
the highest global link. In Section 5 we summarize the results contained in this paper, and
we give some hints for future work.

2 Background

We now give some basic notions on classical stable marriage problems, stable marriage
problems with partial orders, and stable marriage problems with quantitative preferences.

2.1 Stable marriage problems

A stable marriage problem (SM) [5] of size n is the problem of finding a stable marriage
between n men and n women. Such men and women each have a preference ordering over
the members of the other sex. A marriage is a one-to-one correspondence between men and
women. Given a marriage M , a man m, and a woman w, the pair (m, w) is a blocking pair
for M if m prefers w to his partner in M and w prefers m to her partner in M . A marriage
is said to be stable if it does not contain blocking pairs.

The sequence of all preference orderings of men and women is usually called a profile.
In the case of classical stable marriage problem (SM), a profile is a sequence of strict total
orders.

Given a SM P , there may be many stable marriages for P . However, it is interesting to
know that there is always at least one stable marriage.

Given an SM P , a feasible partner for a man m (resp., a woman w) is a woman w (resp.,
a man m) such that there is a stable marriage for P where m and w are married.

The set of all stable marriages for an SM forms a lattice, where a stable marriage M1

dominates another stable marriage M2 if men are happier (that is, are married to more or
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equally preferred women) in M1 w.r.t. M2. The top of this lattice is the stable marriage
where men are most satisfied, and it is usually called the male-optimal stable marriage.
Conversely, the bottom is the stable marriage where men’s preferences are least satisfied
(and women are happiest, so it is usually called the female-optimal stable marriage). Thus,
a stable marriage is male-optimal iff every man is paired with his highest ranked feasible
partner.

The Gale-Shapley (GS) algorithm [4] is a well-known algorithm to solve the SM problem.
At the start of the algorithm, each person is free and becomes engaged during the execution
of the algorithm. Once a woman is engaged, she never becomes free again (although to
whom she is engaged may change), but men can alternate between being free and being
engaged. The following step is iterated until all men are engaged: choose a free man m, and
let m propose to the most preferred woman w on his preference list, such that w has not
already rejected m. If w is free, then w and m become engaged. If w is engaged to man m’,
then she rejects the man (m or m’) that she least prefers, and becomes, or remains, engaged
to the other man. The rejected man becomes, or remains, free. When all men are engaged,
the engaged pairs form the male optimal stable matching. It is female optimal, of course, if
the roles of male and female participants in the algorithm were interchanged.

This algorithm needs a number of steps that, in the worst case, is quadratic in n (that
is, the number of men), and it guarantees that, if the number of men and women coincide,
and all participants express a strict order over all the members of the other group, everyone
gets married, and the returned matching is stable.

Example 1 Assume n = 2. Let {w1, w2} and {m1, m2} be respectively the set of women
and men. The following sequence of strict total orders defines a profile:

• m1 : w1 > w2 (i.e., man m1 prefers woman w1 to woman w2),

• m2 : w1 > w2,

• w1 : m2 > m1,

• w2 : m1 > m2.

For this profile, the male-optimal solution is {(m1, w2), (m2, w1)}. For this specific profile
the female-optimal stable marriage coincides with the male-optimal one. 2

2.2 Stable marriage problems with partially ordered preferences

In SMs, each preference ordering is a strict total order over the members of the other sex.
More general notions of SMs allow preference orderings to be partial [9]. This allows for
the modelling of both indifference (via ties) and incomparability (via absence of ordering)
between members of the other sex. In this context, a stable marriage problem is defined by
a sequence of 2n partial orders, n over the men and n over the women. We will denote with
SMP a stable marriage problem with such partially ordered preferences.

Given an SMP, we will sometimes use the notion of a linearization of such a problem,
which is obtained by linearizing the preference orderings of the profile in a way that is
compatible with the given partial orders.

A marriage M for an SMP is said to be weakly-stable if it does not contain blocking
pairs. Given a man m and a woman w, the pair (m, w) is a blocking pair if m and w are
not married to each other in M and each one strictly prefers the other to his/her current
partner.

A weakly stable marriage M dominates a weakly stable marriage M ′ iff for every man
m, M(m) ≥ M ′(m) and there is a man m′ s.t. M(m′) > M ′(m′). Notice that there may
be more than one undominated weakly stable marriage for an SMP.
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2.3 Stable marriage problems with quantitative preferences

In classical stable marriage problems, men and women express only qualitative preferences
over the members of the other sex. For every pair of women (resp., men), every man (resp.,
woman) states only that he (resp., she) prefers a woman (resp., a man) more than another
one. However, he (resp., she) cannot express how much he (resp., she) prefers such a woman
(resp., a man). This is nonetheless possible in stable marriage problems with quantitative
preferences.

A stable marriage problem with quantitative preferences (SMQ) [7] is a classical SM where
every man/woman gives also a numerical preference value for every member of the other
sex, that represents how much he/she prefers such a person. Such preference values are
natural numbers and higher preference values denote a more preferred item. Given a man
m and a woman w, the preference value for man m (resp., woman w) of woman w (resp.,
man m) will be denoted by p(m, w) (resp., p(w, m)).

Example 2 Let {w1, w2} and {m1, m2} be respectively the set of women and men. An
instance of an SMQ is the following:

• m1 : w
[9]
1 > w

[1]
2 (i.e., man m1 prefers woman w1 to woman w2, and he prefers w1

with value 9 and w2 with value 1),

• m2 : w
[3]
1 > w

[2]
2 ,

• w1 : m
[2]
2 > m

[1]
1 ,

• w2 : m
[3]
1 > m

[1]
2 .

The numbers written into the round brackets identify the preference values. 2

In [7] they consider stable marriage problems with quantitative preferences by looking
at the stable marriage that maximizes the sum of the preference values. Therefore, they use
the classical definition of stability and they use preference values only when they have to
look for the optimal solution. We want, instead, to use preference values also to define new
notions of stability and optimality.

We will introduce new notions of stability and optimality that are based on the quanti-
tative preferences expressed by the agents and we will show how to find them by adapting
the classical Gale-Shapley algorithm [4] for SMs described in Section 2.

3 α-stability

A simple generalization of the classical notion of stability requires that there are not two
people that prefer with at least degree α (where α is a natural number) to be married to
each other rather than to their current partners.

Definition 1 (α-stability) Let us consider a natural number α with α ≥ 1. Given a
marriage M , a man m, and a woman w, the pair (m, w) is an α-blocking pair for M if the
following conditions hold:

• m prefers w to his partner in M , say w′, by at least α (i.e., p(m, w)− p(m, w′) ≥ α),

• w prefers m to her partner in M , say m′, by at least α (i.e., p(w, m)− p(w, m′) ≥ α).

A marriage is α-stable if it does not contain α-blocking pairs. A man m (resp., woman w) is
α-feasible for woman w (resp., man m) if m is married with w in some α-stable marriage.
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3.1 Relations with classical stability notions

Given an SMQ P , let us denote with c(P ), the classical SM problem obtained from P by
considering only the preference orderings induced by the preference values of P .

Example 3 Let us consider the SMQ, P , shown in Example 2. The stable marriage problem
c(P ) is shown in Example 1. 2.

If α is equal to 1, then the α-stable marriages of P coincide with the stable marriages
of c(P ). However, in general, α-stability allows us to have more marriages that are stable
according to this definition, since we have a more relaxed notion of blocking pair. In fact, a
pair (m, w) is an α-blocking if both m and w prefer each other to their current partner by
at least α and thus pairs (m′, w′) where m′ and w′ prefer each other to their current partner
of less than α are not considered α-blocking pairs.

The fact that α-stability leads to a larger number of stable marriages w.r.t. the classical
case is important to allow new stable marriages where some men, for example the most
popular ones, may be married with partners better than all the feasible ones according to
the classical notion of stability.

Given an SMQ P , let us denote with Iα(P ) the set of the α-stable marriages of P and
with I(c(P )) the set of the stable marriages of c(P ). We have the following results.

Proposition 1 Given an SMQ P , and a natural number α with α ≥ 1,

• if α = 1, Iα(P ) = I(c(P ));

• if α > 1, Iα(P ) ⊇ I(c(P )).

Given an SMP P , the set of α-stable marriages of P contains the set of stable marriages
of c(P ), since the α-blocking pairs of P are a subset of the blocking pairs of c(P ).

Let us denote with α(P ) the stable marriage with incomparable pairs obtained from an
SMQ P by setting as incomparable every pair of people that don’t differ for at least α, and
with Iw(α(P )) the set of the weakly stable marriages of α(P ). It is possible to show that the
set of the weakly stable marriages of α(P ) coincides with the set of the α-stable marriages
of P .

Theorem 1 Given an SMQ P , Iα(P ) = Iw(α(P )).

Proof: We first show that Iα(P ) ⊆ Iw(α(P )). Assume that a marriage M 6∈ Iw(α(P )),
we now show that M 6∈ Iα(P ). If M 6∈ Iw(α(P )), then there is a pair (man,woman), say
(m, w), in α(P ) such that m prefers w to his partner in M , say w′, and w prefers m to her
partner in M , say m′. By definition of α(P ), this means that m prefers w to w′ by at least
degree α and w prefers m to m′ by at least degree α in P , and so M 6∈ Iα(P ). Similarly, we
can show that Iα(P ) ⊇ Iw(α(P )). In fact, if M 6∈ Iα(P ), then there is a pair (man,woman),
say (m, w), in P such that m prefers w to w′ by at least degree α and w prefers m to m′ by
at least degree α. By definition of α(P ), this means that m prefers w to w′ and w prefers
m to m′ in α(P ) and so M 6∈ Iw(α(P )), i.e., M is not a weakly stable marriage for α(P ). 2

This means that, given an SMQ P , every algorithm that is able to find a weakly stable
marriage for α(P ) provides an α-stable marriage for P .

Example 4 Assume that α is 2. Let us consider the following instance of an SMQ, say P .

• m1 : w
[3]
1 > w

[2]
2

• m2 : w
[4]
1 > w

[2]
2 ,
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• w1 : m
[8]
1 > m

[5]
2 ,

• w2 : m
[3]
1 > m

[1]
2 .

The SMP α(P ) is the following:

• m1 : w1 ⊲⊳ w2 (where ⊲⊳ means incomparable),

• m2 : w1 > w2,

• w1 : m1 > m2,

• w2 : m1 > m2.

The set of the α-stable marriages of P , that coincides with the set of the weakly stable mar-
riages of α(P ), by Theorem 1, contains the following marriages: M1 = {(m1, w1), (m2, w2)}
and M2 = {(m1, w2), (m2, w1)}. 2

On the other hand, not all stable marriage problems with partially ordered preferences
can be expressed as stable marriage problems with quantitative preferences such that the
stable marriages in the two problems coincide. More precisely, given any SMP problem P ,
we would like to be able to generate a corresponding SMQ problem P ′ and a value α such
that, in P ′, the weights of elements ordered in P differ more than α, while those of elements
that are incomparable in P differ less than α. Consider for example the case of a partial
order over six elements, defined as follows: x1 > x2 > x3 > x4 > x5 and x1 > y > x5. Then
there is no way to choose a value α and a linearization of the partial order such that the
weights of xi and xj differ for at least α, for any i,j between 1 and 5, while at the same time
the weight of y and each of the xi’s differ for less than α.

3.2 Dominance and lex-male-optimality

We recall that in SMPs a weakly-stable marriage dominates another weakly-stable marriage
if men are happier (or equally happy) and there is at least a man that is strictly happier.
The same holds for α-stable marriages. As in SMPs there may be more than one undomi-
nated weakly-stable marriage, in SMQs there may be more than one undominated α-stable
marriage.

Definition 2 (dominance) Given two α-stable marriages, say M and M ′, M dominates
M ′ if every man is married in M to more or equally preferred woman than in M ′ and there
is at least one man in M married to a more preferred woman than in M ′.

Example 5 Let us consider the SMQ shown in Example 4. We recall that α is 2 and
that the α-stable marriages of this problem are M1 = {(m1, w1), (m2, w2)} and M2 =
{(m1, w2), (m2, w1)}. M2 does not dominate M1 since, for m1, M1(m1) > M2(m1) and
M1 does not dominate M2 since, for m2, M2(m2) > M1(m2). 2

We now discriminate among the α-stable marriages of an SMQ, by considering the
preference values given by women and men to order pairs that differ for less than α.

We will consider a marriage optimal when the most popular men are as happy as possible
and they are married with the most popular α-feasible women.

To compute a strict ordering on the men where the most popular men (resp., the most
popular women) are ranked first, we follow a reasoning similar to the one considered in
[11, 10], that is, we apply a voting rule [1] to the preferences given by the women (resp.,
by the men) . More precisely, such a voting rule takes in input the preference values given
by the women over the men (resp., given by the men over the women) and returns a strict
total order over the men (resp., women).
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Definition 3 (lex-male-optimal) Consider an SMQ P , a natural number α, and a voting
rule r. Let us denote with om (resp., ow) the strict total order over the men (resp., over
the women) computed by applying r to the preference values that the women give to the men
(resp., the men give to the women). An α-stable marriage M is lex-male-optimal w.r.t. om

and ow, if, for every other α-stable marriage M ′, the following conditions hold:

• there is a man mi such that M(mi) ≻ow M ′(mi),

• for every man mj ≺om mi, M(mj) = M ′(mj).

Proposition 2 Given an SMQ P , a strict total ordering om (resp., ow) over the men (resp.,
women),

• there is a unique lex-male-optimal α-stable marriage w.r.t. om and ow, say L.

• L may be different from the male-optimal stable marriage of c(P );

• if α(P ) has a unique undominated weakly stable marriage, say L′, then L coincides
with L′, otherwise L is one of the undominated weakly stable marriages of α(P ).

Example 6 Let us consider the SMQ, P , shown in Example 4. We have shown previously
that this problem has two α-weakly stable marriages that are undominated. We now want
to discriminate among them by considering the lex-male-optimality notion. Let us consider
as voting rule the rule that takes in input the preference values given by the women over
the men (resp., by the men over the women) and returns a strict preference ordering over
the men (resp., women). This preference ordering is induced by the overall score that each
man (resp., woman) receives: men (women) that receive higher overall scores are more
preferred. The overall score of a man m (resp., woman w), say s(m) (resp., s(w)), is
computed by summing all the preference values that the women give to him (the men give
to her). If two candidates receive the same overall score, we use a tie-breaking rule to order
them. If we apply this voting rule to the preference values given by the women in P , then
we obtain s(m1) = 8 + 3 = 11, s(m2) = 5 + 1 = 6, and thus the ordering om is such
that m1 ≻om m2. If we apply the same voting rule to the preference values given by the
men in P , s(w1) = 3 + 4 = 7, s(w2) = 2 + 2 = 4, and thus the ordering ow is such that
w1 ≻ow w2. The lex-male-optimal α-stable marriage w.r.t. om and ow is the marriage
M1 = {(m1, w1), (m2, w2)}. 2

3.3 Finding the lex-male-optimal α-stable marriage

It is possible to find optimal α-stable marriages by adapting the GS-algorithm for classical
stable marriage problems [4].

Given an SMQ P and a natural number α, by Theorem 1, to find an α-stable marriage
it is sufficient to find a weakly stable marriage of α(P ). This can be done by applying the
GS algorithm to any linearization of α(P ).

Given an SMQ P , a natural number α, and two orderings om and ow over men and
women computed by applying a voting rule to P as described in Definition 3, it is possible
to find the α-stable marriage that is lex-male-optimal w.r.t om and ow by applying the GS
algorithm to the linearization of α(P ) where we order incomparable pairs, i.e., the pairs
that differ for less than α in P , in accordance with the orderings om and ow.

Proposition 3 Given an SMQ P , a natural number α, om (resp., ow) an ordering over the
men (resp., women), algorithm Lex-male-α-stable-GS returns the lex-male-optimal α-stable
marriage of P w.r.t. om and ow.
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Algorithm 1: Lex-male-α-stable-GS
Input: P : an SMQ, α: a natural number, r: a voting rule
Output: µ: a marriage
om ← the strict total order over the men obtained by applying r to the preference
values given by the women over the men
ow ←: the strict total order over the women obtained by applying r to the preference
values given by the men over the women
P ′ ← the linearization of α(P ) obtained by ordering incomparable pairs of α(P ) in
accordance with om and ow;
µ← the marriage obtained by applying the GS algorithm to P ′;
return µ

4 Stability notions relying on links

Until now we have generalized the classical notion of stability by considering separately
the preferences of the men and the preferences of the women. We now intend to define
new notions of stability that take into account simultaneously the preferences of the men
and the women. Such a new notion will depend on the strength of the link of the married
people, i.e., how much a man and a woman want to be married with each other. This is
useful to obtain a new notion of stable marriage, that looks at the happiness of the pairs
(man,woman) rather than at the happiness of the members of a single sex.

A way to define the strength of the link of two people is the following.

Definition 4 (link additive-strength) Given a man m and a woman w, the link
additive-strength of the pair (m, w), denoted by la(m, w), is the value obtained by sum-
ming the preference value that m gives to w and the preference value that w gives to m, i.e.,
la(m, w) = p(m, w) + p(w, m). Given a marriage M , the additive-link of M , denoted by
la(M), is the sum of the links of all its pairs, i.e.,

∑
{(m,w)∈M} la(m, w).

Notice that we can use other operators beside the sum to define the link strength, such
as, for example, the maximum or the product.

We now give a notion of stability that exploit the definition of the link additive-strength
given above.

Definition 5 (link-additive-stability) Given a marriage M , a man m, and a woman w,
the pair (m, w) is a link-additive-blocking pair for M if the following conditions hold:

• la(m, w) > la(m′, w),

• la(m, w) > la(m, w′),

where m′ is the partner of w in M and w′ is the partner of m in M . A marriage is
link-additive-stable if it does not contain link-additive-blocking pairs.

Example 7 Let {w1, w2} and {m1, m2} be, respectively, the set of women and men. Con-
sider the following instance of an SMQ, P :

• m1 : w
[30]
1 > w

[3]
2 ,

• m2 : w
[4]
1 > w

[3]
2 ,

• w1 : m
[6]
2 > m

[5]
1 ,
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• w2 : m
[10]
1 > m

[2]
2 .

In this example there is a unique link-additive-stable marriage, that is M1 =
{(m1, w1), (m2, w2)}, which has additive-link la(M1) = 35 + 5 = 40. Notice that such a
marriage has an additive-link higher than the male-optimal stable marriage of c(P ) that is
M2 = {(m1, w2), (m2, w1)} which has additive-link la(M2) = 13 + 10 = 23. 2

The strength of the link of a pair (man,woman), and thus the notion of link stability,
can be also defined by considering the maximum operator instead of the sum operator.

Definition 6 (link maximal-strength) Given a man m and a woman w, the link
maximal-strength of the pair (m, w), denoted by lm(m, w), is the value obtained by tak-
ing the maximum between the preference value that m gives to w and the preference value
that w gives to m, i.e., lm(m, w) = max(p(m, w), p(w, m)). Given a marriage M , the
maximal-link of M , denoted by lm(M), is the maximum of the links of all its pairs, i.e.,
max{(m,w)∈M}lm(m, w).

Definition 7 (link-maximal-stability) Given a marriage M , a man m, and a woman
w, the pair (m, w) is a link-maximal-blocking pair for M if the following conditions hold:

• lm(m, w) > lm(m′, w),

• lm(m, w) > lm(m, w′),

where m′ is the partner of w in M and w′ is the partner of m in M . A marriage is
link-maximal-stable if it does not contain link-maximal-blocking pairs.

4.1 Relations with other stability notions

Given an SMQ P , let us denote with Linka(P ) (resp., Linkm(P )) the stable marriage
problem with ties obtained from P by changing every preference value that a person x gives
to a person y with the value la(x, y) (resp., lm(x, y)), by changing the preference rankings
accordingly, and by considering only these new preference rankings.

Let us denote with Ila(P ) (resp., Ilm(P )) the set of the link-additive-stable marriages
(resp., link-maximal-stable marriages) of P and with Iw(Linka(P )) (resp., Iw(Linkm(P )))
the set of the weakly stable marriages of Linka(P ) (resp., Linkm(P )). It is possible to show
that these two sets coincide.

Theorem 2 Given an SMQ P , Ila(P ) = Iw(Linka(P )) and Ilm(P ) = Iw(Linkm(P )).

Proof: Let us consider a marriage M . We first show that if M ∈ Iw(Linka(P )) then
M ∈ Ila(P ). If M 6∈ Ila(P ), there is a pair (m, w) that is a link-additive-blocking pair, i.e.,
la(m, w) > la(m, w′) and la(m, w) > la(m′, w), where w′ (resp., m′) is the partner of m
(resp., w) in M . Since la(m, w) > la(m, w′), m prefers w to w′ in the problem Linka(P ),
and, since la(m, w) > la(m′, w), w prefers m to m′ in the problem Linka(P ). Hence (m, w)
is a blocking pair for the problem Linka(P ). Therefore, M 6∈ Iw(Linka(P )).

We now show that if M ∈ Ila(P ) then M ∈ Iw(Linka(P )). If M 6∈ Iw(Linka(P )), there
is a pair (m, w) that is a blocking pair for Iw(Linka(P )), i.e., m prefers w to w′ in the
problem Linka(P ), and w prefers m to m′ in the problem Linka(P ). By definition of the
problem Linka(P ), la(m, w) > la(m, w′) and la(m, w) > la(m′, w). Therefore, (m, w) is a
link-additive-blocking pair for the problem P . Hence, M 6∈ Ila(P ).

It is possible to show similarly that Ilm(P ) = Iw(Linkm(P )). 2

When no preference ordering changes in Linka(P ) (resp., Linkm(P )) w.r.t. P , then
the link-additive-stable (resp., link-maximal-stable) marriages of P coincide with the stable
marriages of c(P ).
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Proposition 4 Given an SMQ P , if Linka(P ) = c(P ) (Linkm(P ) = c(P )) , then Ila(P ) =
I(c(P )) (resp., Ilm(P ) = I(c(P ))).

If there are no ties in Linka(P ) (resp., Linkm(P )), then there is a unique link-additive-
stable marriage (resp., link-maximal-stable marriage) with the highest link.

Proposition 5 Given an SMQ P , if Linka(P ) (resp., Linkm(P )) has no ties, then there
is a unique link-additive-stable (resp., link-maximal-stable) marriage with the highest link.

If we consider the definition of link-maximal-stability, it is possible to define a class of
SMQs where there is a unique link-maximal-stable marriage with the highest link.

Proposition 6 In an SMQ P where the preference values are all different, there is a unique
link-maximal-stable marriage with the highest link.

4.2 Finding link-additive-stable and link-maximal-stable marriages
with the highest link

We now show that for some classes of preferences it is possible to find optimal link-additive-
stable marriages and link-maximal-stable marriages of an SMQ by adapting algorithm GS,
which is usually used to find the male-optimal stable marriage in classical stable marriage
problems.

By Proposition 2, we know that the set of the link-additive-stable (resp., link-maximal-
stable) marriages of an SMQ P coincides with the set of the weakly stable marriages of
the SMP Linka(P ) (resp., Linkm(P )). Therefore, to find a link-additive-stable (resp., link-
maximal-stable) marriage, we can simply apply algorithm GS to a linearization of Linka(P )
(resp., Linkm(P )).

Algorithm 2: link-additive-stable-GS (resp., link-maximal-stable-GS)
Input: P : an SMQ
Output: µ: a marriage
P ′ ← Linka(P ) (resp., Linkm(P ));
P ′′ ← a linearization of P ′;
µ← the marriage obtained by applying GS algorithm to P ′′;
return µ

Proposition 7 Given an SMQ P , the marriage returned by algorithm link-additive-stable-
GS (link-maximal-stable-GS) over P , say M , is link-additive-stable (resp., link-maximal-
stable). Moreover, if there are not ties in Linka(P ) (resp., Linkm(P )), M is link-additive-
stable (resp., link-maximal-stable) and it has the highest link.

When there are no ties in Linka(P ) (resp., Linkm(P )), the marriage returned by al-
gorithm link-additive-stable-GS (resp., link-maximal-stable-GS) is male-optimal w.r.t. the
profile with links. Such a marriage may be different from the classical male-optimal stable
marriage of c(P ), since it considers the happiness of the men reordered according to their
links with the women, rather than according their single preferences.

This holds, for example, when we assume to have an SMQ with preference values that
are all different and we consider the notion of link2-stability.

Proposition 8 Given an SMQ P where the preference values are all different, the marriage
returned by algorithm link-maximal-stable-GS algorithm over P is link-maximal-stable and
it has the highest link.
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5 Conclusions and future work

In this paper we have considered stable marriage problems with quantitative preferences,
where both men and women can express a score over the members of the other sex. In
particular, we have introduced new stability and optimality notions for such problems and
we have compared them with the classical ones for stable marriage problems with totally or
partially ordered preferences. Also, we have provided algorithms to find marriages that are
optimal and stable according to these new notions by adapting the Gale-Shapley algorithm.

We have also considered an optimality notion (that is, lex-male-optimality) that exploits
a voting rule to linearize the partial orders. We intend to study if this use of voting rules
within stable marriage problems may have other benefits. In particular, we want to inves-
tigate if the procedure defined to find such an optimality notion inherits the properties of
the voting rule with respect to manipulation: we intend to check whether, if the voting rule
is NP-hard to manipulate, then also the procedure on SMQ that exploits such a rule is NP-
hard to manipulate. This would allow us to transfer several existing results on manipulation
complexity, which have been obtained for voting rules, to the context of procedures to solve
stable marriage problems with quantitative preferences.
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Local Search for Stable Marriage Problems1

M. Gelain, M. S. Pini , F. Rossi, K. B. Venable, and T. Walsh

Abstract

The stable marriage (SM) problem has a wide variety of practical applications, rang-
ing from matching resident doctors to hospitals, to matching students to schools, or
more generally to any two-sided market. In the classical formulation, n men and n
women express their preferences (via a strict total order) over the members of the
other sex. Solving a SM problem means finding a stable marriage where stability is
an envy-free notion: no man and woman who are not married to each other would
both prefer each other to their partners or to being single. We consider both the
classical stable marriage problem and one of its useful variations (denoted SMTI)
where the men and women express their preferences in the form of an incomplete
preference list with ties over a subset of the members of the other sex. Matchings are
permitted only with people who appear in these preference lists, an we try to find
a stable matching that marries as many people as possible. Whilst the SM problem
is polynomial to solve, the SMTI problem is NP-hard. We propose to tackle both
problems via a local search approach, which exploits properties of the problems to
reduce the size of the neighborhood and to make local moves efficiently. We evaluate
empirically our algorithm for SM problems by measuring its runtime behaviour and
its ability to sample the lattice of all possible stable marriages. We evaluate our
algorithm for SMTI problems in terms of both its runtime behaviour and its ability
to find a maximum cardinality stable marriage. Experimental results suggest that
for SM problems, the number of steps of our algorithm grows only as O(n log(n)),
and that it samples very well the set of all stable marriages. It is thus a fair and ef-
ficient approach to generate stable marriages. Furthermore, our approach for SMTI
problems is able to solve large problems, quickly returning stable matchings of large
and often optimal size despite the NP-hardness of this problem.

1 Introduction

The stable marriage problem (SM) [6] is a well-known problem of matching men to women
to achieve a certain type of ”stability”. Each person expresses a strict preference ordering
over the members of the opposite sex. The goal is to match men to women so that there
are no two people of opposite sex who would both rather be matched with each other than
with their current partners. The stable marriage problem has a wide variety of practical
applications, ranging from matching resident doctors to hospitals, sailors to ships, primary
school students to secondary schools, as well as in market trading. Surprisingly, such a
stable marriage always exists and one can be found in polynomial time. Gale and Shapley
give a quadratic time algorithm to solve this problem based on a series of proposals of the
men to the women (or vice versa) [2].

There are many variants of the traditional formulation of the stable marriage problem.
Some of the most useful in practice include incomplete preference lists (SMI), that allow one
to model unacceptability for certain members of the other sex, and preference lists with ties
(SMT), that model indifference in the preference ordering. With a SMI problem, the goal
is to find a stable marriage in which the married people accept each other. It is known that
all solutions of a SMI problem have the same size (that is, number of married people). In
SMT problems, instead, solutions are stable marriages where everybody is married. Both

1Research partially supported by the Italian MIUR PRIN project 20089M932N: ”Innovative and multi-
disciplinary approaches for constraint and preference reasoning”.
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of these variants are polynomial to solve. In real world situations, both ties and incomplete
preference lists may be needed. Unfortunately, when we allow both, the problem becomes
NP-hard [12]. In a SMTI (Stable Marriage with Ties and Incomplete lists) problem, there
may be several stable marriages of different sizes, and solving the problem means finding a
stable marriage of maximum size.

In this paper we investigate the use of a local search approach to tackle both the classical
and the NP-hard variant of the problem. In particular, when we consider the classical
problem, we investigate the fairness of stable marriage procedures based on local search.
On the other hand, for SMTI problems, we focus on efficiency. Our algorithms are based
on the same schema: they start from a randomly chosen marriage and, at each step, we
move to a neighbor marriage by minimizing the distance to stability, which is measured
by the number of unstable pairs. To avoid redundant computation due to the possibly
large number of unstable pairs, we consider only those that are undominated, since their
elimination maximises the distance to stability. Random moves are also used, to avoid
stagnation in local minima. The algorithms stop when they find a solution or when a given
limit on the number of steps is reached. A solution for an SMTI is a perfect matching
(that is, a stable marriage with no singles), whereas, for an SM, a solution is just a stable
marriage.

For the SM problem, we performed experiments on randomly generated problems with
up to 500 men and women. It is interesting to notice that our algorithm always finds
a stable marriage. Also, its runtime behaviour shows that the number of steps grows as
little as O(n log(n)). We also tested the fairness of our algorithm at generating stable
marriages, measuring how well the algorithm samples the set of all stable marriages. As it
is non-deterministic, it should ideally return any of the possible stable marriages with equal
probability. We measure this capability in the form of an entropy that should be as close
to that of an uniform sampe as possible. The computed entropy is about 70% of that of an
uniform sample, and even higher on problems with small size.

For the SMTI problem, we performed experiments on randomly generated problems
of size 100. We observe that our algorithm is able to find stable marriages with at most
two singles on average in tens of seconds at worst. The SMTI problem has been tackled
also in [4], where the problem is modeled in terms of a constraint optimization problem
and solved employing a constraint solver. This systematic approach is guaranteed to find
always an optimal solution. However, our experimental results show that our local search
algorithm in practice always appears to find optimal solutions. Moreover, it scales well to
sizes much larger than those considered in [4]. An alternative approach to local search is to
use approximation methods. An overview of some results on SM problems is presented in
[3].

2 Background

In this section we give some basic notions about the stable marriage problem. In addition,
we present some basic notions about local search.

2.1 Stable marriage problem

A stable marriage (SM) problem [6] consists of matching members of two different sets,
usually called men and women. When there are n men and n women, the SM problem is
said to have size n. Each person strictly ranks all members of the opposite sex. The goal
is to match the men with the women so that there are no two people of opposite sex who
would both rather marry each other than their current partners. If there are no such pairs
(called blocking pairs) the marriage is “stable”.
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Definition 1 (Marriage) Given an SM P of size n, a marriage M is a one-to-one match-
ing of the men and the women. If a man m and a woman w are matched in M , we write
M(m) = w and M(w) = m.

Definition 2 (Blocking pair) Given a marriage M , a pair (m, w), where m is a man
and w is a woman, is a blocking pair iff m and w are not partners in M , but m prefers w
to M(m) and w prefers m to M(w).

Definition 3 (Stable Marriage) A marriage M is stable iff it has no blocking pairs.

A convenient and widely used SM representation is showed in Table 1, where each person
is followed by his/her preference list in decreasing order.

men’s preference lists women’s preference lists
1: 5 7 1 2 6 8 4 3 1: 5 3 7 6 1 2 8 4
2: 2 3 7 5 4 1 8 6 2: 8 6 3 5 7 2 1 4
3: 8 5 1 4 6 2 3 7 3: 1 5 6 2 4 8 7 3
4: 3 2 7 4 1 6 8 5 4: 8 7 3 2 4 1 5 6
5: 7 2 5 1 3 6 8 4 5: 6 4 7 3 8 1 2 5
6: 1 6 7 5 8 4 2 3 6: 2 8 5 4 6 3 7 1
7: 2 5 7 6 3 4 8 1 7: 7 5 2 1 8 6 4 3
8: 3 8 4 5 7 2 6 1 8: 7 4 1 5 2 3 6 8

Table 1: An example of an SM of size 8.

For example, Table 1 shows that man 1 prefers woman 5 to woman 7 to woman 1 and so
on. It is known that, at least one stable marriage exists for every SM problem. For a given
SM instance, we can define a partial order relation on the set of stable marriages.

Definition 4 (Dominance) Let M and M ′ be two stable marriages. M dominates M ′ iff
every man has a partner in M who is at least as good as the one he has in M ′.

Under the partial order given by the dominance relation, the set of stable marriages forms
a distributive lattice [11]. Gale and Shapley give a polynomial time algorithm (GS) to find
the stable marriage at the top (or bottom) of this lattice [2]. The top of such lattice is
the male optimal stable marriage Mm, that is optimal from the men’s point of view. This
means that there are no other stable marriages in which each man is married with the same
woman or with a woman he prefers to the one in Mm. The GS algorithm can also be used
to find the female optimal stable marriage Mw (that is the bottom of the stable marriage
lattice), which is optimal from the women’s perspective, by just replacing men with women
(and vice versa) before applying the algorithm. A clear way to represent this lattice is a
Hasse diagram representing the transitive reduction of the partial order relation. Figure 1
shows the Hasse diagram of the SM in Table 1.

A common concern with the standard Gale-Shapley algorithm is that it unfairly favors
one sex at the expense of the other. This gives rise to the problem of finding “fairer” stable
marriages. Previous work on finding fair marriages has focused on algorithms for optimizing
an objective function that captures the happiness of both genders [7, 9]. A different approach
is to investigate non-deterministic procedures that can generate a random stable marriage
from the lattice with a distribution which is as uniform as possible.

In [1] the authors use a Markov chain approach to sample the stable marriage lattice.
More precisely, the edges of the lattice dictate exactly how to formalize the moves to walk
from one stable marriage to another one, so that there are at most a linear number of moves
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Figure 1: The Hasse diagram of the set of all stable marriages for the SM in Table 1.

at each step, these are easily identifiable, and they form reversible moves that connect the
state space and converge to the uniform distribution. Unfortunately, Bhatnagar et al. show
that this random walk has an exponential convergence time, which would appear to suggest
that the approach may not be feasible in practice.

In this paper we also consider a variant of the SM problem where preference lists may
include ties and may be incomplete. This variant is denoted by SMTI [10]. Ties express
indifference in the preference ordering, while incompleteness models unacceptability only
for certain partners. Finally, our empirical data support the theoretical results in [14] about
parameterized complexity of the stable marriage problem.

Definition 5 (SMTI marriage) Given a SMTI problem with n men and n women, a
marriage M is a one-to-one matching between men and women such that partners accept
each other. If a man m and a woman w are matched in M , we write M(m) = w and
M(w) = m. If a person p is not matched in M we say that he/she is single.

Definition 6 (Marriage size) Given a SMTI problem of size n and a marriage M , its
size is the number of men (or women) that are married.

Definition 7 (Blocking pairs in SMTI problems) Consider a SMTI problem P , a
marriage M for P , a man m and a woman w. A pair (m, w) is a blocking pair in M
iff m and w accept each other and m is either single in M or he strictly prefers w to M(m),
and w is either single in M or she strictly prefers m to M(w).

Definition 8 (Weakly Stable Marriages) Given a SMTI problem P , a marriage M for
P is weakly stable iff it has no blocking pairs.

As we will consider only weakly stable marriages, we will simply call them stable mar-
riages. Given a SMTI problem, there may be several stable marriages of different size. If the
size of a marriage coincides with the size of the problem, it is said to be a perfect matching.
Solving a SMTI problem means finding a stable marriage with maximal size. This problem
is NP-hard [12].

2.2 Local search

Local search [8] is one of the fundamental paradigms for solving computationally hard
combinatorial problems. Local search methods in many cases represent the only feasible
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way for solving large and complex instances. Moreover, they can naturally be used to solve
optimization problems.

Given a problem instance, the basic idea underlying local search is to start from an
initial search position in the space of all solutions (typically a randomly or heuristically
generated candidate solution, which may be infeasible, sub-optimal or incomplete), and to
improve iteratively this candidate solution by means of typically minor modifications. At
each search step we move to a position selected from a local neighborhood, chosen via a
heuristic evaluation function. The evaluation function typically maps the current candidate
solution to a number such that the global minima correspond to solutions of the given
problem instance. The algorithm moves to the neighbor with the smallest value of the
evaluation function. This process is iterated until a termination criterion is satisfied. The
termination criterion is usually the fact that a solution is found or that a predetermined
number of steps is reached, although other variants may stop the search after a predefined
amount of time.

Different local search methods vary in the definition of the neighborhood and of the eval-
uation function, as well as in the way in which situations are handled when no improvement
is possible. To ensure that the search process does not stagnate in unsatisfactory candi-
date solutions, most local search methods use randomization: at every step, with a certain
probability a random move is performed rather than the usual move to the best neighbor.

3 Local search on Stable Marriages

We now present an adaptation of the local search schema to deal with the classical stable
marriage problem. Then, we will point out the aspects that have to be changed to deal with
SMTI problems.

Given an SM problem P , we start from a randomly generated marriage M . Then, at each
search step, we compute the set BP of blocking pairs in M and compute the neighborhood,
which is the set of all marriages obtained obtained by removing one of the blocking pairs
in BP from M . Consider a blocking pair bp = (m, w) in M , m′ = M(w), and w′ = M(m).
Then, removing bp from M means obtaining a marriage M ′ in which m is married with w
and m′ is married with w′, leaving the other pairs unchanged. To select the neighbor M ′

of M to move to, we use an evaluation function f : Mn → Z, where Mn is the set of all
possible marriages of size n, and f(M) = nbp(M). For each marriage M , nbp(M) is the
number of blocking pairs in M , and we move to one with the smallest value of f .

To avoid stagnation in a local minimum of the evaluation function, at each search step
we perform a random walk with probability p (where p is a parameter of the algorithm),
which removes a randomly chosen blocking pair in BP from the current marriage M . In
this way we move to a randomly selected marriage in the neighborhood. The algorithm
terminates if a stable marriage is found or when a maximal number of search steps or a
timeout is reached.

This basic algorithm, called SML, has been improved in the computation of the neigh-
borhood, obtaining SML1. When SML moves from one marriage to another one, it takes
as input the current marriage M and the list PAIRS of its blocking pairs and returns the
marriage in the neighborhood of M with the best value of the evaluation function, i.e. the
one with fewer blocking pairs. However, the number of such blocking pairs may be very
large. Also, some of them may be useless, since their removal would surely lead to new mar-
riages that will not be chosen by the evaluation function. This is the case for the so-called
dominated blocking pairs. Algorithm SML1 considers only undominated blocking pairs.

Definition 9 (Dominance in blocking pairs) Let (m, w) and (m, w′) be two blocking
pairs. Then (m, w) dominates (from the men’s point of view) (m, w′) iff m prefers w to w′.
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There is an equivalent concept from the women’s point of view.

Definition 10 (Undominated blocking pair) A men- (resp., women-) undominated
blocking pair is a blocking pair such that there is no other blocking pair that dominates
it from the men’s (resp., women’s) point of view.

It is easy to see that, if M is an unstable marriage, (m, w) an men- (resp., women-)
undominated blocking pair in M , m′ = M(w), w′ = M(m), and M ′ is obtained from M by
removing (m, w), there are no blocking pairs in M ′ in which m (resp., w) is involved. This
property would not be true if we removed a dominated blocking pair. This is why we focus
on the removal of undominated blocking pairs when we pass from one marriage to another
in our local search algorithm.

Considering again the SM in Table 1 and the marriage 2 7 4 8 6 3 5 1. The blocking pair
(m8, w4) dominates (from the men’s point of view) (m8, w2). If we remove (m8, w2) from
the marriage, (m8, w4) will remain. On the other hand, removing (m8, w4) also eliminates
(m8, w2). Thus, removing (m8, w4) is more useful than removing (m8, w2).

By using the undominated blocking pairs instead of all the blocking pairs, we also limit
the size of the neighborhood, since each man or woman is involved in at most one undomi-
nated blocking pair. Hence we have at most 2n neighbor marriages to evaluate.

Let us now analyse more carefully the set of blocking pairs considered by SML1. Consider
the case in which a man mi is in two blocking pairs, say (mi, wj) and (mi, wk), and assume
that (mi, wj) dominates (mi, wk) from the men’s point of view. Then, let wj be in another
blocking pair, say (mz, wj), that dominates (mi, wj) from the women’s point of view. In
this situation, SML1 returns (mz, wj) because it computes the undominated blocking pairs
from men’s point of view (which are (mi, wj) and (mz, wj)) and, among those, maintain the
undominated ones from the women’s point of view ((mz , wj) in this case). The removal of
(mz, wj) automatically eliminates (mi, wj) from the set of blocking pairs of the marriage,
since it is dominated by (mz, wj). However, the blocking pair (mi, wk) is still present because
the blocking pair that dominated it (i.e. (mi, wj)) is not a blocking pair any longer. We
also consider a procedure that will return in addition the blocking pair (mi, wk), so to avoid
having to consider it again in the subsequent step of the local search algorithm. We call
SML2 the algorithm obtained from SML1 by using this new way to compute the blocking
pairs.

Since dominance between blocking pairs is defined from one gender’s point of view, at
the beginning of our algorithms we randomly choose a gender and, at each search step
we change the role of the two genders. For example, in SML1, if we start by finding the
undominated blocking pairs from the men’s point of view and, among those, we keep only
the undominated blocking pairs from the women’s point of view, in the following second
step we do the opposite, and so on. In this way we ensure that SML1 and SML2 are gender
neutral.

Summarizing, we have defined three algorithms, called SML, SML1, and SML2, to find a
stable marriage for a given SM instance. Such algorithms differ only for the set of blocking
pairs considered to define the neighborhood.

4 Local search for SMTI problems

To adapt the SML algorithm to solve problems with ties and incomplete lists it is important
to recall that an SMTI may have several stable marriages of different size. Thus, solving
an SMTI problem means finding a stable marriage with maximal size. If the size of the
marriage coincide with the size of the problem, it is said to be perfect and the algorithm can
stop before the step limit. Otherwise the algorithm returns the best marriage found during
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search, defined as follows: if no stable marriage has been found, then the best marriage is the
one with the smallest value of the evaluation function; otherwise, it is the stable marriage
with fewest singles.

The SML algorithm is therefore modified in the following ways:

• the evaluation function has to take into account that some person may be not married,
so we use: f(M) = nbp(M)+ns(M), where, for each marriage M , ns(M) is the number
of singles in M which are not in any blocking pair.

• When we remove a blocking pair (m, w) from a marriage M , their partners M(m) and
M(w) become single.

• The algorithm performs a random restart when a stable marriage is reached, since its
neighborhood is empty (because it has no blocking pairs).

We call LTIU the modified algorithm for SMTI problems, obtained from SML by the
above modifications and by using undominated blocking pairs.

5 Experiments

We tested our algorithms on randomly generated sets of SM and SMTI instances. For SM
problems, we generated stable marriage problems of size n using the impartial culture model
(IC) [5] which assigns to each man and to each woman a preference list uniformly chosen
from the n! possible total orders of n persons. This means that the probability of any
particular ordering is 1/n!.

For SMTI problems, we generated problems using the same method as in [4]. More
precisely, the generator takes three parameters: the problem’s size n, the probability of
incompleteness p1, and the probability of ties p2. Given a triple (n, p1, p2), a SMTI problem
with n men and n women is generated, as follows:

1. For each man and woman, we generate a random preference list of size n, i.e., a
permutation of n persons;

2. We iterate over each man’s preference list: for a man mi and for each women wj in
his preference list, with probability p1 we delete wj from mi’s preference list and mi

from wj ’s preference list. In this way we get a possibly incomplete preference list.

3. If any man or woman has an empty preference list, we discard the problem and go to
step 1.

4. We iterate over each person’s (men and women’s) preference list as follows: for a man
mi and for each woman in his preference list, in position j ≥ 2, with probability p2 we
set the preference for that woman as the preference for the woman in position j − 1
(thus putting the two women in a tie).

Note that this method generates SMTI problems in which the acceptance is symmetric.
If a man m does not accept a woman w, m is removed from w’s preference list as well. This
does not introduce any loss of generality because m and w cannot be matched together in
any stable marriage.

Notice also that this generator will not construct a SMTI problem in which a man (resp.,
woman) accepts only women (resp., men) who do not find him (resp, her) acceptable. Such
a man (resp., woman) will remain single in every stable matching. A simple preprocessing
step can remove such men and women from any problem, giving a smaller instance of the
form constructed by our generator.
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6 Results on SM problems

We measured the performance of our algorithms in terms of number of search steps. For
these tests, we generated 100 SM problems for each of the following sizes: 100, 200, 300,
400 and 500. In the following we show only the results of our best algorithm, which is
SML2. We studied how fast SML2 converges to a stable marriage, by measuring the ratio
between the number of blocking pairs and the size of the problem during the execution.
Figure 2(a) shows that SML2 has a very simple scaling behavior. Let us denote by 〈b〉 the
average number of blocking pairs of the marriage found by SML2 for SM problems of size n
after t steps. Then the experimental results shown in Figure 2(a) have a very good fit with
the function 〈b〉 = an22−bt/n, where a and b are constants computed empirically (a ≈ 0.25
and b ≈ 5.7). Figure 2(a) shows that the analytical function 〈b〉 has practically the same
curve as the experimental data. The figure shows also that the average number of blocking
pairs, normalized by dividing it by n, decreases during the search process in a way that is
independent from the size of the problem.

We can use function 〈b〉 to conjecture the runtime behavior of our local search method.
Consider the median number of steps, tmed, taken by SML2. Assume this occurs when
half the problems have one blocking pair left and the other half have zero blocking pairs.
Thus, 〈b〉 = 1

2 . Substituting this value in the equation for 〈b〉, taking logs, solving for tmed,
and grouping constant terms, we get tmed = cn(d + 2 log2(n)) where c and d are constants.
Hence, we can conclude that tmed grows as O(n log(n)).

We then fitted this equation for tmed to the experimental data (using c ≈ 0.26 and
d ≈ −5.7). The result is shown in Figure 2(b), where we see that the experimental data
have the same curve as function tmed. This means that we can use such an equation to
predict the number of steps our algorithms needs to solve a given SM instance.
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Figure 2: Results using SML2.

6.1 Sampling the stable marriage lattice

We also evaluated the ability of SML2 to sample the lattice of stable marriages of a given
SM problem. To do this, we randomly generated 100 SM problems for each size between 10
and 100, with step 10. Then, we run the SML2 algorithm 500 times on each instance. To
evaluate the sampling capabilities of SML2, we first measured the distance of the found stable
marriages (on average) from the male-optimal marriage (the one that would be returned by
the GS algorithm).
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Given a SM problem P , consider a stable marriage M for P . The distance of M from
Mm is the number of arcs from M to Mm in the Hasse diagram of the stable marriage
lattice for P . This diagram can be computed in O(n2 + n|S|) time [7], where S is the
set of all possible stable marriages of a given SM instance. For each SM problem, we
compute the average normalized distance from the male-optimal marriage considering 500
runs. Notice that normalizations is needed since different SM instances with the same size
may have a different number of stable lattices. Then, we compute the average Dm of these
distances over all the 100 problems with the same size, which is therefore formally defined as
Dm = 1

100

∑100
j=1

1
500

∑500
i=1

dm(Mi,Pj)
dm(Mi,Pj)+dw(Mi,Pj)

, where dm(Mi, Pj) (resp., dw(Mi, Pj)) is the
distance of Mi from the male (resp., female)-optimal marriage in the lattice of an SM Pj .
If Dm = 0, it means that all the stable marriages returned coincides with the male-optimal
marriage. On the other extreme, if Dm = 1, it means that all stable marriages returned
coincide with the female-optimal one. Figure 3(a) shows that, for the stable marriages
returned by algorithm SML2, the average distance from the male-optimal is around 0.5.

This is encouraging but not completely informative, since an algorithm which returns the
same stable marriage all the times, with distance 0.5 from the male-optimal would also have
Dm = 0.5. To have more informative results, we consider the entropy of the stable marriages
returned by SML2. This measures the randomness in the solutions. Let f(Mi) be the
frequency that SML2 finds a marriage Mi (for i in [1, |S|]) that is: f(Mi) = 1

500

∑500
j=1 1Mi(j),

where 1Mi(j) is the indicator function that returns 1 if in the j-th execution the algorithm
finds Mi, and 0 otherwise. The entropy E(P ) for each SM instance P (i.e., for each lattice)
of size m is then: E(P ) = −∑

i=1∈{1..|S|} f(Mi) log2(f(Mi)). In an ideal case, when each
stable marriage in the lattice has a uniform probability of 1/m! to be reached, the entropy
is log2(|S|) bits. On the other hand, the worst case is when the same stable marriage is
always returned, and the entropy is thus 0 bits. As we want a measure that is independent
from the problem’s size, we consider a normalized entropy, that is E(P )/ log2(|S|), which is
in [0,1].

As we have 100 different problems for each size, we compute the average of the normalized
entropies for each class of problems with the same size: En = 1

100

∑100
i=1 E(Pi)/ log2(|Si|),

where Si is the set of stable marriages of Pi.
Figure 3(b) shows that SML2 is not far from the ideal behavior. The normalized entropy

starts from a value of 0.85 per bit at size 10, decreasing to just above 0.6 per bit as the
problem’s size grows.
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Figure 3: Sampling with SML2.

Considering both Figures 3(b) and 3(a), it appears that SML2 samples the stable mar-
riage lattice very well. Considering also the distance Dm (Figure 3(a)), the possible outcomes
appear to be equally distributed along the paths from the top to the bottom of the lattice.
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7 Results on SMTI problems

We generated random SMTI problems of size 100, by letting p2 vary in [0, 1.0] with step 0.1,
and p1 vary in [0.1, 0.8] with step 0.1 (above 0.8 the preference lists start to be empty). For
each parameter combination, we generated 100 problem instances. Moreover, the probability
of the random walk is set to p=20% and the search step limit is s=50000.

We start by showing the average size of the marriages returned by LTIU. In Figure 4(a)
we see that LTIU almost always finds a perfect marriage (that is, a stable marriage with
no singles). Even in settings with a large amount of incompleteness (that is, p1 = 0.7 - 0.8)
the algorithm finds very large marriages, with only 2 singles on average.
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Figure 4: LTIU varying p2 for different values of p1.

We also consider the number of steps needed by our algorithm. From Figure 4(b), we
can see that the number of steps is less than 2000 most of the time, except for problems
with a large amount of incompleteness (i.e. p1 = 0.8). As expected, with p1 > 0.6 the
algorithm requires more steps. In some cases, it reaches the step limit of 50000. Moreover,
as the percentage of ties rises, stability becomes easier to achieve and thus the number of
steps tends to decrease slightly. From the results we see that complete indifference (p2=1)
is a special case. In this situation, the number of steps increases for almost every value of
p1. This is because the algorithm makes most of its progress via random restarts. In these
problems every person (if accepted) is equally preferred to all others accepted. The only
blocking pairs are those involving singles who both accept each other. Hence, after a few
steps all singles that can be married are matched, stability is reached, and the neighborhood
becomes empty. The algorithm therefore randomly restarts. In this situation it is very
difficult to find a perfect matching and the algorithm therefore often reached the step limit.

The algorithm is fast. It takes, on average, less than 40 seconds to give a result even for
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very difficult problems (see Figure 4(c)). As expected, with p2 = 1 the time increases for
the same reason discussed above concerning the number of steps.

Re-considering Figure 4(a) and the fact that all the marriages the algorithm finds are
stable, we notice that most of the marriages are perfect. From Figure 4(d) we see that the
average percentage of matchings that are perfect is almost always 100% and this percentage
only decreases when the incompleteness is large. We compared our local search approach
to the one in [4]. In their experiments, they measured the maximum size of the stable
marriages in problems of size 10, fixing p1 to 0.5 and varying p2 in [0,1]. We did similar
experiments, and obtained stable marriages of a very similar size to those reported in [4].
This means that although our algorithm is incomplete in principle, it always appears to
find an optimal solution in practice, and for small sizes it behaves like a complete algorithm
in terms of size of the returned marriage. However, it can also tackle problems of much
larger sizes, still obtaining optimal solutions most of the times. We also considered the
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Figure 5: LTIU runtime behaviour (p2=0.5).

runtime behavior of our algorithm. In Figure 5(a) we show the average normalized number
of blocking pairs and, in Figure 5(b), the average normalized number of singles of the best
marriage as the execution proceeds. Although the step limit is 50000, we only plot results
for the first steps because the rest is a long plateau that is not very interesting. We show
the results only for p2 = 0.5. However, for greater (resp., lower) number of ties the curves
are shifted slightly down (resp., up). From Figure 5(a) we see that the average number of
blocking pairs decreases very rapidly, reaching 5 blocking pairs after only 100 steps. Then,
after 300-400 steps, we almost always reach a stable marriage, irrespective of the value of
p1. Considering Figure 5(b), we see that the algorithm starts with more singles for greater
values of p1. This happens because, with more incompleteness, it is more difficult for a
person to be accepted. However, after 200 steps, the average number of singles becomes
very small no matter the incompleteness in the problem.

Looking at both Figures 5(a) and 5(b), we observe that, although we set a step limit
s = 50000, the algorithm reaches a very good solution after just 300-400 steps. After this
number of steps, the best marriage found by the algorithm usually has no blocking pairs nor
singles. This appears largely independent of the amount of incompleteness and the number
of ties in the problems. Hence, for SMTI problems of size 100 we could set the step limit to
just 400 steps and still be reasonably sure that the algorithm will return a stable marriage
of a large size, no matter the amount of incompleteness and ties.

8 Conclusions and future works

We have presented a local search approach for solving the classical stable marriage (SM)
problem and its variant with ties and incomplete lists (SMTI). Our algorithm for SM prob-
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lems has a simple scaling and size independent behavior and it is able to find a solution
in a number of steps which grows as little as O(n log(n)). Moreover it samples the stable
marriage lattice reasonably well and it is a fair method to generate random stable marriages.
We also provided an algorithm for SMTI problems which is both fast and effective at find-
ing large stable marriages for problems of sizes not considered before in the literature. The
algorithm was usually able to obtain a very good solution after a small amount of time.

We plan to apply a local search approach also to the hospital-resident problem and to
compare our algorithms to the ones in [13], where residents express their preferences in strict
order and hospitals allow ties in their preferences and have a finite number of posts each.
We also aim to compare our algorithm with the Markov-chain-based model in [1] on the
basis of execution time and sampling capabilities.
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Distance Rationalization of Voting Rules1

Edith Elkind, Piotr Faliszewski, and Arkadii Slinko

Abstract

The concept of distance rationalizability allows one to define new voting rules or
“rationalize” existing ones via a consensus class of elections and a distance. A
consensus class consists of elections in which there is a consensus in the society who
should win. A distance measures the deviation of the actual election from consensus
elections. Together, a consensus class and a distance define a voting rule: a candidate
is declared an election winner if she is the consensus candidate in one of the nearest
consensus elections. It is known that many classic voting rules are defined in this way
or can be represented via a consensus class and a distance, i.e., distance-rationalized.
In this paper, we focus on the power and the limits of the distance rationalizability
approach. We first show that if we do not place any restrictions on the class of
possible distances then essentially all voting rules are distance-rationalizable. Thus,
to make the concept of distance ratioanalizability meaningful, we have to restrict
the class of distances involved. To this end, we present a very natural class of
distances, which we call votewise distances. We investigate which voting rules can
be rationalized via votewise distances and study the properties of such rules.

1 Introduction

Preference aggregation is an important task both for human societies and for multi-agent
systems. Indeed, it is often the case that a group of agents has to make a joint decision,
e.g., to select a unique alternative from a space of options available to them, even though
the agents may have different opinions about the relative merits of these alternatives. A
standard method of preference aggregation is voting. The agents submit ballots, which are
usually rankings (total orders) of the alternatives (candidates), and a voting rule is used
to select the “best” alternative. While in such settings the goal is usually to select the
alternative that reflects the individual preferences of voters as well as possible, there is no
universal agreement on how to reach this goal. As a consequence, there is a multitude of
voting rules, and these rules are remarkably diverse (see, e.g., [4]).

Why cannot we settle on a single voting rule, which will aggregate the preferences opti-
mally? One answer to this question is provided by the long list of impossibility theorems—
starting with the famous Arrow’s impossibility theorem [1]—which state that there is no
voting rule (or a social welfare function) that simultaneously satisfies several natural desider-
ata. Thus in each real-life scenario we have to decide which of desired conditions we are
willing to sacrifice.

An earlier view, initiated by Marquis de Condorcet, is that a voting rule must be a
method for aggregating information. Voters have different opinions because they make errors
of judgment; absent these errors, they would all agree on the best choice. The goal is to
design a voting rule that identifies the best choice with highest probability. This approach
is called maximum likelihood estimation and it has been actively pursued by Young who
showed [22] that consistent application of Condorcet’s ideas leads to the Kemeny rule [14].
It has been shown since then that several other voting rules can be obtained as maximum
likelihood estimators for different models of errors (see Conitzer, Rognlie, and Xia [6] and

1This paper combines three earlier papers by the same authors: “On Distance Rationalizability of Some
Voting Rules” (presented at TARK-2009), “On the Role of Distances in Defining Voting Rules” (presented
at AAMAS-2010), and “Good Rationalizations of Voting Rules” (presented at AAAI-2010).
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Conitzer and Sandholm [7]).
The third approach that has emerged recently in a number of papers (see, e.g., Baigent [2]

and Meskanen and Nurmi [19]) can be called consensus-based. The result of each election
is viewed as an imperfect approximation to some kind of electoral consensus. Under this
view, the winner of a given election, or a preference profile, is the most preferred candidate
in the “closest” consensus preference profile. The differences among voting rules can then
be explained by the fact that there are several ways of defining consensus, as well as several
ways of defining closeness. The heart of this approach is the decision which situations should
be viewed as “electoral consensuses”, be it the existence of Condorcet winner, universal
agreement on which candidate is best, or something else. The concept of closeness should
also be agreed upon. This approach is ideologically close to bargaining.

In this paper we concentrate on the third approach. To date, the most complete
list of distance-rationalizable rules is provided by Meskanen and Nurmi [19] (but see
also [2, 16, 15]). There, the authors show how to distance-rationalize many voting rules,
including, among others, Plurality, Borda, Veto, Copeland, Dodgson, Kemeny, Slater, and
STV. However, in Section 3 we show that the usefulness of these results is limited, as essen-
tially every reasonable voting rule can be distance rationalized with respect to some distance
and some notion of consensus. This indicates that the notion of distance rationalizability
used in the early work is too broad to be meaningful. Hence, we have to determine what
are the “reasonable” consensus classes and the “reasonable” distances and to reexamine all
existing results.

In Section 4 we suggest a family of “good” distances (which we call votewise distances)
and study voting rules that are distance rationalizable with respect to such distances. In
particular, in Section 4.2 we show that many of the rules considered in [19], as well as all
scoring rules and a variant of the Bucklin rule, can be rationalized via distances from this
family. In contrast, we demonstrate that STV, which was shown to be distance-rationalizable
in [19], is not distance-rationalizable via votewise distances, i.e., the restricted notion of
distance rationalizability is indeed meaningful.

Now, the distance rationalizability framework can be viewed as a general method for
specifying and analyzing voting rules. As such, it may be useful for proving results for entire
families of voting rules, rather than isolated rules. For instance, a lot of recent research in
computational social choice has focused on the complexity of determining (possible) election
winners (see, e.g., [11, 17]), and the complexity of various types of attacks on elections (e.g.,
manipulation [8], bribery [9], and control [18, 10]).2 However, most of the results in this
line of work are specific to particular voting rules. We believe that the ability to describe
multiple voting rules in a unified way (e.g., via the distance rationalizability framework) will
lead to more general results. To provide an argument in favor of this belief, in Sections 4.1
and Section 4.3 we present initial results of this type, relating the type of distance and
consensus used to rationalize a voting rule with the complexity of winner determination
under this rule as well as the rule’s axiomatic properties (such as anonymity, neutrality and
consistency).

Due to space restrictions, all proofs are omitted. However, the reader may find many of
them in the conference papers on which this paper is based (see the title footnote).

2 Preliminaries

2.1 Elections. An election is a pair E = (C, V ) where C = {c1, . . . , cm} is the set of
candidates and V = (v1, . . . , vn) is an ordered list of voters. Each voter is represented by
her vote, i.e., a strict, linear order over the set of candidates (also called a preference order).

2These references are only examples; an overview of literature is far beyond the scope of this paper.
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We will refer to the list V as a preference profile, and we denote the number of voters in V
by |V |. The number of alternatives will be denoted by |C|.

A voting rule R is a function that given an election E = (C, V ) returns a set of election
winners R(E) ⊆ C. Note that it is legal for the set of winners to contain more that
one candidate. To simplify notation, we will sometimes write R(V ) instead of R(E). We
sometimes consider voting rules defined for a particular number of candidates (or even a
particular set of candidates) only.

Below we define several prominent voting rules.

Scoring rules. For any sequence of non-negative real numbers (α1, . . . , αm), we can define
a scoring rule R(α1,...,αm) for elections with m candidates as follows: each candidate
receives αj points for each vote that ranks her in the jth position. The winner(s)
are the candidate(s) with the highest score. Note that a scoring rule is defined for a
fixed number of candidates. However, many standard voting rules can be defined via
families of scoring rules. For example, Plurality is defined via the family of vectors
(1, 0, . . . , 0), veto is defined via the family of vectors (1, . . . , 1, 0), and Borda is defined
via the family of vectors (m − 1, m − 2, . . . , 0); k-approval is the scoring rule with
αi = 1 for i ≤ k, αi = 0 for i > k.

Bucklin and Simplified Bucklin. Given a positive integer k, 1 ≤ k ≤ |C|, we say that
a candidate c is a k-majority winner if more than |V |

2 voters rank c among the top
k candidates. Let k′ be the smallest positive integer such that there is at least one
k′-majority winner for E. The Bucklin score of a candidate c is the number of voters
that rank her in top k′ positions. The Bucklin winners are the candidates with the
highest Bucklin score; clearly, all of them are k′-majority winners. The simplified
Bucklin winners are all k′-majority winners.

Single Transferable Vote (STV). In STV the winner is chosen as follows. We find a
candidate with the lowest Plurality score (i.e., one that is ranked first the least number
of times) and remove him from the votes. We repeat the process until a single candidate
remains; this candidate is declared to be the winner. For STV the issue of handling
ties—that is, the issue of the order in which candidates with lowest Plurality scores
are deleted—is quite important, and is discussed in detail by Conitzer, Rognlie and
Xia [6]. However, the results in our paper are independent of the tie-breaking rule.

Dodgson. Dodgson voting is based on measuring closeness to becoming a Condorcet win-
ner. A Condorcet winner is a candidate that is preferred to any other candidate by
a majority of voters. The Dodgson score of a candidate c is the smallest number of
swaps of adjacent candidates that have to be performed on the votes to make c a
Condorcet winner. The winner(s) are the candidate(s) with the lowest score.

Kemeny. Let ≻ and ≻′ be two preference orders over C. The number of disagreements
between ≻ and ≻′, denoted t(≻,≻′), is the number of pairs of candidates ci, cj such
that either ci ≻ cj and cj ≻′ ci or cj ≻ ci and ci ≻′ cj . A candidate ci is a Kemeny
winner if there exists a preference order ≻ such that ci is ranked first in ≻ and ≻
minimizes the sum

∑n
i=1 t(≻,≻i). We note that usually the Kemeny rule is defined to

return the ranking ≻ that minimizes
∑n

i=1 t(≻,≻i), or a set of such rankings in case
of a tie; however, here we focus on rules that return sets of winners and not rankings.

2.2 Distances. Let X be a set. A function d : X → R ∪ {∞} is a distance (or, a metric)
if for each x, y, z ∈ X it satisfies the following four conditions: (a) d(x, y) ≥ 0 (nonnega-
tivity), (b) d(x, y) = 0 if and only if x = y (identity of indiscernibles), (c) d(x, y) = d(y, x)
(symmetry), and (d) d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality). If d satisfies all of
the above conditions except the second one (identity of indiscernibles) then d is called a
pseudodistance.
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In the context of elections, it is useful to consider both distances over votes and over
entire elections (that is, distances where the set X is the set of all linear orders over some
given candidate set, and distances where X is the set of all possible elections); we remark
that the former can be extended to the latter in a natural way (see the paragraph below
and Section 4).

Two particularly useful distances over votes are the discrete distance and the swap dis-
tance.3 Let C be a set of candidates and let u and v be two votes over C. The discrete
distance ddiscr(u, v) is defined to be 0 if u = v and to be 1 otherwise. The swap distance
dswap(u, v) is the least number of swaps of adjacent candidates that transform vote u into
vote v. Any distance d over votes can be extended in several ways to the distance over
the profiles. For example, for any two elections, E′ = (C′, V ′) and E′′ = (C′′, V ′′), where
C′ = C′′ and V ′ = (v′1, . . . , v

′
n), V ′′ = (v′′1 , . . . , v′′n), we may define d̂(E′, E′′) =

∑n
i=1 d(v′i, v

′′
i )

(and we set d̂(E′, E′′) = ∞ if the candidate sets are different or the profiles have different
number of voters).

2.3 Consensus classes. Intuitively, we say that an election E = (C, V ) is a consensus if
it has an undisputed winner. Formally, a consensus class is a pair (E ,W) where E is a set
of elections and W : E → C is a mapping which for each election E ∈ E assigns a unique
alternative, which is called the consensus alternative (winner). We consider the following
four natural classes that can be accepted by societies as consensus:

Strong unanimity. Denoted S, this class contains elections E = (C, V ) where all voters
report the same preference order. The consensus alternative is the candidate ranked
first by all the voters.

Unanimity. Denoted U , this class contains all elections E = (C, V ) where all voters rank
some candidate c first. The consensus alternative is c.

Majority. Denoted M, this class contains all elections E = (C, V ) where more than half
of the voters rank some candidate c first. The consensus alternative is c.

Condorcet. Denoted C, this class contains all elections E = (C, V ) with a Condorcet
winner (defined above). The Condorcet winner is the consensus alternative.

2.4 Distance rationalizability. We now define the concept of distance rationalizability
of a voting rule which has been used in the previous work.

Definition 2.1. Let d be a distance over elections and let K = (E ,W) be a consensus class.
We define the (K, d)-score of a candidate ci in an election E to be the distance (according
to d) between E and a closest election E′ ∈ E such that ci = W(E′). The set of (K, d)-
winners of an election E = (C, V ) consists of those candidates in C whose (K, d)-score is
the smallest.

Definition 2.2. A voting rule R is distance-rationalizable via a consensus class K = (E ,W)
and a distance d over elections ((K, d)-rationalizable), if for each election E, a candidate c
is an R-winner of E if and only if she is a (K, d)-winner of E.

Meskanen and Nurmi [19] show that many of the common voting rules are distance-
rationalizable in a very natural way. For example, Kemeny is (S, d̂swap)-rationalizable,
Borda is (U , d̂swap)-rationalizable, and Dodgson is (C, d̂swap)-rationalizable. It is quite re-
markable that these three major voting rules are rationalized by the same distance. It is
also easy to see that Plurality is (U , d̂discr)-rationalizable.

We remark that the notion of distance rationalizability introduced in Definition 2.2 allows
for arbitrary consensus classes and distances; as we will see in the next section, this lack of
constraints results in a definition that is too broad to be practically applicable.

3Swap distance is also called Kendall tau distance, Dodgson distance and bubble-sort distance.
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3 Unrestricted Distance-Rationalizability: an Impasse

We say that a voting rule R over a set of candidates C satisfies nonimposition if for
every c ∈ C there exists an election with the set of candidates C in which c is the unique
winner under R. Clearly, nonimposition is a very weak condition that is satisfied by all
common voting rules. Nevertheless, it turns out to be sufficient for unrestricted distance-
rationalizability.

Theorem 3.1. For any voting ruleR over a set of candidates C that satisfies nonimposition,
there is a consensus class (K,W) and a distance d such that R is (K, d)-rationalizable.

The consensus class used in the proof of Theorem 3.1 is somewhat artificial. However, the
following theorem shows that a similar result holds for our natural consensus notions, too.

Definition 3.2. Let R be a voting rule and let (E ,W) be a consensus class. We say that
R is compatible with (E ,W), or (E ,W)-compatible if for each election E = (C, V ) in E it
holds that R(E) = {W(E)}.
Theorem 3.3. For any consensus class K ∈ {S,U ,M, C}, a voting rule R is (K, dK)-
rationalizable for some distance dK if and only if R is K-compatible.

The proof of Theorem 3.3 is fairly simple: we construct the distance so that any given
election is at distance 1 from all consensus elections with appropriate winners and at distance
2 from any other election.

Effectively, Theorem 3.3 shows that any interesting voting rule is distance-rationalizable
with respect to the strong unanimity consensus. Thus, knowing that a rule is distance
rationalizable—even with respect to a standard notion of consensus—provides no fur-
ther insight into the properties of the rule. Moreover, the dichotomy between distance-
rationalizable and non-distance-rationalizable rules becomes essentially meaningless.

However, the distances employed in the proof of Theorem 3.3 are very unnatural. In
particular, the following proposition holds.

Proposition 3.4. Let R be a voting rule that is (K, dK)-rationalizable via a consensus class
K ∈ {S,U ,M, C} and the distance dK constructed in the proof of Theorem 3.3. If dK is
polynomial-time computable then the winner determination problem for R is in P.

For example, this implies that, if P 6= NP, the distance produced in the proof of Theorem 3.3
for the rationalization of Kemeny rule with respect to S is not polynomial-time computable.
On the other hand, we know that Kemeny does have a very natural rationalization with
respect to S via distance d̂swap. The requirement that the distance should be polynomial-
time computable is essential for the distance rationalizability framework to be interesting,
in addition to further, structural, restrictions on the distances that we will introduce in the
next section.

4 Rationalizability via Votewise Distances

The results of the previous section make it clear that we need to restrict the set of distances
that we consider. To identify an appropriate restriction, consider rationalizations of Borda
and Plurality via distances d̂swap and d̂discr, respectively (see the end of Section 2). To
build either of these distances, we first defined a distance over votes and then extended it
to a distance over elections (with the same candidate sets and equal-cardinality voter lists)
via summing the distances between respective votes. This technique can be interpreted
as taking the direct product of the metric spaces that correspond to individual votes, and
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defining the distance on the resulting space via the ℓ1-norm. It turns out that distances
obtained in this manner (possibly using norms other than ℓ1), which we will call votewise
distances, are very versatile and expressive. They are also attractive from the social choice
point of view, as they exhibit continuous and monotone dependence on the voters’ opinions.

In this section we will define votewise distances and attempt to answer the following
three questions regarding voting rules that can be rationalized via them:

(a) What properties do such rules have?
(b) Which rules can be rationalized with respect to votewise distances?
(c) What is the complexity of winner determination for such rules?

Definition 4.1. Given a vector space S over R, a norm on S is a mapping N from S to R
that satisfies the following properties:

(i) positive scalability: N(αu) = |α|N(u) for all u ∈ S and all α ∈ R;
(ii) positive semidefiniteness: N(u) ≥ 0 for all u ∈ S, and N(u) = 0 if and only if u = 0;
(iii) triangle inequality: N(u + v) ≤ N(u) + N(v) for all u, v ∈ S.

A well-known class of norms on Rn are the p-norms ℓp given by ℓp(x1, . . . , xn) =

(
∑n

i=1(|xi|p))
1
p , with the convention that ℓ∞(x1, . . . , xn) = max{x1, . . . , xn}. A norm N

on Rn is said to be symmetric if it satisfies N(x1, . . . , xn) = N(xσ(1), . . . , xσ(n)) for any
permutation σ : [1, n] → [1, n]; clearly, all p-norms are symmetric. We can now define our
family of votewise distances.

Definition 4.2. We say that a function d on pairs of preference profiles is votewise if the
following conditions hold:

1. d(E, E′) = +∞ if E and E′ have a different set of candidates or a different number
of voters.

2. For any set of candidates C, there exists a distance dC(·, ·) defined on votes over C;
3. For any n ∈ N, there exists a norm Nn on Rn such that for any two preference

profiles E = (C, U), E′ = (C, V ) with U = (u1, . . . , un) and V = (v1, . . . , vn) we have
d(E, E′) = Nn(dC(u1, v1), . . . , dC(un, vn)).

It is well known that any function defined in this manner is a metric. Thus, in what
follows, we refer to votewise functions as votewise distances; we will also use the term “N -
votewise distance” to refer to a votewise distance defined via a norm N , and denote a
votewise distance that is based on a distance d over votes by d̂. Similarly, we will use the
term N -votewise rules to refer to voting rules that can be distance-rationalized via one of
our four consensus classes and an N -votewise distance.

An important special case of our framework is when Nn is the ℓ1-norm, i.e.,
Nn(x1, . . . , xn) = x1+· · ·+xn; we will call any such distance an additively votewise distance,
or, in line with the notation introduced above, an ℓ1-votewise distance. So far, ℓ1-votewise
distances were the only votewise distances used in distance rationalizability constructions:4

Meskanen and Nurmi [19] use them to distance-rationalize the Kemeny rule, Dodgson, Plu-
rality and Borda, and we will show that the construction for Borda can be generalized to
all scoring rules (also using an ℓ1-votewise distance). However, N -votewise distances with
N 6= ℓ1 are almost as easy to work with as ℓ1-votewise distances and may be useful for
rationalizing natural voting rules. In fact, later on we will see that simplified Bucklin is an
ℓ∞-votewise rule.

4However, see [23, Footnote 7].
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4.1 Properties of Votewise Rules

In this section we consider three basic properties of voting rules. Specifically, given a con-
sensus class K and a votewise distance d̂, we ask under which circumstances the voting rule
that is distance-rationalizable via (K, d̂) is anonymous, neutral, or consistent. To start, we
recall the formal definitions of these properties.

Let E = (C, V ) be an election with V = (v1, . . . , vn), and let σ and π be permutations of
V and C, respectively. For any C′ ⊆ C, set π(C′) = {π(c) | c ∈ C′}. Let π̃(v) be the vote ob-
tained from v by replacing each occurrence of a candidate c ∈ C by an occurrence of π(c); we
can extend this definition to preference profiles by setting π̃(v1, . . . , vn) = (π̃(v1), . . . , π̃(vn)).

Anonymity. A voting rule is anonymous if its result depends only on the number of voters
reporting each preference order. Formally, a voting rule R is anonymous if for each
election E = (C, V ) with V = (v1, . . . , vn) and each permutation σ of V , the election
E′ = (C, σ(V )) satisfies R(E) = R(E′).

Neutrality. A voting rule is neutral if its result does not depend on the candidates’
names. Formally, a voting rule R is neutral if for each election E = (C, V ), where
C = {c1, . . . , cm} and each permutation π of C, the election E′ = (C, π̃(V )) satisfies
R(E) = π−1(R(E′)).

Consistency. A voting rule R is consistent if for any two elections E1 = (C, V1) and
E2 = (C, V2) such that R(E1) ∩ R(E2) 6= ∅, the election E = (C, V1 + V2) (i.e., the
election where the collections of voters from E1 and E2 are concatenated) satisfies
R(E) = R(E1) ∩ R(E2). This property was introduced by Young [21] and is also
known as reinforcement [5].

For votewise distance-rationalizable rules, a symmetric norm produces an anonymous rule.

Proposition 4.3. Suppose that a voting rule R is (K, d̂)-rationalizable, where K ∈
{S,U ,M, C} and d̂ is an N -votewise distance, where N is a symmetric norm. Then R
is anonymous.

In contrast, neutrality is inherited from the underlying distance over votes.

Definition 4.4. Let C be a set of candidates and let d be a distance on votes over C. We
say that d is neutral if for each permutations π over C and any two votes u and v over
C it holds that d(u, v) = d(π̃(u), π̃(v)). Further, we say that a votewise distance d̂ that
corresponds to a distance d on votes is neutral if d is.

Proposition 4.5. Suppose that a voting rule R is (K, d̂)-rationalizable, where K ∈
{S,U ,M, C} and d̂ is a neutral votewise distance. Then R is neutral.

It is natural to ask if the converse of Proposition 4.5 is also true, i.e., if every neutral votewise
rule can be rationalized via a neutral distance. Indeed, paper [6] provides a positive answer
to a similar question in the context of representing voting rules as maximum likelihood
estimators. However, the natural extension of the approach of [6] is not necessarily applicable
in our setting. Nevertheless, all votewise distances that have so far arisen in the study of
distance rationalizability of natural voting rules are neutral.

Our results for anonymity and neutrality are applicable to all consensus classes consid-
ered in this paper. In contrast, when discussing consistency, we need to limit ourselves to
the unanimity consensus, and to ℓp-votewise rules.

Theorem 4.6. Suppose that a voting rule R is (U , d̂)-rationalizable, where d̂ is an ℓp-
votewise distance. Then R is consistent.
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While Theorem 4.6 may hold for some norms other than ℓp, we cannot hope to prove
it for all votewise distances: fundamentally, consistency is a constraint on the relationship
among Ns, Nt and Ns+t (i.e., the norms used for s voters, t voters, and s + t voters), and
our definition of votewise distances allows us to select norms Nn for different values of n
independently of each other. Further, for our proof to work, the consensus class should be
closed with respect to “splitting” and “merging” of the consensus profiles, and neither of the
classes S, C, and M satisfies both of these conditions. Indeed, for S and C the conclusion
of the theorem itself is not true: the counterexamples are provided by the Kemeny rule and
the Dodgson rule, respectively (both are not consistent, yet rationalizable via d̂swap).

4.2 ℓp-Votewise Rules

Now that we know that ℓp-votewise rules have some desirable properties, let us see which
voting rules are in fact ℓp-votewise distance rationalizable. We will generally focus on
additively votewise rules, but we will look at ℓ∞ as well. Naturally, we expect the answer
to this question to strongly depend on the consensus notion used. Thus, let us consider
unanimity, strong unanimity, majority, and Condorcet consensuses one by one.

We start with the unanimity consensus. By combining Propositions 4.3, 4.5 and The-
orem 4.6, we conclude that any rule that is (U , d̂)-rationalizable, where d̂ is a neutral ℓ1-
votewise distance, is neutral, anonymous and consistent; it is not hard to check that the
conclusion still holds if d̂ is a pseudodistance rather than a distance. In contrast, Young’s
famous characterization result [21] says that every voting rule that has all three of these
properties is either a scoring rule or a composition of scoring rules (see [21] for an exact
definition of composition of voting rules). It turns out that our framework allows us to re-
fine Young’s result by characterizing exactly the scoring rules themselves rather than their
compositions. Moreover, we can actually “extract” the scoring rule from the corresponding
distance, albeit not efficiently (see Section 4.3 for a discussion of the related complexity
issues).

Theorem 4.7. Let R be a voting rule. There exists a neutral ℓ1-votewise pseudodistance d̂
such that R is (U , d̂)-rationalizable if and only if R can be defined via a family of scoring
rules.5

That is, the above theorem gives a complete characterization of voting rules rationalizable
via neutral ℓ1-votewise distances with respect to the unanimity consensus. However, the
situation with respect to other consensus notions is more difficult.

Let us consider strong unanimity next. Intuitively, strong unanimity is quite challenging
to work with as it provides very little flexibility. Meskanen and Nurmi [19] have shown that
Kemeny is ℓ1-votewise with respect to S, but, at least at first, it seems that no other natural
rule is. Interestingly, and very counterintuitively, Plurality is also ℓ1-votewise with respect
to strong unanimity.

Theorem 4.8. There exists an ℓ1-votewise distance d̂ such that Plurality rule is (S, d̂)-
rationalizable.

Naturally, this result suggests that, perhaps, all scoring rules are votewise distance-
rationalizable with respect to S. However, this turns out to be false.

Theorem 4.9. There is no ℓ1-votewise distance d̂ such that Borda rule is (S, d̂)-
rationalizable.

5Note that in this paper, following Young [21], we do not require (α1, . . . , αm) to be nondecreasing
or integer. Indeed, the distance rationalizability framework does not impose any ordering over different
positions in a vote, so it works equally well for a scoring rule with, e.g., α1 < α2.
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Thus, the class of rules ℓ1-votewise rationalizable with respect to S is rather enigmatic. On
the one hand, it does contain Kemeny, a very complex rule, and Plurality, a very simple
rule, yet it does not contain other natural scoring rules such as Borda. We believe that
characterizing this class exactly is a very interesting research problem, particularly so since
the rules in this class can be shown to be related to MLERIV rules of [7] and and [6] (we
omit a description of this connection here due to space constraints).

Our understanding of rules that are votewise rationalizable with respect to C and M is
even more limited. For example, Meskanen and Nurmi [19] have shown that Dodgson is ℓ1-
votewise rationalizable with respect to C, and it is easy to see that no scoring rule is distance-
rationalizable with respect to C because scoring rules are not Condorcet-consistent [20]. It
is very interesting if, e.g., Young’s rule is votewise with respect to C (however, see Section 5
for some comments). For the case of M, we can show that simplified Bucklin is ℓ∞-votewise
with respect to M; note that this result provides an argument for considering votewise
distances that use a norm other that ℓ1.

Theorem 4.10. Simplified Bucklin is ℓ∞-votewise with respect to consensus M.

The regular Bucklin rule is also rationalizable via a distance very similar to the one for
simplified Bucklin but, nonetheless, not votewise. Finding further natural voting rules that
are votewise rationalizable with respect to either C or M is an open question.

We conclude this section with a quick look at the STV rule. Conitzer, Rognlie, and
Xia [6] have shown that STV is not MLERIV. It can be shown that this implies that STV is
not distance-rationalizable via an ℓ1-votewise distance with respect to S. It turns out that
this result can be extended to (almost) any votewise distance as well as two other consensus
classes, namely, U and C.
Definition 4.11 ([3]). A norm N in Rn is monotonic in the positive orthant, or Rn

+-
monotonic, if for any two vectors (x1, . . . , xn), (y1, . . . , yn) ∈ Rn

+ such that xi ≤ yi for all
i = 1, . . . , n we have N(x1, . . . , xn) ≤ N(y1, . . . , yn).

We say that a votewise distance is monotonic if the respective norm is monotonic in the
positive orthant. We remark that monotonicity is a very weak constraint that is satisfied
by any reasonable norm.

Theorem 4.12. STV (together with any intermediate tie-breaking rule) is not distance-
rationalizable with respect to either of S, U , or C and any neutral anonymous monotonic
votewise distance.

Note that Meskanen and Nurmi [19] show that STV can be distance-rationalized with respect
to U , but their distance is not votewise, and it is not immediately clear whether it is
polynomial-time computable.

4.3 Winner Determination for Votewise Rules

Now that we have some understanding of the nature of votewise rules, we are ready to
study the complexity of determining winners under them.6 Clearly, to prove upper bounds
on the complexity of this problem, we need to impose restrictions on the complexity of the
distance itself. Thus, in what follows, we focus on distances that take values in Z ∪ {∞}
and are polynomial-time computable; we will call a distance normal if it has both of these
properties. We remark that restricting ourselves to distances with values in Z ∪ {∞} may
prevent us from using ℓp-distances for values of p other than 1 and ∞. For example, taking

6We assume the reader is familiar with standard notions of complexity theory and fixed-parameter com-
plexity. Due to space limits we cannot provide appropriate background in the paper.
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the p-th root of an integer may yield a non-integer value. However, it is easy to see that for
winner-determination, instead of using an ℓp-distance d, we can use function dp, despite the
fact that it is not a distance. This is so, because for winner-determination we only need to
compare distances between elections.

The winner determination problem can be formally stated as follows.

Definition 4.13. Let R be a voting rule. In the R-winner problem we are given an election
E = (C, V ) and a candidate c ∈ C and we ask whether c ∈ R(E).

This problem can be hard even for ℓ1-votewise rules: for Dodgson and Kemeny it is
known to be Θp

2-complete [11, 12]. On the positive side, for both of these rules the winner
determination problem can be solved in polynomial time if the number of candidates is fixed.
In fact, a stronger statement is true: the winner determination problem for both Dodgson
and Kemeny is fixed parameter tractable with respect to the number of candidates.

We will now show that from the complexity perspective, Dodgson and Kemeny exhibit
some of the worst possible behavior.

Theorem 4.14. Suppose that a voting rule R is (K, d)-rationalizable, where K ∈
{S,U ,M, C}, and d is a normal distance that satisfies d((C1, V1), (C2, V2)) = +∞ when-
ever C1 6= C2 or |V1| 6= |V2|. Then the R-winner problem is in PNP. Moreover, if, in
addition, for any two elections E1 = (C, V1) , E2 = (C, V2), the distance d(E1, E2) is either
+∞ or at most polynomial in |C|+ |V1|+ |V2|, then the R-winner problem is in Θp

2.

Note that the distance used to rationalize Dodgson and Kemeny is polynomially bounded.
On the other hand, there are natural distances that are not polynomially bounded; this
includes distances that appear in our distance rationalizabiliy constructions for scoring rules
with “large” coefficients.

If, in addition to being normal, the distance in question is an ℓ1-votewise distance, the
winner determination problem is fixed-parameter tractable with respect to the number of
candidates.

Theorem 4.15. Suppose that a voting rule R is (K, d)-rationalizable, where K ∈
{S,U ,M, C}. and d is a normal ℓ1-votewise distance. Then the R-winner problem is FPT
with respect to the number of candidates.

In the previous section we have seen that neutral ℓ1-votewise rules that use unanimity
consensus correspond to families of scoring rules. Thus, one would expect their winner
problems to be in P. Note, however, that in our setting we are given the distance, but not
the scoring vector and computing the latter from the former might be hard. Nevertheless,
it turns out that in this setting we can easily determine the winner if we are allowed to use
polynomial-size advice.

Theorem 4.16. Suppose that a voting rule R is distance-rationalizable via a normal neutral
ℓ1-votewise distance and unanimity consensus. Then R-winner is in P/poly.

P/poly is a complexity class that captures the power of polynomial computation “with
advice.” Karp–Lipton theorem [13] says that if there is an NP-hard problem in P/poly then
the Polynomial Hierarchy collapses. Thus, for voting rules that are distance-rationalizable
via a normal neutral ℓ1-votewise distance and the consensus class U the winner determination
problem is unlikely to be NP-hard. In contrast, this problem is hard for both Dodgson and
Kemeny, even though they are both rationalizable via a normal neutral ℓ1-votewise distance
(and consensus classes C and S, respectively). Thus, from computational perspective, the
unanimity consensus appears to be easier to work with than the strong consensus and the
Condorcet consensus. Indeed, both S and C impose “global” constraints on the closest
consensus and U only imposes “local” ones.
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5 Conclusions and Open Problems

In this paper we have presented general results regarding the recently introduced distance ra-
tionalizability framework. Our paper has two main contributions. First, we have shown that
without any restrictions, essentially every reasonable voting rule is distance-rationalizable
and further refinement of this framework is needed. Second, we have put forward a natu-
ral class of distances to consider—votewise distances—and proved that the rules which can
be distance-rationalized using such distances have several desirable properties. We have
identified a number of votewise rules, as well as showed that some rules are not votewise
rationalizable with respect to standard consensus classes, and established complexity results
for winner determination under votewise rules.

Are votewise distances the only natural distances that one should consider? Such dis-
tances are based on the assumption that, given an election E = (C, V ), if a voter changes
her opinion in a minor way, then the resulting election E′ = (C, V ′) must not deviate from
E too far. However some rules have discontinuous nature by definition, especially Young’s
rule which picks the winner of a largest Condorcet-consistent subelection. It is unlikely that
such rules can be distance-rationalized via a votewise distance. Indeed, it can be shown that
Young’s rule and Maximin can be rationalized with respect to C via fairly intuitive distances
that operate on profiles with different numbers of voters: in the case of Maximin we are,
essentially, adding voters, and in the case of Young, we are deleting voters. (We omit the
definitions of these rules and the construction due to space constraints). However, neither
of these rules is known to be votewise rationalizable. Thus, it would be desirable to extend
the class of “acceptable” distances to include some non-votewise distances; how to do this
is an interesting research direction.

We mention that our work is closely related to a sequence of papers of Conitzer, Rognlie,
Sandholm, and Xia [7, 6] on interpreting voting rules as maximum likelihood estimators.
There are some very interesting connections (and differences) between the two approaches,
but, unfortunately, due to space constraints, we cannot elaborate on them here.
Acknowledgements: This research was partially supported by NRF (Singapore NRF Fel-
lowship RF-2009-08) and AGH University of Technology (Grant no. 11.11.120.865).
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Social Choice without the Pareto Principle

under Weak Independence

Ceyhun Coban and M. Remzi Sanver

Abstract

We show that the class of social welfare functions that satisfy a weak independence
condition identified by Campbell (1976) and Baigent (1987) is fairly rich and freed
of a power concentration on a single individual. This positive result prevails when
a weak Pareto condition is imposed. Hence, we can overcome the impossibility of
Arrow (1951) by simultaneously weakening the independence and Pareto conditions.
Moreover, under weak independence, an impossibility of the Wilson (1972) type
vanishes.

1 Introduction

We consider the preference aggregation problem in a society which confronts at least three
alternatives. A Social Welfare Function (SWF) is a mapping which assigns a social ranking
to any logically possible profile of individual rankings. A SWF is independent of irrelevant
alternatives (IIA) if the social ranking of any pair of alternatives depends only on individuals’
preferences over that pair. We know, since the seminal work of Arrow (1951), that IIA and
Pareto optimality are incompatible, unless one is ready to admit dictatorial SWFs.

The Arrovian impossibility is remarkably robust against weakenings of IIA.1 For exam-
ple, letting k stand for the number of alternatives that the society confronts, Blau (1971)
proposes the concept of m-ary independence for any integer between 2 and k. A SWF is
m-ary independent if the social ranking of any set of alternatives with cardinality m depends
only on individuals’ preferences over that set. Clearly, when m = 2, m-ary independence co-
incides with IIA. Moreover, every SWF trivially satisfies m-ary independence when m = k.
It is also straighforward to see that m-ary independence implies n-ary independence when
m < n. Nevertheless, Blau (1971) shows that m-ary independence implies n-ary indepen-
dence when n < m < k as well. Thus, weakening IIA by imposing independence over sets
with cardinality more than two does not allow to escape the Arrovian impossibility, unless
independence is imposed over the whole set of alternatives - a condition which is satisfied
by the definition of a SWF.

Campbell and Kelly (2000a, 2007) further weaken m-ary independence by requiring that
the social preference over a pair of alternatives depends only on individuals’ preferences
over some proper subset of the set of available alternatives. This condition, which they call
independence of some alternatives (ISA) is considerably weak. As a result, non-dictatorial
SWF that satisfy Pareto optimality and ISA -such as the “gateau rules” identified by Camp-
bell and Kelly (2000a)- do exist. On the other hand, “gateau rules” fail neutrality and as
Campbell and Kelly (2007) later show, within the Arrovian framework, an extremely weaker
version of ISA disallows both anonymity and neutrality.

Denicolo (1998) identifies a condition called relational independent deciseveness (RID).
He shows that although IIA implies RID, the Arrovian impossibility prevails when IIA is
replaced by RID.

1In fact, it is robust against weakenings of other conditions as well: Wilson (1972) shows that the Arrovian
impossibility essentially prevails when the Pareto condition is not used. Ozdemir and Sanver (2007) identify
severely restricted domains which exhibit the Arrovian impossibility.
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Campbell (1976) proposes a weakening of IIA which requires that the social decision
between a pair of alternatives cannot be reversed at two distinct preference profiles that
admit the same individual preferences over that pair. We refer to this condition as quasi
IIA.2 Baigent (1987) shows that every Pareto optimal and quasi IIA SWF must be dictatorial
in a sense which is close to the Arrovian meaning of the concept - hence a version of the
Arrovian impossibility.3

In brief, the literature which explores the effects of weakening IIA on the Arrovian
impossibility presents results of a negative nature. We revisit this literature in order to
contribute by a positive result. We show that under the weakening proposed by Baigent
(1987), the Arrovian impossibility can be surpassed by dropping the Pareto condition: We
characterize the class of quasi IIA SWFs and show that this is a fairly large class which is
not restricted to SWFs where the decision power is concentrated on one given individual.
In fact, this class contains SWFs that are both anonymous and neutral. This positive result
prevails when a weak version of the Pareto condition is imposed.

Our findings pave the way to surpass the impossibility of Arrow (1951). Moreover,
we establish that there is no tension between quasi IIA and the transitivity of the social
outcome. Thus, we also contrast the results of Wilson (1972) and Barberà (2003) who show
that the Pareto condition has little impact on the Arrovian impossibility which is essentially
a tension between IIA and the range restriction imposed over SWFs.

Section 2 presents the basic notions. Section 3 states our results. Section 4 makes some
concluding remarks.

2 Basic Notions

We consider a finite set of individuals N with #N ≥ 2, confronting a finite set of alternatives
A with #A ≥ 3. An aggregation rule is a mapping f : ΠN → Θ where Π is the set
of complete, transitive and antisymmetric binary relations over A while Θ is the set of
complete binary relations over A. We conceive Pi ∈ Π as the preference of i ∈ N over
A.4 We write P = (P1, ..., P#N ) ∈ ΠN for a preference profile and f(P ) ∈ Θ reflects the
social preference obtained by the aggregation of P through f . Note that f(P ) need not
be transitive. Moreover, as f(P ) need not be antisymmetric, we write f∗(P ) for its strict
counterpart.5

An aggregation rule f is independent of irrelevant alternatives (IIA) iff given any distinct
x, y ∈ A and any P, P ′ ∈ ΠN with x Pi y ⇐⇒ x P ′

i y ∀i ∈ N , we have x f(P ) y ⇐⇒ x
f(P ′) y. We write Φ for the set of aggregation rules which satisfy IIA. For any distinct

x, y ∈ A, let {x
y
,
y
x
, xy} be the set of complete and transitive preferences over {x, y}.6 An

elementary aggregation rule is a mapping f{x,y} : {x
y
,
y
x
}N → {x

y
,
y
x
, xy}. Any family f =

{f{x,y}} of elementary aggregation rules indexed over all possible distinct pairs x, y ∈ A
induces an aggregation rule as follows: For each P ∈ ΠN and each x, y ∈ A, let x f(P )

2See Campbell (1976) for a discussion of the computational advantages of quasi IIA. Note that when
social indifference is not allowed, IIA and quasi IIA are equivalent.

3Baigent (1987) claims this impossibility in an environment with at least three alternatives. Nevertheless,
Campbell and Kelly (2000b) show the existence of Pareto optimal and quasi IIA SWF when there are
precisely three alternatives. They also show that the impossibility announced by Baigent (1987) prevails
when there are at least four alternatives and even under restricted domains.

4As usual, for any distinct x, y ∈ A, we intepret x Pi y as x being preferred to y in view of i.
5So for any distinct x, y ∈ A, we have x f∗(P ) y whenever x f(P ) y and not y f(P ) x.

6We interpret
x
y

as x being preferred to y;
y
x

as y being preferred to x; and xy as indifference between x

and y.
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y ⇐⇒ f{x,y}(P {x,y}) ∈ {x
y
, xy} where P {x,y} ∈ {x

y
,
y
x
}N is the restriction of P ∈ ΠN over

{x, y}.7 Note that f = {f{x,y}} ∈ Φ. Moreover, any f ∈ Φ can be expressed in terms of a
family {f{x,y}} = f of elementary aggregation rules.

Let ℜ be the set of complete and transitive binary relations over A. A Social Welfare
Function (SWF) is an aggregation rule whose range is restricted to ℜ. A SWF α : ΠN → ℜ
is Pareto optimal iff given any distinct x, y ∈ A and any P ∈ ΠN with x Pi y ∀i ∈ N , we
have x α∗(P ) y. A SWF α : ΠN → ℜ is dictatorial iff ∃i ∈ N such that x Pi y implies x
α∗(P ) y ∀P ∈ ΠN , ∀x, y ∈ A. The Arrovian impossibility, as we consider, announces that a
SWF α : ΠN → ℜ is Pareto optimal and IIA if and only if is α dictatorial.

3 Results

Baigent (1987) proves a version of the Arrovian impossibility where IIA and dictatoriality
are replaced by their following weaker versions: A SWF α is quasi IIA iff given any distinct
x, y ∈ A and any P, P ′ ∈ ΠN with x Pi y ⇐⇒ x P ′

i y ∀i ∈ N , we have x α∗(P ) y ⇒ x α(P ′)
y. Note that quasi IIA and IIA coincide when indifferences are ruled out from the social
preference. A SWF α is weakly dictatorial iff ∃i ∈ N such that x Pi y implies x α(P ) y ∀P ∈
ΠN , ∀x, y ∈ A. Baigent (1987) establishes that every Pareto optimal and quasi IIA SWF is a
weak dictatorship. Nevertheless, we remark that, unlike the original version of the Arrovian
impossibility, the converse statement is not true: Although every weak dictatorship is quasi
IIA, there exists weak dictatorships that are not Pareto optimal.8 Following this remark,
we allow ourselves to the state a slight generalization of this theorem of Baigent (1987),
corrected by Campbell and Kelly (2000b)9:

Theorem 3.1 Let #A ≥ 4. Within the family of Pareto optimal SWFs, a SWF α : ΠN →
ℜ is quasi IIA iff a is weakly dictatorial.

We now explore the effect of being confined to the class of Pareto optimal SWFs. The
strict counterpart of T ∈ Θ is denoted T ∗. Let ρ : Θ −→ 2ℜ stand for the correspondence
which transforms each T ∈ Θ over A into a non-empty subset of ℜ such that ρ(T ) = {R ∈
ℜ : xTy =⇒ xRy, ∀x, y ∈ A}. To have a clearer understanding of ρ, we recall that every
T ∈ Θ induces an ordered list of “cycles”.10 A set Y ∈ 2A\{∅} is a cycle (with respect to
T ∈ Θ) iff Y can be written as Y = {y1, ..., y#Y } such that yi T yi+1 ∀i ∈ {1, ..., #Y − 1}
and y#Y T y1. The top-cycle of X ∈ 2A\{∅} with respect to T ∈ Θ is a cycle C(X, T ) ⊆ X
such that y T ∗x ∀y ∈ C(X, T ), ∀x ∈ X\C(X, T ).11 Now let A1 = C(A, T ) and recursively

define Ai = C(A\ i−1∪
k=1

Ak, T ), ∀i ≥ 2. Given the finiteness of A, there exists an integer k such

that Ak+1 = ∅. So every T ∈ Θ induces a unique ordered partition (A1, A2, ....., Ak) of A.
It follows from the definition of the top-cycle that whenever i < j, we have xT ∗y ∀x ∈ Ai,
∀y ∈ Aj .

Lemma 3.1 Take any T ∈ Θ which induces the ordered partition (A1, A2, ....., Ak). Given
any Ai and any x, y ∈ Ai, we have x R y and y R x, ∀R ∈ ρ(T ).

7So for any i ∈ N , we have P
{x,y}
i =

x
y
⇐⇒ x Pi y.

8For example the SWF α where x α(P ) y ∀x, y ∈ A and ∀P ∈ ΠN is a weak dictatorship but not Pareto
optimal.

9See Footnote 3.
10we use the definition of ”cycle” as stated by Peris and Subiza (1999).
11The top-cycle, introduced by Good (1971) and Schwartz (1972), has been explored in details. Moreover,

Peris and Subiza (1999) extend this concept to weak tournaments. In their setting, as C(X, T ) is a cycle,
∄Y ⊂ C(X, T ) with y T ∗ x ∀y ∈ Y , ∀x ∈ C(X, T )\Y .
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Proof. Take any T ∈ Θ which induces the ordered partition (A1, A2, ....., Ak). Take any
Ai, any for x, y ∈ Ai and any R ∈ ρ(T ).If #Ai = 1, then x and y coincide, hence x R y and
y R x holds by the completeness of R. If #Ai = 2, then x T y and y T x since Ai is a cycle,
which implies x R y and y R x since R ∈ ρ(T ). We complete the proof by considering the
case #Ai = k ≥ 3. Let Ai = {x1, x2, ....., xk}. Suppose, without loss of generality, x1R x2

and not x2 R x1. This implies x1 T ∗ x2, as R ∈ ρ(T ). Moreover, as Ai is a cycle, ∃x ∈ Ai

such that x2 T x. Let, without loss of generality, x2 T x3. Thus x2 R x3 holds by definition
of ρ which implies x1R x3 and not x3 R x1 by the transitivity of R. Again by definition of ρ,
we have x1 T ∗x3. As Ai is a cycle, ∃j ∈ {4, ....., k− 1} such that x3 T xj . Suppose, without
loss of generality, j = 4. So x3 T x4, hence x3 R x4, implying x1R x4 and not x4 R x1,
which in turn implies x1T

∗ x4. So, iteratively, ∀i ∈ {4, ...., k− 1}, we have xi T xi+1,which
implies xi R xi+1 and moreover x1R xi+1 and not xi+1 R x1. Hence, x1 T ∗ xi+1. But as
Ai is a cycle, we have xk T x1. So xk R x1 holds by definition of ρ. As we also have xi R
xi+1, ∀i ∈ {1, ..., k − 1}, x2 R x1 holds by transitivity of R, which leads to a contradiction.
Therefore, x R y and y R x for all x, y ∈ Ai, ∀R ∈ ρ(T ).

Thus for any T ∈ Θ which induces the ordered partition (A1, A2, ....., Ak) and any R ∈ ℜ,
we have R ∈ ρ(T ) if and only if for any x, y ∈ A

(i) x, y ∈ Ai for some Ai =⇒ xRy and yRx
and
(ii) x ∈ Ai and y ∈ Aj for some Ai, Aj with i < j =⇒ xRy.
We now proceed towards characterizing the family of quasi IIA SWFs. Take any ag-

gregation rule f ∈ Φ which satisfies IIA. By composing f with ρ, we get a social welfare
correspondence ρ◦f : ΠN −→ 2ℜ which assigns to each P ∈ ΠN a non-empty subset ρ(f(P ))
of ℜ. Clearly, every singleton-valued selection of ρ ◦ f is a SWF.12 Let Σf = {α : ΠN → ℜ
| α is a singleton-valued selection of ρ ◦ f }. We write Σ = ∪f∈ΦΣf . Interestingly, the class
of quasi IIA SWFs coincides with Σ.

Theorem 3.2 A SWF α : ΠN → ℜ is quasi IIA iff α ∈ Σ.

Proof. To establish the “only if” part, let α : ΠN → ℜ be a quasi IIA SWF. For any

distinct x, y ∈ A, we define f{x,y} : {x
y
,
y
x
}N → {x

y
,
y
x
, xy} as follows: For any r ∈ {x

y
,
y
x
}N ,

f{x,y}(r) =

x
y

if x α∗(P ) y for some P ∈ ΠN with P {x,y} = r

y
x

if y α∗(P ) x for some P ∈ ΠN with P {x,y} = r

xy if x α(P ) y and y α(P ) x for all P ∈ ΠN with P {x,y} = r

. As α is

quasi IIA, f{x,y}is well-defined. Thus f = {f{x,y}} ∈ Φ. We now show α(P ) ∈ ρ(f(P ))
∀P ∈ ΠN . Take any P ∈ ΠN and any distinct x, y ∈ A. First let x f∗(P ) y. So

f{x,y}(P {x,y}) = x
y
. By definition of f{x,y}, we have x α∗(Q) y for some Q ∈ ΠN with

Q{x,y} = P {x,y} which implies x α(P ) y as α is quasi IIA. If y f∗(P ) x, then one can
similarly y α(P ) x. Now, let x f(P ) y and y f(P ) x. So, f{x,y}(P {x,y}) = xy which, by
definition of f{x,y}, implies x α(Q) y and y α(Q) x for all Q ∈ ΠN with Q{x,y} = P {x,y},
hence x α(P ) y and y α(P ) x. Thus, x f(P ) y =⇒ x α(P ) y for any x, y ∈ A, establishing
α(P ) ∈ ρ(f(P )).

To establish the “if” part, take any α ∈ Σ. So there exists f ∈ Φ such that α(P ) ∈
ρ(f(P )) ∀P ∈ ΠN . Suppose α is not quasi IIA. So, ∃x, y ∈ A and ∃P, Q ∈ ΠN with

12We say that α : ΠN → ℜ is a singleton-valued selection of ρ ◦ f iff α(P ) ∈ ρ ◦ f(P ) ∀P ∈ ΠN .
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P {x,y} = Q{x,y}such that x α∗(P ) y and y α∗(Q) x. By the definition of ρ we have x

f∗(P ) y and y f∗(Q) x which implies f{x,y}(P {x,y}) =
x
y

and f{x,y}(Q{x,y}) =
y
x
, giving a

contradiction as P {x,y} = Q{x,y}, thus showing that α is quasi IIA.
By juxtaposing Theorems 3.1 and 3.2, one can conclude that removing the Pareto con-

dition has a dramatic impact, as the class Σ of quasi IIA SWFs is fairly large and allows
those where the decision power is not concentrated on a single individual. This positive
result prevails when the following weak Pareto condition is imposed: A SWF α is weakly
Pareto optimal iff given any distinct x, y ∈ A and any P ∈ ΠN with x Pi y ∀i ∈ N , we have
x α(P ) y. An aggregation rule f ∈ Φ is weakly Pareto optimal iff for any x, y ∈ A and any

r ∈ {x
y
,
y
x
}N with ri =

x
y
∀i ∈ N , we have f{x,y}(r) ∈ {x

y
, xy}. Let Φ∗ stand for the set of

weakly Pareto optimal and IIA aggregation rules and Σ∗ = ∪f∈Φ∗Σf .

Theorem 3.3 A SWF α : ΠN → ℜ is weakly Pareto optimal and quasi IIA iff α ∈ Σ∗.

Proof. To show the “only if” part, take any SWF α : ΠN → ℜ which is weakly Pareto

optimal and quasi IIA. For any distinct x, y ∈ A, we define f{x,y} : {x
y
,
y
x
}N → {x

y
,
y
x
, xy} as

follows: For any r ∈ {x
y
,
y
x
}N ,

f{x,y}(r) =

x
y

if x α∗(P ) y for some P ∈ ΠN with P {x,y} = r

y
x

if y α∗(P ) x for some P ∈ ΠN with P {x,y} = r

xy if x α(P ) y and y α(P ) x for all P ∈ ΠN with P {x,y} = r

. As α is

quasi IIA, f{x,y}is well-defined. Thus f = {f{x,y}} ∈ Φ. Suppose, f is not weakly Pareto
optimal. So, ∃x, y ∈ A and ∃P ∈ ΠN with x Pi y ∀i ∈ N such that y f∗(P ) x, im-

plying f{x,y}(P {x,y}) =
y
x
. By definition of f{x,y}, we have y α∗(Q) x for some Q ∈ ΠN

with Q{x,y} = P {x,y}, contradicting that α is weakly Pareto optimal, which establishes
f = {f{x,y}} ∈ Φ∗. We now show α(P ) ∈ ρ(f(P )) ∀P ∈ ΠN . Take any P ∈ ΠN and any

distinct x, y ∈ A. First let x f∗(P ) y. So f{x,y}(P {x,y}) = x
y
. By definition of f{x,y}, we

have x α∗(Q) y for some Q ∈ ΠN with Q{x,y} = P {x,y} which implies x α(P ) y as α is quasi
IIA. If y f∗(P ) x, then one can similarly y α(P ) x. Now, let x f(P ) y and y f(P ) x. So,
f{x,y}(P {x,y}) = xy which, by definition of f{x,y}, implies x α(Q) y and y α(Q) x for all
Q ∈ ΠN with Q{x,y} = P {x,y}, hence x α(P ) y and y α(P ) x. Thus, x f(P ) y =⇒ x α(P )
y for any x, y ∈ A, establishing α(P ) ∈ ρ(f(P )).

To show the “if” part, take any α ∈ Σ∗. So there exists f ∈ Φ∗ such that α(P ) ∈ ρ(f(P ))
∀P ∈ ΠN . Take any distinct x, y ∈ A and any P ∈ ΠN with x Pi y ∀i ∈ N. By the weak

Pareto optimality of f, we have f{x,y}(P {x,y}) ∈ {x
y
, xy}, hence x f(P ) y, which implies x

α(P ) y by the definition of ρ. Thus, α is weakly Pareto optimal. The “if”part of Theorem
3.2 establishes that α is quasi IIA, completing the proof.
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4 Concluding Remarks

Within the scope of the preference aggregation problem, we contribute to the understanding
of the well-known tension between requiring the pairwise independence of the aggregation
rule and the transitivity of the social preference. As Wilson (1972) shows, a SWF α : ΠN →
ℜ is non-imposed13 and IIA if and only if α is dictatorial or antidictatorial14 or null15. Thus,
aside from these, any aggregation rule which is IIA allows non-transitive social outcomes.
In case these outcomes are rendered transitive according to one of the prescriptions made
by ρ, we attain a SWF which fails IIA but satisfies quasi IIA. In fact, as Theorem 3.2
states, the class of quasi IIA SWFs coincides with those which can be attained through a
selection made out of the social welfare correspondence obtained by the composition of a
SWF that is IIA with ρ. This can be interpreted as a positive result, as the class of quasi IIA
SWFs is fairly rich and not restricted to those where the decision power is concentrated on
one individual. In fact, this class contains SWFs that are both anonymous and neutral.16

Moreover, as Theorem 3.3 states, this positive result prevails when a weaker version of
the Pareto condition is imposed. Thus, we can conclude that the transitivity of the social
outcome can be achieved at a cost of reducing IIA to quasi IIA and compromising of the
strenght of the Pareto condition - hence an escape from an impossibility of both the Arrow
(1951) and Wilson (1972) type.

Another way of looking at the problem is to conceive it as determining the possible
“stretchings” of the null rule (which is well-known to be IIA) without violating quasi-IIA.
This angle of view advises caution about our optimism on escaping the Arrow/Wilson im-
possibilities, as this escape imposes indifference in social preference. So it is worth exploring
“how far” quasi IIA SWFs are from the null rule. This exploration requires to ask for the
minimization of the imposed social indifference. The answer is straightforward for a given
aggregation rule f ∈ Φ: Taking the transitive closure of the social preference is the selection
of ρ ◦ f which minimizes the imposed social indifference.17 Nevertheless, the choice of the
(non-dictatorial) f that minimizes the imposed social indifference.remains as an interesting
open question.18
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13α : ΠN → ℜ is non-imposed iff for any x, y ∈ A, there exists P ∈ ΠN with x α(P ) y.
14α is anti-dictatorial iff ∃i ∈ N such that x Pi y implies y α∗(P ) x ∀P ∈ ΠN ,∀x, y ∈ A.
15α : ΠN → ℜ is null iff x α(P ) y ∀x, y ∈ A and ∀P ∈ ΠN .
16As a matter of fact, the SWF in Example 2 of Campbell and Kelly (2000b), which shows the failure of

Theorem 3.1 for #A = 3, belongs to this class.
17By “taking the transitive closure”, we mean to replace cycles with indifference classes. Formally speak-

ing, writing (A1, A2, .....,Ak) for the ordered partition induced by f(P ) ∈ Θ at P ∈ ΠN , take α(P ) ∈ ρ(f(P ))
where x α∗(P ) y ∀x ∈ Ai and ∀y ∈ Aj with i < j. One can see Sen (1986) for a general discussion of the
“closure methods”.

18We conjecture, by relying on Dasgupta and Maskin (2008), that this will be the pairwise majority rule.
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An Optimal Single-Winner Preferential Voting

System Based on Game Theory

Ronald L. Rivest and Emily Shen

Abstract

We describe an optimal single-winner preferential voting system, called the “GT
method” because of its use of symmetric two-person zero-sum game theory to deter-
mine the winner. Game theory is used not to describe voting as a multi-player game
between voters, but rather to define when one voting system is better than another
one. The cast ballots determine the payoff matrix, and optimal play corresponds to
picking winners optimally.
The GT method is a special case of the “maximal lottery methods” proposed by
Fishburn [14], when the preference strength between two candidates is measured by
just the margin between them. We suggest that such methods have been somewhat
underappreciated and deserve further study.
The GT system, essentially by definition, is optimal : no other preferential voting
system can produce election outcomes that are preferred more by the voters, on the
average, to those of the GT system. We also look at whether the GT system has
several standard properties, such as monotonicity, Condorcet consistency, etc. We
also briefly discuss a deterministic variant of GT, which we call GTD.
We present empirical data comparing GT and GTD against other voting systems on
simulated data.
The GT system is not only theoretically interesting and optimal, but simple to use
in practice. We feel that it can be recommended for practical use.

1 Introduction

Voting systems have a rich history and are still being vigorously researched. We refer
the reader to surveys and texts, such as Börgers [1], Brams [2], Brams and Fishburn [3],
Fishburn [13], Kelly [18], and Tideman [34], for overviews.

The purpose of this paper is to describe a preferential voting system, called the “GT
method,” to study its properties, and to compare it with some other well-known voting
systems.

The GT method is a special case of the “maximal lottery methods” discussed by Fish-
burn [14] (who references Kreweras [19] as the first to mention them). A lottery assigns
a probability to each candidate; a lottery method outputs such a lottery, and the election
winner is chosen randomly according to those probabilities. Maximal lotteries are those that
voters prefer at least as well as any single candidate or any other lottery. The preference
strength between two lotteries is the expected value of a social evaluation function applied
to the vote differential (margin) between candidates. The GT method has the identity func-
tion as the social evaluation function (i.e., the strength of the social preference between two
candidates is the vote margin between them).

We suggest that such voting systems with probabilistic output have received insufficient
attention, both in the literature and in practice, and that they are really the most natural
resolution of the “Condorcet cycle” paradox that plagues preferential voting systems.

More generally, at a high level, the approach is based on a “metric” or “quantitative”
approach to comparing two voting systems, which is a nice complement to the more usual
“axiomatic” or “property-based” approach common in the literature; the metric approach
enables a simple comparison of any two voting systems, given a distribution on profiles.
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Finally, the GT method is easy to use in practice; we discuss some implementation
details.

The contributions of this paper are as follows:

• We define “relative advantage” as a metric to compare two preferential voting systems.

• We define the GT method as the “optimal” preferential voting system with respect
to relative advantage. This includes our proposal for resolving ambiguity when the
optimal mixed strategy is not unique.

• We compare the GT method and various voting systems experimentally and show a
ranking of these systems, relative to GT.

• We propose a deterministic variant of GT, called GTD, which performs nearly as well
as GT, and may be more acceptable to those who object to randomized methods.

2 Preliminaries

Candidates and ballots We assume an election where n voters are to select a single
winner from m alternatives (“candidates”). We restrict attention to preferential voting
systems, where each ballot lists candidates in order of preference. We assume that all ballots
are full (they list all candidates), but it is a simple extension to allow voters to submit
truncated ballots, to write in candidates, or to express indifference between candidates
(details omitted).

Profiles, preference and margin matrices, and margin graphs A collection C of
(cast) ballots is called a profile. A profile is a multi-set; two ballots may list candidates in
the same order.

A profile has an associated preference matrix N—the m×m matrix whose (x, y) entry is
the number of ballots expressing a preference for candidate x over candidate y. Each entry
is nonnegative, and N(x, y) +N(y, x) = n, since all ballots are assumed to be full.

It is also useful to work with the margin matrix M — the m × m matrix defined by
M(x, y) = N(x, y)−N(y, x), so that M(x, y) is the margin of x over y—that is, the number
of voters who prefer x over y minus the number of voters who prefer y over x. The matrix M
is anti-symmetric with diagonal 0; for all x, y we have: M(x, y) = −M(y, x).

From the margin matrix M we can construct a directed weighted margin graph G whose
vertices are the candidates and where there is an edge from x to y weighted M(x, y) whenever
M(x, y) > 0. If M(x, y) = M(y, x) = 0 then voters are, on the whole, indifferent between x
and y, and there is no edge between x and y.

Voting system – social choice function A voting system provides a social choice
function that takes as input a profile of cast ballots and produces as output the name of the
election winner. (In some systems the output may be a set of winners.) The social choice
function may be deterministic or randomized. While most but not all voting systems in the
literature are deterministic, the GT system is randomized. We also describe a deterministic
variant, GTD, of the GT system.

3 Generalized Ties

A Condorcet winner is a candidate x who beats every other candidate in a pairwise com-
parison: for every other candidate y, more voters prefer x to y than prefer y to x. Thus, the
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margin matrix M has only positive entries in every off-diagonal position of row x. Equiva-
lently, for each other candidate y, the margin graph contains a directed edge from x to y.

If there is no Condorcet winner, we say that there is a “generalized tie,” since for every
candidate x there exists some other candidate y whom voters like at least as much as x.

The interesting question is then: When there is a generalized tie, how should one do the
“tie-breaking” to pick a single winner?

4 Breaking Ties Using a Randomized Method

We feel strongly that the best way of breaking a generalized tie is to use an appropriate
randomized method. Of course, when there is a clear winner (by which we mean a Condorcet
winner) then a randomized method is not needed. A randomized method is only appropriate
when a tie needs to be broken.

Academic literature on voting systems has often eschewed proposals having a randomized
component. For example, Myerson [26, p. 15] says,

“Randomization confronts democratic theory with the same difficulty as mul-
tiple equilibria, however. In both cases, the social choice ultimately depends on
factors that are unrelated to the individual voters’ preferences (private random-
izing factors in one case, public focal factors in the other). As Riker (1982) has
emphasized, such dependence on extraneous factors implies that the outcome
chosen by a democratic process cannot be characterized as a pure expression of
the voters’ will.”

We would argue that Myerson and Riker have it backwards, since, as we shall see, voting
systems can do better at implementing the voters’ will if they are randomized.

Arbitrary deterministic tie-breaking rules, such as picking the candidate whose name
appears first in alphabetical order, are clearly unfair. And, while much work has gone
into devising clever voting systems that break generalized ties in apparently plausible but
deterministic manners, the result is nonetheless arguably unfair to some candidates.

The strongest reason for using a randomized tie-breaking method is that for any de-
terministic voting system there is another voting system whose outcomes are preferred by
voters on the average, while there exist randomized voting systems which are not so dom-
inated by another system. This is effectively just a restatement of the minimax theorem,
due to von Neumann, that optimal strategies in two-person zero-sum games may need to
be randomized.

It is not a new idea to have a voting system that uses randomization, either in theory or
in practice. Using a randomized method is in fact a common and sensible way of breaking
ties.

Several recent elections have used randomized methods to break ties. In June, 2009,
when the city of Cave Creek, Arizona had a tie between two candidates for a city council
seat, the two candidates drew cards from a shuffled deck to determine the winner1. In
November, 2009, the mayor of Wendell, Idaho, was determined by a coin toss, when the
challenger and the incumbent were tied. In February, 2010, in Sealy, Texas, dice were used
to resolve a tied election for city council membership.

Several previous voting system proposals use randomization to determine the outcome.
For example, the “random dictator” voting system [15, 32] picks a random ballot, and
uses it to name the winner. This method always uses randomization, not just for tie-
breaking. Gibbard [15] proves that if a system is strategy-proof (and satisfies certain natural
conditions), then it must be the random dictator method.

1“Election at a Draw, Arizona Town Cuts a Deck,” NY Times, June 17, 2009.
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Sewell et al. [32] propose a randomized voting system based on maximum entropy con-
siderations; this is, however, a social welfare function (it produces a complete ordering, not
just a single winner), not a social choice function. Potthoff [27] proposes a randomized
method for the case of a three-candidate election with a majority cycle. Laffond et al. [21]
propose a randomized method based on game theory for parties to pick platform issues, a
situation attributed by Shubik [33] to Downs [8].

Other voting systems, such as the Schulze method [31], use randomization as a final
tie-breaker.

5 Optimal Preferential Voting Systems

How should one compare a voting system P against another voting system Q? Here P and
Q are (possibly randomized) social choice functions that each take a profile C of cast ballots
and produce an election outcome or winner, P (C) or Q(C).

There is a long list of well-studied properties of voting systems, such as monotonicity,
consistency, etc.; such studies exemplify the “axiomatic” approach to voting systems. One
can certainly ask whether a voting system has these desirable properties. The inference is
usually that a system with more desirable properties is the better system. But this approach
can sometimes give rather conflicting and inconclusive advice.

Here is a more direct approach:

A voting system P is said to be better than a voting system Q if voters tend to
prefer the outcome of P to the outcome of Q.

How can one make this appealing intuition precise?
Let C be an assumed probability distribution on the profiles of cast ballots. (The details

of C will turn out to be not so important, since GT is optimal on each profile C separately.)
Suppose we choose a profile C of cast ballots according to the distribution C and then

play a game GC(P,Q) between P and Q as follows:

• P and Q compute respective election outcomes x = P (C) and y = Q(C).

• The systems are scored as follows: P wins N(x, y) points, and Q wins N(y, x) points.

Note that the net number of points gained by P , relative to the number of points gained
by Q, is just the margin M(x, y) = N(x, y) − N(y, x); more voters prefer P ’s outcome to
Q’s outcome than the reverse if M(x, y) > 0.

Definition 5.1 We say that the relative advantage of voting system P over voting system
Q, denoted AdvC(P,Q), with respect to distribution C on profiles, is

AdvC(P,Q) = EC(M(x, y)/ |C|) (1)

where x = P (C) and y = Q(C), where EC denotes expectation over profiles C chosen
according to the distribution C and with respect to any randomization within P and Q, and
where 0/0 is understood to equal 0 if |C| = 0. When C has all of its support on a single
profile C, we write AdvC(P,Q).

Definition 5.2 We say that voting system P is as good as or better than voting system Q
(with respect to distribution C on profiles), if AdvC(P,Q) ≥ 0 .

Definition 5.3 We say that voting system P is optimal if it is as good as or better than
every other voting system for any distribution C on profiles—equivalently, if for every profile
C and for every voting system Q we have AdvC(P,Q) ≥ 0 .
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Intuitively, P will win more points than Q, on the average, according to the extent that
voters prefer P ’s outcomes to Q’s outcomes. If P ’s outcomes tend to be preferred, then P
should be considered to be the better voting system. And if P is as good as or better than
any other voting system, for any distribution on profiles, then P is optimal.

Note that if P is as good as or better than Q on every distribution C on profiles, then P
must be as good or better than Q on each particular profile C, and vice versa, so the details
of distribution C don’t matter.

6 Game Theory

We now describe how to construct an optimal voting system using game theory.
In the game GC(P,Q), the margin M(x, y) is the “payoff” received by P from Q when P

picks x, and Q picks y, as the winner for the election with profile C. The comparison of
two voting systems reduces to considering them as players in a distribution on two-person
zero-sum games—one such game for each profile C.

The theory of two-person zero-sum games is long-studied and well understood, and
optimal play is well-defined. See, for example, the excellent survey article by Raghavan [28].

The expected payoff for P , when P chooses candidate x with probability px and when
Q independently chooses candidate y with probability qy is:∑

x

∑
y

pxqyM(x, y) . (2)

An optimal strategy depends on the margin matrix M . When there is a Condorcet
winner, the optimal strategy will always pick the Condorcet winner as the election winner.
When there is no Condorcet winner, there is a generalized tie, and the optimal strategy is a
mixed strategy. Computing the optimal mixed strategy is not hard; see Section 7. Playing
this optimal mixed strategy yields an optimal preferential voting system—no other voting
system can produce election outcomes that are preferred more by the voters, on average.

We denote by supp(GT (C)) the set of candidates with nonzero probability in the optimal
mixed strategy for the game associated with profile C. (If there is not a unique optimal mixed
strategy, GT uses the most “balanced” optimal mixed strategy, as described in Section 7.)
Intuitively, supp(GT (C)) is the set of “potential winners” for the election with profile C
for the GT voting system. If there is a Condorcet winner x, then supp(GT (C)) = {x};
otherwise, the GT winner is chosen randomly from supp(GT (C)) according to the optimal
mixed strategy probabilities.

7 Computing Optimal Mixed Strategies

One can solve a two-person zero-sum symmetric game with m×m payoff matrix M using
a simple reduction to linear programming. Each solution to the linear program provides an
optimal mixed strategy for the game. (See Raghavan [28, Problem A, page 740] for details.)

When ballots are full and the number of voters is odd, the optimal mixed strategy p∗

is uniquely defined (see Laffond et al. [22]). There are other situations for which there is
a unique optimal mixed strategy. With a large number of voters, one would expect the
optimal mixed strategy to be unique.

In the case when there is not a unique optimal mixed strategy, we propose that GT picks
the unique optimal mixed strategy that minimizes the sum of squares

∑
i p

2
i ; this strategy

can be computed easily with standard quadratic programming packages. This approach
then gives a well-defined lottery as output, and treats candidates symmetrically.
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8 Selecting the Winner

As we have seen, the GT voting system comprises the following steps:

1. [Margins] Compute the margin matrix M from the profile C of cast ballots.

2. [Optimal mixed strategy] Determine the optimal mixed strategy p∗ for the two-
person zero-sum game with payoff matrix M .

3. [Winner selection] Select the election winner by a randomized method in accordance
with the probability distribution p∗. (If there is a Condorcet winner x, then p∗(x) = 1
and this step is trivial.)

There are of course details that must be taken care of properly with using a randomized
method to select a winner; these details are very similar to those that arise when generating
suitable random numbers of post-election audits; see Cordero et al. [6].

GTD—A Deterministic Variant of GT We now describe a deterministic variant of
the GT voting system, which we call GTD. The optimal mixed strategy is computed as in
GT, but the winner selection then proceeds in a deterministic manner.

Instead of randomly picking a candidate according to this probability distribution, GTD
chooses the candidate with the maximum probability in this optimal mixed strategy. (If
there is more than one candidate with the maximum probability in the optimal mixed
strategy, then the one with the least name alphabetically is chosen.)

The GTD method does not require any randomness—it is a deterministic social choice
function. We expect that in practice it would perform as well as the GT method. However,
since GTD is deterministic, one cannot prove that it is optimal.

9 Properties of the GT Voting System

Although our focus is on comparing voting systems using “relative advantage” instead of
an axiomatic approach, we briefly consider how GT fares with respect to some standard
properties.

Optimality. Optimality is perhaps the most important property of the GT voting system.
No preferential voting system can produce election outcomes that are preferred more
by voters to those of the GT system, on average.

Condorcet winner and loser criteria. Fishburn [14] proves that maximal lotteries sat-
isfy the strong Condorcet property: If the candidates can be partitioned into nonempty
subsets A and B such that, for all a ∈ A and all b ∈ B, more voters prefer a to b
than b to a, then the winner will be a candidate in A. This result implies in particular
that the GT method will always elect a Condorcet winner, if one exists, and will never
elect a Condorcet loser, if one exists. The Condorcet criterion implies the majority
criterion. However, as Schulze [31] notes, the Condorcet criterion is incompatible with
other desired criteria including consistency [36], participation [25], later-no-help, and
later-no-harm [35]2.

Pareto optimality. A voting system satisfies Pareto optimality if whenever there exist
two candidates x and y such that no voter prefers candidate y to x, and at least one
voter prefers x to y, then the voting system never elects y. Fishburn [14] proves that
maximal lottery methods satisfy Pareto optimality (and thus GT does).

2These results are for deterministic voting systems. The notion of consistency, for example, needs to be
redefined for probabilistic voting systems.
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Monotonicity. A voting system satisfies monotonicity if, if a voter raises a candidate x
on her ballot without changing the order of other candidates, then the probability
that the voting system elects x does not decrease. The GT system is not monotonic.
This can be seen by analyzing the optimal mixed strategy probabilities of the sim-
plest generalized tie, whose margin graph is a three-cycle. (See Fishburn [14] and
Kaplansky [17, p. 479].)

Independence of clones. A voting system satisfies the independence of clones property
if replacing an existing candidate A with a set of clones does not change the winning
probability for any candidates other than A. (Schulze [31, p. 141] notes some of the
subtleties in the definition of this property, especially when A is already in some sense
tied with other candidates.) The GT voting system satisfies independence of clones,
for a careful definition of the property. (See the full version of this paper for details.)

Reversal symmetry. A voting system satisfies reversal symmetry (see Saari [30]) if it
never elects the same candidate as the winner when each voter’s preferences are re-
versed. The GT voting system satisfies reversal symmetry in cases where the GT
support consists of a unique candidate, which may be the only cases when it makes
sense to consider reversal symmetry.

Manipulability. Our definition of relative advantage allows one to compare two voting
systems based on which voting system’s outcomes are preferred more by the voters,
according to voter preferences as expressed in their ballots. We do not take into
consideration whether voters might be voting strategically.

Unfortunately, Gibbard’s [15] characterization of strategy-proof randomized voting
systems tells us that GT is not strategy-proof. However, the computational hardness
of manipulating GT can be studied, although we have no reason to believe that GT is
computationally easier or harder to manipulate than other preferential voting systems.

10 Empirical Comparison with Other Voting Systems

The approach we are recommending allows one to compare any two voting systems P , Q on
a given distribution C of profiles, by computing the relative advantage AdvC(P,Q) of one
system over the other.

We compared seven voting systems: plurality, IRV, Borda, minimax, the Schulze
method [31], GTD, and GT. We used the margins variant of minimax and the “winning
votes” variant of the Schulze method.

We randomly generated 10,000 profiles for m = 5 candidates, as follows. Each profile had
n = 100 full ballots. Each candidate and each voter was randomly assigned a point on the
unit sphere—think of these points as modeling candidates’ and voters’ locations on Earth.
A voter then lists candidates in order of increasing distance from her location. With this
“planetary” distribution, about 64.3% of the profiles had a Condorcet winner, and about
77.1% of the 10,000 simulated elections had a unique optimal mixed strategy.

We also tried our experiments under the “impartial culture” distribution (i.e., the uni-
form distribution). However, under this distribution there were Condorcet winners almost
all (about 93%) of the time, so we chose another distribution.

The code we used, and detailed output data, is available at http://people.csail.mit.
edu/rivest/gt .

Figure 1 gives the cumulative “point advantage” of each of the seven voting systems
against each other in our experiment. For example, the “16380” entry in row “Schulze,”
column “IRV” means that in an average election, the net number of voters preferring the
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plurality IRV Borda minimax Schulze GTD GT
plurality 0 -23740 -31058 -32030 -32128 -32390 -29978
IRV 23740 0 -14148 -16296 -16380 -15892 -13872
Borda 31058 14148 0 -4546 -4654 -5324 -2522
minimax 32030 16296 4546 0 -58 -1436 -174
Schulze 32128 16380 4654 58 0 -1402 -76
GTD 32390 15892 5324 1436 1402 0 10
GT 29978 13872 2522 174 76 -10 0

Figure 1: Cumulative “point advantages” for our main experiment. Row X column Y
shows the sum, over 10,000 simulated elections with 100 votes each, of the margin of X’s
winner over Y ’s winner. For example, the entry 13872 in row GT, column IRV means
that on average for a random election from our distribution C on profiles, 1.3872% more
of the electorate prefers the GT outcome to the IRV outcome than the reverse; that is,
AdvC(GT, IRV ) = 1.3872%.

Schulze outcome to the IRV outcome is about 1.6380 voters (i.e., 1.6380% of the electorate).
That is, AdvC(Schulze, IRV) ≈ 0.016380.

With this distribution on profiles, there is a clear improvement in quality of output (as
measured by relative advantage compared to GT) as one goes from plurality to IRV to Borda
to minimax to Schulze. GT and GTD are perfect by definition in this metric, but Schulze
is amazingly close. Although GTD and GT are by definition in a dead heat against each
other, GTD appears to be a better competitor against the other systems than GT.

Note that when comparing GT with another voting system, there is no expected net
point gain for GT if the other system picks a candidate that is in supp(GT (C)). Candidates
in supp(GT (C)) have the property that playing any one of them has an expected payoff
equal to zero (the value of the game) against GT. If the other system plays a candidate
outside of supp(GT (C)), GT will have an expected net point gain and the other system will
have an expected loss.

Figure 2 illustrates the number of times each pair of voting systems produced results
that “agree with” each other. The column “GTS” refers to the support of GT; a method
“agrees with” GTS if it produces an output that is in the support of GT. In our view,
level of agreement with the support of GT is an interesting measure of the quality of the
results produced by each voting system. Plurality does quite poorly (agreeing with GTS
only 55.15% of the time), as does IRV (72.99%), but minimax (99.15%) and the Schulze
method (99.51%) have nearly perfect agreement with the support of GT.

Thus, one can perhaps view the evolution of voting system proposals as a continuing
effort to identify candidates that are in the support for the optimal mixed strategy for the
associated two-person game, without quite realizing that this is the natural goal. That is,
voting systems should be (at the minimum) returning winners that are in supp(GT (C)),
the set of potential winners for the GT voting system. To do otherwise does not serve the
voters as well as can be done. However, since determining the support for the optimal mixed
strategy intrinsically involves linear programming, this computation is non-trivial, so we see
a variety of quite complex voting system proposals in the literature, which are, in this view,
just approximate computations for (a member of) supp(GT (C)).

11 Practical Considerations

We believe that the GT voting system is suitable for practical use.
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plurality IRV Borda minimax Schulze GTD GT GTS

plurality 10000 5557 4107 4356 4366 4335 4262 5515

IRV 5557 10000 5584 6047 6048 5999 5802 7299

Borda 4107 5584 10000 7854 7874 7813 7193 8913

minimax 4356 6047 7854 10000 9953 8869 8232 9915

Schulze 4366 6048 7874 9953 10000 8895 8246 9951

GTD 4335 5999 7813 8869 8895 10000 8377 10000

GT 4262 5802 7193 8232 8246 8377 10000 10000

GTS 5515 7299 8913 9915 9951 10000 10000 10000

Figure 2: Agreement between pairs of voting systems. Row X column Y gives the number of
times that method X produced an outcome that agreed with the outcome of method Y, in
our 10,000 trials. Here the “GTS method” refers to the support of GT, and a method “agrees
with” GTS if it produces an outcome that is in the support of GT. In our view, frequency of
agreement with GTS (producing outcomes in the support of GT) is an important measure
of the quality of a preferential voting system.

Since the GT voting system depends only on the pairwise preference matrix N , ballot
information can be easily aggregated at the precinct level and the results compactly trans-
mitted to central election headquarters for final tabulation; the number of data items that
need to be transmitted is only O(m2), which is much better than for, say, IRV.

Perhaps the only negative aspects with respect to using GT in practice are that (1) its
game-theoretic rationale may be confusing to some voters and election officials, (2) it is a
randomized method, and may require dice-rolling or other randomized devices in the case
of generalized ties, and (3) it is not so clear how to efficiently audit a GT election. (The
last aspect is common to many preferential voting systems).

12 Other Related Work

Fishburn [12] gives an excellent overview of voting systems with the Condorcet property.
The idea of using a two-player zero-sum game based on a payoff matrix derived from a

profile of ballots is not new; there are several papers that study this and related situations.
Laffond et al. [20] introduce the concept of a “bipartisan set,” which is the support of

the optimal mixed strategy of a two-player “tournament game.” (A tournament game is
based on an unweighted complete directed graph (a tournament) where each player picks a
vertex, and the player picking x wins one point from the player picking y if there is an edge
from x to y.) They show that any tournament game has a unique optimal mixed strategy,
and study the properties of its support.

Laffond et al. [21] propose the use of optimal mixed strategies of a zero-sum two-player
game in the context of tournament games and “plurality games”. (A plurality game is the
weighted version of a tournament game and corresponds to the voting situation we consider
(assuming no margins are zero); the weight of an edge from x to y is the margin M(x, y).)
However, their focus is on the way political parties choose platform issues, whereas our focus
is on “competition” between voting systems rather than between political parties. Our work
should nonetheless be viewed as further explorations along the directions they propose.

Le Breton [4, p. 190] proves a general version of Laffond et al.’s [20] earlier result, showing
that if all edges satisfy certain congruence conditions, then the weighted tournament game
has a unique optimal mixed strategy.

Laslier [23] studies the “essential set” (the support of the optimal mixed strategies in a
symmetric two-party electoral competition game) with respect to the independence of clones
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axiom.
Duggan and Le Breton [9] study the “minimal covering set” of a tournament (proposed

by Dutta [10] as a choice function on tournaments), and show that it is the same as Shapley’s
notion of a “weak saddle” for the corresponding tournament game.

De Donder et al. [7] consider various solution concepts for tournament and weighted
tournament games and make set-theoretic comparisons between the corresponding social
choice functions.

Michael and Quint [24] provide further results characterizing when there exists a unique
optimal strategy in tournament and weighted tournament games.

Dutta et al. [11] introduce “comparison functions,” which correspond to general skew-
symmetric matrices, as a framework for generalizing choice functions on tournaments.

13 Open Problems

There are many aspects of the GT method, and of probabilistic voting systems in general,
that deserve further study. Here are a few such open questions:
• For which pairs of voting systems P and Q, and for which distributions C on profiles,

can AdvC(P,Q) be analytically determined? Can one show analytically that GTD
performs better than GT against some well-known voting system?

• Can one lower bound (for some assumed distribution C on profiles) the penalty paid
for being deterministic, consistent, or monotonic (i.e., in terms of the advantage of
GT over systems with the given property)?

• How sensitive are the output probabilities of GT to the input votes? More generally,
how resistant is GT to manipulation, for various notions of manipulation of proba-
bilistic voting systems (e.g., that of [5])?

• Is it possible to modify the Schulze method in a straightforward manner so that it al-
ways chooses a winner in the support of GT, while retaining its deterministic character
and its other desirable properties?

• To what extent would changing the social evaluation function (see Fishburn [14])
change the perceived relative quality of various voting systems (e.g., via simulation
results)?

14 Conclusions

We have described the GT voting system for the classic problem of determining the winner of
a single-winner election based on voters’ preferences expressed as (full or partial) rank-order
listings of candidates.

The GT scheme is arguably optimal among preferential voting systems, in the sense that
no other voting system P can produce election outcomes that on the average are preferred by
voters to those of GT. We feel that optimality is an important criterion for voting systems.

We believe that the GT voting system is suitable for practical use, when preferential
voting is desired. When there is a clear (Condorcet) winner, GT elects that winner. When
there is no Condorcet winner, GT produces a “best” set of probabilities that can be used
in a tie-breaking ceremony. If one is to use preferential ballots, the GT system can be
recommended.

Since the GT system shares some potentially confusing properties, such as non-
monotonicity, with many other preferential voting systems, election authorities might rea-
sonably consider alternatives to the GT system, such as a non-optimal but monotonic pref-
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erential voting system like the Schulze method, or non-preferential voting systems such as
approval voting or range voting.

However, we feel that the optimality property of GT makes it worthy of serious consid-
eration when preferential ballots are to be used.
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Convergence to Equilibria in Plurality Voting

Reshef Meir, Maria Polukarov, Jeffrey S. Rosenschein, and Nicholas R. Jennings

Abstract

Multi-agent decision problems, in which independent agents have to agree on a joint plan of
action or allocation of resources, are central to AI. In suchsituations, agents’ individual pref-
erences over available alternatives may vary, and they may try to reconcile these differences
by voting. Based on the fact that agents may have incentives to vote strategically and misre-
port their real preferences, a number of recent papers have explored different possibilities for
avoiding or eliminating such manipulations. In contrast tomost prior work, this paper focuses
on convergence of strategic behavior to a decision from which no voter will want to deviate.
We consider scenarios where voters cannot coordinate theiractions, but are allowed to change
their vote after observing the current outcome. We focus on the Plurality voting rule, and study
the conditions under which this iterative game is guaranteed to converge to a Nash equilibrium
(i.e., to a decision that is stable against further unilateral manipulations).
We show for the first time how convergence depends on the exactattributes of the game, such
as the tie-breaking scheme, and on assumptions regarding agents’ weights and strategies.

1 Introduction

The notion of strategic voting has been highlighted in research on Social Choice as crucial to under-
standing the relationship between preferences of a population, and the final outcome of elections.
The most widely used voting rule is the Plurality rule, in which each voter has one vote and the
winner is the candidate who received the highest number of votes. While it is known that no rea-
sonable voting rule is completely immune to strategic behavior, Plurality has been shown to be
particularly susceptible, both in theory and in practice [12, 8]. This makes the analysis of any elec-
tion campaign—even one where the simple Plurality rule is used—a challenging task. As voters
may speculate and counter-speculate, it would be beneficialto have formal tools that would help us
understand (and perhaps predict) the final outcome.

Natural tools for this task include the well-studied solution concepts developed for normal form
games. While voting games are not commonly presented in thisway, several natural formulations
have been proposed. Moreover, such formulations are extremely simple in Plurality voting games,
where voters only have a few ways available to vote.

While some work has been devoted to the analysis of solution concepts such asdominant strate-
giesandstrong equilibria, this paper concentrates on Nash equilibria (NE). This mostprominent
solution concept has typically been overlooked, mainly because it appears to be too weak for this
problem: there are typically many Nash equilibria in a voting game, but most of them are trivial.
For example, if all voters vote for the same candidate, then this is clearly an equilibrium, since any
single agent cannot change the result. This means that Plurality is distorted, i.e., there can be NE
points in which the outcome is not truthful.

The lack of a single prominent solution for the game suggeststhat in order to fully understand the
outcome of the voting procedure, it is not sufficient to consider voters’ preferences. The strategies
voters’ choose to adopt, as well as the information available to them, are necessary for the analysis of
possible outcomes. To play an equilibrium strategy for example, voters must know the preferences
of others. Partial knowledge is also required in order to eliminate dominated strategies or to collude
with other voters.

We consider the other extreme, assuming that voters have initially no knowledge regarding the
preferences of the others, and cannot coordinate their actions. Such situations may arise, for exam-
ple, when voters do not trust one another or have restricted communication abilities. Thus, even if
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two voters have exactly the same preferences, they may be reluctant or unable to share this infor-
mation, and hence they will fail to coordinate their actions. Voters may still try to vote strategically,
based on their current information, which may be partial or wrong. The analysis of such settings
is of particular interest to AI as it tackles the fundamentalproblem of multi-agent decision making,
where autonomous agents (that may be distant, self-interested and/or unknown to one another) have
to choose a joint plan of action or allocate resources or goods. The central questions are (i) whether,
(ii) how fast, and (iii) on what alternative the agents will agree.

In our (Plurality) voting model, voters start from some announcement (e.g., the truthful one), but
can change their votes after observing the current announcement and outcome.1 The game proceeds
in turns, where a single voter changes his vote at each turn. We study different versions of this
game, varying tie-breaking rules, weights and policies of voters, and the initial profile. Our main
result shows that in order to guarantee convergence, it is necessary and sufficient that voters restrict
their actions to natural best replies.

1.1 Related Work

There have been several studies applying game-theoretic solution concepts to voting games, and to
Plurality in particular. [7] model a Plurality voting game where candidates and voters play strategi-
cally. They characterize all Nash equilibria in this game under the very restrictive assumption that
the preference domain issingle peaked. Another highly relevant work is that of [5], which concen-
trates ondominant strategiesin Plurality voting. Their game formulation is identical toours, and
they prove a necessary and sufficient condition on the profilefor the game to be dominance-solvable.
Unfortunately, their analysis shows that this rarely occurs, making dominance perhaps a too-strong
solution concept for actual situations. A weaker concept, though still stronger than NE, isStrong
Equilibrium. In strong equilibrium no subset of agents can benefit by making a coordinated diver-
sion. A variation of strong equilibrium was suggested by [10], which characterized its existence and
uniqueness in Plurality games. Crucially, all aforementioned papers assume that voters have some
prior knowledge regarding the preferences of others.

A more complicated model was suggested by [11], which assumes a non-atomic set of voters and
some uncertainty regarding the preferences of other voters. Their main result is that every positional
scoring rule (e.g., Veto, Borda, and Plurality) admits at least one voting equilibrium. In contrast, our
model applies to a finite number of voters, that possess zero knowledge regarding the distribution of
other voters’ preferences.

Variations of Plurality and other voting rules have been proposed in order to increase resistance
to strategic behavior (e.g., [4]). We focus on achieving a stable outcometaking such behavior into
account.

Iterative voting procedures have also been investigated inthe literature. [3] consider voters with
different levels of information, where in the lowest level agents are myopic (as we assume as well).
Others assume, in contrast, that voters have sufficient information to forecast the entire game, and
show how to solve it with backward induction [6, 9]; most relevant to our work, [1] study conditions
for convergence in such a model.

2 Preliminaries
2.1 The Game Form

There is a setC of m candidates, and a setV of n voters. A voting rulef allows each voter to
submit his preferences over the candidates by selecting an action from a setA (in Plurality,A = C).
Then,f chooses a non-empty set of winner candidates—i.e., it is a functionf : An → 2C \ {∅}.

1A real-world example of a voting interface that gives rise toa similar procedure is the recently introduced poll gadget
for Google Wave. See http://sites.google.com/site/polloforwave.
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v1, v2 a b c

a (14, 9, 3) {a} (10, 13, 3) {b} (10, 9, 7) {a}
b (11, 12, 3) {b} (7, 16, 3) {b} (7, 12, 7) {b}
c (11, 9, 6) {a} (7, 13, 6) {b} (7, 9, 10) {c}

Table 1: There is a setC = {a, b, c} of candidates with initial scores(7, 9, 3). Voter 1 has weight 3 and voter 2
has weight 4. Thus,GFT = 〈{a, b, c}, {1, 2}, (3, 2), (7, 9, 3)〉. The table shows the outcome vectors(a1, a2)
for every joint action of the two voters, as well as the set of winning candidatesGFT (a1, a2). In this example
there are no ties, and it thus fits both tie-breaking schemes.

Each such voting rulef induces a naturalgame form. In this game form, the strategies available
to each voter areA, and the outcome of a joint action isf(a1, . . . , an). Mixed strategies are not
allowed. We extend this game form by including the possibility that onlyk out of then voters may
play strategically. We denote byK ⊆ V the set ofk strategic voters (agents) and byB = V \ K
the set ofn− k additional voters who have already cast their votes, and arenot participating in the
game. Thus, the outcome isf(a1, . . . , ak, bk+1, . . . , bn), wherebk+1, . . . , bn are fixed as part of the
game form. This separation of the set of voters does not affect generality, but allows us to encompass
situations where only some of the voters behave strategically.

From now on, we restrict our attention to the Plurality rule,unless explicitly stated otherwise.
That is, the winner is the candidate (or a set of those) with the most votes; there is no requirement
that the winner gain an absolute majority of votes. We assumeeach of then voters has a fixedweight
wi ∈ N. Theinitial score ŝ(c) of a candidatec is defined as the total weight of the fixed voters who
selectedc—i.e., ŝ(c) =

∑
j∈B:bj=c wj . The final scoreof c for a given joint actiona ∈ Ak is

the total weight of voters that chosec (including the fixed setB): s(c,a) = ŝ(c) +
∑

i∈K:ai=c wi.
We sometimes writes(c) if the joint action is clear from the context. We writes(c) >p s(c′) if
eithers(c) > s(c′) or the score is equal andc has a higher priority (lower index). We denote by
PLR the Plurality rule with randomized tie breaking, and byPLD the Plurality rule with deter-
ministic tie breaking in favor of the candidate with the lower index. We have thatPLR(ŝ,w,a) =
argmaxc∈Cs(c,a), andPLD(ŝ,w,a) = {c ∈ C s.t.∀c′ 6= c, s(c,a) >p s(c′,a)}. Note that
PLD(ŝ,w,a) is always a singleton.

For any joint action, itsoutcome vectors(a) contains the score of each candidate:s(a) =
(s(c1,a), . . . , s(cm,a)). For a tie-breaking schemeT (T = D, R) the Game FormGFT =
〈C, K,w, ŝ〉 specifies the winner for any joint action of the agents—i.e.,GFT (a) = PLT (ŝ,w,a).
Table 1 demonstrates a game form with two weighted manipulators.

2.2 Incentives

We now complete the definition of our voting game, by adding incentives to the game form. Let
R be the set of all strict orders overC. The order≻i∈ R reflects the preferences of voteri over
the candidates. The vector containing the preferences of all k agents is called aprofile, and is
denoted byr = (≻1, . . . ,≻k). The game formGFT , coupled with a profiler, define a normal form
gameGT = 〈GFT , r〉 with k players. Playeri prefers outcomeGFT (a) over outcomeGFT (a′) if
GFT (a) ≻i GFT (a′).

Note that for deterministic tie-breaking, every pair of outcomes can be compared. If ties are
broken randomly,≻i doesnot induce a complete order over outcomes, which aresetsof candidates.
A natural solution is to augment agents’ preferences with cardinal utilities, whereui(c) ∈ R is the
utility of candidatec to agenti. This definition naturally extends to multiple winners by setting
ui(W ) = 1

|W |
∑

c∈W ui(c).2 A utility function u is consistentwith a preference relation≻i if
u(c) > u(c′) ⇔ c ≻i c′.

2This makes sense if we randomize the final winner from the setW . For a thorough discussion of cardinal and ordinal
utilities in normal form games, see [2].
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v1, v2 a b * c

* a {a} 3, 2 {b} 2, 1 * {a} 3, 2
b {b} 2, 1 {b} 2, 1 {b} 2, 1
c {a} 3, 2 {b} 2, 1 {c} 1, 3

Table 2: A gameGT = 〈GFT , r〉, whereGFT is as in Table 1, andr is defined bya ≻1 b ≻1 c and
c ≻2 a ≻2 b. The table shows the ordinal utility of the outcome to each agent (the final score is not shown).
Bold outcomes are the NE points. Here the truthful vote (marked with *) is also a NE.

Lemma 1. For any utility functionu which is consistent with preference order≻i , the following
holds:

1. a≻i b ⇒ ∀W ⊆ C \ {a, b}, u({a}∪W ) > u({b}∪W ) ;

2. ∀b∈W, a≻i b ⇒ u(a)>u({a}∪W )>u(W ) .

The proof is trivial and is therefore omitted. Lemma 1 induces a partial preference order on the
set of outcomes, but it is not yet complete if the cardinal utilities are not specified. For instance,
the ordera ≻i b ≻i c does not determine ifi will prefer {b} over{a, c}. When utilities are given
explicitly, every pair of outcomes can be compared, and we will slightly abuse the notation by using
GFR(a) ≻i GFR(a′) to note thati prefers the outcome of actiona over that ofa′.

2.3 Manipulation and Stability

Having defined a normal form game, we can now apply standard solution concepts. LetGT =
〈GFT , r〉 be a Plurality voting game, and leta = (a−i, ai) be a joint action inGT . We say that
ai

i→ a′i is animprovement stepof agenti if GFT (a−i, a
′
i) ≻i GFT (a−i, ai). A joint actiona is a

Nash equilibrium(NE), if no agent has an improvement step froma in GT . That is, no agent can
gain by changing his vote, provided that others keep their strategies unchanged. A priori, a game
with pure strategies does not have to admit any NE. However, in our voting games there are typically
(but not necessarily) many such points.

Now, observe that the preference profiler induces a special joint actiona∗, termed thetruthful
vote, such thata∗(r) = (a∗1, . . . , a

∗
k), wherea∗i ≻i c for all c 6= a∗i . We also calla∗(r) the truthful

stateof GT , and refer toGFT (a∗(r)) as thetruthful outcomeof the game. Ifi has an improvement
step in the truthful state, then this is amanipulation.3 Thus,r cannot be manipulated if and only
if a∗(r) is a Nash equilibrium ofGT = 〈GFT , r〉. However, the truthful vote may or may not be
included in the NE points of the game, as can be seen from Table2.

2.4 Game Dynamics

We finally consider naturaldynamicsin Plurality voting games. Assume that players start by an-
nouncing some initial vote, and then proceed and change their votes until no one has objections to
the current outcome. It is not, however, clear how rational players would act to achieve a stable deci-
sion, especially when there are multiple equilibrium points. However, one can make some plausible
assumptions about their behavior. First, the agents are likely to only make improvement steps, and
to keep their current strategy if such a step is not available. Thus, the game will end when it first
reaches a NE. Second, it is often the case that the initial state is truthful, as agents know that they
can reconsider and vote differently, if they are not happy with the current outcome.

We start with a simple observation that if the agents may change their votes simultaneously, then
convergence is not guaranteed, even if the agents start withthe truthful vote and use best replies—
that is, vote for their most preferred candidate out of potential winners in the current round.

3This definition of manipulation coincides with the standarddefinition from social choice theory.
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Proposition 2. If agents are allowed to re-vote simultaneously, the improvement process may never
converge.

Example.The counterexample is the game with 3 candidates{a, b, c} with initial scores given by
(0, 0, 2). There are 2 voters{1, 2} with weightsw1 = w2 = 1 and the following preferences:
a ≻1 b ≻1 c, andb ≻2 a ≻2 c. The two agents will repeatedly swap their strategies, switching
endlessly between the statesa(r) = (a, b) and(b, a). Note that this example works for both tie-
breaking schemes. ♦

We therefore restrict our attention to dynamics where simultaneous improvements are not avail-
able. That is, given the initial votea0, the game proceeds in steps, where at each stept, a single
player may change his vote, resulting in a new state (joint action) at. The process ends when no
agent has objections, and the outcome is set by the last state. Such a restriction makes sense in many
computerized environments, where voters can log-in and change their vote at any time.

In the remaining sections, we study the conditions under which such iterative games reach an
equilibrium point from either an arbitrary or a truthful initial state. We consider variants of the
game that differ in tie-breaking schemes or assumptions about the agents’ weights or behavior. In
cases where convergence is guaranteed, we are also interested in knowing how fast it will occur, and
whether we can say anything about the identity of the winner.For example, in Table 2, the game
will converge to a NE from any state in at most two steps, and the outcome will bea (which happens
to be the truthful outcome), unless the players initially choose the alternative equilibrium(b, b) with
outcomeb.

3 Results

Let us first provide some useful notation. We denote the outcome at timet by ot = PL(at) ⊆ C,
and its score bys(ot). Suppose that agenti has an improvement step at timet, and as a result the
winner switched fromot−1 to ot. The possible steps ofi are given by one of the following types (an
example of such a step appears in parentheses):

type 1 from ai,t−1 /∈ ot−1 to ai,t ∈ ot ; (step 1 in Ex.4a.)

type 2 from ai,t−1 ∈ ot−1 to ai,t /∈ ot ; (step 2 in Ex.4a.)

type 3 from ai,t−1 ∈ ot−1 to ai,t ∈ ot ; (step 1 in Ex.4b.),

where inclusion is replaced with equality for deterministic tie-breaking. We refer to each of these
steps as abetter replyof agenti. If ai,t is i’s most preferred candidate capable of winning, then
this is abest reply.4 Note that there are no best replies of type 2. Finally, we denote byst(c) the
score of a candidatec without the vote of the currently playing agent; thus, it always holds that
st−1(c) = st(c).

3.1 Deterministic Tie-Breaking

Our first result shows that under the most simple conditions,the game must converge.

Theorem 3. LetGD be a Plurality game with deterministic tie-breaking. If allagents have weight 1
and use best replies, then the game will converge to a NE from any state.

4Any rational move of a myopic agent in the normal form game corresponds to exactly one of the three types of better-
reply. In contrast, the definition of best-reply is somewhatdifferent from the traditional one, which allows the agent to choose
any strategy that guarantees him a best possible outcome. Here, we assume the improver makes the more natural response by
actually voting forot. Thus, under our definition, the best reply is always unique.
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Proof. We first show that there can be at most(m − 1) · k sequential steps of type 3. Note that
at every such stepa

i→ b it must hold thatb ≻i a. Thus, each voter can only makem − 1 such
subsequent steps.

Now suppose that a stepa
i→ b of type 1 occurs at timet. We claim that at any later time

t′ ≥ t: (I) there are at least two candidates whose score isat leasts(ot−1); (II) the score ofa will
not increase att′. We use induction ont′ to prove both invariants. Right after stept we have that

st(b) + 1 = s(ot) >p s(ot−1) >p st(a) + 1 . (1)

Thus, after stept we have at least two candidates with scores of at leasts(ot−1): ot = b and
ot−1 6= b. Also, at stept the score ofa has decreased. This proves the base case,t′ = t.

Assume by induction that both invariants hold until timet′ − 1, and consider stept′ by voter
j. Due to (I), we have at least two candidates whose score is at leasts(ot−1). Due to (II) and
Equation (1) we have thatst′(a) ≤p st(a) <p s(ot−1)− 1. Therefore, no single voter can makea a
winner and thusa cannot be the best reply forj. This means that (II) still holds after stept′. Also,
j has to vote for a candidatec that can beatot′—i.e.,st′(c) + 1 >p s(ot′) >p s(ot−1). Therefore,
after stept′ bothc andot′ 6= c will have a score of at leasts(ot−1)—that is, (I) also holds.

The proof also supplies us with a polynomial bound on the rateof convergence. At every step of
type 1, at least one candidate is ruled out permanently, and there at mostk times a vote can be with-
drawn from a candidate. Also, there can be at mostmk steps of type 3 between such occurrences.
Hence, there are in total at mostm2k2 steps until convergence. It can be further shown that if all
voters start from the truthful state then there are no type 3 steps at all. Thus, the score of the winner
never decreases, and convergence occurs in at mostmk steps. The proof idea is similar to that of
the corresponding randomized case in Theorem 8.

We now show that the restriction to best replies is necessaryto guarantee convergence.

Proposition 4. If agents are not limited to best replies, then: (a) there is acounterexample with two
agents; (b) there is a counterexample with an initial truthful vote.

Example 4a.C = {a, b, c}. We have a single fixed voter voting fora, thus ŝ = (1, 0, 0). The
preference profile is defined asa ≻1 b ≻1 c, c ≻2 b ≻2 a. The following cycle consists of better
replies (the vector denotes the votes(a1, a2) at timet, the winner appears in curly brackets):

(b, c){a} 2→ (b, b){b} 1→ (c, b){a} 2→ (c, c){c} 1→ (b, c) ♦

Example 4b.C = {a, b, c, d}. Candidatesa, b, andc have 2 fixed voters each, thusŝ = (2, 2, 2, 0).
We use 3 agents with the following preferences:d ≻1 a ≻1 b ≻1 c, c ≻2 b ≻2 a ≻2 d and
d ≻3 a ≻3 b ≻3 c. Starting from the truthful state(d, c, d) the agents can make the following two
improvement steps (showing only the outcome):

(2, 2, 3, 2){c} 1→ (2, 3, 3, 1){b} 3→ (3, 3, 3, 0){a} ,

after which agents 1 and 2 repeat the cycle shown in (4a). ♦

Weighted voters While using the best reply strategies guaranteed convergence for equally
weighted agents, this is no longer true for non-identical weights:

Proposition 5. There is a counterexample with 3 weighted agents that start from the truthful state
and use best replies.

The proof is omitted for the sake of brevity.
However, if there areonly twoweighted voters, either restriction is sufficient:
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Theorem 6. LetGD be a Plurality game with deterministic tie-breaking. Ifk = 2 and both agents
(a) use best repliesor (b) start from the truthful state, a NE will be reached.

Proof of(6a). Assume there is a cycle, and consider the winners in the first steps:{x} 1→ {y} 2→
{z}. Suppose that after step 1 both agents vote for different candidates (a1,2 6= a1,1 = y). This
holds for any later step, as an agent has no reason to vote for the current winner. An agent can never
make a step of type 3 (after the first step), since at every stepthe winner is the candidate that the
other agent is voting for. If the first step brings the agents to the same candidate, then in the second
step they split again (a2,1 6= a2,2 = z), and we are back in the previous case.

Proof of(6b). We show that the score of the winner can only increase. This clearly holds in the first
step, which must be of type 1. Once again, we have that the two agents always vote for different
candidates, and thus only steps that increase the score can change the identity of the winner.

3.2 Randomized Tie-Breaking

The choice of tie-breaking scheme has a significant impact onthe outcome, especially when there
are few voters. A randomized tie-breaking rule has the advantage of being neutral —no specific
candidate or voter is preferred over another.

In order to prove convergence under randomized tie-breaking, we must show that convergence
is guaranteed foranyutility function which is consistent with the given preference order. That is,
we may only use the relations over outcomes that follow directly from Lemma 1. To disprove, it is
sufficient to show that for a specific assignment of utilities, the game forms a cycle. In this case, we
say that there is aweak counterexample. When the existence of a cycle will follow only from the
relations induced by Lemma 1, we will say that there is astrong counterexample, since it holds for
any profile of utility scales that fits the preferences.

In contrast to the deterministic case, the weighted randomized case does not always converge to
a Nash equilibrium or possess one at all, even with (only) twoagents.

Proposition 7. There is a strong counterexampleGR for two weighted agents with randomized
tie-breaking, even if both agents start from the truthful state and use best replies.

Example. C = {a, b, c}, ŝ = (0, 1, 3). There are 2 agents with weightsw1 = 5, w2 = 3 and
preferencesa ≻1 b ≻1 c, b ≻2 c ≻2 a (in particular,b ≻2 {b, c} ≻2 c). The resulting3× 3 normal
form game contains no NE states. ♦

Nevertheless, the conditions mentioned are sufficient for convergence if all agents have the same
weight.

Theorem 8. LetGR be a Plurality game with randomized tie-breaking. If all agents have weight 1
and use best replies, then the game will converge to a NE from the truthful state.

Proof. Our proof shows that in each step, the current agent votes fora lesspreferred candidate.
Clearly, the first improvement step of every agent must hold this invariant.

Assume, toward deriving a contradiction, thatb
i→ c at timet2 is the first step s.t.c ≻i b. Let

a
i→ b at timet1 < t2 be the previous step of the same agenti.
We denote byMt = ot the set of all winners at timet. Similarly, Lt denotes all candidates

whose score iss(ot)− 1.
We claim that for allt < t2, Mt∪Lt ⊆ Mt−1∪Lt−1, i.e., the set of “almost winners” can only

shrink. Also, the score of the winner cannot decrease. Observe that in order to contradict any of
these assertions, there must be a stepx

j→ y at timet, where{x} = Mt−1 andy /∈ Mt−1 ∪ Lt−1.
In that case,Mt = Lt−1 ∪ {x, y} ≻j {x}, which means either thaty ≻j x (in contradiction to the
minimality of t2) or thaty is not a best reply.
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From our last claim we have thats(ot1−1) ≤ s(ot′ ) for any t1 ≤ t′ < t2. Now consider the
stept1. Clearlyb ∈ Mt1−1 ∪ Lt1−1 since otherwise voting forb would not make it a winner. We
consider the cases forc separately:

Case 1: c /∈ Mt1−1 ∪ Lt1−1. We have thatst1(c) ≤ s(ot1−1) − 2. Let t′ be any time s.t.
t1 ≤ t′ < t2, thenc /∈ Mt′ ∪ Lt′ . By induction ont′, st′(c) ≤ st1(c) ≤ s(ot1−1)− 2 ≤ s(ot′)− 2,
and thereforec cannot become a winner at timet′+1, and the improver at timet′+1 has no incentive
to vote forc. In particular, this holds fort′ + 1 = t2; hence, agenti will not vote for c.

Case 2: c ∈ Mt1−1 ∪ Lt1−1. It is not possible thatb ∈ Lt1−1 or thatc ∈ Mt1−1: sincec ≻i b
andi plays best reply,i would have voted forc at stept1. Therefore,b ∈ Mt1−1 andc ∈ Lt1−1.
After stept1, the score ofb equals the score ofc plus 2; hence, we have thatMt1 = {b} and
c /∈ Mt1 ∪ Lt1 , and we are back in case 1.

In either case, voting forc at stept2 leads to a contradiction. Moreover, as agents only vote for a
less-preferred candidate, each agent can make at mostm− 1 steps, hence, at most(m− 1) · k steps
in total.

However, in contrast to the deterministic case, convergence is no longer guaranteed, if players
start from an arbitrary profile of votes. The following example shows that in the randomized tie-
breaking setting even best reply dynamics may have cycles, albeit for specific utility scales.

Proposition 9. If agents start from an arbitrary profile, there is a weak counterexample with 3
agents of weight 1, even if they use best replies.

Example. There are 4 candidates{a, b, c, x} and 3 agents with utilitiesu1 = (5, 4, 0, 3),
u2 = (0, 5, 4, 3) and u3 = (4, 0, 5, 3). In particular,a ≻1 {a, b} ≻1 x ≻1 {a, c}; b ≻2

{b, c} ≻2 x ≻2 {a, b}; and c ≻3 {a, c} ≻3 x ≻3 {b, c}. From the statea0 = (a, b, x) with
s(a0) = (1, 1, 0, 1) and the outcome{a, b, x}, the following cycle occurs:(1, 1, 0, 1){a, b, x} 2→
(1, 0, 0, 2){x} 3→ (1, 0, 1, 1){a, x, c} 1→ (0, 0, 1, 2){x} 2→ (0, 1, 1, 1){x, b, c} 3→ (0, 1, 0, 2){x} 1→
(1, 1, 0, 1){a, b, x}. ♦

As in the previous section, if we relax the requirement for best replies, there may be cycles even
from the truthful state.

Proposition 10. (a) If agents use arbitrary better replies, then there is a strong counterexample with
3 agents of weight 1. Moreover, (b) there is a weak counterexample with 2 agents of weight 1, even
if they start from the truthful state.

Example 10a.C = {a, b, c} with initial scoreŝ = (0, 1, 0). The initial state isa0 = (a, a, b)—
that is,s(a0) = (2, 2, 0) and the outcome is the winner set{a, b}. Consider the following cyclic
sequence (we write the score vector and the outcome in each step): (2, 2, 0){a, b} 2→ (1, 2, 1){b} 1→
(0, 2, 2){b, c} 3→ (1, 1, 2){c} 2→ (2, 1, 1){a} 3→ (1, 2, 1){b} 1→ (2, 2, 0){a, b}. If the preferences
area ≻1 c ≻1 b, b ≻2 a ≻2 c andc ≻3 b ≻3 a, then each step is indeed an improvement step for
the agent whose index is on top of the arrow. ♦
Example 10b.We use 5 candidates with initial score(1, 1, 2, 0, 0), and 2 agents with utilitiesu1 =
(5, 3, 2, 8, 0) andu2 = (4, 2, 5, 0, 8). In particular,{b, c} ≻1 c, {a, c} ≻1 {a, b, c}, and{a, b, c} ≻2

{b, c}, c ≻2 {a, c}, and the following cycle occurs:(1, 1, 2, 1, 1){c} 1→ (1, 2, 2, 0, 1){b, c} 2→
(2, 2, 2, 0, 0){a, b, c} 1→ (2, 1, 2, 1, 0){a, c} 2→ (1, 1, 2, 1, 1){c}. ♦

3.3 Truth-Biased Agents

So far we assumed purely rational behavior on the part of the agents, in the sense that they were
indifferent regarding their chosen action (vote), and onlycared about the outcome. Thus, for ex-
ample, if an agent cannot affect the outcome at some round, hesimply keeps hiscurrent vote. This
assumption is indeed common when dealing with normal form games, as there is no reason to prefer
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Tie breaking
Dynamics Best reply from Any better reply from

Truth biased
Initial state Truth Anywhere Truth Anywhere

Deterministic
Weighted(k > 2) X (5) X X X X
Weighted(k = 2) V V (6a) V (6b) X (4a) X
Non-weighted V V (3) X (4b) X X (11a)

Randomized
Weighted X (7) X X X X
Non-weighted V (8) X (9) X (10) X (10) X (11b)

Table 3: We highlight cases where convergence is guaranteed. The number in brackets refers to the index of
the corresponding theorem (marked withV) or counterexample (X). Entries with no index follow from other
entries in the table.

one strategy over another if outcomes are the same. However,in voting problems it is typically
assumed that voters will votetruthfully unless they have an incentive to do otherwise. As our model
incorporates both settings, it is important to clarify the exact assumptions that are necessary for
convergence.

In this section, we consider a variation of our model where agents always prefer their higher-
ranked outcomes, but will vote honestly if the outcome remains the same—i.e., the agents aretruth-
biased. Formally, letW = PLT (ŝ,w, ai,a−i) and Z = PLT (ŝ,w, a′i,a−i) be two possible
outcomes ofi’s voting. Then, the actiona′i is better thanai if either Z ≻i W , or Z = W and
a′i ≻i ai. Note that with this definition there is a strict preference order over all possible actions of
i at every step. Unfortunately, truth-biased agents may not converge even in the simplest settings:

Proposition 11. There are strong counterexamples for (a) deterministic tie-breaking, and (b) ran-
domized tie-breaking. This holds even with two non-weighted truth-biased agents that use best reply
dynamics and start from the truthful state.

Example 11a.We use 4 candidates with no initial score. The preferences are defined asc ≻1 a ≻1

b ≻1 d andd ≻2 b ≻2 a ≻2 c. The reader can easily verify that in the resulting4 × 4 game there
are no NE states. ♦
Example 11b.There are 4 candidates with initial scores(0, 0, 1, 2). The preference profile is given
by a ≻1 c ≻1 d ≻1 b, b ≻2 d ≻2 c ≻2 a. Consider the following cycle, beginning with the truthful
state:(1, 1, 1, 2) 1→ (0, 1, 2, 2) 2→ (0, 0, 2, 3) 1→ (1, 0, 1, 3) 2→ (1, 1, 1, 2). ♦

4 Discussion

We summarize the results in Table 3. We can see that in most cases convergence is not guaranteed
unless the agents restrict their strategies to “best replies”—i.e., always select their most-preferred
candidate that can win. Also, deterministic tie-breaking seems to encourage convergencemore often.
This makes sense, as the randomized scheme allows for a richer set of outcomes, and thus agents
have more options to “escape” from the current state. Neutrality can be maintained by randomizing
a tie-breaking order and publicly announcing itbeforethe voters cast their votes.

We saw that if voters are non-weighted, begin from the truthful announcement and use best
reply, then they always converge within a polynomial numberof steps (in both schemes), but to
what outcome? The proofs show that the score of the winner canonly increase, and by at most 1
in each iteration. Thus possible winners are only candidates that are either tied with the (truthful)
Plurality winner, or fall short by one vote. This means that it is not possible for arbitrarily “bad”
candidates to be elected in this process, but does not preclude a competition of more than two
candidates. This result suggests that widely observed phenomena such as Duverger’s law only apply
in situations where voters have a larger amount of information regarding one another’s preferences,
e.g., via public polls.
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Our analysis is particularly suitable when the number of voters is small, for two main reasons.
First, it is technically easier to perform an iterative voting procedure with few participants. Second,
the question of convergence is only relevant when cases of tie or near-tie are common. An anal-
ysis in the spirit of [11] would be more suitable when the number of voters increases, as it rarely
happens that a single voter would be able to influence the outcome, and almost any outcome is a
Nash equilibrium. This limitation of our formulation is dueto the fact that the behaviors of voters
encompass only myopic improvements. However, it sometimesmakes sense for a voter to vote for
some candidate, even if this will not immediately change theoutcome (but may contribute to such a
change if other voters will do the same).

A new voting rule We observe that the improvement steps induced by the best reply policy are
unique. If, in addition, the order in which agents play is fixed, we get anew voting rule—Iterative
Plurality. In this rule, agents submit their full preference profiles, and the center simulates an iterative
Plurality game, applying the best replies of the agents according to the predetermined order. It may
seem at first glance that Iterative Plurality is somehow resistant to manipulations, as the outcome was
shown to be an equilibrium. This is not possible of course, and indeed agents can still manipulate
the new rule by submitting false preferences. Such an actioncan cause the game to converge to a
different equilibrium (of the Plurality game), which is better for the manipulator.

Future work It would be interesting to investigate computational and game-theoretic properties of
the new, iterative, voting rule. For example, perhaps strategic behavior is scarcer, or computationally
harder. Another interesting question arises regarding possible strategic behavior of the election
chairperson: can voters be ordered so as to arrange the election of a particular candidate? This is
somewhat similar to the idea of manipulating the agenda. Of course, a similar analysis can be carried
out on voting rules other than Plurality, or with variationssuch as voters that join gradually. Such
analyses might be restricted to best reply dynamics, as in most interesting rules the voter strategy
space is very large. Another key challenge is to modify our best-reply assumption to reflect non-
myopic behavior. Finally, even in cases where convergence is not guaranteed, it is worth studying
theproportionof profiles that contain cycles.
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The Probability of Safe Manipulation

Mark C. Wilson and Reyhaneh Reyhani

Abstract

The concept of safe manipulation has recently been introduced by Slinko and White.
We show how to compute the asymptotic probability that a safe manipulation exists
for a given scoring rule under the uniform distribution on voting situations (the so-
called Impartial Anonymous Culture). The technique used is computation of volumes
of convex polytopes. We present explicit numerical results in the 3-candidate case.

1 Introduction

The Gibbard-Satterthwaite theorem [2, 5] shows that for each nondictatorial social choice
function allowing unrestricted preferences of voters over alternatives and such that the m ≥ 3
alternatives can each win in some profile, there always exists a profile which is unstable.
In other words, in the voting game with ordinal utilities given by the voter preferences of
that profile, the strategy where all voters express their sincere preference is not a Nash
equilibrium, so that at least one voter has incentive to deviate unilaterally by expressing
an insincere preference. For common social choice functions, the probability that a single
individual can succeed in changing the election result converges to zero as n, the number of
voters, tends to ∞. Thus the question of coalitional manipulation is more interesting.

Coalitions must be of fairly large size in order to manipulate effectively. For example,
under the IC hypothesis (uniform distribution on profiles) the manipulating coalitions are
typically of order

√
n, while they can be considerably larger under other preference distri-

butions [7, 6]. Thus the question of coalition formation becomes important, because there
are substantial coordination difficulties to be overcome in order to manipulate successfully.

Slinko and White [8] proposed a simple model for coalition formation, whereby a “leader”
publicizes a strategic vote and voters sharing the leader’s preference order decide whether to
follow this strategy or vote sincerely. As a topic for further research, [8] lists the study of the
probability that such an attempt succeeds sometimes and the coalition members never fare
worse than with the sincere outcome. The present paper studies this topic for a well-known
preference distribution, namely the Impartial Anonymous Culture.

2 Definitions and basic properties

Let m ≥ 1 be an integer and let C be a set of size m, the set of alternatives (or candidates).
Let n ≥ 1 be an integer and let V be a set of size n, the set of agents (or voters). Each
agent is assumed to have a total order of the alternatives, the agent’s preference order.
An agent a strongly prefers alternative i to alternative j if and only if i is strictly above
j in a’s preference order; if we also allow the possibility i = j then we just use the term
prefers. There are M := m! possible such preference orders, which we call types. We
denote the set of all types by T and the set of all agents of type t by Vt. A multiset
from T with total weight n is a voting situation, whereas a function taking V to T is a
profile. Each voting situation corresponds naturally to several profiles, corresponding to
the different permutations of the multiset.

Let F be a social choice function, a map that associates an element of C to each profile.
If this map depends only on the voting situation, then the rule is called anonymous.
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The Impartial Anonymous Culture (IAC) is the uniform probability distribution
on the set of voting situations. If F is anonymous, then we can compute the probability
of an event under IAC simply by counting voting situations. Since voting situations can
be encoded by tuples of natural numbers (n1, . . . , nM ) with

∑
i ni = n, this amounts to

counting lattice points in a subset of a dilated standard simplex.
In the following definitions it is assumed that agents not mentioned continue to vote

sincerely.

Definition 1. A voting situation is manipulable if there is some subset X of voters such
that, if all members of X vote insincerely, the result is strongly preferred by all members of
X to the sincere outcome. Such a set X is called a manipulating coalition.

A voting situation is safe for voters of type t if there is some type t′ such that for all
x with 0 ≤ x ≤ nt, whenever x agents of type t change their vote to t′, these agents weakly
prefer the resulting outcome to the sincere outcome.

A voting situation is safely manipulable by voters of type t if it is safe for them, and
there is some value of x for which the agents concerned strongly prefer the resulting outcome
to the sincere outcome.

There are three main points in the definition of safe manipulation:

• the manipulating coalition consists only of voters of a single type;

• the manipulating strategy is the same for all coalition members;

• the size of this coalition is unknown and there must be no risk of obtaining a worse
outcome than the sincere one (through “undershooting” or “overshooting”).

Overshooting occurs when the following situation holds. If some number x change from t
to t′, the result is strongly preferred to the sincere one, but if some number y > x change,
the sincere result is strongly preferred to the latter outcome. Undershooting is the same,
but with y > x replaced by y < x. Examples in [8] show that both phenomena can occur.
In fact they can both occur in the same voting situation as shown by the following example.

Example 1. Let m = 5 and consider the voting situation with 3 voters having each of the
possible preference orders, except the order 12345 which has 4 voters. The scoring rule (see
Section 3 for definitions if necessary) with weights (55, 39, 33, 21, 0) yields scores that induce
an overall ordering 12345 (meaning candidate 1 wins, candidate 2 is second, etc). Consider
voters of type 53124 and the strategy of voting 35241. If 1 voter switches to this strategy, the
new winner is candidate 2; if 2 voters switch, then the new winner is candidiate 3; if 3 voters
switch, the new winner is candidate 4. This shows that undershooting and overshooting can
be possible for the same type and choice of insincere strategy in the same voting situation.

Remark 1. We can consider a game in which the set T of types of voters is partitioned
into two subsets, T ′, T ′′. The set T ′′ consists of all types of voters whose only action is to
vote sincerely, while voters corresponding to types in T ′ have all possible votes open to them
(we do not allow abstention). In the case where T ′′ = ∅ and this is common knowledge, we
have a fully strategic game. A situation is manipulable if and only if it is not a strong Nash
equilibrium of this game.

When T ′ = Ti for some fixed type Ti, there is a different game that is easier to analyse.
A situation is safe for members of T ′ if and only if there exists a pure strategy that weakly
dominates the sincere strategy, and safely manipulable if and only if there exists a pure
strategy that dominates the sincere strategy.
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Remark 2. Note that for each type of voter that ranks the sincere winner lowest, every
situation is safe (in fact a stronger statement is true: such voters have nothing to lose by
strategic voting, no matter what T ′ and T ′′ are). On the other hand, types that rank the
sincere winner highest can never manipulate.

3 Algorithms and polytopes

We restrict to scoring rules. However the method described works more generally (for some
rules, much more care may be needed when considering ties).

Scoring rules

Definition 2. Let w = (w1, . . . , wm) be such that all wi ≥ 0, w1 ≥ w2 . . . wm and w1 > wm.
The scoring rule defined by w gives the following score to each candidate c:

|c| =
∑
t∈T

ntwr(c,t)

where r(c, t) denotes the rank of c according to type t. The candidates with largest score are
the winners. The scores give a social ordering of candidates (the value of the associated
social welfare function).

Remark 3. If a tie occurs for largest score, then a separate tiebreaking procedure is needed
in order to obtain a social choice function. This can be a difficult issue, but fortunately
when considering asymptotic results under IAC as in this paper, we do not need to consider
it further. This is because the set of tied situations has measure zero in the limit as n →∞.

We now impose an order on the candidates, and write C = {c1, c2, . . . , cm}. The types
are then identified with permutations of {1, . . . , m} and can be written in the usual way. We
describe the scores by the scoreboard, the tuple s = (|c1|, . . . , |cm|) of scores. The group
of types acts on the scoreboard w via permuting candidates and we denote the action of t
on w by wt. In terms of our current notation, we have

s =
∑
t∈T

ntw
t−1

.

Example 2. Let m = 3 and consider the voting situation in which 6 agents have preference
order 312 and 2 agents have order 213. Under the plurality rule given by w = (1, 0, 0), the
scoreboard is (0, 2, 6) and c3 wins, the social ordering being 321. Under the Borda rule given
by (2, 1, 0), the scoreboard is (8, 4, 12) and the order of second and third place is reversed, the
social ordering being 312. Under the antiplurality rule given by w = (1, 1, 0), the scoreboard
is (8, 2, 6) and social ordering is 132. There is no weight vector for which c2 can win, as c3

always has a higher score.

Without loss of generality we assume from now on that the sincere social ordering is
123 . . .m.

3.1 When t and t′ are specified

Fix types t and t′ until further notice. We now describe the set S of safely manipulable
voting situations. S is the union

⋃
t∈T St, where St is the set of situations that are safely

manipulable by voters of type t. This can be further refined to S =
⋃

t6=t′ St,t′ where St,t′

is the set of situations that are safely manipulable by voters of type t using strategy t′.
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To describe St,t′ , we use the following basic observations.
Let x denote the number of members in a coalition of type t who vote insincerely and

suppose they vote t′. Then the new and old scoreboards are related by

s′ − s = x
(
w(t′)−1 − wt−1

)
.

For brevity we refer to those candidates ranked above candidate 1 by agents of type t as
good, and those ranked below 1 as bad. For example, when m = 3 and the social ordering
is 123, then according to an agent of type 213, c2 is good and c3 is bad. The new outcome is
preferred by type t agents if and only if no bad candidate is the new winner. It is strongly
preferred if and only if some good candidate is the new winner.

Proposition 1. When m = 3, undershooting can never occur, and overshooting occurs if
and only if some bad candidate wins when x = nt.

Proof. First note that as a function of x, the differences in scores of each alternative between
the sincere and strategic voting situation are (linearly) either increasing or decreasing. Thus
if candidate i is above candidate j for some x but below for some larger value of x, it will
remain below for all even larger values of x. For types 123 and 132, no better result can be
achieved by strategic voting; for types 231 and 321, no worse result. The only other cases
are types 213 and 312. In each case there is only one good and one bad candidate: once
one overtakes the other and the sincere winner, it stays ahead and cannot be subsequently
beaten by another candidate of the opposite type.

Proposition 2. The following algorithm solves the decision problem for safe manipulation
for scoring rules, and runs in polynomial time provided the tiebreaking procedure does.

Let |c|x denote the score of candidate c when x agents have switched from t to t′, and let L
be the set of points of intersection of the graphs of the functions x 7→ |c|x for 0 ≤ x ≤ nt. Sort
the elements of L. For each interval formed by successive elements, compute the maximum
score B of all bad candidates, and the maximum score G of all good candidates. If B > G
for any interval (or B = G and the tiebreaking procedure says that a valid manipulation in
favour of a bad candidate has occurred) then safe manipulation is not possible; otherwise it
is possible.

Proof. The winner is constant on each interval, so we need only check one point in each
interval, plus endpoints to deal with ties. There are at most m(m − 1)/2 intersections of
the lines which are the graphs of the functions x 7→ |c|x for 0 ≤ x ≤ nt. The condition
on maximum good and bad scores can be checked for each interval in time proportional to
m.

Corollary 1. When m = 3, we need only calculate which candidate wins when x = nt, and
safe manipulation is possible if and only if the winner is good.

3.2 The general case

When at least one of t and t′ is not specified, there are obviously more possibilities, and a
brute force approach that simply tries each pair (t, t′) in turn will work. However, we can
clearly do better than this.

There are some values of t for which St is empty. This means that no matter what the
situation and the differences in the sincere scores, safe manipulation is impossible by type
t. For example, every t for which the sincere winner 1 is ranked first has no incentive to
manipulate. Other types have incentive but as we see in Example 3, St may still be empty.
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For those t for which St is nonempty, we can still remove strategies t′ for which St,t′ is
empty. Similarly, we can express the union defining St with as few terms as possible. This
is done by discarding dominated strategies (in any particular voting situation, even more
strategies may be dominated, but we consider here those that are never worth including for
any situation). For example, any type that ranks a bad candidate ahead of a good one is
dominated by the type that differs only by transposing those two candidates. Thus all good
candidates should be ranked ahead of all bad ones. The sincere winner should not be ranked
ahead of any good candidate for the same reason. Furthermore, each strategy that does not
allow some good candidate to catch the sincere winner should be rejected, as should each
strategy that further advantages a bad candidate higher in the social ordering over all good
candidates.

Example 3 (m = 3). Consider type 312. The only possibly undominated strategy that we
need to consider, according to the above discussion, is 321. However 321 cannot lead to
successful manipulation, as it increases the score of 2 and not of 3. Thus type 312 cannot
manipulate at all, let alone safely. Types 231, 213 and 321 have respectively the strategies
321, 231, 231 available.

Example 4. When m = 4, the strategies that are worth considering in some situation are
as follows. For any type starting with 1, only the sincere strategy. For any type ending with
1, any strategy that keeps 1 at the bottom. For types starting 41, only the sincere strategy;
for types starting 31, any strategy that lowers 1 while keeping 3 at the top and not promoting
2; for types starting 21, any strategy that lowers 1, keeping 2 first. For types ranking 1 third,
transpose the two good candidates.

When there are very few distinct entries in w, there are many fewer strategies to consider.
The extreme cases are plurality (w = (1, 0, . . . , 0)) and antiplurality (1, 1, . . . , 1, 0)). For
plurality (respectively antiplurality), safe manipulation is possible by a type t voter if and
only if it is possible by ranking some good candidate first (respectively some bad candidate
last). The player is indifferent between the different strategies satisfying this criterion (if
the good candidate is fixed) and the analysis does not distinguish between them, so we can
assume that any such voter uses a standard strategy that makes a chosen good candidate
the favoured one and orders the others by increasing value of index. Thus, for example, for
m = 3 under plurality we consider 213 and 312 as possible values for t′.

We have so far expressed St in terms of a union of St,t′ which is as small as possible.
However the terms in the union may not be disjoint. For example, with m ≥ 4 a voter of
type ranking c1 last may use any of the (m− 1)!− 1 insincere strategies that leave c1 at the
bottom (when m = 3 there is only one such strategy).

To compute the final probability of safe manipulation, we need to compute the volume
of the union of all St. This union is in general not disjoint even for m = 3, as the following
example shows.

Example 5. Let m = 3 and consider the voting situation with 3 agents having preference
123, 2 having preference 231 and 2 having preference 321. Under the plurality rule, the last
two types can each manipulate safely.

We use inclusion-exclusion to compute the volume of the union. The number of terms
in the inclusion-exclusion formula is 2p − 1 where p is the number of types involved.

4 Numerical results

We restrict to m = 3 and some selected scoring rules including the commonly studied
plurality, Borda (w = (2, 1, 0)), and antiplurality.
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For a situation in which the sincere result is 123, types 123, 132 and 312 cannot ma-
nipulate safely. We need deal with only the remaining types, each of which has only one
insincere strategy to consider. The linear systems in question are as follows. We denote
wi − wj by wij .

The fact that 123 is the sincere result is expressed as |c1| ≥ |c2| ≥ |c3|. This translates
to

0 ≤ n1w12 + n2w13 + n3w21 + n4w31 + n5w23 + n6w32

0 ≤ n1w23 + n2w32 + n3w13 + n4w12 + n5w31 + n6w21

ni ≥ 0 for all i

n = n1 + · · ·+ n6.

For type 213, safe manipulation is possible if and only the following additional conditions
are satisfied.

|c2| ≥ |c1| − n3w23

|c2| ≥ |c3|+ n3w23

which simplifies to the following system.

0 ≥ n1w12 + n2w13 + n3w31 + n4w31 + n5w23 + n6w32

0 ≤ n1w23 + n2w32 + n3w12 + n4w12 + n5w31 + n6w21

Every voting situation can be represented in this way up to a permutation of alternatives.
Thus the asymptotic probability under IAC that type 213 can safely manipulate is given

by the ratio of the volume of the “strategic” polytope to that of the “sincere” polytope. A
completely analogous method works for other types. The volumes can be computed using
standard software as described in [9, 3].

The results for several voting rules are shown in Table 1. The column labelled
“P(manip)” gives the asymptotics probability of a voting situation begin manipulable (pos-
sibly by a coalition of more than one type) and was computed using the methods in [4] (note
that the results for plurality, antiplurality and Borda have been computed exactly elsewhere
[9]). Note that the ordering of rules according to their susceptibility to manipulation and
the corresponding order for safe manipulation differ. Also the entries in the last column,
giving conditional probabilities, are decreasing. This last fact is not surprising in hindsight
and probably not dependent on the culture IAC. For example, plurality allows only one type
of member in a minimal manipulating coalition, and such members have nothing to lose, so
manipulation is possible if and only if it is safely possible. At the other extreme, only one
type of voter can manipulate under antiplurality, but whether this is safe or not depends
strongly on the voting situation.

The Borda rule is often criticized for its susceptibility to manipulation. While it is still
the most manipulable here by both measures, it is clear that many manipulable situations
under Borda require unsafe manipulations. The plurality rule seems the least manipulable
when complicated coalitions are used, but its advantage disappears when safety is consid-
ered. These results, which of course depend on the particular distribution IAC, nevertheless
indicate that when communication is restricted, traditional ratings of voting rules may need
to be revised.

Table 2 shows the probability that a given rule is safely manipulable by all of the in-
dividual types listed. We see for example that type 213 has the most manipulating power
under the (3, 2, 0) rule, whereas 231 and 321 are strongest under plurality. Note that, for
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Table 1: Asymptotic probability under IAC of a situation being (safely) manipulable.

scoring rule P(manip) P(safely) P (safely | manip)
Plurality 0.292 0.292 1.00
(3,1,0) 0.422 0.322 0.76
Borda 0.502 0.347 0.69
(3,2,0) 0.535 0.330 0.62
(10,9,0) 0.533 0.264 0.49

Antiplurality 0.525 0.222 0.42

Table 2: Asymptotic probability under IAC of safe manipulation by various types

scoring rule 213 231 321 213, 231 213, 321 231, 321 213, 231, 321
Plurality 0.0000000 0.156250 0.246528 0.000000 0.000000 0.111111 0.000000
(3,1,0) 0.178369 0.086670 0.216913 0.000080 0.104229 0.053084 0.000067
Borda 0.225000 0.047950 0.196759 0.000033 0.093542 0.027400 0.000024
(3,2,0) 0.239297 0.020019 0.152812 0.000007 0.070438 0.010926 0.000005
(10,9,0) 0.234375 0.001687 0.051107 0.000000 0.022681 0.000866 0.000000

Antiplurality 0.2222222 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

example, there is an appreciable probability that both types 213 and 321 can manipulate
safely. If each proceeds, ignoring the other, the result may no longer be safe. On the other
hand, if both 231 and 321 try simultaneously to manipulate safely, the cancellation effect
means that they are less likely to be disappointed.

5 Further discussion

The uniform distribution on profiles (the Impartial Culture hypothesis) has been used in
many analyses in voting theory, because of its analytical tractability. However, for the
asymptotic study of safe manipulation it seems less useful. This is because under IC for
scoring rules, much weight is placed on situations that are nearly tied: a typical situation
has almost equal numbers of each type, and the differences between the scores are of order√

n. Thus as n → ∞ the probability that, for example, a voter of type 321 can safely
manipulate will approach 1 rapidly, while the probability that a type 213 can do so will
approach 0 rapidly.

The inclusion-exclusion procedure used is probably exponential in m, since the number
p of types used seems to grow linearly in m (we have not formally proved this). Thus a
better algorithm is needed for large m.

As pointed out by the referee, the argument of Section 3.2 involve a monotonicity prop-
erty that should be satisfied by more than just the scoring rules, but we have not pursued
such a generalization here, leaving it for possible future work.

The literature on safe manipulation is very small still - our literature search turned up
only one preprint of unknown publication status, dealing with complexity issues (though a
similar idea was apparently used in [1] without explicit mention). However the basic model
is attractive and some obvious generalizations should be investigated. For example, we
can use a probability distribution to model the number of followers, instead of considering
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the worst case outcome, and thereby consider whether strategic voting even with lack of
coordination can lead to better outcomes in the sense of expected utility.

We thank the referee for several useful comments.
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Socially Desirable Approximations

for Dodgson’s Voting Rule1

Ioannis Caragiannis, Christos Kaklamanis,
Nikos Karanikolas, and Ariel D. Procaccia

Abstract

In 1876 Charles Lutwidge Dodgson suggested the intriguing voting rule that today
bears his name. Although Dodgson’s rule is one of the most well-studied voting rules,
it suffers from serious deficiencies, both from the computational point of view—it is
NP-hard to approximate the Dodgson score to logarithmic factors—and from the
social choice point of view—it fails basic social choice desiderata such as monotonicity
and homogeneity.
In a previous paper [Caragiannis et al., SODA 2009] we have asked whether there
are approximation algorithms for Dodgson’s rule that are monotonic or homoge-
neous. In this paper we give definitive answers to these questions. We design a
monotonic exponential-time algorithm that yields a 2-approximation to the Dodg-
son score, while matching this result with a tight lower bound. We also present
a monotonic polynomial-time O(log m)-approximation algorithm (where m is the
number of alternatives); this result is tight as well due to a complexity-theoretic
lower bound. Furthermore, we show that a slight variation on a known voting rule
yields a monotonic, homogeneous, polynomial-time O(m log m)-approximation algo-
rithm, and establish that it is impossible to achieve a better approximation ratio
even if one just asks for homogeneity. We complete the picture by studying several
additional social choice properties; for these properties, we prove that algorithms
with an approximation ratio that depends only on m do not exist.

1 Introduction

Social choice theory is concerned with aggregating the preferences of a set of n agents
over a set of m alternatives. It is often assumed that each agent holds a private ranking
of the alternatives; the collection of agents’ rankings is known as a preference profile. The
preference profile is reported to a voting rule, which then singles out the winning alternative.

When there are two alternatives (and an odd number of agents), majority voting is
unanimously considered a perfect method of selecting the winner. However, when there are
at least three alternatives it is sometimes unclear which alternative is best. In the Eighteenth
Century the marquis de Condorcet, perhaps the founding father of the mathematical theory
of voting, suggested a solution by extending majority voting to multiple alternatives [10].
An alternative x is said to beat alternative y in a pairwise election if a majority of agents
prefer x to y, i.e., rank x above y. An alternative that beats every other alternative in
a pairwise election is easy to accept as the winner of the entire election; in the modern
literature such an alternative is known as a Condorcet winner. Unfortunately, there are
preference profiles for which no alternative is a Condorcet winner.

Almost a century after Condorcet, a refinement of Condorcet’s ideas was proposed by
Charles Lutwidge Dodgson (today better known by his pen name Lewis Carroll), despite
apparently being unfamiliar with Condorcet’s work [5]. Dodgson proposed selecting the
alternative “closest” to being a Condorcet winner, in the following sense. The Dodgson
score of an alternative x is the number of exchanges between adjacent alternatives in the

1A slightly different version of the paper appeared in Proceedings of the 10th ACM Conference on
Electronic Commerce (EC 10).
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agents’ rankings that must be introduced in order for x to become a Condorcet winner (see
Section 2 for an example). A Dodgson winner is an alternative with minimum Dodgson
score.

Although Dodgson’s rule is intuitively appealing, it has been heavily criticized over
the years for failing to satisfy desirable properties that are considered by social choice
theorists to be extremely basic. Most prominent among these properties are monotonicity
and homogeneity; a voting rule is said to be monotonic if it is indifferent to pushing a winning
alternative upwards in the preferences of the agents, and is said to be homogeneous if it is
invariant under duplication of the electorate. In fact, several authors have commented that it
is somewhat unfair to attribute the abovementioned rule to Dodgson, since Dodgson himself
seems to have questioned it due to its serious defects (see, e.g., the papers by Tideman [21,
p. 194] and Fishburn [11, p. 474]).

To make matters worse, the rise of computational complexity theory, a century after
the conception of Dodgson’s rule, has made it clear that it suffers from yet another serious
deficiency: it is intractable to single out the winner of the election. Indeed, it is the first
voting rule where winner determination was known to beNP-hard [4]; even the computation
of the Dodgson score of a given alternative isNP-hard. The question of the exact complexity
of winner determination under Dodgson’s rule was resolved by Hemaspaandra et al. [13]: it
is complete for the class Θp

2. These results have sparked great interest in Dodgson’s rule
among computer scientists, making it “one of the most studied voting rules in computational
social choice” [6].

In previous work with numerous colleagues [8], we have largely taken the computational
complexity point of view by considering the computation of the Dodgson score as an op-
timization problem. Among other results, we have given two polynomial-time algorithms
that guarantee an approximation ratio of O(log m) to the Dodgson score (where m is the
number of alternatives); this bound is asymptotically tight with respect to polynomial-time
algorithms (unless P = NP).

Taking the social choice point of view, our main conceptual contribution in [8] was the
suggestion that an algorithm that approximates the Dodgson score is a voting rule in its
own right in the sense that it naturally induces a voting rule that selects an alternative with
minimum score according to the algorithm. Hence, such algorithms should be evaluated
not only by their computational properties (e.g., approximation ratio and complexity) but
also by their social choice properties (e.g., monotonicity and homogeneity). In other words,
they should be “socially desirable”. This issue was very briefly explored in the foregoing
paper: we have shown that one of our two approximation algorithms satisfies a weak flavor of
monotonicity, whereas the other does not. Both algorithms, as well as Dodgson’s rule itself,
are neither monotonic (in the usual sense) nor homogeneous, but this does not preclude the
existence of monotonic or homogeneous approximation algorithms for the Dodgson score.
Indeed, we have asked whether there exist such algorithms that yield a good approximation
ratio [8, p. 1064].

In the following, we refer to algorithms approximating the Dodgson score (as well as
to the voting rules they induce) using the term Dodgson approximations. A nice property
that Dodgson approximations enjoy is that a finite approximation ratio implies Condorcet-
consistency, i.e., a Condorcet winner (if one exists) is elected as the unique winner. One
might wish for approximations of the Dodgson ranking (i.e., the ranking of the alternatives
with respect to their Dodgson scores) directly instead of approximating the Dodgson score.
Unfortunately, it is known that distinguishing whether an alternative is the Dodgson winner
or in the last O(

√
m) positions in the Dodgson ranking is NP-hard [8]. This extreme

inapproximability result provides a complexity-theoretic explanation of the discrepancies
that have been observed in the social choice literature when comparing Dodgson’s rule to
simpler polynomial-time voting rules (see the discussion in [8]) and implies that, as long as
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we care about efficient algorithms, reasonable approximations of the Dodgson ranking are
impossible. However, the cases where the ranking is hard to approximate are cases where
the alternatives have very similar Dodgson scores. We would argue that in those cases it
is not crucial, from Dodgson’s point of view, which alternative is elected, since they are all
almost equally close to being Condorcet winners. Put another way, if the Dodgson score is
a measure of an alternative’s quality, the goal is simply to elect a good alternative according
to this measure.

Our results and techniques. In this paper we give definitive (and mostly positive)
answers to the questions raised above; our results are tight. Due to lack of space, all proofs
have been omitted.

In Section 3 we study monotonic Dodgson approximations. We first design an algorithm
that we denote by M . Roughly speaking, this algorithm “monotonizes” Dodgson’s rule by
explicitly defining a winner set for each given preference profile, and assigning an alternative
to the winner set if it is a Condorcet winner in some preference profile such that the former
profile is obtained from the latter by pushing the alternative upwards. We prove the following
result.

Theorem 3.1. M is a monotonic Dodgson approximation with an approximation ratio of
2.

We furthermore show that there is no monotonic Dodgson approximation with a ratio
smaller than 2 (Theorem 3.2), hence M is optimal among monotonic Dodgson approxi-
mations. Note that the lower bound is independent of computational assumptions, and,
crucially, computing an alternative’s score under M requires exponential time. This is to be
expected since the Dodgson score is computationally hard to approximate within a factor
better than Ω(log m) [8].

It is now natural to ask whether there is a monotonic polynomial-time Dodgson ap-
proximation with an approximation ratio of O(log m). We give a positive answer to this
question as well. Indeed, we design a Dodgson approximation denoted by Q, and establish
the following result.

Theorem 3.3. Q is a monotonic polynomial-time Dodgson approximation with an
approximation ratio of O(log m).

The result relies on monotonizing an existing Dodgson approximation that is based on
linear programming. The main obstacle is to perform the monotonization in polynomial
time rather than looking at an exponential number of profiles, as described above. Our
main tool is the notion of pessimistic estimator, which allows the algorithm to restrict its
attention to a single preference profile. Pessimistic estimators are obtained by solving a
linear program that is a variation on the one that approximates the Dodgson score.

In Section 4 we turn to homogeneity. We consider Tideman’s simplified Dodgson rule [22,
pages 199-201], which was designed to overcome the deficiencies of Dodgson’s rule. The
former rule is computable in polynomial time, and is moreover known to be monotonic and
homogeneous. By scaling the score given by the simplified Dodgson rule we obtain a rule,
denoted Td′, that is identical as a voting rule, and moreover has the following properties.

Theorem 4.1. Td′ is a monotonic, homogeneous, polynomial-time Dodgson approximation
with an approximation ratio of O(m log m).

Note that the Dodgson score can be between 0 and Θ(nm), so this bound is far from
trivial. The analysis is tight when there is an alternative that is tied against many other
alternatives in pairwise elections (and hence has relatively high Dodgson score), whereas
another alternative strictly loses in pairwise elections to few alternatives (so it has relatively
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low Dodgson score). By homogeneity the former alternative must be elected, since its score
does not scale when the electorate is replicated (we elaborate in Section 4). This intuition
leads to the following result which applies to any (even exponential-time) homogeneous
Dodgson approximation.

Theorem 4.2. Any homogeneous Dodgson approximation has approximation ratio at least
Ω(m log m).

In particular the homogeneous upper bound given in Theorem 4.1 (which is achieved by
an algorithm that is moreover monotonic and efficient) is asymptotically tight. The heart of
our construction is the design of a preference profile such that an alternative is tied against
Ω(m) other alternatives; this is equivalent to a construction of a family of subsets of a set U ,
|U | = m, such that each element of U appears in roughly half the subsets but the minimum
cover is of size Ω(log m).

In order to complete the picture, in Section 5 we discuss some other, less prominent,
social choice properties not satisfied by Dodgson’s rule [22, Chapter 13]: combinativity,
Smith consistency, mutual majority, invariant loss consistency, and independence of clones.
We show that any Dodgson approximation that satisfies one of these properties has an
approximation ratio of Ω(nm) (in the case of the former two properties) or Ω(n) (in the
case of the latter three). An Ω(nm) ratio is a completely trivial one, but we also consider
an approximation ratio of Ω(n) to be impractical, as the number of agents n is very large
in almost all settings of interest.

Discussion. Our results with respect to monotonicity are positive across the board. In
particular, we find Theorem 3.1 surprising as it indicates that Dodgson’s lack of monotonicity
can be circumvented by slightly modifying the definition of the Dodgson score; in a sense this
suggests that Dodgson’s rule is not fundamentally far from being monotonic. Theorem 3.3
provides a striking improvement over the main result of [8]. Indeed, if one is interested in
computationally tractable algorithms then an approximation ratio of O(log m) is optimal;
the theorem implies that we can additionally satisfy monotonicity without (asymptotically)
increasing the approximation ratio. Our monotonization techniques may be of independent
interest.

Our results regarding homogeneity, Theorem 4.1 and Theorem 4.2, can be interpreted
both positively and negatively. Consider first the case where the number of alternatives m
is small (e.g., in political elections). A major advantage of Theorem 4.1 is that it concerns
Tideman’s simplified Dodgson rule, which is already recognized as a desirable voting rule,
as it is homogeneous, monotonic, Condorcet-consistent, and resolvable in polynomial time.
The theorem lends further justification to this rule by establishing that it always elects an
alternative relatively close (according to Dodgson’s notion of distance) to being a Condorcet
winner, that is, the spirit of Dodgson’s ideas is indeed preserved by the “simplification” and
(due to Theorem 4.2) this is accomplished in the best possible way.

Viewed negatively, when the number of alternatives is large (an extreme case is a mul-
tiagent system where the agents are voting over joint plans), Theorem 4.2 strengthens the
criticism against Dodgson’s rule: not only is the rule itself nonhomogeneous, but any (even
exponential-time computable) conceivable variation that tries to roughly preserve Dodgson’s
notion of proximity to Condorcet is also nonhomogeneous. We believe that both interpreta-
tions of the homogeneity results are of interest to social choice theorists as well as computer
scientists.

As an aside, note that almost all work in algorithmic mechanism design [18] seeks truthful
approximation algorithms, that is, algorithms such that the agents cannot benefit by lying.
However, it is well known that in the standard social choice setting, truthfulness cannot be
achieved. Indeed, the Gibbard-Satterthwaite Theorem [12, 19] (see also [17]) implies that
any minimally reasonable voting rule is not truthful. Therefore, social choice theorists strive
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for other socially desirable properties, and in particular the ones discussed above. To avoid
confusion, we remark that although notions of monotonicity are often studied in mechanism
design as ways of obtaining truthfulness (see, e.g., [3]), in social choice theory monotonicity
is a very basic desirable property in its own right (and has been so long before mechanism
design was conceived).

Future work. In the future, we envision the extension of our agenda of socially desirable
approximation algorithms to other important voting rules. Positive results in this direction
would provide us with tools to circumvent the deficiencies of known voting rules without
sacrificing their core principles; negative results would further enhance our understanding
of such deficiencies. Note that these questions are relevant even with respect to tractable
voting rules that do not satisfy certain properties, but seem especially interesting in the
context of voting and rank aggregation rules that are hard to compute, e.g., Kemeny’s and
Slater’s rules [1, 9, 15]. The work in this direction might involve well-known tractable,
Condorcet-consistent, monotonic, and homogeneous rules such as Copeland and Maximin
(see, e.g., [22]) in the same way that we use Tideman’s simplified Dodgson rule in the current
paper.

2 Preliminaries

We consider a set of agents N = {0, 1, . . . , n−1} and a set of alternatives A, |A| = m. Each
agent has linear preferences over the alternatives, that is, a ranking over the alternatives.
Formally, the preferences of agent i are a binary relation ≻i over A that satisfies irreflexivity,
asymmetry, transitivity and totality; given x, y ∈ A, x ≻i y means that i prefers x to y. We
let L = L(A) be the set of linear preferences over A. A preference profile ≻= 〈≻0, . . . ,≻n−1

〉 ∈ Ln is a collection of preferences for all the agents. A voting rule (also known as a social
choice correspondence) is a function f : Ln → 2A \{∅} from preference profiles to nonempty
subsets of alternatives, which designates the winner(s) of the election.

Let x, y ∈ A, and ≻∈ Ln. We say that x beats y in a pairwise election if |{i ∈ N : x ≻i

y}| > n/2, that is, if a (strict) majority of agents prefer x to y. A Condorcet winner is an
alternative that beats every other alternative in a pairwise election. The Dodgson score of
an alternative x ∈ A with respect to a preference profile ≻∈ Ln, denoted scD(x,≻), is the
number of swaps between adjacent alternatives in the individual rankings that are required
in order to make it a Condorcet winner. A Dodgson winner is an alternative with minimum
Dodgson score.

Consider, for example, the profile ≻ in Table 1; in this example N = {0, . . . , 4}, A =
{a, b, c, d, e}, and the ith column is the ranking reported by agent i. Alternative a loses in
pairwise elections to b and e (two agents prefer a to b, one agent prefers a to e). In order
to become a Condorcet winner, four swaps suffice: swapping a and e, and then a and b, in
the ranking of agent 1 (after the swaps the ranking becomes a ≻1 b ≻1 e ≻1 c ≻1 d), and
swapping a and d, and then a and e, in the ranking of agent 4. Agent a cannot be made a
Condorcet winner with fewer swaps, hence we have scD(a,≻) = 4 in this profile. However,
in the profile of Table 1 there is a Condorcet winner, namely agent b, hence b is the Dodgson
winner with scD(b,≻) = 0.

Given a preference profile ≻∈ Ln and x, y ∈ A, the deficit of x against y, denoted
defc(x, y,≻), is the number of additional agents that must rank x above y in order for x to
beat y in a pairwise election. Formally,

defc(x, y,≻) = max
{

0,

⌈
n + 1

2

⌉
− |{i ∈ N : x ≻i y}|

}
.

In particular, if x beats y in a pairwise election then it holds that defc(x, y,≻) = 0. Note that
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0 1 2 3 4
a b e e b
b e b c e
c a c d d
d c a a a
e d d b c

Table 1: An example of the Dodgson score. For this profile ≻, it holds that scD(b,≻) = 0,
scD(a,≻) = 4.

if n is even and x and y are tied, that is, |{i ∈ N : x ≻i y}| = n/2, then defc(x, y,≻) = 1.
For example, in the profile of Table 1 we have that defc(a, b,≻) = 1, defc(a, c,≻) = 0,
defc(a, d,≻) = 0, defc(a, e,≻) = 2.

We consider algorithms that receive as input an alternative x ∈ A and a preference
profile ≻∈ Ln, and return a score for x. We denote the score returned by an algorithm
V on the input which consists of an alternative x ∈ A and a profile ≻∈ Ln by scV (x,≻).
We call such an algorithm V a Dodgson approximation if scV (x,≻) ≥ scD(x,≻) for every
alternative x ∈ A and every profile ≻∈ Ln. We also say that V has an approximation
ratio of ρ if scD(x,≻) ≤ scV (x,≻) ≤ ρ · scD(x,≻), for every x ∈ A and every ≻∈ Ln.
A Dodgson approximation naturally induces a voting rule by electing the alternative(s)
with minimum score. Hence, when we say that a Dodgson approximation satisfies a social
choice property we are referring to the voting rule induced by the algorithm. Observe
that the voting rule induced by a Dodgson approximation with finite approximation ratio
is Condorcet-consistent, i.e., it always elects a Condorcet winner as the sole winner if one
exists.

Let us give an example. Consider the algorithm V that, given an alternative x ∈ A
and a preference profile ≻∈ Ln, returns a score of scV (x,≻) = m · ∑y∈A\{x} defc(x, y,≻).
It is easy to show that this algorithm is a Dodgson approximation and, furthermore, has
approximation ratio at most m. Indeed, it is possible to make x beat y in a pairwise election
by pushing x to the top of the preferences of defc(x, y,≻) agents, and this requires at most
m · defc(x, y,≻) swaps. By summing over all y ∈ A \ {x}, we obtain an upper bound of
scV (x,≻) on the Dodgson score of x. On the other hand, given x ∈ A, for every y ∈ A \ {x}
we require defc(x, y,≻) swaps that push x above y in the preferences of some agent in
order for x to beat y in a pairwise election. Moreover, these swaps do not decrease the
deficit against any other alternative. Therefore,

∑
y∈A\{x} defc(x, y,≻) ≤ scD(x,≻), and by

multiplying by m we get that scV (x,≻) ≤ m · scD(x,≻).

3 Monotonicity

In this section we present our results on monotonic Dodgson approximations. A voting
rule is monotonic if a winning alternative remains winning after it is pushed upwards in
the preferences of some of the agents. Dodgson’s rule is known to be non-monotonic (see,
e.g., [6]). The intuition is that if an agent ranks x directly above y and y above z, swapping
x and y may not help y if it already beats x, but may help z defeat x.

As a warm-up we observe that the Dodgson approximation mentioned at the end of the
previous section is monotonic as a voting rule. Indeed, consider a preference profile ≻ and
a winning alternative x. Pushing x upwards in the preference of some of the agents can
neither increase its score (since its deficit against any other alternative does not increase)
nor decrease the score of any other alternative y ∈ A\ {x} (since the deficit of y against any
alternative in A \ {x, y} remains unchanged and its deficit against x does not decrease).
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3.1 Monotonizing Dodgson’s Voting Rule

In the following we present a much stronger result. Using a natural monotonization of
Dodgson’s voting rule, we obtain a monotonic Dodgson approximation with approximation
ratio at most 2. The main idea is to define the winning set of alternatives for a given profile
first and then assign the same score to the alternatives in the winning set and a higher score
to the non-winning alternatives. Roughly speaking, the winning set is defined so that it
contains the Dodgson winners for the given profile as well as the Dodgson winners of other
profiles that are necessary so that monotonicity is satisfied.

More formally, we say that a preference profile ≻′∈ Ln is a y-improvement of ≻ for
some alternative y ∈ A if ≻′ is obtained by starting from ≻ and pushing y upwards in the
preferences of some of the agents. In particular a profile is a y-improvement of itself for any
alternative y ∈ A.

We monotonize Dodgson’s voting rule as follows. Let M denote the new voting rule
we are constructing. We denote by W (≻) the set of winners of M for profile ≻∈ Ln. Let
∆ = maxy∈W (≻) scD(y,≻). The voting rule M assigns a score of scM (y,≻) = ∆ to each
alternative y ∈ W (≻) and a score of

scM (y,≻) = max{∆ + 1, scD(y,≻)}

to each alternative y /∈ W (≻). All that remains is to define the set of winners W (≻) for
profile ≻. This is done as follows: for each preference profile ≻∗∈ Ln and each Dodgson
winner y∗ at ≻∗, include y∗ in the winner set W (≻′) of each preference profile ≻′∈ Ln that
is a y∗-improvement of ≻∗.

Theorem 3.1. M is a monotonic Dodgson approximation with an approximation ratio of
2.

In general, the Dodgson approximation M is computable in exponential time. However,
it can be implemented to run in polynomial time when m is a constant; in this special case
the number of different profiles with n agents is polynomial and the Dodgson score can be
computed exactly in polynomial time [4].

The next statement shows that the voting rule M is the best possible monotonic Dodgson
approximation. Note that it is not based on any complexity assumptions and, hence, it holds
for exponential-time Dodgson approximations as well.

Theorem 3.2. A monotonic Dodgson approximation cannot have an approximation ratio
smaller than 2.

3.2 A Monotonic Polynomial-Time O(log m)-Approximation Algo-
rithm

In the following we present a monotonic polynomial-time Dodgson approximation that
achieves an approximation ratio of O(log m). Given the Ω(log m) inapproximability bound
for the Dodgson score [8], this rule is asymptotically optimal with respect to polynomial-
time algorithms. To be precise, it is optimal within a factor of 4, assuming that problems
in NP do not have quasi-polynomial-time algorithms.

In general, there are two main obstacles that we have to overcome in order to implement
the monotonization in polynomial time. First, the computation of the Dodgson score and the
decision problem of detecting whether a given alternative is a Dodgson winner on a particular
profile are NP-hard problems [4]. We overcome this obstacle by using a polynomial-time
Dodgson approximation R instead of the Dodgson score itself. Even in this case, given
a profile, we still need to be able to detect whether an alternative y ∈ A is the winner
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according to R at some profile of which the current profile is a y-improvement; if this is the
case, y should be included in the winning set. Note that, in general, this requires checking an
exponential number of profiles in order to determine the winning set of the current one. We
tackle this second obstacle using the notion of pessimistic estimators; these are quantities
defined in terms of the current profile only and are used to identify its winning alternatives.

In order to define the algorithm R that we will monotonize we consider an alternative
definition of the Dodgson score for an alternative z∗ ∈ A and a profile ≻∈ Ln. Define the
set S≻i

k to be the set of alternatives z∗ bypasses as it is pushed k positions upwards in the
preference of agent i. Denote by S≻i the collection of all possible such sets for agent i, i.e.,

S≻i = {S≻i

k : k = 1, ..., ri(z∗,≻)− 1},
where ri(z∗,≻) denotes the rank of alternative z∗ in the preferences of agent i ∈ N (e.g., the
most and least preferred alternatives have rank 1 and m, respectively). Let S =

⋃
i∈N S≻i .

Then, the problem of computing the Dodgson score of alternative z∗ on the profile ≻ is
equivalent to selecting sets from S of minimum total size so that at most one set is selected
among the ones in S≻i for each agent i ∈ N and each alternative z ∈ A \ {z∗} appears in
at least defc(z∗, z,≻) selected sets. This can be expressed by the following integer linear
program:

minimize
∑
i∈N

ri(z
∗,≻)−1∑
k=1

k · x (
S≻i

k

)
(1)

subject to ∀z ∈ A \ {z∗},∑
i∈N

∑
S∈S≻i :z∈S

x(S) ≥ defc(z∗, z,≻)

∀i ∈ N,
∑

S∈S≻i

x(S) ≤ 1

∀S ∈ S, x(S) ∈ {0, 1}
The binary variable x(S) indicates whether the set S ∈ S is selected (x(S) = 1) or not

(x(S) = 0). Now, consider the LP relaxation of the above ILP in which the last constraint
is relaxed to x(S) ≥ 0. We define the voting rule R that sets scR(z∗,≻) equal to the optimal
value of the LP relaxation multiplied by Hm−1, where Hk is the kth harmonic number. In
[8] it is shown that

scD(y,≻) ≤ scR(y,≻) ≤ Hm−1 · scD(y,≻)

for every alternative y ∈ A, i.e., R is a Dodgson approximation with an approximation ratio
of Hm−1.

We now present a new voting rule Q by monotonizing R. The voting rule Q defines a
set of alternatives W (≻) that is the set of winners on a particular profile ≻. Then, it sets
scQ(y,≻) = 2 · scR(y∗,≻) for each alternative y ∈ W (≻), where y∗ is the winner according
to the voting rule R. In addition, it sets scQ(y,≻) = 2 · scR(y,≻) for each alternative
y /∈ W (≻).

In order to define the set W (≻) we will use another (slightly different) linear program
defined for two alternatives y, z∗ ∈ A and a profile ≻∈ Ln. The new LP has the same set
of constraints as the relaxation of (1) used in the definition of scR(z∗,≻) and the following
objective function:

minimize
∑
i∈N

ri(z
∗,≻)−1∑
k=1

k · x (
S≻i

k

)
+

∑
i∈N :y≻iz∗

ri(z
∗,≻)−ri(y,≻)−1∑

k=1

x
(
S≻i

k

)
(2)
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We define the pessimistic estimator pe(z∗, y,≻) for alternative z∗ ∈ A with respect to
another alternative y ∈ A \ {z∗} and a profile ≻∈ Ln to be equal to the objective value
of LP (2) multiplied by Hm−1. As will become apparent shortly, the pessimistic estimator
pe(z∗, y,≻′) upper-bounds the score of alternative z∗ under R on every profile ≻ such that
≻′ is a y-improvement of ≻, hence the pessimism with respect to estimating the score of z∗.
These pessimistic estimators will be our main tool in order to monotonize R.

We are now ready to complete the definition of the voting rule Q. The set W (≻)
is defined as follows. First, it contains all the winners according to voting rule R. An
alternative y that is not a winning alternative according to R is included in the set W (≻)
if pe(z, y,≻) ≥ scR(y,≻) for every alternative z ∈ A \ {y}.
Theorem 3.3. Q is a monotonic polynomial-time Dodgson approximation with an approx-
imation ratio of 2Hm−1.

4 Homogeneity

In this section we present our results on homogeneous Dodgson approximations. A voting
rule is homogeneous if duplicating the electorate, that is, duplicating the preference profile,
does not change the outcome of the election. An example (due to Brandt [6]) that demon-
strates that Dodgson’s rule fails homogeneity can be found in Table 2. The intuition is that
if alternatives x and y are tied in a pairwise election, the deficit of x against y does not
increase by duplicating the profile, whereas if x strictly loses to y in a pairwise election then
the deficit scales with the number of copies.

×2 ×2 ×2 ×2 ×2 ×1 ×1
d b c d a a d
c c a b b d a
a a b c c b b
b d d a d c c

Table 2: An example that demonstrates that Dodgson’s rule does not satisfy homogeneity.
A column headed by ×k represents k identical agents. In the above profile, a is the Dodgson
winner with a score of 3. By duplicating the electorate three times we obtain a profile in
which the winner is d with a score of 6.

4.1 The Simplified Dodgson Rule

Tideman [22, pages 199-201] defines the following simplified Dodgson rule and proves that
it is monotonic and homogeneous. Consider a profile ≻∈ Ln. If an alternative is a Con-
dorcet winner, then this alternative is the sole winner. Otherwise, the simplified Dodgson
rule assigns a score to each alternative and the alternative with the minimum score wins.
According to the simplified Dodgson rule, the score of an alternative x is

scTd(x,≻) =
∑

y∈A\{x}
max {0, n− 2 · |{i ∈ N : x ≻i y}|}.

Observe that scTd(x,≻) can be smaller than the Dodgson score of x and, hence, this defi-
nition does not correspond to a Dodgson approximation. For example, in profiles with an
even number of agents, scTd(x,≻) is 0 when x is tied against some alternatives and beats
the rest. Hence, we present an alternative definition of the simplified Dodgson rule as a
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Dodgson approximation by scaling the original definition. If an alternative x is a Condorcet
winner, then it has score scTd′(x,≻) = 0. Otherwise:

scTd′(x,≻) = m · scTd(x,≻) + m(log m + 1).

It is clear that this alternative definition is equivalent to the original one of the simplified
Dodgson rule, in the sense that it elects the same set of alternatives. It is also clear that
scTd(x,≻) can be computed in polynomial time, and, as mentioned above, Td is known
to be monotonic and homogeneous. Hence, in order to prove the following theorem it is
sufficient to prove that Td′ is a Dodgson approximation and to bound its approximation
ratio.

Theorem 4.1. Td′ is a monotonic, homogeneous, polynomial-time Dodgson approximation
with an approximation ratio of O(m log m).

4.2 Lower Bound

We next show that Td′ is the asymptotically optimal homogeneous Dodgson approximation
by proving a matching lower bound on the approximation ratio of homogeneous Dodgson
approximations. The lower bound is not based on any complexity assumptions and holds
for exponential-time Dodgson approximations as well. This is quite striking since, as stated
in Theorem 4.1, Td′ is also monotonic and polynomial-time.

Theorem 4.2. Any homogeneous Dodgson approximation has approximation ratio at least
Ω(m log m).

The proof is based on the construction of a preference profile with an alternative b ∈ A
that defeats some of the alternatives in pairwise elections, and is tied against many others.
Hence, it has a high Dodgson score. On the other hand, there is a second alternative that has
a Dodgson score of two, simply because it has a deficit of two against another alternative. In
order to obtain a good approximation ratio, the algorithm must not select b in this profile.
However, when the profile is replicated, the Dodgson score of b does not increase: it is still
tied against the same alternatives. In contrast, the Dodgson score of the other alternatives
scales with the number of copies. By homogeneity, we cannot select b in the replicated
profile, which yields the lower bound.

We can think of an agent as the subset of alternatives that are ranked above b. If b is
tied against an alternative, then that alternative is a member of exactly half the subsets.
The argument used in the proof of Theorem 4.1 implies that there is always a cover of
logarithmic size; the proof of Theorem 4.2 establishes that this bound is tight. Indeed, the
combinatorial core of the theorem’s proof is the construction of a set cover instance with the
following properties: each element of the ground set appears in roughly half the subsets, but
every cover requires a logarithmic number of subsets. This (apparently novel) construction
is due to Noga Alon [2].

5 Additional Properties

In this section we briefly summarize our results with respect to several additional social
choice properties that are not satisfied by Dodgson’s rule. In general, our lower bounds
with respect to these properties are at least linear in n, the number of agents. Since n is
almost always large, these results should strictly be interpreted as impossibility results, that
is, normally an upper bound of O(n) is not useful. We now (informally) formulate the five
properties in question; for more formal definitions the reader is referred to [22].
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We say that a voting rule satisfies combinativity if, given two preference profiles where
the rule elects the same winning set, the rule would also elect this winning set under the
profile obtained from appending one of the original preference profiles to the other. Note
that combinativity implies homogeneity.

A dominating set is a nonempty set of alternatives such that each alternative in the set
beats every alternative outside the set in pairwise elections. The Smith set is the unique
inclusion-minimal dominating set. A voting rule satisfies Smith consistency if winners under
the rule are always contained in the Smith set.

We say that a voting rule satisfies mutual majority consistency if, given a preference
profile where more than half the agents rank a subset of alternatives X ⊆ A above A \X ,
only alternatives from X can be elected. A voting rule satisfies invariant loss consistency if
an alternative that loses to every other alternative in pairwise elections cannot be elected.
Clearly, mutual majority consistency implies invariant loss consistency.

Independence of clones was introduced by Tideman [21]; see also the paper by
Schulze [20]. For ease of exposition we use a slightly weaker definition previously employed
by Brandt [6]; since we are proving a lower bound, a weaker definition only strengthens
the bound. Given a preference profile, two alternatives x, y ∈ A are considered clones if
they are adjacent in the rankings of all the agents, that is, their order with respect to every
alternative in A \ {x, y} is identical everywhere. A voting rule is independent of clones if a
losing alternative cannot be made a winning alternative by introducing clones.

We have the following theorem.

Theorem 5.1. Let V be a Dodgson approximation. If V satisfies combinativity or Smith
consistency, then its approximation ratio is at least Ω(nm). If V satisfies mutual majority
consistency, invariant loss consistency, or independence of clones, then its approximation
ratio is at least Ω(n).
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rendues à la pluralité de voix. Imprimerie Royal, 1785. Facsimile published in 1972 by
Chelsea Publishing Company, New York.

[11] P. C. Fishburn. Condorcet social choice functions. SIAM Journal on Applied Mathe-
matics, 33(3):469–487, 1977.

[12] A. Gibbard. Manipulation of voting schemes. Econometrica, 41:587–602, 1973.

[13] E. Hemaspaandra, L. A. Hemaspaandra, and J. Rothe. Exact analysis of Dodgson
elections: Lewis Carroll’s 1876 voting system is complete for parallel access to NP.
Journal of the ACM, 44(6):806–825, 1997.

[14] C. Homan and L. A. Hemaspaandra. Guarantees for the success frequency of an al-
gorithm for finding Dodgson election winners. Journal of Heuristics, 15(4):403–423,
2009.

[15] C. Kenyon-Mathieu and W. Schudy. How to rank with few errors. In Proceedings of the
39th Annual ACM Symposium on Theory of Computing (STOC), pages 95–103, 2007.

[16] J. C. McCabe-Dansted, G. Pritchard, and A. M. Slinko. Approximability of Dodgson’s
rule. Social Choice and Welfare, 31(2):311–330, 2008.

[17] N. Nisan. Introduction to mechanism design (for computer scientists). In N. Nisan,
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Approximation Algorithms and Mechanism

Design for Minimax Approval Voting1

Ioannis Caragiannis, Dimitris Kalaitzis, and Evangelos Markakis

Abstract

We consider approval voting elections in which each voter votes for a (possibly empty)
set of candidates and the outcome consists of a set of k candidates for some param-
eter k, e.g., committee elections. We are interested in the minimax approval voting
rule in which the outcome represents a compromise among the voters, in the sense
that the maximum distance between the preference of any voter and the outcome
is as small as possible. This voting rule has two main drawbacks. First, computing
an outcome that minimizes the maximum distance is computationally hard. Fur-
thermore, any algorithm that always returns such an outcome provides incentives to
voters to misreport their true preferences.
In order to circumvent these drawbacks, we consider approximation algorithms, i.e.,
algorithms that produce an outcome that approximates the minimax distance for
any given instance. Such algorithms can be considered as alternative voting rules.
We present a polynomial-time 2-approximation algorithm that uses a natural linear
programming relaxation for the underlying optimization problem and determinis-
tically rounds the fractional solution in order to compute the outcome; this result
improves upon the previously best known algorithm that has an approximation ratio
of 3. We are furthermore interested in approximation algorithms that are resistant
to manipulation by (coalitions of) voters, i.e., algorithms that do not motivate voters
to misreport their true preferences in order to improve their distance from the out-
come. We complement previous results in the literature with new upper and lower
bounds on strategyproof and group-strategyproof algorithms.

1 Introduction

Approval voting is a very popular voting protocol mainly used for committee elections [2].
In such a protocol, the voters are allowed to vote for, or approve of, as many candidates as
they like. In the last three decades, many scientific societies and organizations have adopted
approval voting for their council elections. The solution concept that has been used in almost
all such elections in practice is the minisum solution, i.e., output the committee which, when
seen as a 0/1-vector, minimizes the sum of the Hamming distances to the ballots. We assume
throughout the paper that the committee should be of some predefined size k. Then the
minisum solution consists of the k candidates with the highest number of approvals.

This solution however may ignore some voters’ preferences in certain instances and does
not take fairness issues into account. We demonstrate this with the following example
with four voters, five candidates, and k = 2. Each row represents the preference of the
corresponding voter. The minisum solution contains the candidates {a, b}. The distances of
the voters from this outcome are 1, 0, 2, and 5 for voters 1, 2, 3, and 4, respectively (counting
the number of alternatives in which the voter disagrees with the outcome). Instead, the
solution {a, c} has distances 3, 2, 2, and 3, respectively, and suggests a better compromise
among the voters since everybody is relatively close to the outcome.

1A slightly different version of the paper appeared in Proceedings of the 24th AAAI Conference on
Artificial Intelligence (AAAI 10). This work was partially supported by the European Union under the Euro-
NF Network of Excellence and Cost Action IC0602 “Algorithmic Decision Theory”, and by a “Caratheodory”
basic research grant from the University of Patras.
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a b c d e
1 1 1 0 0 1
2 1 1 0 0 0
3 1 1 1 1 0
4 0 0 1 1 1

Recently, a new voting rule, the minimax solution, was introduced as a means to achieve a
compromise between the voters’ preferences [3]. The minimax solution picks the k candidates
for which the maximum (Hamming) distance of any voter from the outcome is minimized.
Since this rule minimizes the disagreement with the least satisfied voter, it tends to result in
outcomes that are more widely acceptable than the minisum solution. On the negative side
the minimax solution has two main drawbacks that prevent its applicability: (i) the problem
of computing the minimax solution is NP-hard, and (ii) voters may have incentives to
misreport their preference in order to improve the distance of their true preference from the
outcome. Our main goal in this paper is to tackle these issues by resorting to approximation
algorithms.

Approximation algorithms tackle the computational hardness of an optimization problem
by producing (in polynomial-time) solutions provably close to optimal ones for any problem
instance; see [9] for a coverage of early work in the field. We refer to the optimization problem
of computing the minimax solution as k-minimax approval. [4] present a 3-approximation
algorithm for the problem; given an instance, the algorithm produces a solution (i.e., a set of
k candidates) so that its distance from any voter’s preference is at most 3 times the maximum
distance of the voters from the minimax solution. The algorithm is very simple to describe
and we will refer to it here as the k-completion algorithm: it arbitrarily picks a voter and
computes a set of k candidates which has minimum distance from this voter. An immediate
question is whether algorithms with better approximation ratios exist. Another interesting
question is whether we can have good approximations by non-dictatorial algorithms. Note
that the k-completion algorithm is dictatorial as it is based only on one voter’s preferences.

The issue of resistance to manipulation is the very subject of Mechanism Design; see [6]
for an introduction to the field. In our context, it translates to algorithms for k-minimax
approval which, given a profile, compute an approximate solution in such a way that no sin-
gle voter or a coalition of voters have any incentive to misreport their preferences in order
to decrease their distance from the outcome. The corresponding properties of resistance to
manipulation by single voters and coalitions of voters are known as strategyproofness and
group-stratefyproofness, respectively. [4] prove that the minimax solution is not resistant
to manipulation while the k-completion algorithm is. They also pose the question of com-
puting the best possible bound on the approximation ratio of algorithms that are resistant
to manipulation. This question falls within the line of research on mechanisms without
monetary transfers [8] and, in particular, approximate mechanism design without money
[7].

We make progress in both directions. Concerning the approximability of k-minimax ap-
proval by polynomial-time algorithms, we first establish a connection between the property
of Pareto-efficiency and approximability. As a corollary, we obtain that Minisum (i.e., the
algorithm that returns a minisum solution) has approximation ratio at most 3 − 2

k+1 for
k-minimax approval. Our strongest result in this direction is an algorithm based on linear
programming that achieves an improved approximation ratio of 2; this is a significant im-
provement compared to the previously best known algorithms. The algorithm is based on
rounding the fractional solution of a natural linear programming relaxation for k-minimax
approval. This result is the best possible that can be obtained using the particular LP
relaxation which has an integrality gap of 2.
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In the direction of algorithms resistant to manipulation, we observe that a variation
of Minisum is strategyproof and present a Pareto-efficient refinement of the k-completion
algorithm. Due to Pareto-efficiency, the latter algorithm has approximation ratio 3 − 2

k+1
as well. We also present the first inapproximability results for algorithms that are resistant
to manipulation, making progress on the question posed in [4]. In particular, we present a
lower bound of 2 − 2

k+1 on the approximation ratio of any strategyproof algorithm and a
negative result which states that a slightly stronger notion of group-strategyproofness cannot
be achieved by algorithms with approximation ratio different than 3− 2

k+1 and infinity. Our
lower bounds are not based on any computational complexity assumption and, hence, hold
for exponential-time algorithms as well.

2 Notation and Definitions

We fix some notation used in the following. We typically use n to denote the number of
voters and m for the number of candidates. We denote the set of candidates by A. A
preference is simply a subset of A. A profile P is a tuple P = (P1, ..., Pn) where Pi denotes
the preference of voter i (i.e., the set of candidates she approves). Throughout the paper we
make the reasonable assumption that n > k. When this is not explicitly mentioned (e.g.,
in some lower bound proofs), we can complete the profile by adding indifferent voters (that
approve no candidate).

We extend the notion of (Hamming) distance to subsets of A as follows. We say that
the distance of two sets Q and T is the total number of candidates in which they differ, i.e.,

d(Q, T ) = |Q \ T |+ |T \Q| = |Q|+ |T | − 2|Q ∩ T |.
Note that this is precisely the Hamming distance of the sets, when seen as binary vectors
where the ith coordinate of each vector equals 1 if the ith candidate belongs to the set.

3 Approximation Algorithms

We begin by establishing a connection between Pareto-efficiency and low approximation
ratio.

Definition 1. Given a profile P , a size-k set K ⊆ A is called Pareto-efficient with respect
to P if there is no other size-k set K ′ ⊆ A such that d(K ′, Pi∗) < d(K, Pi∗) for some voter
i∗ and d(K ′, Pi) ≤ d(K, Pi) for any other voter i. An algorithm for k-minimax approval is
Pareto-efficient if, on any input profile P , its outcome is Pareto-efficient with respect to P .

The next lemma significantly extends the class of 3-approximation algorithms for
minimax-approval and will be proved very useful later. Interestingly, Minisum is Pareto-
efficient; the proof follows by the definition of Pareto-efficiency and the fact that Minisum
minimizes the sum of the distances of the outcome from the voters.

Lemma 2. Any Pareto-efficient algorithm for k-minimax approval has approximation ratio
at most 3− 2

k+1 .

Proof. Let P be a profile and let O and K be the minimax solution and the outcome returned
by a non-optimal Pareto-efficient algorithm on input P . Let OPT = maxi{d(O, Pi)}. We
will show that d(K, Pi)/OPT ≤ 3− 2

k+1 for every voter i.
First assume that OPT ≥ k + 1. Then, by applying the triangle inequality, we obtain

d(K, Pi)
OPT

≤ d(K, O) + d(O, Pi)
OPT

≤ 1 + 2k/OPT ≤ 3− 2
k + 1
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for each voter i. The second inequality follows since the distance of any two size-k sets is
at most 2k and d(O, Pi) ≤ OPT .

Now, assume that OPT < k + 1. Since the solution returned by the algorithm is non-
optimal for the particular profile P , there exists a voter i∗ such that d(K, Pi∗) < d(O, Pi∗ ).
Indeed, if this was not the case, then K would not be Pareto-efficient with respect to P . By
the definition of the distance, we observe that d(K, Pi∗) has the same parity with d(O, Pi∗ ),
and the above argument implies that

d(K, Pi∗) ≤ d(O, Pi∗ )− 2.

Now, using this observation and by applying the triangle inequality twice, we have

d(K, Pi)
OPT

≤ d(K, Pi∗) + d(Pi∗ , Pi)
OPT

≤ d(K, Pi∗) + d(O, Pi∗ ) + d(O, Pi)
OPT

≤ 2d(O, Pi∗) + d(O, Pi)− 2
OPT

≤ 3− 2
OPT

≤ 3− 2
k + 1

for any voter i. This completes the proof.

We now present an algorithm based on linear programming. On an input profile P , the
algorithm uses the following equivalent integer linear program for k-minimax approval.

minimize q

subject to: ∀i ∈ N, q + 2
∑
a∈Pi

xa ≥ k + |Pi|∑
a∈A

xa = k

∀a ∈ A, xa ∈ {0, 1}
q ≥ 0

The variable xa denotes whether candidate a is included in the solution (xa = 1) or not
(xa = 0). The first constraint essentially lower-bounds the value of variable q by the
maximum distance of a voter from the size-k set that consists of the candidates included
in the solution. The LP-based algorithm solves the LP relaxation in which the integrality
constraint has been relaxed to 0 ≤ xa ≤ 1. In this way, a fractional solution is obtained
with the x-variables having values in [0, 1]. Then, the algorithm includes the candidates
with the k largest x-variables in the final solution (by breaking ties arbitrarily).

Theorem 3. The LP-based algorithm has approximation ratio at most 2.

Proof. Consider the application of the LP-based algorithm on a profile P . Denote by (q∗, x∗)
the optimal fractional solution of the LP and let K be the outcome of the LP-based algo-
rithm. We will show that, for each voter i, her preference Pi has distance at most 2q∗ from
the set K. Since q∗ is a lower bound on the cost of the optimal integral solution for the par-
ticular instance of k-minimax approval, we will have obtained the desired 2-approximation
bound.

Denote by Yi the set of candidates in the preference of voter i that belong to the set K,
i.e., Yi = Pi∩K. Let j be a voter whose preference Pj has maximum distance from K. The
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first constraint of the LP implies that

q∗ ≥ k + |Pj | − 2
∑
a∈Pj

xa

and, using the fact that the x-variables of the LP are upper-bounded by 1 (due to the third
LP constraint), we obtain that q∗ ≥ |k − |Pj ||. Observe that if |Yj | = min{k, |Pj|}, then
d(K, Pj) = |k − |Pj ||, i.e., the solution of the algorithm is optimal in this case. So, in the
following, we assume that |Yj | < min{k, |Pj |}.

For the sake of contradiction, assume that d(K, Pj) > 2q∗. By the definition of distance
and the first LP constraint, we obtain

k + |Pj | − 2|Yj | > 2q∗ ≥ 2

k + |Pj | − 2
∑
a∈Pj

x∗a


and, equivalently,

0 > k + |Pj |+ 2|Yj| − 4
∑
a∈Pj

x∗a. (1)

Since none of the candidates in Pj \ Yj was selected in the solution, this means that
the x-variables corresponding to the k − |Yj | candidates in K \ Yj are not smaller than any
x-variable corresponding to a candidate in Pj \ Yj , i.e., for each candidate a in K \ Yj , it
holds that x∗a ≥ maxa′∈Pj\Yj

{x∗a′}. By summing over all candidates in K \ Yj , we have∑
a∈K\Yj

x∗a ≥ (k − |Yj |) max
a′∈Pj\Yj

{xa′}

≥ k − |Yj |
|Pj | − |Yj |

∑
a′∈Pj\Yj

x∗a′ . (2)

By the definition of set Yj , we have that every candidate of K \ Yj also belongs to A \ Pj .
Hence ∑

a∈A\Pj

x∗a ≥
∑

a∈K\Yj

x∗a. (3)

Furthermore, using the third LP constraint, we have∑
a∈Pj\Yj

x∗a =
∑
a∈Pj

x∗a −
∑
a∈Yj

x∗a ≥
∑
a∈Pj

x∗a − |Yj |. (4)

Putting (2), (3), and (4) together, we have∑
a∈A\Pj

x∗a ≥ k − |Yj |
|Pj | − |Yj |

∑
a∈Pj

x∗a −
|Yj |(k − |Yj |)
|Pj | − |Yj | .

Now, observe that the left hand side in the above inequality satisfies (due to the second LP
constraint) ∑

a∈A\Pj

x∗a =
∑
a∈A

x∗a −
∑
a∈Pj

x∗a = k −
∑
a∈Pj

x∗a.
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Hence, the above inequality yields

k −
∑
a∈Pj

x∗a ≥ k − |Yj |
|Pj | − |Yj |

∑
a∈Pj

x∗a −
|Yj |(k − |Yj |)
|Pj | − |Yj | ,

and, equivalently, ∑
a∈Pj

x∗a ≤ k|Pj | − |Yj |2
k + |Pj | − 2|Yj| . (5)

Now, (1) and (5) yield to the following contradiction:

0 > k + |Pj |+ 2|Yj | − 4
k|Pj | − |Yj |2

k + |Pj | − 2|Yj|

=
(k − |Pj |)2

k + |Pj | − 2|Yj | ≥ 0,

We conclude that d(K, Pj) ≤ 2q∗ as desired.

Given that the rounding in the LP-based algorithm is performed in an extremely simple
way, one might hope that a more clever rounding could yield an improved algorithm. Unfor-
tunately, the particular LP relaxation has an integrality gap of 2 and well-known arguments
from the theory of approximation algorithms [9] imply that this is the best possible bound
that can be obtained using the particular LP relaxation. Consider a profile with at least 2k
candidates and denote by A′ a size-2k set of candidates. There are sufficiently many voters
so that each one approves a different set of k candidates from A′. Clearly, for any k-size
subset Q of A′, there exists a voter whose preference does not include any of the candidates
in Q. Hence, the minimax solution on the particular instance has cost at least 2k. The claim
follows by observing that the solution with the x-variables set to 1/2 and q = k satisfies the
constraints of the LP relaxation.

4 Resistance to Manipulation

Let us first formally define strategyproofness in our setting. Given a profile P and an algo-
rithm R, we denote by R(P ) the outcome of the algorithm on profile P . We also denote by
P−i the preferences of all voters besides i. Hence, we can also write P as (P−i, Pi). Strate-
gyproofness means that no voter i has an incentive to unilaterally change her preference so
as to reduce the distance of Pi from the outcome of the algorithm.

Definition 4. An algorithm R is strategyproof (SP) if for any voter i, for any profile P ,
and for any P ′

i ⊆ A:
d(Pi, R(P−i, Pi)) ≤ d(Pi, R(P−i, P

′
i )).

We begin with an example demonstrating that the minimax solution is not SP. Consider
the profile at the left table below with k = 2; a similar example is presented in [4]. In this

a b c
1 1 1 0
2 0 1 1
3 0 1 0

a b c
1 1 1 0
2 0 0 1
3 0 1 0

profile, the sets {a, b} and {b, c} are those with distance at most 2 from all voters. Assume
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that {a, b} is the minimax solution returned for the particular profile (the other case is
symmetric). Now, assume that voter 2 has {c} as her preference (see the right table). Now,
the only set that has distance at most 2 from each voter’s preference is {b, c}, i.e., exactly
the preference of voter 2 in the first profile. This implies that voter 2 has an incentive to
misreport her preference as {c} instead of {b, c} and demonstrates that minimax is not SP.
The same example can show that the LP-based algorithm is not SP either.

Note that both solutions mentioned above are minisum solutions as well. This implies
that Minisum is not SP in general. However, we can introduce a simple tie-breaking rule
which assigns distinct ids to the candidates and ties for the last positions of the outcome
are resolved by selecting the candidates with the smallest id. Then, Minisum equipped with
the smallest-id-first tie-breaking rule can be easily proved to be strategyproof. Note that
the particular assumption on the way ties are broken does not affect the Pareto-efficiency of
Minisum. We summarize the discussion on Minisum to the following statement. Compared
to the k-completion algorithm, Minisum is certainly non-dictatorial.

Theorem 5. Minisum with the smallest-id tie-breaking rule is SP and has approximation
ratio at most 3− 2

k+1 for k-minimax approval.

Let us remark here that the fact that a variation of Minisum is SP indicates that k-
minimax approval is sufficiently restricted as a setting since well-known impossibility results
state that, in general, strategyproofness is only achievable by dictatorial algorithms; see [6].

In the following, we present a lower bound on the approximation ratio of SP algorithms.
We outline the main argument with the following example with k = 1 (we essentially adapt
to our model an argument used in [7] in a slightly different context).

Consider the application of an SP algorithm on the following profile with k = 1. Without

a1 a2 a3 a4 a5 a6

1 1 1 1 0 0 0
2 0 0 0 1 1 1

loss of generality, let {a1} be the outcome of the algorithm for this profile (the other cases
can be handled symmetrically). Now consider the profile below. Again, the outcome should

a1 a2 a3 a4 a5 a6

1 1 0 0 0 0 0
2 0 0 0 1 1 1

be the same otherwise voter 1 would have an incentive to misreport her preference from
{a1} to {a1, a2, a3} and improve her distance from the outcome returned by the algorithm;
this would violate strategyproofness. The maximum distance in the second profile is 4.
The minimax solution approves one of the three rightmost candidates and has maximum
distance 2. Hence, the approximation ratio is 2 in this case.

The extension of this argument for higher values of k yields a slightly weaker lower
bound.

Theorem 6. Any SP algorithm for k-minimax approval has approximation ratio at least
2− 2

k+1 .

Proof. Consider a profile with m ≥ 4k candidates and two voters 1 and 2 that approve the
disjoint size-2k sets P1 and P2, respectively. Let K be the outcome of an SP algorithm on
this particular profile. Assume that P1 ∩ K ≤ k/2 (the other case is handled similarly).
Now, consider the profile in which voter 1 approves the set P1 and voter 2 approves the
set K. We argue that the outcome of the algorithm is again K. Indeed, if this was not
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the case and the outcome was a set K ′ 6= K, voter 2 would have an incentive to misreport
her preference as P2 instead of K in order to decrease the distance of her true preference
from the outcome. The distance of voters 1 and 2 from the outcome in the second profile is
d(K, P1) = 3k − 2|K ∩ P1| and 0, respectively.

Let t be an integer such that

3k − 2|K ∩ P1| − 2
4

≤ t ≤ 3k − 2|K ∩ P1|+ 2
4

.

Since |K ∩ P1| ≤ k/2 and |P1| = 2k, it holds that t ≤ |P1 \ K|. Consider the size-k set O
which consists of the alternatives in K ∩P1, t alternatives from P1 \K, and k− |K ∩P1|− t
alternatives from K \ P1. We have

d(O, K) = 2t ≤ 3k − 2|K ∩ P1|+ 2
2

and
d(O, P1) = 3k − 2|K ∩ P1| − 2t ≤ 3k − 2|K ∩ P1|+ 2

2
.

Hence, the approximation ratio of the algorithm for the second profile is at least

3k − 2|K ∩ P1|
max{d(O, K), d(O, P1)} ≥ 2− 4

3k − 2|K ∩ P1|+ 2

≥ 2− 2
k + 1

.

The last inequality follows since |K ∩ P1| ≤ k/2.

We now move to stronger notions of resistance to manipulation. For a set (or coalition)
of voters S, we denote by P−S the preferences of the voters not in S.

Definition 7. An algorithm R is group-strategyproof (GSP) if for any coalition S of voters,
and for any profile P , there is no profile P ′

S of the voters in S such that:

d(Pi, R(P−S , PS)) > d(Pi, R(P−S , P ′
S)) ∀i ∈ S.

It is not hard to see that Minisum is not GSP. In contrast, the k-completion algorithm
can be easily implemented so that it is GSP. The reason for this is that a coalition that
does not contain the dictator cannot affect the outcome and the dictator has no incentive to
participate in any coalition since her distance from the outcome is anyway minimum. We
present a refinement of the k-completion algorithm which can be proved to be simultaneously
GSP and Pareto-efficient. Then, Lemma 2 implies that its approximation ratio is at most
3 − 2

k+1 . The algorithm uses an ordering of the voters with the dictator being first and an
ordering of the candidates. Now, we can think of a candidate a as a binary vector za such
that the i-th coordinate of the vector is 1 if voter i approves candidate a and 0 otherwise.
For each candidate a, it computes its score as

sc(a) =
n∑

i=1

za(i) · 2n−i

and picks the k candidates with highest scores by breaking ties according to the candidate
ordering.

The Pareto-efficiency and strategyproofness of this algorithm become apparent by the
following interpretation of its execution. Initially, it considers all possible size-k sets as
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possible outcomes. Among them, it keeps the ones that have the same minimum distance
from the preference of voter 1. Then, among them, it keeps the ones that have the same
minimum distance from the preference of voter 2, and so on. After considering voter n, it
returns as an outcome one among the sets kept at that point.

Our last result concerns a stronger definition of group-strategyproofness.

Definition 8. An algorithm R is strongly group-strategyproof (strongly GSP) if for any
coalition S of voters, and for any profile P , there is no profile P ′

S of the voters in S such
that:

d(Pi, R(P−S , PS)) ≥ d(Pi, R(P−S , P ′
S)) ∀i ∈ S

with strict inequality for at least one voter of S.

The rationale behind this concept is that we demand the algorithm to be resistant to
coalitions in which some voters may change their preference profile in order to help other
members of the coalition (without necessarily gaining something for themselves). We make
a connection between Pareto-efficiency and strong group-strategyproofness. We show that
the former property is necessary in order to guarantee the existence of good approximation
algorithms satisfying the latter. Of course, it is not sufficient. For example, minisum is
Pareto-efficient but not even GSP. We also point out that this property is not necessary for
group-strategyproofness since there are implementations of the k-completion algorithm that
are not Pareto-efficient.

Lemma 9. Any strongly GSP algorithm for k-minimax approval that has finite approxima-
tion ratio is Pareto-efficient.

Proof. Consider a strongly GSP algorithm with finite approximation ratio. First observe
that in each profile in which all voters approve the same set S of k candidates, the algorithm
must return S as the outcome. If this is not the case for some profile of this kind, then the
approximation ratio would be infinite.

Assume now that the algorithm returns a size-k set K on some profile which is not
Pareto-efficient. Then, there exists another size-k set K ′ such that d(K ′, Pi∗) < d(K, Pi∗)
for some voter i∗ and d(K ′, Pi) ≤ d(K, Pi) for any other voter i. Now, the voters have an
incentive to misreport the set K ′ and improve their distance from the outcome.

Lemmas 2 and 9 imply that if a strongly GSP algorithm with finite approximation ratio
exists, then it must have approximation ratio at most 3− 2

k+1 . We complement this corollary
with the following tight lower bound.

Theorem 10. Any strongly GSP algorithm for k-minimax approval has approximation ratio
at least 3− 2

k+1 .

Proof. Consider an algorithm with approximation ratio strictly better than 3 − 2
k+1 . We

will actually prove that it is manipulable by two voters. Consider the profile with 3k + 1
candidates and 3k + 1 voters in which the preference of voter i contains only candidate i.
Denote by K the outcome of the algorithm for the particular profile. Let i∗ be a voter
that has a candidate not in K in her preference and consider the profile in which voter i∗

approves the 2k+1 candidates outside K. Now, since the algorithm has approximation ratio
strictly better than 3−2/(k+1), the outcome for the new profile should include a candidate
i′ not in K. Hence, voters i∗ and i′ have an incentive to manipulate the algorithm; voter i∗

misreports her preference and does not decrease her distance and voter i′ strictly decrease
her distance from the outcome.

Together with the above discussion, Theorem 10 leads to the following interesting state-
ment.

451



Corollary 11. Strongly GSP algorithms for k-minimax approval have at most two possible
values for their approximation ratio: it can be either exactly 3− 2

k+1 or infinity.

5 Discussion

As a conclusion, let us discuss an interesting (but not obvious at first glance) relation of
k-minimax approval to facility location problems; see [8, 9] and the references therein. In
facility location, we are given agents located at the nodes of a network and the objective
is to locate a facility at a node so that the maximum distance of any agent to the facility
is minimized. k-minimax approval can be thought of as a facility location problem on a
hypercubic network. Recall that a hypercube of dimension m has 2m nodes each associated
with a distinct 0/1 vector. An edge connects two nodes if their vectors differ in exactly one
coordinate. So, k-minimax approval on a profile with n voters and m candidates can be
thought of as a facility location instance with n agents (corresponding to the voters) located
at some nodes of a hypercube of dimension m (the vector of such a node corresponds to the
preference of a voter) with the objective being to put a facility to a node with exactly k 1s
in its vector (corresponding to a size-k set of candidates) so that the maximum distance of
any agent from the facility is minimized.

Besides this relation, the restriction on the type of nodes where the facility can be placed
differentiates significantly k-minimax approval from standard facility location so that the
best known approximation algorithm (implicit in [5]) for facility location on the hypercube
does not carry over to our model. Furthermore, from the resistance to manipulation view-
point, an important property of the standard facility location setting is single-peakedness
in the agents preferences in the sense that the location of the agent is her mostly preferred
location for the facility. This property does not hold in our model as there may be several
among the possible locations an agent may prefer the most. A consequence of this peculiar-
ity is that strategyproofness does not imply group-strategyproofness in k-minimax approval,
in contrast to what is the case for single-peaked agent preferences [1] in facility location set-
tings. We have demonstrated this when we observed that (a variation of) Minisum is SP
but not GSP.

Our work leaves several challenging questions open. Concerning the approximability of k-
minimax approval there is no known lower bound on the approximation ratio of polynomial-
time algorithms besides the NP-hardness of the problem. It is interesting either to find such
a lower bound or obtain a polynomial-time approximation scheme (PTAS), i.e., an algorithm
that can achieve an approximation guarantee 1 + ǫ for any constant ǫ > 0 at the expense of
a (possibly exponential) dependence of its running time on 1/ǫ. Progress in either direction
will significantly improve our understanding of k-minimax approval. Experimental results in
[4] provide evidence that local-search algorithms might have very low approximation ratios.
Interestingly, we have a lower bound (very close to 3) for a natural and broad class of
local-search algorithms that includes the ones considered in that paper; details will appear
in the final version of the paper. As far as resistance to manipulation is concerned, our
work leaves an intriguing gap between the upper bound of 3− 2

k+1 and the lower bound of
2− 2

k+1 on the approximation ratio of SP or GSP algorithms for k-minimax approval when
k ≥ 2. Furthermore, detecting whether strongly GSP algorithms with finite approximation
ratio exist or not is of interest; here, we have made several unsuccessful attempts in both
directions.
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Group-Strategyproof Irresolute

Social Choice Functions

Felix Brandt

Abstract

We axiomatically characterize the class of pairwise irresolute social choice functions
that are group-strategyproof according to Kelly’s preference extension. The class
is narrow but contains a number of appealing Condorcet extensions such as the
minimal covering set and the bipartisan set, thereby answering a question raised
independently by Barberà (1977) and Kelly (1977). These functions furthermore
encourage participation and thus do not suffer from the no-show paradox (under
Kelly’s extension).

1 Introduction

One of the central results in social choice theory is that every social choice function (SCF)—
a function mapping individual preferences to a collective choice—is susceptible to strategic
manipulation (Gibbard, 1973; Satterthwaite, 1975). However, the classic result by Gibbard
and Satterthwaite only applies to resolute, i.e., single-valued, SCFs. The notion of a resolute
SCF is rather restricted and artificial.1 For example, consider a situation with two voters
and two alternatives such that each voter prefers a different alternative. The problem is
not that a resolute SCF has to pick a single alternative (which is a well-motivated practical
requirement), but that it has to pick a single alternative based on the individual preferences
alone (see, e.g., Kelly, 1977). As a consequence, resoluteness is at variance with such
elementary notions as neutrality and anonymity.

In order to remedy this shortcoming, Gibbard (1977) strengthened his impossibility to
social choice functions that yield probability distributions over the set of alternatives rather
than single alternatives. While this impossibility result is sweeping, it makes relatively
strong assumptions on the voters’ preferences. In contrast to the traditional setup in social
choice theory, which usually only involves ordinal preferences, Gibbard’s result relies on the
axioms of von Neumann and Morgenstern (1947) (or an equivalent set of axioms) in order
to compare lotteries over alternatives.2

The gap between Gibbard and Satterthwaite’s theorem for resolute social choice func-
tions and Gibbard’s theorem for probabilistic social choice functions has been filled by a
number of impossibility results with varying underlying notions of how to compare sets of
alternatives with each other (e.g., Barberà, 1977; Kelly, 1977; Gärdenfors, 1976; Duggan and
Schwartz, 2000). In this paper, we will be concerned with the weakest (and therefore least
controversial) preference extension from alternatives to sets due to Kelly (1977). According
to this definition, a set of alternatives is preferred to another set of alternatives if all elements
of the former are preferred to all elements of the latter. Barberà (1977) and Kelly (1977)
have shown independently that, for more than two alternatives, all social choice functions
that are rationalizable via a binary preference relation are manipulable. Kelly (1977) con-
cludes his paper by contemplating that “one plausible interpretation of such a theorem is
that, rather than demonstrating the impossibility of reasonable strategy-proof social choice

1For example, Gärdenfors (1976) refers to resolute SCFs as “unnatural” and Kelly (1977) calls them
“unreasonable.”

2Gibbard (1978) later strengthened his impossibility theorem by generalizing it to choice mechanisms
that do not necessarily take preference relations as inputs.
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functions, it is part of a critique of the regularity [rationalizability] conditions” and Barberà
(1977) states that “whether a nonrationalizable collective choice rule exists which is not
manipulable and always leads to nonempty choices for nonempty finite issues is an open
question.” Also referring to nonrationalizable choice functions, Kelly (1977) writes: “it is
an open question how far nondictatorship can be strengthened in this sort of direction and
still avoid impossibility results.”

In this paper, we characterize a class of social choice functions that cannot be manipu-
lated by groups of voters who misrepresent their strict preferences. As a corollary of this
characterization, all monotonic social choice functions that satisfy the strong superset prop-
erty are group-strategyproof. The strong superset property goes back to early work by
Chernoff (1954) (see also Bordes, 1979; Aizerman and Aleskerov, 1995) and requires that
choice sets are invariant under the removal of unchosen alternatives. It has recently been
used to characterize so-called set-rationalizable choice functions (Brandt and Harrenstein,
2009). The class of social choice functions satisfying the strong superset property is narrow
but contains appealing Condorcet extensions such as weak closure maximality (also known
as the top cycle, GETCHA, or the Smith set), the minimal covering set, the bipartisan set,
and their generalizations (see Bordes, 1976; Laslier, 1997; Dutta and Laslier, 1999; Laslier,
2000).3 Strategyproofness (according to Kelly’s preference extension) thus draws a sharp
line within the space of social choice functions as many established social choice functions
(such as plurality, Borda’s rule, and all weak Condorcet extensions) are known to be ma-
nipulable (Taylor, 2005) (and also fail to satisfy the strong superset property (Brandt and
Harrenstein, 2009)). We furthermore show that our characterization is complete for pair-
wise social choice functions, i.e., social choice functions whose outcome only depends on the
comparisons between pairs of alternatives.

Kelly’s conservative preference extension has previously been primarily invoked in im-
possibility theorems because it is independent of the voters’ attitude towards risk and the
mechanism that eventually picks a single alternative from the choice set. Its interpretation
in positive results, such as in this paper, is more debatable. Gärdenfors (1979) has shown
that Kelly’s extension is appropriate in a probabilistic context when voters are unaware of
the lottery that will be used to pick the winning alternative. (Whether they are able to
attach utilities to alternatives or not does not matter.) Alternatively, one can think of an
independent chairman or a black-box that picks alternatives from choice sets in a way that
prohibits a meaningful prior distribution. Whether these assumptions can be reasonably
justified or such a device can actually be built is open to discussion. In particular, the study
of distributed protocols or computational selection devices that justify Kelly’s extension
appears to be promising.

Remarkably, the robustness of the minimal covering set and the bipartisan set with
respect to strategic manipulation also extends to agenda manipulation. The strong superset
property precisely states that a social choice function is resistant to adding and deleting
losing alternatives (see also the discussion by Bordes, 1983). Moreover, both choice rules
are composition-consistent, i.e., they are strongly resistant to the introduction of clones
(Laffond et al., 1993b, 1996).4 Scoring rules like plurality and Borda’s rule are prone to
both types of agenda manipulation (Laslier, 1996; Brandt and Harrenstein, 2009) as well as
to strategic manipulation.

We conclude the paper by pointing out that voters can never benefit from abstaining
strategyproof pairwise SCFs. This does not hold for resolute Condorcet extensions, which

3If we assume an odd number of voters with strict preferences, the tournament equilibrium set (Schwartz,
1990) and the minimal extending set (Brandt, 2009) are conjectured to satisfy the strong superset property.
Whether this is indeed the case depends on a certain graph-theoretic conjecture (Laffond et al., 1993a;
Brandt, 2009).

4In addition to these attractive properties, the minimal covering set and the bipartisan set can be
computed efficiently using non-trivial algorithms (Brandt and Fischer, 2008).
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is commonly known as the no-show paradox (Moulin, 1988).

2 Related Work

Apart from the mentioned theorems by Barberà (1977) and Kelly (1977), there are nu-
merous impossibility results concerning strategyproofness based on other—stronger—types
of preferences over sets (see, e.g., Gärdenfors, 1976; Duggan and Schwartz, 2000; Barberà
et al., 2001; Ching and Zhou, 2002; Sato, 2008; Umezawa, 2009), many of which are sur-
veyed by Taylor (2005) and Barberà (2010). To the best of our knowledge, Jimeno et al.
(2009) provide the only extension of Moulin’s theorem on abstention for resolute Condorcet
extensions (Moulin, 1988) to irresolute SCFs. Interestingly, they use stronger assumptions
on preferences over sets and therefore obtain a negative result whereas our result is positive.

Inspired by early work by Bartholdi, III et al. (1989), recent research in computer science
investigated how to use computational hardness—namely NP-hardness—as a barrier against
manipulation (see, e.g., Conitzer and Sandholm, 2003; Conitzer et al., 2007; Faliszewski
et al., 2009). However, NP-hardness is a worst-case measure and it would be much preferred
if manipulation is hard on average. Recent negative results on the hardness of typical
cases have cast doubt on this strand of research (see, e.g., Conitzer and Sandholm, 2006;
Friedgut et al., 2008; Walsh, 2009), but more work remains to be done to settle the question
completely. The current state of affairs is surveyed by Faliszewski and Procaccia (2010).
If computational protocols or devices can be used to justify Kelly’s extension by making
“unpredictable” random selections, this might be an interesting alternative application of
computational techniques to obtain strategyproofness.

3 Preliminaries

In this section, we provide the terminology and notation required for our results. We will
use the standard model of social choice functions with a variable agenda (see, e.g., Taylor,
2005).

3.1 Social Choice Functions

Let U be a universe of alternatives over which voters entertain preferences. The preferences
of voter i are represented by a complete preference relation Ri ⊆ U × U .5 We have a Ri b
denote that voter i values alternative a at least as much as alternative b. In compliance
with conventional notation, we write Pi for the strict part of Ri, i.e., a Pi b if a Ri b but
not b Ri a. Similarly, Ii denotes i’s indifference relation, i.e., a Ii b if both a Ri b and b Ri a.
The set of all preference relations over the universal set of alternatives U will be denoted
by R(U). The set of preference profiles, i.e., finite vectors of preference relations, will be
denoted by R∗(U). The typical element of R∗(U) is R = (R1, . . . , Rn) and the typical set
of voters is N = {1, . . . , n}.

Any subset of U from which alternatives are to be chosen is a feasible set (sometimes
also called an issue or agenda). Throughout this paper we assume the set of feasible subsets
of U to be given by F(U), the set of finite and non-empty subsets of U , and generally refer to
finite non-empty subsets of U as feasible sets. Our central object of study are social choice

5Transitivity of individual preferences is not necessary for our results to hold. In fact, Theorem 2 is easier
to prove for general—possibly intransitive—preferences. Theorem 3, on the other hand, would require a
more cumbersome case analysis for transitive preferences.
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functions, i.e., functions that map the individual preferences of the voters and a feasible set
to a set of socially preferred alternatives.6

Definition 1. A social choice function (SCF) is a function f : R∗(U)×F(U)→ F(U) such
that f(R,A) ⊆ A and f(R,A) = f(R′, A) for all feasible sets A and preference profiles R,R′

such that R|A = R′|A.

A Condorcet winner is an alternative a that, when compared with every other alternative,
is preferred by more voters, i.e., |{i ∈ N | a Ri b}| > |{i ∈ N | b Ri a}| for all alternatives
b 6= a. An SCF is called a Condorcet extension if it uniquely selects the Condorcet winner
whenever one exists.

The following notational convention will turn out to be useful throughout the
paper. For a given preference profile R, Ri:(a,b) denotes the preference profile
(R1, . . . , Ri−1, R

′
i, Ri+1, . . . , Rn) where R′i = Ri∪{(a, b)} if b Pi a and R′i = Ri\{(b, a)} oth-

erwise. That is, Ri:(a,b) is identical to R except that alternative a is (weakly) strengthened
with respect to b within voter i’s preference relation.

A standard property of SCFs that is often considered is monotonicity. An SCF is mono-
tonic if a chosen alternative remains in the choice set when it is strengthened in individual
preference relations while leaving everything else unchanged.

Definition 2. An SCF f is monotonic if for all feasible sets A, preference profiles R,
voters i, and alternatives a, b ∈ A, a ∈ f(R,A) implies a ∈ f(R′i:(a,b), A).

The strong superset property requires that a choice set is invariant under the removal of
unchosen alternatives (Chernoff, 1954; Bordes, 1979; Aizerman and Aleskerov, 1995).

Definition 3. An SCF f satisfies the strong superset property (SSP) if for all feasible sets
A,B and preference profiles R such that f(R,A) ⊆ B ⊆ A, f(R,A) = f(R,B).

An SCF satisfies set-independence if the choice set is invariant under modifications of
the preference profile with respect to unchosen alternatives (Laslier (1997) used the natural
analog of this definition in the context of tournament solutions).

Definition 4. An SCF f satisfies set-independence if for all feasible sets A, preference
profiles R, voters i, and alternatives a, b ∈ A \ f(R,A), f(R,A) = f(Ri:(a,b), A).

The following proof is adapted from Laslier (1997), who showed the equivalent statement
for tournament solutions.

Proposition 1. Monotonicity and SSP imply set-independence.

Proof. We show that every monotonic SCF f that satisfies SSP also satisfies set-
independence. Let A be a feasible set, R a preference profile, i a voter, and a, b ∈ A\f(R,A).
Furthermore, let R′ = Ri:(b,a). In case a ∈ f(R′, A), monotonicity yields a contra-
diction because a is strengthened in R but a 6∈ f(R,A). Therefore, a 6∈ f(R′, A).
SSP implies that f(R,A) = f(R,A \ {a}) and f(R′, A) = f(R′, A \ {a}). Moreover,
f(R,A \ {a}) = f(R′, A \ {a}) since R and R′ are completely identical on A \ {a}. Hence,
f(R,A) = f(R′, A) and f satisfies set-independence.

6This definition incorporates an independence condition that Bordes (1976) refers to as independence of
irrelevant alternatives (IIA) and that resembles Arrow’s IIA condition for social welfare functions.

458



3.2 Strategyproofness

An SCF is manipulable if one or more voters can misrepresent their preferences in order to
obtain a more preferred outcome. Whether one choice set is preferred to another depends on
how the preferences over individual alternatives are to be extended to sets of alternatives.
In the absence of information about the mechanism that eventually picks a single alternative
from any choice set, preferences over choice sets are typically obtained by the conservative
extension R̂i (Barberà, 1977; Kelly, 1977), where for any pair of feasible sets A and B and
preference relation Ri,

A R̂i B if and only if a Ri b for all a ∈ A and b ∈ B.

Clearly, in all but the simplest cases, R̂i is incomplete, i.e., many pairs of feasible sets are
incomparable. P̂i denotes the strict part of relation R̂i, i.e., A P̂i B if and only if A R̂i B
and a Pi b for at least one pair of a ∈ A and b ∈ B.

Definition 5. An SCF f is manipulable by a group of voters G ⊆ N if there exists a feasible
set A and preference profiles R,R′ with Ri = R′i for all i 6∈ G such that

f(R′, A) P̂i f(R,A) for all i ∈ G.

An SCF is strategyproof if it is not manipulable by single voters. An SCF is group-
strategyproof if it is not manipulable by any group of voters.

It will turn out that many SCFs that fail to be strategyproof can only be manipulated
by breaking ties strategically, i.e., voters can obtain a more preferred outcome by only
misrepresenting their indifference relation. In many settings, for instance when the choice
infrastructure requires a strict ranking of the alternatives, this may be deemed acceptable.
Please observe that letting voters misrepresent their indifference relation is a weaker re-
quirement than simply assuming that voters have linear preferences, which is often made
in other results on strategyproofness (see, e.g., Taylor, 2005). Accordingly, we obtain the
following definition.

Definition 6. An SCF is strongly manipulable by a group of voters G ⊆ N if there exists
a feasible set A and preference profiles R,R′ with Ri = R′i for all i 6∈ G and Ii ⊆ I ′i for all
i ∈ G such that

f(R′, A) P̂i f(R,A) for all i ∈ G.

An SCF is weakly group-strategyproof if it is not strongly manipulable by any group of
voters.

In other words, every strongly manipulable SCF admits a manipulation in which voters
only misrepresent their strict preferences.7

4 Results

We will present three main results. First, we show that no Condorcet extension is group-
strategyproof. The proof of this claim, however, relies on breaking ties strategically. We
therefore study weak group-strategyproofness and obtain a much more positive character-
ization result. Finally, we show that the two conditions used in our characterization are
necessary and sufficient in the case of pairwise SCFs.

7Besides characterizing a class of SCFs that does not admit a strong manipulation, Theorem 2 shows
something stronger about this class: In every manipulation where voters misrepresent strict preferences as
well as indifferences, modifying the strict preferences is not necessary. The same outcome can be obtained
by only misrepresenting the indifference relation.
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2 . . . 2 1 . . . 1 1

a2, . . . , am . . . a1, . . . , am−1 a3, . . . , am . . . a1, . . . , am−2 a2, . . . , am−1

a1 . . . am−1 am

a1 . . . am a2 . . . am a1

Table 1: Preference profile R for 3m voters where A = {a1, . . . , am}

4.1 Manipulation of Condorcet Extensions

We begin by showing that all Condorcet extensions are weakly manipulable, which strength-
ens previous results by Gärdenfors (1976) and Taylor (2005) who showed the same statement
for a weaker notion of manipulability and weak Condorcet extensions, respectively.8

Theorem 1. Every Condorcet extension is manipulable when there are more than two
alternatives.

Proof. Let A = {a1, . . . , am} with m ≥ 3 and consider the preference profile R given in
Table 1. For every alternative ai, there are two voters who prefer every alternative to ai

and who are indifferent between the other alternatives. Moreover, there is one voter for
every alternative ai who ranks ai+1 below ai and prefers every other alternative to both of
them. Again, the voter is completely indifferent between these other alternatives.

Since f(R,A) yields a non-empty choice set, there has to be some 1 ≤ i ≤ m such that
ai ∈ f(R,A). Let j = ((i − 2) mod m) + 1. Now, let R′ be identical to R, except that
the preferences of voter 2i − 1 (i.e., the first voter who ranks ai last) changed such that
aj P

′
2i−1 ak for all k 6= j. Furthermore, let R′′ be identical to R, except that the preferences

of voters 2i−1 and 2i (i.e., the first two voters who rank ai last) changed such that aj P
′′
2i ak

for all k 6= j.
In the case that ai 6∈ f(R′, A), voter 2i − 1 can manipulate as follows. Suppose R is

the true preference profile. Then, the least favorable alternative of voter 2i − 1 is chosen
(possibly among other alternatives). He can misstate his preferences as in R′ such that ai

is not chosen. Since he is indifferent between all other alternatives, f(R′, A) P̂2i−1 f(R,A).
If ai ∈ f(R′, A), voter 2i can manipulate similarly. Suppose R′ is the true preference

profile. Again, the least favorable alternative of voter 2i is chosen. By misstating his
preferences as in R′′, he can assure that one of his preferred alternatives, namely aj , is
selected exclusively. This is the case because aj is the Condorcet winner in R′′. Hence,
f(R′′, A) P̂ ′2i f(R′, A).

4.2 Weakly Group-Strategyproof SCFs

The previous statement showed that no Condorcet extension is group-strategyproof. For
our characterization of weakly group-strategyproof SCFs, we require set-independence and
a new property that we call set-monotonicity. Set-monotonicity requires that a choice set
should be invariant under the strengthening of chosen alternatives with respect to unchosen
ones.

8A weak Condorcet winner is an alternative that is preferred by at least as many voters than any other
alternative in pairwise comparisons. In contrast to Condorcet winners, weak Condorcet winners need not
be unique. An SCF is called a weak Condorcet extension if it chooses the set of weak Condorcet winners
whenever this set is non-empty. A large number of reasonable Condorcet extensions (including the minimal
covering set and the bipartisan set) are not weak Condorcet extensions. Taylor (2005) calls the definition
of weak Condorcet extensions “really quite strong” and refers to Condorcet extensions as “much more
reasonable.”
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Definition 7. An SCF f is set-monotonic if for all feasible sets A, preference profiles R,
voters i, and alternatives a ∈ f(R,A), b ∈ A \ f(R,A), f(R,A) = f(Ri:(a,b), A).

The conjunction of set-independence and set-monotonicity is stronger than monotonicity.

Proposition 2. Set-independence and set-monotonicity imply monotonicity.

Proof. Let f be a set-monotonic SCF, A a feasible set, R a preference profile, i a voter,
and a, b ∈ A such that a ∈ f(R,A). Furthermore, let R′ = Ri:(a,b). Clearly, in case
b 6∈ f(R,A), set-monotonicity implies that f(R′, A) = f(R,A) and thus a ∈ f(R′, A). If, on
the other hand, b ∈ f(R,A), assume for contradiction that a 6∈ f(R′, A). If b ∈ f(R′, A), b
is strengthened with respect to outside alternative a when moving from R′ to R, and set-
monotonicity again implies that f(R,A) = f(R′, A). Otherwise, if b 6∈ f(R′, A), it follows
from set-independence that f(R,A) = f(R′, A), a contradiction.

Set-monotonicity can be connected to existing well-established properties via the follow-
ing proposition, whose proof runs along the same lines as that of Proposition 1.

Proposition 3. Monotonicity and SSP imply set-monotonicity.

Proof. We show that every monotonic SCF f that satisfies SSP also satisfies set-
monotonicity. Let A be a feasible set, R a preference profile, i a voter, a ∈ f(R,A),
and b ∈ A \ f(R,A). Furthermore, let R′ = Ri:(a,b). In case b ∈ f(R′, A), monotonic-
ity yields a contradiction because b is strengthened in R but b 6∈ f(R,A). Therefore,
b 6∈ f(R′, A). SSP implies that f(R,A) = f(R,A \ {b}) and f(R′, A) = f(R′, A \ {b}).
Moreover, f(R,A \ {b}) = f(R′, A \ {b}) because R and R′ are completely identical on
A \ {b}. As a consequence, f(R,A) = f(R′, A) and f satisfies set-monotonicity.

We are now ready to state the main result of this section.

Theorem 2. Every SCF that satisfies set-monotonicity and set-independence is weakly
group-strategyproof.

Proof. Let f be an SCF that satisfies set-monotonicity and set-independence and assume
for contradiction that f is not weakly group-strategyproof. Then, there has to be a feasible
set A, a group of voters G ⊆ N , and two preference profiles R and R′ with Ri = R′i for
all i 6∈ G and Ii ⊆ I ′i for all i ∈ G such that f(R′, A) P̂i f(R,A) for all i ∈ G. We
choose R and R′ such that the union of the symmetric differences of individual preferences⋃

i∈N (Ri \R′i)∪ (R′i \Ri) is inclusion-minimal, i.e., we look at a “smallest” counterexample
in the sense that R and R′ coincide as much as possible. Let f(R,A) = X and f(R′, A) = Y .
Now, consider a pair of alternatives a, b ∈ A such that, for some i ∈ G, a Pi b and b R′i a, i.e.,
voter i misrepresents his strict preference relation by strengthening b. The following case
analysis will show that no such a and b exist, which implies that R and R′ and consequently
X and Y are identical, a contradiction.

Case 1 (a, b 6∈ X): It follows from set-independence that Ri:(b,a) and R′ yield a smaller
counterexample since f(Ri:(b,a), A) = f(R,A) = X.

Case 2 (a, b 6∈ Y ): It follows from set-independence that R and R′i:(a,b) yield a smaller
counterexample since f(R′i:(a,b), A) = f(R′, A) = Y .

Case 3 (a ∈ X and b ∈ Y ): Y P̂i X implies that b Ri a, a contradiction.

Case 4 (a 6∈ X and b ∈ X): It follows from set-monotonicity that f(Ri:(b,a), A) =
f(R,A) = X. Consequently, Ri:(b,a) and R′ constitute a smaller counterexample.
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Case 5 (a ∈ Y and b 6∈ Y ): It follows from set-monotonicity that f(R′i:(a,b), A) =
f(R′, A) = Y . Consequently, R and R′i:(a,b) constitute a smaller counterexample.

It is easily verified that this analysis covers all possible cases. Hence, R and R′ have to be
identical, which concludes the proof.

As mentioned above, when assuming that voters have strict preferences, weak strate-
gyproofness can be replaced with strategyproofness in Theorem 2.

Theorem 2 and Propositions 1 and 3 entail the following useful corollary.

Corollary 1. Every monotonic SCF that satisfies SSP is weakly group-strategyproof.

As mentioned in the introduction, there are few—but nevertheless quite attractive—
SCFs that satisfy monotonicity and SSP, namely the top cycle, the minimal covering set,
and the bipartisan set.9

4.3 Weakly Group-Strategyproof Pairwise SCFs

In this section, we identify a natural and well-known class of SCFs for which the character-
ization given in the previous section is complete. A SCF f is said to be based on pairwise
comparisons (or simply pairwise) if, for all preference profiles R, R′ and feasible sets A,
f(R,A) = f(R′, A) if and only if

|{i ∈ N | a Pi b}|−|{i ∈ N | b Pi a}| = |{i ∈ N | a P ′i b}|−|{i ∈ N | b P ′i a}| for all a, b ∈ A.

In other words, the outcome of a pairwise SCF only depends on the comparisons between
pairs of alternatives (see, e.g., Young, 1974; Zwicker, 1991). The class of pairwise SCFs
is quite natural and contains a large number of well-known voting rules such as Kemeny’s
rule, Borda’s rule, Maximin, ranked pairs, and all rules based on simple majority rule
(e.g., the Slater set, the uncovered set, the Banks set, the minimal covering set, and the
bipartisan set). We now show that set-monotonicity and set-independence are necessary for
the strategyproofness of pairwise SCFs.

Theorem 3. Every weakly strategyproof pairwise SCF satisfies set-monotonicity and set-
independence.

Proof. We need to show that every pairwise SCF that fails to satisfy set-monotonicity or set-
independence is strongly manipulable. Suppose SCF f does not satisfy set-monotonicity or
set-independence. In either case, there exists a feasible set A, a preference profile R, a voter i,
and two alternatives a, b ∈ A with a Ri b and a 6∈ f(R,A) = X such that f(R′, A) = Y 6= X
where R′ = Ri:(b,a). Let Rn+1, Rn+2, and R′n+2 be preference relations with indifferences
between all pairs of alternatives except

x Pn+1 y for all (x, y) ∈ (((X \ Y )× Y ) ∪ (X × (Y \X))),
y Pn+2 x for all (x, y) ∈ (((X \ Y )× Y ) ∪ (X × (Y \X))) \ {(b, a)},
a Rn+2 b if and only if a Ri b,
b Rn+2 a if and only if b Ri a,
y P ′n+2 x for all (x, y) ∈ (((X \ Y )× Y ) ∪ (X × (Y \X))) \ {(b, a)},
a R′n+2 b if and only if a R′i b, and
b R′n+2 a if and only if b R′i a.

9SSP and monotonicity do not completely characterize weak strategyproofness. SCFs that satisfy set-
monotonicity and set-independence but fail to satisfy SSP can easily be constructed.
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We now define two preference profiles with n+2 voters where voter i is indifferent between a
and b and the crucial change in preference between a and b has been moved to voter n+ 2.
Let

S = (R1, . . . , Ri−1, Ri ∪ {(b, a)}, Ri+1, . . . , Rn, Rn+1, Rn+2) and
S′ = (R1, . . . , Ri−1, Ri ∪ {(b, a)}, Ri+1, . . . , Rn, Rn+1, R

′
n+2).

Observe that all preferences between alternatives other than a and b cancel out each other
in the preference relations of voter n + 1 and n + 2. It thus follows from the definition of
pairwise SCFs that f(S,A) = f(R,A) = X and f(S′, A) = f(R′, A) = Y . If X ∪ Y 6= {a, b}
or a Pi b, we have Y P̂n+2 X and f can be manipulated by voter n + 2 at preference
profile S by misstating his strict preference a Pn+2 b as a I ′n+2 b. If, on the other hand,
X ∪ Y = {a, b} and a Ii b, we have X P̂ ′n+2 Y and f can be manipulated by voter n+ 2 at
preference profile S′ (by misstating his strict preference b P ′n+2 a as a In+2 b). Hence, f is
strongly manipulable.

We can now completely characterize weak group-strategyproofness of pairwise SCFs
using these two properties.

Corollary 2. A pairwise SCF is weakly group-strategyproof if and only if it satisfies set-
monotonicity and set-independence.

This shows that many pairwise SCFs are not weakly group-strategyproof because they
are known to fail set-independence (Laslier, 1997). Notable exceptions are the top cycle,
the minimal covering set, and the bipartisan set mentioned above.

Brams and Fishburn (1983) introduced a particularly natural variant of strategic manip-
ulation where voters obtain a more preferred outcome by abstaining the election. A SCF is
said to satisfy participation if voters are never better off by abstaining. A common criticism
of Condorcet extensions is that they do not satisfy participation and thus suffer from the
so-called no-show paradox (Moulin, 1988). However, Moulin’s proof strongly relies on reso-
luteness. Irresolute Condorcet extensions that satisfy participation do exist and, in the case
of pairwise SCFs, there is a close connection between strategyproofness and participation
as shown by the following simple observation.10

Proposition 4. Every strategyproof pairwise SCF satisfies participation.

Proof. Let f be a pairwise SCF that fails participation, i.e., there exists a feasible
set A, a preference profile R, and a preference relation Rn+1 such that f(R,A) P̂n+1

f((R1, . . . , Rn, Rn+1), A). Let furthermore R′n+1 be a preference relation that expresses
complete indifference over all alternatives. Since f is pairwise, f((R1, . . . , Rn, R

′
n+1), A) =

f(R,A) and f can be manipulated at profile (R1, . . . , Rn, Rn+1) by voter n+ 1 because by
changing his preferences to R′n+1 he obtains the more preferred outcome f(R,A).

It follows that all SCFs satisfying set-monotonicity and set-independence, which includes
the Condorcet extensions mentioned earlier, satisfy participation according to Kelly’s pref-
erence extension.
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Sum of Us: Strategyproof Selection

from the Selectors

Noga Alon, Felix Fischer, Ariel D. Procaccia, and Moshe Tennenholtz

Abstract

We consider directed graphs over a set of n agents, where an edge (i, j) is taken to
mean that agent i supports or trusts agent j. Given such a graph and an integer
k ≤ n, we wish to select a subset of k agents that maximizes the sum of indegrees,
i.e., a subset of k most popular or most trusted agents. At the same time we assume
that each individual agent is only interested in being selected, and may misreport
its outgoing edges to this end. This problem formulation captures realistic scenarios
where agents choose among themselves, which can be found in the context of Internet
search, social networks like Twitter, or reputation systems like Epinions.
Our goal is to design mechanisms without payments that map each graph to a
k-subset of agents to be selected and satisfy the following two constraints: strate-
gyproofness, i.e., agents cannot benefit from misreporting their outgoing edges, and
approximate optimality, i.e., the sum of indegrees of the selected subset of agents
is always close to optimal. Our first main result is a surprising impossibility: for
k ∈ {1, . . . , n − 1}, no deterministic strategyproof mechanism can provide a finite
approximation ratio. Our second main result is a randomized strategyproof mecha-
nism with an approximation ratio that is bounded from above by four for any value
of k, and approaches one as k grows.

1 Introduction

One of the most well-studied settings in social choice theory concerns a set of agents (also
known as voters or individuals) and a set of alternatives (also known as candidates). The
agents express their preferences over the alternatives, and these are mapped by some function
to a winning alternative or set of winning alternatives. In one prominent variation, each
agent must select a subset of alternatives it approves; this setting is known as approval
voting [5].

We consider the special case of approval voting when the set of agents and the set of
alternatives coincide; this for example occurs when the members of an organization use
approval voting to elect a president or a committee from among their numbers.1 We model
this situation by a directed graph on the set of agents. An edge from agent i to agent j
means that agent i approves, votes for, trusts, or supports agent j. Our goal is to select a
subset of k “best” agents for a given graph; we will elaborate on what we mean by “best”
momentarily.

The fact that agents and alternatives coincide allows us to make additional assump-
tions about agents’ preferences. Indeed, we will assume that each agent is only interested
in whether it is among those selected, that is, it receives utility one if selected and zero
otherwise. We will see, however, that our results in fact hold for any setting where agents
give their own selection priority over that of their approved candidates. This assumption,
which is very reasonable in practice, is discussed in more detail in Section 5.

1Approval voting is employed in this exact context for example by scientific organizations such as the
American Mathematical Society (AMS), the Institute of Electrical and Electronics Engineers (IEEE), the
Game Theory Society (GTS), and the International Foundation for Autonomous Agents and Multiagent
Systems (IFAAMAS).
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A (deterministic) k-selection mechanism is a function that maps a given graph on the
set of agents to a k-subset of selected agents. We also consider randomized k-selection
mechanisms, which randomly select a subset. The outgoing edges in the underlying graph
G are private information of the respective agent. Fixing a mechanism f , the agents play
the following game. Each of them reports to the mechanism a set of outgoing edges, which
might differ from the true set. The reported edges induce a graph G′, and the mechanism
selects the subset f(G′). We say that a mechanism is strategyproof (SP) if an agent cannot
benefit from misreporting its outgoing edges, that is, cannot increase its chances of being
selected, even if it has complete information about the rest of the graph. We further say
that a mechanism is group strategyproof (GSP) if even a coalition of agents cannot all gain
from misreporting their outgoing edges.

What remains to be specified is what we mean by selecting the “best” agents. In this
paper, we measure the quality of a set of agents by their total number of incoming edges,
i.e., the sum of their indegrees. The goal of the mechanism designer is to optimize this
target function. Note that this goal is in a sense orthogonal to the agent’s interests, which
may make the design of good SP mechanisms difficult.

In addition to traditional voting settings, this model also captures different problems
in networked environments. Consider for example an Internet search setting, where agents
correspond to web sites and edges represent hyperlinks. Given this graph, a search engine
must return a set of the, say, ten top web sites. Put another way, the top web sites are
selected based on the votes cast by other web sites in the form of hyperlinks. Each specific
web site, or more accurately its webmaster, is naturally concerned with appearing at the
top of the search results, and to this end may add or remove hyperlinks at will.

A second motivating example can be found in the context of social networks. While some
social networks, like Facebook (http://facebook.com), correspond to undirected graphs,
there are many examples with unilateral connections. Each user of the reputation sys-
tem Epinions (http://epinions.com) has a “Web of Trust”, that is, the user unilaterally
chooses which other users to trust. Another prominent example is the social network Twit-
ter (http://twitter.com), which of late has become wildly popular; a Twitter user may
choose which other users to “follow.” In “directed” social networks, choosing a k-subset
with maximum overall indegree simply means selecting the k most popular or most trusted
users. Applications include setting up a committee, recommending a trusted group of ven-
dors, targeting a group for an advertising campaign, or simply holding a popularity contest.
The last point may seem pure fantasy, but, indeed, celebrity users of Twitter have recently
held a race to the milestone of one million followers; the dubious honor ultimately went to
actor Ashton Kutcher. Clearly Mr. Kutcher could increase the chance of being selected by
not following any other users, that is, reporting an empty set of outgoing edges.

Since a mechanism that selects an optimal subset (in terms of total indegree) is clearly
not SP, we will resort to approximate optimality. More precisely, we seek SP mechanisms
that give a good approximation, in the usual sense, to the total indegree. Crucially, approx-
imation is not employed in this context to circumvent computational complexity (as the
problem of selecting an optimal subset is obviously tractable), but in order to sufficiently
broaden the space of acceptable mechanisms to include SP ones.

Context and related work. The work in this paper falls squarely into the realm of ap-
proximate mechanism design without money, an agenda recently introduced by some of us
(Procaccia and Tennenholtz [24]), building on earlier work (for example by Dekel et al. [9]).
This agenda advocates the design of SP approximation mechanisms without payments for
structured, and preferably computationally tractable, optimization problems. Indeed, while
almost all the work in the field of algorithmic mechanism design [23] considers mechanisms
that are allowed to transfer payments to and from the agents, money is usually unavailable
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Deterministic Randomized

SP
Upper bound n/a min{4, 1 +O(1/k1/3)}
Lower bound ∞ 1 + Ω(1/k2)

GSP
Upper bound n/a n

k

Lower bound ∞ n−1
k

Table 1: Summary of our results for k-selection mechanisms, where n is the number of agents. SP
stands for strategyproof, GSP for group strategyproof.

in Internet domains like the ones discussed above (social networks, search engines) due to
security and accountability issues (see, e.g., the book chapter by Schummer and Vohra [26]).
Our notion of a mechanism, sometimes referred to as a social choice rule in the social choice
literature, therefore precludes payments by definition. Note that Procaccia and Tennen-
holtz [24], and also subsequent papers [20, 21, 1], deal with a completely different domain,
namely facility location.

LeGrand et al. [19] study approximations in the context of approval voting, mainly from
a complexity perspective. They consider the (less standard) minmax solution that selects
alternatives in a way that minimizes the maximum Hamming distance to the agents’ ballots
(as binary vectors). LeGrand et al. show that the optimization problem is NP-hard, and
provide a trivial 3-approximation algorithm: simply choose the subset that is closest to the
ballot of an arbitrary agent. Furthermore, they observe that this algorithm is also SP when
an agent’s (dis)utility is its Hamming distance to the selected subset.

For k = 1, that is, if one agent must be selected, the game we deal with is a special
case of so-called selection games [3], where the possible strategies are the outgoing edges.
More generally, this setting is related to work in distributed computing on leader election
(see, e.g., [2, 8, 11, 4]). This line of work does not deal with self-interested agents. Instead,
there is a certain number of malicious agents trying to manipulate the selection process,
and the goal is to guarantee the selection of a non-malicious agent, at least with a certain
probability.

Finally, this paper is related to work on manipulation of reputation systems, which are
often modeled as weighted directed graphs; a reputation function maps a given graph to
reputation values for the agents (see, e.g., [6, 14]). Although our positive results can be
extended to weighted graphs, when the target function is the sum of weights on incoming
edges, this would hardly be a reasonable target function. Indeed, in this context the absence
of a specific incoming edge (indicating lack of knowledge) is preferable to an edge with low
weight (which indicates distrust); see Section 5 for further discussion.

Results and techniques. We give rather tight upper and lower bounds on the approxima-
tion ratio achievable by k-selection mechanisms in the setting described above; the properties
of the mechanisms fall along two orthogonal dimensions: deterministic vs. randomized, and
SP vs. GSP. A summary of our results is given in Table 1.

Our contribution begins in Section 3 with a study of deterministic k-selection mecha-
nisms. It is quite easy to see that no deterministic SP 1-selection mechanism can yield a
finite approximation ratio. Intuitively, this should not be true for large values of k. Indeed,
in order to have a finite approximation ratio, a mechanism should very simply select a subset
of agents with at least one incoming edge, if there is such a set. In the extreme case when
k = n− 1, we must select all the agents save one, and the question is whether there exists
an SP mechanism that never eliminates the unique agent with positive indegree. Our first
result gives a surprising negative answer to this question, and in fact holds for every value
of k.
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Theorem 3.1. Let N = {1, . . . , n}, n ≥ 2, and k ∈ {1, . . . , n − 1}. Then there is no
deterministic SP k-selection mechanism that gives a finite approximation ratio.

The proof of the theorem is compact but rather tricky. It involves two main arguments.
We first restrict our attention to a subset of the graphs, namely to stars with all edges
directed at a specific agent. An SP mechanism over such graphs can be represented using
a function over the boolean (n − 1)-cube, which must satisfy certain constraints. We then
use a parity argument to show that the constraints lead to a contradiction.

In Section 4 we turn to randomized k-selection mechanisms. We design a randomized
mechanism, Random m-Partition (m-RP), parameterized by m, that works by randomly
partitioning the set of agents into m subsets, and then selecting the (roughly) k/m agents
with largest indegree from each subset, when only the incoming edges from the other subsets
are taken into account. This rather simple technique is reminiscent of work on random sam-
pling in the context of auctions for digital goods [13, 17, 12] and combinatorial auctions [10],
although our problem is fundamentally different. We have the following theorem.

Theorem 4.1. Let N = {1, . . . , n}, k ∈ {1, . . . , n− 1}. For every value of m, m-RP is SP.
Furthermore,

1. 2-RP has an approximation ratio of four, and

2.
(⌈
k1/3

⌉)
-RP has an approximation ratio of 1 +O(1/k1/3).

For a given number k of agents to be selected, we can in fact choose the best value of m
when applying m-RP. Thus, there exists a mechanism that always yields an approximation
ratio of at most four, and furthermore provides a ratio that approaches one as k grows. In
addition, we prove a lower bound of 1 + Ω(1/k2) on the approximation ratio that can be
achieved by any randomized SP k-selection mechanism; in particular, the lower bound is
two for k = 1.

As our final result, we obtain a lower bound of (n−1)/k for randomized GSP k-selection
mechanisms. This result implies that when asking for group strategyproofness one essentially
cannot do better than simply selecting k agents at random, which is obviously GSP and
gives an approximation ratio of n/k.

2 The Model

Let N = {1, . . . , n} be a set of agents. For each k = 1, . . . , n, let Sk = Sk(n) be the collection
of k-subsets of N , i.e., Sk = {S ⊆ N : |S| = k}. We consider directed graphs G = (N,E),
that is, graphs with N as the set of vertices, and write G = G(N) for the set of such graphs.

A deterministic k-selection mechanism is a function f : G → Sk that selects a subset
of agents for each graph. When the subset S ⊆ N is selected, agent i ∈ N obtains utility
ui(S) = 1 if i ∈ S and ui(S) = 0 otherwise, i.e., agents only care about whether they are
selected or not. We further discuss this utility model in Section 5.

A randomized k-selection mechanism is a function f : G → ∆(Sk), where ∆(Sk) is the
set of probability distributions over Sk. Given a distribution µ ∈ ∆(Sk), the utility of agent
i ∈ N is

ui(µ) = ES∼µ[ui(S)] = PrS∼µ[i ∈ S].

Deterministic mechanisms can be seen as a special case of a randomized ones, always select-
ing a set of agents with probability one.

We say that a k-selection mechanism is strategyproof (SP) if an agent cannot benefit
from misreporting its edges. Formally, strategyproofness requires that for every i ∈ N and
every pair of graphs G,G′ ∈ G that differ only in the outgoing edges of agent i, it holds
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that ui(G) = ui(G′).2 This means that the probability of agent i ∈ N being selected has to
be independent of the outgoing edges reported by i. A discussion of this definition in the
context of randomized mechanisms can be found in Section 5.

A k-selection mechanism is group strategyproof (GSP) if there is no coalition of agents
that can all gain from jointly misreporting their outgoing edges. Formally, group strate-
gyproofness requires that for every S ⊆ N and every pair of graphs G,G′ ∈ G that differ
only in the outgoing edges of the agents in S, there exists i ∈ S such that ui(G) ≤ ui(G′).
An alternative, stronger definition requires that some agent strictly lose as a result of the
deviation. Crucially, our result with respect to group strategyproofness is an impossibility,
hence using the weaker definition only strengthens the result.

Given a graph G, let deg(i) = deg(i, G) be the indegree of agent i in G, i.e., the number
of its incoming edges. We seek mechanisms that are SP or GSP, and in addition approximate
the optimization target

∑
i∈S deg(i), that is, we wish to maximize the sum of indegrees of

the selected agents. Formally, we say that a k-selection mechanism f has an approximation
ratio of α if for every graph G,

maxS∈Sk

∑
i∈S deg(i)

ES∼f(G)[
∑
i∈S deg(i)]

≤ α.

3 Deterministic Mechanisms

In this section we study deterministic k-selection mechanisms. Before stating our impossi-
bility result, we discuss some special cases.

Clearly, only one mechanism exists for k = n, that is, when all the agents must be
selected, and this mechanism is optimal. More interestingly, it is easy to see that one cannot
obtain a finite approximation ratio via a deterministic SP mechanism when k = 1. Indeed,
let n ≥ 2, let f be an SP deterministic mechanism, and consider a graph G = (N,E)
with E = {(1, 2), (2, 1)}, i.e., the only two edges are from agent 1 to agent 2 and vice
versa. Without loss of generality we may assume that f(G) = {1}. Now, assume that
agent 2 removes its outgoing edge; formally, we now consider the graph G′ = (N,E′) with
E′ = {(1, 2)}. By strategyproofness, f(G′) = {1}, but now agent 2 is the only agent with
positive degree, hence the approximation ratio of f is infinite.

Note that in order to have a finite approximation ratio, our mechanism must satisfy the
following property, which is also sufficient: if there is an edge in the graph, the mechanism
must select a subset of agents with at least one incoming edge. The argument above shows
that this property cannot be satisfied by any SP mechanism when k = 1, but intuitively it
should be easy to satisfy when k is very large.

Consider, for example, the case where k = n− 1, that is, the mechanism must select all
the agents save one. Can we design an SP mechanism with the extremely basic property
that if there is only one agent with incoming edges, that agent would not be the only one
not to be selected?

In the following theorem, we give a surprising negative answer to this question, even
when we restrict our attention to graphs where each agent has at most one outgoing edge.
Amusingly, a connection to the popular TV game show “Survivor” can be made. Consider
a slight variation where each tribe member can vote for one other trusted member, but
is also allowed not to cast a vote. One member must be eliminated at the tribal council,
based on the votes. Since each member’s first priority is not to be eliminated (i.e., to be
selected), strategyproofness in our 0–1 utility model is in fact a necessary condition for
strategyproofness in suitable, more refined utility models. The theorem then implies that

2By symmetry, this is equivalent to writing the last equality as an inequality.
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a mechanism for choosing the eliminated member cannot be SP (even under 0–1 utilities)
if it has the property that a member who is the only one that received votes cannot be
eliminated. Put another way, lies are inherent in the game!

More generally, we show that for any value of k, strategyproofness and finite approxima-
tion ratio are mutually exclusive. A concise but nontrivial proof is given in the full version
of this paper.

Theorem 3.1. Let N = {1, . . . , n}, n ≥ 2, and k ∈ {1, . . . , n − 1}. Then there is no
deterministic SP k-selection mechanism that gives a finite approximation ratio.

It is interesting to note that if we change the problem formulation by allowing the
selection of at most k agents for k ≥ 2 then it is possible to design a curious deterministic
SP mechanism with a finite approximation ratio that selects at most two agents. The reader
is referred to Section 5 and to the full version of this paper for further discussion.

4 Randomized Mechanisms

In Section 3 we have established a total impossibility result with respect to deterministic SP
k-selection mechanisms. In this section we ask to what extent this result can be circumvented
using randomization.

4.1 SP Randomized Mechanisms

As we move to the randomized setting, it immediately becomes apparent that Theorem 3.1
no longer applies. Indeed, a randomized SP k-selection mechanism with a finite approxima-
tion ratio can be obtained by simply selecting k agents at random. However, this mechanism
still yields a poor approximation ratio. Can we do better?

Consider first a simple deterministic mechanism that partitions the agents into two
predetermined subsets S1 and S2. Next, the mechanism discards all edges between pairs of
agents in the same subset. Finally, the mechanism chooses the top k/2 agents from each
subset. In other words, the mechanism selects the k/2 agents with highest indegree from each
subset, where the indegree is calculated only on the basis of incoming edges from the other
subset. This mechanism is clearly SP. Indeed, consider some i ∈ St, t ∈ {1, 2}; its outgoing
edges to agents inside its subset are disregarded, whereas its outgoing edges to agents in S3−t
can only influence which agents are selected from S3−t. However, even without Theorem 3.1
it is easy to see that the mechanism does not yield a finite approximation ratio, since it might
be the case that the only edges in the graph are between agents in the same subset.

We leverage and refine the partition idea in order to design a randomized SP mechanism
that yields a constant approximation ratio. More accurately, we define an infinite family
of mechanisms, parameterized by a parameter m ∈ N. Given m, the mechanism randomly
partitions the set of agents into m subsets, and then selects (roughly) the top k/m agents
from each subset, based only on the incoming edges from agents in other subsets. Below we
give a more formal specification of the mechanism; an example can be found in Figure 1.

The Random m-Partition Mechanism (m-RP)

1. Assign each agent independently and uniformly at random to one of m subsets
S1, . . . , Sm.

2. Let T ⊂ {1, . . . ,m} be a random subset of size k −m · bk/mc.
3. If t ∈ T , select the dk/me agents from St with highest indegrees based only on edges

from N \ St. If t /∈ T , select the bk/mc agents from St with highest indegrees based
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Figure 1: Example for the Random 2-Partition Mechanism, with n = 6 and k = 2. Figure 1(a)
illustrates the given graph. The mechanism randomly partitions the agents into two subsets, shown
in Figure 1(b), and disregards the edges inside each group. The mechanism then selects the best
agent in each group based on the incoming edges from the other group; in the example, the selected
subset is {1, 5}, with a sum of indegrees of four, whereas the optimal subset is {2, 5}, with a sum
of indegrees of five.

only on edges from N \ St. Break ties lexicographically in both cases. If one of the
subsets St is smaller than the number of agents to be selected from this subset, select
the entire subset.

4. If only k′ < k agents were selected in Step 3, select k− k′ additional agents uniformly
from the set of agents that were not previously selected.

Note that if k = 1 and m = 2 then we select one agent from one of the two subsets,
based on the incoming edges from the other. In this case, step 2 is equivalent to a toss of a
fair coin that determines from which of the two subsets we select an agent.

As in the deterministic case, given a partition of the agents into subsets S1, . . . , Sm, the
choice of agents that are selected from St is independent of their outgoing edges. Further-
more, the partition is independent of the input. Therefore, m-RP is SP.3 The following
theorem explicitly states the approximation guarantees provided by m-RP; the technical
and rather delicate proof of the theorem is relegated to the full version of this paper.

Theorem 4.1. Let N = {1, . . . , n}, k ∈ {1, . . . , n− 1}. For every value of m, m-RP is SP.
Furthermore,

1. 2-RP has an approximation ratio of four, and

2.
(⌈
k1/3

⌉)
-RP has an approximation ratio of 1 +O(1/k1/3).

In fact, we can choose the best value of m for any given value of k when we apply m-RP.
In other words, Theorem 4.1 implies that for every k there exists an SP mechanism with
an approximation ratio of min{4, 1 + O(1/k1/3)}, that is, an approximation ratio that is
bounded from above by four for any value of k, and approaches one as k grows.

It follows from the theorem that, for k = 1, 2-RP has an approximation ratio of four;
for this case m-RP with m > 2 has a strictly worse ratio. It is interesting to note that the
analysis is tight. Indeed, consider a graph G = (N,E) with only one edge from agent 1 to
agent n, that is, E = {(1, n)}. Assume without loss of generality that agent n is assigned
to S1. In order for agent n to be selected, two events must occur:

3The mechanism is even universally SP, see Section 5.
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1. T = {1}, that is, the winner must be selected from S1. This happens with probability
1/2.

2. Either 1 ∈ S2, or |S1| = 1. The probability that 1 ∈ S2 is 1/2. The probability that
|S1| = 1, given that n ∈ S1, is 1/2n−1. By the union bound, the probability of this
event is at most 1/2 + 1/2n−1.

It is clear that n cannot be selected unless the first event occurs. If the second event does
not occur, it follows that n has an indegree of zero based on the incoming edges from
S2, and there are other alternatives in S1 (which also have an indegree of zero). Since tie-
breaking is lexicographic, agent n would not be selected. As the two events are independent,
the probability of both occurring is therefore at most 1/4 + 1/2n. We conclude that the
approximation ratio of the mechanism cannot be smaller than

1(
1
4 + 1

2n

) · 1 = 4−O
(

1
2n

)
.

We next provide a very simple, though rather weak, lower bound for the approximation
ratio yielded by randomized SP k-selection mechanisms. Let k ∈ {1, . . . , n − 1}, and let
f : G → ∆(Sk) be a randomized SP k-selection mechanism. Consider the graph G = (N,E)
where

E = {(i, i+ 1) : i = 1, . . . , k} ∪ {(k + 1, 1)},
i.e., E is a directed cycle on the agents 1, . . . , k + 1. Then there exists an agent i ∈
{1, . . . , k + 1}, without loss of generality agent 1, that is included in f(G) with probability
at most k/(k + 1). Now, consider the graph G′ where E′ = E \ {(1, 2)}, that is, agent 1
removes its outgoing edge to agent 2. By strategyproofness, agent 1 is included in f(G′)
with probability at most k/(k + 1). Any subset S ∈ Sk such that 1 /∈ S has at most k − 1
incoming edges in G′. It follows that the expected number of incoming edges in f(G′) is at
most

k

k + 1
· k +

1
k + 1

· (k − 1) =
k2 + k − 1
k + 1

.

Hence the approximation ratio of f cannot be smaller than

k
k2+k−1
k+1

= 1 +
1

k2 + k − 1
. (1)

We have therefore proved the following easy result.

Theorem 4.2. Let N = {1, . . . , n}, n ≥ 2, k ∈ {1, . . . , n−1}. Then there is no randomized
SP k-selection mechanism with an approximation ratio smaller than 1 + Ω(1/k2).

Not surprisingly, the lower bound given by Theorem 4.2 converges to one, albeit more
quickly than the upper bound of Theorem 4.1. As usual, an especially interesting special
case is when k = 1. Equation (1) gives an explicit lower bound of two for this case. On
the other hand, Theorem 4.1 gives an upper bound of four. We conjecture that the correct
value is two.

Conjecture 4.3. There exists a randomized SP 1-selection mechanism with an approxima-
tion ratio of two.

One deceptively promising avenue for proving the conjecture is designing an iterative
version of the Random Partition Mechanism. Specifically, we start with an empty subset
S ⊂ N , and at each step add to S an agent from N \ S that has minimum indegree based
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on the incoming edges from S, breaking ties randomly (so, in the first step we would just
add to S a random agent). The last agent that remains outside S is selected. This SP
mechanism does remarkably well on some difficult instances, but fails spectacularly on a
contrived counterexample. A detailed discussion of the mechanism and the illuminating
counterexample is deferred to the full version of this paper.

4.2 GSP Randomized Mechanisms

In the beginning of Section 4.1 we identified a trivial randomized SP k-selection mechanism,
namely the one that selects a subset of k agents at random. Of course this mechanism is
even GSP, since the outcome is completely independent of the reported graph.

We claim that selecting a random k-subset gives an approximation ratio of n/k. Indeed,
consider an optimal subset K∗ ⊆ N with |K∗| = k. Each agent i ∈ K∗ is included in
the selected subset with probability k/n, and hence in expectation contributes a (k/n)-
fraction of its indegree to the expected total indegree of the selected subset. By linearity of
expectation, the expected total indegree of the selected subset is at least a (k/n)-fraction of
the total indegree of K∗.

Theorem 4.1 implies that we can do much better if we just ask for strategyproofness.
If one asks for group strategyproofness, on the other hand, just selecting a random subset
turns out to be optimal up to a tiny gap. It it worth noting that the following result holds
even if one is merely interested in coalitions of size at most two. The proof is given in the
full version of this paper.

Theorem 4.4. Let N = {1, . . . , n}, n ≥ 2, and let k ∈ {1, . . . , n− 1}. No randomized GSP
k-selection mechanism can yield an approximation ratio smaller than (n− 1)/k.

5 Discussion

In this section we discuss the significance of our results and state some open problems.

Payments. If payments are allowed and the preferences of the agents are quasi-linear then
truthful implementation of the optimal solution is straightforward: simply give one unit of
payment to each agent that is not selected. This can be refined by only paying “pivotal”
agents that are not selected, that is, agents that would have been selected had they lied.
However, even under the latter scheme we may have to pay all the non-selected agents (e.g.,
when the graph is a clique). Moreover, a simple argument shows that there is no truthful
payment scheme that does better.

The utility model. We have studied an “extreme” utility model, where an agent is
only interested in the question of its own selection. The restriction of the preferences of
the agents allows us to circumvent impossibility results that hold with respect to more
general preferences, e.g., the Gibbard-Satterthwaite Theorem [15, 25] and its generalization
to randomized rules [16].

A more practical assumption would be that an agent receives a utility of one if it is
selected, plus a utility of β ≥ 0 for each of its (outgoing) neighbors that is selected. In
this case the social welfare (sum of utilities) of a set S of selected agents is k plus β times
the total indegree of S. Hence, if β > 0, a set S maximizes social welfare if and only if it
maximizes the total indegree. In particular, if β > 0 and payments are available, we can use
the VCG mechanism [27, 7, 18] (see [22] for an overview) to maximize the total indegree in
a truthful way.

It is easy to see that the lower bound of Theorem 3.1 for the 0–1 model also holds for
the β–1 model if β is small. The latter is likely to be the case in many practical settings,
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such as those described in Section 1. Upper bounds identical to those of Theorem 4.1 hold
for any value of β. In particular, m-RP remains strategyproof in the β–1 model, as the
probability that an agent is selected increases in the number of votes it receives. Moreover,
if β is small, a variation on the random partition mechanism achieves an approximation
ratio close to one with respect to social welfare, even when k = 1. If β ≥ 1 then simply
selecting the optimal solution (and breaking ties lexicographically) is SP.

Robustness of the impossibility result. Theorem 3.1 provides a strong impossibility
result for deterministic mechanisms. We have seen that this result is rather sensitive to the
model, and no longer holds if one is allowed to select at most k agents rather than exactly k,
or if each agent is forced to report at least one outgoing edge. That said, we note that these
particular aspects of the model are crucial: in our motivating examples, and in approval
voting in general, an agent may choose not to report any outgoing edges; in essentially all
conceivable applications the set of agents to be selected is of fixed size.

Weights and an application to conference reviews. A seemingly natural general-
ization of our model can be obtained by allowing weighted edges. Interestingly, our main
positive result, namely Theorem 4.1, also holds in this more general setting (subject to mi-
nor modifications to its formulation and proof). However, closer scrutiny reveals that it is
our target function that is often meaningless in the weighted setting. Indeed, the absence
of an edge between i and j would in this context imply that i has no information about j,
whereas an edge with small weight would imply that i dislikes or distrusts j. Therefore,
maximizing the sum of weights on incoming edges may not be desirable.

That said, in very specific situations maximizing the sum of weights on incoming edges
makes perfect sense; one prominent example is conference reviews. In this context the
reviewers assign scores to papers while often submitting a paper of their own, and a subset
of papers must be selected. This setting is special since it is usually the case that each
paper is reviewed by three reviewers, i.e., each agent has exactly three incoming weighted
edges, hence maximizing the sum of scores is the same as maximizing the average score. We
conclude that m-RP can be employed to build a truthful conference program!

Universal strategyproofness vs. strategyproofness in expectation. In the con-
text of randomized mechanisms, two flavors of strategyproofness are usually considered. A
mechanism is universally SP if for every fixed outcome of the random choices made by the
mechanism an agent cannot gain by lying, that is, the mechanism is a distribution over SP
mechanisms. A mechanism is SP in expectation if an agent cannot increase its expected
utility by lying. In this paper we have used the latter definition, which clearly is the weaker
of the two. On the one hand, this strengthens the randomized SP lower bound of Theo-
rem 4.2. On the other hand, notice that the randomized mechanisms of Section 4 are in fact
universally SP. Indeed, for every fixed partition, selecting agents from one subset based on
incoming edges from other subsets is SP. Hence, Theorem 4.1 is even stronger than originally
stated.

Open problems. Our most enigmatic open problem is the gap for randomized SP 1-
selection mechanisms: Theorem 4.1 gives an upper bound of four, while Theorem 4.2 gives a
lower bound of two. We conjecture that there exists a randomized SP 1-selection mechanism
that gives a 2-approximation.

In addition, a potentially interesting variation of our problem can be obtained by chang-
ing the target function. One attractive option is to maximize the minimum indegree in
the selected subset. Clearly, our total impossibility for deterministic SP mechanisms (Theo-
rem 3.1) carries over to this new target function. However, it is unclear what can be achieved
using randomized SP mechanisms.

476



6 Acknowledgments

We thank Moshe Babaioff, Liad Blumrosen, Michal Feldman, Gil Kalai, David Parkes, Yoav
Shoham, and Aviv Zohar for valuable discussions.

References

[1] N. Alon, M. Feldman, A. D. Procaccia, and M. Tennenholtz. Strategyproof approxima-
tion of the minimax on networks. Mathematics of Operations Research. Forthcoming.

[2] N. Alon and M. Naor. Coin-flipping games immune against linear-sized coalitions.
SIAM Journal on Computing, 22:403–417, 1993.

[3] A. Altman and M. Tennenholtz. Strategyproof deterministic lotteries under broad-
cast communication. In Proceedings of the 7th International Joint Conference on Au-
tonomous Agents and Multi-Agent Systems (AAMAS), pages 1549–1552, 2008.

[4] S. Antonakopoulos. Fast leader-election protocols with bounded cheaters’ edge. In
Proceedings of the 38th Annual ACM Symposium on Theory of Computing (STOC),
pages 187–196, 2006.

[5] S. J. Brams and P. C. Fishburn. Approval Voting. Springer, 2nd edition, 2007.

[6] A. Cheng and E. Friedman. Sybilproof reputation mechanisms. In Proceedings of the
3rd Workshop on the Economics of Peer-to-Peer Systems (P2PECON), pages 128–132,
2005.

[7] E. H. Clarke. Multipart pricing of public goods. Public Choice, 11:17–33, 1971.

[8] J. Cooper and N. Linial. Fast perfect-information leader-election protocols with linear
immunity. Combinatorica, 15:319–332, 1995.

[9] O. Dekel, F. Fischer, and A. D. Procaccia. Incentive compatible regression learning.
Journal of Computer and System Sciences. Forthcoming. Earlier version appeared in
the Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA).

[10] S. Dobzinski, N. Nisan, and M. Schapira. Truthful randomized mechanisms for com-
binatorial auctions. In Proceedings of the 38th Annual ACM Symposium on Theory of
Computing (STOC), pages 644–652, 2006.

[11] U. Feige. Noncryptographic selection protocols. In Proceedings of the 40th Symposium
on Foundations of Computer Science (FOCS), pages 142–152, 1999.

[12] U. Feige, A. Flaxman, J. D. Hartline, and R. Kleinberg. On the competitive ratio of
the random sampling auction. In Proceedings of the 1st International Workshop on
Internet and Network Economics (WINE), pages 878–886, 2005.

[13] A. Fiat, A. V. Goldberg, J. D. Hartline, and A. R. Karlin. Competitive generalized
auctions. In Proceedings of the 34th Annual ACM Symposium on Theory of Computing
(STOC), pages 72–81, 2002.

[14] E. Friedman, P. Resnick, and R. Sami. Manipulation-resistant reputation systems. In
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Complexity Consideration on the Existence of

Strategy-proof Social Choice Functions

Koji Takamiya

Abstract

Social choice theorists have long recognized that in models of private goods
economies, strategy-proofness is sometimes incompatible with individual rational-
ity plus Pareto efficiency, and that it is usually more or less “difficult” to prove
this incompatibility. In this paper we examine this “difficulty” from the viewpoint
of computational complexity. We set up a simple model of private goods exchange
where agents bring in and trade indivisible objects under consumption constraints.
We consider the computational problem of deciding whether for a given specification
of the economy, there exists a social choice function which is strategy-proof, individ-
ually rational and Pareto efficient. We prove that (i) this is an NP-hard problem,
and point out, however, that (ii) the problem becomes computationally trivial if we
drop one of these three properties of the social choice function.

1 Introduction

In the traditional literature of social choice, it has been a central issue to investigate the
existence of social choice procedures which satisfy various desirable properties from the
viewpoints of incentive, efficiency, equity and so on. Among many themes in this realm,
the existence of strategy-proof social choice functions has attracted significant attention for
many years. It has been long recognized that strategy-proofness often conflicts with other
desirable properties. And not only that there are conflicts but also it is often difficult to
establish that there is indeed a conflict, i.e. to prove that strategy-proofness is incompatible
with some other desirable properties. For example, the celebrated Gibbard-Satterthwaite
theorem (Gibbard 1973, Satterthwaite 1975) depicts the conflict between strategy-proof
and non-dictatorship, a very weak requirement of equity. And this conflict was difficult to
establish: The Gibbard-Satterthwaite theorem had been conjectured many years before it
was proved. It took a long time for the theorem to be proved.

More recent studies on strategy-proof functions in models of private goods economies
have revealed the conflict between strategy-proofness and individual rationality plus Pareto
efficiency, which is also often difficult to establish. For example, in 1972, Hurwicz proved
that for any classical pure exchange economy with two persons and two goods, if the prefer-
ence domain includes a sufficiently wide set of classical preferences, then there does not exist
a social choice function which is strategy-proof, individually rational and Pareto efficient
(Hurwicz, 1972). He conjectured that the same result holds true for those economies with
three or more agents and goods. However, this problem had remained unsolved for about
thirty years until Serizawa’s work appeared (Serizawa, 2002), which proved that Hurwicz’s
result is generalized to the case of any finite numbers of agents and goods.

Another example is from the theory of matching models such as of the marriage problem
(Gale and Shapley, 1962) and the housing market (Shapley and Scarf, 1972). It had been
known from the early 1980’s that (i) for the marriage problem with the full strict preference
domain1, no core stable rule (i.e. a social choice function which chooses a core stable

1The full strict preference domain is the domain where each agent can have any strict ranking over the
agent’s own assignments (i.e. no consumption externalities). This domain is usually assumed in social choice
analysis of matching problems.
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matching for each preference profile) is strategy-proof, and that (ii) in contrast, for the
housing market also with the full strict preference domain, there exists the unique core
stable rule and this rule is strategy-proof (Roth, 1982a; Roth 1982b). (Note that any core
stable rule is both individually rational and Pareto efficient.) Clearly these two results
exhibit a sharp contrast. However, for a long time, it had not been fully understood where
this sharp contrast came from. It was 1999 when Sönmez provided an answer to this
question: He set up a general model of indivisible objects allocation, which covers both the
marriage problem and the housing market, and proved the following: Provided that the
preference domain is the full strict preference domain, if a social choice function is strategy-
proof, individually rational and Pareto efficient, then it must be that for each preference
profile, the core (i.e. the set of core stable allocations) is a singleton unless it is empty, and
that this function chooses the core stable allocation whenever available. In the marriage
problem the core is neither a singleton nor empty for some preference profile. Thus Sönmez’s
result implies the nonexistence of strategy-proof functions which are individaully raiotional
and Pareto efficient in the marriage problem. Later, Takamiya (2003) showed a conditional
converse of Sönmez’s result: Provided that the preference domain is the full strict preference
domain, if the core is a singleton for each preference profile, then the unique core stable rule
is strategy-proof. Evidently the strategy-proofness of the core stable rule in the housing
market immediately follows from this result. These two results of Sönmez and Takamiya
have provided some understanding in the existence problem of strategy-proof functions by
relating it to the singletonness of the core. However, to this date, it has not been fully
investigated under what conditions the singletonness of the core is obtained in the general
setting formulated by Sönmez. This seems to be a hard combinatorial problem.2

To date, social choice theorists know from experience (partially described as above) that
in models of private goods economies, it is usually more or less difficult to decide whether
there exists a social choice function which satisfies these three properties altogether. This is
in contrast to that it is also known that it is usually easy to obtain strategy-proof functions
which are individually rational or Pareto efficient separately. For example, in most models
of private goods economies, it is trivial to have a strategy-proof function which is Pareto
efficient only: A dictatorial function, in which some fixed agent always receives all the goods
in the economy, is both strategy-proof and Pareto efficient.

The purpose of the present research is to examine the idea that in private goods
economies, it is difficult to determine whether there exists a social choice function which
is strategy-proof, individually rational and Pareto efficient. Our approach is metaphorical in
the sense that we do not directly analyze those problems which social choice theorists have
attacked or do not go into the ingenuity of their proofs. Rather, for our analytical purpose,
we set up a simple and artificial problem and analyze its difficulty of a specific kind: To
embody the concept of “difficulty” we employ the concept of time complexity in the theory
of computational complexity.

Concretely, our analysis is as follows: We give a simple model of private goods economies
where agents bring in and trade indivisible objects. There each agent is faced with a con-
sumption constraint. This model is a special case of the general model of indivisible objects
allocation formulated in Sönmez’s above-mentioned paper. We consider the computational
problem of deciding whether for a given specification of the economy (i.e. a given instance
of the problem), there exists a social choice function which is strategy-proof, individually
rational and Pareto efficient. First, for our main theorem, we prove that this is an NP-hard
problem. Here NP-hardness captures the idea of “difficulty” in deciding the existence of

2This problem has been partially solved: In the setting of the coalition formation problem, a special case
of Sönmez’s general model, Pápai (2004) has provided a necessary and sufficient condition for the core to
be a singleton for each preference profile in the full strict preference domain. However, to our knowledge,
the computational complexity of checking this condition has not been investigated.
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such functions. Second, we point out, however, that this problem becomes computationally
trivial if we drop one of these three properties of the social choice function. That is, for any
two properties out of these three properties, for any instance of the problem there exists at
least one social choice function which satisfies these two properties. Thus the answer to the
decision problem is always “yes”.

It is important to note that the nature of our research is different from that of most lines
of research in computational social choice. Usually in computational social choice theory,
computational ideas are used to formulate and analyze various realistic constraints put on
the prosecution of social choice procedures or the behavior of agents who act in the social
choice process, which arise from the limited availability of material and mental resources.
However, here computational ideas are employed to express the idea of the difficulty which
(traditional) social choice researchers face with when they look for desirable strategy-proof
functions. In this sense, our paper is still research in computational social choice but more
precisely is “research about the traditional social choice research from the viewpoint of
computation”.

2 Preliminaries

2.1 Economic Model

Let us define the economic model that we examine. We consider modeling real-
location of multiple indivisible objects. An allocation problem is a list E =
(N, Ω, {Θi}i∈N , u, (w, q), x0). Here N is the set of agents, and Ω is the set of (indivisible)
objects. N and Ω are both assumed to be nonempty finite sets.

An allocation is a set-valued function x : N →→ Ω which is “partitional,” i.e. (i)
i 6= j =⇒ x(i) ∩ x(j) = ∅ and (ii)

⋃
N x(i) = Ω. Let us denote the set of allocations by X .

u := {ui}i∈N are utility functions, and Θi is the type space of agent i. Each
element of Θi specifies the preference of agent i in the following way: A value function
v : (Θ1 ∪ · · · ∪ Θn) × Ω → Z is defined. We assume utility functions are all additive with
respect to the values given by the value function. That is, the utility function of agent i,
ui : X ×Θi → Z is defined so as to satisfy the following: for all x ∈ X and θi ∈ Θi,

ui(x, θi) =
∑

ω∈x(i)

v(θi, ω). (1)

Note that values v(θi, ·) could be negative and so are utility levels.
(w, q) is a feasibility constraint, which consists of weights w and capacities q. Here

w is a function w : N ×Ω → Z+, and q is a function q : N → Z+. Here Z+ := {0, 1, 2, · · · }.
For agent i ∈ N , object ω ∈ Ω has a weight w(i, ω), and i can consume a bundle of objects
unless the sum of the weights of these objects exceeds i’s capacity q(i). Thus it is defined
that an allocation x ∈ X is feasible to agent i ∈ N if∑

ω∈x(i)

w(i, ω) ≤ q(i). (2)

An allocation x ∈ X is called feasible if it is feasible to all the agents. Let us denote
the set of feasible allocations by X f . In the following we refer to feasible allocations simply
as allocations.

Finally, x0 denotes the initial endowments. We assume x0 ∈ X f .
Let x ∈ X f and θ ∈ Θ. Then x is individually rational at θ if for any i ∈ N ,

ui(x, θi) ≥ ui(x0, θ
i). (3)
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And x is Pareto efficient at θ if for any y ∈ X f

[∀i ∈ N, ui(y, θi) ≥ ui(x, θi)] =⇒ [∀i ∈ N, ui(y, θi) = ui(x, θi)]. (4)

2.2 Relevance of the model

Our model is a special case of the general allocation model studied by Sönmez (1999)
(which we have mentioned in Sec.1). To Sönmez’s model, we have added specific structures
on admissible preferences and feasible allocations, namely, additivity of utilities, weights
of objects, capacities of agents. These structures admit concise representations of feasible
allocations and preferences. Without such structures, inputs of the problem can be overly
redundant, which apparently reduces the complexity of the problem.

We admit that as a model of private goods economies, our model is unusual and perhaps
artificial in assuming weights and capacities. However, it is still relevant as a modeling
of economic problems. For example, our model includes the housing market (Shapley and
Scarf, 1974), an important economic model, as a special case. Further, in some cases, we
may interpret weights as personalized prices of objects and capacities as budgets that agents
face.

2.3 Properties of social choice functions

Let an allocation problem be given. Let us denote Θ := Θ1 × Θ2 × · · · ×Θn. Any element
θ of Θ is called a type profile. A social choice function is a function f : Θ → X f . We
consider the following three properties of social choice functions.

• Strategy-proofness. Let i ∈ N and θ ∈ Θ. Then we say that i manipulates f at
θ if for some θ̃i ∈ Θi,

ui(f(θ−i, θ̃i), θi) > ui(f(θ−i, θi), θi), (5)

f is called strategy-proof if for any i ∈ N , i cannot manipulate f at any θ ∈ Θ.

• Individual rationality. Let us call f individually rational if for any θ ∈ Θ, x is
individually rational at θ.

• Pareto efficiency. Let us call f Pareto efficient if for any θ ∈ Θ, x is Pareto
efficient at θ.

3 Results

3.1 Main theorem

We consider the decision problem in the following. Let a positive integer n̄ be given.

NAME: SP + IR + PE(n̄)
INSTANCE: An allocation problem E = (N, Ω, {Θi}i∈N , u, (w, q), x0) with |N | = n̄.
QUESTION: Does there exist a social choice function for E which is strategy-proof,
individually rational and Pareto efficient?

Our main result is that SP + IR + PE(n̄) is NP-hard. Note that in our formulation of
the computational problem above, the number of agents is fixed, i.e. |N | = n̄. Without this
restriction on the number of agents, it is not much surprising even if the problem would be
computationally hard because the space of type profiles grows exponentially as the number
of agents gets larger.
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Theorem 1 The problem SP + IR + PE(n̄) is NP-hard if n̄ ≥ 4.

The construction made in our proof of Theorem 1 requires four agents at least (n̄ ≥ 4).
We do not know whether SP + IR + PE(n̄) is NP-hard if n̄ = 2 or 3.

3.2 Interpretation of the main theorem

(1) To understand the subtlety of Theorem 1, we should be aware of the following fact.

Theorem 2 Let an allocation problem E = (N, Ω, {Θi}i∈N , u, (w, q), x0) with an arbitrary
size of |N | be given. And let us pick up any two of the three properties, strategy-proofness,
individual rationality and Pareto efficiency. Then there exists a social choice function which
satisfies these two properties.

Theorem 2 says that if we drop one of the three properties of social choice functions which
are listed in the problem SP + IR + PE(n̄), then the computational problem becomes trivial:
The answer is “yes” for any instance. This fact tells us that what makes the computational
problem hard is neither each single requirement of strategy-proofness, individual rationality
or Pareto efficiency, or even each pair of these three properties, but rather is the combination
of these three properties altogether.

(2) It is important to notice that what is at issue here is the computational problem
deciding the existence of social choice functions which satisfy some properties. One should
carefully distinguish this problem from the computational problem of deciding whether a
given social choice function satisfies those properties. In fact, the latter problem can be
computationally very hard without combining these three properties. For example, if we are
given an allocation problem and a type profile is fixed, then the problem of deciding whether
a given allocation is not Pareto efficient is NP-complete. To state more precisely, the fol-
lowing theorem holds. Let us define the following problem: Let a natural number n̄ be given.

NAME: NOTPARETO(n̄)
INSTANCE: An allocation problem E = (N, Ω, {Θi}i∈N , u, (w, q), x0) with |N | = n̄ and
Θ = {θ}; and an allocation x ∈ X f .
QUESTION: Is x not Pareto efficient?

Theorem 3 The problem NOTPARETO(n̄) is NP-complete if n̄ ≥ 2.

From the above theorem, it directly follows that the problem of deciding whether a
given social choice function is not Pareto efficient is also NP-complete. On the contrary, it
is computationally trivial to decide whether a Pareto efficient social choice function exists
because such a function always exists.

Our Theorem 3 follows from Theorem 1 in the paper of de Keijzer, Bouveret, Klos and
Zhang (2009), which studies computational problems arising from an allocation model of
indivisible objects with additive utilities.3 However, in Sec.3.3, we will give our own proof
of Theorem 3, which utilizes a construction used in our proof of Theorem 1.

3.3 Proofs

For the preparation of proving Theorem 1, let us consider the following allocation problem
E1.

• N = {1, 2, 3}.
3We are thankful to an anonymous referee for notifying us of the work of de Keijzer et al.
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• Ω = {c1, c2, c3}.
• x1

0 = {c1}; x2
0 = {c2, c3}; x3

0 = ∅.
• Θ1 = {θ1

1, θ
1
2 , θ

1
3, θ

1
4, θ

1
5 , θ

1
6}; Θ2 = {θ2

1, θ
2
2 , θ

2
3, θ

2
4, θ

2
5 , θ

2
6}; Θ3 = {θ3}.

• The following table depicts the values of v(θ1
j , ck), v(θ2

j , ck) and v(θ3, ck).

Table 1.

θ1
1 θ1

2 θ1
3 θ1

4 θ1
5 θ1

6 θ2
1 θ2

2 θ2
3 θ2

4 θ2
5 θ2

6 θ3

v(·, c1) 1 1 2 2 3 3 3 3 2 2 1 1 0
v(·, c2) 2 3 1 3 1 2 2 1 3 1 3 2 0
v(·, c3) 3 2 3 1 2 1 1 2 1 3 2 3 0

• The following table depicts the values of w(i, ck) and q(i).

Table 2.

1 2 3
w(·, c1) 1 1 0
w(·, c2) 1 1 0
w(·, c3) 1 1 0

q(·) 1 2 0

Lemma 1 For the allocation problem E1, there does not exist any social choice function
that is strategy-proof, individually rational and Pareto efficient.

Proof. Suppose that f is strategy-proof, individually rational and Pareto efficient. Let us
denote allocations x ∈ X f by 3-tuples, i.e. x = (x(1), x(2), x(3)). Let

x1 = ({c1}, {c2, c3}, ∅), x2 = ({c2}, {c3, c1}, ∅), x3 = ({c3}, {c1, c2}, ∅). (6)

Since f is Pareto efficient, for all θ ∈ Θ, f(θ) ∈ {x1, x2, x3}. Given the above, clearly,
for each of agents 1 and 2, the agent’s possible preferences can be regarded as the set
of strict rankings over {x1, x2, x3}. Further, we can ignore the existence of agent 3.
Therefore, f is regarded as a social choice function with three alternatives and two agents
whose admissible preferences are exactly the set of strict rankings of the three alternatives.
Then since f is strategy-proof and Pareto efficient, by the Gibbard-Satterthwaite theorem
(Gibbard 1973, Satterthwaite 1975) f is dictatorial, i.e. there exists some i ∈ {1, 2} such
that for any θ ∈ Θ, f(θ) equals the allocation that maximizes agent i’s utility at θi. Clearly
f violates individual rationality. Thus we reach the desired conclusion. �

Proof of Theorem 1. Clearly it suffices to prove only for the case where n̄ = 4 because one
can increase the number of agents by adding dummy agents who does not have any initial
assignments and is not able to receive any objects for the capacity constraint. The proof is
done by reduction from the following problem PARTITION ([SP 12] in Gary and Johnson
(1979)).

NAME: PARTITION
INSTANCE: A finite set A = {a1, a2, . . . , ap} and a function s : A → N.
QUESTION: Does there exist a partition {A1, A2} of A such that

∑
a∈A1

s(a) =
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∑
a∈A2

s(a).

Let an instance of PARTITION (A, s) be given. Then we give a polynomial-time trans-
formation of this instance into an instance of SP + IR + PE(4) in the following, and we will
show that the answer to this instance of PARTITION is “yes” if and only if the the answer
to this instance of SP + IR + PE(4) is “yes”.

Let us consider the following instance E2 of SP + IR + PE(4). We denote
∑

a∈A s(a) by
s(A) in the sequel.

• N = {1, 2, 3, 4}.
• Ω = A ∪ {b, c1, c2, c3}.
• x1

0 = {c1}; x2
0 = {c2, c3}; x3

0 = A; x4
0 = {b}.

• Θ1 = {θ1
1, θ

1
2 , θ

1
3, θ

1
4, θ

1
5 , θ

1
6}; Θ2 = {θ2

1, θ
2
2 , θ

2
3, θ

2
4, θ

2
5 , θ

2
6}; Θ3 = {θ3}; Θ4 = {θ4}.

• The following table depicts the values of v(·, ·).

Table 3.

θ1
1 θ1

2 θ1
3 θ1

4 θ1
5 θ1

6 θ2
1 θ2

2 θ2
3 θ2

4 θ2
5 θ2

6 θ3 θ4

v(·, c1) 1 1 2 2 3 3 3 3 2 2 1 1 0 0
v(·, c2) 2 3 1 3 1 2 2 1 3 1 3 2 0 0
v(·, c3) 3 2 3 1 2 1 1 2 1 3 2 3 0 0
v(·, a1) 0 0 0 0 0 0 0 0 0 0 0 0 0 2s(a1)

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
v(·, ai) 0 0 0 0 0 0 0 0 0 0 0 0 0 2s(ai)

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
v(·, ap) 0 0 0 0 0 0 0 0 0 0 0 0 0 2s(ap)
v(·, b) 4 4 4 4 4 4 0 0 0 0 0 0 0 s(A) − 1

• The following table depicts the values of w(·, ·) and q(·).

Table 4.

1 2 3 4
w(·, c1) 1 1 0 s(A) + 1
w(·, c2) 1 1 0 s(A) + 1
w(·, c3) 1 1 0 s(A) + 1
w(·, a1) 2 3 0 2s(a1)

...
...

...
...

...
w(·, ai) 2 3 0 2s(ai)

...
...

...
...

...
w(·, ap) 2 3 0 2s(ap)
w(·, b) 1 3 1 s(A)
q(·) 1 2 0 s(A)

Note the two key facts of this construction: (a) Agent 3 brings the objects A =
{a1, a2, . . . , ap} into the economy as the initial allocation, and these objects are valuable
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only to agent 4. (b) If agent 4 leaves this economy with his initial assignment and agent 3’s
initial assignment is deleted, then the resulting economy is identical with E1 constructed for
Lemma 1.

(i) First, we show that if the answer to the PARTITION instance (A, s) is “yes”, then
that to the SP + IR + PE(4) instance constructed above is “yes”. Now suppose that the
answer to the PARTITION instance is “yes”. In the following we show that for any type
profile, there is only one allocation which is both individually rational and Pareto efficient,
and that the social choice function which chooses this allocation for any type profile (thus
individually rational and Pareto efficient) is strategy-proof.

Let us fix a type profile. Given the date above, it is clear that agent 4 is to be better
off by releasing the object b and instead collecting some objects A′ out of A if and only if
A′ satisfies

∑
a∈A′ 2s(a) = s(A). And that the answer to the PARTITION instance (A, s)

is “yes” means that such A′ exists. This reallocation (agent 4 releases b and obtains A′) is
Pareto improvement because the objects A are valuable only to agent 4 and chucking out the
object b never hurts the other agents’ utility. And this fills up agent 4’s capacity. Further,
Pareto efficiency forces the object b to go to agent 1, and this fills up agent 1’s capacity.
By Pareto efficiency, agent 2 receives the two his most preferred objects out of {c1, c2, c3}
depending on agent 2’s type, and this fills up agent 2’s capacity. Finally agent 3 receives the
remaining object from {c1, c2, c3} and A. Obviously this allocation is individually rational.
This is the unique allocation which is individually rational and Pareto efficient.

Let us consider the social choice function which chooses the unique individually rational
and Pareto efficient allocation for each type profile. Agents 1 and 4 receives the same
assignment for any type profile, and only the assignments of agents 2 and 3 vary. Agent
2 obtains his most preferred assignment. And agent 3’s utility level is constant whatever
this agent receives. Therefore, there is no situation where some agent can manipulate the
outcome, that is, this function is strategy-proof.

(ii) Second, we show that if the answer to the PARTITION instance (A, s) is “no”,
then that to the SP + IR + PE(4) instance is “no”. Now suppose that the answer to the
PARTITION instance is “no”. In this case, it is not possible for agent 4 to improve his
utility level by receiving some objects from A in return for giving up the object b. Thus
individual rationality forces agent 4 to keep the object b that fills up agent 4’s capacity.
Now for the feasibility constraint, any object in A cannot go to either agents 1 or 2 so agent
3 has to keep all the objects of A. Therefore, by the fact (b) indicated above, now the
situation is identical with the economy E1. Then by applying Lemma 1, we conclude that
there does not exist any strategy-proof social choice function which is individually rational
and Pareto efficient. �

Proof of Theorem 2. (i) There exists a social choice function which is individually rational
and Pareto efficient. Because it is clear that for every type profile, there exists at least one
allocation which is both Pareto efficient and individually rational.

(ii) There exists a social choice function which is strategy-proof and individually rational.
An example is the constant function, which always chooses the initial endowments x0.

(iii) There exists a social choice function which is strategy-proof and Pareto efficient. A
social choice function based on serial dictatorship (Satterthwaite and Sonnenschein, 1981)
satisfies both properties. In the following we define this class of functions and prove that any
function in this class satisfies these two properties: Let π be a bijection from {1, 2, . . . , |N |}
to N . For each θ ∈ Θ, the sets Cπ(θ, i) (i = 0, 1, 2, . . . , |N |) is defined inductively as follows:

Cπ(θ, 0) = X f , (7)
for i = 1, 2, . . . , |N |, Cπ(θ, i) = arg max

x∈Cπ(θ, i−1)
uπ(i)(x, θπ(i)). (8)

486



Note that if i < j, then Cπ(θ, j) ⊂ Cπ(θ, i). A social choice function f is a serial dicta-
torship based on π if for all θ ∈ Θ, f(θ) ∈ Cπ(θ, |N |).

First, we show that for any bijection π : {1, 2, . . . , |N |} → N , any serial dictatorship f
on π is Pareto efficient: Let x ∈ f(θ) and y ∈ X f . Suppose ∀i ∈ N, ui(y, θi) ≥ ui(x, θi).
Then, first of all, we have y ∈ Cπ(θ, 1) because otherwise it would be uπ(1)(y, θπ(1)) <
uπ(1)(x, θπ(1)), a contradiction. Next, we note that for any i ∈ {2, 3, . . . , |N |} if y ∈ Cπ(θ, i−
1), then y ∈ Cπ(θ, i) because otherwise it would be also uπ(i)(y, θπ(i)) < uπ(i)(x, θπ(i)).
Consequently, by induction, we have y ∈ Cπ(θ, |N |), which implies ∀i ∈ N, ui(y, θi) =
ui(x, θi). Thus we conclude that x is Pareto efficient.

Second, it is easy to see that these f are also strategy-proof. Because of the way
serial dictatorship is defined, any agent π(i) receives one of his best assignments among
Cπ(θ, i− 1). However, Cπ(θ, i− 1) is fully determined by (θπ(1), . . . , θπ(i−1)) so agent π(i)’s
reporting of his type does not affect this set. Thus π(i) cannot be better off by misreporting
his type. �

Proof of Theorem 3. First, we show that NOTPARETO(2) (so NOTPARETO(n̄) with
n̄ ≥ 2) is NP-hard by reduction from PARTITION. Let an instance (A, s) of PARTITION
be given. Let us give a polynomial-time transformation of this instance into an instance of
NOTPARETO(2) as follows. The following construction is based on the same idea as the
gadget consisting of agents 3 and 4 in the proof of Theorem 1 above.

• N = {1, 2}.
• Ω = A ∪ {b}.
• x1

0 = A; x2
0 = {b}

• The following table depicts the values of v.

Table 5.

θ1 θ2

v(·, a1) 0 2s(a1)
...

...
...

v(·, ai) 0 2s(ai)
...

...
...

v(·, ap) 0 2s(ap)
v(·, b) 0 s(A)− 1

• The following table depicts the values of w, q.

Table 6.

1 2
w(·, a1) 0 2s(a1)

...
...

...
w(·, ai) 0 2s(ai)

...
...

...
w(·, ap) 0 2s(ap)
w(·, b) 0 s(A)
q(·) 0 s(A)
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• The allocation x equals x0.

Now the allocation x is not Pareto efficient if and only if there exists a subset A′ of A
such that

∑
a∈A′ 2s(a) = s(A). (Because if such A′ exists, agent 2 can be better off without

hurting agent 1’s utility by releasing the object b and instead collecting A′. ) And that
the answer to the PARTITION instance (A, s) is “yes” if and only if such A′ exists. This
establishes the NP-hardness of NOTPARETO.

Second, it is easy to see NOTPARETO(n̄) ∈ NP . If the answer to a NOTPARETO(n̄)
instance is “yes” i.e. the considered allocation x is not Pareto efficient, then there exists
some other allocation y which Pareto dominates x. Now y is a certificate and it can be
checked in polynomial time whether y Pareto dominates x. �
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When Alternatives Vote over Voters

Marky D. Kondor VII

Abstract

We drastically depart from the standard theory of voting by considering settings
where the alternatives rank the voters.

1 Introduction

In traditional voting theory, each voter ranks all the alternatives. Recently, some settings
have been considered where the voters and the alternatives coincide. This leaves a much-
needed gap that we fill in this paper: what if, instead of the voters ranking the alternatives,
the alternatives rank the voters? This has numerous applications, including addressing a
common post-election sentiment of many alternatives, “Let’s see how you like being ranked.”

In this paper, we aim to establish the fundamentals of this ambitious novel research
agenda of inverted social choice. Surprisingly, we find that many traditional results in social
choice theory have remarkably similar analogues in the setting of inverted social choice. In
fact, we have so far not been able to find any result for which this is not the case. We suspect
that there may be a deeper reason for this, and are currently in the process of applying for a
multi-million dollar cross-institution grant to investigate this fascinating phenomenon more
thoroughly, and hope to establish a new workshop, COSMOC, which will be held in odd
years. We expect that the number of submissions to COSMOC will be roughly equal to
that of COMSOC. We will issue a call for reviewers shortly; each reviewer will be evaluated
by at least three papers.
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