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Abstract

In a voting system, sometimes multiple new alternativesjuiih the election after the voters’
preferences over the initial alternatives have been rede&Zomputing whether a given alter-
native can be a co-winner when multiple new alternativestjoé election is called thaossible
co-winner with new alternatives (PcWNp)oblem, introduced by Chevaleyre et al. [5, 6]. In
this paper, we show that the PcCWNA problems Idfe-complete for the Bucklin, Copeland
and Simpson (a.k.a. maximin) rule, even when the numberwfatiernatives is no more than
a constant. We also show that the PCWNA problem can be satvedlynomial time for plu-
rality with runoff. For the approval rule, we define thredeliént ways to extend a linear order
with new alternatives, and characterize the computatiocomplexity of the PCWNA problem
for each of them.

1 Introduction

In many real-life situations, a set of voters have to chooseramon alternative out of a set that
can grow during the process. For instance, when a commitieéte decide which proposal should
be granted, some applications might arrive late (due to peeted delay in mailing system, etc).
Suppose that we have already elicited the preference ofdtezs/(members in the committee) on
the initial proposals. It is important for the applicantskimow whether they are already out (so
that they can submit the same proposal to other foundingssuight away without waiting for the
committee members to make the final decision). A recent papé&revaleyre et al. [5] considers
the following problem:suppose that the voters’ preferences about a set of initiatrmatives have
already been elicited, and we know that a given nuntbef new alternatives will join the election;
we ask who among the initial alternatives can possibly wandlection in the endThis problem

is a special case of thgossible winner problerf®, 12, 11, 3, 4, 2], restricted to the case where the
incomplete profile consists of a collection of full rankinmeer the initial alternatives (nothing being
known about the voters’ preferences about the new alteestisomehow dual of another special
case of the problem where the incomplete profile consistsamfllaction of full rankings over all
alternatives for a subset of voters (nothing being knowruabite remaining voters’ preferences),
which itself is equivalent to the coalitional manipulatiproblem. The problem is also related to
control by adding candidates [1], as discussed in [5].

Chevaleyre et al. [5, 6] investigated the complexity of comimpy possible winners with new al-
ternatives, and laid the focus on scoring rules, obtainiify polynomiality andNP-completeness
results, depending on the scoring rule used and the numimevoglternatives. Their results, how-
ever, did not go beyond scoring rules. Here we go further aredrgsults for several other common
rules, especially some common rules that are basqzhowise electionsAfter giving some back-
ground in Section 2, each of the following sections is dedotethe PCWNA problem for a specific
voting rule. In Section 3, we focus on approval voting. Sitheenotion of a complete profile (includ-
ing the new alternatives) extending a partial profile oveiitiitial alternatives is not straightforward,
we propose three possible definitions, which we think arettree most reasonable definitions. We
show that PCWNA problems are trivial for two of these defars, andNP-complete for the third
one. In Sections 4, 5 and 6 we show that the probleNAscomplete for, respectively, the Bucklin
rule, the Copeland rule, and the Simpson (a.k.a. maximie) and finally in Section 7 we focus



on plurality with runoff, for which the problem is iR (due to the space constraint, the proof of this
result is omitted).

2 Preliminaries

Let C be the set oflternatives(or candidates), withC| = m. LetZ(C) denote the set of votes.
Most often, the set of votes is the set of all linear orders 6veéAn n-profile P is a collection ofn
votes for some: € N, thatis,P € Z(C)™. A voting ruler is a mapping that assigns to each profile
a set of winning alternatives, that isjs a mapping from{¢} U Z(C) UZ(C)? U ... to 2. Some
common voting rules are listed below. For all of them (exdbptapproval rule)7(C) is the set of
all linear orders ovef; for the approval rule, the set of votes is the set of all stsbs&C, that is,
Z(C)={S:SCcC}.

(Positional) scoring rules Given ascoring vectord = (v(1),...,v(m)), for any voteV € L(C)
andany € C, lets(V, ¢) = v(j), wherej is the rank ot:in V. For any profileP = (V1,...,V;,), let
s(P,e) =Y 1, s(Vi,¢). The rule will select € C so thats(P, ¢) is maximized. Some examples of
positional scoring rules ai®orda, for which the scoring vectorign — 1, m —2,...,0); [-approval

(I < m), for which the scoring vectoris(1) = ... = v(l) = 1 andv;41 = ... = v, = 0; and
plurality, for which the scoring vector i, 0, ..., 0).

Approval: Each voter submits a set of alternatives (that is, the radteres that are “approved”
by the voter). The winner is the alternative approved by #rgdst number of voters. Note that
the approval rule is different from theapproval rule, in that for thé-approval rule, a voter must
approvel alternatives, whereas for the approval rule, a voter camosepan arbitrary number of
alternatives.

Bucklin: The Bucklin score of an alternativas the smallest numbersuch that more than half of
the votes rank among topt positions. The alternatives that have the lowest Bucklaresavin. (We
do not consider any further tie-breaking for Bucklin.)

Copeland, (0 < a < 1): For any two alternatives; andc;, we can simulate pairwise election
between them, by seeing how many votes preféo c;, and how many prefet; to ¢;; the winner
of the pairwise election is the one preferred more often.nThe alternative receives one point for
each win in a pairwise election, points for each tie, and zero point for each loss. The altmem
that have the highest scores win.

Simpson (a.k.a. maximin) Let Np(c;, ¢;) denote the number of votes that ranlahead ot in P.
The Simpson score of alternatives C' in profile P is defined asimp(c) = min{Np(c,) : ¢ €
C'\{c}}. A Simpson winner folP is an alternative, € C such thatSimp(cy) = max{Simp(c) :
ce C}.

Plurality with runoff : The election has two rounds. In the first round, all altéweatare eliminated
except the two with the highest plurality scores. In the selcmund (runoff), the winner is the
alternative that wins the pairwise election between them.

Let C denote the set of original alternatives, ¥étdenote the set of new alternatives. For any
linear orderl” overC, a linear ordef’’ overC U {V'} extendV, if in V', the pairwise comparison
between any pair of alternativesdhis the same as i. That is, for any,d € C, ¢ =y dif and
only if ¢ =y d.

Given a voting rule-, an alternative, and a profileP overC, we are asked whether there exists
a profile P’ overC U'Y such thatP’ is an extension of andc € r(P’). This problem is called the
possible co-winner with new alternatives (PcW#gblem [5, 6].

Similarly, we letPWNAdenote the problem in which we are asked whethé a possible
(unique) winner, that isy(P’) = {c}. Up to now, the PcCWNA and PWNA problems are well-
defined for all voting rules studied in this paper (excepthproval rule). For the approval rule, we
will introduce three types of extension, and discuss themgdational complexity of the PCWNA
and PWNA problems under these extensions.



In this paper, aINP-hardness results are proved by reductions from the ExaaQyy 3-Sets
problem (denoted by X3C) or the BWMENSIONAL MATCHING problem (denoted by 3DM). An
instancel = (S, V) of X3C consists of a s&¢ = {v1,...,v3,} Of 3¢ elements and > ¢ 3-sets
S = {5,...,5}of v, ie, foranyi < ¢ S; C Vand|S;| = 3. Foranyv € V, letd;(v)
denote the number of 3-sets containing elemeit instancel. Let A(I) = max,cy d;(v). We
are asked whether there exists a subset {1, ..., ¢} such that.J| = g and{J,. ; S; =V (indeed,
the setsS; for j € J form a partition of)). This problem is known to b&lP-complete, even
if A(I) < 3 (problem [SP2] page 221 in [8]). In this paper, we will use acal case of 3DM
that is also a special case of X3C, defined as follbv@iven 4, B, X, whereA = {a1,...,a,},
B={bi,....0}, X ={z1,...,24},T CAXxBx X, T ={5,...,S:} witht > q. We are
asked whether there existé C T such thatM | = g and for any(ay, b1, x1), (a2, be, 22) € M, we
havea; # as, by # bo, andxy # xo. Thatis,M corresponds to an exact covendt= AU BU X.
This problem with the restriction where no elementdafl B U X occurs in more than 3 triples (i.e,
A(I) < 3) is known to be NP-complete (problem [SP1] page 221 in [8]).

It is straightforward to check that the PCWNA (respectiyétWNA) problems for all voting
rules studied in this paper are in NP, because given an éateoka profile P, it is polynomial to
verify if the given alternative is a co-winner (respectively, unique winner) for all rulésdsed in
this paper (again, we discuss the approval rule separat€hgrefore, in this paper we only show
NP-hardness proofs.

To prove that the PCWNA and PWNA problems &te-hard, we first prove that another useful
special case of 3DM (as well as X3C) remalfi8-complete.

Proposition 1 3DM is NP-complete, even if is event = 3¢/2, and A(I) < 6.

Proof of Proposition 1: Let] = (T, A x B x X) be an instance of 3DM witll = {a1,...,aq},
B = {bi,....bq}, X ={z1,...,24},T CAXxBx X, T ={5,...,5}andA(I) < 3. We
next show how to build an instandé = (77, A’ x B’ x X’) of 3DM in polynomial time, with
|A'| = |B'|=|X'|=¢, T C A x B"x X"and|T’| = ¢’ such that/ is even;t’ = 3¢’/2, and
A(I") < 6.

e If ¢ is odd, then we add to the instance 3 new eleméatsd), =} } with A’ = A U {d}},
B'=BU{b}, X' = X U{2)} and one new tripleta’, b}, z}).

e Suppose thaty is even. Ift > 3¢/2, then we add6(t — 3¢/2) new elements
{at, . ah g0} 1O A Y, b gy} 1O B {@l, ., 2G5, 0} 10 X and2(t — 3¢/2)
new triples{ Sy, ..., S5, 3,0}, Where for anyi < 2(t — 3¢/2), S; = (aj, b}, 2}). If t < 3¢/2,
then we addq/2 — t dummy triples tol’ by duplicating3q/2 — ¢ triples of T once each. We note
thatt > ¢ implies thatt > 3¢/2 — t.

Itis easy to check id’, ¢’ is event’ = 3¢'/2, andA(I") < 6. The size of the input of the new
instance is polynomial in the size of the input of the old amste. Moreover] is a yes-instance if
and only if [’ is also a yes-instance. O

3 Approval

Since the input of the approval rule is different from theunpf other voting rules studied in this
paper, we have to define the set of possible extensions of gioap profile overC. Let Pr =
(Va,...,V,) be an approval profile ove}, where eaclV; is a subset of . An extension of; over
CUY isacollectionV{,..., V) whereV;/ C CUY is an extension of;. Now, we have to define
what it means to say that’ C C U Y is an extension o/ C C. We can think of three natural
definitions:

1Generally, 3DM is not a special case of X3C.



Definition 1 (extension of an approval vote, definition 1)V C C UY is an extension of C C
ifv'nc=V.

In other words, under this definitioft;” is an extension o¥/ if V/ = V UY’, whereY’ C Y.
This definition coincides with the definition used in [10] fnely, Definition 4.3) for the control
of approval voting by adding candidates. The problem witHird#on 1 is that it assumes that
any alternative approved i is still approved inV’. However, in some contexts, extending the
choice with alternatives df” may change the “approval threshold”. Moreover, since welmavre
alternatives, this threshold should either stay the samewoe upwards: some alternatives that were
approved initially may become disapproved. This leadsédolowing definition of extension:

Definition 2 (extension of an approval vote, definition 2)V/ C C UY is an extension of C X
if one of the following conditions holds: (1) = V’; (2) V' NY # PandV' NC C V.

Lastly, we may also allow the acceptance threshold to movendards, even though the set
of alternatives grows, especially in the case where the n@snatives are particularly bad, thus
rendering some alternatives@hacceptable after all. This leads to the third definition deesion:

Definition 3 (extension of an approval vote, definition 3)V’ C C UY is an extension of C C
if one of the following conditions holds: ()’ NnC Cc VandV'NY # §; (2) V c V' nC, and
Y\V' #0;3) V' NnC=V.

Under Definition 3, either the threshold moves upward, inolttase all alternatives which were
disapproved iy are still disapproved ifY’, and obviously, at least one alternativériris approved;
or the threshold moves downward, in which case all altereatihat were approved i are still
approved inV’, and obviously not all alternatives Iri are approved. Note that in the case where
V' NC =V, the threshold can have moved upward, or downward, or resdahe sante

Let us give a brief summary of the three definitions of extemsDefinition 1 assumes that the
threshold cannot move; Definition 2 assumes that the thiéslam stay the same or move upward
(because the set of alternatives grows); and Definitiondmass that the threshold can stay the same,
move upward, or move downward. Next, we show an examplelthatrates these definitions. Let
C ={a,b,c,d}, Y = {y1,y2}, andV = {a, b}.

o V/ ={a,b} andVy = {a,b,y1 } are extensions df under any definition;

e V' = {a,y1} is an extension ot/ under definitions 2 and 3 but not under definition 1 (the
threshold has moved upward, siriceras approved iV and is no longer approved i');

o V' ={a,b,c,y1}is an extension oF under definition 3 but neither under definitions 1 nor 2
(the threshold has moved downward, sinagas not approved i and becomes approved il —
note that, intuitivelyy, must be a very unfavored alternative for this to happen);

o V' = {a,b,c} is an extension o under definitions 3 but neither under definitions 1 nor 2,
for the same reason as above;

e V' = {a} is not an extension df under any of the definitions: to havelisapproved i/’
and approved iV, the threshold has to move upward, which cannot be the cagesfternative of
Y is approved;

o V' = {a,b,c,y1,y2} is not an extension of" under any of the definitions: to havedisap-
proved inV and approved iV’ the threshold has to move downward, which cannot be theafase
all alternatives ol” are disapproved;

2The rationale behind Definition 3 is that the threshold mayediel on the average quality of candidates, and therefore
may go down after some bas new candidates have been addethsfamce, suppose a voter hates red meat, and has the
preference relatiomn of u > fi sh > chi cken > beef > nutt on; if the initial set of candidates i§t of u, fi sh,
chi cken}, itis perfectly reasonable that he should appréwef u, fish }, while he would approvét of u, fi sh,
chi cken} afterbeef andnut t on have been added in the set of candidates. This is perfecilgreement with the notion
of sincere ballot in approval voting (seeg, [7] and references therein).



e V' = {a,c,y1} is not an extension of under any of the definitions: the threshold cannot
simultaneously move upward and downward.

It is straightforward to check that the PCWNA and PWNA probdeare inP for approval under
definition 1: an alternative € C is a possible (co-)winner i if and only if it is a (co-)winner for
approval inP (this is because for any € P, the scores of alternatives ¢hwill not change from
V to its extension/’). However, when we adopt definition 2 of extension, the protd become
NP-complete.

Theorem 1 Under Definition 2, PCWNA and PWNA problems &le-complete for the approval
rule.

Proof of Theorem 1: We first prove the hardness of the PCWNA problem by a redudtiom
X3C. For any X3C instancé = (S, V), we construct the following PCWNA instance.

Alternatives: V U {c} UY, whereY = {y1,...,y:_4}.

Votes: for anyi < ¢, we have a vot&; = S;; and we have an additional voté; = {c}. That
is,P=(Vi,...,Vi,Vig1).

Suppose the X3C instance has a solution, denotedhy . . ., S;, }. Then, take the following
extension’ of P: foranyj < q, let Vi’j =V;,. Foranyi <t suchthat # i; forany;j < ¢, we let
V/ be a singleton containing exactly one of the new alternatitetV,,, = {c}. Foranyv € V,
because appears exactly in ong;,, v is approved by exactly one voter. SocisNow, there are
exactlyt — ¢ votesV; wherei is not equal to one of thg’s. Therefore, the total approval score of
the new alternatives is— ¢, and it suffices to approve every new alternative exactlyeoiterefore
cis a co-winner inP’, and thus a possible co-winner ih

Conversely, supposeis a possible co-winner faP and letP’ be an extension aP for which
c is a co-winner. We note thatis approved at most once iR’. Therefore, every alternative in
VYUY must be approved at most once. Without loss of generalisyras that every votg/ in P’ is
either of the formV; or of the form{y;} (if not, remove every alternative (except opg from V/;
¢ will still be a co-winner in the resulting profile). Since wavet — ¢ new alternatives, each being
approved at most once i, we have at least votesV; in P’ such that’/ = V;. If we had more
thang votesV; such thatl/ = V;, then more thaBq points would be distributed t8g alternatives
and one of them would get at least 2, which meansdhaiuld not be a co-winner if?’. Therefore
we have exactly; votesV; such thatV! = V;, and3q points distributed t®q alternatives; since
none of them gets more than one point, they get one point @dtbh implies that the collection of
all S; such that; = V;/ forms an exact cover af'.

For the PWNA problem, we add one more vdie, = {c} to the profileP. O

Now, let us consider Definition 3. Notice that the profité where every voter addsto her
vote (if she was not already voting fo) is an extension of?, and obviously is a co-winner in
P’, therefore every alternative 6fis a possible co-winner faP, which means that the problem is
trivial.

4 Bucklin

Theorem 2 The PWNA and PcWNA problems a&i@®-complete for Bucklin, even when there are
three new alternatives.

Proof of Theorem 2: We prove theNP-hardness of the PCWNA problem by a reduction from the
special case of 3DM mentioned in Proposition 1. Given any 3DMance whereA| = |B| =

|X| = gq, gisevent = 3¢/2, and no element il U B U X appears in more than 6 element«in
we construct a PCWNA instance as follows. Without loss ofagality, assume > 5; otherwise the
instance 3DM can be solved in linear time.

Alternatives: AUBUX UY UDU/{c}, whereY = {y1,y2,ys3} is the set of new alternatives, and



D = {di,...,dy,} is the set of auxiliary alternatives.

Votes: For anyi < 2¢ + 1, we define a votd;. Let P = (V4,...,Va41). Instead of defining
these votes explicitly, below we give the properties thatatisfies. The votes can be constructed in
polynomial time.

(i) For anyi < ¢, cis ranked in the first position. SuppoSe = (a, b, z). Then, leta, b, x be
ranked in thg3q + 1)th, (3¢ 4+ 2)th, and(3¢ + 3)th positions inV;, respectively.

(i) For anyi such thaty < ¢ < 3¢/2 = t, c is ranked in theg3q + 4)th position. Suppose
S; = (a,b,2). Then, leta, b, x be ranked in thé3q + 1)th ,(3¢ + 2)th, and(3¢ + 3)th positions in
V;, respectively.

(iii) For any i such thaBq/2 < i < 2¢ + 1, letc be ranked in thé¢3¢ + 4)th position, and no
alternative inA U B U X is ranked in the&3q + 1)th, (3¢ + 2)th, or (3¢ + 3)th position inV;.

(iv) For anyj < 3¢, v; is ranked within toBq + 3 positions for exactly; + 1 times inP.

(v) Foranyd € D, d is ranked within toBq + 4 positions at most once.

The existence of a profil® that satisfies (iv) is guaranteed by the assumption tha&r8thM
instanceg > 5, no element is covered more than 6 times, and there are epasgions within top
3¢ + 3 positions in all votes to fit in all alternatives éh with each alternative appeaysr- 1 times.
We note that there are in tota4? auxiliary alternatives, and the total number of Bap+ 4 positions
in all votes is(3¢g + 4)(2¢q + 1) < 9¢*. Therefore, (v) can be satisfied. It follows that there exést
profile P that satisfies (i), (ii), (iii), (iv), and (v), and such a piefcan be constructed in polynomial
time (by first putting the alternatives to their positiondided in (i), (ii), and (iii), then filling out
the positions using remaining alternatives to meet comnit{iv) and (v)). The Bucklin score ofis
3g+4in P. For anyj < ¢, the Bucklin score ofi; (resp.,b;, z;) is at most3¢ + 3 in P, and for
anyj < 9¢2, the Bucklin score ofl; € D is at leasBq + 4 in P. Observe that the Bucklin score of
any alternative cannot be decreased in any extensiéh of

Suppose that the 3DM instance has a solution, denotddby j € J}, whereJ C {1,... t}.
For anyj € J, we letV] be the extension of; in which yi,y2,y3 are ranked in th¢3q + 1)th,
(3¢ +2)th, and(3g + 3)th positions, respectively. For apye {1,...,2¢+1}\ J, we letV; be the
extension of/; where{y:,y», y3} are ranked in the bottom positions. Let= (V{,..., V5, ). It
follows that in P’, the Bucklin score of is 3¢ + 4, and the Bucklin score of any other alternative is
at leasB3q + 4. Thereforeg is a co-winner for Bucklin for?’, which means that there is a solution
to the PCWNA instance.

Conversely, suppose that there is a solution to the PcWNAarnicg, denoted by’ =
(Vis.. ., V3u41)- We recall that in order foe to be a co-winner, the Bucklin score of any alter-
native inA U B U X must be at leaslq + 4 (since the Bucklin score afcannot decrease iR’). We
note that there are only three new alternatives, an@e 1)th, (3¢+2)th, and(3¢+3)th positions
in V; are occupied by some alternatives/i It follows that for everyu € A and everyi such that
t < i < 2¢q+ 1, it cannot be the case thatis ranked within tom@3q + 3 positions inV;, anda is
ranked lower than thé3q + 3)th position inV;. Therefore, for every € A, there exists < ¢ such
thata is ranked within topBq + 3 positions inV;, and is ranked lower than tH8q + 3)th position
in V. It follows that in each of sucl/ wherea is ranked lower than théq + 3)th position, the
new alternatives must be ranked within @p+ 3 positions. Therefore, each new alternative must
be ranked within toq + 3 positions inVi, ..., V; for ¢ times (one for each € A). Because: is
a co-winner, no alternative il is ranked within to@Bq + 3 positions inP’ for more thary times.
Therefore, in exactly votes inP’, the alternatives iy are ranked within tofq + 3 positions. We
let{V;,,...,V; } denote these votes.

We claim that{S;,,...,S;,} is a solution to the 3DM instance. If not, then there exists
B U X that does not appear in arfyf,. However, it follows that is ranked within top3q + 3
positions for exactly; times, which means that the Bucklin scoreza$ at most3q + 3. Therefore,
the Bucklin score ot is lower than the Bucklin score ef This contradicts the assumption tlads
a co-winner forP’. Therefore, the PCWNA problem P-hard for Bucklin.



For PWNA, we make the following changes. In conditions (ijl &) that P should satisfy, we
require that, b, « are in the(3¢q + 2)th, (3¢ + 3)th, and(3¢ + 4)th positions, respectively. O

5 Copelang,

For any profile P, the Copeland score of an alternativee C in profile P is denoted by

CSp(c) = {¢' € C : Np(c,d) > n/2}| (recall that we focus on Copelapdvhich means that
the tie in a pairwise election gives 0 point to both partitipgalternatives). We have the following
straightforward observation.

Property 1 For any profileP’ overC U {y} that is an extension of profil2, the following inequal-
ities hold:
VeeC, CSp(c) < CSpi(c) <CSp(c)+1 1)

We prove that a useful restriction of X3C remalB-complete.

Proposition 2 X3C is NP-complete, even if= 2¢g — 2 andA(I) < 6.

Proof of Proposition 2: The proof is similar to the proof for Proposition 1. LEt= (S,V) be
an instance of X3C, wherg = {v1,...,v3,} andS = {S1,...,S:}. We next show how to build
an instancd’ = (§’,V’) of X3C in polynomial time, with|V’| = 3¢’ and|S’| < 6 such that
t'=2¢ —2andA(I') <6.

o If t < 2¢ — 2, then we ad®q — 2 — t dummy 3-sets t& by duplicating2qg — 2 — t sets ofS
once each. It follows from > g that2g — 2 —t < ¢ —2 < .

o If t > 2¢—2,then we add(t — 2¢ + 2) new elementsy, . . andt —2q+ 2 3-sets

U3 (1—2g12)
(v 03,03} {034 ag49) 20 Vi(1—2g42) 15 Vs(t—2q42) -

The size of the input of the new instance is polynomial in fae ef the input of the old instance.
Moreover,! is a yes-instance if and only if is also a yes-instance. Finally, in the new instafce
we have:|V'| = |V| = 3qandt’ = |§'| = t+(2¢g—2—t) = 2¢—2 = 2¢’ — 2 in the first case, while
3¢ = | X'| = 3¢q+3(t—2¢+2) = 3(t—g+2) andt’ = |S’| = t+(t—2q+2) = 2(t—q+1) = 2(¢'—1)
in the second case. Moreovéy, (v) < 2d;(v) < 6if v € V, andd; (v) = 1if v € V' \ V. O

Theorem 3 The PCWNA problem iSP-complete for Copelandeven when there is one new alter-
native.

Proof of Theorem 3: The proofis by a reduction from X3C. Lét= (S, V), wheret = 2¢ —2 and
A(I) < 6 be an instance of X3C as described in Proposition 2. As pusiypassume > 8; hence
A(I) < g — 2. For any X3C instance, we construct the following PcWNAamste for Copelangd
Alternatives: VU D UY U {c}, whereD = {d;,...,d:} andY = {y} is the set of the new
alternative.

Votes: For any: < ¢, we define the followin@t votes.

‘/;:[dl>-(D\{dz})F(V\Sl)>-0>-Sl]

V! = [rev(S;) = rev(V \ S;) = rev(D \ {d;}) = ¢ = d;]

Here the elements in a set are ranked according to the ord#éredofsubscripts, i.e., if5; =
{va,vs,v7}, then the elements are rankedws> vs = v;. For any setX such thatX c V
or X C D, letre(X) denote the linear order where the elementXiare ranked according to the
reversed order of their subscripts. For example({rey, vs, v7}) = v7 = vs > vo.

We also define the following= 2¢ — 2 votes.

Wi=...= q71:[V>'D>-C]



Wl=..=W

q—1
LetP = (Vi,Vy,..., Vi, V/, Wi, WY, ..., Wy_1, Wi_y).

We note that there aB# votes in the instance. We recall that by assumptiof2 = 3¢ — 3. We
make the following observations on the functidvp.

e Foranyd € D, d beatsc: this holds becaus®p(c, d) = 1.

e Foranyv € V, v beatse: this holds becaus&'p(c,v) = d;(v) < ¢ —2 < 3¢ — 3.

e Foranyd € D andv € V, d andv are tied this holds becaustp (v,d) = t4+q¢—1 = 3¢—3.

e Foranyv,v’ € V (v' # v), v andv’ are tied this holds becaus®¥p (v, v') = t+q¢—1 = 3¢—3,
because for any < ¢, v > ¢’ eitherinV; orin V.

e Foranyd,d € D (d' # d),d andd’ are tied this holds becaus®p(d,d’) = 3¢ — 3.

From these observations we have the following calculatiothe Copeland scores:

* CSp(c) =

e Foranyv € V CSp(v) =

e Foranyd € D, CSp(d) =

Now, assume thalt (S, V) is a yes-instance of X3C; hence, there exiéts {1,...,¢} with
|J| = ¢andJ = V. Next, we show how to make a co-winner by mtroducmg one new
alternativey. N

e Foranyj € J,weletV; = [d; = D\ {d;} > V\S; - ¢ >y > S;] be the completion o¥;.

e Foranyi < t, we letV; = [rev(S;) = rev(V \ S;) = rev(D \ {d;}) = ¢ = y > d;] be the
completion ofV/.

e For any vote not mentioned above, we puh the top position.

e Finally, let P’ denote the profile obtained in the above way.

It follows thaty loses tac in their pairwise election, and for any other alternative C (¢’ # y
andc # ¢), ¢ andy are tied in their pairwise election. Therefore, the Copelsecore is 1 for,
any alternative inV, and any alternative i; the Copeland score of is 0. It follows thatc is a
co-winner.

Next, we show how to convert a solution to the PCWNA instamca solution to the X3C
instance. LetP’ = (Vl, . Vt,Vl, . Vt,Wl, Wl, e Wq 1,Wq 1) be a profile with the new
alternative, such that becomes a co-winner accordlng to the Cope(balmde We denote?] =
(Vi,.... Vi), Py = (V... Vt) andPj = (Wl,Wl, . Wq 1 ’ 1). It follows from the above
observatlons on Copeland scores of alternatives in profied mequalities (1) of Property 1, that
CSpi(c)=1,¥¢ € DUV, CSp/(c) =1and CS(y) <1

We now claim the following.

(a) Yo € V, Np/(v,y) < 3¢g — 3, Np/(y,¢) = 3¢ — 2 andVd € D, Np/(d,y) = 3¢ — 3.
Npy(c,y) =t = 2q — 2. Moreover, for any < ¢, ¢ = y = d; in 17{.

(b) Vv eV, NPQ’UPé (v,y) > szfupé (¢,y).

For(a). Sincec is a co-winner forP’, ¢ must beay in their pairwise election. Meanwhile, any
¢ € VU D cannot beay in their pairwise elections. Therefore, we must have fNat(c,y) >
3¢g — 2, and for any¢’ € YV U D, Np/(c,y) < 3¢ — 3. Foranyd; € D, in profile P/, we have
thatd; > c except inf/i’, which means thaVp: (d;, y) > Np/(c,y) — 1 by transitivity in each vote.
Hence3q—3 > Np/(di,y) > Np/(c,y) — 1 > 3qg — 3, which means tha¥p (d;, y) = 3¢ — 3 and
Npi(c,y) = 3¢ — 2. From these equalities, we deduce thiétc D, Np/(d,y) = Np/(c,y) — 1 and
then, for anyi < ¢, we have that > y > d; in XZ’.

For (b). Since inP’, v = c except for some votes i/, we have that for alb € V,
NPéUPé (U, y) > NPéUPé (Cv y)

LetJ = {j < t:c > yinV;}. We will prove thatJ| = ¢ andUc;S; = V. First, note that
|J| < g becauseJ| = Np,(c,y) < Np/(c,y) — Npj(c,y) = g from item (a).

Now, for anyv € VletJ, = {j <t :y > vinV;}. We clam:Vo € V, JNJ, # 0.
Otherwise, there exists' € V with J N J,« = (). This means that = y impliesv* = y in votes in

= [rev(D) > re\(V) - (]

]EJ



P{. Hence,Np, (v*,y) > Np/(c,y). By adding this inequality with the inequality in iteth) (let
v = v*), we obtain thatVp, (v*,y) > Np:(c,y). Now, combining the inequalities in item (a), we
have thaBBq — 3 > Np/(v*,y) > Np/(c,y) = 3qg — 2, which is a contradiction. Therefore, for all
v eV, JnJ, # 0. Finally, since|]V| = 3¢, |S;| = 3 and|J| < ¢, we deduce that/| = ¢ and
J={j<t:c»y» S;inV;}. Also, because foralt € V, J N J, # 0, we haveJ,. ; 5; = V.
In conclusion,] = (S,V) is a yes-instance of X3C. This completes Nie-hardness proof for the
PcWNA problem for Copeland O

6 Simpson

To prove theNP-hardness of the PCWNA problem for Simpson, we first makedheviing obser-
vation, whose proof is straightforward.

Property 2 Let P be a profile ovelC, P’ be a profile ovelC U {y}, P’ is an extensiorP. The
following (in)equalities hold:

(i) Ve € C, Simp:(c) = min{Simp(c), Np:(c,y)}.

(13) Ve € C, Simp/(c) < Simp(c).

Theorem 4 PcWNA and PWNA problems aldP-complete for Simpson, even when there is one
new alternative.

Proof of Theorem 4: We first prove theNP-hardness for the PCWNA problem by a reduction
from X3C. Letl = (S, V) witht = 2¢ — 2 andA(I) < 6 be an instance of X3C as described in
Proposition 2. Without loss of generality, assuqne 8; in particular, we deducA(I) < g —2. We
define a PCWNA instance for Simpson as follows:

Alternatives: V U {c, d} U {y}, wherey is the new alternative.

Votes: For anyi < t, we define the following voteV; = [(V \ S;) = d > ¢ > S;]. For any

Jj < ¢ — 1, we define the following voteWW; = --- = W,_1 = [c > reV(V) > d]. We also let
Wy =[rev(V) = d > c. LetP, = (Vi,..., V), P = (Wi,...,W,),andP = P, U P;.

We make the following observation on the Simpson scoreseélternatives beforgis added.

e Simp(c) =q— 1. IndeedNp(c,d) = ¢— 1 andvv € V, Np(c,v) = q— 14 d;(v) > q.

e Simp(d) < 6 < g — 2. Thisis because for any< V, v is covered by the 3-sets for no more
thang — 2 times (the assumption of the input X3C instance), which re¢hat inP;, d > v for at
mostq — 2 times, i.e.,Np(d,v) = d;(v) <6 < ¢ —2.

e For anyv € V, Simp(v) > q. Actually, Np(v,d) = Np(v,c) =t —dr(v) +q > 3q —
2—(¢—2) > q. Now, assume = v;. If i < j, thenNp(v,v;) = Np,(v,v;) >t —d;(v) >
2¢—2—(¢g—2)=gqgandifj > i, Np(v,vj) = Np,(v,v;) = q.

Now, assume that = (S, V) is a yes-instance of X3C; hence, there ig & {1,...,t} with
|J| = gandJ;.; S; = V. We show how to makea co-winner by introducing one new alternative
Y.

e Foranyj € J,weletV/ =[(V\ S5;) = d = c =y = Sj].

eForanyj € {1,...,t}\ J,weletV] = [y = (V\S;) = d = c > Sj].

e Foranyj < q—1,weletW; = [c = y = rev(V) > d].

oLetW) = [y ~rev(V) = d > .

e Finally, letP" = (V{,..., Vi, Wi,...,W,).

In P’, the Simpson score gfis ¢ — 1 (viac), because = 2¢ — 2, which means that— ¢+ 1 =
q — 1; the Simpson score afis ¢ — 1 (viad); the Simpson score afis no more thag — 1 (via any
of v € V); and the Simpson score of anye Vis ¢ — 1 (viay). Thereforeg is a co-winner for the
Simpson rule.

Next, we show how to convert a solutidti to the above PCWNA instance for the Simpson rule
to a solution to the X3C instance. LBt = (V{,..., V/, W{,..., W) with P| = (V{,...,V}) and



Py = (Wi,...,W,) be a profile such that becomes a co-winner according to the Simpson rule
when alternativey is introduced.

We make the following observations.

(a) Yv eV, Np/(v,y) <q-—1,

(b) Npr(y,c) < q—1andNp/(y,d) > q,

(c)y = cin Wy

For item(a): Sincec is a winner, we have that for anye V, Simp/(v) < Simp/(c). Thus,
using Property 2Simp(c) = ¢ — 1 andSimp(v) > ¢q. We have the following calculation.

min{Np:(v,y),q} = Simp/(v) < Simp:(c) < Simp(c) -1

=4q
For item(b): First from(a), we deduce that forany € V, Np:(y,v) > t+q— Np/(v,y) > q.
Thus, we obtain:

Simp:(y) = min{Np/(y,c), Np:(y,d)} < Simp:(c) < Simp(c) =q—1 2

Now, assumeVp:(y,d) < q — 1. Then,Np,(d,y) = ¢ — Np;(y,d) > q — Npi(y,d) > 1.
Hence, there exists < ¢ such that inWW/, we have that for any € V, v > d > y. Moreover,
Np/(d,y) =t — Np/(y,d) >2¢—2—(q—1) =q— 1. LetJy C {1,...,t} (with |Jo| = ¢ — 1)
be the subscripts of arbitragy— 1 votes inP], whered > y. BecausgdV| = 3¢ and|S;| = 3,
there exist* € V \ U, S;- We deduce that for ajj € Jo, v* = yin V/. In conclusion,
Np/(v*,y) > |Jo| + 1 = ¢, which contradicts itenfa). Using inequality (2), itengb) follows.

Foritem(c): Otherwise, by the definition d/;, we deduce:

Vv eV, Npj(v,y) > 1 3)

On the other hand, using/p, (y,c) < Np:(y,c) and item(b), we haveNp:(c,y) = t —
Np;(y,¢) 2 t = Npi(y,c) >t —(¢g—1) = qg— 1. LetJy C {1,...,t} (with [Jo| = ¢ — 1)

be the subscripts of arbitrary— 1 votes inP], wherec > y. We haveV \ Uje,0 S; # 0 since
V| = 3¢ and|S;| = 3. Hence, there exists" € V\ [, ;, S; such that:
Np;(v",y) > [Jol =¢—1 4)

Summing up inequalities (3) (let= v*) and (4), we get obtain a contradiction with itém).

Fromitems(b) and(c), we getNp, (y,c) = Np/(y,c) — Np;(y,c) < qg—1—1=¢g—2. Thus,
Npi(c,y) =t — Npi(y,c) > t — (¢ —2) = ¢q. LetJ denote the subscripts of arbitragywotes in
P wherec »~ y. We claimlJ,.; S; = V. Otherwise, there exists" € V' \ ., S;. It follows
that for anyj € J, v* € (V\ U;c; S;) €V \ Sj, which means that* >~ ¢ - y in V;. Hence,
Np:(v*,y) > Np;(v*,y) > |J| = g, which contradicts itenfa). In conclusion,/ = (S,V) is a
yes-instance of X3C. Therefore, PCWNAN$-complete for Simpson.

For the PWNA problem, we make the following change. Uéf = [rev(V) > ¢ > d]. Then,
before the new alternative is introduced, the Simpson sabrés ¢q. Then, similarly we can prove
theNP-hardness of the PWNA problem. O

7 Plurality with runoff

In this section, we focus on possible co-winners, which radhat ties are never broken, neither in
the first round nor in the second round. If a tie occurs in tre found, then all possible compatible
second rounds are considered: for instance, if the plyrsdibres, ranked in decreasing order, are
x1 — 8,20 — 6,23 — 6,24 — 5..., then the set of co-winners contains the majority winner
betweenz; andx, and the majority winner between andz:s.



Proposition 3 Determining whethee € C is a possible (co-)winner for plurality with runoff is in
P.

The proof does not present any particular difficulty, and @uhe lack of space, we only give a
very brief sketch for the PCWNA problem. It proceeds in twepstas follows. Let4, be the weak
majority relation induced by a profilB. Let P be a profile ove€. c is a possible co-winner i# if
and only if one of the following two conditions hold:

1. There exists a completid® of P such that and somel € C\ {c} are possible second round
competitors, and iﬂ d.

2. There exists a completioR’ of P such thatc and some; € Y are possible second round
competitors, and =%/ y.

For each of these two conditions we can find equivalent, motyial-time computable character-
izations.

For the PWNA problem, the algorithm is similar: we need to maitre that the pairs of alterna-
tives that enter the second round must{hel), wherec -1, d.

8 Conclusion

In this paper we have gone much beyond existing results oncoimeplexity of the possible
(co-)winner problem with new alternatives. While [5, 6] éeed on scoring rules, we have identified
three new rules for which the PCWNA problemN#&-complete (Bucklin, Copeland, and Simpson).
We also showed that the PCWNA problem has a polynomial tigerdahm for plurality with runoff,
and as far as approval voting is concerned, we have givee theénitions of the extension of a
profile to new alternatives and shown that depending on tbserhdefinition, the problem can be
trivial or NP-complete. Our NP-completeness proofs and algorithmd$®PrWNA problems can
also be extended to the PWNA problems for approval, BucHimpson, and plurality with runoff.
The results are summarized in the following table.

Voting rule PCWNA |  PWNA
Borda P [6]
2-approval P [6]
l-approval { > 3) NP-complete’ [6]
P (Definition 1)
Approval NP-complete (Definition 2)
Trivial (Definition 3)
Bucklin NP-complete?
Copeland NP-complete® | ?
Simpson NP-complete?
Plurality with runoff P

Table 1: Complexity of PcCWNA and PWNA problems for some commoting rules.

An obvious and interesting direction for future researc$tiglying the computational complex-
ity of the PCWNA (PWNA) problems for more common voting ryléscluding Copelang (for
somea # 0), ranked pairs, and voting trees. Even for Copejaride complexity of the PWNA
problem still remains open.

2Even with 3 new alternatives.
3Even with 1 new alternative.
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