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Abstract

This paper analyzes the computational complexity involved in solving fairness issues

on graphs, e.g., in the installation of networks such as water networks or oil pipelines.

Based on individual rankings of the edges of a graph, we will show under which conditions

solutions, i.e., spanning trees, can be determined efficiently given the goal of maximin

voter satisfaction. In particular, we show that computing spanning trees for maximin

voter satisfaction under voting rules such as approval voting or the Borda count is NP-

hard for a variable number of voters whereas it remains polynomially solvable for a

constant number of voters.

1 Introduction

Spanning trees have first been used in connection with fair division problems in the 1970s for
fairly assigning costs to individuals in a graph theoretical setting (Bird [3]). From this starting
point, a huge body of literature has developed in recent years with a certain vicinity to Social
Choice Theory, often axiomatically motivated (e.g., Bogomolnaia and Moulin [4], Dutta and
Kar [11] and Kar [12]). In this paper we want to strengthen this link to Social Choice Theory
by looking at the maximin voter satisfaction and analyzing the computational complexity of
solution methods based on certain well-known social choice rules.
Many of the current papers use graphs to model certain networks, such as the installation of
water or power networks, oil pipelines, road constructions, or links between different countries.
Costs are assigned to the edges in such a graph and the goal is to connect all nodes (individuals,
countries, etc.) at minimum total cost and fairly assign that cost to the nodes.
In this paper1 we do not consider any monetary costs, be it because they are negligible or because
they are covered by some external source (e.g., the state). Our approach is based on individuals’
preferences over the edges of a graph and we analyze methods that - given those preferences -
fairly, i.e., socially acceptably, install networks. The focus of our analysis, however, does not lie
in the quality of the solution, i.e., in an axiomatic analysis of the solution methods, but in the
computational complexity involved.
An example in that respect could be a village that has to install a sewage or water network or
countries that need to agree on oil pipelines. Each homeowner or country needs to be connected
but obviously there are many different ways to connect everyone. Mathematically the situation
can be represented as a graph, i.e., the nodes are the homeowners and the edges are the connec-
tions between pairs of homeowners, and a solution is a spanning tree. The problem, however, is
that homeowners might have different preferences over which connections (edges) should be used
in the spanning tree. E.g. one homeowner might prefer a certain connection over another con-
nection for environmental reasons, whereas another homeowner might just prefer any connection
further away from his own garden to any connection that is closer to his garden. As we consider
that costs are no issues here, the ordinal rankings over edges by those homeowners are the only
inputs that can be used by any solution method.

1A major part of this work appeared in Darmann et al. [9, 10].



The quality of different solution methods based on social choice rules has been analyzed in a
previous paper by Darmann et al. [8], extensive studies of social choice rules can be found in
Brams and Fishburn [6], Nurmi [14] and Saari [19] among many others. The goal in this paper,
however, is to look at the computational complexity involved in finding optimal spanning trees
based on such solution methods, i.e., whether such solutions can be found in polynomial time or
not.2 Our main focus will be on methods using scores as in the Borda count or in approval voting
and the basis for evaluating different solutions will be the maximin voter satisfaction (MMVS).
In a completely different setup, namely the consideration of different scenarios to represent uncer-
tainty in Robust Optimization, closely related models of spanning tree problems were considered,
e.g., in Aissi et al. [1] and Kouvelis and Yu [13]. While their works assign arbitrary numerical
values as weights of the edges, we will consider the outcome of voting procedures to compare
edges and trees.
An important differentiation arises from the number of voters considered in the problem, i.e.,
whether this number is fixed or not. Following the results of Aissi et al. [1], it is shown that for
a fixed number of voters, solutions based on MMVS can be found in polynomial time. Things
do change when the number of voters is variable, i.e., the number of voters is part of the input
of the problem. This makes the problem significantly harder in the case of general edge weights
as has been shown by Kouvelis and Yu [13]. However, as far as the NP-hardness results are
concerned, the simple structure of edge weights arising from the respective voting rules requires
a completely different proof technique than their previously known results.
The contribution of this paper is to answer the questions of complexity posed by the application
of voting rules from Social Choice Theory. We show that even under very simple voting structures
such as approval voting, vote-against-t elections and choose-t elections for t ≥ 2, MMVS is NP-
hard. Furthermore we show that MMVS is intractable for both dichotomous and multichotomous
voter preferences. Moreover, irrespective of whether the voters’ preferences are weak or strict
orders on the edge set, MMVS under Borda voting is NP-hard. Only for the two structurally
most simple solution methods under consideration MMVS can be solved in polynomial time,
namely for plurality voting and vote-against-1 election. In fact, our result settles the complexity
status for any reasonable election process: If every voter is allowed to distinguish only one edge in
a positive or negative sense the problem remains polynomially solvable. As soon as two or more
edges receive an appraisal different from the remaining edges, the problem becomes NP-hard.
The paper is structured as follows: We give the formal framework in Section 2 and then restate
and discuss previous results for a fixed number of voters in Section 4. In Section 5 we keep the
number of voters variable and prove our main results.

2 Preliminaries

In order to be able to express preferences, we give some basic definitions for relations; the
terminology is adopted from Roberts [17].
A binary relation % ⊆ A × A on a set A is called complete if ∀a, b ∈ A, a 6= b, (a % b or b % a).
% is reflexive if ∀a ∈ A, a % a. It is called transitive if ∀a, b, c ∈ A, (a % b and b % c) ⇒
a % c. Finally, % is called asymmetric if ∀a, b ∈ A, a % b ⇒ ¬(b % a); and we call it symmetric
if ∀a, b ∈ A, a % b ⇒ b % a. A relation is called weak order if it is complete, reflexive and
transitive. A relation is called strict order, if it is complete, transitive and asymmetric.
Let G = (V, E) be an undirected and connected graph. Let n := |V | and τ be the set of spanning
trees of G. For every voter i, 1 ≤ i ≤ k, we are given a preference relation %i on E. Unless
otherwise stated, %i is assumed to be a weak order on E, consisting of an asymmetric part ≻i and

2P 6= NP is tacitly assumed throughout this paper.



a symmetric part ∼i respectively. The symmetric part ∼i of %i induces a partition E1, E2, ..., Eq

of E, such that for all j, 1 ≤ j ≤ q, we have e ∼i f for all e, f ∈ Ej . The sets Ej , 1 ≤ j ≤ q, are
called preference classes. In case q = 2 we call %i dichotomous. If q ≥ 3 the order %i is called
multichotomous. Furthermore, we refer to the k-tuple π = (%1, %2, . . . , %k) as a voter preference
profile.
The basic concept used in this work is the one of voters’ scoring functions, which can be un-
derstood as a generalization of the positional scoring procedures (for details concerning these
procedures see Brams and Fishburn [6]).

Definition 2.1 Let 1 ≤ i ≤ k. We call a function vi : E → N0 voter i’s scoring function, if

1. for all e, f ∈ E e %i f ⇔ vi(e) ≥ vi(f), and

2. maxe∈E{vi(e)} is bounded by a polynomial in n.

Definition 2.2 For 1 ≤ i ≤ k let vi be voter i’s scoring function. Voter i’s score (or count) of
tree T ∈ τ is vi(T ) :=

∑

e∈T vi(e).

Hence, voters’ preferences on trees are assumed to be additively separable, i.e., there do not exist
complementaries or synergies between the edges. Many scoring procedures can be embedded
in the framework of voters’ scoring functions. For example, approval voting (see Brams and
Fishburn [5]), plurality voting (see Roberts [18]), vote-against-t elections (presented in Brams
and Fishburn [6]) and Borda voting (see Brams and Fishburn [6] and Vorsatz [22]) can be
formulated within this framework.3

Definition 2.3 Let 1 ≤ i ≤ k. For e, f ∈ E, e 6= f , let

δi(e, f) :=











2 if e ≻i f

1 if e ∼i f

0 otherwise.

Then in Borda voting, voter i’s scoring function is the Borda function bi : E → N0 defined by
bi(e) :=

∑

f∈E\{e} δi(e, f). For e ∈ E we call bi(e) voter i’s Borda4 count of edge e. Voter i’s

Borda count of tree T ∈ τ is bi(T ) :=
∑

e∈T bi(e).

In approval voting, for every voter i the set E is partitioned into a set Si ⊆ E of edges voter i
approves of and a set Sc

i := E \ Si of edges voter i disapproves of.

Definition 2.4 Let 1 ≤ i ≤ k. In approval voting voter i’s scoring function is the function
ai : E → N0 with

ai(e) =

{

1 if e ∈ Si

0 if e ∈ Sc
i .

3The use of scoring functions on edges to obtain scores for spanning trees has not received much attention yet
in the literature. A general axiomatic analysis as surveyed by Barbera et al. [2] might help to provide support for
such a use.

4If ≻i is a strict order on E, we have bi(e) = 2 · |{f ∈ E : e ≻i f}| for e ∈ E. Let δ̂i(e, f) := 1

2
δi(e, f) for

all e, f ∈ E, e 6= f , and let b̂i(e) :=
P

f∈E\{e} δ̂i(e, f) for e ∈ E. Thus b̂i(e) = |{f ∈ E : e ≻i f}|, and hence

b̂i(e) would define voter i’s Borda count of edge e in the canonical way. Note that bi(e) > bi(f) ⇐⇒ b̂i(e) > b̂i(f)

for all e, f ∈ E, e 6= f , and
P

e∈T1
bi(e) >

P

e∈T2
bi(e) ⇐⇒

P

e∈T1
b̂i(e) >

P

e∈T2
b̂i(e) for all T1, T2 ∈ τ . The

function b̂i however does not map from E into the set of non-negative integers but may take rational values as
well. Since this causes some technical inconvenience (i.e., Theorem 4.1 cannot be applied directly), b̂i is omitted
in this work.



The function ai is called voter i’s approval function. Voter i’s approval count of T ∈ τ is defined
by ai(T ) :=

∑

e∈T ai(e).

Choose-t elections and vote-against-t elections constitute two special cases of approval voting.
A choose-t election5 corresponds to approval voting subject to the requirement that for a fixed
t ∈ N |Si| = t for 1 ≤ i ≤ k. In this context, a choose-1 election is called plurality voting.
Approval voting under the requirement that for a fixed t ∈ N |Sc

i | = t for 1 ≤ i ≤ k is called
vote-against-t election.

3 Problem formulation

With the above preliminaries we are now able to state the maximin voter satisfaction problem.

Definition 3.1 Maximin voter satisfaction problem (MMVS)
Let G = (V, E) be an undirected graph, let I be a set of voters and let π be a voter preference
profile. For i ∈ I let vi be voter i’s scoring function. The maximin voter satisfaction problem
(MMVS) is the following problem:

max
T∈τ

min
i∈I

vi(T )

Maximizing the minimum of such concepts as utility, costs, time, etc. is a very common way
to formalize the idea of fairness. Such a maximin approach to fairness can especially be found
in the literature on networks, scheduling, etc. On the other hand, maximin fairness also has a
certain link to fairness in Social Choice Theory, originally discussed decades ago by Rawls [16].
However, there are also many other approaches to formalize fairness based on proportionality,
equitability, envy-freeness, etc. and used in areas such as mathematics and economics (Brams
and Taylor [7], Thomson [21]).
From a completely different point of view the problem appears in the Operations Research liter-
ature in the context of Robust Optimization. One possibility to model an optimization problem
under uncertainty is the consideration of different scenarios each of which induces different data
for the problem. Maximizing the objective function for the worst-case scenario amounts to a
maximin problem with voters corresponding to scenarios. In this context Aissi et al. [1] refer to
an analogon of MMVS as max-min spanning tree problem while Kouvelis and Yu [13] use the
terminology absolute robust minimum spanning tree problem. In this paper, however, the aim is
to analyze the complexity of aggregating voters’ opinions with the help of special types of voting
procedures.

4 MMVS with a fixed number of voters

In this section the number k of voters is assumed to be a constant integer number. Likewise one
could say that k is not regarded as a part of the input within this section. With this point of
view MMVS is known to be solvable in polynomial time (see Aissi et al. [1]). We restate this
result in the following theorem.

Theorem 4.1 (Aissi et al. [1])
MMVS can be solved in O(n4W k log W ) time, where W ∈ N is an upper bound for the objective
function value.

5In the literature, choose-t elections are also called t-approval voting (Peters et al. [15]) or vote-for-exactly-t
procedures (Brams and Fishburn [6]).



Noting that for approval voting there is W ≤ n and for Borda voting W ≤ 2nm, this theorem
yields the following corollary.

Corollary 4.2 MMVS under approval voting can be solved in O(n4+k log n) time. MMVS under
Borda voting can be solved in O(n4+kmk log n) time.

However, for the special case of plurality voting MMVS can even be solved in linear time.

Proposition 4.3 MMVS under plurality voting can be solved in O(mk) = O(m) time.

Proof. Given the graph G = (V, E), let E1 := {e ∈ E|vi(e) = 1 for at least one i, 1 ≤ i ≤ k}. If
the subgraph H = (V, E1) is acyclic, then there obviously exists a spanning tree T of G such that
E1 ⊆ T holds. In this case trivially maxT∈τ mini∈I vi(T ) = 1. If on the other hand H contains
a cycle, then clearly there cannot exist a spanning tree T of G with E1 ⊆ T . Thus for each
spanning tree T of G there is an edge of E1 that is not contained in T . Hence for each T ∈ τ we
have mini∈I vi(T ) = 0 which yields maxT∈τ mini∈I vi(T ) = 0.
Calculating the set E1 takes O(mk) = O(m) time, the determination whether H is acyclic or
not can be done in O(m) time. This proves the proposition. �

5 MMVS with a variable number of voters

In this section the number k of voters is not assumed to be constant but may vary instead, i.e., k
is considered to be part of the input. This approach seems to make MMVS significantly harder.
To be more precise, MMVS was shown to be strongly NP-hard for arbitrary scoring functions
by Kouvelis and Yu [13]. The question of the computational complexity of MMVS under the
common voting rules such as approval voting, plurality voting, choose-t elections, vote-against-t
elections and Borda voting is not answered by Kouvelis and Yu [13] though and to the authors’
best knowledge has been open so far.
We improve upon the result of Kouvelis and Yu [13] and show that MMVS is NP-hard even
in case of very basic voting procedures. In particular, MMVS turns out to be NP-hard even
under the simple procedure of approval voting – that is, MMVS remains NP-hard if the range
of the voters’ scoring functions is restricted to {0, 1}.6 We also show that this result still holds
if the number of approved or disapproved edges is some fixed t ≥ 2 (choose-t elections and vote-
against-t elections respectively for t ≥ 2). Moreover, we can show that MMVS is NP-hard under
Borda voting. In contrast to these results, it can easily be shown that MMVS under plurality
voting and vote-against-1 elections can be solved in polynomial time.
The key instrument used in the NP-hardness proofs presented in this section is to reduce the
NP-complete monotone one-in-three 3SAT problem (Schaefer [20]) to the decision problem cor-
responding to MMVS.

Definition 5.1 Monotone one-in-three 3SAT problem (monotone 1-in-3SAT)
GIVEN: A set X of variables and a collection C of clauses over X such that every

clause is made up of exactly three positive literals.
QUESTION: Is there a truth assignment for X such that every clause contains exactly one

true literal?

Remark. Note that in above definition every clause contains exactly three literals all of which
must be positive. That is, in monotone 1-in-3SAT there are no negated literals. Therefore in
monotone 1-in-3SAT the set X of variables corresponds to set of literals over X .

6Note that this implies and sharpens the strong NP-hardness result of Kouvelis and Yu [13].
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Figure 1: Undirected Graph G derived from instance U1 of monotone 1-in-3SAT.

5.1 Approval voting and Borda voting

Our first result shows that MMVS is NP-hard already for weak orders if the voters’ scoring
functions have the simple structure of approval functions.

Theorem 5.1 Under approval voting MMVS is NP-hard.

Proof. We will polynomially transform an arbitrary instance of monotone 1-in-3SAT to an
instance of MMVS with approval voting.
Let U1 be an instance of monotone 1-in-3SAT with X := {x̃1, x̃2, . . . , x̃ℓ} being the set of variables
(= literals) and C := {C̃1, C̃2, . . . , C̃z} being a collection of clauses over X. W.l.o.g. we assume
clause C̃1 to contain the literals x̃1, x̃2, x̃3. We construct the undirected graph G = (V, E) by the
following procedure (see Fig. 1):
Let V = ∅ and E = ∅. For each literal x̃j ∈ X add two nodes αj and ωj to V . For each clause

C̃i ∈ C add node Ci to V . Add node r to V . Next for each literal x̃j ∈ X

• add edge xj to E connecting the nodes αj and ωj

• add edge fj to E connecting αj and r

• add edge gj to E connecting ωj and r

• if x̃j is contained in clause C̃i ∈ C add edge ei,j to E connecting the nodes Ci and αj .

Note that n = |V | = z + 2ℓ + 1 and m = |E| = 3ℓ + 3z.
We now establish the voter preference profile π and the corresponding values of the voters’
approval functions (see Table 1 and 2). First, we introduce voters χj , 1 ≤ j ≤ ℓ, whose approval
functions are given by

aχj
(e) =

{

0 if e ∈ {xj , fj}

1 otherwise.



χ1 χ2 χ3 · · · χℓ

edge aχ1
edge aχ2

edge aχ3
edge aχℓ

x1 0 x2 0 x3 0 xℓ 0

f1 0 f2 0 f3 0 fℓ 0

e1,1 1 e1,1 1 e1,1 1 e1,1 1
... 1

... 1
... 1

... 1
... 1

... 1
... 1

... 1
...

...
...

...
...

...
...

...

xℓ 1 xℓ 1 xℓ 1 xl−1 1

Table 1: Preference profile of voters χj , 1 ≤ j ≤ ℓ, and the values of the corresponding approval
functions.

ci cj1
i cj2

i cj3
i c

fj1

i c
fj2

i c
fj3

i

edge aci
edge a

c
j1
i

edge a
c

j2
i

edge a
c

j3
i

edge a
c

fj1
i

edge a
c

fj2
i

edge a
c

fj3
i

xj1 0 xj1 0 xj2 0 xj3 0 fj1 0 fj2 0 fj3 0

xj2 0 ei,j2 0 ei,j1 0 ei,j1 0 ei,j1 0 ei,j2 0 ei,j3 0

x
j3

0 ei,j3 0 ei,j3 0 ei,j2 0 1 1 1

1 1 1 1 1 1 1

other 1 other 1 other 1 other 1 other 1 other 1 other 1

edges
... edges

... edges
... edges

... edges
... edges

... edges
...

1 1 1 1 1 1 1

Table 2: Preference profile (and corresponding approval functions) derived from clause C̃i containing
the literals x̃j1 , x̃j2 , x̃j3 .

c1 c1
1 c2

1 c3
1 cf1

1 cf2

1 cf3

1

edge aci
edge a

c
j1
i

edge a
c

j2
i

edge a
c

j3
i

edge a
c

fj1
i

edge a
c

fj2
i

edge a
c

fj3
i

x1 0 x1 0 x2 0 x3 0 f1 0 f2 0 f3 0

x2 0 e1,2 0 e1,1 0 e1,1 0 e1,1 0 e1,2 0 e1,3 0

x3 0 e1,3 0 e1,3 0 e1,2 0 e1,2 1 e1,1 1 e1,1 1

e1,1 1 e1,1 1 e1,2 1 e1,3 1
... 1

... 1
... 1

... 1
... 1

... 1
... 1

... 1
... 1

... 1
... 1

... 1
... 1

... 1
... 1

... 1
... 1

... 1
... 1

... 1
... 1

... 1
... 1

... 1

xℓ 1 xℓ 1 xℓ 1 xℓ 1 xℓ 1 xℓ 1 xℓ 1

Table 3: Preference profile derived from clause C̃1 which is made up of the literals x̃1, x̃2, x̃3.



The rest of the voter preference profile is established as follows. Let a clause C̃i ∈ C contain the
literals x̃j1 , x̃j2 , x̃j3 – which means node αy and node Ci are adjacent, y ∈ {j1, j2, j3}. Add seven

voters denoted by ci, cj1
i , cj2

i , cj3
i , c

fj1

i , c
fj2

i and c
fj3

i to π. Voter ci assigns value 0 to the edges
xj1 , xj2 , xj3 and value 1 to all other edges. Voter cy

i , y ∈ {j1, j2, j3} assigns value 1 to all edges

but to xy and to the edges ei,u with u ∈ {j1, j2, j3}, u 6= y, which get value 0. And voter c
fy

i ,
y ∈ {j1, j2, j3}, assigns value 0 to the edges fy and ei,y, and assigns value 1 to all the other edges
(see Table 2). To illustrate the voter preference profile π, an example is given in Table 3 with
the preferences and approval functions of the seven voters corresponding to clause C̃1 which is
made up of the literals x̃1, x̃2, x̃3.
Having treated all clauses in the way just described the voter preference profile is made up
of k := ℓ + 7z voters. Note that the instance of MMVS under approval voting defined by
G = (V, E), π and the corresponding approval functions can be constructed in polynomial time
(with respect to the size of U1).

Claim 1. There exists a truth assignment for X such that each clause in C contains exactly one
true literal if and only if there exists a T ∈ τ such that for all p, 1 ≤ p ≤ k, ap(T ) ≥ n−2 holds.

Proof of Claim 1.

“⇒”: For a satisfying truth assignment tS let S be the set of literals set “TRUE” under tS . Create
tree T as follows. Set T = ∅. For all x̃j ∈ S:

• add xj and gj to T

• add ei,j to T for all i, 1 ≤ i ≤ z, for which edge ei,j ∈ G

For all x̃j ∈ X \ S, i.e., literals set “FALSE” in tS , add fj and gj to T . Summarizing, we get for
1 ≤ j ≤ ℓ the following four properties:

1. gj ∈ T

2. xj ∈ T ⇔ x̃j is set “TRUE” under tS

3. xj ∈ T ⇔ ei,j ∈ T for all i : ei,j ∈ G

4. xj ∈ T ⇔ fj /∈ T

Since tS constitutes a satisfying truth assignment, each node Ci, 1 ≤ i ≤ z, is connected to node
r in T . Obviously, all other nodes of V are connected to r in T as well and thus T is connected.
Because of |T | = |S|+ z + ℓ + (ℓ − |S|) = z + 2ℓ we get |T | = n− 1 and hence the subgraph T is
a tree. Due to |T | = n − 1 and property 4. we get aχj

(T ) = n − 2 for all j ∈ {1, 2, . . . , ℓ}.

As above, let clause C̃i be made up of the literals x̃j1 , x̃j2 , x̃j3 . The fact that exactly one of
the literals x̃j1 , x̃j2 , x̃j3 is set “TRUE” under tS means exactly one of the edges xj1 , xj2 , xj3 is
contained in T . Together with |T | = n − 1 this yields aci

(T ) = n − 2. Let us now consider the
voters cj1

i , cj2
i , cj3

i : W.l.o.g. we may assume that x̃j1 is set “TRUE” under tS . Thus xj1 ∈ T ,
xj2 /∈ T , xj3 /∈ T . Due to property 3. we hence get ei,j1 ∈ T , ei,j2 /∈ T , ei,j3 /∈ T . This implies

a
c

jy

i

(T ) = n − 2

for all y ∈ {j1, j2, j3}.7 Finally, properties 3. and 4. yield a
c

fy
i

(T ) = n − 2 for all y ∈ {j1, j2, j3}.

7Clearly, assuming that instead of x̃j1 either x̃j2 or x̃j3 is set “TRUE” under tS yields a
c

jy
i

(T ) = n−2 as well.



“⇐”: Let now Q be a spanning tree with ap(Q) ≥ n− 2 for all p, 1 ≤ p ≤ k. Thus for each voter
p in our voter preference profile at most one edge e with ap(e) = 0 is contained in Q. Hence
because of voters χj the edges xj and fj cannot both be contained in Q, 1 ≤ j ≤ ℓ. Analogously

due to voters ci, 1 ≤ i ≤ z, for any clause C̃i made up of some literals x̃j1 , x̃j2 , x̃j3 at most one
of the edges xj1 , xj2 , xj3 is contained in Q. Next we show that for 1 ≤ j ≤ ℓ

xj ∈ Q ⇔ ei,j ∈ Q

holds for all i with ei,j ∈ G.
Assume xj = xj1 ∈ Q and let node Ci be adjacent to nodes αxj1

, αxj2
and αxj3

(i.e., in our

monotone 1-in-3SAT instance clause C̃i is again made up of the literals x̃j1 , x̃j2 , x̃j3). Because of

voter cj1
i we have ei,j2 /∈ Q and ei,j3 /∈ Q. Note that the degree of node Ci equals three and thus

ei,j1 ∈ Q since otherwise Ci would be isolated. Thus xj ∈ Q implies ei,j ∈ Q for all i such that
ei,j ∈ G.
On the other hand, let ei,j1 ∈ Q for some i, 1 ≤ i ≤ z, and some j1, 1 ≤ j1 ≤ ℓ. Now
a

c
j2
i

(Q) ≥ n − 2 implies ei,j3 /∈ Q and a
c

j3
i

(Q) ≥ n − 2 implies ei,j2 /∈ Q. In other words, node

Ci is a leaf. Due to voter c
fj1

i we have fj1 /∈ Q. If there is no u, 1 ≤ u ≤ z, u 6= i, such that
eu,j1 ∈ Q then it is easy to see that xj1 must be contained in Q since otherwise nodes r and Ci

would not be connected. If such an edge eu,j1 is contained in Q, then as a consequence of

a
c

j1
u

(Q) ≥ n − 2

node Cu must be a leaf as well and thus the same argument applies. Hence xj ∈ Q ⇔ ei,j ∈ Q
holds for all i with ei,j ∈ G, 1 ≤ j ≤ ℓ.
But since node Ci is a leaf, 1 ≤ i ≤ z, for each such node there is exactly one j, 1 ≤ j ≤ ℓ, such
that both xj and ei,j are contained in Q. In other words, the truth assignment tS̃ defined by

letting S̃ := {x̃j |xj ∈ Q} be the whole set of literals set “TRUE” under tS̃ is a satisfying truth
assignment for the considered instance of monotone 1-in-3SAT. This proves the claim. ♦

Claim 1 implies that any arbitrary instance of monotone 1-in-3SAT can be reduced to an
instance of MMVS under approval voting. As stated before, the instance of MMVS under
approval voting can be constructed in polynomial time. Thus it is proven that monotone
1-in-3SAT polynomially transforms to MMVS under approval voting. �

Remark. Note that in case of dichotomous preferences the sets of optimal solutions of MMVS
under approval voting and of MMVS under Borda voting obviously coincide.8 Thus from The-
orem 5.1 it follows that, given weak preference orders, MMVS under Borda voting is NP-hard
as well.9

Proposition 5.2 MMVS under Borda voting is NP-hard.

Since dichotomous preferences over the edges induce approval functions in a natural way, it
follows from Theorem 5.1 that MMVS is NP-hard for any dichotomous preferences already.
Furthermore it can easily be shown that MMVS is NP-hard in the cases of multichotomous
preferences as well.

Corollary 5.3 Let π = (%1, %2, . . . , %k) be a voter preference profile such that %i is multichoto-
mous for all 1 ≤ i ≤ k. Then MMVS is NP-hard.

8Therefore the general result shown in [22] that, given dichotomous preferences, Borda’s method and approval
voting are equivalent, applies for MMVS as well.

9We can show that this result still holds if the voters’ preferences are strict orders. I.e., MMVS is also NP-hard
if the voters’ scoring functions are bijections to {1, 2, . . . , m} and thus no two edges receive the same value.



Proof. Let q > 2 be the number of preference classes. Create a graph H from the graph
G = (V, E) used in the proof of Theorem 5.1 by concatenating a path p of length q−2 to node r.
Let n := |V | and m := |E|. We now derive from the profile π used in the proof of Theorem 5.1
a profile π̃ on the edges of graph H such that π̃ consists of q preference classes in two steps.
Firstly, we derive from π a preference profile π1 on G such that every voter i who disapproves of
three edges in π is in π1 replaced by three voters who disapprove of two edges only. Secondly,
using the profile π1 and path p, we assign the edges of H to the preference classes.
In order to get π1, a voter γ who disapproves of edges {ε1, ε2, ε3} is replaced by the following
three voters: voter γ1 who disapproves of edges {ε1, ε2}, voter γ2 who disapproves of edges
{ε2, ε3} and voter γ3 who disapproves of edges {ε1, ε3}.
Denote the preference classes that make up π̃ by Aij , 0 ≤ j ≤ q − 1, for all voters i, 1 ≤ i ≤ k.
Let these preference classes be such that each edge in Aij be strictly preferred to each edge
in Aij′ for 0 ≤ j′ < j ≤ q − 1. Now for each voter i let Ai0 := {e ∈ E|ai(e) = 0} and let
Ai(q−1) := {e ∈ E|ai(e) = 1} according to π1. Note that |Ai0| = 2 and |Ai(q−1)| = m− 2. Assign
the q − 2 edges of the path p to the classes Aij , 1 ≤ j ≤ q − 2, in an arbitrary way such that
each of these classes contains exactly one edge. Assume Borda voting is being used. Then for
every i, voter i’s Borda values of the edges are given as follows:

bi(e) =











2q + (m − 3) if e ∈ Ai(q−1)

2(j + 1) if e ∈ Aij , 1 ≤ j ≤ q − 2

1 if e ∈ Ai0

Obviously each edge of the path p must be contained in a spanning tree of H . Since 2q+(m−3) >
2 the following two decision problems (D1) and (D2) are equivalent:
(D1) GIVEN: Graph G and preference profile π.

QUESTION: Is there a spanning tree T of G such that ai(T ) ≥ n − 2
for all i, 1 ≤ i ≤ k ?

(D2) GIVEN: Graph H and preference profile π̃.
QUESTION: Is there a spanning tree T1 of H such that

bi(T1) ≥ (n − 2)(2q + (m − 3)) +
∑q−2

j=1 2(j + 1) for all i, 1 ≤ i ≤ k ?
Thus, the corollary follows. �

5.2 Vote-against-t elections and choose-t elections

As a consequence of the proof of Theorem 5.1 in the previous subsection, for any integer t ≥ 2
MMVS under vote-against-t elections is NP-hard as well. The proof of this result uses the same
approach as the one of Theorem 5.1 and is therefore omitted in this paper.

Corollary 5.4 Let t ∈ N, t ≥ 2. Under vote-against-t elections MMVS is NP-hard.

It is worth noting that the above corollary does not hold for MMVS under vote-against-1 elections.
In this case a solution of MMVS can be found in the following way: Remove from the considered
graph G all edges e that have vi(e) = 0 for at least one voter i. If the remaining graph is
connected, then the objective function value is n − 1, otherwise it is n − 2. This observation
yields the following statement.

Proposition 5.5 Under vote-against-1 elections MMVS can be solved in O(mk) time.

From Proposition 4.3 we know that MMVS under plurality voting, i.e., choose-1 elections, can
be solved within the polynomial time bound of O(mk). By a reduction from the classical 3SAT



problem we can show that, in contrast, MMVS under choose-t elections is NP-hard for each
fixed t ≥ 2. Therefore, as for vote-against-t elections, with the step from t = 1 to t = 2
the computational complexity of MMVS under choose-t elections jumps from polynomial time
solvable to NP-hard.

Theorem 5.6 MMVS under choose-t elections is NP-hard for every fixed t ≥ 2.

6 Conclusion

We have considered the maximin voter satisfaction problem under both the scenarios that the
number of voters is constant and may vary. It is known from Aissi et al. [1] that MMVS is
polynomially solvable when the number of voters is fixed. The main contribution of this paper
has dealt with the question of computational complexity of MMVS in the case of a variable
number of voters. We improve upon an NP-hardness result of Kouvelis and Yu [13] for general
scoring functions by showing that, for a varying number of voters, MMVS is NP-hard under
very basic voting rules already. In particular, we have shown that MMVS is computationally
intractable under approval voting, vote-against-t elections and choose-t elections for t ≥ 2. We
have proven that the problem is NP-hard both in the cases of dichotomous voter preferences
and multichotomous voter preferences. Furthermore, MMVS under Borda voting is NP-hard,
irrespective of the underlying voter preferences constituting weak orders or strict orders on the
set of edges. Among the voting methods under consideration MMVS has turned out to be
polynomially solvable only for the structurally most simple ones: plurality voting and vote-
against-1 elections. Thus, when allowing each voter to approve or disapprove of more than one
edge, the computational complexity of MMVS jumps from polynomial time solvable to NP-hard.
In these NP-hard cases however, it is natural to ask if MMVS is fixed-parameter tractable when
parametrized by the number of voters. Following the approach of Aissi et al. [1], we can show that
MMVS is fixed-parameter tractable under choose-t elections and under vote-against-t elections,
for each t ≥ 2. Whether or not MMVS under Borda voting is fixed-parameter tractable remains
an interesting open question.
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