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Abstract

Multi-agent decision problems, in which independent agéwatve to agree on a joint plan of
action or allocation of resources, are central to Al. In ssithations, agents’ individual pref-
erences over available alternatives may vary, and they mayp treconcile these differences
by voting. Based on the fact that agents may have incentiveste strategically and misre-
port their real preferences, a number of recent papers halered different possibilities for
avoiding or eliminating such manipulations. In contrastriost prior work, this paper focuses
on convergence of strategic behavior to a decision from whivoter will want to deviate.
We consider scenarios where voters cannot coordinateabgéams, but are allowed to change
their vote after observing the current outcome. We focusherPiurality voting rule, and study
the conditions under which this iterative game is guarahteeonverge to a Nash equilibrium
(i.e., to a decision that is stable against further unitteranipulations).

We show for the first time how convergence depends on the axtaittutes of the game, such
as the tie-breaking scheme, and on assumptions regardimgshwveights and strategies.

1 Introduction

The notion of strategic voting has been highlighted in refean Social Choice as crucial to under-
standing the relationship between preferences of a papujand the final outcome of elections.
The most widely used voting rule is the Plurality rule, in athieach voter has one vote and the
winner is the candidate who received the highest number t&fsvd/Vhile it is known that no rea-
sonable voting rule is completely immune to strategic bahrawlurality has been shown to be
particularly susceptible, both in theory and in practic2, [8]. This makes the analysis of any elec-
tion campaign—even one where the simple Plurality rule edusa challenging task. As voters
may speculate and counter-speculate, it would be benefichelve formal tools that would help us
understand (and perhaps predict) the final outcome.

Natural tools for this task include the well-studied sauatconcepts developed for normal form
games. While voting games are not commonly presented inidys several natural formulations
have been proposed. Moreover, such formulations are egtyesimple in Plurality voting games,
where voters only have a few ways available to vote.

While some work has been devoted to the analysis of solutianepts such adominant strate-
giesandstrong equilibrig this paper concentrates on Nash equilibria (NE). This rpostninent
solution concept has typically been overlooked, mainlyalnse it appears to be too weak for this
problem: there are typically many Nash equilibria in a vgtgame, but most of them are trivial.
For example, if all voters vote for the same candidate, themis clearly an equilibrium, since any
single agent cannot change the result. This means thatliBlusadistorted i.e., there can be NE
points in which the outcome is not truthful.

The lack of a single prominent solution for the game sugghatsn order to fully understand the
outcome of the voting procedure, it is not sufficient to cdesivoters’ preferences. The strategies
voters’ choose to adopt, as well as the information avadlaibthem, are necessary for the analysis of
possible outcomes. To play an equilibrium strategy for gxamvoters must know the preferences
of others. Partial knowledge is also required in order tmiglate dominated strategies or to collude
with other voters.

We consider the other extreme, assuming that voters haialinho knowledge regarding the
preferences of the others, and cannot coordinate thegrectSuch situations may arise, for exam-
ple, when voters do not trust one another or have restridathtnication abilities. Thus, even if



two voters have exactly the same preferences, they may betaat or unable to share this infor-
mation, and hence they will fail to coordinate their actiovisters may still try to vote strategically,
based on their current information, which may be partial corvg. The analysis of such settings
is of particular interest to Al as it tackles the fundameptablem of multi-agent decision making,
where autonomous agents (that may be distant, self-inéerasd/or unknown to one another) have
to choose a joint plan of action or allocate resources or godke central questions are (i) whether,
(if) how fast, and (iii) on what alternative the agents wiree.

In our (Plurality) voting model, voters start from some anncement (e.g., the truthful one), but
can change their votes after observing the current annousaeand outcomé The game proceeds
in turns, where a single voter changes his vote at each tura.stidy different versions of this
game, varying tie-breaking rules, weights and policiesaitks, and the initial profile. Our main
result shows that in order to guarantee convergence, ittisssary and sufficient that voters restrict
their actions to natural best replies.

1.1 Reated Work

There have been several studies applying game-theoréittosoconcepts to voting games, and to
Plurality in particular. [7] model a Plurality voting gaméhere candidates and voters play strategi-
cally. They characterize all Nash equilibria in this gamedernthe very restrictive assumption that
the preference domain gngle peakedAnother highly relevant work is that of [5], which concen-
trates ondominant strategies Plurality voting. Their game formulation is identical ¢aurs, and
they prove a necessary and sufficient condition on the prfofilthe game to be dominance-solvable.
Unfortunately, their analysis shows that this rarely osgcuoraking dominance perhaps a too-strong
solution concept for actual situations. A weaker concéqiugh still stronger than NE, Strong
Equilibrium. In strong equilibrium no subset of agents can benefit by ntpkicoordinated diver-
sion. A variation of strong equilibrium was suggested by} [#hich characterized its existence and
uniqueness in Plurality games. Crucially, all aforememgit papers assume that voters have some
prior knowledge regarding the preferences of others.

A more complicated model was suggested by [11], which ass@amen-atomic set of voters and
some uncertainty regarding the preferences of other volésr main result is that every positional
scoring rule (e.g., Veto, Borda, and Plurality) admits asteone voting equilibrium. In contrast, our
model applies to a finite number of voters, that possess zewlkdge regarding the distribution of
other voters’ preferences.

Variations of Plurality and other voting rules have beerposed in order to increase resistance
to strategic behavior (e.g., [4]). We focus on achievingablgt outcoméaking such behavior into
account

Iterative voting procedures have also been investigatétkititerature. [3] consider voters with
different levels of information, where in the lowest levgeaits are myopic (as we assume as well).
Others assume, in contrast, that voters have sufficientrivdtion to forecast the entire game, and
show how to solve it with backward induction [6, 9]; most k&let to our work, [1] study conditions
for convergence in such a model.

2 Preéiminaries
2.1 TheGameForm

There is a seC of m candidates, and a sét of n voters. A voting rulef allows each voter to
submit his preferences over the candidates by selectingteomdrom a setd (in Plurality, A = C).
Then, f chooses a non-empty set of winner candidates—i.e., it igaifon f : A™ — 2\ {()}.

1A real-world example of a voting interface that gives risatsimilar procedure is the recently introduced poll gadget
for Google Wave. See http://sites.google.com/site/falloave.



[v1,02]] a | b | c |

a (14,9,3) {a} | (10,13,3) {b} | (10,9,7) {a}
b (11,12,3) (b} | (7,16,3) {6} | (7,12,7) {b}
c (11,9,6) {a} | (7,13,6){b} | (7,9,10) {c}

Table1: Thereisasef = {a,b, c} of candidates with initial score$, 9, 3). Voter 1 has weight 3 and voter 2
has weight 4. Thus7 Fr = ({a, b, c}, {1, 2}, (3,2), (7,9, 3)). The table shows the outcome veckfa1, az)
for every joint action of the two voters, as well as the set ofning candidates Frr (a1, a2). In this example
there are no ties, and it thus fits both tie-breaking schemes.

Each such voting rul¢ induces a naturglame form In this game form, the strategies available
to each voter arel, and the outcome of a joint action a4, ...,a,). Mixed strategies are not
allowed. We extend this game form by including the possibthat only% out of then voters may
play strategically. We denote by C V the set ofk strategic voters (agents) and By=V \ K
the set ofn — k additional voters who have already cast their votes, andairparticipating in the
game. Thus, the outcomef$as, . . ., ak, bgt1,. .., byn), wherebgy1,. .., b, are fixed as part of the
game form. This separation of the set of voters does nottafiaerality, but allows us to encompass
situations where only some of the voters behave stratégical

From now on, we restrict our attention to the Plurality rulaless explicitly stated otherwise.
That is, the winner is the candidate (or a set of those) wighntiost votes; there is no requirement
that the winner gain an absolute majority of votes. We assamh of the: voters has a fixedreight
w; € N. Theinitial score §(¢) of a candidate is defined as the total weight of the fixed voters who
selectede—i.e., 5(c) = > ;cpy, - w;- Thefinal scoreof c for a given joint actiona € A* is
the total weight of voters that chosdincluding the fixed seB): s(c,a) = 3(c) + > ick.q,—c Wi-
We sometimes writg(c) if the joint action is clear from the context. We writéc) >, s(c’) if
eithers(c) > s(c’) or the score is equal andhas a higher priority (lower index). We denote by
PLpg the Plurality rule with randomized tie breaking, and BY.p the Plurality rule with deter-
ministic tie breaking in favor of the candidate with the lovikdex. We have thaP Ly (s, w,a) =
argmazcecs(c,a), andPLp(8,w,a) = {c € Cs.t.Vd # ¢ s(c,a) >, s(c,a)}. Note that
PLp(8,w,a) is always a singleton.

For any joint action, itoutcome vectos(a) contains the score of each candidaiéa) =
(s(e1,a),...,s(cm,a)). For a tie-breaking schem& (I' = D, R) the Game FormGFr =
(C, K, w,s) specifies the winner for any joint action of the agents—G&r(a) = PLp (8, w, a).
Table 1 demonstrates a game form with two weighted manipidat

2.2 Incentives

We now complete the definition of our voting game, by addirngeitives to the game form. Let
R be the set of all strict orders ovét. The order-;€ R reflects the preferences of voteover
the candidates. The vector containing the preferencesl df agents is called arofile, and is
denoted by = (>1,...,>x). The game forn@ Fr, coupled with a profiler, define a normal form
gameGr = (GFp,r) with k players. Playet prefers outcomé& Fr-(a) over outcomes Frr(a’) if
GFr(a) =; GPr(a’).

Note that for deterministic tie-breaking, every pair of @arhes can be compared. If ties are
broken randomly;-; doesnotinduce a complete order over outcomes, whichsatsof candidates.
A natural solution is to augment agents’ preferences wittinal utilities, whereu;(c) € R is the
utility of candidatec to agenti. This definition naturally extends to multiple winners bytisg
u; (W) = |—&,‘ > eew ui(c).2 A utility function w is consistenwith a preference relatios; if
u(e) > u(d) & c=; .

2This makes sense if we randomize the final winner from théietFor a thorough discussion of cardinal and ordinal
utilities in normal form games, see [2].



[0, 02 a_ | b | *c |
*a {a}3,2 | {b}2,1 | *{a}3,2
b b} 2,1 | {b}2,1 | {b}2,1
c {a}3,2 | {b}2,1 {c} 1,3

Table 2: A gameGr = (GFr,r), whereGFr is as in Table 1, and is defined bya =1 b =1 c and
¢ »2 a =2 b. The table shows the ordinal utility of the outcome to eactnagthe final score is not shown).
Bold outcomes are the NE points. Here the truthful vote (markeh ¥yiis also a NE.

Lemma 1. For any utility functionu which is consistent with preference ordef , the following
holds:

1.a=;b = VW CC\{a,b}, u({a}UW) > u({b}UW);
2.VbeW,a=;b = u(a)>u({a}UW)>u(W).

The proof is trivial and is therefore omitted. Lemma 1 induiagartial preference order on the
set of outcomes, but it is not yet complete if the cardinditi# are not specified. For instance,
the ordera >-; b >; ¢ does not determine ifwill prefer {b} over{a, c}. When utilities are given
explicitly, every pair of outcomes can be compared, and Wieslightly abuse the notation by using
GFr(a) =; GFr(a’) to note that prefers the outcome of actienover that ofa’.

2.3 Manipulation and Stability

Having defined a normal form game, we can now apply standduliGo concepts. LeGr =
(GFr,r) be a Plurality voting game, and lat= (a_;, a;) be a joint action inGr. We say that
a; - a is animprovement stepf agenti if GFr(a_;,a}) =; GFr(a_;,a;). A joint actiona is a
Nash equilibrium(NE), if no agent has an improvement step frarin Gr. That is, no agent can
gain by changing his vote, provided that others keep thetesjies unchanged. A priori, a game
with pure strategies does not have to admit any NE. Howaven)i voting games there are typically
(but not necessarily) many such points.

Now, observe that the preference profilanduces a special joint actiast, termed theruthful
vote such that*(r) = (aj, ..., a}), wherea} >, cfor all ¢ # af. We also cala*(r) thetruthful
stateof G, and refer ta7 Fr(a*(r)) as thetruthful outcomeof the game. Ifi has an improvement
step in the truthful state, then this isv@anipulation® Thus,r cannot be manipulated if and only
if a*(r) is a Nash equilibrium oG = (GFr,r). However, the truthful vote may or may not be
included in the NE points of the game, as can be seen from Pable

2.4 GameDynamics

We finally consider naturalynamicsin Plurality voting games. Assume that players start by an-
nouncing some initial vote, and then proceed and changewubtss until no one has objections to
the current outcome. It is not, however, clear how ratiofetgrs would act to achieve a stable deci-
sion, especially when there are multiple equilibrium pgitiowever, one can make some plausible
assumptions about their behavior. First, the agents agly/ltk only make improvement steps, and
to keep their current strategy if such a step is not availableus, the game will end when it first
reaches a NE. Second, it is often the case that the initied &druthful, as agents know that they
can reconsider and vote differently, if they are not happhwie current outcome.

We start with a simple observation that if the agents may gadmeir votes simultaneously, then
convergence is not guaranteed, even if the agents starthvéttruthful vote and use best replies—
that is, vote for their most preferred candidate out of piéwinners in the current round.

3This definition of manipulation coincides with the standdadinition from social choice theory.



Proposition 2. If agents are allowed to re-vote simultaneously, the imgnognt process may never
converge.

Example.The counterexample is the game with 3 candidéte$, c} with initial scores given by
(0,0,2). There are 2 voter$l, 2} with weightswy, = wy, = 1 and the following preferences:
a =1 b>1 ¢ andb =5 a =2 c. The two agents will repeatedly swap their strategies,chivig
endlessly between the stateg) = (a,b) and (b, a). Note that this example works for both tie-
breaking schemes. O

We therefore restrict our attention to dynamics where giamglous improvements are not avail-
able. That is, given the initial votey, the game proceeds in steps, where at eachistesingle
player may change his vote, resulting in a new state (joitibara;. The process ends when no
agent has objections, and the outcome is set by the last Stath a restriction makes sense in many
computerized environments, where voters can log-in andgdatheir vote at any time.

In the remaining sections, we study the conditions undeckvbuch iterative games reach an
equilibrium point from either an arbitrary or a truthful i@l state. We consider variants of the
game that differ in tie-breaking schemes or assumptionstahe agents’ weights or behavior. In
cases where convergence is guaranteed, we are also iateirekhowing how fast it will occur, and
whether we can say anything about the identity of the winker. example, in Table 2, the game
will converge to a NE from any state in at most two steps, aratitcome will be: (which happens
to be the truthful outcome), unless the players initiallpase the alternative equilibriugh, b) with
outcomeb.

3 Results

Let us first provide some useful notation. We denote the ongcat timet by o, = PL(a;) C C,
and its score by(o;). Suppose that agenhas an improvement step at timeand as a result the
winner switched fromv;_; to o;. The possible steps éfare given by one of the following types (an
example of such a step appears in parentheses):

typel froma; -1 ¢ 0,—110a; ¢ € oy ; (Step 1 in Ex.4a.)
type2 froma; -1 € 04—110a; ¢ ¢ o ; (Step 2 in Ex.4a.)
type3 froma;+—1 € 01—1 t0a;+ € o4 ; (Step 1 in Ex.4b.),

where inclusion is replaced with equality for determirgte-breaking. We refer to each of these
steps as &etter replyof agenti. If a, . is i's most preferred candidate capable of winning, then
this is abest reply* Note that there are no best replies of type 2. Finally, we tiehgs;(c) the
score of a candidate without the vote of the currently playing agemius, it always holds that

st—1(c) = s¢(c).
3.1 Deterministic Tie-Breaking
Our first result shows that under the most simple conditiiressgame must converge.

Theorem 3. LetGp be a Plurality game with deterministic tie-breaking. If afients have weight 1
and use best replies, then the game will converge to a NE fronstate.

4Any rational move of a myopic agent in the normal form gameesponds to exactly one of the three types of better-
reply. In contrast, the definition of best-reply is somewditierent from the traditional one, which allows the agenthoose
any strategy that guarantees him a best possible outcome, \WMe assume the improver makes the more natural response by
actually voting foro;. Thus, under our definition, the best reply is always unique.



Proof. We first show that there can be at mg¢st — 1) - k£ sequential steps of type 3. Note that
at every such step — b it must hold thath =; a. Thus, each voter can only make — 1 such
subsequent steps.

Now suppose that a step — b of type 1 occurs at time¢. We claim that at any later time
t'’ > t: (1) there are at least two candidates whose scoae lisasts(o:—1); (Il) the score ofa will
not increase at. We use induction off to prove both invariants. Right after stepve have that

s¢(b) + 1 =s(0t) >p s(op—1) >p se(a) +1 . 1)

Thus, after steg we have at least two candidates with scores of at le@st.,): o, = b and
o:—1 # b. Also, at step the score ofi has decreased. This proves the base ¢aset.

Assume by induction that both invariants hold until timle- 1, and consider stegy by voter
j. Due to (), we have at least two candidates whose score isaatd(o;—1). Due to (Il) and
Equation (1) we have that: (a) <, si(a) <, s(o,—1) — 1. Therefore, no single voter can make
winner and thus cannot be the best reply fgr This means that (ll) still holds after steép Also,
Jj has to vote for a candidatethat can beat, —i.e., sy (¢) + 1 >, s(o¢) >, s(oi—1). Therefore,
after step’ bothc andoy # ¢ will have a score of at leas{o;_; )—that is, (I) also holds. O

The proof also supplies us with a polynomial bound on theasbt®nvergence. At every step of
type 1, at least one candidate is ruled out permanently,teared it mosk times a vote can be with-
drawn from a candidate. Also, there can be at moktsteps of type 3 between such occurrences.
Hence, there are in total at masfk? steps until convergence. It can be further shown that if all
voters start from the truthful state then there are no type3ssat all. Thus, the score of the winner
never decreases, and convergence occurs in atimbsteps. The proof idea is similar to that of
the corresponding randomized case in Theorem 8.

We now show that the restriction to best replies is necessagyarantee convergence.

Proposition 4. If agents are not limited to best replies, then: (a) there coanterexample with two
agents; (b) there is a counterexample with an initial truthfote.

Example 4a.C = {a,b,c}. We have a single fixed voter voting far thuss = (1,0,0). The
preference profile is defined as-1 b =1 ¢, ¢ =2 b =2 a. The following cycle consists of better
replies (the vector denotes the votes, a2) at timet, the winner appears in curly brackets):

(b,c){a} 2 (b,b){b} = (¢,b){a} N (c,e){c} N (b,e) ¢

Example 4bC = {a,b, ¢, d}. Candidates, b, andc have 2 fixed voters each, thfis= (2,2,2,0).
We use 3 agents with the following preferencés>-; a =1 b =1 ¢, ¢ =2 b >3 a =2 d and

d =3 a >3 b =3 c. Starting from the truthful statéi, c, d) the agents can make the following two
improvement steps (showing only the outcome):

(2,2,3,2){c} = (2,3,3,1){b} = (3,3,3,0){a} ,
after which agents 1 and 2 repeat the cycle shown in (4a). %

Weighted voters While using the best reply strategies guaranteed conveegéor equally
weighted agents, this is no longer true for non-identicabves:

Proposition 5. There is a counterexample with 3 weighted agents that start the truthful state
and use best replies.

The proof is omitted for the sake of brevity.
However, if there arenly twoweighted voters, either restriction is sufficient:



Theorem 6. LetGp be a Plurality game with deterministic tie-breaking klf= 2 and both agents
(a) use best repliesr (b) start from the truthful state, a NE will be reached.

Proof of (6a) Assume there is a cycle, and consider the winners in the fepss{z} = {y} >
{z}. Suppose that after step 1 both agents vote for differerdidates ¢ 2 # a1,1 = y). This
holds for any later step, as an agent has no reason to votegfeutrent winner. An agent can never
make a step of type 3 (after the first step), since at everythevinner is the candidate that the
other agent is voting for. If the first step brings the agenthé same candidate, then in the second
step they split agairug,; # a2 2 = z), and we are back in the previous case. O

Proof of (6b). We show that the score of the winner can only increase. Tharlgl holds in the first
step, which must be of type 1. Once again, we have that the g@ota always vote for different
candidates, and thus only steps that increase the scoréangecthe identity of the winner. [

3.2 Randomized Tie-Breaking

The choice of tie-breaking scheme has a significant impathemutcome, especially when there
are few voters. A randomized tie-breaking rule has the aagnof being neutral —no specific
candidate or voter is preferred over another.

In order to prove convergence under randomized tie-brgakie must show that convergence
is guaranteed foany utility function which is consistent with the given prefase order. That is,
we may only use the relations over outcomes that follow diydoom Lemma 1. To disprove, it is
sufficient to show that for a specific assignment of utilitiee game forms a cycle. In this case, we
say that there is weak counterexampléNVhen the existence of a cycle will follow only from the
relations induced by Lemma 1, we will say that there &rang counterexamplaince it holds for
any profile of utility scales that fits the preferences.

In contrast to the deterministic case, the weighted randedniase does not always converge to
a Nash equilibrium or possess one at all, even with (only)agents.

Proposition 7. There is a strong counterexamplez for two weighted agents with randomized
tie-breaking, even if both agents start from the truthfatstand use best replies.

Example.C = {a,b,c}, § = (0,1,3). There are 2 agents with weights = 5, w; = 3 and
preferences -1 b =1 ¢, b =2 ¢ =2 a (in particular,b =2 {b, c} >=2 ¢). The resulting3 x 3 normal
form game contains no NE states. %

Nevertheless, the conditions mentioned are sufficientdavergence if all agents have the same
weight.

Theorem 8. LetGr be a Plurality game with randomized tie-breaking. If all agehave weight 1
and use best replies, then the game will converge to a NE hertraithful state.

Proof. Our proof shows that in each step, the current agent votes liesspreferred candidate.
Clearly, the first improvement step of every agent must huklihvariant.

Assume, toward deriving a contradiction, that> ¢ at timet, is the first step s.tz =; b. Let
a 5 battimet; < t, be the previous step of the same agent

We denote byM; = o, the set of all winners at timeé Similarly, L, denotes all candidates
whose score is(o;) — 1.

We claim that for allt < ¢5, M;UL, C M;_1UL;_1, i.e., the set of “almost winners” can only
shrink. Also, the score of the winner cannot decrease. ®bgbat in order to contradict any of
these assertions, there must be a step y at timet, where{z} = M; ; andy ¢ M; ;U L;_;.

In that caseM; = L,_1 U {x,y} >; {z}, which means either that -, = (in contradiction to the
minimality of ¢5) or thaty is not a best reply.



From our last claim we have thato;, -1) < s(oy) for anyt; < ¢’ < to. Now consider the
stept;. Clearlyb € M, _1 U L, _1 since otherwise voting far would not make it a winner. We
consider the cases forseparately:

Casel: ¢ ¢ My 1 U Ly, 1. We have thaky, (¢) < s(ot,—1) — 2. Lett’ be any time s.t.
t; <t' < tg,thenc ¢ My U Ly. By induction ont’, sy (¢) < sy, (¢) < s(o,-1) — 2 < s(op) — 2,
and therefore cannot become a winner at tinfet- 1, and the improver at timg+ 1 has no incentive
to vote fore. In particular, this holds for' + 1 = t5; hence, agentwill not vote forc.

Case2: ¢ € My, 1 U Ly, —1. Itis not possible that € Ly, _; orthatc € M, _1: sincec >; b
and: plays best reply; would have voted for at stept,. Thereforep € M;, 1 andc € Ly, 1.
After stept;, the score ob equals the score aof plus 2; hence, we have that;, = {b} and
¢ ¢ M, ULy, and we are back in case 1.

In either case, voting far at stept; leads to a contradiction. Moreover, as agents only vote for a
less-preferred candidate, each agent can make atrmest steps, hence, at mogh: — 1) - k steps
in total. O

However, in contrast to the deterministic case, convergénao longer guaranteed, if players
start from an arbitrary profile of votes. The following exdmphows that in the randomized tie-
breaking setting even best reply dynamics may have cydlessit for specific utility scales.

Proposition 9. If agents start from an arbitrary profile, there is a weak ctarexample with 3
agents of weight 1, even if they use best replies.

Example. There are 4 candidatefu, b, c,z} and 3 agents with utilitiess; = (5,4,0,3),
uz = (0,5,4,3) andus = (4,0,5,3). In particular,a =1 {a,b} =1 = >=1 {a,c}; b =2
{b,¢} =2 = =2 {a,b}; andc =3 {a,c} >3 = >3 {b,c}. From the statey = (a,b,z) with
s(ag) = (1,1,0,1) and the outcoméa, b, =}, the following cycle occurs(1,1,0,1){a,b,z} =
(1,0,0,2){z} > (1,0,1,1){a, z,c} = (0,0,1,2){z} = (0,1,1,1){z,b,c} > (0,1,0,2){z} =
(1,1,0,1){a,b,x}.

As in the previous section, if we relax the requirement fastiveplies, there may be cycles even
from the truthful state.

Proposition 10. (a) If agents use arbitrary better replies, then there israrsyj counterexample with
3 agents of weight 1. Moreover, (b) there is a weak countengt@ with 2 agents of weight 1, even
if they start from the truthful state.

Example 10a.C = {a,b, ¢} with initial scores = (0,1,0). The initial state isag = (a,a,b)—
that is,s(ag) = (2,2,0) and the outcome is the winner set, b}. Consider the following cyclic
sequence (we write the score vector and the outcome in eggh &, 2, 0){a, b} = (1,2, 1){b} =
0,2,2){b,c} > (1,1,2){c} = (2,1,1){a} > (1,2,1){b} = (2,2,0){a,b}. If the preferences
area >=1 ¢ =1 b,b =2 a =5 candc >3 b =3 a, then each step is indeed an improvement step for
the agent whose index is on top of the arrow. O

Example 10bWe use 5 candidates with initial scofg 1, 2,0, 0), and 2 agents with utilities, =
(5,3,2,8,0) anduz = (4,2,5,0,8). In particular{b, ¢} >1 ¢, {a, c} =1 {a,b,c}, and{a, b, c} >2
{b,c}, ¢ =2 {a,c}, and the following cycle occursf1,1,2,1,1){c} = (1,2,2,0,1){b,c} =
(2,2,2,0,0){a,b,c} = (2,1,2,1,0){a, c} = (1,1,2,1,1){c}. O

3.3 Truth-Biased Agents

So far we assumed purely rational behavior on the part of gemts, in the sense that they were
indifferent regarding their chosen action (vote), and ardyed about the outcome. Thus, for ex-
ample, if an agent cannot affect the outcome at some rounslpty keeps higurrent vote This

assumption is indeed common when dealing with normal formeaga as there is no reason to prefer



Dynamics Best reply from Any better reply from

Tie breaking Initial state Truth | Anywhere || Truth | Anywhere Truth biased
Weighted(k > 2) || X (5) X X X X
Deterministic | Weighted(k = 2) \% V (6a) V (6b) X (4a) X
Non-weighted \% V (3) X (4b) X X (11a)
. Weighted X(7) X X X X
Randomized -0 eighted V@) | X@© | X@0 | X(10) X (11D)

Table 3: We highlight cases where convergence is guaranteed. Thberimbrackets refers to the index of
the corresponding theorem (marked with or counterexample (X). Entries with no index follow frormhet
entries in the table.

one strategy over another if outcomes are the same. Howiaveoting problems it is typically
assumed that voters will voteuthfully unless they have an incentive to do otherwise. As our model
incorporates both settings, it is important to clarify the& assumptions that are necessary for
convergence.

In this section, we consider a variation of our model wherenag always prefer their higher-
ranked outcomes, but will vote honestly if the outcome remm#ie same—i.e., the agents areh-
biased Formally, letW = PLp(8,w,a;,a_;) andZ = PLp(8,w,a;,a_;) be two possible
outcomes ofi's voting. Then, the action! is better thana; if either Z -, W, or Z = W and
a; =; a;. Note that with this definition there is a strict preferenocges over all possible actions of
i at every step. Unfortunately, truth-biased agents may omierge even in the simplest settings:

Proposition 11. There are strong counterexamples for (a) deterministibtiaking, and (b) ran-
domized tie-breaking. This holds even with two non-wedjtiteh-biased agents that use best reply
dynamics and start from the truthful state.

Example 11aWe use 4 candidates with no initial score. The prefereneedefined ag -1 a >
b >y, dandd =2 b =2 a =5 c. The reader can easily verify that in the resultihg 4 game there
are no NE states. O

Example 11bThere are 4 candidates with initial sco(@s0, 1, 2). The preference profile is given
bya =1 ¢>1d =1 b,b>2d =2 c =2 a. Consider the following cycle, beginning with the truthful
state:(1,1,1,2) = (0,1,2,2) = (0,0,2,3) = (1,0,1,3) = (1,1,1,2). O

4 Discussion

We summarize the results in Table 3. We can see that in moss$ casivergence is not guaranteed
unless the agents restrict their strategies to “best i€pliee., always select their most-preferred
candidate that can win. Also, deterministic tie-breakiegras to encourage convergence more often.
This makes sense, as the randomized scheme allows for a sehef outcomes, and thus agents
have more options to “escape” from the current state. NEytcan be maintained by randomizing
a tie-breaking order and publicly announcingéforethe voters cast their votes.

We saw that if voters are non-weighted, begin from the tulthhnouncement and use best
reply, then they always converge within a polynomial numisiesteps (in both schemes), but to
what outcome? The proofs show that the score of the winnepnbnincrease, and by at most 1
in each iteration. Thus possible winners are only candidtitat are either tied with the (truthful)
Plurality winner, or fall short by one vote. This means thasinot possible for arbitrarily “bad”
candidates to be elected in this process, but does not peeawcompetition of more than two
candidates. This result suggests that widely observedgshena such as Duverger’s law only apply
in situations where voters have a larger amount of inforomategarding one another’s preferences,
e.g., via public polls.



Our analysis is particularly suitable when the number oéx®ts small, for two main reasons.
First, it is technically easier to perform an iterative wgtiprocedure with few participants. Second,
the question of convergence is only relevant when case afrthear-tie are common. An anal-
ysis in the spirit of [11] would be more suitable when the nembf voters increases, as it rarely
happens that a single voter would be able to influence theomécand almost any outcome is a
Nash equilibrium. This limitation of our formulation is doe the fact that the behaviors of voters
encompass only myopic improvements. However, it sometimadses sense for a voter to vote for
some candidate, even if this will not immediately changedthieome (but may contribute to such a
change if other voters will do the same).

A new voting rule We observe that the improvement steps induced by the bdgtpelicy are
unique. If, in addition, the order in which agents play is fixeve get anew voting rule—Iterative
Plurality. In this rule, agents submit their full prefererprofiles, and the center simulates an iterative
Plurality game, applying the best replies of the agentsraieg to the predetermined order. It may
seem at first glance that Iterative Plurality is somehowstasi to manipulations, as the outcome was
shown to be an equilibrium. This is not possible of course, iadeed agents can still manipulate
the new rule by submitting false preferences. Such an actioncause the game to converge to a
different equilibrium (of the Plurality game), which is batfor the manipulator.

Futurework It would be interesting to investigate computational anchgaheoretic properties of
the new, iterative, voting rule. For example, perhapsatiatbehavior is scarcer, or computationally
harder. Another interesting question arises regardingiplesstrategic behavior of the election
chairperson: can voters be ordered so as to arrange th@elefta particular candidate? This is
somewhat similar to the idea of manipulating the agenda oQfse, a similar analysis can be carried
out on voting rules other than Plurality, or with variaticsiech as voters that join gradually. Such
analyses might be restricted to best reply dynamics, as st interesting rules the voter strategy
space is very large. Another key challenge is to modify owtdeply assumption to reflect non-
myopic behavior. Finally, even in cases where convergenoet guaranteed, it is worth studying
the proportionof profiles that contain cycles.
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