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Abstract

Multi-agent decision problems, in which independent agents have to agree on a joint plan of
action or allocation of resources, are central to AI. In suchsituations, agents’ individual pref-
erences over available alternatives may vary, and they may try to reconcile these differences
by voting. Based on the fact that agents may have incentives to vote strategically and misre-
port their real preferences, a number of recent papers have explored different possibilities for
avoiding or eliminating such manipulations. In contrast tomost prior work, this paper focuses
on convergence of strategic behavior to a decision from which no voter will want to deviate.
We consider scenarios where voters cannot coordinate theiractions, but are allowed to change
their vote after observing the current outcome. We focus on the Plurality voting rule, and study
the conditions under which this iterative game is guaranteed to converge to a Nash equilibrium
(i.e., to a decision that is stable against further unilateral manipulations).
We show for the first time how convergence depends on the exactattributes of the game, such
as the tie-breaking scheme, and on assumptions regarding agents’ weights and strategies.

1 Introduction

The notion of strategic voting has been highlighted in research on Social Choice as crucial to under-
standing the relationship between preferences of a population, and the final outcome of elections.
The most widely used voting rule is the Plurality rule, in which each voter has one vote and the
winner is the candidate who received the highest number of votes. While it is known that no rea-
sonable voting rule is completely immune to strategic behavior, Plurality has been shown to be
particularly susceptible, both in theory and in practice [12, 8]. This makes the analysis of any elec-
tion campaign—even one where the simple Plurality rule is used—a challenging task. As voters
may speculate and counter-speculate, it would be beneficialto have formal tools that would help us
understand (and perhaps predict) the final outcome.

Natural tools for this task include the well-studied solution concepts developed for normal form
games. While voting games are not commonly presented in thisway, several natural formulations
have been proposed. Moreover, such formulations are extremely simple in Plurality voting games,
where voters only have a few ways available to vote.

While some work has been devoted to the analysis of solution concepts such asdominant strate-
giesandstrong equilibria, this paper concentrates on Nash equilibria (NE). This mostprominent
solution concept has typically been overlooked, mainly because it appears to be too weak for this
problem: there are typically many Nash equilibria in a voting game, but most of them are trivial.
For example, if all voters vote for the same candidate, then this is clearly an equilibrium, since any
single agent cannot change the result. This means that Plurality is distorted, i.e., there can be NE
points in which the outcome is not truthful.

The lack of a single prominent solution for the game suggeststhat in order to fully understand the
outcome of the voting procedure, it is not sufficient to consider voters’ preferences. The strategies
voters’ choose to adopt, as well as the information available to them, are necessary for the analysis of
possible outcomes. To play an equilibrium strategy for example, voters must know the preferences
of others. Partial knowledge is also required in order to eliminate dominated strategies or to collude
with other voters.

We consider the other extreme, assuming that voters have initially no knowledge regarding the
preferences of the others, and cannot coordinate their actions. Such situations may arise, for exam-
ple, when voters do not trust one another or have restricted communication abilities. Thus, even if



two voters have exactly the same preferences, they may be reluctant or unable to share this infor-
mation, and hence they will fail to coordinate their actions. Voters may still try to vote strategically,
based on their current information, which may be partial or wrong. The analysis of such settings
is of particular interest to AI as it tackles the fundamentalproblem of multi-agent decision making,
where autonomous agents (that may be distant, self-interested and/or unknown to one another) have
to choose a joint plan of action or allocate resources or goods. The central questions are (i) whether,
(ii) how fast, and (iii) on what alternative the agents will agree.

In our (Plurality) voting model, voters start from some announcement (e.g., the truthful one), but
can change their votes after observing the current announcement and outcome.1 The game proceeds
in turns, where a single voter changes his vote at each turn. We study different versions of this
game, varying tie-breaking rules, weights and policies of voters, and the initial profile. Our main
result shows that in order to guarantee convergence, it is necessary and sufficient that voters restrict
their actions to natural best replies.

1.1 Related Work

There have been several studies applying game-theoretic solution concepts to voting games, and to
Plurality in particular. [7] model a Plurality voting game where candidates and voters play strategi-
cally. They characterize all Nash equilibria in this game under the very restrictive assumption that
the preference domain issingle peaked. Another highly relevant work is that of [5], which concen-
trates ondominant strategiesin Plurality voting. Their game formulation is identical toours, and
they prove a necessary and sufficient condition on the profilefor the game to be dominance-solvable.
Unfortunately, their analysis shows that this rarely occurs, making dominance perhaps a too-strong
solution concept for actual situations. A weaker concept, though still stronger than NE, isStrong
Equilibrium. In strong equilibrium no subset of agents can benefit by making a coordinated diver-
sion. A variation of strong equilibrium was suggested by [10], which characterized its existence and
uniqueness in Plurality games. Crucially, all aforementioned papers assume that voters have some
prior knowledge regarding the preferences of others.

A more complicated model was suggested by [11], which assumes a non-atomic set of voters and
some uncertainty regarding the preferences of other voters. Their main result is that every positional
scoring rule (e.g., Veto, Borda, and Plurality) admits at least one voting equilibrium. In contrast, our
model applies to a finite number of voters, that possess zero knowledge regarding the distribution of
other voters’ preferences.

Variations of Plurality and other voting rules have been proposed in order to increase resistance
to strategic behavior (e.g., [4]). We focus on achieving a stable outcometaking such behavior into
account.

Iterative voting procedures have also been investigated inthe literature. [3] consider voters with
different levels of information, where in the lowest level agents are myopic (as we assume as well).
Others assume, in contrast, that voters have sufficient information to forecast the entire game, and
show how to solve it with backward induction [6, 9]; most relevant to our work, [1] study conditions
for convergence in such a model.

2 Preliminaries
2.1 The Game Form

There is a setC of m candidates, and a setV of n voters. A voting rulef allows each voter to
submit his preferences over the candidates by selecting an action from a setA (in Plurality,A = C).
Then,f chooses a non-empty set of winner candidates—i.e., it is a functionf : An → 2C \ {∅}.

1A real-world example of a voting interface that gives rise toa similar procedure is the recently introduced poll gadget
for Google Wave. See http://sites.google.com/site/polloforwave.



v1, v2 a b c

a (14, 9, 3) {a} (10, 13, 3) {b} (10, 9, 7) {a}
b (11, 12, 3) {b} (7, 16, 3) {b} (7, 12, 7) {b}
c (11, 9, 6) {a} (7, 13, 6) {b} (7, 9, 10) {c}

Table 1: There is a setC = {a, b, c} of candidates with initial scores(7, 9, 3). Voter 1 has weight 3 and voter 2
has weight 4. Thus,GFT = 〈{a, b, c}, {1, 2}, (3, 2), (7, 9, 3)〉. The table shows the outcome vectors(a1, a2)
for every joint action of the two voters, as well as the set of winning candidatesGFT (a1, a2). In this example
there are no ties, and it thus fits both tie-breaking schemes.

Each such voting rulef induces a naturalgame form. In this game form, the strategies available
to each voter areA, and the outcome of a joint action isf(a1, . . . , an). Mixed strategies are not
allowed. We extend this game form by including the possibility that onlyk out of then voters may
play strategically. We denote byK ⊆ V the set ofk strategic voters (agents) and byB = V \ K
the set ofn − k additional voters who have already cast their votes, and arenot participating in the
game. Thus, the outcome isf(a1, . . . , ak, bk+1, . . . , bn), wherebk+1, . . . , bn are fixed as part of the
game form. This separation of the set of voters does not affect generality, but allows us to encompass
situations where only some of the voters behave strategically.

From now on, we restrict our attention to the Plurality rule,unless explicitly stated otherwise.
That is, the winner is the candidate (or a set of those) with the most votes; there is no requirement
that the winner gain an absolute majority of votes. We assumeeach of then voters has a fixedweight
wi ∈ N. Theinitial score ŝ(c) of a candidatec is defined as the total weight of the fixed voters who
selectedc—i.e., ŝ(c) =

∑
j∈B:bj=c wj . The final scoreof c for a given joint actiona ∈ Ak is

the total weight of voters that chosec (including the fixed setB): s(c,a) = ŝ(c) +
∑

i∈K:ai=c wi.
We sometimes writes(c) if the joint action is clear from the context. We writes(c) >p s(c′) if
eithers(c) > s(c′) or the score is equal andc has a higher priority (lower index). We denote by
PLR the Plurality rule with randomized tie breaking, and byPLD the Plurality rule with deter-
ministic tie breaking in favor of the candidate with the lower index. We have thatPLR(ŝ,w,a) =
argmaxc∈Cs(c,a), andPLD(ŝ,w,a) = {c ∈ C s.t.∀c′ 6= c, s(c,a) >p s(c′,a)}. Note that
PLD(ŝ,w,a) is always a singleton.

For any joint action, itsoutcome vectors(a) contains the score of each candidate:s(a) =
(s(c1,a), . . . , s(cm,a)). For a tie-breaking schemeT (T = D, R) the Game FormGFT =
〈C, K,w, ŝ〉 specifies the winner for any joint action of the agents—i.e.,GFT (a) = PLT (ŝ,w,a).
Table 1 demonstrates a game form with two weighted manipulators.

2.2 Incentives

We now complete the definition of our voting game, by adding incentives to the game form. Let
R be the set of all strict orders overC. The order≻i∈ R reflects the preferences of voteri over
the candidates. The vector containing the preferences of all k agents is called aprofile, and is
denoted byr = (≻1, . . . ,≻k). The game formGFT , coupled with a profiler, define a normal form
gameGT = 〈GFT , r〉 with k players. Playeri prefers outcomeGFT (a) over outcomeGFT (a′) if
GFT (a) ≻i GFT (a′).

Note that for deterministic tie-breaking, every pair of outcomes can be compared. If ties are
broken randomly,≻i doesnot induce a complete order over outcomes, which aresetsof candidates.
A natural solution is to augment agents’ preferences with cardinal utilities, whereui(c) ∈ R is the
utility of candidatec to agenti. This definition naturally extends to multiple winners by setting
ui(W ) = 1

|W |

∑
c∈W ui(c).2 A utility function u is consistentwith a preference relation≻i if

u(c) > u(c′) ⇔ c ≻i c′.

2This makes sense if we randomize the final winner from the setW . For a thorough discussion of cardinal and ordinal
utilities in normal form games, see [2].



v1, v2 a b * c

* a {a} 3, 2 {b} 2, 1 * {a} 3, 2

b {b} 2, 1 {b} 2, 1 {b} 2, 1
c {a} 3, 2 {b} 2, 1 {c} 1, 3

Table 2: A gameGT = 〈GFT , r〉, whereGFT is as in Table 1, andr is defined bya ≻1 b ≻1 c and
c ≻2 a ≻2 b. The table shows the ordinal utility of the outcome to each agent (the final score is not shown).
Bold outcomes are the NE points. Here the truthful vote (marked with *) is also a NE.

Lemma 1. For any utility functionu which is consistent with preference order≻i , the following
holds:

1. a≻i b ⇒ ∀W ⊆ C \ {a, b}, u({a}∪W ) > u({b}∪W ) ;

2. ∀b∈W, a≻i b ⇒ u(a)>u({a}∪W )>u(W ) .

The proof is trivial and is therefore omitted. Lemma 1 induces a partial preference order on the
set of outcomes, but it is not yet complete if the cardinal utilities are not specified. For instance,
the ordera ≻i b ≻i c does not determine ifi will prefer {b} over{a, c}. When utilities are given
explicitly, every pair of outcomes can be compared, and we will slightly abuse the notation by using
GFR(a) ≻i GFR(a′) to note thati prefers the outcome of actiona over that ofa′.

2.3 Manipulation and Stability

Having defined a normal form game, we can now apply standard solution concepts. LetGT =
〈GFT , r〉 be a Plurality voting game, and leta = (a−i, ai) be a joint action inGT . We say that
ai

i

→ a′
i is animprovement stepof agenti if GFT (a−i, a

′
i) ≻i GFT (a−i, ai). A joint actiona is a

Nash equilibrium(NE), if no agent has an improvement step froma in GT . That is, no agent can
gain by changing his vote, provided that others keep their strategies unchanged. A priori, a game
with pure strategies does not have to admit any NE. However, in our voting games there are typically
(but not necessarily) many such points.

Now, observe that the preference profiler induces a special joint actiona∗, termed thetruthful
vote, such thata∗(r) = (a∗

1, . . . , a
∗
k), wherea∗

i ≻i c for all c 6= a∗
i . We also calla∗(r) the truthful

stateof GT , and refer toGFT (a∗(r)) as thetruthful outcomeof the game. Ifi has an improvement
step in the truthful state, then this is amanipulation.3 Thus,r cannot be manipulated if and only
if a

∗(r) is a Nash equilibrium ofGT = 〈GFT , r〉. However, the truthful vote may or may not be
included in the NE points of the game, as can be seen from Table2.

2.4 Game Dynamics

We finally consider naturaldynamicsin Plurality voting games. Assume that players start by an-
nouncing some initial vote, and then proceed and change their votes until no one has objections to
the current outcome. It is not, however, clear how rational players would act to achieve a stable deci-
sion, especially when there are multiple equilibrium points. However, one can make some plausible
assumptions about their behavior. First, the agents are likely to only make improvement steps, and
to keep their current strategy if such a step is not available. Thus, the game will end when it first
reaches a NE. Second, it is often the case that the initial state is truthful, as agents know that they
can reconsider and vote differently, if they are not happy with the current outcome.

We start with a simple observation that if the agents may change their votes simultaneously, then
convergence is not guaranteed, even if the agents start withthe truthful vote and use best replies—
that is, vote for their most preferred candidate out of potential winners in the current round.

3This definition of manipulation coincides with the standarddefinition from social choice theory.



Proposition 2. If agents are allowed to re-vote simultaneously, the improvement process may never
converge.

Example.The counterexample is the game with 3 candidates{a, b, c} with initial scores given by
(0, 0, 2). There are 2 voters{1, 2} with weightsw1 = w2 = 1 and the following preferences:
a ≻1 b ≻1 c, andb ≻2 a ≻2 c. The two agents will repeatedly swap their strategies, switching
endlessly between the statesa(r) = (a, b) and(b, a). Note that this example works for both tie-
breaking schemes. ♦

We therefore restrict our attention to dynamics where simultaneous improvements are not avail-
able. That is, given the initial votea0, the game proceeds in steps, where at each stept, a single
player may change his vote, resulting in a new state (joint action) at. The process ends when no
agent has objections, and the outcome is set by the last state. Such a restriction makes sense in many
computerized environments, where voters can log-in and change their vote at any time.

In the remaining sections, we study the conditions under which such iterative games reach an
equilibrium point from either an arbitrary or a truthful initial state. We consider variants of the
game that differ in tie-breaking schemes or assumptions about the agents’ weights or behavior. In
cases where convergence is guaranteed, we are also interested in knowing how fast it will occur, and
whether we can say anything about the identity of the winner.For example, in Table 2, the game
will converge to a NE from any state in at most two steps, and the outcome will bea (which happens
to be the truthful outcome), unless the players initially choose the alternative equilibrium(b, b) with
outcomeb.

3 Results

Let us first provide some useful notation. We denote the outcome at timet by ot = PL(at) ⊆ C,
and its score bys(ot). Suppose that agenti has an improvement step at timet, and as a result the
winner switched fromot−1 to ot. The possible steps ofi are given by one of the following types (an
example of such a step appears in parentheses):

type 1 from ai,t−1 /∈ ot−1 to ai,t ∈ ot ; (step 1 in Ex.4a.)

type 2 from ai,t−1 ∈ ot−1 to ai,t /∈ ot ; (step 2 in Ex.4a.)

type 3 from ai,t−1 ∈ ot−1 to ai,t ∈ ot ; (step 1 in Ex.4b.),

where inclusion is replaced with equality for deterministic tie-breaking. We refer to each of these
steps as abetter replyof agenti. If ai,t is i’s most preferred candidate capable of winning, then
this is abest reply.4 Note that there are no best replies of type 2. Finally, we denote byst(c) the
score of a candidatec without the vote of the currently playing agent; thus, it always holds that
st−1(c) = st(c).

3.1 Deterministic Tie-Breaking

Our first result shows that under the most simple conditions,the game must converge.

Theorem 3. LetGD be a Plurality game with deterministic tie-breaking. If allagents have weight 1
and use best replies, then the game will converge to a NE from any state.

4Any rational move of a myopic agent in the normal form game corresponds to exactly one of the three types of better-
reply. In contrast, the definition of best-reply is somewhatdifferent from the traditional one, which allows the agent to choose
any strategy that guarantees him a best possible outcome. Here, we assume the improver makes the more natural response by
actually voting forot. Thus, under our definition, the best reply is always unique.



Proof. We first show that there can be at most(m − 1) · k sequential steps of type 3. Note that
at every such stepa

i

→ b it must hold thatb ≻i a. Thus, each voter can only makem − 1 such
subsequent steps.

Now suppose that a stepa
i

→ b of type 1 occurs at timet. We claim that at any later time
t′ ≥ t: (I) there are at least two candidates whose score isat leasts(ot−1); (II) the score ofa will
not increase att′. We use induction ont′ to prove both invariants. Right after stept we have that

st(b) + 1 = s(ot) >p s(ot−1) >p st(a) + 1 . (1)

Thus, after stept we have at least two candidates with scores of at leasts(ot−1): ot = b and
ot−1 6= b. Also, at stept the score ofa has decreased. This proves the base case,t′ = t.

Assume by induction that both invariants hold until timet′ − 1, and consider stept′ by voter
j. Due to (I), we have at least two candidates whose score is at leasts(ot−1). Due to (II) and
Equation (1) we have thatst′(a) ≤p st(a) <p s(ot−1)− 1. Therefore, no single voter can makea a
winner and thusa cannot be the best reply forj. This means that (II) still holds after stept′. Also,
j has to vote for a candidatec that can beatot′—i.e.,st′(c) + 1 >p s(ot′) >p s(ot−1). Therefore,
after stept′ bothc andot′ 6= c will have a score of at leasts(ot−1)—that is, (I) also holds.

The proof also supplies us with a polynomial bound on the rateof convergence. At every step of
type 1, at least one candidate is ruled out permanently, and there at mostk times a vote can be with-
drawn from a candidate. Also, there can be at mostmk steps of type 3 between such occurrences.
Hence, there are in total at mostm2k2 steps until convergence. It can be further shown that if all
voters start from the truthful state then there are no type 3 steps at all. Thus, the score of the winner
never decreases, and convergence occurs in at mostmk steps. The proof idea is similar to that of
the corresponding randomized case in Theorem 8.

We now show that the restriction to best replies is necessaryto guarantee convergence.

Proposition 4. If agents are not limited to best replies, then: (a) there is acounterexample with two
agents; (b) there is a counterexample with an initial truthful vote.

Example 4a.C = {a, b, c}. We have a single fixed voter voting fora, thus ŝ = (1, 0, 0). The
preference profile is defined asa ≻1 b ≻1 c, c ≻2 b ≻2 a. The following cycle consists of better
replies (the vector denotes the votes(a1, a2) at timet, the winner appears in curly brackets):

(b, c){a}
2

→ (b, b){b}
1

→ (c, b){a}
2

→ (c, c){c}
1

→ (b, c) ♦

Example 4b.C = {a, b, c, d}. Candidatesa, b, andc have 2 fixed voters each, thusŝ = (2, 2, 2, 0).
We use 3 agents with the following preferences:d ≻1 a ≻1 b ≻1 c, c ≻2 b ≻2 a ≻2 d and
d ≻3 a ≻3 b ≻3 c. Starting from the truthful state(d, c, d) the agents can make the following two
improvement steps (showing only the outcome):

(2, 2, 3, 2){c}
1

→ (2, 3, 3, 1){b}
3

→ (3, 3, 3, 0){a} ,

after which agents 1 and 2 repeat the cycle shown in (4a). ♦

Weighted voters While using the best reply strategies guaranteed convergence for equally
weighted agents, this is no longer true for non-identical weights:

Proposition 5. There is a counterexample with 3 weighted agents that start from the truthful state
and use best replies.

The proof is omitted for the sake of brevity.
However, if there areonly twoweighted voters, either restriction is sufficient:



Theorem 6. LetGD be a Plurality game with deterministic tie-breaking. Ifk = 2 and both agents
(a) use best repliesor (b) start from the truthful state, a NE will be reached.

Proof of(6a). Assume there is a cycle, and consider the winners in the first steps:{x}
1

→ {y}
2

→
{z}. Suppose that after step 1 both agents vote for different candidates (a1,2 6= a1,1 = y). This
holds for any later step, as an agent has no reason to vote for the current winner. An agent can never
make a step of type 3 (after the first step), since at every stepthe winner is the candidate that the
other agent is voting for. If the first step brings the agents to the same candidate, then in the second
step they split again (a2,1 6= a2,2 = z), and we are back in the previous case.

Proof of(6b). We show that the score of the winner can only increase. This clearly holds in the first
step, which must be of type 1. Once again, we have that the two agents always vote for different
candidates, and thus only steps that increase the score can change the identity of the winner.

3.2 Randomized Tie-Breaking

The choice of tie-breaking scheme has a significant impact onthe outcome, especially when there
are few voters. A randomized tie-breaking rule has the advantage of being neutral —no specific
candidate or voter is preferred over another.

In order to prove convergence under randomized tie-breaking, we must show that convergence
is guaranteed foranyutility function which is consistent with the given preference order. That is,
we may only use the relations over outcomes that follow directly from Lemma 1. To disprove, it is
sufficient to show that for a specific assignment of utilities, the game forms a cycle. In this case, we
say that there is aweak counterexample. When the existence of a cycle will follow only from the
relations induced by Lemma 1, we will say that there is astrong counterexample, since it holds for
any profile of utility scales that fits the preferences.

In contrast to the deterministic case, the weighted randomized case does not always converge to
a Nash equilibrium or possess one at all, even with (only) twoagents.

Proposition 7. There is a strong counterexampleGR for two weighted agents with randomized
tie-breaking, even if both agents start from the truthful state and use best replies.

Example. C = {a, b, c}, ŝ = (0, 1, 3). There are 2 agents with weightsw1 = 5, w2 = 3 and
preferencesa ≻1 b ≻1 c, b ≻2 c ≻2 a (in particular,b ≻2 {b, c} ≻2 c). The resulting3 × 3 normal
form game contains no NE states. ♦

Nevertheless, the conditions mentioned are sufficient for convergence if all agents have the same
weight.

Theorem 8. LetGR be a Plurality game with randomized tie-breaking. If all agents have weight 1
and use best replies, then the game will converge to a NE from the truthful state.

Proof. Our proof shows that in each step, the current agent votes fora lesspreferred candidate.
Clearly, the first improvement step of every agent must hold this invariant.

Assume, toward deriving a contradiction, thatb
i

→ c at timet2 is the first step s.t.c ≻i b. Let
a

i

→ b at timet1 < t2 be the previous step of the same agenti.
We denote byMt = ot the set of all winners at timet. Similarly, Lt denotes all candidates

whose score iss(ot) − 1.
We claim that for allt < t2, Mt∪Lt ⊆ Mt−1∪Lt−1, i.e., the set of “almost winners” can only

shrink. Also, the score of the winner cannot decrease. Observe that in order to contradict any of
these assertions, there must be a stepx

j

→ y at timet, where{x} = Mt−1 andy /∈ Mt−1 ∪ Lt−1.
In that case,Mt = Lt−1 ∪ {x, y} ≻j {x}, which means either thaty ≻j x (in contradiction to the
minimality of t2) or thaty is not a best reply.



From our last claim we have thats(ot1−1) ≤ s(ot′ ) for any t1 ≤ t′ < t2. Now consider the
stept1. Clearlyb ∈ Mt1−1 ∪ Lt1−1 since otherwise voting forb would not make it a winner. We
consider the cases forc separately:

Case 1: c /∈ Mt1−1 ∪ Lt1−1. We have thatst1(c) ≤ s(ot1−1) − 2. Let t′ be any time s.t.
t1 ≤ t′ < t2, thenc /∈ Mt′ ∪ Lt′ . By induction ont′, st′(c) ≤ st1(c) ≤ s(ot1−1) − 2 ≤ s(ot′) − 2,
and thereforec cannot become a winner at timet′+1, and the improver at timet′+1 has no incentive
to vote forc. In particular, this holds fort′ + 1 = t2; hence, agenti will not vote for c.

Case 2: c ∈ Mt1−1 ∪ Lt1−1. It is not possible thatb ∈ Lt1−1 or thatc ∈ Mt1−1: sincec ≻i b
andi plays best reply,i would have voted forc at stept1. Therefore,b ∈ Mt1−1 andc ∈ Lt1−1.
After stept1, the score ofb equals the score ofc plus 2; hence, we have thatMt1 = {b} and
c /∈ Mt1 ∪ Lt1 , and we are back in case 1.

In either case, voting forc at stept2 leads to a contradiction. Moreover, as agents only vote for a
less-preferred candidate, each agent can make at mostm− 1 steps, hence, at most(m− 1) · k steps
in total.

However, in contrast to the deterministic case, convergence is no longer guaranteed, if players
start from an arbitrary profile of votes. The following example shows that in the randomized tie-
breaking setting even best reply dynamics may have cycles, albeit for specific utility scales.

Proposition 9. If agents start from an arbitrary profile, there is a weak counterexample with 3
agents of weight 1, even if they use best replies.

Example. There are 4 candidates{a, b, c, x} and 3 agents with utilitiesu1 = (5, 4, 0, 3),
u2 = (0, 5, 4, 3) and u3 = (4, 0, 5, 3). In particular,a ≻1 {a, b} ≻1 x ≻1 {a, c}; b ≻2

{b, c} ≻2 x ≻2 {a, b}; and c ≻3 {a, c} ≻3 x ≻3 {b, c}. From the statea0 = (a, b, x) with
s(a0) = (1, 1, 0, 1) and the outcome{a, b, x}, the following cycle occurs:(1, 1, 0, 1){a, b, x}

2

→

(1, 0, 0, 2){x}
3

→ (1, 0, 1, 1){a, x, c}
1

→ (0, 0, 1, 2){x}
2

→ (0, 1, 1, 1){x, b, c}
3

→ (0, 1, 0, 2){x}
1

→
(1, 1, 0, 1){a, b, x}. ♦

As in the previous section, if we relax the requirement for best replies, there may be cycles even
from the truthful state.

Proposition 10. (a) If agents use arbitrary better replies, then there is a strong counterexample with
3 agents of weight 1. Moreover, (b) there is a weak counterexample with 2 agents of weight 1, even
if they start from the truthful state.

Example 10a.C = {a, b, c} with initial scoreŝ = (0, 1, 0). The initial state isa0 = (a, a, b)—
that is,s(a0) = (2, 2, 0) and the outcome is the winner set{a, b}. Consider the following cyclic
sequence (we write the score vector and the outcome in each step): (2, 2, 0){a, b}

2

→ (1, 2, 1){b}
1

→

(0, 2, 2){b, c}
3

→ (1, 1, 2){c}
2

→ (2, 1, 1){a}
3

→ (1, 2, 1){b}
1

→ (2, 2, 0){a, b}. If the preferences
area ≻1 c ≻1 b, b ≻2 a ≻2 c andc ≻3 b ≻3 a, then each step is indeed an improvement step for
the agent whose index is on top of the arrow. ♦

Example 10b.We use 5 candidates with initial score(1, 1, 2, 0, 0), and 2 agents with utilitiesu1 =
(5, 3, 2, 8, 0) andu2 = (4, 2, 5, 0, 8). In particular,{b, c} ≻1 c, {a, c} ≻1 {a, b, c}, and{a, b, c} ≻2

{b, c}, c ≻2 {a, c}, and the following cycle occurs:(1, 1, 2, 1, 1){c}
1

→ (1, 2, 2, 0, 1){b, c}
2

→

(2, 2, 2, 0, 0){a, b, c}
1

→ (2, 1, 2, 1, 0){a, c}
2

→ (1, 1, 2, 1, 1){c}. ♦

3.3 Truth-Biased Agents

So far we assumed purely rational behavior on the part of the agents, in the sense that they were
indifferent regarding their chosen action (vote), and onlycared about the outcome. Thus, for ex-
ample, if an agent cannot affect the outcome at some round, hesimply keeps hiscurrent vote. This
assumption is indeed common when dealing with normal form games, as there is no reason to prefer



Tie breaking
Dynamics Best reply from Any better reply from

Truth biased
Initial state Truth Anywhere Truth Anywhere

Deterministic
Weighted(k > 2) X (5) X X X X
Weighted(k = 2) V V (6a) V (6b) X (4a) X
Non-weighted V V (3) X (4b) X X (11a)

Randomized
Weighted X (7) X X X X
Non-weighted V (8) X (9) X (10) X (10) X (11b)

Table 3: We highlight cases where convergence is guaranteed. The number in brackets refers to the index of
the corresponding theorem (marked withV) or counterexample (X). Entries with no index follow from other
entries in the table.

one strategy over another if outcomes are the same. However,in voting problems it is typically
assumed that voters will votetruthfully unless they have an incentive to do otherwise. As our model
incorporates both settings, it is important to clarify the exact assumptions that are necessary for
convergence.

In this section, we consider a variation of our model where agents always prefer their higher-
ranked outcomes, but will vote honestly if the outcome remains the same—i.e., the agents aretruth-
biased. Formally, letW = PLT (ŝ,w, ai,a−i) and Z = PLT (ŝ,w, a′

i,a−i) be two possible
outcomes ofi’s voting. Then, the actiona′

i is better thanai if either Z ≻i W , or Z = W and
a′

i ≻i ai. Note that with this definition there is a strict preference order over all possible actions of
i at every step. Unfortunately, truth-biased agents may not converge even in the simplest settings:

Proposition 11. There are strong counterexamples for (a) deterministic tie-breaking, and (b) ran-
domized tie-breaking. This holds even with two non-weighted truth-biased agents that use best reply
dynamics and start from the truthful state.

Example 11a.We use 4 candidates with no initial score. The preferences are defined asc ≻1 a ≻1

b ≻1 d andd ≻2 b ≻2 a ≻2 c. The reader can easily verify that in the resulting4 × 4 game there
are no NE states. ♦

Example 11b.There are 4 candidates with initial scores(0, 0, 1, 2). The preference profile is given
by a ≻1 c ≻1 d ≻1 b, b ≻2 d ≻2 c ≻2 a. Consider the following cycle, beginning with the truthful
state:(1, 1, 1, 2)

1

→ (0, 1, 2, 2)
2

→ (0, 0, 2, 3)
1

→ (1, 0, 1, 3)
2

→ (1, 1, 1, 2). ♦

4 Discussion

We summarize the results in Table 3. We can see that in most cases convergence is not guaranteed
unless the agents restrict their strategies to “best replies”—i.e., always select their most-preferred
candidate that can win. Also, deterministic tie-breaking seems to encourage convergencemore often.
This makes sense, as the randomized scheme allows for a richer set of outcomes, and thus agents
have more options to “escape” from the current state. Neutrality can be maintained by randomizing
a tie-breaking order and publicly announcing itbeforethe voters cast their votes.

We saw that if voters are non-weighted, begin from the truthful announcement and use best
reply, then they always converge within a polynomial numberof steps (in both schemes), but to
what outcome? The proofs show that the score of the winner canonly increase, and by at most 1
in each iteration. Thus possible winners are only candidates that are either tied with the (truthful)
Plurality winner, or fall short by one vote. This means that it is not possible for arbitrarily “bad”
candidates to be elected in this process, but does not preclude a competition of more than two
candidates. This result suggests that widely observed phenomena such as Duverger’s law only apply
in situations where voters have a larger amount of information regarding one another’s preferences,
e.g., via public polls.



Our analysis is particularly suitable when the number of voters is small, for two main reasons.
First, it is technically easier to perform an iterative voting procedure with few participants. Second,
the question of convergence is only relevant when cases of tie or near-tie are common. An anal-
ysis in the spirit of [11] would be more suitable when the number of voters increases, as it rarely
happens that a single voter would be able to influence the outcome, and almost any outcome is a
Nash equilibrium. This limitation of our formulation is dueto the fact that the behaviors of voters
encompass only myopic improvements. However, it sometimesmakes sense for a voter to vote for
some candidate, even if this will not immediately change theoutcome (but may contribute to such a
change if other voters will do the same).

A new voting rule We observe that the improvement steps induced by the best reply policy are
unique. If, in addition, the order in which agents play is fixed, we get anew voting rule—Iterative
Plurality. In this rule, agents submit their full preference profiles, and the center simulates an iterative
Plurality game, applying the best replies of the agents according to the predetermined order. It may
seem at first glance that Iterative Plurality is somehow resistant to manipulations, as the outcome was
shown to be an equilibrium. This is not possible of course, and indeed agents can still manipulate
the new rule by submitting false preferences. Such an actioncan cause the game to converge to a
different equilibrium (of the Plurality game), which is better for the manipulator.

Future work It would be interesting to investigate computational and game-theoretic properties of
the new, iterative, voting rule. For example, perhaps strategic behavior is scarcer, or computationally
harder. Another interesting question arises regarding possible strategic behavior of the election
chairperson: can voters be ordered so as to arrange the election of a particular candidate? This is
somewhat similar to the idea of manipulating the agenda. Of course, a similar analysis can be carried
out on voting rules other than Plurality, or with variationssuch as voters that join gradually. Such
analyses might be restricted to best reply dynamics, as in most interesting rules the voter strategy
space is very large. Another key challenge is to modify our best-reply assumption to reflect non-
myopic behavior. Finally, even in cases where convergence is not guaranteed, it is worth studying
theproportionof profiles that contain cycles.
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