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Abstract

We consider directed graphs over a set of n agents, where an edge (i, j) is taken to
mean that agent i supports or trusts agent j. Given such a graph and an integer
k ≤ n, we wish to select a subset of k agents that maximizes the sum of indegrees,
i.e., a subset of k most popular or most trusted agents. At the same time we assume
that each individual agent is only interested in being selected, and may misreport
its outgoing edges to this end. This problem formulation captures realistic scenarios
where agents choose among themselves, which can be found in the context of Internet
search, social networks like Twitter, or reputation systems like Epinions.
Our goal is to design mechanisms without payments that map each graph to a
k-subset of agents to be selected and satisfy the following two constraints: strate-
gyproofness, i.e., agents cannot benefit from misreporting their outgoing edges, and
approximate optimality, i.e., the sum of indegrees of the selected subset of agents
is always close to optimal. Our first main result is a surprising impossibility: for
k ∈ {1, . . . , n − 1}, no deterministic strategyproof mechanism can provide a finite
approximation ratio. Our second main result is a randomized strategyproof mecha-
nism with an approximation ratio that is bounded from above by four for any value
of k, and approaches one as k grows.

1 Introduction

One of the most well-studied settings in social choice theory concerns a set of agents (also
known as voters or individuals) and a set of alternatives (also known as candidates). The
agents express their preferences over the alternatives, and these are mapped by some function
to a winning alternative or set of winning alternatives. In one prominent variation, each
agent must select a subset of alternatives it approves; this setting is known as approval
voting [5].

We consider the special case of approval voting when the set of agents and the set of
alternatives coincide; this for example occurs when the members of an organization use
approval voting to elect a president or a committee from among their numbers.1 We model
this situation by a directed graph on the set of agents. An edge from agent i to agent j
means that agent i approves, votes for, trusts, or supports agent j. Our goal is to select a
subset of k “best” agents for a given graph; we will elaborate on what we mean by “best”
momentarily.

The fact that agents and alternatives coincide allows us to make additional assump-
tions about agents’ preferences. Indeed, we will assume that each agent is only interested
in whether it is among those selected, that is, it receives utility one if selected and zero
otherwise. We will see, however, that our results in fact hold for any setting where agents
give their own selection priority over that of their approved candidates. This assumption,
which is very reasonable in practice, is discussed in more detail in Section 5.

1Approval voting is employed in this exact context for example by scientific organizations such as the
American Mathematical Society (AMS), the Institute of Electrical and Electronics Engineers (IEEE), the
Game Theory Society (GTS), and the International Foundation for Autonomous Agents and Multiagent
Systems (IFAAMAS).



A (deterministic) k-selection mechanism is a function that maps a given graph on the
set of agents to a k-subset of selected agents. We also consider randomized k-selection
mechanisms, which randomly select a subset. The outgoing edges in the underlying graph
G are private information of the respective agent. Fixing a mechanism f , the agents play
the following game. Each of them reports to the mechanism a set of outgoing edges, which
might differ from the true set. The reported edges induce a graph G′, and the mechanism
selects the subset f(G′). We say that a mechanism is strategyproof (SP) if an agent cannot
benefit from misreporting its outgoing edges, that is, cannot increase its chances of being
selected, even if it has complete information about the rest of the graph. We further say
that a mechanism is group strategyproof (GSP) if even a coalition of agents cannot all gain
from misreporting their outgoing edges.

What remains to be specified is what we mean by selecting the “best” agents. In this
paper, we measure the quality of a set of agents by their total number of incoming edges,
i.e., the sum of their indegrees. The goal of the mechanism designer is to optimize this
target function. Note that this goal is in a sense orthogonal to the agent’s interests, which
may make the design of good SP mechanisms difficult.

In addition to traditional voting settings, this model also captures different problems
in networked environments. Consider for example an Internet search setting, where agents
correspond to web sites and edges represent hyperlinks. Given this graph, a search engine
must return a set of the, say, ten top web sites. Put another way, the top web sites are
selected based on the votes cast by other web sites in the form of hyperlinks. Each specific
web site, or more accurately its webmaster, is naturally concerned with appearing at the
top of the search results, and to this end may add or remove hyperlinks at will.

A second motivating example can be found in the context of social networks. While some
social networks, like Facebook (http://facebook.com), correspond to undirected graphs,
there are many examples with unilateral connections. Each user of the reputation sys-
tem Epinions (http://epinions.com) has a “Web of Trust”, that is, the user unilaterally
chooses which other users to trust. Another prominent example is the social network Twit-
ter (http://twitter.com), which of late has become wildly popular; a Twitter user may
choose which other users to “follow.” In “directed” social networks, choosing a k-subset
with maximum overall indegree simply means selecting the k most popular or most trusted
users. Applications include setting up a committee, recommending a trusted group of ven-
dors, targeting a group for an advertising campaign, or simply holding a popularity contest.
The last point may seem pure fantasy, but, indeed, celebrity users of Twitter have recently
held a race to the milestone of one million followers; the dubious honor ultimately went to
actor Ashton Kutcher. Clearly Mr. Kutcher could increase the chance of being selected by
not following any other users, that is, reporting an empty set of outgoing edges.

Since a mechanism that selects an optimal subset (in terms of total indegree) is clearly
not SP, we will resort to approximate optimality. More precisely, we seek SP mechanisms
that give a good approximation, in the usual sense, to the total indegree. Crucially, approx-
imation is not employed in this context to circumvent computational complexity (as the
problem of selecting an optimal subset is obviously tractable), but in order to sufficiently
broaden the space of acceptable mechanisms to include SP ones.

Context and related work. The work in this paper falls squarely into the realm of ap-
proximate mechanism design without money, an agenda recently introduced by some of us
(Procaccia and Tennenholtz [24]), building on earlier work (for example by Dekel et al. [9]).
This agenda advocates the design of SP approximation mechanisms without payments for
structured, and preferably computationally tractable, optimization problems. Indeed, while
almost all the work in the field of algorithmic mechanism design [23] considers mechanisms
that are allowed to transfer payments to and from the agents, money is usually unavailable



Deterministic Randomized

SP
Upper bound n/a min{4, 1 +O(1/k1/3)}
Lower bound ∞ 1 + Ω(1/k2)

GSP
Upper bound n/a n

k

Lower bound ∞ n−1
k

Table 1: Summary of our results for k-selection mechanisms, where n is the number of agents. SP
stands for strategyproof, GSP for group strategyproof.

in Internet domains like the ones discussed above (social networks, search engines) due to
security and accountability issues (see, e.g., the book chapter by Schummer and Vohra [26]).
Our notion of a mechanism, sometimes referred to as a social choice rule in the social choice
literature, therefore precludes payments by definition. Note that Procaccia and Tennen-
holtz [24], and also subsequent papers [20, 21, 1], deal with a completely different domain,
namely facility location.

LeGrand et al. [19] study approximations in the context of approval voting, mainly from
a complexity perspective. They consider the (less standard) minmax solution that selects
alternatives in a way that minimizes the maximum Hamming distance to the agents’ ballots
(as binary vectors). LeGrand et al. show that the optimization problem is NP-hard, and
provide a trivial 3-approximation algorithm: simply choose the subset that is closest to the
ballot of an arbitrary agent. Furthermore, they observe that this algorithm is also SP when
an agent’s (dis)utility is its Hamming distance to the selected subset.

For k = 1, that is, if one agent must be selected, the game we deal with is a special
case of so-called selection games [3], where the possible strategies are the outgoing edges.
More generally, this setting is related to work in distributed computing on leader election
(see, e.g., [2, 8, 11, 4]). This line of work does not deal with self-interested agents. Instead,
there is a certain number of malicious agents trying to manipulate the selection process,
and the goal is to guarantee the selection of a non-malicious agent, at least with a certain
probability.

Finally, this paper is related to work on manipulation of reputation systems, which are
often modeled as weighted directed graphs; a reputation function maps a given graph to
reputation values for the agents (see, e.g., [6, 14]). Although our positive results can be
extended to weighted graphs, when the target function is the sum of weights on incoming
edges, this would hardly be a reasonable target function. Indeed, in this context the absence
of a specific incoming edge (indicating lack of knowledge) is preferable to an edge with low
weight (which indicates distrust); see Section 5 for further discussion.

Results and techniques. We give rather tight upper and lower bounds on the approxima-
tion ratio achievable by k-selection mechanisms in the setting described above; the properties
of the mechanisms fall along two orthogonal dimensions: deterministic vs. randomized, and
SP vs. GSP. A summary of our results is given in Table 1.

Our contribution begins in Section 3 with a study of deterministic k-selection mecha-
nisms. It is quite easy to see that no deterministic SP 1-selection mechanism can yield a
finite approximation ratio. Intuitively, this should not be true for large values of k. Indeed,
in order to have a finite approximation ratio, a mechanism should very simply select a subset
of agents with at least one incoming edge, if there is such a set. In the extreme case when
k = n− 1, we must select all the agents save one, and the question is whether there exists
an SP mechanism that never eliminates the unique agent with positive indegree. Our first
result gives a surprising negative answer to this question, and in fact holds for every value
of k.



Theorem 3.1. Let N = {1, . . . , n}, n ≥ 2, and k ∈ {1, . . . , n − 1}. Then there is no
deterministic SP k-selection mechanism that gives a finite approximation ratio.

The proof of the theorem is compact but rather tricky. It involves two main arguments.
We first restrict our attention to a subset of the graphs, namely to stars with all edges
directed at a specific agent. An SP mechanism over such graphs can be represented using
a function over the boolean (n − 1)-cube, which must satisfy certain constraints. We then
use a parity argument to show that the constraints lead to a contradiction.

In Section 4 we turn to randomized k-selection mechanisms. We design a randomized
mechanism, Random m-Partition (m-RP), parameterized by m, that works by randomly
partitioning the set of agents into m subsets, and then selecting the (roughly) k/m agents
with largest indegree from each subset, when only the incoming edges from the other subsets
are taken into account. This rather simple technique is reminiscent of work on random sam-
pling in the context of auctions for digital goods [13, 17, 12] and combinatorial auctions [10],
although our problem is fundamentally different. We have the following theorem.

Theorem 4.1. Let N = {1, . . . , n}, k ∈ {1, . . . , n− 1}. For every value of m, m-RP is SP.
Furthermore,

1. 2-RP has an approximation ratio of four, and

2.
(⌈
k1/3

⌉)
-RP has an approximation ratio of 1 +O(1/k1/3).

For a given number k of agents to be selected, we can in fact choose the best value of m
when applying m-RP. Thus, there exists a mechanism that always yields an approximation
ratio of at most four, and furthermore provides a ratio that approaches one as k grows. In
addition, we prove a lower bound of 1 + Ω(1/k2) on the approximation ratio that can be
achieved by any randomized SP k-selection mechanism; in particular, the lower bound is
two for k = 1.

As our final result, we obtain a lower bound of (n−1)/k for randomized GSP k-selection
mechanisms. This result implies that when asking for group strategyproofness one essentially
cannot do better than simply selecting k agents at random, which is obviously GSP and
gives an approximation ratio of n/k.

2 The Model

Let N = {1, . . . , n} be a set of agents. For each k = 1, . . . , n, let Sk = Sk(n) be the collection
of k-subsets of N , i.e., Sk = {S ⊆ N : |S| = k}. We consider directed graphs G = (N,E),
that is, graphs with N as the set of vertices, and write G = G(N) for the set of such graphs.

A deterministic k-selection mechanism is a function f : G → Sk that selects a subset
of agents for each graph. When the subset S ⊆ N is selected, agent i ∈ N obtains utility
ui(S) = 1 if i ∈ S and ui(S) = 0 otherwise, i.e., agents only care about whether they are
selected or not. We further discuss this utility model in Section 5.

A randomized k-selection mechanism is a function f : G → ∆(Sk), where ∆(Sk) is the
set of probability distributions over Sk. Given a distribution µ ∈ ∆(Sk), the utility of agent
i ∈ N is

ui(µ) = ES∼µ[ui(S)] = PrS∼µ[i ∈ S].

Deterministic mechanisms can be seen as a special case of a randomized ones, always select-
ing a set of agents with probability one.

We say that a k-selection mechanism is strategyproof (SP) if an agent cannot benefit
from misreporting its edges. Formally, strategyproofness requires that for every i ∈ N and
every pair of graphs G,G′ ∈ G that differ only in the outgoing edges of agent i, it holds



that ui(G) = ui(G
′).2 This means that the probability of agent i ∈ N being selected has to

be independent of the outgoing edges reported by i. A discussion of this definition in the
context of randomized mechanisms can be found in Section 5.

A k-selection mechanism is group strategyproof (GSP) if there is no coalition of agents
that can all gain from jointly misreporting their outgoing edges. Formally, group strate-
gyproofness requires that for every S ⊆ N and every pair of graphs G,G′ ∈ G that differ
only in the outgoing edges of the agents in S, there exists i ∈ S such that ui(G) ≤ ui(G

′).
An alternative, stronger definition requires that some agent strictly lose as a result of the
deviation. Crucially, our result with respect to group strategyproofness is an impossibility,
hence using the weaker definition only strengthens the result.

Given a graph G, let deg(i) = deg(i, G) be the indegree of agent i in G, i.e., the number
of its incoming edges. We seek mechanisms that are SP or GSP, and in addition approximate
the optimization target

∑
i∈S deg(i), that is, we wish to maximize the sum of indegrees of

the selected agents. Formally, we say that a k-selection mechanism f has an approximation
ratio of α if for every graph G,

maxS∈Sk
∑
i∈S deg(i)

ES∼f(G)[
∑
i∈S deg(i)]

≤ α.

3 Deterministic Mechanisms

In this section we study deterministic k-selection mechanisms. Before stating our impossi-
bility result, we discuss some special cases.

Clearly, only one mechanism exists for k = n, that is, when all the agents must be
selected, and this mechanism is optimal. More interestingly, it is easy to see that one cannot
obtain a finite approximation ratio via a deterministic SP mechanism when k = 1. Indeed,
let n ≥ 2, let f be an SP deterministic mechanism, and consider a graph G = (N,E)
with E = {(1, 2), (2, 1)}, i.e., the only two edges are from agent 1 to agent 2 and vice
versa. Without loss of generality we may assume that f(G) = {1}. Now, assume that
agent 2 removes its outgoing edge; formally, we now consider the graph G′ = (N,E′) with
E′ = {(1, 2)}. By strategyproofness, f(G′) = {1}, but now agent 2 is the only agent with
positive degree, hence the approximation ratio of f is infinite.

Note that in order to have a finite approximation ratio, our mechanism must satisfy the
following property, which is also sufficient: if there is an edge in the graph, the mechanism
must select a subset of agents with at least one incoming edge. The argument above shows
that this property cannot be satisfied by any SP mechanism when k = 1, but intuitively it
should be easy to satisfy when k is very large.

Consider, for example, the case where k = n− 1, that is, the mechanism must select all
the agents save one. Can we design an SP mechanism with the extremely basic property
that if there is only one agent with incoming edges, that agent would not be the only one
not to be selected?

In the following theorem, we give a surprising negative answer to this question, even
when we restrict our attention to graphs where each agent has at most one outgoing edge.
Amusingly, a connection to the popular TV game show “Survivor” can be made. Consider
a slight variation where each tribe member can vote for one other trusted member, but
is also allowed not to cast a vote. One member must be eliminated at the tribal council,
based on the votes. Since each member’s first priority is not to be eliminated (i.e., to be
selected), strategyproofness in our 0–1 utility model is in fact a necessary condition for
strategyproofness in suitable, more refined utility models. The theorem then implies that

2By symmetry, this is equivalent to writing the last equality as an inequality.



a mechanism for choosing the eliminated member cannot be SP (even under 0–1 utilities)
if it has the property that a member who is the only one that received votes cannot be
eliminated. Put another way, lies are inherent in the game!

More generally, we show that for any value of k, strategyproofness and finite approxima-
tion ratio are mutually exclusive. A concise but nontrivial proof is given in the full version
of this paper.

Theorem 3.1. Let N = {1, . . . , n}, n ≥ 2, and k ∈ {1, . . . , n − 1}. Then there is no
deterministic SP k-selection mechanism that gives a finite approximation ratio.

It is interesting to note that if we change the problem formulation by allowing the
selection of at most k agents for k ≥ 2 then it is possible to design a curious deterministic
SP mechanism with a finite approximation ratio that selects at most two agents. The reader
is referred to Section 5 and to the full version of this paper for further discussion.

4 Randomized Mechanisms

In Section 3 we have established a total impossibility result with respect to deterministic SP
k-selection mechanisms. In this section we ask to what extent this result can be circumvented
using randomization.

4.1 SP Randomized Mechanisms

As we move to the randomized setting, it immediately becomes apparent that Theorem 3.1
no longer applies. Indeed, a randomized SP k-selection mechanism with a finite approxima-
tion ratio can be obtained by simply selecting k agents at random. However, this mechanism
still yields a poor approximation ratio. Can we do better?

Consider first a simple deterministic mechanism that partitions the agents into two
predetermined subsets S1 and S2. Next, the mechanism discards all edges between pairs of
agents in the same subset. Finally, the mechanism chooses the top k/2 agents from each
subset. In other words, the mechanism selects the k/2 agents with highest indegree from each
subset, where the indegree is calculated only on the basis of incoming edges from the other
subset. This mechanism is clearly SP. Indeed, consider some i ∈ St, t ∈ {1, 2}; its outgoing
edges to agents inside its subset are disregarded, whereas its outgoing edges to agents in S3−t
can only influence which agents are selected from S3−t. However, even without Theorem 3.1
it is easy to see that the mechanism does not yield a finite approximation ratio, since it might
be the case that the only edges in the graph are between agents in the same subset.

We leverage and refine the partition idea in order to design a randomized SP mechanism
that yields a constant approximation ratio. More accurately, we define an infinite family
of mechanisms, parameterized by a parameter m ∈ N. Given m, the mechanism randomly
partitions the set of agents into m subsets, and then selects (roughly) the top k/m agents
from each subset, based only on the incoming edges from agents in other subsets. Below we
give a more formal specification of the mechanism; an example can be found in Figure 1.

The Random m-Partition Mechanism (m-RP)

1. Assign each agent independently and uniformly at random to one of m subsets
S1, . . . , Sm.

2. Let T ⊂ {1, . . . ,m} be a random subset of size k −m · bk/mc.

3. If t ∈ T , select the dk/me agents from St with highest indegrees based only on edges
from N \ St. If t /∈ T , select the bk/mc agents from St with highest indegrees based
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Figure 1: Example for the Random 2-Partition Mechanism, with n = 6 and k = 2. Figure 1(a)
illustrates the given graph. The mechanism randomly partitions the agents into two subsets, shown
in Figure 1(b), and disregards the edges inside each group. The mechanism then selects the best
agent in each group based on the incoming edges from the other group; in the example, the selected
subset is {1, 5}, with a sum of indegrees of four, whereas the optimal subset is {2, 5}, with a sum
of indegrees of five.

only on edges from N \ St. Break ties lexicographically in both cases. If one of the
subsets St is smaller than the number of agents to be selected from this subset, select
the entire subset.

4. If only k′ < k agents were selected in Step 3, select k− k′ additional agents uniformly
from the set of agents that were not previously selected.

Note that if k = 1 and m = 2 then we select one agent from one of the two subsets,
based on the incoming edges from the other. In this case, step 2 is equivalent to a toss of a
fair coin that determines from which of the two subsets we select an agent.

As in the deterministic case, given a partition of the agents into subsets S1, . . . , Sm, the
choice of agents that are selected from St is independent of their outgoing edges. Further-
more, the partition is independent of the input. Therefore, m-RP is SP.3 The following
theorem explicitly states the approximation guarantees provided by m-RP; the technical
and rather delicate proof of the theorem is relegated to the full version of this paper.

Theorem 4.1. Let N = {1, . . . , n}, k ∈ {1, . . . , n− 1}. For every value of m, m-RP is SP.
Furthermore,

1. 2-RP has an approximation ratio of four, and

2.
(⌈
k1/3

⌉)
-RP has an approximation ratio of 1 +O(1/k1/3).

In fact, we can choose the best value of m for any given value of k when we apply m-RP.
In other words, Theorem 4.1 implies that for every k there exists an SP mechanism with
an approximation ratio of min{4, 1 + O(1/k1/3)}, that is, an approximation ratio that is
bounded from above by four for any value of k, and approaches one as k grows.

It follows from the theorem that, for k = 1, 2-RP has an approximation ratio of four;
for this case m-RP with m > 2 has a strictly worse ratio. It is interesting to note that the
analysis is tight. Indeed, consider a graph G = (N,E) with only one edge from agent 1 to
agent n, that is, E = {(1, n)}. Assume without loss of generality that agent n is assigned
to S1. In order for agent n to be selected, two events must occur:

3The mechanism is even universally SP, see Section 5.



1. T = {1}, that is, the winner must be selected from S1. This happens with probability
1/2.

2. Either 1 ∈ S2, or |S1| = 1. The probability that 1 ∈ S2 is 1/2. The probability that
|S1| = 1, given that n ∈ S1, is 1/2n−1. By the union bound, the probability of this
event is at most 1/2 + 1/2n−1.

It is clear that n cannot be selected unless the first event occurs. If the second event does
not occur, it follows that n has an indegree of zero based on the incoming edges from
S2, and there are other alternatives in S1 (which also have an indegree of zero). Since tie-
breaking is lexicographic, agent n would not be selected. As the two events are independent,
the probability of both occurring is therefore at most 1/4 + 1/2n. We conclude that the
approximation ratio of the mechanism cannot be smaller than

1(
1
4 + 1

2n

)
· 1

= 4−O
(

1

2n

)
.

We next provide a very simple, though rather weak, lower bound for the approximation
ratio yielded by randomized SP k-selection mechanisms. Let k ∈ {1, . . . , n − 1}, and let
f : G → ∆(Sk) be a randomized SP k-selection mechanism. Consider the graph G = (N,E)
where

E = {(i, i+ 1) : i = 1, . . . , k} ∪ {(k + 1, 1)},

i.e., E is a directed cycle on the agents 1, . . . , k + 1. Then there exists an agent i ∈
{1, . . . , k + 1}, without loss of generality agent 1, that is included in f(G) with probability
at most k/(k + 1). Now, consider the graph G′ where E′ = E \ {(1, 2)}, that is, agent 1
removes its outgoing edge to agent 2. By strategyproofness, agent 1 is included in f(G′)
with probability at most k/(k + 1). Any subset S ∈ Sk such that 1 /∈ S has at most k − 1
incoming edges in G′. It follows that the expected number of incoming edges in f(G′) is at
most

k

k + 1
· k +

1

k + 1
· (k − 1) =

k2 + k − 1

k + 1
.

Hence the approximation ratio of f cannot be smaller than

k
k2+k−1
k+1

= 1 +
1

k2 + k − 1
. (1)

We have therefore proved the following easy result.

Theorem 4.2. Let N = {1, . . . , n}, n ≥ 2, k ∈ {1, . . . , n−1}. Then there is no randomized
SP k-selection mechanism with an approximation ratio smaller than 1 + Ω(1/k2).

Not surprisingly, the lower bound given by Theorem 4.2 converges to one, albeit more
quickly than the upper bound of Theorem 4.1. As usual, an especially interesting special
case is when k = 1. Equation (1) gives an explicit lower bound of two for this case. On
the other hand, Theorem 4.1 gives an upper bound of four. We conjecture that the correct
value is two.

Conjecture 4.3. There exists a randomized SP 1-selection mechanism with an approxima-
tion ratio of two.

One deceptively promising avenue for proving the conjecture is designing an iterative
version of the Random Partition Mechanism. Specifically, we start with an empty subset
S ⊂ N , and at each step add to S an agent from N \ S that has minimum indegree based



on the incoming edges from S, breaking ties randomly (so, in the first step we would just
add to S a random agent). The last agent that remains outside S is selected. This SP
mechanism does remarkably well on some difficult instances, but fails spectacularly on a
contrived counterexample. A detailed discussion of the mechanism and the illuminating
counterexample is deferred to the full version of this paper.

4.2 GSP Randomized Mechanisms

In the beginning of Section 4.1 we identified a trivial randomized SP k-selection mechanism,
namely the one that selects a subset of k agents at random. Of course this mechanism is
even GSP, since the outcome is completely independent of the reported graph.

We claim that selecting a random k-subset gives an approximation ratio of n/k. Indeed,
consider an optimal subset K∗ ⊆ N with |K∗| = k. Each agent i ∈ K∗ is included in
the selected subset with probability k/n, and hence in expectation contributes a (k/n)-
fraction of its indegree to the expected total indegree of the selected subset. By linearity of
expectation, the expected total indegree of the selected subset is at least a (k/n)-fraction of
the total indegree of K∗.

Theorem 4.1 implies that we can do much better if we just ask for strategyproofness.
If one asks for group strategyproofness, on the other hand, just selecting a random subset
turns out to be optimal up to a tiny gap. It it worth noting that the following result holds
even if one is merely interested in coalitions of size at most two. The proof is given in the
full version of this paper.

Theorem 4.4. Let N = {1, . . . , n}, n ≥ 2, and let k ∈ {1, . . . , n− 1}. No randomized GSP
k-selection mechanism can yield an approximation ratio smaller than (n− 1)/k.

5 Discussion

In this section we discuss the significance of our results and state some open problems.

Payments. If payments are allowed and the preferences of the agents are quasi-linear then
truthful implementation of the optimal solution is straightforward: simply give one unit of
payment to each agent that is not selected. This can be refined by only paying “pivotal”
agents that are not selected, that is, agents that would have been selected had they lied.
However, even under the latter scheme we may have to pay all the non-selected agents (e.g.,
when the graph is a clique). Moreover, a simple argument shows that there is no truthful
payment scheme that does better.

The utility model. We have studied an “extreme” utility model, where an agent is
only interested in the question of its own selection. The restriction of the preferences of
the agents allows us to circumvent impossibility results that hold with respect to more
general preferences, e.g., the Gibbard-Satterthwaite Theorem [15, 25] and its generalization
to randomized rules [16].

A more practical assumption would be that an agent receives a utility of one if it is
selected, plus a utility of β ≥ 0 for each of its (outgoing) neighbors that is selected. In
this case the social welfare (sum of utilities) of a set S of selected agents is k plus β times
the total indegree of S. Hence, if β > 0, a set S maximizes social welfare if and only if it
maximizes the total indegree. In particular, if β > 0 and payments are available, we can use
the VCG mechanism [27, 7, 18] (see [22] for an overview) to maximize the total indegree in
a truthful way.

It is easy to see that the lower bound of Theorem 3.1 for the 0–1 model also holds for
the β–1 model if β is small. The latter is likely to be the case in many practical settings,



such as those described in Section 1. Upper bounds identical to those of Theorem 4.1 hold
for any value of β. In particular, m-RP remains strategyproof in the β–1 model, as the
probability that an agent is selected increases in the number of votes it receives. Moreover,
if β is small, a variation on the random partition mechanism achieves an approximation
ratio close to one with respect to social welfare, even when k = 1. If β ≥ 1 then simply
selecting the optimal solution (and breaking ties lexicographically) is SP.

Robustness of the impossibility result. Theorem 3.1 provides a strong impossibility
result for deterministic mechanisms. We have seen that this result is rather sensitive to the
model, and no longer holds if one is allowed to select at most k agents rather than exactly k,
or if each agent is forced to report at least one outgoing edge. That said, we note that these
particular aspects of the model are crucial: in our motivating examples, and in approval
voting in general, an agent may choose not to report any outgoing edges; in essentially all
conceivable applications the set of agents to be selected is of fixed size.

Weights and an application to conference reviews. A seemingly natural general-
ization of our model can be obtained by allowing weighted edges. Interestingly, our main
positive result, namely Theorem 4.1, also holds in this more general setting (subject to mi-
nor modifications to its formulation and proof). However, closer scrutiny reveals that it is
our target function that is often meaningless in the weighted setting. Indeed, the absence
of an edge between i and j would in this context imply that i has no information about j,
whereas an edge with small weight would imply that i dislikes or distrusts j. Therefore,
maximizing the sum of weights on incoming edges may not be desirable.

That said, in very specific situations maximizing the sum of weights on incoming edges
makes perfect sense; one prominent example is conference reviews. In this context the
reviewers assign scores to papers while often submitting a paper of their own, and a subset
of papers must be selected. This setting is special since it is usually the case that each
paper is reviewed by three reviewers, i.e., each agent has exactly three incoming weighted
edges, hence maximizing the sum of scores is the same as maximizing the average score. We
conclude that m-RP can be employed to build a truthful conference program!

Universal strategyproofness vs. strategyproofness in expectation. In the con-
text of randomized mechanisms, two flavors of strategyproofness are usually considered. A
mechanism is universally SP if for every fixed outcome of the random choices made by the
mechanism an agent cannot gain by lying, that is, the mechanism is a distribution over SP
mechanisms. A mechanism is SP in expectation if an agent cannot increase its expected
utility by lying. In this paper we have used the latter definition, which clearly is the weaker
of the two. On the one hand, this strengthens the randomized SP lower bound of Theo-
rem 4.2. On the other hand, notice that the randomized mechanisms of Section 4 are in fact
universally SP. Indeed, for every fixed partition, selecting agents from one subset based on
incoming edges from other subsets is SP. Hence, Theorem 4.1 is even stronger than originally
stated.

Open problems. Our most enigmatic open problem is the gap for randomized SP 1-
selection mechanisms: Theorem 4.1 gives an upper bound of four, while Theorem 4.2 gives a
lower bound of two. We conjecture that there exists a randomized SP 1-selection mechanism
that gives a 2-approximation.

In addition, a potentially interesting variation of our problem can be obtained by chang-
ing the target function. One attractive option is to maximize the minimum indegree in
the selected subset. Clearly, our total impossibility for deterministic SP mechanisms (Theo-
rem 3.1) carries over to this new target function. However, it is unclear what can be achieved
using randomized SP mechanisms.
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