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Abstract

For many election systems, bribery (and related) attacks have been shown NP-hard using con-
structions on combinatorially rich structures such as partitions and covers. It is important to
learn how robust these hardness protection results are, in order to find whether they can be
relied on in practice. This paper shows that for voters who follow the most central political-
science model of electorates—single-peaked preferences—those protections vanish. By using
single-peaked preferences to simplify combinatorial covering challenges, we show that NP-
hard bribery problems—including those for Kemeny and Llull elections—fall to polynomial
time. By using single-peaked preferences to simplify combinatorial partition challenges, we
show that NP-hard partition-of-voters problems fall to polynomial time. We furthermore show
that for single-peaked electorates, the winner problems for Dodgson and Kemeny elections,
though Θp

2-complete in the general case, fall to polynomial time. And we completely clas-
sify the complexity of weighted coalition manipulation for scoring protocols in single-peaked
electorates.

1 Introduction
Elections are perhaps the most important framework for preference aggregation. An election (rule)
is a mapping that takes as input the preferences of the voters with respect to the set of candidates
(alternatives) and returns a set of “winners,” which is some subset of the candidate set. Elections
are central in preference aggregation among humans—in everything from political elections to se-
lecting good singers on popular television shows. Elections are rapidly increasing in importance in
electronic settings such as multiagent systems, and have been used or proposed for such varied tasks
as recommender systems and collaborative filtering [23], web spam reduction and improved web-
search engines [12], and planning [13]. In electronic settings, elections may have huge numbers of
voters and alternatives.

One natural worry with elections is that agents may try to slant the outcome, for example, by
bribing voters. Motivated by work from economics and political science showing that reasonable
election systems always allow manipulations of certain types, starting in 1989, Bartholdi, Tovey,
and Trick [3, 4] made the thrilling suggestion that elections be protected via complexity theory—
namely, by making the attacker’s task NP-hard. This line has been active ever since, and has resulted
in NP-hardness protections being proven for many election systems, against such attacks as bribery
(the attacker has a budget with which to buy and alter voters’ votes [16]), manipulation (a coalition
of voters wishes to set its votes to make a given candidate win [3]), and control (an agent seeks
to make a given candidate win by adding/deleting/partitioning voters or candidates [4]). The book
chapter [18] surveys such NP-hardness results, which apply to many important election systems
such as plurality, single transferable vote, and approval voting.

In the past few years, a flurry of papers have come out asking whether the NP-hardness protec-
tions are satisfying. In particular, the papers explore the possibility that heuristic algorithms may
do well frequently or that approximation algorithms may exist. The present paper questions the
NP-hardness results from a completely different direction. In political science, perhaps the most
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“canonical” model of electorates is the unidimensional single-peaked model, in which the electorate
has preferences over some one-dimensional spectrum (e.g., “very liberal through very conservative”)
along which the candidates are also located, and in which each voter’s preferences (loosely put) have
a peak, with affinity declining as one moves away from the peak. A brilliant paper by Walsh [26]
recently asked whether NP-hardness protections against manipulation fall apart if electorates are
single-peaked. For the case Walsh looked at, the answer he proved is “no”; he looked at a par-
ticular NP-hardness manipulation protection and proved it holds even for single-peaked societies.
Faliszewski et al. [17], inspired by Walsh’s work, looked at a range of election systems and came
to the sharply differing conclusion that for many crucial cases, NP-hardness protections against
manipulation and control vanish for single-peaked electorates.

Those two papers [17, 26] are the only two papers we know of that study the implications of
single-peakedness on the complexity of manipulation and control. The present paper seeks to take
this young line of research in new directions, and to improve one existing direction, via the following
contributions:

(1) We show that checking who the winner is in Dodgson, Young, and Kemeny elections, which
is Θp

2-complete in the general case, is in polynomial time for single-peaked electorates.
(2) We for the first time study the effect of single-peaked electorates on the complexity of

bribery. We show that many NP-hardness protections against bribery in the general case vanish
for single-peaked electorates. To show this, we give polynomial-time bribery algorithms for single-
peaked electorates in many settings. Our polynomial-time algorithms apply to approval voting and to
the rich range of “weak-Condorcet consistent” election systems and even to systems that are merely
known to be weak-Condorcet consistent when the electorate is single-peaked, including weakBlack,
weakDodgson, Fishburn, Kemeny, Llull, Maximin, Schwartz, Young, and two variants of Nanson
elections.

The practical lesson is that we should be very skeptical about NP-completeness results if our
electorate may have limitations (such as single-peakedness) on the ensembles of votes it produces.

(3) We for the first time study the effects of single-peaked electorates on the complexity of
control by partition of voters, in which the voters are partitioned into two groups that vote on the
candidates in “primary” elections, and only the winners of the primaries compete in the final election.
This is one of the seven types of control introduced in the seminal control paper of Bartholdi et al.
[4], but control by partition of voters has not been previously addressed for the single-peaked case.
We show that some known NP-hardness protections against control-by-partition vanish for single-
peaked electorates

The shared technical theme here and in the bribery case is that single-peakedness can be used
to tame the combinatorial explosion (of partitions and covers) that in the general case protected
elections from attack, and in particular single-peakedness yields polynomial-time attack algorithms.

(4) Our final contribution is a strong extension of an important result from Faliszewski et al.
[17]. For the broad class of election systems known as scoring protocols, Faliszewski et al. gave a
complete characterization of the computational complexity of the (weighted, coalition) manipulation
problem in the case of single-peaked elections with three candidates. Such characterizations are
important as they tell both which systems are manipulable and what it is about the systems that
makes them manipulable. We extend this by providing, for single-peaked electorates, a complete
characterization of easy manipulability of scoring protocols.

Proofs omitted due to space constraints can be found in the full version of this paper [6].

2 Preliminaries
Election Systems, Preferences, and weakCondorcet-Consistency An election system is a map-
ping from a finite set of candidates C and a finite list V of voter preferences over those candidates
to a collection W ⊆ C called the winner set. For all but one of the election systems we cover, each



voter’s preference is a linear order (by which we always mean a strict linear order: an irreflexive,
antisymmetric, complete, transitive relation) over the candidates. For the election system called
approval voting, each voter votes by a bit-vector, approving or disapproving of each candidate sep-
arately. Voter’s preferences are input as a list of ballots (i.e., votes), so if multiple voters have the
same preference, the ballot of each will appear separately in V .

We now very briefly describe the election systems considered in this paper. In approval voting,
preferences are approval vectors, and each candidate who gets the highest number of approvals
among the candidates belongs to the winner set. In all the other systems we use, voters will vote by
linear orders. A candidate is said to be a Condorcet winner (respectively, weak Condorcet winner), if
that candidate is preferred to each other candidate by a strict majority (respectively, by at least half)
of the voters. In Condorcet voting the winners are precisely the set of Condorcet winners. In the
election system weakCondorcet, the winners are precisely the set of weak Condorcet winners. It has
been known for two hundred years that some election instances have neither Condorcet winners nor
weak Condorcet winners [7]. And of course, no election instance can have more than one Condorcet
winner, whereas there might be several weak Condorcet winners.

For a rational number α ∈ [0, 1], Copelandα is the election system where for each pair of distinct
candidates we see who is preferred between the two by a strict majority of the voters. That one gets
one “Copeland point” from the pairwise contest and the other gets zero “Copeland points.” If they
tie in their pairwise contest (which can happen only when the number of voters is even), each gets
α points. Copeland1 is known as Llull elections, a system defined by the mystic Ramon Llull in the
thirteenth century, and is known to be remarkably resistant, computationally, to bribery and control
attacks [19].

An important class of elections is the class of scoring protocols. Each scoring protocol has a
fixed number m of candidates and is defined by a scoring vector α = (α1, α2, . . . , αm), α1 ≥
α2 ≥ . . . ≥ αm. Voters’ votes are linear orders, and each voter contributes α1 points to his or her
most preferred candidate, α2 points to his or her next most preferred candidate, and so on. Each
candidate whose total number of points is at least as great as the totals of each other candidate is
a winner. For example, m-candidate plurality voting is the scoring protocol defined by the scoring
vector α = (1, 0, . . . , 0). And m-candidate Borda voting is the scoring protocol defined by the
scoring vector α = (m− 1,m− 2, . . . , 0).

In Black elections (respectively, weakBlack elections), if there is a Condorcet winner (respec-
tively, if there are weakCondorcet winners), then that defines the winners, and otherwise Borda’s
method is used to select the winners. Black elections were introduced by Black [5] and weak-
Black elections (somewhat confusingly called Black elections there) were introduced by Fishburn
[20]. In Dodgson elections (respectively, weakDodgson elections), whichever candidates can by the
fewest repeated transpositions of adjacent candidates in voters’ orders become Condorcet winners
(respectively, weakCondorcet winners) are the winners. Dodgson elections were introduced in the
1800s by Dodgson and weakDodgson elections (somewhat confusingly called Dodgson elections
there) were introduced by Fishburn [20]. In Young elections (respectively, strongYoung elections),
whichever candidates can by the deletion of the fewest voters become weakCondorcet (respectively,
Condorcet) winners are the winners. Young elections were introduced by Young and strongYoung
elections (somewhat confusingly called Young elections there) were introduced by Rothe et al. [25].

Nanson elections are runoff methods based on Borda’s scoring protocol. In Nanson’s original
definition, a series of Borda elections is held and all candidates who at any stage have not more
than the average Borda score are excluded unless all candidates have identical Borda scores, in
which case these candidates are declared the winners of the election. There exist two variants of
Nanson due to Fishburn and Schwartz, which exclude candidates with the lowest Borda score and
candidates whose Borda score is less than the average score, respectively. Maximin (a.k.a. Simpson)
elections choose those candidates that fare best in their worst pairwise comparison against any other
candidate. The remaining three election systems are based on the pairwise majority relation. In
Schwartz elections (sometimes also called the top cycle), the winners are defined as the maximal



elements of the asymmetric part of the transitive closure of the majority relation. The winners in
Fishburn elections are the maximal elements of the Fishburn relation F , which is defined by letting
a F b if every candidate that beats a in a pairwise comparison also beats b and there exists a
candidate that beats b but not a. Finally, Kemeny elections are based on the smallest number of
reversals in the voters’ pairwise preferences such that the majority relation becomes transitive and
complete. The Kemeny winners are the maximal elements of such minimally modified majority
relations.

An important notion in this paper is that of being weakCondorcet-consistent. An election system
is said to be weakCondorcet-consistent (which we earlier wrote, equivalently, as weak-Condorcet
consistent), if on every input that has at least one weak Condorcet winner, the winners of the
election system are exactly the set of weak Condorcet winners. Some of our bribery results will
hold for all election systems that are weakCondorcet-consistent, and even for all election systems
that when restricted to single-peaked electorates are weakCondorcet-consistent on those.

Fishburn [20] has noted that the election systems weakBlack, weakDodgson, Fishburn, Max-
imin, and Young are weakCondorcet-consistent. We add to that the observation that Llull elec-
tions are easily seen from their definition to be weakCondorcet-consistent. We also make the
(new) observation that the election systems Kemeny, Schwartz, and the two variants of Nanson
are weakCondorcet-consistent when restricted to single-peaked electorates. (By Fishburn [20] and
Niou, those systems are known not to be weakCondorcet-consistent in the general case.) We also
observe that Black, Dodgson, strongYoung, the original version of Nanson, and for each α ∈ [0, 1),
Copelandα elections are not weakCondorcet-consistent even when restricted to single-peaked elec-
torates.

Single-Peaked Preferences This paper’s theme is that combinatorial protections crumble for the
case of single-peaked electorates. We now briefly define what single-peaked preferences are and
what their motivation is. The single-peaked preference model was introduced over half a century ago
by Black [5] and has been influential ever since. The model captures the case where the electorate
is polarized by a single issue or dimension, and each voter’s utility along that dimension has either
one peak or just rises or just falls. Candidates have positions (locations) along that dimension. And
a voter’s preferences (in the linear order model) simply order the candidates by utility (except with
no ties allowed). Since the utility curves are very flexible, what this amounts to is that there is an
overall societal ordering L of the candidates, and each voter can be placed in some location such that
for all the candidates to his or her right the preferences drop off and the same to the left, although
within that framework, the right and the left candidates can be interspersed with each other. A
picture will make this clearer. Figure 1 shows an electorate with four voters and five candidates,
in which society’s polarization is on a (liberal-to-conservative) axis. From the picture, we can see
that v1 has preferences c5 > c4 > c3 > c2 > c1, v2 has preferences c1 > c2 > c3 > c4 > c5,
v3 has preferences (note the interleaving) c2 > c3 > c1 > c4 > c5, and v4 has preferences
c4 > c5 > c3 > c2 > c1.

Formally, there are many equivalent ways to capture this behavior, and we use the following as
our definition. A collection V of votes (each a linear ordering Pi of the candidates) over candidate
set C is said to be single-peaked exactly if there exists a linear ordering L over C such that for each
triple of candidates a, b, and c, it holds that (aL bL c ∨ cL bLa)⇒ (∀i) [aPi b⇒ b Pi c].

The single-peaked model has been intensely studied, and has both strengths and limitations. On
the positive side, it is an excellent rough model for a wide range of elections. Votes on everything
from American presidential elections to US Supreme Court votes to hiring votes within a CS de-
partment are often shockingly close to reflecting single-peaked preferences. It certainly is a vastly
more reasonable model in most settings than is assuming that all voters are random and independent,
although the latter model has been receiving a huge amount of study recently. In fact, a wide range
of scholarly studies have argued for the value of the single-peaked model [5, 10, 24], and the model
is one of the first taught to students in positive (i.e., theoretical) political science courses. On the
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Figure 1: Example of a single-peaked electorate of four voters

other hand, some electorates certainly are driven by multidimensional concerns, and even a heavily
unidimensional electorate may have a few out-of-the-box voters.

The single-peaked model also makes sense for approval voting [17]: There, a voter intuitively
may be thought to have some utility threshold starting at which he or she approves of candidates.
What this means is that each voter’s “approved” candidates must be contiguous within society’s
linear order L.

Although we will assume that society’s linear order is part of the input in our single-peaked
winner, bribery, manipulation, and control problems, we mention in passing that given an election
instance, one can in polynomial time tell whether the voters are single-peaked and when so can also
in polynomial time compute a societal linear order instantiating the single-peakedness (Bartholdi
and Trick [2] and Doignon and Falmagne [11] for linear-order preferences and Faliszewski et al.
[17] for approval preferences).

3 Bypassing Winner-Problem Complexity
The main results sections of this paper study whether single-peakedness bypasses complexity-
theoretic protections against attacks on elections. Before moving to those sections, we quickly
present some results showing that single-peakedness also bypasses the complexity results some sys-
tems have for even telling who won. Unlike the “protection from attack” complexity-shield bypass-
ings, which are in some sense bad news (for the security of the election systems), these “winner-
hardness” complexity-shield bypassings are good news—taming the complexity of election systems
such as Dodgson and Kemeny for the single-peaked case, despite the fact that they are known to
have NP-hard winner problems in the general case.

For a given election system E , the winner problem takes as input an election, (C, V ), and a
candidate p ∈ C, and asks if p is a winner in the election whose candidates are C and whose votes
are V . When we speak of the single-peaked case of the winner problem, the input will also contain a
linear order L relative to which the election is single-peaked. Note that the weakCondorcet winner
problem is in P in the general case and thus certainly in the single-peaked case. Furthermore,
something used often in our paper’s proofs is the following standard fact about Condorcet voting
and medians.

Fact 1. Associate each voter with the candidate at the top of that voter’s preference ordering. If
we order the voters with respect to L in terms of that association, then if ‖V ‖ is odd, the weak-
Condorcet and Condorcet winner set is the top preference of the median voter, and if ‖V ‖ is even,
the weakCondorcet winner set is the set of all candidates who in L fall in the range, inclusively,
between the top preferences of the two median voters (and if those two coincide, then that candidate
is the Condorcet winner and otherwise there is no Condorcet winner).



An immediate consequence is the well-known fact that for single-peaked elections, there is al-
ways at least one weak Condorcet winner (we are tacitly here assuming C 6= ∅). Since we earlier
noted that the winner problem is in P for weakCondorcet elections, the following holds.

Theorem 1. For each election system E that is weakCondorcet-consistent when restricted to single-
peaked electorates, the winner problem is in P when restricted to single-peaked elections.

Of course, for many such systems the winner problem is obviously in P even in general. Yet we
do get some interesting consequences from Theorem 1.

Corollary 1. When restricted to single-peaked electorates, the winner problems for Kemeny, Young,
and weakDodgson elections are in P.

In contrast, the general-case Kemeny winner problem problem was proven by Hemaspaandra
et al. [22] to be Θp

2-complete. And we prove in the full version of this paper that the general-case
winner problems for Young and weakDodgson elections are Θp

2-complete as well. Thus, Theorem 1
implies sharp complexity simplifications for these three election systems.

The “identify with weakCondorcet” approach that just worked on Young and weakDodgson
elections does not apply to Dodgson and strongYoung elections. However, we have constructed
direct algorithms that solve their winner problems in polynomial time in the single-peaked case.

Theorem 2. When restricted to single-peaked electorates, the winner problems for Dodgson and
strongYoung elections are in P.

Our algorithm that shows this for Dodgson elections is a good example of the general technical
theme of this paper: That single-peakedness often precludes combinatorial explosion. In this par-
ticular case, single-peakedness simplifies the seemingly exponential-sized search space over “series
of exchanges to provide upper bounds on Dodgson scores,” and will allow us to instead search over
a polynomial-sized possibility space related to a particular, simple set of exchanges happening and
limited to at most two voters.

Both claims in Theorem 2 contrast directly with the known Θp
2-completeness of the general

case Dodgson [21] and strongYoung [25] winner problems, and thus reflect a substantial complexity
simplification that holds when electorates are single-peaked.

4 Bribery of Single-Peaked Elections
This section shows that single-peakedness undercuts many, although not all, NP-hardness protec-
tions for bribery problems.

All bribery notions presented here, except negative approval bribery, are from the paper that
started the complexity-theoretic study of bribery [16]. Given an election system E , the E-bribery
problem takes as input C, V , p ∈ C, and k ∈ {0, 1, 2, . . .}, and asks if, by changing the votes of at
most k members of V , p can be made a winner of this election with respect to E . That is the basic
bribery problem. And it can be modified by any combination of the following items: “$” means
each voter has a price (belonging to {1, 2, 3, . . .}) and the question is whether there is some set of
voters whose total price is at most k such that by changing their votes we can make p be a winner.
The intuition for prices is that some voters can be swayed more easily than others. “Weighted”
means each vote has a weight (belonging to {1, 2, 3, . . .}), and each weight w vote is bribed as an
indivisible object, but when applying E , is viewed as w identical “regular” votes. For the case where
V consists of linear orders, by “negative” we mean that if we bribe a voter then after the bribe the
voter must not have p as his or her top choice unless p already was the top choice before the bribe.
The intuition is that in negative bribery one is trying to stay under the radar by not directly helping
one’s candidate. For approval-vector votes, by “negative” we mean that when you bribe a voter,
his or her after-bribe vector can approve p only if his or her before-bribe vector approved p. By



“strongnegative” we mean that when you bribe a voter the voter after being bribed cannot approve p.
These can occur in any combination, e.g., we can speak of Llull-negative-weighted-$bribery.

When we speak of the single-peaked case of any of the above, we require that all bribes must
result only in votes that are consistent with the input societal order L.

4.1 Approval-Bribery Results
As our main result for approval-bribery, we prove that the bribery protection that complexity gives
there fails on single-peaked electorates.

Theorem 3 (Faliszewski et al. [16]). Approval-bribery is NP-complete.

Theorem 4. Approval-bribery is in P for single-peaked electorates.

The specific technical reason we can obtain polynomial-time bribery algorithms is that the NP-
hardness proofs were based on the combinatorially rich structure of covering problems (whose core
challenge is the “incomparability” of voters), but we use single-peakedness to create a “directional”
attack on covering problems that has the effect of locally removing incomparability.

By the same general approach—using a “directional” attack to in the single-peaked setting tame
the incomparability challenges of covering problems—we can establish the following two additional
cases in which NP-hard bribery problems fall to P for the single-peaked case.

Theorem 5. 1. Approval-negative-bribery and approval-strongnegative-bribery are NP-
complete.

2. For single-peaked electorates, approval-negative-bribery and approval-strongnegative-
bribery are in P.

4.2 Llull-Bribery and Kemeny-Bribery Results
We now state the following eight-case result. The P cases below are proved by direct algorithmic
attacks using the connection between weakCondorcet and median voters, and the NP-complete cases
are shown by using the problem to capture a partition instance.

Theorem 6. For single-peaked electorates, weakCondorcet-weighted-$bribery, weakCondorcet-
negative-weighted-bribery, and weakCondorcet-negative-weighted-$bribery are NP-complete, and
the remaining five weakCondorcet bribery cases are in P.

Theorem 6 is most interesting not for what it says about weakCondorcet elections, but for its
immediate consequences on other election systems, since all weakCondorcet-consistent election
systems coincide for single-peaked electorates due to the nonemptiness of the set of weakCondorcet
winners.

Corollary 2. Let E be any election system that is weakCondorcet-consistent on single-peaked inputs.
Then the three NP-completeness and five P results of Theorem 6 hold (for single-peaked electorates)
for E .

From our discussions earlier in the paper, Corollary 2 applies to the Llull, Kemeny, Young,
weakDodgson, Maximin, Schwartz, weakBlack, Fishburn, and the two variants of Nanson election
systems. In light of this, Corollary 2 is quietly establishing a large number of claims about NP-
hardness shields failing for single-peaked electorates. For example, we have the following claims.

Theorem 7 (Faliszewski et al. [16]). Llull-bribery, Llull-$bribery, Llull-weighted-bribery, and Llull-
weighted-$bribery are each NP-complete.



Theorem 8 (follows from Corollary 2). For single-peaked electorates, Llull-bribery, Llull-$bribery,
Llull-weighted-bribery, and Llull-weighted-$bribery are each in P.

To the best of our knowledge, bribery of Kemeny elections has never been studied. Note, how-
ever, that the winner problem for any election system E many-one reduces to each of the eight types
of bribery problems mentioned in Theorem 6, except with “weakCondorcet” replaced by “E .” This
holds because we can ask whether the preferred candidate wins given the bribe limit of 0, and this
captures the winner problem. So, from the known Θp

2-completeness of the winner problem for Ke-
meny elections [22], we have the following result, which gives us eight contrasts of hardness (three
between Θp

2-hardness and NP membership and five between Θp
2-hardness and P membership).

Theorem 9 (corollary, in light of the comments just made, to Hemaspaandra et al. [22]). For Kemeny
elections, all eight types of bribery mentioned in Theorem 6 are Θp

2-hard.

Theorem 10 (follows from Corollary 2). For single-peaked electorates, Kemeny-weighted-$bribery,
Kemeny-negative-weighted-bribery, Kemeny-negative-weighted-$bribery are NP-complete, and the
remaining five types of bribery of Kemeny elections are in P.

5 Control of Single-Peaked Electorates
The control problems for elections ask whether by various types of changes in an election’s structure
a given candidate can be made a winner. The types of control that were introduced by Bartholdi
et al. [4], and that (give or take some slight refinements) have been studied in subsequent papers, are
addition/deletion/partition of voters/candidates. However, the only previous paper that studied the
complexity of control for single-peaked electorates, Faliszewski et al. [17], focused exclusively on
additions and deletions of candidates and voters.

We for the first time study the complexity of partition problems for the case of single-peaked
electorates. And we show that for a broad range of election systems the control by partition of
voters problem is in P for single-peaked electorates. Among the systems we do this for are Llull
and Condorcet elections, whose control by partition of voters problem is known to be NP-complete
for general electorates. Our proofs again work by using single-peakedness to tame combinatorial
explosion—in this case, the number of partitions that must be examined is reduced from an expo-
nential number of partitions to a polynomial number of classes of partitions each of which can be
checked as a block.

The control by partition of voters problem for an election system E takes as input an election
instance (C, V ) and a candidate c ∈ C and asks whether there is a partition of votes (V1, V2) such
that if the “appropriate candidates” move forward from the preliminary elections (C, V1) and (C, V2)
to a final election in which those candidates are voted on by V , then c “wins.” How one clarifies the
quoted strings determines the precised type of voter control one studies. In particular, one can study
the nonunique-winner model or the unique-winner model. And as to the “appropriate candidates”
move forward means, one can study the Ties Promote (TP) model (all winners of the preliminary
elections move forward) or the Ties Eliminate (TE) model (only unique winners move forward).
Our results hold for all four combinations of these models.

We will briefly mention control results about adding and deleting voters and candidates. The
definitions of those are just what one would expect, and we refer the reader to Faliszewski et al. [19]
for those definitions. The following is our main result for this section.

Theorem 11. For weakCondorcet elections, (constructive) control by partition of voters is in P for
single-peaked electorates.

The technical challenge here is the exponential number of partitions, and our algorithm circum-
vents this by using single-peakedness to allow us to in effect structure that huge number of partitions



into a polynomial number of classes of partitions such that for each class we can look just at the class
rather than having to explore each of its member partitions. Let us note some consequences of this
theorem.

Corollary 3. Let E be any election system that is weakCondorcet-consistent on single-peaked inputs.
Then for election system E , (constructive) control by partition of voters is in P for single-peaked
electorates. In particular, this holds for the election systems Llull, Kemeny, weakDodgson, Maximin,
Schwartz, weakBlack, Fishburn, and the two variants of Nanson.

For Llull elections, this provides a clear contrast with the known NP-completeness for that same
control type in the general case. We now state a result that will quickly give us a number of additional
contrasts between general-case control complexity and single-peaked control complexity.

Theorem 12. For weakCondorcet elections, (constructive) control by adding voters and (construc-
tive) control by deleting voters are each in P for single-peaked electorates.

The full version of this paper contains similar results for Condorcet elections.

6 Manipulation of Single-Peaked Electorates
Faliszewski et al. [17] completely characterized, for three-candidate elections, which scoring proto-
cols have polynomial-time constructive coalition weighted manipulation problems and which have
NP-complete constructive coalition weighted manipulation problems. We achieve a far more sweep-
ing dichotomy theorem—our result applies to all scoring protocols, regardless of the number of
candidates. In the constructive coalition weighted manipulation problem, the input is the candidate
set C, the nonmanipulative voters (each a preference order over C and a weight), the manipulative
voters (each just a weight), and a candidate p ∈ C, and the question is whether there is a way of
setting the preferences of the manipulative voters such that p is a winner under the given election
rule when all the manipulative and nonmanipulative voters vote in a weighted election.

Our extension of this three-candidate, single-peaked electorate result to the case of any scor-
ing protocol over single-peaked electorates is somewhat complicated. Yet, since it is a complete
characterization—a dichotomization of the complexities, in fact—it is in some sense simply reflect-
ing the subtlety and complexity of scoring systems.

Theorem 13. Let α = (α1, α2, . . . , αm) be an m-candidate scoring protocol and consider the
constructive coalition weighted manipulation problem for single-peaked electorates.

• If α2 > αbm−1
2 c+2 and there exist integers m1,m2 > 0, i1, i2 > 1 such that m1 +m2 + 1 =

m, i1 ≤ m1 + 1, i2 ≤ m2 + 1, and (α1 − αi1)(α1 − αi2) > (αi1 − αi1+1)(αi2 − αi2+1),
then the problem is NP-complete.

• If α2 = αbm−1
2 c+2 and α1 > α2 > αm and (α2 > αm−1 or α1 − αm > 2(α2 − αm)), then

the problem is NP-complete.

• In all other cases, the problem is in P.

The “P” cases of Theorem 13’s dichotomy align with our theme of single-peakedness often
foiling combinatorial protections.

7 Related Work and Additional Discussion
The two papers most related to our work are Walsh [26] and Faliszewski et al. [17]. Walsh’s paper
first raised the issue of the effect of single-peaked electorates on manipulation, and for the particular



case he looked at—weighted coalition manipulation under single transferable vote elections—he
showed that manipulation remains hard even for single-peaked electorates. Faliszewski et al. showed
cases where single-peakedness removes complexity shields against manipulation, and also opened
the study of (nonpartition) control. Our paper in contrast with Walsh’s stresses cases where single-
peakedness removes combinatorial protections. And we go beyond Faliszewski et al. by for the first
time studying bribery of single-peaked electorates and partition-control of single-peaked electorates.

Although [26] and [17] are by far the most related work, other work is much worth mentioning.
Bartholdi and Trick [2], Doignon and Falmagne [11], and Escoffier et al. [14] provided efficient
algorithms for finding single-peaked orderings. And Conitzer [8] studied the effect of single-peaked
electorates on preference elicitation. Two of the papers just mentioned [14, 8] raise the issue of
nearly single-peaked electorates, and we commend as a particularly important open issue the ques-
tion of what effect nearly single-peaked electorates have on complexity.

The literature now contains many papers on the complexity (when single-peaked preferences are
not assumed) of manipulation and control (as a pointer to those, see [18] and the citations therein),
and contains a few papers on the younger topic of the complexity of bribery (e.g., Faliszewski et al.
[16] and Faliszewski et al. [19]). Although the nonunique-winner model and the unique-winner
model very typically have the same complexity results, Faliszewski et al. [15] (drawing also on
Conitzer et al. [9]) show that this is not always the case.

A worry that comes immediate to the minds of social choice theorists can be expressed as fol-
lows: Since it is known that, for single-peaked electorates, “median voting” leaves voters with voting
sincerely being an optimal strategy, single-peaked elections are not interesting in terms of other elec-
tion systems, since median voting should be used. A detailed discussion of this worry would itself
fill a paper. But we briefly mention why the above objection is not as serious as it might at first
seem. First, the nonmanipulability claims regarding single-peaked elections and median voting are
about manipulability, and so say nothing at all about, for example, control. Indeed, weakCondorcet
in effect is a type of median voting on single-peaked electorates, and our partition of voters al-
gorithm makes it clear that control can be exercised in interesting ways. Second, even if median
voting does have nice properties, the simple truth is that in the real world, society—for virtually
all elections and electorates—has chosen (perhaps due to transparency, comfort, or tradition) to use
voting systems that clash sharply with median voting. The prominence of plurality voting is the
most dramatic such case. So since in the real world we do use a rich range of election systems,
it does make sense to understand their behavior. Third, one must be very careful with terms such
as “strategy-proof.” The paper people most commonly mention as showing that median voting is
strategy-proof is Barberà [1]. But that paper’s results are about “social choice functions” (election
rules that always have exactly one winner), not—as this paper is—about election rules that select a
set of winners. So one cannot simply assume that for our case median voting (say, weakCondorcet
elections) never gives an incentive to misrepresent preferences. We should further stress that discus-
sions of strategy-proofness typically assume that manipulators come in with complete preference
orders, but in the Bartholdi et al. [3] model (which this paper and most complexity papers use when
studying manipulation), the manipulative coalition is a blank slate with its only goal being to make
a certain candidate p be a winner.)

8 Conclusions
The theme of this paper is that single-peaked electorates often tame combinatorial explosion. We
saw this first for the case of the winner problem. In that case, this taming is good. It shows that
for single-peaked electorates, election systems such as Kemeny have efficient winner algorithms,
despite their Θp

2-hardness in the general case. But then for bribery and control (and in part, ma-
nipulation), we saw many cases where NP-hard problems fell to polynomial time for single-peaked
electorates, via algorithms that bypassed the general-case combinatorial explosions of covers and



partitions. Since those NP-hardness results were protections against attacks on elections, our results
should serve as a warning that those protections are at their very core dependent on the extreme flex-
ibility of voter preference collections the general case allows. For single-peaked electorates, those
protections vanish.
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