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Superman: “I’m here to fight for truth, justice, and the American way.”
Lois Lane: “You’re gonna wind up fighting every elected official in this country!”

Superman (1978)

Abstract

Cake cutting is a common metaphor for the division of a heterogeneous divisible
good. There are numerous papers that study the problem of fairly dividing a cake;
a small number of them also take into account self-interested agents and consequent
strategic issues, but these papers focus on fairness and consider a strikingly weak
notion of truthfulness. In this paper we investigate the problem of cutting a cake
in a way that is truthful and fair, where for the first time our notion of dominant
strategy truthfulness is the ubiquitous one in social choice and computer science. We
design both deterministic and randomized cake cutting algorithms that are truthful
and fair under different assumptions with respect to the valuation functions of the
agents.

1 Introduction
The need for resource allocation arises in many AI domains, and in particular in multiagent
systems. This has led to a wide interest in the field known as Multiagent Resource Allocation,
and to various applications of resource allocation techniques (see the survey by Chevalyere
et al. [7]). Resource allocation problems deal with either divisible or indivisible resources,
where the distinction is based on whether any fraction of a resource can be given to an
agent.

Cutting a cake is often used as a metaphor for allocating a divisible good. The difficulty
is not cutting the cake into pieces of equal size, but rather that the cake is not uniformly
tasty: different agents prefer different parts of the cake, depending, e.g., on whether the
toppings are strawberries or cookies. The goal is to divide the cake in a way that is “fair”;
the definition of fairness is a nontrivial issue in itself, which we discuss in the sequel. The
cake cutting problem dates back to the 1940s, and for over sixty years has attracted the
attention of mathematicians, economists, and political scientists. While most of the work
in artificial intelligence, and computer science in general, has focused on the allocation of
indivisible resources, recent years have seen an increasing interest among computer scientists
in the allocation of divisible resources (see, e.g, [9, 10, 15]).

Slightly more formally, the cake is represented by the interval [0, 1]. Each of n agents
has a valuation function over the cake, which assigns a value to every given piece of cake
and is additive. The goal is to find a partition of the cake among the agents (while possibly
throwing a piece away) that satisfies one or several fairness criteria. In this paper we consider
the two most prominent criteria. A proportional allocation is one where the value each agent
has for its own piece of cake is at least 1/n of the value it assigns to the entire cake. An

1A version that is similar to this extended abstract will appear in the proceedings of AAAI’10. The full
version of the paper, which includes all omitted proofs and a longer exposition, will shortly be available
online. The paper was presented in the Harvard EconCS seminar (February 2010) and in a workshop on
prior-free mechanism design in Guanajuato, Mexico (May 2010).



envy-free (EF) allocation is one where the value each agent assigns to its own piece of cake
is at least as high as the value it assigns to any other agent’s piece of cake. There is a rather
large body of literature on fairly cutting a cake according to these two criteria (see, e.g., the
books by Robertson and Webb [16] and Brams and Taylor [6]).

So far we have briefly discussed “justice”, but have not yet mentioned “truth.” Taking
the game-theoretic point of view, an agent’s valuation function is its private information,
which is reported to a cake cutting algorithm. We would like an algorithm to be truthful, in
the sense that agents are motivated to report their true valuation functions. Like fairness,
this idea of truthfulness also lends itself to many interpretations. One variation, referred to
as strategy-proofness in previous papers by Brams et al. [4, 5], assumes that an agent would
report its truthful valuation rather than lie if there exist valuations of the other agents such
that reporting truthfully yields at least as much value as lying. In the words of Brams et
al., “...the players are risk-averse and never strategically announce false measures if it does
not guarantee them more-valued pieces. ... Hence, a procedure is strategy-proof if no player
has a strategy that dominates his true value function.” [5, page 362].

The foregoing notion is strikingly weak compared to the notion of truthfulness that is
common in the social choice literature. Indeed, strategy-proofness is usually taken to mean
that an agent can never benefit by lying, that is, for all valuations of the other agents
reporting truthfully yields at least as much value as lying. Put another way, truth-telling
is a dominant strategy. This notion is worst-case, in the sense that an agent cannot benefit
by lying even if it is fully knowledgeable of the valuations of the other agents. It is also
the predominant one in the computer science literature, and in particular in the algorithmic
mechanism design literature [14]. In order to prevent confusion we will avoid using the
term “strategy-proof,” and instead refer to the former notion of Brams et al. as “weak
truthfulness” and to the latter standard notion as “truthfulness.”

To illustrate the difference between the two notions, consider the most basic cake cutting
algorithm for the case of two agents, the Cut and Choose algorithm.2 Agent 1 cuts the cake
into two pieces that are of equal value according to its valuation; agent 2 then chooses
the piece that it prefers, giving the other piece to agent 1. This algorithm is trivially
proportional and EF.3 It is also weakly truthful, as if agent 1 divides the cake into two
pieces that are unequal according to its valuation then agent 2 may prefer the piece that is
worth more to agent 1. Agent 2 clearly cannot benefit by lying. However, the algorithm is
not truthful. Indeed, consider the case where agent 1 would simply like to receive as much
cake as possible, whereas the single-minded agent 2 is only interested in the interval [0, ε]
where ε is small (for example, it may only be interested in the cherry). If agent 1 follows
the protocol it would only receive half of the cake. Agent 1 can do better by reporting that
it values the intervals [0, ε] and [ε, 1] equally, since then it would end up with almost the
entire cake by choosing to cut pieces [0, ε], [ε, 1].

In this paper we consider the design of truthful and fair cake cutting algorithms. To
the best of our knowledge we are the first to do so. However, there is a major obstacle
that must be circumvented: regardless of strategic issues, and when there are more than
four agents, even finding a proportional and EF allocation in a bounded number of steps
with a deterministic algorithm is a long-standing open problem! See [15] for an up-to-date
discussion.4 We shall therefore restrict ourselves to specific classes of valuation functions
where efficiently finding fair allocations is a non-issue; the richness of our problem stems
from our desire to additionally achieve truthfulness.

2This algorithm is described here with the agents taking actions; equivalently, the algorithm acts on
behalf of agents using the reported valuations.

3Proportionality and envy-freeness coincide if there are two agents and the entire cake is allocated.
4To be precise, previous algorithmic work assumed that the entire cake has to be allocated, but this does

not seem to be a significant restriction in the context of fairness.



Our results. We first consider deterministic algorithms. We restrict ourselves to the case
where the agents hold piecewise uniform valuation functions, that is, each agent is interested
in a collection of subintervals of [0, 1] with the same marginal value for each fractional piece
in each subinterval. This is the case when some parts of the cake satisfy a certain property
and an agent desires as much of these parts as possible. Our main result is a deterministic
algorithm for any number of agents that is truthful, proportional, EF, and polynomial-time.
The proof requires many ingredients, including an application of the classic Max-Flow Min-
Cut Theorem.

We next consider randomized algorithms. We slightly relax truthfulness by asking that
the algorithm be truthful in expectation, that is, an agent cannot hope to increase its expected
value by lying for any reports of other agents. For general valuations, we present a simple
randomized algorithm that is truthful in expectation, and always outputs an allocation that
is proportional and EF. We further establish that this algorithm is tractable under the
relatively weak assumption that the agents hold piecewise linear valuation functions, that
is where the marginal value in each subinterval of interest is a linear function.

Related work. We have recently learned of an independent working paper by Mossel and
Tamuz that asks similar questions about truthful and fair cake cutting [13], but they focus
on existence theorems. In particular, under general assumptions they show that there exists
a mechanism that is truthful in expectation and guarantees each agent a value of more than
1/n in expectation. The results are then extended to the case of indivisible goods. The
technical overlap between the two papers is very small; we refer the reader’s attention to
this overlap in a footnote in Section 4.

Thomson [17] showed that in general a truthful and Pareto-optimal algorithm must be
dictatorial in the slightly different setting of pie-cutting. Note that Pareto-optimality is not
a fairness property and neither implies, nor is implied by, envy-freeness or proportionality.

Our deterministic algorithm is related to a method proposed by Bogomolnaia and
Moulin [3] in the context of the random assignment problem, and the network flow tech-
niques we employ in our analysis generalize the reinterpretation of this method in terms of
network flow due to Katta and Sethuraman [11]. We elaborate in Section 3.

2 Preliminaries

We consider a heterogeneous cake, represented by the interval [0, 1]. A piece of cake is a
finite union of subintervals of [0, 1]. We sometimes abuse this terminology by treating a
piece of cake as the set of the (inclusion-maximal) intervals that it contains. The length
of the interval I = [x, y], denoted len(I), is y − x. For a piece of cake X we denote
len(X) =

∑
I∈X len(I).

The set of agents is denoted N = {1, . . . , n}. Each agent i ∈ N holds a private valuation
function Vi, which maps given pieces of cake to the value agent i assigns them. Formally, each
agent i has a value density function, vi : [0, 1] → [0,∞), that is piecewise continuous. The
function vi characterizes how agent i assigns value to different parts of the cake. The value
of a piece of cake X to agent i is then defined as Vi(X) =

∫
X
vi(x)dx =

∑
I∈X

∫
I
vi(x)dx.

We note that the valuation functions are additive, i.e. for any two disjoint pieces X and
Y , Vi(X ∪ Y ) = Vi(X) + Vi(Y ), and non-atomic, that is Vi([x, x]) = 0 for every x ∈ [0, 1].
The last property implies that we do not have to worry about the boundaries of intervals,
i.e., open and closed intervals are identical for our purposes. We further assume that the
valuation functions are normalized, i.e. Vi([0, 1]) =

∫ 1

0
vi(x)dx = 1.

A cake cutting algorithm is a function f from the valuation function of each agent to
an allocation (A1, . . . , An) of the cake such that the pieces are pairwise disjoint. For each
i ∈ N the piece Ai is allocated to agent i, and the rest of the cake, i.e., [0, 1] \

⋃
i∈N Ai,

is thrown away. Here we are assuming free disposal, that is, the algorithm can throw away



0 0.5 1
0

1

2

(a) Value density function for a piecewise con-
stant valuation that is not piecewise uniform.

0 0.5 1
0

1

2

(b) Value density function for a piecewise uni-
form valuation.

Figure 1: An illustration of special value density functions.

resources without incurring a cost.
We say that an allocation A1, . . . , An is proportional if for every i ∈ N , Vi(Ai) ≥ 1/n,

that is, each agent receives at least a (1/n)-fraction of the cake according to its own valuation.
We say that an allocation is envy-free (EF) if for every i, j ∈ N , Vi(Ai) ≥ Vi(Aj), i.e., each
agent prefers its own piece of cake to the piece of cake allocated to any other agent. A
proportional (resp., EF) cake cutting algorithm always returns a proportional (resp., EF)
allocation.

Note that when n = 2 proportionality implies envy-freeness. Indeed, Vi(Ai)+Vi(A3−i) ≤
1, and hence if Vi(Ai) ≥ 1/2 then Vi(A3−i) ≤ 1/2. Under the free disposal assumption the
converse is not true. For example, an allocation that throws away the entire cake is EF but
not proportional. In general, when n > 2 proportionality neither implies nor is implied by
envy-freeness.5

A cake cutting algorithm f is truthful if when an agent lies it is allocated a piece of
cake that is worth, according to its real valuation, no more than the piece of cake it was
allocated when reporting truthfully. Formally, denote Ai = fi(V1, . . . , Vn), and let V be a
class of valuation functions. The algorithm f is truthful if for every agent i, every collection
of valuations functions V1, . . . , Vn ∈ V, and every V ′i ∈ V, it holds that Vi(fi(V1, . . . , Vn)) ≥
Vi(fi(V1, . . . , Vi−1, V

′
i , Vi+1, . . . , Vn)).

3 Deterministic Algorithms and Piecewise Uniform
Valuations

As noted in the introduction, in general there are no known bounded deterministic propor-
tional and EF cake cutting algorithms for more than four agents, even if one is not concerned
about strategic issues. Therefore, in this section we restrict ourselves to a specific class of
valuation functions.

We say that a valuation function Vi is piecewise constant if and only if its corresponding
value density function vi is piecewise constant, that is [0, 1] can be partitioned into a finite
number of intervals such that vi is constant on each interval (see Figure 1(a)). We say that
Vi is piecewise uniform if moreover vi is either some constant c ∈ R+ (the same one across
intervals) or zero. See Figure 1(b) for an illustration.

Piecewise uniform valuation functions imply that agent i ∈ N is uniformly interested in
a finite union of intervals, which we call its reference piece of cake and denote by Ui. For
example, in Figure 1(b), Ui = [0, 0.25] ∪ [0.6, 0.85]. Given a piece of cake X, it holds that
Vi(X) = len(X ∩ Ui)/len(Ui). From the computational perspective, the size of the input to
the cake cutting algorithm is the number of bits that define the boundaries of the intervals
in the agents’ reference pieces of cake.

5If free disposal is not assumed, that is, the entire cake is allocated, then envy-freeness implies propor-
tionality for any n.



In the rest of this section we assume that the valuation functions are piecewise uniform.
We believe that piecewise uniform valuations are very natural. An agent would have such a
valuation function if it is simply interested in pieces of the good that have a certain property,
e.g., a child only likes portions of the cake that have chocolate toppings, and wants as much
cake with chocolate toppings as possible. We consider more general valuations in the next
section on randomized algorithms.

3.1 A deterministic algorithm

Before introducing our algorithm we present some required notation. Let S ⊆ N be a subset
of agents and let X be a piece of cake. Let D(S,X) denote the portions of X that are valued
by at least one agent in S. Formally, D(S,X) =

(⋃
i∈S Ui

)
∩ X, and is itself a union of

intervals.
Let avg(S,X) = len(D(S,X))/|S| denote the average length of intervals in X desired

by at least one agent in S. We say that an allocation is exact with respect to S and X
if it allocates to each agent in S a piece of cake of length avg(S,X) comprised only of
desired intervals. Clearly this requires allocating all of D(S,X) since the total length of
allocated intervals is avg(S,X) · |S| = len(D(S,X)). Suppose S = {1, 2} and X = [0, 1]: if
U1 = U2 = [0, 0.2] then agents 1 and 2 receiving [0, 0.1] and [0.1, 0.2] respectively is an exact
allocation; but if U1 = [0, 0.2], U2 = [0.3, 0.7] then there is no exact allocation.

The deterministic algorithm for n agents with piecewise uniform valuations is a recursive
algorithm that finds a subset of agents with a certain property, makes the allocation decision
for that subset, and then makes a recursive call on the remaining agents and the remaining
intervals. Specifically, for a given set of agents S ⊆ N and a remaining piece of cake to be
allocated X, we find the subset S′ ⊆ S of agents with the smallest avg(S′, X). We then give
an exact allocation of D(S′, X) to S′. We recurse on S \S′ and the intervals not desired by
any agent in S′, i.e. X \D(S′, X). The pseudocode of the algorithm is given as Algorithm
1.

Algorithm 1 (V1, . . . , Vn)

1. SubRoutine({1, . . . , n}, [0, 1], (V1, . . . , Vn))

SubRoutine(S, X, V1, . . . , Vn):

1. If S = ∅, return.

2. Let Smin ∈ argmin
S′⊆S

avg(S′, X) (breaking ties arbitrarily).

3. Let E1, . . . , En be an exact allocation with respect to Smin, X (breaking ties arbitrarily). For
each i ∈ Smin, set Ai = Ei.

4. Subroutine(S \ Smin, X \D(Smin, X), (V1, . . . , Vn)).

In particular, Steps 2 and 3 of SubRoutine imply that if S = {i} then Ai = D(S,X).
For example, suppose X = [0, 1], U1 = [0, 0.1], U2 = [0, 0.39], and U3 = [0, 0.6]. In this
case, the subset with the smallest average is {1}, so agent 1 receives all of [0, 0.1] and we
recurse on {2, 3}, [0.1, 1]. In the recursive call, set {2} has average 0.39 - 0.1 = 0.29, set {3}
has average 0.6 - 0.1 = 0.5, and set {2, 3} has average (0.6 − 0.1)/2 = 0.25. As a result,
the entire set {2, 3} is chosen as the set with smallest average, and an exact allocation of
[0.1, 1.0] is given to agents 2 and 3. One possible allocation is to give agent 2 [0.1, 0.35] and
agent 3 [0.35, 0.6]. Note that, if agent 1 uniformly values [0, 0.2] instead, the first call would
choose {1, 2} as the subset with the smallest average, equally allocating [0, 0.39] between
agents 1 and 2 and giving the rest, [0.39, 0.6], to agent 3.

An analysis of the two agent algorithm. To gain intuition, consider the case of two
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Figure 2: The flow network induced by the example.

agents; designing truthful, proportional and EF algorithms even for this case is nontrivial.
Assume that len(U1) ≤ len(U2) for ease of presentation. If in addition, len(U1) > len(U1 ∪
U2)/2 then set {1, 2} has the smallest average and we divide U1∪U2 exactly, with each agent
getting all of Ui \ U3−i and sharing U1 ∩ U2 in a way that len(A1) = len(A2). Otherwise,
agent 1 gets all of U1 and agent 2 gets U2 \ U1. The algorithm tries to give both agents
the same length, with each agent always getting at least half of its desired intervals, leading
to proportionality and EF because of piecewise uniform valuations. For sufficient overlap
in desired intervals, each receives exactly half of U1 ∪ U2. For totally disjoint reference
pieces, each receives just its reference piece. We defer a discussion of truthfulness to the
general algorithm; the crux here is to note that each agent i receives all of Ui \ U3−i, and
the algorithm precludes overclaims through providing a nonincreasing share of Ui ∩U3−i as
len(Ui) increases.

Exact Allocations and Maximum Flows. Before turning to properties of truthfulness
and fairness, we point out that so far it is unclear whether Algorithm 1 is well-defined. In
particular, the algorithm requires an exact allocation E with respect to the subset Smin and
X, but it remains to show that such an allocation exists, and to provide a way to compute
it. To this end we exploit a close relationship between exact allocations and maximum flows
in networks.

For a given set of agents S ⊆ N and a piece of cake to be allocated X, define a graph
G(S,X) as follows. We keep track of a set of marks, which will be used to generate nodes
in G(S,X). First mark the left and right boundaries of all intervals that are contained
in X. For each agent i ∈ N and subinterval in Ui, mark the left and right boundaries of
subintervals that are contained in Ui ∩ X. When we have finished this process, each pair
of consecutive markings will form an interval such that each agent will either uniformly
value the entire interval or value none of the interval. In G(S,X), create a node for each
interval I formed by consecutive markings, and add a node for each agent i ∈ N , a source
node s, and a sink node t. For each interval I, add a directed edge from source s to I with
capacity equal to the length of the interval. Each agent node is connected to t by an edge
with capacity avg(S,X). For each interval-agent pair (I, i), add a directed edge with infinite
capacity from node I to the agent i if agent i desires interval I.

For example, suppose U1 = [0, 0.25] ∪ [0.5, 1] and U2 = [0.1, 0.4]. If X = [0, 1] then
the interval markings will be {0, 0.1, 0.25, 0.4, 0.5, 1}. Agent 1 values [0, 0.1], both agents
value [0.1, 0.25], agent 2 values [0.25, 0.4], neither agent values [0.4, 0.5] and agent 1 values
[0.5, 1]. It holds that len(D({1, 2}, [0, 1])) = 0.9. Average values are 0.75, 0.3 and 0.45 for
sets {1}, {2} and {1, 2} respectively. See Figure 2 for an illustration of the induced flow
network.



Lemma 1. Let S ⊆ N , and let X be a piece of cake. There is a flow of size len(D(S,X))
in G(S,X) if and only if for all S′ ⊆ S, avg(S′, X) ≥ avg(S,X).

Below we only prove the “if” direction, which is the one we need, using an application
of the classic Max-Flow Min-Cut Theorem (see, e.g., [8]).

Proof of “if”. Assume that for all S′ ⊆ S, avg(S′, X) ≥ avg(S,X). By the Max-Flow Min-
Cut Theorem, the minimum capacity removed from a graph in order to disconnect the source
and sink is equal to the size of the maximum flow. The only edges with finite capacity in
G(S,X) are the ones that connect agent nodes to the sink, and the ones that connect the
source to the interval nodes.

Construct a candidate minimum cut by disconnecting some set of agent nodes T ⊆ S
from the sink at cost |T | · avg(S,X) and then disconnecting all the (s, I) connections to
interval nodes I desired by an agent i ∈ S \T . This means that the total additional capacity
we need to remove is len(D(S \ T,X)), the total length of intervals desired by at least one
agent in S \ T . By assumption, this is at least |S \ T | · avg(S,X). As a result, this cut has
capacity of at least |T | · avg(S,X) + |S \T | · avg(S,X) = |S| · avg(S,X) = len(D(S,X)).

The following lemma establishes that this flow of size len(D(S,X)) in G(S,X) is, in
particular, characterizing an exact allocation. We omit the proof, which follows from the
construction of the network.

Lemma 2. Let S ⊆ N , and let X be a piece of cake. There exists an exact allocation with
respect to S,X if and only if there exists a maximum flow of size len(D(S,X)) in G(S,X).

By combining Lemma 1 and Lemma 2 we see that the algorithm is indeed well-defined:
if S has the smallest average then there exists an exact allocation with respect to S,X.6

Moreover, we obtain a tractable algorithm for computing an exact allocation, by computing
the maximum flow and deriving an exact allocation. A maximum flow can be computed
in time that is polynomial in the number of nodes, that is, polynomial in our input size
(see, e.g., [8]). We remark without proof that it is also possible to implement Step 2 of
SubRoutine in polynomial time, using similar (but slightly more involved) network flow
arguments. Therefore, Algorithm 1 can be implemented in polynomial time.

Truthfulness and fairness. Our main tool in proving that Algorithm 1 is truthful, pro-
portional and EF is the following lemma (we omit its proof).

Lemma 3. Let S1, . . . , Sm be the ordered sequence of agent sets with the smallest average
as chosen by Algorithm 1 and X1, . . . , Xm be the ordered sequence of pieces to be allocated
in calls to SubRoutine. That is, X1 = [0, 1], X2 = X1 \ D(S1, X1), . . . , Xm = Xm−1 \
D(Sm−1, Xm−1). Then for all i > j, avg(Si, Xi) ≥ avg(Sj , Xj), and agents that are members
of later sets receive weakly more in desired lengths.

Envy-freeness now follows immediately from the lemma. Indeed, consider an agent
i ∈ N . By “chosen” we mean that the agent was part of the subset with smallest average.
The agent does not envy agents chosen in the same call to SubRoutine since all agents
receive the same length in desired intervals and their valuations are piecewise uniform. By
Lemma 3, the agent does not envy agents chosen in earlier calls because the amount agents
receive weakly increases with each call. The agent does not envy agents chosen in later calls
because all intervals desired by the agent are removed from consideration when the agent
receives its allocation.

6Note that the network in Figure 2 does not satisfy the average minimality requirement and does not
provide a corresponding exact allocation.



We provide a sketch of truthfulness, which follows by showing that an agent i ∈ N has no
incentive to change the choice of Smin and cannot profitably manipulate the exact allocation
for a given Smin.

1. Manipulations that change Smin. Consider two subcases.

(a) When i reports truthfully, Smin = S′, i /∈ S′. An agent cannot affect avg(T,X)
if i /∈ T , so the agent cannot cause some other S′′, i /∈ S′′ to be chosen. The
agent can cause S′′, i ∈ S′′, to be chosen, but then avg(S′′, X) ≤ avg(S′, X) and
it follows from Lemma 3 that the agent does not gain.

(b) When i reports truthfully, Smin = S′, i ∈ S′. Assume without loss of gener-
ality that |S| ≥ 2. In this case, all agents in S′, including i, receive exactly
avg(S′, X) = k in intervals. Agent i can cause selection of some S′′ by misstating
its valuation. If i ∈ S′′, then avg(S′′, X) ≥ k for this to be profitable. If i /∈ S′′,
then S′′ was not chosen when i reports truthfully, so avg(S′′, X) ≥ k. In either
case, agents j ∈ S′ \ {i} previously received k, but now receive at least k by
observing that avg(S′′, X) ≥ k and applying Lemma 3. Agent i receives at most
len(D(S′, X)) minus the intervals received by agents j ∈ S′ \ {i}.7 These agents
receive weakly more if i manipulates, and thus, manipulations are not profitable.

2. Manipulations that change the exact allocation for a given Smin, i ∈ Smin. By defini-
tion each agent in Smin receives exactly avg(Smin, X) in desired intervals. If agent i
decreases this value, it receives strictly less. If agent i increases this value by lying,
then other agents receive more of the actual D(Smin, X), leaving less for agent i.

We omit the proof of proportionality, but it follows after establishing that no desired pieces
are thrown away. Overall, we have the following theorem.

Theorem 4. Assume that the agents have piecewise uniform valuation functions. Then
Algorithm 1 is truthful, proportional, EF, and polynomial-time.

Relation to work on the random assignment problem. Consider a setting where
indivisible items must be assigned to agents. In the random assignment problem items
can be assigned to agents randomly, i.e., a random assignment is a probability distribution
over deterministic assignments. A random assignment that gives an item to an agent with
probability p can be interpreted as assigning a p-fraction of the item to the agent. Crucially,
in the papers discussed below the assumption is that each agent is only interested in receiving
one item.

Bogomolnaia and Moulin [3] consider the random assignment problem when the agents
have dichotomous preferences over the items, in the sense that for each agent the set of items
can be partitioned into acceptable and unacceptable items (where all acceptable items have
value 1 and unacceptable items have value 0). They provide a random assignment method
called the egalitarian assignment solution and show that it is truthful, EF, and satisfies
other highly desirable properties.

Interestingly, the cake cutting problem under piecewise uniform valuation functions is
similar to a random assignment problem, as one can mark the beginning and end of each
agent’s desired intervals and treat the subintervals between consecutive marks as items.
However, there are two fundamental differences between our setting and [3]. First, in our
setting agents are interested in receiving as much of their desired “items” as possible (rather
than just one item). Second, in our setting dichotomous preferences would mean that agents

7Lemma 3 also applies to agent i, but since it lies, it may receive intervals that are not desired and
outside of D(S′, X).



value all desired subintervals equally, which is clearly not the case since these subintervals
have different lengths.8 Nevertheless, it turns out that the egalitarian assignment solution
is very similar to the special case of Algorithm 1 under this strong assumption. Katta
and Sethuraman [11] observe that the egalitarian assignment solution can be computed in
polynomial time using network flow techniques, so our arguments above are an independent
generalization of this observation. Interestingly, it is noted in [11] that the egalitarian assign-
ment solution is identical to another independent algorithm for finding a lexicographically
optimal flow in a network due to Megiddo [12].

In earlier work Bogomolnaia and Moulin [2] study random assignments under strict ordi-
nal preferences, and propose a solution that satisfies a weaker notion of truthfulness (which
does not imply truthfulness in our setting) as well as envy-freeness and other properties. In
terms of the agents’ preferences this setting is incomparable to ours since agents may be in-
different between subintervals. However, in our setting agents cannot hold arbitrary ordinal
preference profiles over subintervals between consecutive marks, since if two agents desire
two subintervals, both agents would value the longer subinterval more than the shorter.

The results of [2] were extended by Katta and Sethuraman [11] to the case where agents
are allowed to be indifferent between items. While the assumptions of [11] regarding prefer-
ences are weaker than ours, they establish that in this more general setting even Bogomolnaia
and Moulin’s weaker notion of truthfulness is in fact incompatible with envy-freeness and
an additional efficiency requirement; the algorithm that they propose satisfies the last two
properties and hence is not (even weakly) truthful.

4 Randomized Algorithms and Piecewise Linear Valu-
ations

In the previous section we saw that designing deterministic truthful and fair algorithms is
not an easy task, even if the valuation functions of the agents are rather restricted. In this
section we shall demonstrate that by allowing randomness we can obtain significantly more
general results.

A randomized cake cutting algorithm outputs a random allocation given the reported
valuation functions of the agents. There are very few previous papers regarding randomized
algorithms for cake cutting. A rare example is the paper by Edmonds and Pruhs [9],
where they give a randomized algorithm that achieves approximate proportionality with
high probability. We are looking for a more stringent notion of fairness. We say that a
randomized algorithm is universally proportional (resp., universally EF ) if it always returns
an allocation that is proportional (resp., EF).

One could also ask for universal truthfulness, that is, require than an agent may never
benefit from lying, regardless of the randomness of the algorithm. A universally truthful
algorithm is simply a probability distribution over deterministic truthful algorithms. How-
ever, asking for both universal fairness and universal truthfulness would not allow us to
enjoy the additional flexibility that randomization provides. Therefore, we slightly relax
our truthfulness requirement. Informally, we say that a randomized algorithm is truthful in
expectation if, for all possible valuation functions of the other agents, the expected value
an agent receives for its allocation cannot increase by lying, where the expectation is taken
over the randomness of the algorithm.

We remark that while truthfulness in expectation seems natural, fairness (i.e., propor-
tionality and envy-freeness) is something that we would like to hold ex-post ; fairness is a

8In general no discretization of the cake would necessarily yield subintervals of equal length that corre-
spond to dichotomous preferences. If we assume that desired intervals have rational endpoints then such
a discretization can be found, but the number of subintervals would be exponentially large, leading to
computational intractability.



property of the specific allocation that is being made, and continues to be relevant after
the algorithm has terminated. Interestingly enough, if we were to turn this around, then
achieving universal truthfulness and envy-freeness/proportionality in expectation is trivial:
simply allocate the entire cake to a uniformly random agent!

4.1 A randomized algorithm

In order to design a randomized algorithm that is truthful in expectation, universally propor-
tional, and universally EF, we consider a very special type of allocation. In the following we
will not require the free disposal assumption, that is, we will consider partitions X1, . . . , Xn

of the cake such that
⋃

iXi = [0, 1]. We say that a partition X1, . . . , Xn is perfect if for all
i, j ∈ N , vi(Xj) = 1/n. Consider the following randomized algorithm.

Algorithm 2 (V1, . . . , Vn)
1. Find a perfect partition X1, . . . , Xn.

2. Draw a random permutation π over N .

3. For each i ∈ N , set Ai = Xπ(i).

Lemma 5. Algorithm 2 is truthful in expectation, universally proportional, and universally
EF.9

Proof. The fact that the algorithm is universally proportional and universally EF follows
from the definition of perfect partitions: every agent has value 1/n for every piece!

We turn to truthfulness in expectation. The value an agent i ∈ N obtains by reporting
truthfully is exactly 1/n. If agent i lies then the algorithm may choose a different partition
X ′1, . . . , X

′
n. However, for any partition X ′1, . . . , X

′
n the expected value of agent i when given

a random piece is ∑
j∈N

1
n
· Vi(X ′j) =

1
n

∑
j∈N

Vi(X ′j)

 =
1
n
,

where the second equality follows from the fact that the valuation functions are additive.

Finding perfect partitions. Lemma 5 holds much promise, in that it is valid for all
valuation functions. But there still remains the obstacle of actually finding a perfect par-
tition given the valuation functions of the agents. Does such a partition exist, and can
it be computed? More than two decades ago, Noga Alon [1] proved that if the valuation
functions of the agents are defined by the integral of a continuous probability measure then
there exists a perfect partition; this is a generalization of his famous theorem on necklace
splitting. Unfortunately, Alon’s elegant proof is nonconstructive (which is unusual for a
proof in combinatorics), and to this day there is no known constructive method under gen-
eral assumptions on the valuation functions. This is not surprising since a perfect partition
induces an EF allocation, and finding an EF allocation in a bounded number of steps for
more than four agents is an open problem.

To obtain a computational method, we consider valuation functions that are piecewise
linear. A valuation function Vi is considered piecewise linear if and only if its corresponding
value density function vi is piecewise linear on [0, 1]. Piecewise linear valuation functions
are significantly more general than the class of piecewise constant valuation functions. A
piecewise linear valuation function can be concisely represented by the intervals on which
vi is linear, and for each interval the two parameters of the linear function. The following

9Mossel and Tamuz [13] make the same observation.



lemma provides us with a tractable method of finding a perfect partition when the agents
have piecewise linear valuation functions.

Lemma 6. Assume that the agents have piecewise linear valuation functions. Consider the
following procedure. We make a mark at 0 and 1, and for each agent i ∈ N make a mark
at the left and right boundaries of each interval where vi is linear. Next, we divide each
interval Ij between two consecutive marks into 2n consecutive and connected subintervals
I1
j , . . . , I

2n
j of equal length. For each such Ij and every i ∈ N add the subintervals Ii

j and
I2n−i+1
j to Xi. Then the overall partition is perfect.

The lemma’s proof is omitted. By combining Lemma 6 with Lemma 5 we obtain the
following result.

Theorem 7. Assume that the agents have piecewise linear valuation functions. Then there
exists a randomized algorithm that is truthful in expectation, universally proportional, uni-
versally EF, and polynomial-time.

5 Discussion
We have made progress on truthful and fair algorithms for cake cutting. In unpublished
work, we show the nonexistence of simpler methods that make only contiguous allocations
(and look closer to generalizations of the classic cut-and-choose algorithm) even for two
agents both of whom are uniformly interested in a single (but different) subinterval. In future
work we would like to generalize the deterministic algorithm to piecewise constant valuations
and drop the free-disposal assumption. For practical settings, allowing more expressiveness
(e.g., piecewise linear but a requirement that intervals are above some threshold length)
seems important.
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