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Abstract

A preference function (PF) takes a set of votes (linear orders osefr@f alternatives) as input,
and produces one or more rankings (also linear orders over theatlt@s) as output. Such
functions have many applications, for example, aggregating the prefes of multiple agents,
or merging rankings (of, say, webpages) into a single ranking. Théskee is choosing a PF
to use. One natural and previously studied approach is to assume tieaistl@ unobserved
“correct” ranking, and the votes are noisy estimates of this. Then, weausa the PF that
always chooses the maximum likelihood estimate (MLE) of the corre&imgnin this paper,
we define simple ranking scoring functions (SRSFs) and show that the @laeutral SRSFs
is exactly the class of neutral PFs that are MLEs for some noise modehld¥alefine ex-
tended ranking scoring functions (ERSFs) and show a condition uniiehwhese coincide
with SRSFs. We study key properties such as consistency and contimdtgoasider some
example PFs. In particular, we study Single Transferable Vote (ST¥ynamonly used PF,
showing that it is an ERSF but not an SRSF, thereby clarifying the extevtiith it is an MLE
function. This also gives a new perspective on how ties should be broider STV. We leave
some open questions.

1 Introduction

In a typical social choice setting, there is some set of @dtiéves, and multiple rankings of these
alternatives are provided. These input rankings are c#ifiesiotes Based on these votes, the goal
is either to choose one alternative, or to create an aggregaking of all the alternatives. In this
paper, we will be interested in the latter goal; if it is desito choose one alternative, then we can
simply choose the top-ranked alternative in the aggregatking. Formally, greference function
(PF)! takes a set of votes (linear orders over the alternatived)msg, and produces one or more
aggregate rankings (also linear orders over the altemsitizs output. (The only reason for allowing
multiple aggregate rankings is to account for the possyhilf ties.)

The key issue is to choose a rule for determining the aggeegatking, that is, a preference
function. So, we may ask the following (vague) questidthat is the optimal preference function?
This has been (and will likely continue to be) a topic of debfatr centuries among social choice
theorists. Many different PFs have been proposed, eachitsittwn desirable properties; some
of them have elegant axiomatizations. Presumably, whicisRiptimal depends on the setting at
hand. For example, in some settings, the voters are ageattedich have their own idiosyncratic
preferences over the alternatives, and the only purposetofgis to reach a compromise. In such
a setting, no alternative can be said to be better than analfeenative in anyabsolutesense: an
alternative’s quality is defined relative to the votes. lelsa setting, it makes sense to pay close
attention to issues such as the manipulability of the PF.

In other settings, however, there is more of an absoluteesenwhich some alternatives are
better than others. For example, when we wish to aggregaténgs of webpages, provided by
multiple search engines in response to the same querygagnable to believe that some of these
pages are in fact more relevant than others. The reason ahailrof the search engines agree on

1We use “preference function” rather than “social welfaradiion” because the resulting set of strict rankings need no
correspond to a weak ranking (where a set of strict rankingsrésponds” to a weak ranking if it consists of all the stric
rankings that can be obtained by breaking the ties in the waalking). The term “preference function” has previouslgie
used in this context [14].
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the ranking is that the search engines are unable to dirpetigeive this absolute relevance of the
pages. Here, it makes sense to think of each voteassyg estimatef the correct, absolute ranking.

Our goal is to find an aggregate ranking that is as close asigp@$s the correct ranking, based on
these noisy estimates. This is the type of setting that wiestuitly in this paper.

In a 2005 paper, Conitzer and Sandholm considered the fltpway of making this precise [3].
There is a correct ranking of the alternatives; given, for every rankingv, there is a conditional
probability P(v|r) that a given voter will cast vote. (In this paper, we do not consider the possibil-
ity that different voters’ votes are drawn according to eliéint conditional distributions.) Votes are
conditionally independent given Put another way, the noise that each voter experiencesdis i.
The Bayesian network in Figure 1 illustrates this setup.

"correct" outcome

Figure 1: A Bayesian network representation.

The votes are the observed variables, and the noise thatrexgieriences is represented by the
conditional probability table of that vote. Under this qgta natural goal is to find the maximum
likelihood estimate (MLE) of the correct ranking. (lis drawn uniformly at random, this maximum
likelihood estimate also maximizes the posterior prolighjil The function that takes the votes as
input and produces the MLE ranking(s) as output is a preferémction; in a sense, it is the optimal
one for the particular noise model at hand.

As pointed out by Conitzer and Sandholm, they were not thetéirconsider this type of setup.
In fact, the basic idea dates back over two centuries to Quet$4], who studied one particular
noise model. He solved for the MLE PF for two and three altévaa under this model; the general
solution was given two centuries later by Young [13], whowéd that the MLE PF for Condorcet’s
model coincides with a function proposed by Kemeny [7]. Thés frequently been used as an
argument in favor of using Kemeny’s PF; however, differenise models will in general result in
different MLE PFs. Several generalizations of this basis@onodel have been studied [6, 5, 8, 9].
Conitzer and Sandholm considered the opposite directlogy $tudied a number of specific well-
known PFs and they showed that for some of them, there existése model such that this PF
becomes the MLE, whereas for others, no such noise modeleaartstructed. This shows that the
former PFs are in a sense more natural than the latter. Alsenwa noise model can be constructed,
it gives insight into the PF; moreover, if the noise modelrisaasonable in a certain way, it can be
modified, resulting in an improved PF.

In this paper, we continue this line of work. We provide anacharacterization of the class
of (neutral) PFs for which a noise model can be constructetsiow that this class is equal to the
class of (neutralyimple ranking scoring functions (SRSRshich, for every vote, assign a score to
every potential aggregate ranking, and the ranking(s) thighhighest total score win(s). We show
that several common PFs are SRSFs (these proofs resemtderteeponding proofs by Conitzer
and Sandholm that these PFs are MLEs, but the proofs ardisagrily simpler in the language of
SRSFs). We also considextended ranking scoring functions (ERSk#)ich coincide with SRSFs
except they can break ties according to another SRSF, araimim ties according to another SRSF,
etc. We show that if there is a bound on the number of votes, thenwbeclasses (SRSFs and
ERSFs) coincide. We study some basic properties of SRSFERSFs, some of them closely
related to Conitzer and Sandholm’s proof techniques. RFinak study one PF, Single Transferable
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Vote (STV), also known as Instant Runoff Voting, in detaill\Gis used in many elections around
the world; additionally, it illustrates a number of key ptsrabout our results. A noise model for
STV was given by Conitzer and Sandholm. However, this noisdahinvolves probabilities that are
infinitesimally smaller than other probabilities. We shdwattsuch infinitesimally small probabilities
are in a sense necessary, by showing that STV is in fact noR&FJwhen there is no bound on the
number of votes). Still, we do show that STV is an ERSF (in a thay resembles the noise model
with infinitesimally small probabilities). Hence, STV isfact an MLE PF if there is an upper bound
on the number of votes. Along the way, some interesting questrise about how ties should be
broken under STV. We propose two ways of breaking ties thabelieve are perhaps more sensible
than the common way, although at least one of the ways leaztsiiputational difficulties. We also
leave some open questions.

2 Definitions

In the below, we letA be the set of alternativesA| = m, and L(A) the set of linear or-
ders over (that is, strict rankings of) these alternativAspreference function (PHg a function

f i Uicoqa,. L(A)" — 284 — 0. Thatis, f takes as input a vector (of any length)of linear
orders (votes) over the alternatives, and as output pradoree or more linear orders over (aggregate
rankings of) the alternatives. (On many inputs, only a ginmghking is produced, but it is possible
that there are ties.) Input vectors are also cafieafiles We restrict our attention to PFs that are
anonymousthat is, they treat all votes equally; hence, a profile cathbeght of as a multiset of
votes. Below are the PFs that we will study in this paper.

e Positional scoring functions. A positional scoring function is defined by a vector
($1,--.,8m) € R™, with sy > s9 > ... > s,,. An alternative receives; points every
time it is rankedith. Alternatives are ranked by how many points they recef\eme alter-
natives end up tied, then they can be ranked in any order (httteacomplete rankings that
can result from this will be produced by the PF). Examplesuide plurality (s; = 1,52 =
83 =...= 8, = 0), vetoor anti-plurality (s; = so = ... = s;,—1 = 1, s, = 0), andBorda
(s1i=m—-1,85=m—2,...,8, =0).

e Kemeny.Given a votev, a possible ranking, and two alternatives, b, let §(v,r,a,b) =
1ifa >, banda >, b, andd(v,r,a,b) = 0 otherwise. Then,f(V) =
arg MaX,er(A) D4 pea 2vey 0(Vs7,a,b). That is, we choose the ranking(s) that maxi-
mize(s) the total number of times that the ranking agreels svitote on a pair of alternatives.

¢ Single Transferable Vote (STWhe alternative with the lowest plurality score (that i time
that is ranked first by the fewest votes) is ranked last, amdrisoved from all the votes (so
that the plurality scores change). The remainder of theiragnik determined recursively. (We
will have more to say about how ties are broken later.)

A PF isneutralif treats all alternatives equally. To be precise, a PF ignaéif for any votesV’
and any permutation on the alternativesf(w(V)) = #(f(V)). Here, a permutation is applied to
a vector or set of rankings of the alternatives by applying ieach individual alternative in those
rankings. Naturally, neutrality is a common requirementnofer common requirement for an
anonymous PF ikomogeneityif we multiply the profile by some natural number> 0 (that is,
replace each vote by duplicates of it), then the outcome should not change. Athefabove PFs
are anonymous, neutral, and homogenous.

We now define noise models and MLE PFs formally.

Definition 1 A noise model specifies a probability, (v|r) for everyv,r € L(A).
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Definition 2 A noise moded is neutralif for any v, r, and permutationr on A, we haveP, (v|r) =
By(m(v)|x(r)).

Definition 3 A PF f is amaximum likelihood estimator (MLEIf there exists a noise modelso
that f(V) = argmax,cra) [[,ev P (v]7).

We now define simple ranking scoring functions. Effectiyelyery vote gives a number of points
to every possible aggregate ranking, and the ranking($) thé most points win(s).

Definition 4 A PF f is a simple ranking scoring function (SRSH)there exists a function :
L(A) x L(A) — R such that for allV’, f(V') = argmax,cra) > _,cy 5(v, 7).

Definition 5 A functions : L(A) x L(A) — R is neutralif for any v, r, and permutationr on A,

s(v,r) = s(w(v), w(r)).

An SRSF can be run by explicitly computing each ranking’srecbut because there ane!
rankings this is impractical for all but the smallest nuntbef alternatives. However, such explicit
computation is generally not necessary. For example, wesed that positional scoring functions
as well as the Kemeny function are SRSFs. Positional scduimgfions are of course easy to run;
running the Kemeny function is in fact NP-hard [1], but campractice be done quite fast [2, 9].

3 Equivalence of neutral MLEs and SRSFs

We now show the equivalence of MLEs and SRSFs. We only shafehineutral PFs; in fact, it
is not true for PFs that are not neutral. For example, a PFatlastys chooses the same rankirig
regardless of the votes is an SRSF, simply by settingr*) = 1 for all v and settings(v,r) = 0
everywhere else. However, this PF is not an MLE: given a noigdelv, if we take another ranking
r#r*,wemusthave_ ;1) Po(vlr) =1=3 ;4 Po(v|r*), hence there exists somesuch
that P, (v|r) > P,(v|r*); it follows thatr* is not the (sole) winner if is the only vote.

Lemma 1 A neutral PFf is an MLE if and only if it is an MLE for a neutral noise model.

Proof: The “if” direction is immediate. For the “only if” directio, given a noise model for f,
construct a new noise model as follows: P, (v|r) = (1/m!) Y P,(w(v)|n(r)). (Here,r ranges
over permutations ofA.) This is still a valid noise model becau@UeL(A) P, (vlr) =
Yoveray/m) 2 B(r(u)n(r)) = (/m) 3 > cpa Bo(m(v)ln(r)) = 1./

is also neutral becauseP, (w(v)|n(r)) = (1/m!)> _ P(x'(x(v))|7'(7(r))) =

(1/mh) > P(n"(v)|x"(r)) = Pu(v[r). Also, if r* € argmax,era)]l,ev Po(v|r),
then by the neutrality off, for any =, w(r*) € argmax,cra][],cy Po(m(v)|r).
Hence, r* € argmax,¢cr4)(1/m!) > [l,ev Po(m(v)|m(r)) =
argmax,er(a) [[,ey (1/m!) > P (w(v)|m(r)) = argmax,erca)[l,ey Por(vlr).  Con-

versely, it can similarly be shown that i#* ¢ argmax,cr(a)]],cy Po(vlr), then
r* ¢ argmax,era) [[,ev P (v|r). Hencey' is a valid noise model fof.  m

Lemma 2 A neutral PFf is an SRSF if and only if it is an SRSF for a neutral functian

Proof: The “if” direction is immediate. For the “only if” directio, given a functions,
construct a new function’ as follows: s'(v,r) = > _s(w(v),w(r)). s is neutral because

s'(m(v),m(r)) = Yo s'(w(),x'(x(r)) = >ws(@’(v),n"(r)) = s'(v,r). Also,

if r € argmax,cra) ,cy s(v,7), then by the neutrality off, for any =, =(r*) €
argmax,ecr(a) ey S(m(v), 7). Hence,r* € argmax,cra) D 2 pey S(T(v),w(r)) =
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argmax,er(a) Yooy Yp s((0),7(r) = argmaxeeria Yooy 8'(0,7). Con-
versely, it can similarly be shown that it* ¢ argmax,cra) ,cy s(v,7), then
r* ¢ argmax,cr(4) Y .cy S (v,7). Hences' is avalid function forf. =

We can now prove the characterization result:

Theorem 1 A neutral PF is an MLE if and only if it is an SRSF.

Proof: If f is an MLE, then for some neutral, f(V) = argmax,cra) [l e Po(v|r) =
arg max,er(a) log([ [,ey Po(v|r)) = argmax,era) D_,ey log(P,(v|r)). Hence itis the SRSF
wheres(v, r) = log(P,(v|r)) (here,s is neutral).

Conversely, iff is an SRSF, then for some neutsalf (V') = argmax,cra) > _,cy s(v,7) =
argmax, cp(4) 2%vev (") = argmax,cp(ay [,y 2°"). Becauses is neutral, we have that
D over(A) 2:(v:1) is the same for alt. (This is because for any, 2, there exists a permutation
on A such thatr(r,) = ro, so that we have_, ;4 25 =37 ) 2507()72) by neutrality,
which by changing the order of the summands is equaliQ ;4 2°("2).) It follows that f (V) =
argmax,er(4) [Lyey (2°7) /(X e 2°¢"). Hencef is the maximum likelihood estimator

for the noise modet defined by, (v[r) = (2°"7)) /(3 c 1,4 25"y m

4 Examples of SRSFs

We now show that some common PFs are SRSFs. These proofsdtegdbmcorresponding proofs
by Conitzer and Sandholm that these functions are MLEs,Hayt &re simpler. These propositions
also follow from the work of Zwicker [15].

Proposition 1 Every positional scoring function is an SRSF.

Proof: Given a positional scoring function, let: L(A) x A — R be defined as followst(v, a)

is the number of points that gets for votev. Then, lets(v,r) = >, (m — i)t(v,r(7)),
where r(7) is the alternative rankeéth in r. Let us consider the SRSF defined by this func-
tion s; it SelectsargmaxreL(A) Y vey 8(v,7) = argmax,cr(a ZUEV St (m = i)t(v,r(i)) =
argmax,cr,(a) Yoieq (m — 1) >, ey t(v,7(i)). Here,)" o t(v,r(7)) is the total score that alter-
native (i) receives under the posmonal scoring function. Because i is decreasing in, to

maximize}_"" | (m —1i) Y, t(v,7(i)), we should rank the alternative with the highest total score
first, the one with the next-highest total score seceatd, If some of the alternatives are tied, they
can be ranked in any order. m

Not only positional scoring functions are SRSFs, however.
Proposition 2 The Kemeny PF is an SRSF.
Proof:  This is almost immediate: we defined the Kemeny PF WyV) =

arg MaX,eL(A) D _qpea 2vey 0(Vs7,a,b), SO we simply lets(v,r) = >, ,c46(v,7,a,b).
L]

5 Extended ranking scoring functions

An extended ranking scoring function (ERSSarts by running an SRSF, then (potentially) breaks
ties according to another SRSF, and (potentially) any reimgities according to yet another SRSF,
etc. Formally:
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Definition 6 An ERSF f of depthk consists of an ERSFF’ of depthk — 1 and a functions, :
L(A) x L(A) — R. It choosesf(V) = argmax,cs (v Y _,cy Sa(v,7). An ERSF of depth
returns the set of all rankings(A).

So, an ERSF of (finite) deptthis defined by a sequendgg, . .., f; of SRSFs. We can think of
the scores at each depth as being infinitesimally smallerttiaones at the previous depths. We can
multiply the scores at depthby ¢ for some smalk and then add all the scores together to obtain
an SRSF; however, this SRSF will in general be different fttmERSF. Nevertheless,dfis small
relative to the number of votes, then the two will coincidaisTis the intuition behind the following
result:

Proposition 3 For any ERSF, for any natural numbé¥, there exists an SRSF that agrees with the
ERSF as long as there are at madstvotes.

Proof: Let the sequence of SRSFs, ..., f4, defined by scoring functions, . .., s,, define the
ERSF f; we prove the claim by induction. The claim is trivial fdr= 1. Let us assume that we
have proven the result fat = k& — 1; we will show it ford = k. Let f’ be the ERSF corresponding
to the firstd — 1 SRSFs, and, by the induction assumption sleefine the SRSF that agrees with
f’ when there are at mosY votes. There are only finitely many profilés of size at mostV;
hence, there must be someuch thaty | ., s(v,7) < > .y s(v,r') and|[V| < N implies that
> owey S(v,m)Fe <y s(v,7"). Now let us consides,; there must exist somé < R such that
|V| < Nimplies) . sa(v,7) < H. Then, lets’ be defined by’ (v, 7) = s(v,7)+(e/H)sa(v, 7).
On profiles of size at mogV, the second term will contribute at masto the total score of any,
so if r receives a strictly lower total score thahunders, it will also receive a strictly lower score
unders’. Hence, the only effect of the second term is to break tiesraang to sy; so the SRSF
defined bys’ coincides with the original ERSF when there are at mo$f votes. =

Thus, for all practical purposes, we can simulate an ERSiravitSRSF. (Of course, every SRSF
is also an ERSF.)

6 Properties of SRSFs and ERSFs

In this section, we study some important properties of SR8FEEERSFs. Specifically, we study
consistencyndcontinuity. There are several related works that study similar proggeend derive
related results, but there are significant differences ensbtup. Smith [11] and Young [12] study
these properties isocial choice ruleswhich select one or more alternatives as the winner(s); we
will discuss their results in more detail in Section 8. Hoee\consistency in the context of pref-
erence functions (studied previously by Young and Levekdli4]) is significantly different from
consistency in the context of social choice rules. Othateel work includes Myerson [10], who ex-
tends the Smith and Young result to settings where voterstinetessarily submit a ranking of the
alternatives, and Zwicker [15], who studies a general motibscoring rules and shows these rules
are equivalent tanean proximity ruleswhich compute the mean location of the votes according to
some embedding in space, and then choose the closest os}ome

An anonymous PF is consistenif for any pair of profilesV; and Vs, if f(V1) N f(Va) # 0,
then f (V1 + Vo) = f(V1) N f(V2) (where addition is defined in the natural way). That is, if the
rankings thatf produces giverV; overlap with those thaf produces giveri;, then whenl; and
V, are taken togethef, must produce the rankings that were produced in both casds)@others.

Proposition 4 Any ERSF is consistent.

Proof: Let f be an ERSF of depth, defined by a sequence of SRSFrs. . ., fi with score functions
s1,...,8, Forany: <k, let F; be the ERSF of depthdefined by the sequendg, ..., f;. LetV7,
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V4 be profiles such that(Vy) N f(V2) # 0; this also implies thak; (V1) N F;(V2) # @ forall i < k.
We use induction o to prove that for any < k, F;(V1 + Vo) = EF;(V1) N F;(Va). Wheni = 1,
Fi (V1) = f1(V4) is the set of rankings that maximizes; (V1,1); F1(V2) = f1(V2) is the set of
rankingsr that maximizes; (Vs, ). Therefore 3 (V1) N Fy (V2) (which we know is nonempty) is the
set of rankings that maximizes; (V3 + Va2, 7). Now, suppose that for somie< k, F;(V; + V) =
F,(V))NFE;(Va). F;1(V1) (Fi1(V2)) is the set of rankings € F;(V1) (r € F;(V2)) that maximize
$i41(V1, 1) (841 (Va, 7). Hence,F; 1 (V1) N F;11(V2) (which we know is nonempty) is the set of
rankingsr € F;(V1) N F;(Va) that maximizes; 11 (Vi,7) + sip1(Va, r) = s;41(Vi + Vo, r). By the
induction assumption, we have that(V;) N F; (%) = F;(V; + V4), and we know that the set of
rankingsr € F;(V; + V3) that maximizes; 1 (V; + Va,r) is equal toF; 1 (Vi + Va). It follows
thatF; 1 (V1) N Fy 11 (Va) = Fip1(Vy + V3), completing the induction step. When= k, Fy, = f,
which completes the proof. =

The proofs by Conitzer and Sandholm [3] that several PFsardhEs effectively come down
to showing examples where these PFs are not consistent.eBabtiwve result, this implies that they
are not ERSFs (and hence not SRSFs, and hence not MLES). IFofweawill not define these PFs
in this paper):

Proposition 5 The Bucklin, Copeland, maximin, and ranked pairs PFs areGiREFs.

Proof: None of these PFs are consistent: counterexamples carubd fio the proofs of Conitzer
and Sandholm [3]. =

Let L(A) = {l1,...,l,u}. For any anonymous PF, any profileV can be rewritten as a
linear combination of the linear orders (A). LetV = Z;’il t;l;, where for anyi < ml, ¢;
is a non-negative integer. If is also homogenous, then the domainfofan be extended to the
set of allfractional profilesV = Z;’il t;l; where each; is a nonnegative rational number, as
follows. We chooseVy > 0, Ny € N such that for every < m!, t; Ny is a integer. Then, we let
f(V) = f(NyV). (This is well-defined because of the homogeneity.)

A fractional profileV can be viewed as a point in the!-dimensional spacéQ=°)™" where
the coefficient; is the component of th&h dimension. Thus, in a slight abuse of notation, we can
apply f to vectors ofn! nonnegative rational numbers, under the interpretatiatiftfty, . . . , t,,1) =
f(ZZ’il t;l;). The extension of to (Q=°)™ allows us to define continuity. An anonymous PK
continuousf for any sequence of points;, ps, ... € (Q=°%)™ with 1. lim,; .. p; = p, and 2. for
alli e N, r € f(p;), we haver € f(p). Thatis, if f produces some rankingon every point along
a sequence that converges to a limit point, thieshould also produceat the limit point?

Proposition 6 Any SRSF is continuous.

Proof: For any sequence of points, ps, ... € (Q=%)™" with lim; ... p; = p, we have that for all
r € L(A), lim;_ s(p;,r) = s(p,r). If r € f(p;) for all ¢, then for anyr’ € L(A), s(p;,r) >
s(pi, '), hence we have(p,r) = lim; . s(pi, ) > lim; o s(ps, ") = s(p,7’). It follows that

re f(p). m=

In contrast, ERSFs are not necessarily continuous, as shypthe following example. Lef; be
the SRSF defined by the score functignwhich is defined by (v,r) = 1if v = r ands; (v,r) =
0if v # r. Let fy be the Borda function. Lef be the ERSF defined by the sequerf¢cef,. Let
m = 3 with alternatives4, B, andC, and letp = {A > B>~ C,B > C = A,C = B = A}. We
havef(p) = {B = C > A}, butforanye > 0, f(p+€(A = B > C)) = fi(p+¢e(A - B >~

20ur definition of continuity is equivalent to the correspende beingupper hemicontinuoysor closed(the two are
equivalent in this context).
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C)) = {A > B> C}. Therefore, if we lep; = p+1(A = B > C), it follows thatlim; . p; = p
and foranyi, A = B > C € f(p;), butA > B > C ¢ f(p).

As we have noted before, there is generally a possibilityesf for PFs, and sometimes a PF is
not defined for these cases (for example, we have not definedhay should be broken for STV).
We can use the continuity property to gain some insight irte kies should be broken. For any
S C (QZ"™', let C(S) be theclosureof S, that is,C(S) is the smallest set such that for any
infinite sequencey, pa, ... In S, if lim; ., p; = p, thenp € C(S). Let fs be a PF that satisfies
anonymity and homogeneity, defined oyerThat is, fs : S — 25(4) — (. Theminimal continuous
extensiorof fs is the PFfc(s) : C(S) — 214 — () such that for any € C(S) and anyr € L(A),

r € fo(s)(p) if and only if there exists a sequenge, p,, . .. in S such thatim; ... p; = p and for
anyi, r € fs(p;). The following lemma will be useful in our study of STV.

Lemma 3 Suppose we have two SRSEgs that have the same score functigrbut f is defined
over (Q=%)™, and fs over a setS C (Q=%)™' such thatC(S) = (Q=°)™. If for anyr € L(A),
there exists a profilg,. such thatf(p,) = {r}, thenf is the minimal continuous extensionff.

Proof: By Proposition 6,f is continuous. On the other hand, for gng (Q=%)™ with r € f(p),
foranyi € N, f(p + 1p,) = {r}. Because’(5) = (Q=°)™", for everyi € N, there exists a point
p; € S sufficiently close te + 1p, such thatf (p;) = {r}, because is continuous and at+ 1p,,
foranyr’ € L(A) withr # 1/, s(p+ 1p,,7) — s(p+ +pr,17’) > 0. SO,p1, pa, . . . is a sequence of
points inS with for anyi, r € fs(p;); therefore any continuous extension must haee f(p). =

7 Single Transferable Vote (STV)

In this section, we study the Single Transferable Vote (SPW)in detail, for two reasons. First, it
is a commonly used PF, so it is of interest in its own right. @&k it gives a good illustration of
a number of subtle technical phenomena, and a precise tadéirsg of these phenomena is likely
to be helpful in the analysis of other PFs. We recall that uigeV, in each round, the alternative
that is ranked first (among the remaining alternatives) ¢heekt times is removed from all the votes
and ranked the lowest among the remaining alternativesjghgst above the previously removed
alternative. We note that when an alternative is removdadhalvotes that ranked it firdtansfer

to the next remaining alternative in that vote. The numbevaiés ranking an alternative first is
that alternative'plurality scorein that round. One key issue is determining how ties in a round
should be broken, that is, what to do if multiple alternadiveave the lowest plurality score in a
round. We will at first ignore this and show that STV is an ERSHis proof resembles the earlier
Conitzer-Sandholm noise model but is much clearer in thguage of scoring functions.)

Theorem 2 When restricting attention to profiles without ties, STVAERSF.

Proof: Forl € L(A), leti(:) be theith-ranked alternative i Lets;(v,r) = 0if r(m) = v(1),
ands; (v, r) = 1 otherwise. That is, a ranking receives a point for a vote  anly if the ranking
does not rank the alternative ranked first in the vote lashdter the alternative with the lowest
plurality score; the rankings that win under are exactly the rankings that ramklast. Now, let
sa(v,r) = 0if eitherr(m — 1) = v(1), or r(m) = v(1) andr(m — 1) = v(2); andss(r,v) = 1
otherwise. That is, a ranking receives a point for a wotkessthe ranking ranks the first alternative
in the vote second-to-last, or the ranking ranks the firgraitive in the vote last and the second
alternative in the vote second-to-last. If we look at ragkirthat surviveds,—the rankings that
ranked the alternative with the lowest plurality score last—a ranking that ranKs: a) second-to-
last will fail to receive a point for every vote that rankgirst, and for every vote that ranksfirst
andb second. That is, it fails to receive a point for every votd thaksb first in the second iteration
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of STV. Hence, the rankings that surviyg are the ones that rank the alternative that receives the
fewest votes in the second iteration of STV second-to-laébre generally, lets;(v,r) = 0 if,
lettingb = r(m — k + 1), for everya such thatv =1 (a) < v=1(b),r(a) > r (b)) =m —k + 1;
ands;(v,r) = 0 otherwise. That is, a ranking receives a point for a wntéessthe alternative
rankedkth-to last byr is preceded i only by alternatives ranked aftéiin ». Given that- has not

yet been eliminated and is hence consistent with STV sotfalatter condition holds if and only if

b receivesy’s vote in thekth iteration of STV. =

In fact, we can break ties in STV simply according to the sapfiinctions used in the proof of
Theorem 2. We will call the resulting PERSF-STVERSF-STV is an ERSF and hence consistent.
By Theorem 1 and Proposition 3, this means that ERSF-STV illaB when there is an upper
bound on the number of votes. Does there exist a tiebreakilegor STV such that it is an SRSF,
that is, so that it is an MLE without a bound on the number o&s8tWe will show that the answer
is negative. To do so, we consider one particular tiebrepkite. Under this rule, when multiple
alternatives are tied to be eliminated, we have a choice éflwhne is eliminated. A ranking is
among the winning rankings if and only if there is some segaai such choices that results in this
ranking. We call the resulting Pgarallel-universes tiebreaking STV (PUT-ST{Bvery choice can
be thought of as leading to a separate parallel universe ichw3iTV is executed.)

Lemma 4 PUT-STV is the minimal continuous extension of STV definemostied profiles.

Proof: Let fs1y be the STV PF restricted to the setof non-tied profiles, and lefpyr_s7v be
PUT-STV. We first prove that for any tied profile= (¢1,...,tm) and anyr € fpyr—_stv(p),
there exists a sequence of poipts po,... € S such thatlim; ... p; = p and for anyi, » €
fsrv(p:). From this, it will follow that any continuous extension $§r must include all of the
rankings that win undefpy— s among the winners. LY be a positive integer such that for any
i <m!, Nt; € Z. Letn = |Np|, thatis,n = Z;’jl Nt;. Foranya € Aand anyr € fpyr_stv(p)
such that = a;, > ... > a;,, Wwhere(iy,...,i,) IS a permutation ofl,...,m), letv, , = a >

a;, > othersif a # a;,, andv,, = a;, > othersif a = a;,. (These are complete linear orders
in which the order of the others does not matter.) Wepjet Z?‘:_Ol 27 Zk<mfj Vg, - \WE NOW
show that for any > 0, p + ep, € S andfsrv (p + ep,) = {r}.

ForanyA’ C A and any profilep over A, letp| 4- be the profile overd’ obtained by removing
all alternatives inA — A’ from p. For anyj < m, letA; = {a;,,...,a;,_,}. For any profilep*,
subset of alternatived’ C A, and any alternative, let Pl(p*| 4/, a) be the number of times that
is ranked first in the votes ip*| 4-. We note that becausee fpyr_srv(p), foranyj < m —1,
anyk <m — j, Pl(p|a;,ai,) > Pl(p|a,,a,_;). We have:

Pl((p+ epy)|a;, ai,) = PU(pla,, ai,) + €Pl(py| 4, ai, )
j-1
>Pl(pla,, ai,) + €27 > Pl(p|a,, ai,) + 622‘1
4=0
=PI(p|a,,ai,) + ePl(prla,, ai,,_;)
>Pl(pla;,ai,,_;) + €Pl(pr|a;,ai,_;)
=PI((p + epr)|a;, Gir,_;)

Hence, for anyj < m — 1, inroundyj, a;,, _; is the alternative iM; that is ranked first in the votes
in (p+ ep,)|a, (strictly) the fewest times. It follows thaftsrv (p + ep,) = {r}.

All that remains to show is thatpy— g7 iS continuous, that is, for any sequengeps, . .. €
S for which lim;_., p; = p and there exists an € L(A) such that for any, r € fsrv(p;),
we have that € fpyr_srv(p). Again, letr = a;, = ... = a;, andA4; = {a;,...,a;,_;}.
Because for alf andk < m — j, Pl(pi|a;,ai,,_;) < Pl(pi|a;,a;, ), by the continuity ofPl, we
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havePI(p|a,, ai, ;) < Pl(p|a,,as; ). Hence, under PUT-STV, itis possible to eliminatg _ in
thej + 1th round, completing the proof. =

Lemma5 PUT-STV is not consistent.

Proof: Consider the following profile of votes, wherk, B, andC are alternatives2(A > B >
C)+0A>-C>=B)+1(B>A>=C)+1(B~C»A)+1(C>A>B)+1(C > B> A).
All alternatives are tied in the first round, and we split itlioee parallel universes. In the universe
whereA is eliminated, thed = B = C votes transfer t@3, andB is left as the only possible winner,
producing the rankind? = C > A. In the universe wher is eliminated, theB = A > C and

B > C = A votes transfer evenly td andC, leaving us with another tie betweehandC, and
hence the rankingd >~ C >~ B andC > A >~ B are produced. Similarly, in the universe where
C'is eliminated first, the rankingd >~ B >~ C andB = A > C are produced. Ultimately, every
rankingexceptC' > B >~ A is in the set of winning rankings.

By symmetry, under the profile(A - B >~ C)+2(A>C > B)+1(B> A> C)+ 1(B >
C=A)+1(C = A> B)+1(C = B~ A), every ranking excepB > C - A wins. If we add
the two profiles together, we obtadA - B = C)+2(A > C > B)+2(B> A > C)+2(B >
C>A)+2(C = A= B)+2(C > B> A), which has all rankings in its output. But this violates
consistency (which would require all rankings litit- B - AandB - C >~ Atowin). =

Corollary 1 PUT-STV is not an ERSF (and hence not an SRSF).

Proof: This follows immediately from Proposition 4 and Lemma 5.m

This allows us to prove a property of STV in general:

Theorem 3 STV is not an SRSF, even when restricting attention to rezhgtiofiles.

Proof: Suppose thafsry (restricted to the sef of non-tied profiles) is an SRSF defined by the
score functions. By Lemma 4,fpyr_s7v IS the minimal continuous extension @§ry . Also,

for everyr € L(A), it is easy to construct a (non-tied) profie such thatfsrv (p.) = {r}. So,
we can use Lemma 3 to conclude thatyr_srv is the SRSF that results from usingon all
profiles. However, by Corollary 1, we know that PUT-STV is aotSRSF, and we have the desired
contradiction. =

Incidentally, PUT-STV is also computationally intractalfin a sense); we omit the proof due to
space constraint. (We do not know if an analogous resultsfoldERSF-STV.)

Theorem 4 It is NP-complete to determine whether, given a prgfiend an alternativer, one of
the winning rankings under PUT-STV rankéirst.

As it turns out, neither PUT-STV nor ERSF-STV correspondsde ties are commonly broken
under STV: rather, usually, if there is a tie, all of thesemdatives are simultaneously eliminated.
Mathematically, this leads to bizarre discontinuities; evait further discussion due to space con-
straint.

8 Axiomatic characterization of SRSFs and ERSFs

Examiningsocial choice rules (SCRs)hat is, functions that output one or more alternatives as
the winner(s) (rather than one or more rankings), Young fbtne following axiomatic character-
ization of positional scoring functions [12]. (A similar @&facterization was given by Smith [11].)
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He showed that all SCRs satisfying consistency, contipaityg neutrality—SCR analogues of the
properties we considered—must be positional scoring fonstiand all positional scoring functions
satisfy these properties. Further, dropping continuigyfdund that any consistent and neutral SCR
must be equivalent to what in the language of this paper wbeldalled an “extended” positional
scoring function. These results lead to two natural analegmnjectures about PFs.

Conjecture 1 Any PF that is consistent, continuous, and neutral must b8RS8F (and therefore
an MLE).

Conjecture 2 Any PF that is consistent and neutral must be an ERSF (anéfibveran MLE when
the number of votes is bounded).

It does not appear that these conjectures can be easilyrpusirg Smith and Young’s tech-
niques.

9 Conclusions

The maximum likelihood approach provides a natural way favasing a PF in settings where it
makes sense to think there is a “correct” ranking. In thisgpage gave a characterization of the
neutral MLE PFs, showing they coincide with the neutral SRSKe also considered ERSFs as a
slight generalization and showed that for bounded numbferstes they coincide with SRSFs. We
considered key properties such as continuity and consigtamd gave several examples of SRSFs
and ERSFs. We studied STV in detail, showing that it is an EBR8mot an SRSF, and discussed
the implications for breaking ties under STV. Finally, w# lsome open questions concerning the
complexity of ERSF tiebreaking for STV and whether consisyecan be used to characterize the
class of SRSFs/ERSFs.

We believe that these results will greatly facilitate the v§the maximum likelihood approach
in (computational) social choice. Similar results can b&ited for social choice settings other than
PFs—for example, for social choice rules that only choosavihaing alternative(s), or for settings
in which the inputs are not linear orders (but rather, forragpke, labelings of the alternatives as
“approved” or “not approved”, or partial orderstc).
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