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Abstract

This paper presents a quantitative solution to the problem of aggregating referee
scores for manuscripts submitted to peer-reviewed conferences or scientific journals.
The proposed approach is a particular application of the Dempster-Shafer theory
to a restricted setting, from which an interesting algebraic framework results. The
paper investigates the algebraic properties of this framework and shows how to apply
it to the score aggregation and document ranking problems. Our scheme is intended
to support the paper selection process of a conference or journal, not to replace it.

1 Introduction

This paper addresses a real-world problem of quantitative judgement aggregation, one that
is omnipresent in the academic world and thus of great importance to all of us. We consider
the typical situation of an editor or program committee, who is in charge of evaluating
the manuscripts that have been submitted to a journal or conference for publication. In a
competitive setting of a scientific conference, where the maximal number of accepted papers
is limited, the problem then is to select the best papers from those submitted. For this,
each submission is typically sent to 3 or 4 referees, who are asked to comment and score
the paper in their report. This is the core of the so-called peer review process, which is a
well-established academic procedure to guarantee high scientific standards and to prevent
the dissemination of unwarranted claims or unacceptable interpretations.

Many journals and conferences ask the referees to quantitatively score the papers by
a pair of values from respective scales, one that reflects the overall1 quality of the paper
and one that indicates the referee’s own level of expertise or confidence. For the selection
of the best papers, the editor or program committee faces then the problem of combin-
ing those scores to establish an overall ranking, from which the highest-ranked papers are
accepted. The combination of such referee scores is a simple real-world judgement aggrega-
tion problem. Most of the existing convenient on-line conference management systems (e.g.
ConfMaster, ConfTool, EasyChair, Linklings, OpenConf, Paperdyne, Start
V2, WebChairing, etc.) are very rich in all kind of features for effortlessly accomplishing
many complicated tasks of the peer review process, but they are usually very poor in pro-
viding automated decision support tools for the aggregation and ranking of referee scores.
As a consequence, the score aggregation and paper ranking problems are still being solved
manually today, and due to the many aspects and parameters to be taken into account, the
resulting time-consuming procedure risks at producing bad quality results in form of unfair
decisions. But what would be a reasonable procedure of combining the referee scores and
establishing a ranking of peer-reviewed papers automatically?

1.1 Related Work

By describing a set of so-called process patterns, Nierstrasz gives an informal answer to
the above question [26]. Examples of such patterns are “Group papers according to their

1Some journals and conferences ask to score various quality criteria independently of each other. The
method presented in this paper is compatible with such multi-criteria scores, but we not treat them explicitly.
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highest and lowest score ” or “Take care to identify papers with both extreme high and low
scores ”. For the scores, Nierstrasz proposes four quality categories A=“Good paper ” to
D=“Serious problems ” and three levels of expertise X=“I am an expert ” to Z=“I am not
an expert ”.2 Notice that Nierstrasz’ pattern language has become something like the de
facto standard for conferences in many computer science areas, and it is implemented in the
conference management systems CyberChair [33] and Continue [23], and rudimentally in
Confious [27], HotCRP [22], and MyReview [28]. The success of Nierstrasz’ patterns is
perfectly comprehensible from the pragmatic point of view of experienced program commit-
tee members, but from the more formal perspective of an expert in quantitative judgement
aggregation or reasoning and decision making under uncertainty, they give the impression
of being constituted on an ad hoc basis and may therefore seem a bit rudimentary.

A partial answer to the above question can be found in the early literature on probability
from the late 17th and early 18th centuries [20, 30]. At that time, studying probability was
often motivated by judicial applications, such as the reliability of witnesses in the courtroom,
or more generally by the credibility of testimonies on past events or miracles. The first two
combination rules for testimonies were published in an anonymous article [1]. One of them
considers two independent witnesses with respective credibilities (frequencies of saying the
truth) p1 and p2. If we suppose that they deliver the same report, they are either both telling
the truth with probability p1 · p2, or they are both lying with probability (1− p1) · (1− p2).
Every other configuration is obviously impossible. The ratio of truth saying cases to the
total number of cases,

p1 · p2

p1 · p2 + (1− p1) · (1− p2)
, (1)

represents then the combined credibility of both witnesses. The more general formula for n
independent witnesses of equal credibility p,

pn

pn + (1− p)n
, (2)

has been mentioned by Laplace [24]. This formula is closely related to the Condorcet Jury
Theorem discussed in social choice theory [2, 25]. Boole mentioned in [3] a similar formula
that includes a prior probability of the hypothesis in question.

A recent article picks up these ancient ideas and turns them into a very general and
flexible model of combining reports from partially reliable sources [15]. The generality of
the model allows it to be applied to situations of incompetent or even dishonest witnesses,
who may deliver highly contradictory testimonies. At its core, the model presupposes a
non-additive measure of belief [13] in form of Dempster-Shafer belief functions [9, 29], but
Laplace’s and Boole’s formulae are included as additive special cases. The model also
includes various Bayesian approaches, which require a prior probability of the hypothesis in
question to turn it into a corresponding posterior probability. The method discussed in this
paper is another very particular case of the general model from [15].

1.2 Problem Formulation

The formal problem setting in this paper is the following. Let D be a set of submitted
manuscripts (documents) and R a set of referees. We assume that the referees are anony-
mous and independent. The set of assigned referees for document D ∈ D is denoted by

2It should be emphasized here that Nierstrasz’ categorization includes an explicit operational meaning,
e.g. “I will champion the paper ” for the category A=“Good paper ” and ditto for the other categories. The
whole point of the pattern language is about how people will behave during a program committee meeting,
which is why it is not directly applicable to a non-interactive setting such as journal paper reviewing. During
PC meetings, however, the notion of championing can help to keep discussions focussed.
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referees(D) ⊆ R, that is referees : D → P(R) is a mapping from D to the power set of
R. Similarly, documents(R) = referees−1(R) ⊆ D denotes the set of documents assigned to
referee R ∈ R. If referees(D) = {R1, . . . , Rk} is the set of referees assigned to a particular
document D, then we assume to obtain a set of respective scores, scores(D) = {s1, . . . , sk},
each of which being a pair si = (qi, ei) ∈ [0, 1]× [0, 1] of values between 0 and 1.3 The value
qi ∈ [0, 1] is interpreted as the referee’s estimate of the paper’s overall quality and ei ∈ [0, 1]
as the referee’s estimate of its own level of expertise, with the usual convention that higher
values represent higher quality and expertise levels.

Given the above formal setting, this paper addresses the following interlinked problems
of aggregating and ranking the given referee scores.

Aggregation. For each D ∈ D, derive from scores(D) the document’s combined overall
score sD = (qD, eD) ∈ [0, 1]× [0, 1].

Ranking. For a given set of combined overall scores, S = {sD : D ∈ D}, determine a total
preorder � according to which the documents in D are ranked (that is D1 is preferred
to D2 iff sD1 � sD2).

The proposed process is thus a two-step procedure, in which the papers’ overall scores
appear as an intermediate result before the final ranking is established. Note that the
ranking problem includes the decision problem of accepting/rejecting papers as a borderline
case. For a single document, i.e. for |D| = 1, we obtain another borderline case, one that
corresponds to the situation of a single paper submitted to a journal.

As an alternative, it could also be assumed that each referee’s set of assigned papers,
documents(R) ⊆ D, is first turned into a local ranking (or decision), from which the global
ranking (or decision) is then established in a second step. Such a procedure is suggested
in [11]. Its main advantage is the fact that scoring, with all its inherent problems such as
the referees’ diverging standards with judging the merits and weaknesses of each paper on
a common scale, is no longer required. The whole problem of evaluating papers according
to their overall quality is thus reduced to a ranking problem. Note that aggregating local
rankings into a global ranking may become very difficult or even impossible if the average
number of referees per paper is low. This is a consequence of the fact that rankings are
usually less informative than corresponding sets of scores.

Another important advantage of the proposed two-step procedure is the possibility to
repeat Step 1 with an updated set of scores. This may be necessary for papers with an
unsatisfactory overall expertise level eD. The ability to make such a distinction between
papers reviewed by a group of experts from a paper reviewed by a group of non-experts is
one of the main reason for the proposed 2-dimensional scores.

1.3 Overview

This paper proposes a solution to the two problems stated above. First we suggest a formal
method for combining referee scores, and then we discuss a solution for projecting combined
referee scores into a total order, from which the final document ranking results. The core of
the suggested method is a particular application of what is known in the literature of un-
certain reasoning as Dempster’s rule of combination, a key concepts in the Dempster-Shafer
theory (DST) of belief functions [9, 29]. Here we adopt Dempster’s original interpretation
of his theory as a generalization of classical probabilistic inference [10]. For this, we look
at a single score si = (qi, ei) of a peer-reviewed paper as a pair of respective probabilities.

3In practice, typical scales for referee scores are discrete sets such as {1, 2, . . . , 10} or {very poor, poor,
medium, good, very good}. To make such cases compatible with our formal setting, we assume a mapping
σ from the respective set into the unit interval [0, 1], e.g. σ(very poor) = 0.1, σ(poor) = 0.3, etc.
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Formally, this allows us to consider each score as a particular representation of the referee’s
opinion about the paper. Opinions are the key elements in Jøsang’s theory of subjective
logic [18, 19], a particular interpretation of DST. To deal with such opinions mathematically,
we follow the algebraic setting proposed in [7, 17], in which the set of all possible opinions
is considered as a commutative monoid with respect to Dempster’s rule of combination.

In Section 2, we first give a short introduction to the Dempster-Shafer theory, and
then we present the algebraic structure of the above-mentioned opinion calculus. This is
the mathematical and computational foundation of the proposed score aggregation method
presented in Section 3, where scores are interpreted as respective probabilities in a restricted
Dempster-Shafer model. The conclusions in Section 4 close the paper.

2 The Opinion Calculus

In its original form [9, 10], the Dempster-Shafer theory proposes a particular application of
probabilistic reasoning. Its main components are two sample spaces Ω and Θ, which are
interlinked by a multi-valued mapping Γ : Ω → P(Θ). A set Γ(ω) ⊆ Θ is thus assigned to
every element ω ∈ Ω. For a given probability space (Ω,F , P ), Dempster’s theory shows how
to carry the probability measure P : F → [0, 1] defined over a σ-algebra F of subsets of Ω
into a system of lower and upper probabilities over subsets A ⊆ Θ,

P∗(A) = P ({ω ∈ Ω : Γ(ω) ⊆ A} | {ω ∈ Ω : Γ(ω) 6= ∅})

=
P ({ω ∈ Ω : ∅ 6= Γ(ω) ⊆ A})
1− P ({ω ∈ Ω : Γ(ω) = ∅}) (3)

and

P ∗(A) = 1− P∗(Ac) =
P ({ω ∈ Ω : Γ(ω) ∩A 6= ∅})
1− P ({ω ∈ Ω : Γ(ω) = ∅}) , (4)

for which P∗(A) ≤ P ∗(A) holds for all A ⊆ Θ. A quadruple (Ω, P,Γ,Θ) is sometimes called
hint [21] or Dempster space [16].

Later, Shafer introduced a non-probabilistic interpretation of the Dempster’s theory and
suggested belief and plausibility, denoted by Bel(A) and Pl(A), as replacements for lower
and upper probability [29]. Shafer’s viewpoint and terminology has been adopted by many
other authors, e.g. by Smets in his Transferable Belief Model [32]. They all depart from
Dempster’s original model by considering belief and plausibility functions over the so-called
frame of discernment Θ that are not necessarily induced by an underlying probability space
(Ω,F , P ) and its link over the multi-valued mapping Γ. There is an axiomatic system for
such belief and plausibility functions [31], similar to Kolmogorov’s system of axioms for
probabilities. If Θ is finite, belief and plausibility functions are often expressed in terms of
their underlying mass function,

m(A) = P ({ω ∈ Ω : Γ(ω) = A}), (5)

which is additive with respect to P(Θ) and thus sums up to one over all A ⊆ Θ. It is
obvious that m : P(Θ) → [0, 1] is a true generalization of a classical probability mass
function p : Θ → [0, 1], and that Bel , Pl , and m are connected as follows:

Bel(A) =
1

1−m(∅)
∑

∅6=B⊆A

m(B), Pl(A) =
1

1−m(∅)
∑

A∩B 6=∅
m(B). (6)

Many variations of this general scheme have been proposed in the literature, but here
we prefer to strictly follow Dempster’s and Shafer’s original views.
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2.1 Opinions

To solve the particular problem of this paper, we restrict Dempster’s original probabilistic
model to a very particular case. First of all, we only consider finite sample spaces Ω,
which allows us to replace the σ-algebra F by the power set P(Ω) of Ω. Second, we only
consider frames of discernment Θ of size two, e.g. Θ = {H,¬H}, where H and ¬H denote
complementary outcomes. This implies that {∅, {H}, {¬H},Θ} is the codomain of the multi-
valued mapping Γ. The essence of the whole structure (Ω, P,Γ,Θ) can then be reduced to
a simple pair (b, d) ∈ [0, 1] × [0, 1] with b = Bel({H}), d = Bel({¬H}) = 1−Pl({H}),
and therefore b + d ≤ 1. In [7, 16, 17], such pairs are called Dempster pairs and the set
of all such pairs is called Dempster domain. Corresponding additive triplets ϕH = (b, d, i)
with i = 1 − b − d are sometimes called opinions about H [14, 18, 19].4 As shown in
Figure 1, opinons can be depicted as respective points in an equilateral triangle (2-simplex)
called opinion triangle [18].5 The three coordinates represent respective degrees of belief
(probability assigned to “H is true ”), degrees of disbelief (probability assigned to “H is
false ”), and degrees of ignorance6 (probability assigned to “I don’t know ”). The correct
mathematical term for the geometry of this picture is barycentric coordinates [4].
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Figure 1: The opinion triangle with its
three dimensions.

in
di

ffe
re

nt

positivenegative

sim
ple

positivesim
pl

e
ne

ga
tiv

e

Bayesian

neutral

extremal
positive

extremal
negative

Figure 2: Various special types of opin-
ions.

The three corners of the opinion triangle represent particular extreme cases. We adopt
the terminology of [7, 17], i.e. p = (1, 0, 0) and n = (0, 1, 0) are called extremal and e =
(0, 0, 1) is called neutral. A general opinion (b, d, i) is called positive if b > d, and it is called
negative if b < d. Positive opinions are located on the left hand side and negative opinions
on the right hand side of the opinion triangle. (b, d, i) and (d, b, i) are regarded as opposite
opinions, i.e. the opposite of a positive opinion is negative, and vice versa.

In the opinion triangle, the two regions of positive and negative opinions are separated
by the central vertical line of indifferent opinions with b = d. Note that the neutral opinion
e is indifferent. Other particular indifferent opinions are the points u = ( 1

2 ,
1
2 , 0) at the

bottom and c = ( 1
3 ,

1
3 ,

1
3 ) in the center of the triangle. Indifferent opinions are their own

opposite.
Opinions are called simple (or pure) if either b = 0 or d = 0, i.e. (b, 0, 1− b) is simple

positive for b > 0 and (0, d, 1− d) is simple negative for d > 0. Simple opinions are located
on the left and the right edge of the triangle. Note that e, n, and p are simple. The opinions

4Later in [19], opinions are defined as quadruples (b, d, i, a) with an additional component a, the so-called
relative atomicity (we do not need this in this paper).

5Sometimes, isosceles instead of equilateral triangles are used to visualize the Dempster domain [7, 16].
6In [19], Jøsang calls i degree of uncertainty rather than degree of ignorance, but the latter seems to be

more appropriate and in better accordance with the literature.

281



(b, 1− b, 0) at the bottom line of the triangle are called Bayesian (or probabilistic). Note that
the extremal simple opinions p and n are also Bayesian, as well as the particular indifferent
opinion u. All those particular types of opinions are shown in Figure 2.

2.2 Combining Opinions

One of the key components of the Demster-Shafer theory is a rule to combine two Dempster
spaces (Ω1, P1,Γ1,Θ) and (Ω2, P2,Γ2,Θ) for a common frame of discernment Θ. Such a
combination is usually denoted by symbols like ⊗ or ⊕ (here we prefer to use ⊗). If we
assume P1 and P2 as being stochastically independent, then we naturally obtain

(Ω1, P1,Γ1,Θ)⊗ (Ω2, P2,Γ2,Θ) = (Ω1×Ω2, P1·P2,Γ1∩Γ2,Θ) (7)

for the combined structure [9, 21]. Translated into Shafer’s terminology for two mass func-
tions m1 and m2, we get what is known today as (unnormalized) Dempster’s rule of com-
bination or simply Dempster’s rule:

m1⊗m2(A) =
∑

B1∩B2=A

m1(B1) ·m2(B2). (8)

It is easy to see that Dempster’s rule is commutative and associative, which means that the
order in which opinions are combined is irrelevant. In the particular case of Θ = {H,¬H}
with two opinions ϕ1 = (b1, d1, i1) and ϕ2 = (b2, d2, i2), we know from [7, 12, 17] that
Dempster’s rule can be rewritten more compactly as

ϕ1⊗ϕ2 =
(
b1b2 + b1i2 + i1b2
1− b1d2 − d1b2

,
d1d2 + d1i2 + i1d2

1− b1d2 − d1b2
,

i1i2
1− b1d2 − d1b2

)
, (9)

and it includes (1) as special cases for i1, i2 = 0. This equation is the mathematical and
computational basis for the proposed solution of the score aggregation problem in Section 3.
Note that the combination of opposite extremal opinions, p⊗ n or n⊗ p, is undefined.

2.3 The Opinion Monoid

The space of all possible opinions, Φ = {(b, d, i) ∈ [0, 1]3 : b+ d+ i = 1}, together with the
particular form of Dempster’s rule given in (9) forms an interesting algebraic structure. A
thorough analysis of this structure is presented in [7, 17], where the set of all non-extremal
opinions together with Dempster’s rule is called Dempster semigroup. The extremal opinions
are excluded to avoid the above-mentioned undefined combination. Here we pick up these
ideas, but instead of excluding extremal opinions, we include z = (1, 1,−1) as an additional
opinion and call it inconsistent. The set of all such opinions, including the inconsistent one,
is denoted by Φz = Φ ∪ {z}, and ⊗ is extended by p ⊗ n = n ⊗ p = z. Note that z is
absorbing with respect to ⊗, i.e. z ⊗ ϕ = ϕ⊗ z = z for all ϕ ∈ Φz.

With this extension, the structure (Φz,⊗) is closed under the operator ⊗ : Φz×Φz → Φz.
From the commutativity and associativity of ⊗, it follows that (Φz,⊗) is a commutative
semigroup. Note that for e = (0, 0, 1) we get e ⊗ ϕ = ϕ ⊗ e = ϕ for all ϕ ∈ Φz, i.e.
e = (0, 0, 1) is the (neutral) identity element of the combination. The structure (Φz,⊗, e)
is thus a commutative monoid with an absorbing zero element z. Since ⊗ is generally not
invertible, (Φz,⊗, e) is not a group. As is it a common practice in abstract algebra, we will
refer to (Φz,⊗, e) simply as Φz and call it the opinion monoid. Note that Φz has exactly
three idempotent elements e, u, and z, i.e. ϕ⊗ ϕ = ϕ only holds for ϕ ∈ {e, u, z}.

As pointed out in the classification of the previous subsection, Φz contains a number
of interesting subsets. Some of them are again closed under combination andpreserve the
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above-mentioned algebraic properties. Table 1 gives an overview of those sub-monoids with
their respective identity and zero elements. Note that a non-extremal Bayesian opinion is
invertible by combining it with its own opposite, i.e. (b, 1− b, 0)⊗(1− b, b, 0) = u holds for all
b 6∈ {0, 1}. Mathematically speaking, the set of consistent non-extremal Bayesian opinions,
Φ0 \ {p, n, z}, forms an commutative (abelian) group. Note further that the set Φ0 \ {z}
possesses a natural total order �0 defined by (b1, 1− b1, 0) �0 (b2, 1− b2, 0) iff b1 ≥ b2. This
order is important in Section 3 to establish the document ranking.

Name Notation Definition Identity Zero

general (extended with z) Φz Φ ∪ {z} e z
non-negative Φ≥ {(b, d, i) ∈ Φ : b ≥ d} e p
simple non-negative Φ+ {(b, d, i) ∈ Φ : d = 0} e p
non-positive Φ≤ {(b, d, i) ∈ Φ : b ≤ d} e n
simple non-positive Φ− {(b, d, i) ∈ Φ : b = 0} e n
indifferent Φ= {(b, d, i) ∈ Φ : b = d} e u
Bayesian (extended with z) Φ0 {(b, d, i) ∈ Φ : i = 0} ∪ {z} u z

Table 1: Different algebraic sub-structures of the opinion monoid Φz with their respective
identity and zero elements.

2.4 Transformations

As pointed out in [7, 17], the combination of a general opinion ϕ ∈ Φz with the uniform
Bayesian opinion u defines a homomorphism h : Φz → Φ0, i.e. h(ϕ1⊗ϕ2) = h(ϕ1) ⊗ h(ϕ2)
holds for all ϕ1, ϕ2 ∈ Φz. We can thus use h to transform a general opinion ϕ ∈ Φz into a
Bayesian opinion h(ϕ) = ϕ⊗ u ∈ Φ0. For ϕ = (b, d, i) ∈ Φ we can simplify (9) into

h(ϕ) =
(

1− d

(1− b) + (1− d) ,
1− b

(1− b) + (1− d) , 0
)

=
(

1− d

1 + i
,
1− b

1 + i
, 0

)
, (10)

whereas h(z) = z holds as usual. A more general version of this mapping is called plausibility
transformation and h(ϕ) is called relative plausibility [5, 6, 8]. Note that indifferent opinions
always map into u, i.e. h(ϕ) = u holds for all ϕ ∈ Φ=. This includes h(e) = u as a special
case. In the opinion triangle, applying h to a general opinion ϕ ∈ Φ means to intersect the
straight line through ϕ and z with the bottom line of the opinion triangle [7, 17]. In other
words, the intersection of the opinion triangle with the straight line through ϕ0 ∈ Φ0 \ {z}
and z corresponds to the preimage h−1(ϕ0) = {ϕ ∈ Φ : h(ϕ) = ϕ0} of ϕ0. This geometric
interpretation of h is illustrated in Figure 3.

A similar, but non-homomorphic transformation g : Φz → Φ0 results from applying a
scheme similar to the one in (10). Instead of replacing the components b and d of a general
opinion ϕ = (b, d, i) by respective normalized plausibilities, the idea of

g(ϕ) =
(

b

b+ d
,

d

b+ d
, 0

)
(11)

is to normalize b and d directly.7 A general form of this mapping is called belief transfor-
mation and g(ϕ) is called relative belief [6, 8]. Note that g(e) is undefined in (11), but we
can set g(e) = u by default. As shown in Figure 4, applying g to ϕ ∈ Φz \ {e} means to
intersect the straight line through the points ϕ and e with the bottom line of the opinion
triangle. This geometric interpretation also holds for the special case g(z) = u.

7This transformation is a homomorphism with respect to the disjunctive rule of combination [7].
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e = (0, 0, 1)

z = (1, 1,−1)

Figure 3: The homomorphic plausibility
transformation h.

ϕ

ψ

g(ψ)g(ϕ)

Figure 4: The belief transformation g.

ϕ

ψ

p(ϕ) p(ψ)

Figure 5: The pignistic transformation p.

Another interesting non-homomorphic transformation p : Φz → Φ0 redistributes the
component i from a general opinion ϕ = (b, d, i) ∈ Φz equally among b and d,

p(ϕ) =
(
b+

i

2
, d+

i

2
, 0

)
, (12)

which includes p(z) = u as a special case. In the opinion triangle, applying p to ϕ ∈ Φ
means to project ϕ vertically onto the bottom line of Bayesian opinions. This is illustrated
in Figure 5.8 Note that p is a special case of what Smets calls pignistic transformation [32].

We prefer not to give any recommendation with regard to the question of which trans-
formation to use, all of them have their respective advantages and disadvantages [5, 32].
In general, one can say that g tends to enforce existing degrees of belief and disbelief less
cautiously than h, and that p lies somewhere in between.

3 Combining and Ranking Referee Scores

In this section, we use the algebraic investigation of the previous section as the mathematical
and computational foundation for solving the problems of combining and ranking referee
scores. First we show how to interpret the scores of a given document as respective opinions,
one for each referee to which the document has been assigned. The independence assumption
allows us then to apply the combination operator ⊗ defined in (9) to obtain the combined
group opinion of all referees, from which the documents overall score is derived. Finally, we

8It is interesting to observe in Figure 3–5 that g, h, and p are special cases of a whole class of symmetric
transformations obtained by intersecting the bottom line of the opinion triangle with a straight line through
ϕ and ϕi = ( 1−i

2
, 1−i

2
, i) with i ∈ R \ [0, 1) ∪ {−∞, +∞}. In particular, we have i = 1 for g, i = −1 for h,

and i = ±∞ for p.
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explain how to use the proposed transformations g, h, or p to establish the final ranking,
from which the highest-ranked documents are accepted.

3.1 Combining Referee Scores

As stated in Subsection 1.2, we first need to consider the problem of deriving from the
set of scores(D) the document’s combined overall score sD. The general idea for this is
to apply Dempster’s rule to corresponding opinions. Recall that a score is a point s =
(q, e) ∈ [0, 1]× [0, 1] in the unit square. The obvious question now is how to map such
scores into opinions. Mathematically speaking, we are looking for a meaningful mapping
∆ : [0, 1]× [0, 1] → Φ, which assigns a unique opinion ∆(s) ∈ Φ to each score s ∈ [0, 1]× [0, 1].
We can thus look at ∆ as a transformation of the unit square into the opinion triangle.

To define such a transformation, we consider each referee as a partially reliable informa-
tion source. Inspired by the general model of partially reliable information source in [15], we
assume that reports of unreliable sources are entirely neglected. Intuitively, this is the case
whenever a referee is not an expert for reviewing a particular paper. Note that s = (q, e)
delivers an estimate e ∈ [0, 1] of the referee’s expertise level, i.e. if we assume the referee as
being trustworthy with respect to giving such an estimate, then we may interpret e as the
probability P ({E}) = e of the referee being an expert for the document’s topic. Similarly, we
may interpret the quality estimate q as the conditional probability P ({Q}|{E}) = q of the
paper being a high-quality paper, given that the referee is an expert. With ΩE = {E,¬E}
and ΩQ = {Q,¬Q} we denote respective sets of outcomes. This implies a probability space
(Ω,P(Ω), P ) with Ω = ΩE × ΩQ = {(E,Q), (E,¬Q), (¬E,Q), (¬E,¬Q)} and

P ({E,Q}) = e · q, P ({¬E,Q}) = (1− e) · q,
P ({E,¬Q}) = e · (1− q), P ({¬E,¬Q}) = (1− e) · (1− q).

Consider now another space Θ = {H,¬H} and let Γ : Ω → P(Θ) be defined by Γ(E,Q) =
{H}, Γ(E,¬Q) = {¬H}, and Γ(¬E,Q) = Γ(¬E,¬Q) = Θ. The idea is to adopt the
referee’s judgment with respectQ and ¬Q whenever the referee is an expert, and to discard it
otherwise. This defines a Dempster space (Ω, P,Γ,Θ), from which we derive Bel({H}) = e·q
and Bel({¬H}) = e · (1− q). Finally, this leads to the requested transformation,

∆(s) = (e · q, e · (1− q), 1− e), (13)

which maps points from the unit square into the opinion triangle, as illustrated in Figure 6.
Note that all scores (q, 0) are mapped into the neutral opinion (0, 0, 1), whereas all scores
(q, 1) are mapped into Bayesian opinions (q, 1− q, 0).

q = 0 q = 1

e = 0

e = 1

Figure 6: Transforming referee scores into
opinions.

q = 0 q = 1
e = 1

e = 0

s1

s2

s3

⊗

sD

0.37

0.86

ω1

ω2

ω3

ωD

Figure 7: Combining three referee scores
s1, s2, and s3.
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Let scores(D) = {s1, . . . , sk} be the set of scores for document D. Using the proposed
transformation ∆, we can now compute the document’s combined score sD by

sD = ∆−1(∆(s1)⊗ · · · ⊗∆(sk)), (14)

where ∆−1 denotes the inverse of ∆. Note that ∆−1(ϕ) = ( b
1−i , 1− i) is unique for all ϕ =

(b, d, i) ∈ Φ, except for the neutral opinion (0, 0, 1). This is a mathematical imperfection,
but it is of no importance for our particular application. Figure 7 shows three scores
s1 = (0.8, 0.5), s2 = (0.4, 0.25), s3 = (0.2, 0.75), their combination sD = (0.37, 0.86), and
corresponding opinions ωi = ∆(si) and ωD = ω1 ⊗ ω2 ⊗ ω3 = ∆(sD).

3.2 Ranking Combined Referee Scores

Given the above solution for the score aggregation problem, we are now in possession of a
set S = {sD : D ∈ D} of combined referee scores sD = (qD, eD), one for each document.
The first thing to note here is the problem of documents with an unsatisfactory combined
expertise level eD. This means that the program committee or the editor was unable to
assign the document to an appropriate referee. The usual procedure in such a case is to
assign the paper to one or two additional referees. In our model, we may use a threshold
γ ∈ [0, 1] to define the set Dγ = {D ∈ D : eD ≤ γ} of documents to be reassigned. The
new referee scores are then combined with the existing ones to obtain an updated set of
scores. This is a really important point when it comes to improve the quality of the review
process, but time constraints usually do not allow more than one such iteration. Nierstrasz
talks about the problem of low overall expertise levels in a pattern called Identify Missing
Champions [26].

When all the updates are done and S is finally fixed, we reach the final stage of the
review process, in which the decision about the accepted papers needs to be taken. An
ideal basis for this decision would a be a ranking of the submitted documents, from which
the highest-ranked submissions are accepted. We have seen in Section 3 that the set of
Bayesian opinions is totally ordered, and that general opinions can be transformed into
Bayesian opinions. The idea thus is to use the total order �0 of Bayesian opinions together
with one of the proposed transformations to define an order with respect to Φz. More
formally, we may consider three different orders �g, �h, and �p for Φ, which are defined
similarly by

ϕ �g ψ, iff g(ϕ) �0 g(ψ), ϕ �h ψ, iff h(ϕ) �0 h(ψ), and ϕ �p ψ, iff p(ϕ) �0 p(ψ),

for all ϕ,ψ ∈ Φz.9 Note that �g, �h, and �p are all total preorders, i.e. the antisymmetry
property which is necessary for a total order does not hold. Nevertheless, we can use them
to order the elements of S, e.g. by

sD1 �g sD2 , iff ∆(sD1) �g ∆(sD2), respectively g(∆(sD1)) �0 g(∆(sD2)),

for g, and similarly for h and p. This is again a total preorder, which we can use to establish
a document ranking for D. Note that if sD1 �h sD2 and sD2 �h sD1 hold for two documents
D1 6= D2, which means that they have the same g-image in Φ0, they are indistinguishable
for �g and thus receive the same rank. If necessary, such ties between equally ranked
documents are broken at random.

9In the case of h, the order is only defined for Φ, i.e. it excludes the inconsistent opinion z obtained for
two extreme opposite scores (1, 1) and (0, 1). To avoid this problem, either q should be restricted to [0, 1),
(0, 1], or (0, 1), or e should be restricted to [0, 1). Another solution is to impose h(z) = u.
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4 Conclusion

We have seen in this paper a solution for the score aggregation and document ranking prob-
lems. The key idea is to transform scores (q, e) into opinions (b, d, i), and to combine them
by Dempster’s rule. We have analyzed the underlying algebraic structures and properties.
From various ways of projecting general opinions into the totally ordered set of Bayesian
opinions, we can inherit the order and finally apply it to establish the final document rank-
ing. The systematic formal analysis of this problem is the main contribution of this paper.

What is still missing today is the implementation of the proposed method in one of the
existing conference management systems. A prototype implementation is available and can
be tested at http://www.iam.unibe.ch/∼run/referee, but it includes only the core of the
proposed method with a very simple visualization. Nevertheless, it is interesting to observe
that it almost perfectly reproduces some of Nierstrasz’ classification patterns.

Another open issue is to apply and compare the recommended scheme empirically to real
conference review data. It will certainly be interesting to observe whether real PC decisions
are matched and to what extent. Note that we do not want to promote our method as a
replacement for PC meetings or the discussions in editorial boards, but we think it could
serve as a valuable decision support tool.
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