
Compiling the votes of a subelectorate

Yann Chevaleyre, Jérôme Lang, Nicolas Maudet & Guillaume Ravilly-Abadie

Abstract

In many practical contexts where a number agents have so as to find a common
decision, the votes do not come all together at the same time (for instance, when
voting about a date for a meeting, it often happens that one or two participants
express their preferences later than others). In such situations, we might want to
preprocess the information given by the subelectorate (consisting of those voters who
have expressed their votes) so as to “compile” the known votes for the time when the
latecomers will have expressed their votes. We study the amount of space necessary
to such a compilation, in function of the voting rule used, the number of candidates,
the number of voters who have already expressed their votes and the number of
remaining voters. We position our results with respect to existing work, especially
on vote elicitation and communication complexity.

1 Introduction

In many practical contexts where a number agents have so as to find a common decision, the
votes do not come all together at the same time. For instance, in some political elections, the
votes of the citizens living abroad is known only a few days after the rest of the votes. Or,
when voting about a date for a meeting, it often happens that one or two participants express
their preferences later than the others. In such situations, we might want to preprocess the
information given by the subelectorate (consisting of those voters who have expressed their
votes) so as to prepare the ground for the time when the latecomers will have expressed their
votes. What does “preparing the ground” exactly mean? We may think of two different
criteria:

• space: synthesize the information contained in the votes of the subelectorate, using as
less space as possible, while keeping enough information so as to be able to compute
the outcome once the newcomers hace expressed their votes;

• on-line time: compile the information, using as much off-line time and space as needed,
in such a way that once the newcomers hace expressed their vote, the outcome can be
computed as fast as possible.

These two criteria not only differ, but are, to some extent, opposed.
The research area of knowledge compilation (see for instance [3, 6]) lay the focus on on-

line space and typically looks for worst-case exponentially large rewritings of the “fixed part”
of the input, enabling on-line time complexity to fall down. While knowledge compilation
is definitely relevant to voting (the fixed part being the known votes, and the varying part
the votes of the latecomers), and would surely deserve a paper on its own, in this paper,
however, we focus on minimizing space (and do not care about on-line time).

While should we care about synthesizing the votes of a subelectorate in as less space as
possible? After all, one may think, the current cost of storage is so low that one should
not care about storing millions of votes. There are two possible objections to this line of
argumentation. The first one has to do with the size of the candidate set. In one-seat
political elections, the number of candidates is typically no more than a dozen; however,
in “profane” votes, such as multiple elections [2], the set of candidates has a combinatorial
structure and can be extremely large (possibly much more than a few millions – while it is

169

difficult to imagine an election with more than a few million voters). The second objection
has to do with the practical acceptance of the voting rule. Suppose the electorate is split
into different districts (generally, corresponding to geographical entities). Each district can
count its ballots separately and communicate the partial outcome to the central authority
(e.g. the Ministry of Innner Affairs), which, after gathering the outcomes from all districts,
will determine the final outcome. The space needed to synthesize the votes of a district (with
respect to a given voting rule) is precisely the amount of information that the district has to
send to the central authority. Now, it is important that the voters should be able to check as
easily as possible the outcome of the election. Take a simple rule, such as plurality or Borda.
Obviously, it is enough (and almost necessary, as we see later) for each district to send only
its “local” plurality or Borda scores to the central authority. If the district is small enough,
it is not difficult for the voters of this district to check that the local results are sound
(for instance, each political party may delegate someone for checking the ballots); provided
these local results are made public (which is usually the case – in most countries, they are
published in newspapers), every voter can check the final outcome from these local outcomes
(in the case of plurality or Borda, simply by summing up the local scores). Clearly, if the
information about the votes of a district being necessary for computing the final outcome is
large (e.g., if one needs to know how many voters have expressed every possible linear order
on the candidate set), it will be impractical to publish the results locally, and therefore,
difficult to check the final outcome, and voters may then be reluctant to accept the voting
rule. Although the compilation of the votes of a subelectorate has not been considered
before (as far as we know), several related problems have been investigated:

• the complexity of vote elicitation [4]: given a voting rule r, a set of known votes S,
and a set of t new voters, is the outcome of the vote already determined from S?

• the computation of possible and necessary winners [7, 11, 9, 10]: given a voting rule
r, a set of incomplete votes (that is, partial orders on the set of candidates), who are
the candidates who can still possibly win the election, and is there a candidate who
surely wins it?

• the communication complexity of voting rules [5]: given a voting rule r and a set of
voters, what is the worst-case cost (measured in terms of number of bits transmitted)
of the best protocol allowing to compute the outcome of the election?

In the first two cases, the connection is clear. In the extremely favourable case where
the outcome of the vote is already determined from S (corresponding to the existence of a
necessary winner, or to a positive answer to the vote elicitation problem), the space needed
to synthesize the input is just the binary encoding of the winner. The connection with
communication complexity [8] will be discussed more explicitly in Section 2, after the notion
of compilation is introduced formally. Then in Section 3 we determine the compilatioon
complexity of some of the most common voting rules.

2 Compilation complexity as one-round communication
complexity

Let X be a finite set of candidates and N a finite set of voters. Let p = |X| and n = |N |. A
vote is a linear order over X. We sometimes denote votes in the following way: a � b � c
is denoted by abc, etc. For m ≤ n, a (p, m)-profile is a tuple P = 〈V1, . . . , Vm〉 where each
Vi is a vote. When m < n (resp. m = n), we call such profiles partial (resp. complete). Let
Pm

X be the set of all m-voters profiles over X. A voting rule is a function r from Pn
X to X.

170

As the usual definition of most common voting rules does not exclude the possibility of ties,
we assume these ties are broken by a fixed priority order on candidates.

We now consider situations where only some of the voters (the “subelectorate”) have
expressed their votes. Let m ≤ n number of voters who have expressed their vote, and
P ∈ Pm

X the partial profile obtained from these m voters. We say that two partial profiles are
r-equivalent if no matter the remaining unknown votes, they will lead to the same outcome.
We distinguish between two cases, depending on whether the number of remaining voters is
fixed or not.

Definition 1 Let P,Q ∈ Pm
X be two m-voters X-profiles and r a voting rule. We say that

• given k ≥ 0, P and Q are (r, k)-equivalent if for every R ∈ Pk
X we have r(P ∪ R) =

r(Q ∪R).

• P and Q are r-equivalent if they are (r, k)-equivalent for every k ≥ 0.

Example 1 Let rP be the plurality rule and rB the Borda rule, X = {a, b, c} and m = 4.
Let P1 = 〈abc, abc, abc, abc〉, P2 = 〈abc, abc, acb, acb〉, P3 = 〈acb, acb, abc, abc〉 and P4 =
〈abc, abc, abc, bca〉. Then we have the following:

• P2 and P3 are rP -equivalent and rB-equivalent. More generally, they are r-equivalent
for every anonymous voting rule r.

• P1 and P2 are rP equivalent. They are also (rB , k)-equivalent for every k ≤ 2. However
they are not (rB , k)-equivalent for k ≥ 2. For k = 3, this can be seen by considering
R = 〈bca, bca, bca〉. We have rB(P1 ∪ R) = b but rB(P2 ∪ R) = a; therefore, P1 and
P2 are not rB-equivalent.

• P1 and P4 are (rP , k)-equivalent for every k ≤ 2, but not for k ≥ 2, therefore they are
not rP -equivalent (nor rB-equivalent).

We denote (r, k)-equivalence and r-equivalence by, respectively, ∼r,k and ∼r. Obviously,
∼r,k and ∼r are transitive, therefore they are indeed equivalence relations. We now define
the compilation complexity of a voting rule. We have two notions, depending on whether
the number of remaining candidates (i.e. the size of R) is fixed or not.

Definition 2 Given a voting rule r, we say that a function σ from Pm
X to {0, 1}∗ is a

compilation function for (r, k) if there exists a function ρ : {0, 1}∗ × Pk
X → X such that

for every P ∈ Pm
X and every R ∈ Pk

X , ρ(σ(P), R) = r(P ∪ R). The size of σ is defined by
Size(σ) = max{σ(P) | P ∈ Pm

X }. The compilation complexity of (r, k) is then defined by

C(r, k) = min{Size(σ) | σ is a compilation function for (r, k)}
Informally, the compilation complexity of (r, k) is the minimum space needed to compile

the m-voter partial profile P without knowing the remaining k-voter profile R. This notion
does not take into account the off-line time needed to compute σ, nor the off-line time
needed to compute ρ. The usual knowledge compilation view would focus on minimizing
the time needed to compute ρ,regardless of the size of σ (and the time needed to compute
it). The definitions when k is not fixed are similar:

Definition 3 Given a voting rule r, we say that a function σ from Pm
X to {0, 1}∗ is a

compilation function for r if there exists a function ρ : {0, 1}∗ × P∗X → X, where P∗X =
∪k≥0Pk

X , such that for every P ∈ Pm
X , every k ≥ 0 and every R ∈ Pk

X , ρ(σ(P), R) =
r(P ∪R). The compilation complexity of r is defined by

C(r) = min{Size(σ) | σ is a compilation function for r}

171

An equivalent way of seeing compilation complexity is related to multiparty communi-
cation complexity. When n agents have to compute a function f , while each of them only
knows a part of the input, the deterministic communication complexity (see [8]) of f is the
worst-case number of bits that the agents have to exchange so as to be able to know the
outcome. The communication complexity of common voting rules is identified in [5].

While standard communication complexity does not impose any restriction on the
protocol that the agents may use to compute f , imposing such restrictions leads to variants
of communication complexity; especially, a one-round protocol for two agents A and B is
a protocol where A sends only one message to B, and then B sends the output to A (see
Section 4.2 of [8]). The one-round communication complexity of f is the worst-case number
of bits of the best one-round protocol for f . This is exactly the same as the compilation
complexity of f , up to a minor difference: we do not care about B sending back the
output to A. Here, A represents the set of voters having already expressed their votes, and
B the remaining voters; the space needed to synthesize the votes of A is the amount of
information that A must send to B so that B can be able to compute the final outcome1.

We have this following general characterization of compilation complexity. Up to minor
details, this is a reformulation of Exercise 4.18 in [8]. For the sake of the exposition, we
reformulate it in our own terms and include its proof.

Proposition 1 Let r be a voting rule. Let m be the number of initial voters and p the
number of candidates.

• given k ≥ 0, if the number of equivalence classes for ∼r,k is f(m, p, k) then the com-
pilation complexity of (r, k) is exactly dlog f(m, p, k)e.

• if the number of equivalence classes for the r-equivalence relation ∼r is g(m, p) then
the compilation complexity of r is exactly dlog g(m, p)e.

Proof: We give the proof only for the case of (r, k); the proof with unbounded k is similar.
We first show that C(r, k) ≥ dlog f(m, p, k)e. Suppose ∼k,r has f(m, p, k) equivalence
classes. Assume there is a number θ < dlog f(m, p, k)e, a function σ : Pm

X → {0, 1}θ and a
mapping ρ : {0, 1}∗ → X such that for every P ∈ Pm

X and R ∈ Pk
X , ρ(σ(P), R) = r(P ∪R).

We first note that θ < dlog f(m, p, k)e implies θ < log f(m, p, k). Let ≈σ be the equivalence
relation on Pm

X defined by P ≈σ Q if σ(P) = σ(Q). Because for every P , |σ(P)| ≤ θ, ≈σ

has at most 2θ equivalence classes. Since 2θ < f(m, p, k), ≈σ has strictly less equivalence
classes than ∼k,r. Hence there exists a pair (P,Q) such that σ(P) = σ(Q) but P 6∼k,r Q.
P 6∼k,r Q means that there exists a profile R ∈ Pk

X such that r(P ∪ R) 6= r(Q ∪ R). Now,
r(P ∪R) = ρ(σ(P), R) = ρ(σ(Q), R) = r(Q∪R), hence a contradiction. We now show that
C(r, k) ≤ dlog f(m, p, k)e. Let us enumerate and number all f(m, p, k) equivalence classes
for ∼k,r. For every P , let i(P) be the index of its equivalence class for ∼k,r. Define the
translation σ(P) = i(P). We note that the size of σ is exactly dlog f(m, p, k)e. Now, define

1Since one-round communication complexity is never smaller than standard communication complexity,
we expect the lower communication complexity bounds communication in [5] to be lower bounds of compi-
lation complexity. However, making this more precise is not so simple, because in [5] there is no partition
between two subelectorates: their results mention only the total number of candidates, whereas ours men-
tion the number of candidates who have already expressed their votes. Let D(r, n, p) the (deterministic)
communication complexity of r for n voters and p candidates as in [5]. Let us now introduce this variant of
communication complexity: if m ≤ n, define D(r, n, m, p) as the cost of the optimal protocol for computing
r, where only the bits sent by the m first voters count for the cost of a protocol (the remaining n−m can
communicate for free). Obviously, we have D(r, n, m, p) ≤ D(r, n, p). Moreover, if C(r, m, p) is the compila-
tion complexity of r for m voters and p candidates then for every n ≥ m we have C(r, m, p) ≥ D(r, n, m, p).
In order to conclude C(r, m, p) ≥ D(r, m, p), we would have to show that for all voting rules considered
here, we have D(r, n, m, p) = D(r, m, p) (which we conjecture).

172

ρ by ρ(j, R) = r(P ∪R) for an arbitrary P such that i(P) = j. The result follows. �

Here are now a few simple results about voting rules in general.

Proposition 2 Let r be a voting rule, and r′ an anonymous voting rule.

• C(r) ≤ m log(p!);

• C(r′) ≤ min(m log(p!), p! log m).

The proof is easy. For any r, the number of equivalence classes cannot be larger than the
number of profiles, and there are (p!)m possible profiles. For any anonymous r, the bound
p! log m comes from the fact that linear orders on X can be enumerated, together with the
number of voters who choose it. p! log m can be smaller than m. log(p!) when m becomes
large enough and p small enough. At the other extremity of the spectrum, we have:

Proposition 3

• the compilation complexity of a dictatorship is log p;

• the compilation complexity of r is 0 if and only if r is constant.

In these limit cases, whether we know or not the number of remaining voters is irrelevant.

3 Some case studies

We now consider a few specific families of voting rules. For each of these we adopt the
following methodology: we first seek a characterization of the equivalence classes for the
given rule, then we use this characterization to count the number of equivalence classes. In
simple cases, it will be easy to enumerate exactly these classes and Proposition 1 will give
us the exact compilation complexity of the rule. In more complex cases, we will exhibit a
simple upper bound and provide a lower bound of the same order.

3.1 Plurality and Borda

Let ~s = 〈s1, . . . , sn〉 be a vector of integers such that s1 ≥ s2 ≥ . . . ≥ sn = 0. The scoring
rule induced by ~s is defined by: for every candidate x, score~s(x, P) =

∑n
i=1 si.n(P, i, x),

where n(P, i, x) is the number of votes in P that rank x in position i; and r~s(P) is the
candidate maximizing score~s(x, P) (in case of a tie, a priority relation on candidates is
applied). The plurality (resp. Borda) rule rP (resp. rB) is the scoring rule corresponding
to the vector 〈1, 0, . . . , 0〉 (resp. 〈p− 1, p− 2, . . . , 0〉).

Plurality. We begin with the compilation complexity of plurality (antiplurality is similar).

Lemma 1 For P ∈ Pm
X and x ∈ X, let ntop(P, x) be the number of votes in P ranking x

first. P ∼rP
P ′ holds if and only if for every x, ntop(P, x) = ntop(P ′, x).

Proof: The (⇐) direction is obvious. For the (⇒) direction, suppose there is an x ∈ X such
that ntop(P, x) 6= ntop(P ′, x). Without loss of generality, assume ntop(P, x) > ntop(P ′, x).
Now, we have

∑
x∈P ntop(P, x) =

∑
x∈P ′ ntop(P ′, x) = m, therefore there must be

an y such that ntop(P, y) < ntop(P ′, y). Note that we necessarily have y 6= x.
Now, let Q be the following profile with 2m − ntop(P, x) − ntop(P, y) + 1 voters:

173

m − ntop(P, x) + 1 voters have x on top (and whatever below), and m − ntop(P, y)
voters have y on top (and whatever below). We have ntop(P ∪ Q, x) = m + 1,
ntop(P ∪ Q, y) = m, and for every z 6= x, y, ntop(P ∪ Q, z) ≤ m. Therefore,
rP (P ∪ Q) = x. Now, we have ntop(P ′ ∪ Q, x) = ntop(P ′, x) − ntop(P, x) + m + 1 ≤ m,
ntop(P ′ ∪ Q, y) = ntop(P ′, y) − ntop(P, y) + m ≥ m + 1, and for every z 6= x, y,
ntop(P ′ ∪Q, z) ≤ m. Therefore, rP (P ∪Q) = y. This shows that P 6∼rP

P ′. �

This characterization together with Proposition 1 tells us that the compilation complex-
ity of rP is exactly dlog L(m, p)e, where L(m, p) be the number of vectors of positive integers
〈α1, . . . , αp〉 such that

∑p
i=1 αp = m. The number of such vectors is known, in fact it is

equivalent to the number of ways to choose m elements from a set of size p when repetition
is allowed, that is

(
p+m−1

m

)
—see e.g. [1]. A more explicit expression can be obtained at the

price of a very tight approximation, by using Stirling’s formula for factorials. The following
result is then obtained after a few algebraic rewritings.

Corollary 1 The compilation complexity of rP is Θ
(
p log(1 + m

p) + m log(1 + p
m)

)
It can observed that the previous result yields an upper bound in O(m + p), which can

be compared with the “naive” upper bound that may be derived from the fact that it is
sufficient to record the plurality scores of each candidate, which needs O(p log m) bits.

Borda. We get this intuitive characterization of ∼ for the Borda rule, in a similar way as
Proposition 1 for plurality. More generally, a similar result holds for any scoring rule.

Lemma 2 For P ∈ Pm
X and x ∈ X, let scoreB(x, P) be the Borda score of x obtained

from the partial profile P . P ∼rB
P ′ holds if and only if for every x, scoreB(x, P) =

scoreB(x, P ′).

Let us denote by B(m, p) the number of vectors of positive integers 〈α1, . . . , αp〉 corre-
sponding to Borda scores once m votes have been expressed. Observe that we necessarily
have that

∑p
i=1 αp = mp(p−1)

2 , since each voter distributes p(p−1)
2 points among the candi-

dates. However, this alone does not suffice to characterize the set of realizable Borda scores
(for instance, if a candidate gets a score of 0, then no other candidate can get less than m).
An upper bound is easily obtained by observing that is possible to simply record the scores
of p− 1 candidates, and that this score can be at most m(p− 1).

Proposition 4 The compilation complexity of Borda is at most (p− 1) log m(p− 1).

Now we try to exhibit a lower bound that will approach this upper bound. The general
idea is to restrict our attention to a subset of vectors of Borda scores. For example, for those
vectors where the candidate with the lowest score gets between 0 and m, the second between
m and 2m, and so on until the penultimate voter, the score of the last candidate can be
chosen on purpose so as to make a realizable vector of Borda scores. (Observe that by taking
these intervals, the scores of the p− 1 first candidates can really be chosen independently).

In what follows, we show how to construct profiles that result in the desired vectors of
Borda scores, albeit for the sake of readability we shall confine ourselves to a slightly more
restricted case than the one discussed above. Technically, the bound obtained is slightly
less tight, but the proof is easier to follow. Let us call basic score the vector of Borda scores
obtained when all voters cast their vote similarly 〈0, 1, . . . , p − 1〉. The following Lemma
shows that two voters can produce a vector where any candidate can obtain one more vote
than the basic score, while the last candidate obtains one vote less.

174

Lemma 3 For any i < p, the vector of Borda scores 〈α1, α2, . . . , αi + 1, . . . , αp − 1〉 where
∀j ≤ p, αj = 2(j − 1) can result from a two-voter profile.

Proof: We denote by 〈αv
1, α

v
2, . . . , α

v
n〉 the vector corresponding to the ballot of voter v.

We initially assign to voter 1 and 2 the basic vectors 〈0, 1, . . . , p − 1〉. Now we construct
the modified vectors of the two voters as follows: take the scores α1

i and α1
i+1 of voter

1 and swap them; then take the scores α2
i+1 and α2

i+2 of voter 2 and swap them; then
move back to voter 1 and swap the scores α1

i+2 and α1
i+3, and so on until the last score of

voter 1 or voter 2 is reached, in which case no more swap is possible. Observe now that
∀j ∈ [i + 1, p− 1], α1

j + α2
j = α′1j + α′2j because the swaps of voter 1 and 2 compensate each

other, so the scores of these candidates remain unaffected. On the other hand, the Borda
scores of candidate i and p are modified as required (resp. +1 and −1). �

But the same principle can be applied with m voters: in short, it is possible to distribute
up to m/2 points among the first p−2 candidates to improve over their basic score (with the
last candidate compensating by seeing its score decreased by the same amount of points):

Proposition 5 Let {δ1, . . . , δp−1} be any set of non-negative integers such that
∑p−1

i=1 δi ≤
m
2 . The vector of Borda scores 〈δ1,m+δ2, 2m+δ3, . . . , 2(p−1)+δp〉, where δp = −∑p−1

i=1 δi,
can result from a m-voter profile.

Proof: Let m′ = m−∑p−1
i=1 2δi. In the following, we will consider sums of profiles and multi-

plications by constants. In particular, a× 〈x1, x2 . . .〉 will refer to the profile 〈ax1, ax2, . . .〉.
The above profile can be decomposed as follows as a sum of scores

~α1 = 2δ1 × 〈0, 1, 2 . . .〉+ 〈δ1, 0, 0, 0, . . .− δ1〉
~α2 = 2δ2 × 〈0, 1, 2 . . .〉+ 〈0, δ2, 0, 0, . . .− δ2〉
~α3 = 2δ3 × 〈0, 1, 2 . . .〉+ 〈0, 0, δ3, 0, 0, . . .− δ3〉

. . .

~αp = m′ × 〈0, 1, 2 . . .〉
The last score can be realized by simply summing m′ scores 〈0, 1, 2, . . .〉. As according to
Lemma 3 the scores αi can be obtained by summing 2δi scores, the result follows. �

Corollary 2 The compilation complexity of the Borda rule is Θ(p log mp).

Proof: Let 1C be the indicator function valued 1 if condition C is true and 0 otherwise. In
Proposition 5, we showed that the number of profiles in which candidates 0 . . . p − 2 have
increasing scores is at least

∣∣∣{〈α0 . . . αp−2〉 ∈ Np−1 | ∑p−2
i=0 αi ≤ m

2

}∣∣∣. More generally, the
question amounts to enumerating V s

t , the set of vectors of s non-negative integers, whose
sum is lower or equal to t. This value can be written as

∫∞
α0..αs−1=0

1∑bαic≤tdα0 . . . dαs−1.
Clearly, this can be lower bounded by

∫∞
0

1∑
αi≤tdα0 . . . dαs−1. But this is equal to half

of the volume of the hypercube of dimension s whose side has length t. (For example,
with s = 2, this value becomes half the area of a square t2

2). More generally, we then have
V s

t ≥ ts

2 . In our case, this gives us 1
2 ×

(
m
2

)p−1. Note that this lower bounds the number of
profiles with increasing scores. Thus, the total number of profiles is at least (p−1)!mp−12−p.
Using the fact that log n! ≥ n log n, we get the lower bound (p−1)(log2(p−1)+ log2 m−2).
Together with the upper bound, the result holds. �

175

3.2 Rules based on the weighted majority graph

We now consider tournament-based rules. Let P be a profile. NP (x, y) denotes the number
voters in P preferring x to y. The majority graph MP is the directed graph whose set
of vertices is X and containing an edge from x to y if and only if NP (x, y) > NP (y, x).
The weighted majority graph MP is the same as MP , where each edge from x to y is
weighted by N(x, y) (note that there is no edge in MP between x and y if and only if
NP (x, y) = NP (y, x).) A voting rule r is based on the majority graph (abridged into “MG-
rule”) if for any profile P , r(P) can be computed from MP , and based on the weighted
majority graph (abridged into “WMG-rule”) if for any profile P , r(P) can be computed
from MP . Obviously, a MG-rule is a fortiori a WMG-rule. A candidate x is the Condorcet
winner for a profile P if it dominates every other candidate in MP . A voting rule r is
Condorcet-consistent if it elects the Condorcet winner whenever there exists one.

Lemma 4 Let r be a WMG-rule rule. If MP = MP ′ then P ∼r P ′.

Proof: For any Q, MP∪Q is fully determined from MP and MQ, because
NP∪Q(x, y) = NP (x, y) + NQ(x, y). If r is a WMG-rule then r(P ∪ Q) is fully de-
termined from MP∪Q, therefore from MP and MQ, and a fortiori, from MP and Q. �

Note that for rules based on the (non-weighted) majority graph, we still need the weighted
majority graph of P and P ′ to coincide – having only the majority graph coinciding is not
sufficient for P ∼r P ′, since MP∪Q is generally not fully determined from MP and MQ.

Lemma 4 gives an upper bound on the compilation complexity of a WMG-rule. Let
T (m, p) be the set of all weighted tournaments on X that can be obtained as the weighted
majority graph of some m-voter profile.

Proposition 6 If r is a WMG-rule then C(r) ≤ log T (m, p).

Getting a lower bound is not possible without a further assumption on r. After all,
constant rules are based on the majority graph, yet they have a compilation complexity of
0. We say that a WMG-rule r is proper if P ∼r P ′ implies MP = MP ′2. It is easy to find
a natural sufficient condition for a WMG-rule to be proper:

Lemma 5 If r is a Condorcet-consistent rule then P ∼r P ′ implies MP = MP ′ .

Proof: Let r be a Condorcet-consistent rule. Assume MP 6= MP ′ , i.e., there exists
(x, y) ∈ X with NP (x, y) 6= NP ′(x, y). W.l.o.g., NP (x, y) = NP ′(x, y) + k (hence
NP (y, x) = NP ′(y, x) − k), with k > 0. Let Q be a set of m + 1 voters where:
m + 1 − NP (x, y) voters prefer x to y and y to anyone else; NP (x, y) voters prefer y
to x and x to anyone else. As we have NP∪Q(x, y) = NP (x, y) + NQ(x, y) = m + 1;
for any z 6= x, y, NP∪Q(x, z) = NP (x, z) + m + 1 ≥ m + 1, x is Condorcet
winner in P ∪ Q (which contains 2m + 1 voters) and r(P ∪ Q) = x. But
NP ′∪Q(y, x) = NP ′(y, x) + NQ(y, x) = NP (y, x) + k + NP (x, y) = m + k, and for
any z 6= x, y, NP ′∪Q(y, z) = NP ′(y, z) + m + 1 ≥ m + 1, so y is Condorcet winner in P ′ ∪Q
and r(P ′ ∪Q) = y. Hence P 6∼r P ′. �

This gives us the following lower bound.
2Examples of WMG-rules that are not proper: constant rules; dictatorial rules; strange rules such as

r(P) = first xi (wrt a fixed ordering x1 > ... > xp on candidates) such that for all xj 6= xi there is at least
one voter who prefers xi to xj , and xp if there is no such xi; “restricted” rules such as r(P) being defined
as the candidate maximizing the Copeland score among a fixed subset of candidates; etc.

176

Proposition 7 If r is a Condorcet-consistent rule then C(r) ≥ log T (m, p).

From Propositions 6 and 7 we get

Proposition 8 If r is a Condorcet-consistent WMG-rule, then C(r) = log T (m, p).

Corollary 3 The compilation complexity of the following rules is exactly log T (m, p):
Copeland, Simpson (maximin), Slater, Banks, uncovered set, Schwartz.

We now have to compute T (m, p). We easily get the following upper bound.

Proposition 9 log T (m, p) ≤ p(p−1)
2 log(m + 2).

Proof: From Lemma 4 we know that it is enough to store MP . Let > be a fixed ordering
on the candidates. Storing MP can be done by storing, for every pair (x, y) of distinct
candidates such that x > y, (a) a single bit indicating whether NP (x, y) > NP (y, x) or
NP (x, y) ≤ NP (y, x) and (b) min(NP (x, y), NP (y, x)). Since the latter number can vary
between 0 and m

2 if m is even, and between 0 and m−1
2 is m is odd, storing this number

requires at most log
(

m
2 + 1

)
bits. This makes a total of 1 + log

(
m
2 + 1

)
bits, that is,

log(m + 2) bits. We have p(p−1)
2 pairs of distinct candidates, hence the result. �

This bound is not necessarily reached: for any x, y, z ∈ X and any profile P we have
NP (x, z) ≥ NP (x, y) + NP (y, z) − m (e.g, if m = 3 and NP (x, y) = NP (y, z) = 2, then
NP (x, z) cannot be 0).

Lemma 6 Consider V s
t the set of vectors of s non-negative integers whose sum is lower or

equal to t. Then T (m, p) ≥| V
p(p−1)

2
m
2

|.

Proof: Assume m is even. Let {ci,j | 1 ≤ i < j ≤ p} be any set non-negative integers
such that

∑
i<j ci,j ≤ m

2 . We will show how to build a profile such that N(i, j) = 2ci,j ,

where N(i, j) indicates how many voters prefer i to j. Let us divide voters into p(p−1)
2

groups gi,j with 1 ≤ i < j ≤ p and a final group g0, such that each group gi,j is assumed
to contain exactly 2ci,j voters and g0 contains the rest of the voters (i.e. m −∑

i<j 2ci,j).
In each group gi,j , set the profile of half of the voters to i � j � x1 � x2 � . . . � xp−2,
and the other half to xp−2 � xp−1 � . . . � x1 � i � j, where x1 . . . xp−2 refer to the
candidates other than i and j in an arbitrary order. In group g0 set half of the voters to
x1 � x2 � . . . � xp and the other half to xp � . . . � x1. Let Ng(x, y) denote the number of
voters in group g preferring x to y. Clearly, Ngij (x, y) = N(x, y) if x = i and y = j; and 0
otherwise; and Ng0(x, y) = 0. Thus, N(x, y) =

∑
Ngi,j (x, y) = 2ci,j . �

From the previous Lemma, and using a technique similar to the one used in Corollary 2
to enumerate V s

t , we obtain the compilation complexity of this family of rules:

Corollary 4 If r is a Condorcet-consistent WMG-rule then C(r) = Θ(p2 log m).

3.3 Plurality with runoff

Plurality with runoff is the voting rule (denoted by r2) consisting of two rounds: the first
round keeps only the two candidates with maximum plurality scores (with some tie-breaking
mechanism), and the second round is simply the majority rule.

177

Proposition 10 Let r2 be the plurality-with-runoff rule. P ∼r2 Q holds if and only if for
every x, ntop(P, x) = ntop(Q, x) and for every x, y, NP (x, y) = NQ(x, y).

Lemma 7 If for every x, ntop(P, x) = ntop(Q, x) and for every x, y, NP (x, y) = NQ(x, y),
then P ∼r2 Q.

Proof: For every x ∈ X, since ntop(P, x) = ntop(Q, x), we also have ntop(P ∪ R, x) =
ntop(Q∪R, x): the two plurality winners are the same in P ∪R and Q∪R. Let x and y be
these two plurality winners. Since NP (x, y) = NQ(x, y), we have NP∪R(x, y) = NQ∪R(x, y),
therefore, MP∪R(x, y) if and only if MQ∪R(x, y) and hence r2(P ∪R) = r2(Q ∪R). �

Lemma 8 If for some x ntop(P, x) 6= ntop(Q, x), then P 6∼r2 Q.

Proof: If p = 2, this is a corollary of Lemma 1. Assume p ≥ 3, and w.l.o.g., assume
ntop(P, x) > ntop(Q, x). Because

∑
c∈X ntop(P, c) =

∑
c∈X ntop(Q, c)(= m), there exists

an y 6= x such that ntop(P, y) < ntop(Q, y). Almost w.l.o.g., assume x has priority over y
for tie-breaking3. Let z 6= x, y (which is possible because p ≥ 3). We now construct an R
such that in P ∪ R, the two finalists are x and z, and the winner is x, and in Q ∪ R, the
two finalists are y and z (therefore the winner cannot be x). Let R be the following partial
profile containing 14m + ntop(P, y)− ntop(P, x) new votes:

ntop(P, y)− ntop(P, x) + 4m votes: x � . . .
4m votes: y � x � z � . . .
6m votes: z � . . .

The plurality scores in P ∪R are:

• sP∪R(x) = ntop(P, x) + ntop(P, y)− ntop(P, x) + 4m = ntop(P, y) + 4m;

• sP∪R(y) = ntop(P, y) + 4m;

• sP∪R(z) = ntop(P, z) + 6m.

• for every other candidate c, sP∪R(c) = ntop(P, c).

Since ntop(P, c) ≤ m holds for every c 6= x, y, z, we have sP∪R(z) > sP∪R(x) =
sP∪R(y) > sP∪R(c) for every c 6= x, y, z. Because x has priority over y, the two candi-
dates remaining for the second round are z and x. Now, the number of voters in P ∪ R
preferring x to z is N(P ∪R, x, z) = N(P, x, z)+ntop(P, y)−ntop(P, x)+8m ≥ 8m (because
N(P, x, z) ≥ ntop(P, x)); and N(P ∪R, z, x) = N(P, z, x)+6m ≤ 7m. Hence r2(P ∪R) = x.
The plurality scores in Q ∪R are:

• sQ∪R(x) = ntop(Q, x) + ntop(P, y)− ntop(P, x) + 4m > ntop(P, y) + 4m;

• sQ∪R(y) = ntop(Q, y) + 4m;

• sQ∪R(z) = ntop(Q, z) + 6m.

• for every other candidate c, sQ∪R(c) = ntop(Q, c).

3The proof in the opposite case is very similar and we omit it.

178

sQ∪R(y) − sQ∪R(x) = ntop(Q, y) − ntop(P, y) + ntop(P, x) − ntop(Q, x). Now, by
assumption we have ntop(Q, y) > ntop(P, y) and ntop(P, x) > ntop(Q, x), therefore
sQ∪R(y) > sQ∪R(x).

sQ∪R(z) − sQ∪R(x) = ntop(Q, z) − ntop(Q, x) − ntop(P, y) + ntop(P, x) + 2m. Now,
ntop(P, x) > ntop(Q, x), therefore sQ∪R(z)− sQ∪R(x) > ntop(Q, z)− ntop(P, y) + 2m > 0,
that is, sQ∪R(y) > sQ∪R(x).

Because the plurality scores of both y and z in Q∪R are larger than the plurality score
of x, x does not pass the first round, therefore r2(P ∪R) 6= x. �

Lemma 9 If for some x, y ∈ X, N(P, x, y) 6= N(Q, x, y) then P 6∼r2 Q.

Proof: Assume w.l.o.g. that N(P, x, y) > N(Q, x, y). We are going to complete P and Q
such that in both P ∪R and Q ∪R, the finalists are x and y, with x winning in P ∪R and
y in Q ∪R. Let R be composed of the following 2N(P, y, x) + 3m + 1 votes:

2N(P, y, x) + m + 1 votes: x � y � . . .
2m votes: y � x � . . .

Obviously, the plurality scores in P ∪R verify sP∪R(x) > m, sP∪R(y) > m, and for any
c 6= x, y, sP∪R(c) ≤ m, therefore, the finalists are x and y. Things are the same for Q ∪R.

Now, N(P ∪ R, x, y) = N(P, x, y) + 2N(P, y, x) + m + 1 = m + N(P, y, x) + m + 1 =
N(P, y, x)+2m+1; and N(P∪R, x, y) = 2N(P, y, x)+4m+1−N(P∪R, x, y) = N(P, y, x)+
2m. Therefore, r2(P ∪R) = x.

Lastly, N(Q∪R, x, y) = N(Q, x, y)+2N(P, y, x)+m+1, and N(Q∪R, x, y) = N(Q, y, x)+
2m. We have now N(Q∪R, y, x)−N(Q∪R, x, y) = N(Q, y, x)+m−N(Q, x, y)−2N(P, y, x)−
m−1 = N(Q, y, x)+m−N(Q, x, y)−2N(P, x, y)−1 = 2(N(Q, y, x)−N(P, y, x))−1. Now,
N(Q, y, x) > N(P, y, x), therefore, N(Q∪R, y, x) > N(Q∪R, x, y), that is, r2(Q∪R) = y. �

Proposition 10 is now a corollary from Lemmas 7, 8 and 9, and it follows that:

Proposition 11 The compilation complexity of plurality with runoff is log L(m, p) +
log T (m, p).

4 Conclusion

This paper has introduced a notion that we believe to be of primary importance in many
practical situations: the compilation of incomplete profiles. In particular, the amount of
information that a given polling station needs to transmit to the central authority is a good
indicator of the difficulty of the verification process. We have established a general technique
which allows us to derive the compilation complexity of a voting rule, and have related it to
other issues in communication complexity. We have derived a number of results for specific
classes of voting rules. A question that we have only sketched in this paper and that we
plan to consider more carefully concerns the situations where the number k of remaining
voters is fixed. In this case, a different approach can be taken: instead of compiling the
partial profiles as provided by the m voters, it may be more efficient to compile the possible
completion of this partial profile together with the associated outcome, or, in other words,
to compile the function that takes the remaining k profiles as input (there are (p!)k such
inputs) and return the outcome. As there are (p!)k possible profiles, the number of such
functions is p(p!)k

. This tells us that a general upper bound for C(r, k) is ≤ (p!)k. log p.

179

Hence, overall we have C(r, k) ≤ min(m. log(p!), (p!)k. log p) (note that the second term
becomes interesting only when m is big enough, and p and k small enough).

The general problem of dealing with incomplete profiles opens a host of related questions,
for instance the probability that a voting process could be stopped after only m voters have
expressed their opinions, or (a closely related question), the probability that the central
authority would make a mistake were it forced to commit on a winner in situations where
no candidate is yet guaranteed to prevail. Another interesting issue for further research
would consist in designing new ways of computing NP-hard voting rules using an off-line
compilation step so that their on-line computation time becomes polynomial in the size of
the initial profile. This, of course, implies that the size of σ(P) may be much larger (possibly
exponentially) than the size of the input, which means that the computation of ρ may be
logarithmic in the size of the compilation σ(P).

References

[1] E. Bender and S. Williamson. The Foundations of Combinatorics with Applications.
Dover, 2006.

[2] S. Brams, D. Kilgour, and W. Zwicker. The paradox of multiple elections. Social Choice
and Welfare, 15(2):211–236, 1998.

[3] M. Cadoli, F. M. Donini, P. Liberatore, and M. Schaerf. Feasibility and unfeasibility
of off-line processing. In ISTCS, 1996.

[4] V. Conitzer and T. Sandholm. Vote elicitation: complexity and strategy-proofness. In
Proceedings of AAAI-02, pages 392–397, 2002.

[5] V. Conitzer and T. Sandholm. Communication complexity of common voting rules. In
Proceedings of EC-05, 2005.

[6] A. Darwiche and P. Marquis. A knowledge compilation map. JAIR, 17:229–264, 2002.

[7] K. Konczak and J. Lang. Voting procedures with incomplete preferences. In Proc.
IJCAI-05 Multidisciplinary Workshop on Advances in Preference Handling, 2005.

[8] E. Kushilevitz and N. Nisan. Communication complexity. Cambridge Univ. Press, 1997.

[9] M.S. Pini, F. Rossi, K. Brent Venable, and T. Walsh. Incompleteness and incompara-
bility in preference aggregation. In IJCAI, 2007.

[10] T. Walsh. Complexity issues in preference elicitation and manipulation. In AAMAS,
2008.

[11] L. Xia and V. Conitzer. Determining possible and necessary winners under common
voting rules given partial orders. In Proceedings of AAAI-08, 2008.

Y. Chevaleyre, N. Maudet, G. Ravilly-Abadie
LAMSADE, Univ. Paris-Dauphine
75775 Paris, France
Email: {chevaleyre,maudet,ravilly-abadie}@lamsade.dauphine.fr

J. Lang
IRIT, CNRS
31062 Toulouse, France
Email: lang@irit.fr

180

