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Abstract

The needed amount of information to make a social choice is the cost of information process-
ing, and it is a practically important feature of social choice rules. We introduce informational
aspects into the analysis of social choice rules and prove that (i) if an anonymous, neutral,
and monotonic social choice rule operates on minimal informational requirements, then it is a
supercorrespondence of either the plurality rule or the antiplurality rule, and (ii) if the social
choice rule is furthermore Pareto efficient, then it is a supercorrespondence of the plurality
rule.

Keywords: antiplurality rule, minimal informational requirement, plurality rule, social choice
rule.

1 Introduction

Each social choice rule utilizes information on the agents’ preferences at different levels. For exam-
ple, it is intuitively clear that dictatorship needs much less information than the Borda rule; under
dictatorship, we need to know only the most preferred alternative of a dictator, while under the Borda
rule, we need to know the whole preferences of all agents. Without some electronic device (this is
the case in most situations where collective choice is to be rapiecessing a large amount of
information is not an easy task. The required amount of information can be considered as the cost of
information processing; the larger the amount of information to process, the more time and human
resources are needed and the more risk of making errors is involved.

Therefore, the informational requirement is a practically important feature of each social choice
rule. That is, when the information processing cost is high, informational requirements should be
one of the most important criteria of social choice rules in evaluating them. Therefore, in this paper,
we incorporate the informational aspects into social choice. The fundamental problem we are to deal
with is the following, “Given a group of social choice rules satisfying some “reasonable” properties,
which of them operates on the smallest amount of information?” In other words, we incorporate
minimal informational requirements into the axiomatic analysis of social choice rules.

Our main results are (i) if an anonymous, neutral, and monotonic social choice rule operates on
minimal informational requirements, then it utilizes only information about either the top ranked
alternatives or the bottom ranked alternatives by the agents and it is a supercorrespondence of either
the plurality rule or the antiplurality rule, and (ii) if the social choice rule is furthermore efficient,
then it utilizes only information about the top ranked alternatives by the agents and it is a supercorre-
spondence of the plurality rule. Thus, the plurality rule and the antiplurality rule are characterized as
the most selective social choice rules among anonymous, neutral, and monotonic social choice rules
which operate on minimal informational requirements, and the plurality rule can be characterized
as the most selective social choice rule among anonymous, neutral, monotonic, and efficient social
choice rules which operate on minimal informational requirements.

This last result is the easiest one to interpret. The plurality rule is widely used in our daily lives,
and many people would agree that, compared with other “reasonable” social choice rules, the main

1| am grateful to three anonymous referees of this conference for helpful comments, especially, for letting me notice the
literature on communication complexity.

2In some area of the world, electronic voting systems are adopted in some “big” elections. However, it is very unlikely
that all social choices ranging from national elections to the choice of restaurant for a dinner are made with a electronic
device, at least in the near future. Major obstacles for electronic voting systems are the cost of introducing the system and the
reliability of hardware and software. Actually, in Japan, the result of the election in Kani city in 2003 was cancelled due to a
hardware problem, and in Aki ward of Hiroshima city, electronic voting is abandoned in 2006 due to the financial constraint.
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advantage of the plurality rule lies in its simplicity and selectivity (i.e., the set of “winners” is small).
Our last result theoretically supports this common sense.

Let us mention some related literature. Conitzer and Sandholm (2005) poesemtunication
complexitieof eleven major voting rule$.(See Kushilevitz and Nisan (1997) for a survey on the
literature on communication complexity. A seminal work is Yao (1979).) In their model, each agent
sends a bit of his private information necessary to make a social choice to the others sequentially.
That s, the agents “communicate” to compute the value of a voting rule. Communication complexity
of a voting rule is defined as the worst-case number of bits in the best protocol to compute the value
of the voting rule. Communication complexity can be considered as a kind of informational size of a
voting rule. Among many differences, the most significant and essential one between my approach
and Kushilevitz and Nisan (1997) is that | introduce a minimal informational requirement as an
“axiom” and hence measuring the informational size of some specific social choice rules is not my
objective while it is in Kushilevitz and Nisan (1997).

Many social choice rules are proposed and axiomatically characterized in the theory of social
choice? Being prevalent in the real world, the plurality rule is axiomatically characterized by Richel-
son (1978); Roberts (1991); Ching (1996); Yeh (2008), among others. Our contribution to this liter-
ature is to characterize the plurality rule (and the antiplurality rule) based on minimal informational
requirements and selectivity.

Some researchers consider social choice rules which rely on limited information on preferences.
(For example, Moulin (1980); Roberts (1991); Yeh (2008), among others.) However, in their anal-
yses, such restrictions are put as assumptions and do not intend to study the amount of necessary
information to make a social choice under each social choice rule.

In sum, analyses in this paper such as investigation of the minimal informational size needed to
be a “reasonable” social choice rule and characterizations based on minimal informational require-
ments seem to be novel in the literature, and would give useful insights in the evaluation of social
choice rules.

In Section 2, we give basic notation and definitions. In Section 3, a series of results are presented.
Proofs are collected in Section 4.

2 Basic notation and definitions

Let N = {1,...,n} be afinite set of agents and [&tbe a finite set of alternatives witl| = m >
2. Let £ denote the set of all linear orders (complete, transitive, and antisymmetric binary relations)
on X. AnelementRy = (Ry,...,R,) of LV is called a preference profile. A linear ordgy in
a preference profilé is agent’s preference, and®; is the strict part of?;. For each preference
R € £ and for each integet with 1 < k& < m, letr;(R) denote theith ranked alternative with
respect toR. For eachi € N, a functiony; of £ onto a finite sef’; is called amessage function
and a sel; is called amessage spacé triple (¢n, Ky, f) is called arule, wherepy is a profile
of message function§es, ..., ¢, ), Ky is the Cartesian product of message spacgsand f is
a correspondence @&y into X. When the agents have a preference prdiije, then they report
a message profiley (Ry) = (p1(R1),---,¢n(Rs)) € Ky and f makes a choice based on the
received messagey (Ry).

For our purpose, the labels or the names of messages are inessential and we restrict the form of
message spaces (and message functions) to a specific form without loss of generality. This can be
done as follows; letyn, Ky, f) be a rule with a general form.

3More precisely, Conitzer and Sandholm (2005) present the asymptotic lower and upper bounds of communication com-
plexities of voting rules. (For example, the plurality rule belong®te: log, m).) This is a standard way to measure
efficiency of an algorithm in computer science.

4See Sen (1986) and Moulin (1988), among others, for surveys of the literature.
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e (Message spaces) For eactt N, we can define the partitiom; of £ induced byyp; .
Formally, M; = {@;*(k;) | ki € K;}. Then, we can regard thi$1; as a message space
equivalent toC; in the sense that there exists a natural bijection beti&emd.M;; let ; be
the bijection betweelC; and M; defined byr; (k;) = ¢; ' (k).

e (Message functions) For eac¢ke N and for eachR; € L, let ¢ (R;) be the element aM;
such thatk; € ¢;(R;). Note that ifp;(R;) = k, thent;(k) = ¢(R;). Thus, under), agent
i reportsy’(R;), which is a message correspondingAd?; ). Formally,} = 7; o ¢;.

e (Social choice rule) For eachly € [[,c.y M:i = My, let f'(My) be f(ky), where
kny € Ky is the message profile corresponding Ay in the sense thaty(ky) =
(r1(k1), -, Tu(kn)) = My. Formally, f’ = f o 75"

Now, we have a new rulép’y, My, f’) which is equivalent tdpn, Ky, f) in the sense that the
only difference is the labels or the names of messagespin Ky, f), agenti reportsy; (R;).
When we just relabel this messagg R;) ast;(¢;(R;)), then we have a rulgp’y, My, f').

Thus, without loss of generality, we can restrict our attention to the rules such that message
spaces are partitions @f and message functions assign each preference the set in the partition to
which that preference belongs. In the following, unless otherwise stated, we assume that every rule
takes this restricted form.

In the restricted form of rules, a profile of message functipRsis uniquely determined by
a profile My of message spaces (partitions@f Thus, in the following, we drop the message
functions and write(. My, f) for a rule. Given a rul§ My, f), when we speak opy, then it
should be always understood to be the profile of message functions sugh(tRat = M; € M;
with R; € M;. Insum, given a rulé My, f), agents are required to report a profile of sets of linear
ordersMy € My such that the profile of their preferencBs; belongs toMy, and f makes a
choice based o/ .

Itis worth noting that a profile of message spagdés; (and hence a profile of message functions
pn) as well asf is set by the social choice rule designer, and not the variable determined by the
agents. We introduce message spaces to clarify what information a social decision requires and to
define the informational size of each social choice rule.

Next, we define the informational size of a rule, which is a core concept of this paper.

Definition 2.1 For each rulg My, f), the sum of the numbers of possible messaggs,; | M|
is called thenformational size of M, f).

Definition 2.2 (The plurality rule) The plurality rule chooses the alternatives ranked as the top by
the largest number of agents. In our model, this rule can be written as follows. For eack,

let M(z) = {R € L | ri(R) = z}. (The set of preferences which ranmkat the top.) For each
i€ N,letM? = {M(z) | = € X}. Then,M? is a partition ofL. For each message profile
My € [l;eny MY = M¥, and for eache € X, let N,(My) = [{i € N | M; = M(z)}|. (The
number of agents whose messag@/fisx).) Finally, for each message profily, let f?(My) =

{z € X | N,(My) > N,(My) Vy € X}. Then,(MXL;, f?) is called theplurality rule. Its
informational size is:am. (Remember that is the number of the agents andis the number of
alternatives.)

In the plurality rule,f? makes choice based on information contained in a message pvofilen
MZE;. From the viewpoint off?, it is known that the agenits preference is in a reported message
M;, but it is not known which is the ageiis preference inV/;. However, the plurality rule can be
defined based on this restricted information, because #gck M? tells what is the alternative
ranked as the top.

Thus, in our model, by introducing message spaces between a choice rule and preferences, we
can measure the amount of needed information to make a social choice.
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Definition 2.3 (The antiplurality rule) The antiplurality rule chooses the alternatives ranked as the
bottom by the smallest number of agents. For each X, let M (z) = {R € L | rn(R) = z}.
(The set of preferences which ramlat the bottom.) For eache N, let M¢ = {M(z) | z € X}.
Then, M{ is a partition ofZ. For each message profidy € [[,cy M{ = M$ and for each

x € X, letN,(My) =|{i € N | M; = M(x)}|. (The number of agents whose messag¥ix).)
Finally, for each message profiley, let f*(My) = {z € X | No(My) < N, (Mn) Vy € X}.
Then,(M$%;, f*) is called theantiplurality rule. Its informational size igim.

At this point, several remarks are in order. First, the reader would notice that to define the in-
formational size and to describe the procedure of making a social choice, it suffices to consider a
correspondence which assigns a social outcome to each message profile. For example, in defining
the plurality rule, we could defing’ as a correspondence &f" to X such that for each message
profilexy = (z1,...,2,) € XV, g?(xx) is the set of alternatives which are reported by the largest
number of agents. If we defined thj8 as the plurality rule, then there would be no agents’ “pref-
erences” in the model. The reason to incorporate preferences into our model is that our objective is
to find the rules which operate on the minimal information requirements among the rules satisfying
some plausible properties such as (weak) monotonicity and efficiency, and these properties refer to
agents’ preferences. (If our objective were to find the social choice rule which operates on minimal
informational requirements without any restriction, then the answer would be constant social choice
rules, or “custom”, which needs no information to make a social choice.)

Next, although we calp; (derived fromM;) a message function and use the word “report”, we
do not need to interpret them literally. The only roleg@fis to specify what kind of information
is necessary to make a social choice. Thus, we could consider the following model; agents report
a preference profil&y and the central institution which is responsible to make a social decision
would take two steps to make a decision. At the first stage, pick up necessary information according
to ¢ from Ry, and at the second stage, process informatigiiRy) = My € My and make a
social decision.

Thirdly, we modelf as a correspondence and not a function. There are two reasons for this.
First, we do not exclude the cases where the society is to choose a set of “satisfactory” alternatives
(not necessarily the “best” alternatives). In this case, the social outcome is naturally formulated
as sets of alternatives. Second, even when the society is to choose the “best” alternatives, almost
all practically important rules such as the plurality rule, the Borda rule, the Copeland rule, and the
Simpson rule (See Moulin, 1988), are formulated as correspondences. When we ultimately need
to choose a single outcome whereasan choose multiple alternatives, then it is done by some
tie-breaking rule, but this is outside the scope of our analysis.

We define several properties of a rule.

Definition 2.4 Arule (M y, f) is said to satisfy

e anonymityif for every permutations of N and for everyRy € LV, (f o on)(RN) =
(f o on)(RS), whereRg, is defined by for eache€ N, R = R, ;).

e neutralityif for every permutatiorp of X and for everyRy € LV, p[(f o on)(RN)] = (f
on)[p(Rn)], wherep(Ry) = (p(R1),...,p(Rn)) is defined by for each € N, p(R;) =
{(z,y) € X2 [ (p~ (), p~}(y)) € Ri}.

¢ (weak) monotonicitjf for any Ry and Ry such that: € f(¢n(Ry)), Ry andR’y, coincide
on (X \ {z})? andz = rx(R;) = ri(R;) with ¥ < k for all i € N, we haver €
flen(Ry)).

o (Pareto) efficiencyf for any distinctz,y € X with 2P,y foralli € N,y & f(on(Rn)).

[¢]
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Anonymity requires symmetric treatment of the agents and neutrality requires symmetric treatment
of alternatives. Monotonicity requires that wheris chosen aRy and the position of (weakly)
improves through the change froRy to R’ while the relative comparison of any other pair of
alternatives is unchanged, thenis still chosen atR’y.. In the literature, it is often called weak
monotonicity to distinguish from the so called Maskin monotonicity which does not appear in this
paper. Note that monotonicity (in the sense of this paper) is much weaker than the Maskin mono-
tonicity because the relative rankings excepte fixed from the change froiy to R/ Efficiency
requires that when an alternatiyés dominated by some alternative theny cannot belong to the
social outcome. Although efficiency is one of the most standard axioms in social choice theory and
in economic theory, its relevance depends on the context under consideration. For example, in this
paper, as mentioned earlier, we do not exclude cases where the society is to choose a set of “sat-
isfactory” alternatives. In such a case, the fact th& dominated byr does not imply thay is
not satisfactory, and hengecan belong to the social outcome. Based on this observation, we give
results with and without efficiency in the next section.

Next, we define formally the minimality of informational requirements.

Definition 2.5 Given a set of rulesF, a rule(My, f) is said tooperate on minimal informational
requirements inF if the informational size of My, f) is not larger than the informational size
of any other rules inF. In this case, the informational size @My, f) is called theminimal
informational size inF.

3 Results

In this section, we give a series of results. L&V denote the set of nonconstamtles satisfying
anonymity and neutrality, led N M denote the set of nonconstant rules satisfying anonymity, neu-
trality, and monotonicity, and led VM P denote the set of rules satisfying anonymity, neutrality,
monotonicity, and efficiency. Throughout this section, assume 2. (Whenm = 1, then there is

no room for “choice”.)

Theorem 3.1 If arule (M y, f) operates on minimal informational requirements4nV, then
(i) its informational size i:m, and more specifically,

(i) there existsh € {1,...,m} such that for anyi €¢ N, M; = {M;(z) | = € X}, where

The second statement of the theorem implies that we can associate each message with one alter-
native in X and that this relation is a bijection. Moreover, the statement explicitly specifies what
information a rulg My, f) depends on; it relies on information what are ttle ranked alternatives
in Ry . Consider that ageritwith a preference?; changes his preference 8. Then, agent sends
the same message iff (R;) = ri(R}).

For example, the plurality rule and the antiplurality rule operate on minimal informational re-
quirements inAN with i = 1 andh = m, respectively. Also, the ruleM y, f) such that eaciM;
is the one defined in the second statement of the theoremhwitl2 and f chooses the alternatives
second ranked by the largest number of agents also operates on minimal informational requirements
in AN

Before the next theorem, we prepare the following terminology.

Definition 3.1 A rule (M, f) is said to be @upercorrespondenad a rule( My, f') is for every
preference profilRy, f(en(Rn)) D f/(¢y(Rn)) holds.

SArule (M, f) is said to benonconstanif the correspondencg o ¢ is nonconstant oV .
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When a rule(My, f) is a supercorrespondence of a r(fet’y, /'), then, a rulg My, f) is less
selective than(My, f/). Of course, selectivity is not always a plausible axiom. For example,
when you want to chooses a set s#tisfactory(and not necessarily the best) alternatives, then
selectivity is not an appealing condition for rules. However, in many cases, we want to choose the
socially best alternatives, and in such situations, we usually do not want to rely on a tie-breaking rule
(usually, some random device) as much as possible. We want to determine a final social outcome
by preferencess much as possible. For instance, in elections where we want to choose one winner,
it is absurd to use a ruleM v, f) such that each voter reports his most preferred candidatg and
chooses the candidates who receive at least one vote. (The final outcome is determined by some
random device, which is outside our model.)

Theorem 3.2 If a rule (M y, f) operates on minimal informational requirements4/’ M, then
(i) hin Theorem 3.1 is either or m, and

(i) If h =1, then(My, f) is a supercorrespondence of the plurality rule and it= m, then
(M, f) is a supercorrespondence of the antiplurality rule.

This theorem shows that if monotonicity is additionally required, then necessary information to
make a social choice is either the top ranked alternatives or the bottom ranked alternatives by the
agents. If the rule relies on information on the top ranked alternatives, then, the alternatives chosen
by the plurality rule are contained in the value of the rule. If the rule relies on information on the
bottom ranked alternatives, then the alternatives chosen by the antiplurality rule are contained in the
value of the rule.

Because the antiplurality rule is not efficiémthenm > 3 and it is equal to the plurality rule
whenm = 2, Theorem 3.2 readily implies the following theorem.

Theorem 3.3 If arule (M, f) operates on minimal informational requirementsAdt M P, then
it is a supercorrespondence of the plurality rule.

This theorem gives a new characterization of the plurality rule; it is the most selective rule among

the rules operating on minimal informational requirementgli* M. When you want to choose

the socially best alternatives, then it is natural to adopt a ruléAAMP. Theorem 3.3 shows that

if you care for the informational processing cost and selectivity, then the answer is the plurality rule.
We conclude this section with the following remark. We defined the informational size of

(Mu, f) simply by >"._\ [M;|. Our results do not depend on this specific way of defining the

informational size. Let be any strictly increasing function on the positive orthanR&f the n-

dimensional Euclidean space, and let us defifié 1], ..., |M,|) to be the informational size of

(Mup, f). Then, we can obtain the same results with this definition of the informational size.

4 Proofs

In this section, we introduce many permutations\dofand X. For simplicity, when we describe a
permutation, we do not specify the part on which the permutation is the identity function. For ex-
ample, when we say thatis the permutation oV exchanging andj, then it should be understood
thato is the identity function onV \ {4, j}.

6For example, letX = {z,y, 2} and letRx be a preference profile such thaR;yR;z for all i € N. Then, the
antiplurality rule chooseéz, y} while y is dominated byc.
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4.1 Proof of Theorem 3.1

We proceed to establish Theorem 3.1 through a series of lemmagM.gt f) be a rule which
operates on minimal informational requirements4A/. Because the plurality rule is idN/, the
informational size of M, f) is not greater thanm.

Lemma4.1 M; = M;foralli,j € N.

Proof. Suppose to the contrary th&t; # M for somei, j € N.
CLAIM 1: At least one of the following two statements holds:

(i) There existV; € M; andM}, M? € M, such thatM; N M} # 0 andM; N M7 # 0.
(i) There existM}, M? € M; andM; € M; such thatM N M3 # @ andM? N M3 # 0.

3

Proof of Claim 1 Suppose that neither of the statements holds. Because (i) does not hold, for any
M; € M;, there existsV/; such thatM; c M;. Because (i) does not hold, for ady; € M,
there existsM; € M, such thatM; C M;. Thus, for anyM; € M;, there existM; € M; and
M € M; such thatM; C M; C M]. BecauseM; is a partition ofZ, this implies thatM; = M;.
Therefore, M; = M, which is a contradiction. O
Without loss of generality, assume that statement (i) of Claim 1 holds.
CLAIM 2: f(M},M_;) = f(M?,M_j)forall M_; € M_;.
Proof of Claim 2 Suppose to the contrary thatM;, M _;) # f(M?, M_;) for someM_;
M_;. Let R; and R/ be such thatR; € M; N M} andR; € M; N M;. Let R_; be
an element ofM_;. f(en(R;,R-;)) # f(pn(R;, R-;)). Now, interchange the preferences
of agentsi and j. (Let o denote the permutation interchanging agentnd j.) Then, by
anonymity, /(o ([(Rj, R—;)])) # f(en([(R],R_;)°])). However, becaus&;, R, € M,
on([(Rj, R—5)7]) = on([(R], R-;)7]), which is a contradiction. O
Claim 2 implies that distinct messagkﬁj1 ande2 can be integrated into one message without
any essential change. Formally, et = {M; | M; € M;\ {M}, M?} or M; = M} U M?}.
Fori € N\ {j}, let M = M;. Let My = [],cy M;. For each message profildy c M,
let f'(My) = f(My) if M; # M} U M?and f'(My) = f(M},M_;)if M; = M} U M?.
We claim thatf’(¢'y(Rn)) = f(en(Ry)) for every preference profil&y. If R; ¢ M} U M?,
then f'(¢ly(Ry)) = ['(Mn) = f(Mn) = f(en(Ry)). If R € M], then f'(¢}y(Ry)) =
f/(Mjl U M]-Z,M_j) = f(Mjl,M_j) = f(LpN(RN)) If Rj S MJQ, thenf’(<p’N(RN)) = f/(Mjl @]
MZ?, M_j;) = f(M},M_;) = f(M?,M_;) = f(en(Rn)). (¢} is a profile of message functions
associated with\1',.) Therefore (MY, f’) is in AN whereas the informational size 'y, f7)
is less than that of f, M), which is a contradiction to the fact that , f) attains the minimal
informational size inAN. [ ]

Consider the caser = 2. Let X = {z,y}, let R; be the linear order such tha{(R;) = = and
ro(R;) = y and letR; be the linear order such that(R.) = y andrs(R}) = x. Then, by Lemma
4.1, eitherM; = {{R;, R;}} foralli € N or M; = {{R;},{R;}} foralli € N. Inthe former
case holds, because there is only one possible message pfofiley should be constant 06",
which is a contradiction. Thus, the latter case holds. Therefore, we complete the proof of Theorem
3.1 for the casen = 2. (h can be eithet or 2.) In the following, we assume: > 3.

Lemma 4.2 For anyi € N, for any permutatiop of X, and for anyM € M, p(M) € M,.

Proof. Suppose(M) ¢ M, for someM € M;. There are two cases to consider.

CASE 1: p(M) € M’ for someM’ € M,. BecauseM C p~'(M’), there exists\/* € M, such
thatM* # M andM* N p~1(M') # 0.

CLAaM: f(M,M_;) = f(M*, M_;)forall M_; € M_,.
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Proof of Claim Suppose to the contrary thg(M, M_;) # f(M*, M_;) for someM_; €

M_;. Let R; be any element of\/, let R_; be any element of\/_;, and letR; be any el-
ement of p~1(M’) N M*. Then, (f o on)(Ri, R—i) # (f o ¢n)(Ri, R—;). By neutrality,

(f o on)p(R), p(R-)] # (f © on)lp(Ri), p(R—7)]. However, becausp(R;), p(R:) € M,
on[p(R:), p(R_;)] = ¢n[p(R;), p(R-;)], which is a contradiction. O

This claim shows that we can integrate distinct messagesd M * into one message without

any substantial change. See the argument following Claim 2 in the proof of Lemma 4.1. The same
reasoning applies here, and we have a contradiction.

CASE 2: p(M) N M' # ( and p(M) N M? #  for some M, M? € M,. In this case,
we claim f(M', M_;) = f(M M_;) for all M_; € M_;. Suppose not. Then, for any
RY € p(M) 1 M1 and for anyR? € p(M) 1 M2, (] o on ) (R R ) £ (f o o) (B2, R_). By
neutrality, (f o on)(p™ ' (R}), p™ (R=i)) # (f o on)(p~'(R?), p~'(R_;)). However, because
p 1 (R}),p~1(R?) € M, we havepy (p~ ' (R}), p~ ' (R-:)) = on(p~ ' (R}), p~ ' (R-:)), which is
a contradiction.

Thus,f(M*, M_;) = f(M? M_;)forall M_; € M_;. This implies that we can integrate'!
and M? into one message without affecting any essential aspects of &vtle, f). By the same
argument as in the proof of Lemma 4.1, we have a contradiction. |

Lemma 4.3 For anyi € N, there existd: € {1,...,m} such that for anyM € M;, r,(M) =
{z € X | r,(R;) = « for someR; € M} is a singleton.

Proof. Suppose to the contrary that for alye {1, ..., m}, there existdf € M, such that, (M)
is not a singleton. Led/’ be any element aM; and letR; and R, be any elements a¥/ andM’,
respectively. Lep be the permutation ok such thatp(R;) = R;. Then,p(M) N M’ # 0. By
Lemma 4.2p(M) € M;. BecauseM,; is a partition ofC, p(M) = M’. This implies that, (M")
is not a singleton. This argument shows that for ang {1,...,m} and for anyM € M,, there
existR, R’ € M such that,(R) # rn(R').
CLAaIM 1: Foranyh € {1,...,m}, foranyM € M,, and for anyx € X, there exist®® € M such
thatr),(R) = z. In other wordsy, (M) = X forall h € {1,...,m} andM € M,.
Proof of Claim 1 Suppose not. Then, there exst {1,...,m} andM € M;, such that, (M) #
X. We claim thafr, (M)| = m — 1.

Supposér,(M)| <m —2. Let X \ rp,(M) = {y1,...,yn, y and letry, (M) = {z1,...,zp, }.
Becausdr,(M)| < m — 2, hy > 2. Because,(M) is not a singletonh, > 2. For each pair
(¢1,€2) such thatl < ¢; < hy andl < {y < ho, let pf;f be the permutation exchanging, and

e, Then, M # p2 (M) # Pﬁ%(M) for any ¢y, 01, (2, €5 with (€1, 42) # (£7,45). By Lemma 4.2,

py (M) € M; forall ¢y, £o. Thus,|M;| > hy-hy+1 > 2-max{hy, ha}+1 > m+1> m. Then,
by Lemma 4.1, the informational size My, f) is greater thamm, which is a contradiction.
Thus,|r,(M)| =m — 1.

Let{z} = X \r,(M). Let R be any element af/ and leth’ be such that), (R) = z. Because
rr (M) is not a singleton (see the statement right above Claim 1), there éXists)M such that
rp(R') # z. Leth” be such that)»(R') = x. Note thath’ # h” andh’,h” # h. Lety denote
rp»(R) and letp be the permutation ok such thap(R) = R’. Then, becausg(M) N M # () and
M, is a partition ofC, p(M) = M. Note thato(y) = x. Becausey € r,(M), there existR” € M
such that, (R") = y. For suchR”, r;(p(R")) = xz, which is a contradiction tp(R") ¢ M. O
CLAIM 2: f(My) = X forall My € My.

Proof of Claim 2 Suppose to the contrary thAtMy) # X for someMy € My. Let Ry be

any element of\/y. Then,(f o on)(Rn) # X. Letz be an element oK \ (f o ¢on)(Rn). By

neutrality, there exist&);, such thatc € (f o pn)(RYy). Let M} be the element ol y such that
Rl € M.
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ry(RY) rp(R;) Operation on R; Operation on R

x x Do not change Do not change
Notz | Interchanger,,1(R;) and z Lift z to hth position
y Do not change Do not change
Not z z Interchanger, 1 (R;) andy Lift z tothetop

(Lety = r,(R})) | Others | Firgt, interchangex andr,,(R;) and | Lift z to the top

next, interchangey and r,—1 (R;)

Table 1: The profiles?; and R} in the proof of Theorem 3.2

Let i be any agent and Iét be such that; (R;) = z. By Claim 1,7, (M]) = X. Thus, inM]/,
we can findR; such that-,(R/) = =. Let R}, be a profile of suctR;. Note that the positions of
x in Ry are the same as iRy . Also, becausery, belongs toMy, ¢y (RYy) = ¢’y (RY). Thus,
x € (fopn)(R)). Letpy be a profile of permutations such thafR;') = R;. Note thaip;(z) = =
forall i € N. By neutrality,z € (f o on)(p(R%)) = (f o on)(Rn), which is a contradiction.[

Claim 2 implies that a ruléf, ¢ ) is constant, which is a contradiction. |

Lemma 4.3 shows that eadlf; € M; is contained i(R; € L | r,(R;) = =} for somex € X.
Thus, if thehth ranked alternatives in two preferendesnd R’ are different, therkR and R’ belong
to distinctM; and M/ in M,. This implies that there are at leastelements inM;. If |M;| > m,
then by Lemma 4.1, the informational size(d#! v, f) is greater thamm, which is a contradiction.
Thus,|M;| = mforall i € N, and the informational size ¢iM v, f) is nm.

For eachM; € M;, let C(M;) denote the element of such thatM; C {R; € L | rn(R;) =
C(M;)}. We show that thi€” is a bijection. BecausgM;| = m = | X|, it suffices to show that’
is onto. Letz be any element ok. Then, becaus€R, € L | r,(R;) = «} is not the empty set and
M, is a partition ofL, there existdV/; € M; such thatV; C {R; € L | r,(R;) = =}, and hence
C(M;) = z. Thus,C' is a bijection. This implies that for any/; € M,, for any M/ € M;\ {M,},
and for anyR; € M/, r;(R;) is notC'(M;). Thus,M; C {R; € L | r,(R;) = C(M;)} leads to a
contradiction to the fact that1; is a partition ofZ. Therefore, for eactif; € M,;, M; = {R; €
L | rp(R;) = C(M;)}. Thatis, each\l; € M, is associated with an alternati¢& M) in X and
M; consists of all preferences which ra6K ;) at thehth position. Becausé€' is a bijection, we
complete the proof of the Theorem 3.1.

4.2 Proof of Theorem 3.2

Let (M, f) be a rule which operates on minimal informational requiremenAAM.
First, we prove the statement (i). 4 = 2, then this statement is a direct consequence of
Theorem 3.1. Thus, let > 3. Suppose to the contrary thak h < m, and we claim thagM v, f)
is constant. LeR y and Ry, be any preference profiles. We praygo o ) (Rn) = (foon)(Rly).
First, we show(f o o) (RN) C (f o pn)(RYy). Letx be any element off o o )(Rn). Now,
make a new preference profil¢}, from Ry according to the third column of Table 7.1. (At this
stage, see only the first three columns.) Depending,@®;) andr,(R;), there are five possible
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cases as described in the first two columns of Table 7.1. The third column specifies the operation on
R, in each case. Note that these operations are feasible because heithanor h = m.

Let R%, denote the resulting preference profile. It can be seenrif{@®;) = r,(R}) for all
i € N. Thus,(f o on)(Rn) = (f o on)(RY;) andz is also in(f o pn)(RY). Now, apply
the operation orR); described in the forth column of Table 7.1, and & denote the resulting
preference profile. Then, by monotonicitye (fopn)(RY). It can be seen thai,(R)) = r,(R})
foralli € N, and hencéf o on)(Ry) = (f o on)(RY). Thereforex € (f o on)(R), and we
complete the proof of the relatidif o pn)(Rn) C (f o on)(Ry)-

By the symmetric argument, we can prayeo ¢n)(Rn) D (f o on)(RYy)-

BecauseRy and R, was arbitrary, we can concludeé\ v, f) is a constant rule, which is a
contradiction. Thusi should be eithet or m.

Next, we prove the second statement of the theorem.

Case 1: h = 1. By Theorem 3.1, My is equal to the domain of?. In this case, we prove
fP(My) C f(My) forall My € My. Supposef?(My) ¢ f(My) forsomeMy € My. Letx
be an element of ?(My) \ f(My), and letRy be such thaRk; € M, foralli € N.

We claim thatf?(My) N f(Mx) = (). Suppose to the contrary that there exists f?(My) N
f(Mn). Theny € (fPoR ) (Rn)N(foen)(Rn). (Note thatph, = pn.) Leto be a permutation
of Nsuchthatr({i € N | m(R;) =x}) ={i € N | ri(R;) =y}ando({i € N | m(R;) =
y}) = {i € N | ri(R;) = x}. By anonymity,y € (f o ¢on)(R%). Letp be the permutation ok
exchanginge andy. By neutrality,z € (f o on)(p(R%)). Note that the twar-tuples of top ranked
alternatives inRy andp(R$;)) are the same. Becaube=1, (f o on)(Rn) = (f o on)(p(R%))-
Thus,z € (f o pn)(Ry) = f(My), which is a contradiction.

Let z be any element off o ¢ )(Rn). By the above argument, & (f” o &, )(Rn). Let N,
be a subset ofi € N | r1(R;) = =} such thaiN,| = |{i € N | r1(R;) = z}|. Then, leto’ be
the permutation such that(N,) = {i € N | r1(R;) = z} ando’({i € N | r1(R;) = z}) = N,.
By anonymity,z € (f o @N)(R‘](,'). Let p’ be the permutation exchangingandz. By neutrality,
z € (fopn)(p(RY)). Foreach € {j € N | ri(R;) = z} \ Ny, lift z to the top inp/(RJ").
Let R}, denote the resulting preference profile. By monotonicitys (f o ¢n)(Ry). It can
be seen that the twa-tuples of top ranked alternatives Ry and Ry, are the same, and hence
x € (fopn)(Ry) = f(My), which is a contradiction. Therefor¢?(My) C f(My) for all
My € My.

CASE 2: h = m. Supposef*(My) ¢ f(My) for someMy € My. Letz be an ele-
ment of f*(My) \ f(My), and letRy be such thak; € M, foralli € N.

We claim thatf*(Mx) N f(My) = (). Suppose to the contrary that there exists f¢(My) N
f(Mpy). Theny € (f* o % )(Rn) N (f oen)(RN). There are two cases to consider.

First, assumdi € N | r,,(R;) = y} = 0. Then,{i € N | r,,(R;) = x} is also the empty
set. Letp be the permutation oK exchangingr andy. By neutrality,z € (f o on)(p(Rn))-
Note that the twoe-tuples of the bottom ranked alternativesi; andp(Ry ) are the same. Thus,
z € (fopn)(Rn) = f(My), which is a contradiction.

Next, assumdi € N | r,,(R;) = y} # 0. Then,|{i € N | r,(R;) =y} = |{i € N |
rm(R;) = x}| > 0. Leto be a permutation ofV such thato({i € N | r,(R;) = y}) =
{i € N | rnpR) =ztando({i € N | rp(R;) = 2}) = {i € N | rn(R;) = y}. By
anonymity,y € (f o pn)(R%). Let p be the permutation ok exchangings andy. By neutrality,
x € (f oon)(p(R%)). Note that the twon-tuples of the bottom ranked alternativesin, and
p(R%) are the same. Thus, € (f o ¢n)(Rx), Which is a contradiction. Therefore, in any case,
fY(My) N f(My) = 0.

Let z be any element off o ¢ )(Rx). By the above argument, ¢ (f* o ¢% )(Rn), that s,
{i € N |rm(R;) =z} >|{i € N|rm(R;) =z}|. LetN, be asubsetofi € N | r,,(R;) = z}
suchthaiV,| = |{i € N | rn(R;) = x}|. Leto’ be a permutation oV such thav’(N,) = {i €
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N | r(R;) = 2} ando’ ({i € N |, (R;) = x}) = N,. By anonymity,z € (foon)(R%). Lety’

be the permutation oX exchanging: andz. By neutrality,z € (f o @N)(p(R‘]’V/)). Now, for each
i€{jeN|rm(R;)=2z}\N.,takez to the second place from the bottompgR?"). Let R/, be
the resulting preference profile. Note that the wwtuples of bottom ranked alternativesdaRg,)
andR/y are the same, and hences (fopn)(RYy). Now, foreach € {j € N | 7, (R;) = z}\ N,

lift = to the top of his preference. L&ty denote resulting preference profile. By monotonicity,
x € (f oen)(RY). Then, it can be seen that the twetuples of bottom ranked alternatives
in RY; and Ry are the same. Thus; € (f o ¢n)(Rn), Which is a contradiction. Therefore,
fa(MN) C f(MN) forall My € My.
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