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Abstract

We investigate the extent to which it is possible to rig the agenda of an election
or competition so as to favor a particular candidate in the presence of imperfect
information about the preferences of the electorate. We assume that what is known
about an electorate is the probability that any given candidate will beat another.
As well as presenting some analytical results relating to the complexity of finding
and verifying agenda, we develop heuristics for agenda rigging, and investigate the
performance of these heuristics for both randomly generated data and real-world
data from tennis and basketball competitions.

1 Introduction

The impossibility theorems of Arrow and Gibbard-Satterthwaite are perhaps the most fa-
mous results of social choice theory [1]. At first sight, these results seem to tell us that the
design of social choice mechanisms is a quixotic enterprise, since any mechanism we care
to define will fail to satisfy a basic “reasonableness” axiom, or will be prone to strategic
manipulation. However, in a seminal 1989 paper, Bartholdi, Tovey, and Trick argued that
the fact that a voting rule in susceptible to manipulation in theory does not mean that is
manipulable in practice, since it may be computationally infeasible (np-complete or worse)
to determine how to manipulate an election optimally [3]. Since the work of Bartholdi et al,
many researchers have investigated the extent to which voting mechanisms can be manipu-
lated (see, e.g., [6] for a recent collection of papers on this and related topics). Most work
on the manipulation of voting procedures has considered the manipulation of elections by
voters ; specifically, the strategic misrepresentation of preferences in order to bring about a
more favored outcome. However, manipulation is also possible by election officers – those
responsible for organising an election, in which context it is sometimes called “control” [4].

In this paper, we consider election control by rigging the ballot agenda in order to favor a
particular candidate. It is well-known that some sequential pairwise majority elections may
be rigged in this way – see, e.g., [5, p.177] and [9]. In such an election, we fix an ordering of
the candidates (the voting agenda), so that the first two candidates in the ordering will be in
a simple majority ballot against each other, with the winner then going on to face a ballot
against the third candidate, and so on, until the winner of the final ballot is the overall
winner. If we know the preferences of the electorate – or more specifically, who would win
in every possible ballot – then it may be possible to fix the election agenda to the benefit
of a favored candidate [8].

However, the assumption that we know exactly how a voter would vote in any given ballot
is very strong, and ultimately unrealistic. It ignores the possibility of strategic voting, for
one thing, but more generally, the preferences of voters will not be public – we will have at
best only partial information about them. In light of this, the present paper considers the
extent to which it is possible to rig an election agenda (and, more generally, running orders
for competitions) in the manner described above in the presence of imperfect information.
We assume that an election officer knows the probability that a given candidate will beat
another in a pairwise ballot. This probability may be obtained from opinion polls, in
the case of governmental elections or similar; or it may be from form tables, in the case
of sporting competitions. Given this, we investigate the problem of rigging an election
agenda in the more realistic setting of imperfect information. We study the complexity of
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Figure 1: Organising a series of pairwise majority ballots into trees (a) and linear orders
(b).

finding and verifying agendas, and present heuristics for agenda rigging. We investigate the
performance of these heuristics for both randomly generated data sets and real-world data
sets from tennis and basketball competitions. Finally, it is worth clarifying the motivation
for this work. We are, of course, not advocating election manipulation, or trying to develop
techniques to make it easier! If we can identify cases where election manipulation is easy in
practice (even if it is hard in theory), then we can use this information to design elections
so as to avoid the possibility of manipulation.

2 Preliminary Definitions

Although our problem is closely related to voting procedures, the way we choose to model the
imperfect information here places it on a wider scope which includes also sports tournament.
We assume we have a set Ω = {ω1, . . . , ωn} of outcomes or candidates – the things the voters
are trying to decide over. We are concerned with settings in which we simply want to select
one outcome from Ω; more specifically, we are concerned with procedures to select such an
outcome through a sequence of pairwise simple majority ballots. Such selection procedures
are used in both political elections and sporting competitions. We often summarise voter
preferences in a majority graph, G ⊆ Ω×Ω, where (ω, ω′) ∈ G means that ω would beat ω′ in
a pairwise simple majority ballot. An election officer will not usually know the preferences of
individual voters, but they may know the probability that one candidate will beat another.
If all probabilities are 0 or 1 then we say the scenario is one of perfect information, otherwise
it is one of imperfect information. An imperfect information ballot matrix M is an |Ω| × |Ω|
matrix of probabilities, such that if M [ωi, ωj ] = p, then in a ballot between ωi and ωj ,
candidate ωi will win with probability p. We require that M [ωi, ωj ] +M [ωj , ωi] = 1.

The most obvious way to organise a series of pairwise majority elections is in a voting
tree In Figure 1(a), we see how ballots between candidates A,B,C and D may be organised
into such a tree. The idea is that candidates A and B face each other in a ballot, while
candidates C and D face each other in a ballot. The winner of the first ballot (A in this
case) then faces the winner of the second (C), and the winner of this third ballot (C) is
declared the overall winner. The voting tree in Figure 1 is said to be fair because it is
balanced, and as a consequence every possible overall winner would have to win the same
number of ballots. The task of the election officer may thus be seen as generating such
a binary tree, with candidates Ω allocated to leaves of the tree. More formally, a ballot
tree for an n candidate election is an n leaf tree, T (V,E), having a distinguished root r(T )
and in which every node with the exception of the leaves has exactly two children. An
instantiated agenda for a binary ballot tree is a bijective mapping α : Ω ↔ leaves(T ), which
associates a candidate with each leaf node in T . Given 〈T, α,M〉 the outcome evaluation
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of T with respect to α and M is a mapping η : V → [0, 1]n such that for any v ∈ V ,
η(v) = 〈v1, . . . , vn〉 if and only Pr[ ωi is the winner at v ] = vi. Thus η(r(T )) will contain
at index i the probability that ωi will be the overall winner of T .

The opportunity for manipulation arises in such a setting because the election officer
can, for example, place a favored candidate against candidates it is likely to beat. If we
relax the fairness constraint, then the possibilities for an election officer to manipulate the
election increase. Figure 1(b) shows a rather unfair voting tree; in fact, it defines a linear
order (C,D,B,A) for the candidates, with the first ballot taking place between C and D,
the winner facing B, and so on, until the winner of the final ballot (A in this case) is the
overall winner. The unfairness arises because it is possible for a candidate to win overall
despite only participating in one ballot (as is the case in Figure 1). We will denote linear
voting orders (i.e., permutations of Ω) by π, π′, . . ..

A different model of imperfect information was studied in [8], where it was assumed
that for each voter we have a correct but incomplete model of their preference relation.
For this incomplete information setting, they considered questions such as whether there
was some completion of the incompletely known preferences and some voting tree for the
candidates that would make a desired candidate a winner. Roughly, our aim in this paper is
to study election manipulation in much the same way as [8], but with the probability model
of imperfect information described above, rather than the incomplete profile model.

3 Voting with a Linear Order of Ballots

We start by considering linear voting orders. Given such an order π = (ω1, . . . , ωn) and
outcome ω∗ ∈ Ω, the probability of ω∗ being the overall winner of π is denoted by Pr[w(π) =
ω∗ | M ], and is given as follows. For a voting order π = (ωi1 , ωi2 , . . . , ωin) with ω∗ = ωik

,
(i.e., the preferred winner occurs k’th in the order π),

P [w(π) = ω∗ |M ] = ϕ× ψ

where

ϕ =

 n∏
j=k+1

M [ωik
, ωij ]


ψ =

k−1∑
j=1

P [w(ωi1ωi2 . . . ωik−1) = ωij |M ]×M [ωik
, ωij ]


That is, in order for ω∗ to emerge as the winning candidate, ω∗ must defeat every candidate
put forward later in the voting order, and succeed against the eventual winner of the voting
order formed by the earlier candidates. We will show in the next section that the probability
of a candidate being a winner in any given voting tree can be computed in time O(n3); for
linear orders, we can improve this to O(n2); we omit the proof.

What else can we say about voting with linear orders? First, we can make precise, and
prove correct, the intuition that there is no benefit to going early; a candidate can only
benefit by going late in a voting order. While this seems intuitive, the proof of the following
lemma, which we omit, is surprisingly involved.

Lemma 1 Given 〈M,Ω〉 let ωi, ωj be distinct members of Ω. For every voting order π1π2

of Ω \ {ωi, ωj}, it holds that Pr[w(π1ωjωiπ2) = ωi] ≥ Pr[w(π1ωiωjπ2) = ωi].

The immediate corollary is as follows.
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Corollary 1 For any candidate ω∗ ∈ Ω, if there is a voting order, π such that Pr[w(π) =
ω∗] ≥ p], then there is a voting order π′ such that Pr[w(π′) = ω∗] ≥ p] and in which ω∗ is
the final candidate to run.

Proof: Given π with Pr[w(π) = ω] ≥ p, apply Lemma 1 repeatedly to move ω later in the
voting order until it is the final candidate. 2

Note that the equivalent result does not hold for trees. It is possible to construct an
example in which a candidate wins with probability 1 in a fair tree, but loses with probability
1 if we convert the tree to a linear order with the same candidates order and place the
candidate last. Even though it faces fewer ballots the candidate has a strictly smaller
probability of winning.

It is also natural to ask what the probability is that a particular candidate is a possible
winner, that is, if there is some permutation of Ω which would make ω∗ the winner with non-
zero probability. The decision problem poss-win takes as its instance a triple 〈M,Ω, ω∗〉,
which is accepted iff ω∗ is a possible winner of 〈M,Ω〉.
Theorem 1 poss-win is polynomial time decidable.

Proof: (Outline) Convert all the non-zero probabilities to one, and apply the techniques
of [8] to check whether ω∗ is a possible winner. 2

The general problem of determining whether there exists any agenda which gives a named
candidate at least a certain probability of winning is hard to classify, and so we will analyse
a restricted version of the problem, as follows. When we think informally about rigging an
agenda, we tend not to think just in terms of the agenda, but also in terms of the specific
outcomes that we want the agenda to lead to. So, we might think in terms of “if I put A up
against B, then B wins and goes up against C, and C wins. . . ” and so on. Here, we have not
just the agenda (ABC) but also the outcomes of the ballots (B wins the first; C the second;
. . . ). Here, we call these structures – which include the agenda for the ballots together with

the intended outcomes – a run. A run has the form r : ω1, ω2
ω2−→ ω3

ω3−→ · · · ωk−1−→ ω∗ ω∗−→
where ω1 and ω2 are the candidates up against each other in the first ballot, ω2 is the
intended winner of this ballot, and so on, until the final ballot is between ωk−1 and ω∗,
in which we intend the winner – and hence overall winner – to be ω∗. Computing the
probability that this run will result in our desired candidate ω∗ winning is simple – it is the
value: Pr[w(ω1, ω2) = ω2]× Pr[w(ω2, ω3) = ω3]× · · · × Pr[w(ωk−1, ω∗) = ω∗]. We denote
this value for a run r by Pr[r | M ]. So, in the weak imperfect information rigged agenda
(wiira) problem, we are given a set of candidates Ω, an imperfect information ballot matrix
M , a favored candidate ω∗ ∈ Ω, and a probability p. We are asked whether there exists a
run r, in which the overall winner is ω∗, such that Pr[r |M ] ≥ p.

Theorem 2 wiira is np-complete.

Proof: (Summary) A standard “guess and check” algorithm gives membership in np. For
hardness, we reduce the k-hca problem on tournaments [2, p.46]: we are given a tournament
G = (V,E) (i.e., a complete digraph such that (ω, ω′) ∈ E iff (ω′, ω) 6∈ E) and a subset
E′ ⊆ E, and we are asked whether G contains a Hamiltonian cycle containing all edges E ′.
We create an instance of wiira as follows. The outcomes will be the vertices of G together
with a new vertex, v⊥. Given a tournament G = (V,E) and required edge set E ′, we create
a probability matrix so that G contains a cycle with E ′ iff we can create an ordering of
vertices satisfying the property given above. For each (u, v) ∈ E ′ we set M [u, v] = 1. For
each (u, v) ∈ E \ E′ we set M [u, v] = 1 − 1

10|V | . We then set the target probability to be
(1− 1

10|V | )|V |−|E
′|. We are after a cycle, so we need to select a vertex (call it v>) to act as
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the source of the cycle and our new vertex, v⊥, will act as the sink in the cycle; if we have
an arc (u, v>) ∈ E′ then we define M [u, v⊥] = 1, while if (u, v>) ∈ E \ E′ then we define
M [u, v⊥] = 1− 1

10|V | ; if for any vertex u ∈ V we have not yet defined a value for M [u, v⊥]
then define M [u, v⊥] = 0.5. We then ask whether we can rig the agenda for v> to win with
probability greater than the target. 2

4 Voting with a Tree of Ballots

We now focus on a more realistic setting, in which ballots are organised into a binary tree.
There are several obvious questions to ask here. For example, the most obvious decision
problem with respect to rigging an election as follows: Given a set of outcomes Ω, an
imperfect information ballot matrix M , a favored candidate ω∗ ∈ Ω and a probability p,
does there exist a voting tree T with labeling α : Ω ↔ leaves(T ) such that ω∗ wins in this
setting with probability at least p? It is not obvious even that this problem is in NP, since
to compute the probability that a given candidate wins overall, we must consider every
possible ordering of wins arising from a given tree structure: in any given ballot, there are
two outcomes, in contrast to the perfect information case. However, the following result
implies the problem is in np.

Theorem 3 Let T (V,E) be any binary ballot tree, α a labeling of the leaves of T by candi-
dates Ω, and M a ballot matrix for Ω. The outcome evaluation of T with respect to α and
M is computable in O(n3) arithmetic operations.

Proof: Consider the following algorithm.

1. η(x) = unlabelled for each x ∈ V (T )

2. For each leaf, x, of T , η(x) = 〈x1, . . . , xn〉 with xi = 1 if α(x) = ωi and xi = 0
otherwise.

3. repeat

a. Let z be any node of T with children x and y such that η(x) 6= unlabelled
and η(y) 6= unlabelled. Let 〈x1, . . . , xn〉 denote η(x) and, similarly, 〈y1, . . . , yn〉
denote η(y). Compute η(z) = 〈z1, . . . , zn〉 using

zi :=


xi

∑n
j=1 yj M [ωi, ωj ] if xi > 0

yi

∑n
j=1 xj M [ωi, ωj ] if yi > 0

0 if xi = yi = 0

4. until every v has η(v) 6= unlabelled

This algorithm can be improved in some cases; e.g., if we know that the graph is fair, then
we can use an optimised version to take account of this, reducing the overall time complexity
to O(n2). 2

Whether this result is matched by np-hardness remains open, but we can obtain a related
hardness result, as follows. Given a set of candidates Ω and an imperfect information ballot
matrix M , a fair tree run rT is a balanced tree, T , a labeling α of the leaves of T by
candidates Ω, and a labeling of every other node of T by the candidate that has the higher
probability to win the ballot between the node’s children (If a node’s children have equal
probability, we select one arbitrarily). The motivation for this is just as in the linear order
case; we tend to think on the agenda in terms of the specific outcomes that we want the
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agenda to lead to. The probability that a fair tree run will result in our favored candidate
ω∗ winning is simply the multiplication of the winning probabilities of the candidates in all
the ballots induced by T . We denote this value by Pr[rT | M ]. So, in the weak imperfect
information rigged agenda for balanced trees (wiira-bt) problem, we are given a set of
candidates Ω, an imperfect information ballot matrix M , a favored candidate ω∗ ∈ Ω, and
a probability p. We are asked whether there exists a fair tree run rT , in which the overall
winner is ω∗, such that Pr[rT |M ] ≥ p.

Theorem 4 wiira-bt is np-complete.

Proof: (Summary) Membership of np is immediate. As proved by [8], given a complete and
weighted majority graph (also called a weighted tournament) G, every balanced voting tree
with candidate ω∗ at its root has a corresponding binomial tree with root ω∗ which covers all
the nodes in G – this binomial tree describes all the ballots between the candidates. We will
prove our hardness result with respect to the following problem, a variation of the problem
from [8, Th. 4], which is easily shown to be np-complete: Given a weighted tournament
G = (V,E), a candidate ω∗ and a cost bound k, check whether there exist a balanced voting
tree in which ω∗ wins, such that the sum of the edges of the corresponding binomial tree is
at least k. Let denote minE(maxE) as the minimum (maximum) weight of the edges in E.
Given an instance of the previous problem we create an instance of wiira-bt with a graph
G′ = (V,E′) such that for every edge (u, v) ∈ E with a weight w(u, v), we create the same
edge in E′ with the weight

2
w(uv)−|maxE |
|minE −|maxE || .

This conversion ensures that 0.5 ≤ w(u, v) ≤ 1 in E ′. For every edge (u, v) ∈ E ′, we create
an opposite edge (v, u) with the weight 1− w(u, v). The candidate for our problem is also
ω∗, and the winning probability p is

2
k−(n−1)×|maxE |
|minE −|maxE || .

The overall number of ballots in a balanced voting tree is n − 1 so k ≤ (n − 1) × |maxE |
and 0 ≤ p ≤ 1 as required. If we denote the edges of a binomial tree for ω∗ in G with a cost
bound k as x1, x2, . . . , xn−1, then:

x1 + x2 + · · ·+ xn−1 ≥ k

(x1 − |maxE |) + · · ·+ (xn−1 − |maxE |) ≥ k − (n− 1)× |maxE |
x1−|maxE |

|minE −|maxE || + · · ·+ xn−1−|maxE |
|minE −|maxE || ≥ k−(n−1)×|maxE |

|minE −|maxE ||

2
x1−|maxE |

|minE −|maxE || × . . .× 2
xn−1−|maxE |
|minE −|maxE || ≥ 2

k−(n−1)×|maxE |
|minE −|maxE ||

that is the wining probability in a fair tree run for ω∗ in G′
2

5 Heuristics and Experimental Evaluation

Our hardness results lead us to conjuncture that the general problem of rigging an election
agenda with incomplete information is NP-Hard to compute; but we also think that a worst-
case analysis is not enough. The situation is similar to that in cryptography, where a secure
protocol is not one that is hard to break in the worst case, but one that can be broken
only with negligible probability. Bartholdi et al., who were in many ways pioneers of the
complexity-theoretic approach to understanding election manipulation [3] first voiced the
concern that NP-Hardness results are not enough:
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Concern: It might be that there are effective heuristics to manipulate an election
even though manipulation is NP-complete.
Discussion: True. The existence of effective heuristics would weaken any prac-
tical import of our idea. It would be very interesting to find such heuristics.

This motivates us to consider heuristics for this problem, and to test their performance in
different scenarios. We used a simulation program (written in C) to evaluate the heuristics.
Our experiments are in two categories: first, randomly generated data, and second, public
domain form data from sports competitions. For each of these settings, we evaluated the
heuristics for both fair trees and linear orders. For the randomly generated data sets, we
first generated random values for the probability matrix from a uniform distribution in the
range [0, 1], and completed the matrix to preserve probability constraints. We then ran
100 iterations, and during each iteration a winner candidate, ω∗, was randomly chosen and
each heuristic was used in an attempt to generate an optimal order for this candidate. The
second scenario was the same, except that the random values for the matrix were taken
from a normal distribution with an average of 0.5 and a standard deviation of 0.2. (If
a value of more than 1 (less than 0) was generated it was changed to 1 (0) to preserve
probability constraints.) For the real-world data sets, we based our experiments on data
from basketball and tennis competitions. For the basketball experiments, we took the 29
teams in the NBA, and computed the ballot matrix from public domain form data. Here,
there were no iterations, but for every team we used each heuristic to generate a playing
order that would give this team the best chance of winning. For the tennis experiments, we
used the 13 players at the top of the ATP ranking, again computing the ballot matrix from
public domain form tables.

5.1 Heuristics for Linear Voting Orders

The heuristics we developed are as follows.

• Optimal : In those cases where it was computationally feasible to do so, we exhaustively
evaluated every permutation in order to find the real optimal solution as a comparison.

• Far adversary : The idea here is to put candidates who are likely to beat you as far
away from you as possible. Thus, the candidate who has the highest probability to
beat ω∗ was selected to be the first, and so on; ω∗ was chosen to be the last (cf.
Corollary 1).

• Best win: ω∗ was chosen to be the last, and the candidate that ω∗ has the best chance
of beating was chosen to be before it, the next being the one that this candidate was
most likely to beat, and so on.

• Simple convert : The idea here is to convert the imperfect information ballot matrix
into one of perfect information, and then simply apply an algorithm which is known to
work in polynomial time for such cases [8]. To create the perfect information matrix,
every probability which was greater than or equal to 0.5 was converted to 1, and others
were converted to 0. If no order could be found, (which is sometimes the case where
the number of candidates is small) a random order was generated.

• Threshold convert : This is a more sophisticated attempt to make a perfect information
ballot matrix. We searched for the maximum threshold above which, if we convert all
the probabilities above this to 1 and below it to 0, we still have an order that enable
ω∗ to win (on the converted tournament matrix). We used a binary search, stopping
when the difference between the low/high limit and the threshold was less than 0.005.
As before, if no order could be found a random order was generated.
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• Local search: ω∗ was chosen to be last. For the other places, in every iteration a
random permutation was chosen. Then 0.5 ∗ num-of -candidates random swaps were
tested to find an order with maximum winning probability. (num-of -candidates iter-
ations were done.)

• Random order : As a control, a random order was also generated.

The results for heuristics on linear orders are shown in Figure 2.
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(b)
linear order - 13 tennis players
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linear order - 29 basketball teams
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Figure 2: Performance of heuristics for linear order ballots. (a) Shows the performance of the
heuristics for randomly generated ballot matrices using a uniform and normal probability
distributions; and (b) Shows performance for real-world data from the domain of professional
tennis and basketball.

First, note that the overall performance of the heuristics does not vary significantly be-
tween uniform and normal distributions (Figure 2(a) left and right columns, respectively).
In these graphs, the x-axis is the number of candidates and the y-axis is the winning proba-
bility that was found using our heuristics. Every point in the graph represents the winning
probability that was averaged over 100 iterations.

308



In the uniform distribution experiments, it seems that best-win and far adversary seem to
perform similarly well, (marginally better than local search), while for a normal distribution
they are slightly differentiated, but again perform better than local search. In the graph
for linear order with normal distribution (Figure 2(a) left column), again, we find the first
two heuristics – far adversary and best win – gave about the same results, while local
search lies a little behind; all reach a very high winning probability, almost 0.9, and they
performed better as the number of candidates increased. These heuristics also perform well
when comparing them to the optimal solution – they gave a winning probability which is on
average only 98% from the optimal solution. Note that the “convert” heuristics perform very
poorly, both for uniform and normal distributions, and so we omitted them in subsequent
experiments.

In the graph for linear order with 13 tennis players (Figure 2(b), left column), the x-axis
is the player number that was chosen to be the winning candidate and the y-axis as before.
Here, there was no heuristic that performed significantly better than the others in general,
but when choosing from the heuristics, the best solution for each candidate performs very
well when compared to the optimal solution. They gave a winning probability which is only
96% from the optimal solution on average. The winning probability is on average more
than twice as high as the random order. Player number 0, (Roger Federer, currently the
world’s number one player), even succeeded in obtaining a winning probability of 1 from
local search.

We conclude that there is no one heuristic that performs significantly better than the
others for all cases. We suggest the best thing to do here is to run all the heuristics and
order the candidates according the heuristic which gives the best results for this candidate
because they all run quite fast. Note that local search takes much more time than other
heuristics, but still has acceptable time performance.

5.2 Heuristics for Fair Voting Trees

For this voting agenda type we investigated the following heuristics.

• Optimal, Far adversary, Local search: We organized the leaves of the binary tree as a
linear order from left to right and applied these heuristics as above. (Note that when
the number of candidates is not a power of 2, some of the rightmost candidates may
face one less ballot than other candidates.)

• Best win: Because of the tree structure, we had to use a modified version of the best
win heuristic, but the principle remains the same. We try to maximize the probability
that ω∗ will face candidates that he has a high probability of beating, and to maximize
the probability that they will reach the point when they compete against him. So we
first assign ω∗ at the rightmost leaf of the voting tree, and for each ballot along its
path to the root we assign candidates that ω∗ has a high probability to beat. In this
way we define for each one of them a sub-tree that we want him to be its overall winner
(unless this candidate has been assigned to a leaf) so we can repeat this assignment
procedure recursively.

The results of our experiments with balanced tree ballots are shown in Figure 3.
In the tree order with random uniform and normal distribution (Figure 3(a) left and right

columns, respectively) the axes are as in the linear order case. Generally, the wining proba-
bility is much lower than the linear order voting protocol, which seems a direct consequence
of the relative fairness of the procedure. Nevertheless, if we compare the best heuristic for
each case to the random order, we get a winning probability which is on average 4.31 times
higher than the random order winning probability and which is on average only 96% from
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balanced tree order - uniform distribution
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balanced tree order - normal distribution
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(b)
balanced tree order - 13 tennis players
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balanced tree order - 29 basketball teams
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Figure 3: Performance of heuristics for balanced tree ballots. (a) Shows the performance of
the heuristics for randomly generated ballot matrices using a uniform and normal probability
distributions; and (b) Shows performance for real-world data from the domain of professional
tennis and basketball.
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the optimal solution. We also note that the graphs have a wave-like shape: the lowest points
in these waves are when the number of candidates is exactly a power of 2. This is simply
because when the number of candidates is a power of 2, every candidate must compete in
exactly the same number of ballots. In all other cases, there are some of the candidates
(including our favorite, ω∗) which face one less ballot. This effect can help ω∗, by forcing
strong competitors to undergo one more ballot. It can also be seen that in contrast to the
linear order with random normal distribution, the best win heuristic performs better than
the others: 1.25 times better than far adversary, and 1.66 times better than local search on
average.

In the tree order with 29 NBA basketball teams graph, (Figure 3(b), right column), the
far adversary method performed better than others with a winning probability that is on
average 1.24 times better than local search and 1.08 times better than best win. The highest
winning probability was generated for team 11, the LA Lakers. It was not computationally
feasible to calculate the optimal solution for 29 teams, so we ran another scenario with only
the first 13 teams to check the performance of our heuristics against the optimal solution.
The best heuristic in each case gave a winning probability which in on average only 99%
from the optimal solution!

In the tree order with 13 tennis players graph ((Figure 3(b), left column) there was
no heuristic that performed significantly better than the others, just as in the linear order
case. But here, when we choose from the heuristics the best solution for each case they
gave a winning probability which is on average 61% from the optimal solution. Perhaps
the performance difference between this case and the basketball case emerges from the type
of the distribution. The basketball scenario has a distribution which is much closer to a
normal distribution than in the tennis scenario, in which the probability matrix contains
many high probabilities. Another indicator for this is the performance of our best heuristic
in each case against the random order. In the tennis scenario it was almost 5 times better,
while in the basketball scenario it was only about 1.5 times better.

6 Related Work and Conclusions

A closely related stream of work is the problem of optimal seeding for tournaments. This
problem considers how to determine an agenda for a voting tree that will result in an
“interesting” sporting competition. [10] for example, assumes an imperfect information
ballot matrix as we do, and uses it to produce an interesting competition agenda that
still satisfies some fairness criterions. [7] investigates a 4-player scenario with an auction-
like analysis; instead of knowing the probability of winning, each player exerts some effort
according to its private valuation. Early work by [11] analyzes voting trees for 8 players,
among 3 other tournament types. It uses an imperfect information matrix and investigates
the effect of the initial agenda on the probability that the best player will win the game.
Note that none of these papers analyzed the complexity of finding the optimal agenda for a
specific candidate, however.

By understanding when the manipulation of elections is possible, and those cases where it
is computationally easy to manipulate an election, we can engineer voting protocols to avoid
such cases. We have demonstrated that, while it seems hard to control an election under
incomplete information in theory, there are heuristics that perform well on this problem in
practice. This research can hence usefully inform the design of future voting protocols in
multi-agent systems.
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