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Peer Reviewing

• Peer reviewing (or refereeing) is the process of evaluating
submitted documents by anonymous experts (referees)

• Widely applied by scientific journals, conferences, and funding
agencies

• Submitted documents are typically reviewed by 3–4 referees

• Referee reports typically contain:
I Scores for various criteria (e.g. originality, clarity, etc.)
I Overall score for paper quality (e.g. 1–10)
I Level of expertise (e.g. 1–10)
I Detailed comments

• Papers with highest aggregated scores are accepted ⇒ How?
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Demo

A prototype implementation is available at:

http://www.iam.unibe.ch/∼run/referee

Rolf Haenni, University of Berne, Switzerland Slide 7 of 27

http://www.iam.unibe.ch/~run/referee/index.php


Introduction Problem Formulation The Opinion Calculus Evaluating Referee Scores Conclusion

Formal Setting

Input:

D = {1, . . . , n} → submitted documents

R = {1, . . . ,m} → referees

referees(i) ⊆ R → referees assigned to document i

si,j = (qi,j , ei,j) → referee j’s score for document i

qi,j ∈ [0, 1] → quality judgement

ei,j ∈ [0, 1] → expertise level
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Formal Setting (cont.)

Output:

si =
⊗

j∈referees(i)

si,j → combined score si = (qi, ei) for document i

qi ∈ [0, 1] → combined quality judgement

ei ∈ [0, 1] → combined expertise level

S = {s1, . . . , sn} → set of combined scores

(D,�) → total preorder over D

r : D → N → ranking function over D

Note that classifying the documents (e.g. accepted/rejected) is a
special case of a total preorder �
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Example

Referees Total Preorder

1 2 3 4 5 ⊗ 4 � {1, 3} � 2

D
o
cu

m
en

ts

1 s1,1 – s1,3 s1,4 – s1 r(1) = 2

2 s2,1 s2,2 – – s2,5 s2 r(2) = 1

3 – s3,2 s3,3 s3,4 – s3 r(3) = 2

4 s4,1 – s4,3 – s4,5 s4 r(4) = 4
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Problem Formulation

• Problem 1: Find an appropriate combination operator ⊗
• Problem 2: Find an appropriate total preorder �

• Solution: Apply the opinion calculus

(i) Transform scores si,j into opinions ϕi,j

(ii) Apply the combination operator ⊗ defined for independent
opinions ⇒ ϕi

(iii) Use various probabilistic transformations f ∈ {g, h, p} to turn
each ϕi into a Bayesian opinion f(ϕi)

(iv) Use the natural total order �0 of Bayesian opinions to define �
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Opinions

• The opinion calculus is an algebraic version of the Dempster’s
theory of lower and upper probabilities (Dempster, 1967) for
two-valued hypotheses H ∈ {yes, no}

• Terminology and references:
I (Hajek and Valdes, 1991) → Dempster pairs, dempsteroids
I (Jøsang, 1997) → opinions, subjective logic
I (Daniel, 2002) → d-pairs, Dempster’s semigroup

• An opinion relative to H is a triple ϕ = (b, d, i) ∈ [0, 1]3
I b + d + i = 1
I b = degree of belief of H
I d = degree of disbelief H
I i = degree of ignorance relative to H

• Dempster’s theory provides a probabilistic interpretation for b,
d, and i
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Opinion Triangle

Ig
n
o
ra

n
ce

Belief
Disb

eli
ef

e = (0, 0, 1)

p = (1, 0, 0)n = (0, 1, 0) u = (
1
2
,
1
2
, 0)
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Opinion Classes

positive: b > d
negative: b < d

indifferent: b = d
simple: b = 0 or d = 0

extremal: b = 1 or d = 1
neutral: i = 1

Bayesian: i = 0

in
di

ffe
re

nt

positivenegative

sim
ple

positivesim
pl

e
ne

ga
tiv

e

Bayesian

neutral

extremal
positive

extremal
negative
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Combining Opinions

• Let ϕ1 = (b1, d1, i1) and ϕ2 = (b2, d2, i2) be independent:

ϕ1 ⊗ ϕ2 =
(

b1b2 + b1i2 + i1b2

1− b1d2 − d1b2
,
d1d2 + d1i2 + i1d2

1− b1d2 − d1b2
,

i1i2
1− b1d2 − d1b2

)
• Let ϕi = (bi, di, ii), 1 ≤ i ≤ n, be independent:

ϕ1 ⊗ · · · ⊗ ϕn

=

(
1
K

[∏
i

(bi + ii)−
∏

i

ii

]
,

1
K

[∏
i

(di + ii)−
∏

i

ii

]
,

1
K

∏
i

ii

)

for K =
∏

i

(bi + ii) +
∏

i

(di + ii)−
∏

i

ii > 0

• Click here to start demo
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The Opinion Monoid

• Φ = {(b, d, i) : b + d + i = 1} is not closed under ⊗
I ⊗ is undefined for p = (1, 0, 0) and n = (0, 1, 0)
I Add inconsistent opinion z = (1, 1,−1)
I Define p⊗ n = n⊗ p = z
I Define ϕ⊗ z = z ⊗ ϕ = z, for all ϕ ∈ Φ

• Φz = Φ ∪ {z} is closed under ⊗
I ⊗ is commutative
I ⊗ is associative

• Therefore, (Φz,⊗) is a commutative semigroup
I e = (0, 0, 1) is the identity element: e⊗ ϕ = ϕ⊗ e = ϕ
I z = (1, 1,−1) is the zero element: z ⊗ ϕ = ϕ⊗ z = z

• Therefore, (Φz,⊗, e) is a commutative monoid with zero
element z
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Other Opinion Monoids

Name Notation Definition Identity Zero

general Φz Φ ∪ {z} e z
non-negative Φ≥ {(b, d, i) ∈ Φ : b ≥ d} e p
non-positive Φ≤ {(b, d, i) ∈ Φ : b ≤ d} e n
simple non-negative Φ+ {(b, d, i) ∈ Φ : d = 0} e p
simple non-positive Φ− {(b, d, i) ∈ Φ : b = 0} e n
indifferent Φ= {(b, d, i) ∈ Φ : b = d} e u
Bayesian Φ0 {(b, d, i) ∈ Φ : i = 0} ∪ {z} u z

Remarks:

• Φ+, Φ−, Φ=, Φ0 \ {z} possess a natural total order

• Φ0 \ {p, n, z} forms a commutative group
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Probabilistic Transformations

• A probabilistic transformation is mapping f : Φz → Φ0

I Belief transformation:

g(ϕ) =
(

b

b + d
,

d

b + d
, 0
)

I Plausibility transformation:

h(ϕ) =
(

1− d

1 + i
,
1− b

1 + i
, 0
)

= ϕ⊗ u

I Pignistic transformation:

p(ϕ) =
(

b +
i

2
, d +

i

2
, 0
)

• For each f ∈ {g, h, p}, the total order over Φ0 \ {z} defines a
total preorder over Φ
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Probabilistic Transformations (cont.)

ϕ

ψ

h(ψ)h(ϕ)

e = (0, 0, 1)

z = (1, 1,−1)

ϕ

ψ

p(ϕ) p(ψ)

ϕ

ψ

g(ψ)g(ϕ)

Belief Transformation Plausibility Transformation Pignistic Transformation
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Referee Scores as Opinions

• Problem 1: Define a mapping from scores to opinions
I Score: s = (q, e) ∈ [0, 1]× [0, 1]
I Opinion: ϕ = (b, d, i) ∈ Φ
I Mapping: ∆ : [0, 1]× [0, 1] → Φ

• Solution: Probabilistic interpretation of q and e
I e = P (E)
⇒ probability of the referee being an expert (event E)

I q = P (Q|E)
⇒ conditional probability of the document being a high-quality
paper (event Q), given that the referee is an expert (event E)

I If E and Q are probabilistically independent, then

∆(s) = (b, d, i) = (e·q, e·(1− q), 1− e)
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Mapping Scores into Opinions

q = 0 q = 1

e = 0

e = 1

Remarks:

• ∆ is invertible: ∆−1(ϕ) = (q, e) = ( b
1−i , 1− i), for ϕ 6= e

• s = ∆−1(∆(s1)⊗ · · · ⊗∆(sk))
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Combining Scores

s1 = (0.80, 0.50) ⇒ ϕ1

s2 = (0.40, 0.25) ⇒ ϕ2

s3 = (0.20, 0.75) ⇒ ϕ3

⇓
s = (0.37, 0.86) ⇐ ϕ

q = 0 q = 1
e = 1

e = 0

s1

s2

s3

⊗

s

0.37

0.86

ϕ1

ϕ2

ϕ3

ϕ = ϕ1 ⊗ ϕ2 ⊗ ϕ3
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Document Ranking

• Problem 2: Determine document ranking
I Documents: D = {1, . . . , n}
I Scores: S = {s1, . . . , sn}
I Opinions: ∆ = {ϕ1, . . . , ϕn}
I Define ranking r(i) for all i ∈ D

• Solution: Use probabilistic transformation of ϕi

I f(ϕi) = (bi, 1− bi, 0) for f ∈ {g, h, p}
I i � j ⇔ f(ϕi) �0 f(ϕj) ⇔ bi ≤ bj

I i ≺ j ⇔ i � j ∧ i 6� j
I Ranking: r(i) = |{j ∈ D : i ≺ j}|+ 1
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Conclusion

• Peer reviewing leads to an important judgement aggregation
problem

• It can be solved using the opinion calculus (Dempster-Shafer
theory)

• The method can be implemented efficiently

• Future work and open problems:
I Get into a conference management tools (CyberChair, . . . )
I Empirical study based on data from real conferences
I Compare/evaluate different probabilistic transformations
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