Aggregating Referee Scores: an Algebraic Approach

Rolf Haenni

㪇
Reasoning under UNcertainty Group Institute of Computer Science and Applied Mathematics University of Berne, Switzerland

COMSOC'08

2nd International Workshop on Computational Social Choice
Liverpool, UK
3-5 September 2008

Outline

(1) Introduction

(2) Problem Formulation
(3) The Opinion Calculus

4 Evaluating Referee Scores
(5) Conclusion

Outline

(1) Introduction
(2) Problem Formulation
(3) The Opinion Calculus

4 Evaluating Referee Scores
(5) Conclusion

Outline

(1) Introduction
(2) Problem Formulation
(3) The Opinion Calculus

4 Evaluating Referee Scores

(5) Conclusion

Outline

(1) Introduction
(2) Problem Formulation
(3) The Opinion Calculus
4) Evaluating Referee Scores
(5) Conclusion

Outline

(1) Introduction
(2) Problem Formulation
(3) The Opinion Calculus

4 Evaluating Referee Scores
(5) Conclusion

Outline

(2) Problem Formulation
(3) The Opinion Calculus
4) Evaluating Referee Scores
(5) Conclusion

RUN Research Group

Supported by:

- Swiss National Science Foundation (Project PP002-102652)
- Hasler Foundation (U/Projects No. 2034 \& 2042)
- Leverhulme Trust (Progicnet)

Outline

(1) Introduction

(2) Problem Formulation
(3) The Opinion Calculus

4 Evaluating Referee Scores
(5) Conclusion

Peer Reviewing

- Peer reviewing (or refereeing) is the process of evaluating submitted documents by anonymous experts (referees)
- Widely applied by scientific journals, conferences, and funding agencies
- Submitted documents are typically reviewed by 3-4 referees
- Referee reports typically contain:
- Scores for various criteria (e.g. originality, clarity, etc.)
- Overall score for paper quality (e.g. 1-10)
- Level of expertise (e.g. 1-10)
- Detailed comments
- Papers with highest aggregated scores are accepted \Rightarrow How?

Demo

A prototype implementation is available at:
http://www.iam.unibe.ch/~run/referee

Formal Setting

Input:

$$
\begin{aligned}
\mathcal{D}=\{1, \ldots, n\} & \rightarrow \text { submitted documents } \\
\mathcal{R}=\{1, \ldots, m\} & \rightarrow \text { referees } \\
\text { referees }(i) \subseteq \mathcal{R} & \rightarrow \text { referees assigned to document } i \\
s_{i, j}=\left(q_{i, j}, e_{i, j}\right) & \rightarrow \text { referee } j \text { 's score for document } i \\
q_{i, j} \in[0,1] & \rightarrow \text { quality judgement } \\
e_{i, j} \in[0,1] & \rightarrow \text { expertise level }
\end{aligned}
$$

Formal Setting (cont.)

Output:

$$
\begin{aligned}
s_{i}=\bigotimes_{j \in \text { referees }(i)} s_{i, j} & \rightarrow \text { combined score } s_{i}=\left(q_{i}, e_{i}\right) \text { for document } i \\
q_{i} \in[0,1] & \rightarrow \text { combined quality judgement } \\
e_{i} \in[0,1] & \rightarrow \text { combined expertise level } \\
\mathcal{S}=\left\{s_{1}, \ldots, s_{n}\right\} & \rightarrow \text { set of combined scores } \\
(\mathcal{D}, \preceq) & \rightarrow \text { total preorder over } \mathcal{D} \\
r: \mathcal{D} \rightarrow \mathbb{N} & \rightarrow \text { ranking function over } \mathcal{D}
\end{aligned}
$$

Note that classifying the documents (e.g. accepted/rejected) is a special case of a total preorder \preceq

Example

	Referees					Total Preorder	
	1	2	3	4	5	\otimes	$4 \preceq\{1,3\} \preceq 2$
1	$s_{1,1}$	-	$s_{1,3}$	$s_{1,4}$	-	s_{1}	$r(1)=2$
$\stackrel{\text { ® }}{\text { ® }}$	$s_{2,1}$	$s_{2,2}$	-	-	$s_{2,5}$	s_{2}	$r(2)=1$
\bigcirc	-	$s_{3,2}$	$s_{3,3}$	$s_{3,4}$	-	s_{3}	$r(3)=2$
4	$s_{4,1}$	-	$s_{4,3}$	-	$s_{4,5}$	s_{4}	$r(4)=4$

Problem Formulation

- Problem 1: Find an appropriate combination operator \otimes
- Problem 2: Find an appropriate total preorder \preceq
- Solution: Apply the opinion calculus
(i) Transform scores $s_{i, j}$ into opinions $\varphi_{i, j}$
(ii) Apply the combination operator \otimes defined for independent opinions $\Rightarrow \varphi_{i}$
(iii) Use various probabilistic transformations $f \in\{g, h, p\}$ to turn each φ_{i} into a Bayesian opinion $f\left(\varphi_{i}\right)$
(iv) Use the natural total order \preceq_{0} of Bayesian opinions to define \preceq

Outline

(1) Introduction

(2) Problem Formulation

(3) The Opinion Calculus

4 Evaluating Referee Scores
(5) Conclusion

Opinions

- The opinion calculus is an algebraic version of the Dempster's theory of lower and upper probabilities (Dempster, 1967) for two-valued hypotheses $H \in\{$ yes, no $\}$
- Terminology and references:
- (Hajek and Valdes, 1991) \rightarrow Dempster pairs, dempsteroids
- (Jøsang, 1997) \rightarrow opinions, subjective logic
- (Daniel, 2002) \rightarrow d-pairs, Dempster's semigroup
- An opinion relative to H is a triple $\varphi=(b, d, i) \in[0,1]^{3}$
- $b+d+i=1$
- $b=$ degree of belief of H
- $d=$ degree of disbelief H
- $i=$ degree of ignorance relative to H
- Dempster's theory provides a probabilistic interpretation for b, d, and i

Opinion Triangle

Opinion Classes

Combining Opinions

- Let $\varphi_{1}=\left(b_{1}, d_{1}, i_{1}\right)$ and $\varphi_{2}=\left(b_{2}, d_{2}, i_{2}\right)$ be independent:

$$
\varphi_{1} \otimes \varphi_{2}=\left(\frac{b_{1} b_{2}+b_{1} i_{2}+i_{1} b_{2}}{1-b_{1} d_{2}-d_{1} b_{2}}, \frac{d_{1} d_{2}+d_{1} i_{2}+i_{1} d_{2}}{1-b_{1} d_{2}-d_{1} b_{2}}, \frac{i_{1} i_{2}}{1-b_{1} d_{2}-d_{1} b_{2}}\right)
$$

- Let $\varphi_{i}=\left(b_{i}, d_{i}, i_{i}\right), 1 \leq i \leq n$, be independent:

$$
\begin{aligned}
& \varphi_{1} \otimes \cdots \otimes \varphi_{n} \\
& \quad=\left(\frac{1}{K}\left[\prod_{i}\left(b_{i}+i_{i}\right)-\prod_{i} i_{i}\right], \frac{1}{K}\left[\prod_{i}\left(d_{i}+i_{i}\right)-\prod_{i} i_{i}\right], \frac{1}{K} \prod_{i} i_{i}\right) \\
& \quad \text { for } K=\prod_{i}\left(b_{i}+i_{i}\right)+\prod_{i}\left(d_{i}+i_{i}\right)-\prod_{i} i_{i}>0
\end{aligned}
$$

- Click here to start demo

The Opinion Monoid

- $\Phi=\{(b, d, i): b+d+i=1\}$ is not closed under \otimes
- \otimes is undefined for $p=(1,0,0)$ and $n=(0,1,0)$
- Add inconsistent opinion $z=(1,1,-1)$
- Define $p \otimes n=n \otimes p=z$
- Define $\varphi \otimes z=z \otimes \varphi=z$, for all $\varphi \in \Phi$
- $\Phi_{z}=\Phi \cup\{z\}$ is closed under \otimes
- \otimes is commutative
- \otimes is associative
- Therefore, $\left(\Phi_{z}, \otimes\right)$ is a commutative semigroup
- $e=(0,0,1)$ is the identity element: $e \otimes \varphi=\varphi \otimes e=\varphi$
- $z=(1,1,-1)$ is the zero element: $z \otimes \varphi=\varphi \otimes z=z$
- Therefore, $\left(\Phi_{z}, \otimes, e\right)$ is a commutative monoid with zero element z

Other Opinion Monoids

Name	Notation	Definition		Identity
Zero				
general	Φ_{z}	$\Phi \cup\{z\}$	e	z
non-negative	Φ_{\geq}	$\{(b, d, i) \in \Phi: b \geq d\}$	e	p
non-positive	Φ_{\leq}	$\{(b, d, i) \in \Phi: b \leq d\}$	e	n
simple non-negative	Φ_{+}	$\{(b, d, i) \in \Phi: d=0\}$	e	p
simple non-positive	Φ_{-}	$\{(b, d, i) \in \Phi: b=0\}$	e	n
indifferent	$\Phi_{=}$	$\{(b, d, i) \in \Phi: b=d\}$	e	u
Bayesian	Φ_{0}	$\{(b, d, i) \in \Phi: i=0\} \cup\{z\}$	u	z

Remarks:

- $\Phi_{+}, \Phi_{-}, \Phi_{=}, \Phi_{0} \backslash\{z\}$ possess a natural total order
- $\Phi_{0} \backslash\{p, n, z\}$ forms a commutative group

Probabilistic Transformations

- A probabilistic transformation is mapping $f: \Phi_{z} \rightarrow \Phi_{0}$
- Belief transformation:

$$
g(\varphi)=\left(\frac{b}{b+d}, \frac{d}{b+d}, 0\right)
$$

- Plausibility transformation:

$$
h(\varphi)=\left(\frac{1-d}{1+i}, \frac{1-b}{1+i}, 0\right)=\varphi \otimes u
$$

- Pignistic transformation:

$$
p(\varphi)=\left(b+\frac{i}{2}, d+\frac{i}{2}, 0\right)
$$

- For each $f \in\{g, h, p\}$, the total order over $\Phi_{0} \backslash\{z\}$ defines a total preorder over Φ

Probabilistic Transformations (cont.)

Belief Transformation

Pignistic Transformation

Outline

(1) Introduction

(2) Problem Formulation

(3) The Opinion Calculus

4 Evaluating Referee Scores
(5) Conclusion

Referee Scores as Opinions

- Problem 1: Define a mapping from scores to opinions
- Score: $s=(q, e) \in[0,1] \times[0,1]$
- Opinion: $\varphi=(b, d, i) \in \Phi$
- Mapping: $\Delta:[0,1] \times[0,1] \rightarrow \Phi$
- Solution: Probabilistic interpretation of q and e
- $e=P(E)$
\Rightarrow probability of the referee being an expert (event E)
- $q=P(Q \mid E)$
\Rightarrow conditional probability of the document being a high-quality paper (event Q), given that the referee is an expert (event E)
- If E and Q are probabilistically independent, then

$$
\Delta(s)=(b, d, i)=(e \cdot q, e \cdot(1-q), 1-e)
$$

Mapping Scores into Opinions

Remarks:

- Δ is invertible: $\Delta^{-1}(\varphi)=(q, e)=\left(\frac{b}{1-i}, 1-i\right)$, for $\varphi \neq e$
- $s=\Delta^{-1}\left(\Delta\left(s_{1}\right) \otimes \cdots \otimes \Delta\left(s_{k}\right)\right)$

Combining Scores

$$
\begin{aligned}
s_{1}=(0.80,0.50) \Rightarrow & \varphi_{1} \\
s_{2}=(0.40,0.25) \Rightarrow & \varphi_{2} \\
s_{3}=(0.20,0.75) \Rightarrow & \varphi_{3} \\
& \Downarrow \\
s=(0.37,0.86) & \Leftarrow \varphi
\end{aligned}
$$

Document Ranking

- Problem 2: Determine document ranking
- Documents: $\mathcal{D}=\{1, \ldots, n\}$
- Scores: $\mathcal{S}=\left\{s_{1}, \ldots, s_{n}\right\}$
- Opinions: $\Delta=\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$
- Define ranking $r(i)$ for all $i \in \mathcal{D}$
- Solution: Use probabilistic transformation of φ_{i}
- $f\left(\varphi_{i}\right)=\left(b_{i}, 1-b_{i}, 0\right)$ for $f \in\{g, h, p\}$
- $i \preceq j \Leftrightarrow f\left(\varphi_{i}\right) \preceq_{0} f\left(\varphi_{j}\right) \Leftrightarrow b_{i} \leq b_{j}$
- $i \prec j \Leftrightarrow i \preceq j \wedge i \nsucceq j$
- Ranking: $r(i)=|\{j \in \mathcal{D}: i \prec j\}|+1$

Outline

(1) Introduction

(2) Problem Formulation
(3) The Opinion Calculus

4 Evaluating Referee Scores
(5) Conclusion

Conclusion

- Peer reviewing leads to an important judgement aggregation problem
- It can be solved using the opinion calculus (Dempster-Shafer theory)
- The method can be implemented efficiently
- Future work and open problems:
- Get into a conference management tools (CyberChair, ...)
- Empirical study based on data from real conferences
- Compare/evaluate different probabilistic transformations

