Aggregating Referee Scores: an Algebraic Approach

Rolf Haenni

Reasoning under **UN**certainty Group Institute of Computer Science and Applied Mathematics University of Berne, Switzerland

COMSOC'08 2nd International Workshop on Computational Social Choice

Liverpool, UK

3-5 September 2008

- 2 Problem Formulation
- 3 The Opinion Calculus
- 4 Evaluating Referee Scores

Outline

2 Problem Formulation

- 3 The Opinion Calculus
- 4 Evaluating Referee Scores

The Opinion Calculus

4 Evaluating Referee Scores

- 2 Problem Formulation
- The Opinion Calculus
- 4 Evaluating Referee Scores

- 2 Problem Formulation
- The Opinion Calculus
- 4 Evaluating Referee Scores

Introduction		Conclusion
Outline		

- 2 Problem Formulation
- **3** The Opinion Calculus
- ④ Evaluating Referee Scores

RUN Research Group

Supported by:

- Swiss National Science Foundation (Project PP002-102652)
- Hasler Foundation (U/Projects No. 2034 & 2042)
- Leverhulme Trust (Progicnet)

	Problem Formulation		Conclusion
Outline			

2 Problem Formulation

- 3 The Opinion Calculus
- 4 Evaluating Referee Scores

- Peer reviewing (or refereeing) is the process of evaluating submitted documents by anonymous experts (referees)
- Widely applied by scientific journals, conferences, and funding agencies
- Submitted documents are typically reviewed by 3-4 referees
- Referee reports typically contain:
 - Scores for various criteria (e.g. originality, clarity, etc.)
 - ▶ Overall score for paper quality (e.g. 1–10)
 - Level of expertise (e.g. 1–10)
 - Detailed comments
- Papers with highest aggregated scores are accepted \Rightarrow How?

	Problem Formulation	Evaluating Referee Scores	Conclusion
Demo			

A prototype implementation is available at:

 $http://www.iam.unibe.ch/{\sim}run/referee$

Input:

$$\begin{split} \mathcal{D} &= \{1, \dots, n\} \ \rightarrow \ \text{submitted documents} \\ \mathcal{R} &= \{1, \dots, m\} \ \rightarrow \ \text{referees} \\ referees(i) \subseteq \mathcal{R} \ \rightarrow \ \text{referees assigned to document } i \\ s_{i,j} &= (q_{i,j}, e_{i,j}) \ \rightarrow \ \text{referee } j \text{'s score for document } i \\ q_{i,j} \in [0, 1] \ \rightarrow \ \text{quality judgement} \\ e_{i,j} \in [0, 1] \ \rightarrow \ \text{expertise level} \end{split}$$

Output:

$$\begin{split} s_i &= \bigotimes_{\substack{j \in referees(i) \\ q_i \in [0,1]}} \to \text{combined score } s_i = (q_i, e_i) \text{ for document } i \\ q_i \in [0,1] \to \text{combined quality judgement} \\ e_i \in [0,1] \to \text{combined expertise level} \\ \mathcal{S} &= \{s_1, \dots, s_n\} \to \text{set of combined scores} \\ (\mathcal{D}, \preceq) \to \text{total preorder over } \mathcal{D} \\ r : \mathcal{D} \to \mathbb{N} \to \text{ranking function over } \mathcal{D} \end{split}$$

Note that classifying the documents (e.g. accepted/rejected) is a special case of a total preorder \preceq

	Problem Formulation		
Example			

- Problem 1: Find an appropriate combination operator \otimes
- Problem 2: Find an appropriate total preorder \preceq
- Solution: Apply the opinion calculus
 - (i) Transform scores $s_{i,j}$ into opinions $\varphi_{i,j}$
 - (ii) Apply the combination operator \otimes defined for independent opinions $\Rightarrow \varphi_i$
 - (iii) Use various probabilistic transformations $f \in \{g, h, p\}$ to turn each φ_i into a Bayesian opinion $f(\varphi_i)$
 - (iv) Use the natural total order \preceq_0 of Bayesian opinions to define \preceq

4 Evaluating Referee Scores

5 Conclusion

< D)

	The Opinion Calculus	Evaluating Referee Scores	
Opinions			

- The opinion calculus is an algebraic version of the Dempster's theory of lower and upper probabilities (Dempster, 1967) for two-valued hypotheses $H \in \{yes, no\}$
- Terminology and references:
 - (Hajek and Valdes, 1991) \rightarrow Dempster pairs, dempsteroids
 - (Jøsang, 1997) \rightarrow opinions, subjective logic
 - (Daniel, 2002) \rightarrow d-pairs, Dempster's semigroup
- An opinion relative to H is a triple $\varphi = (b,d,i) \in [0,1]^3$
 - $\blacktriangleright \ b+d+i=1$
 - b = degree of belief of H
 - d = degree of disbelief H
 - i =degree of ignorance relative to H
- Dempster's theory provides a probabilistic interpretation for $\boldsymbol{b},$ $\boldsymbol{d},$ and \boldsymbol{i}

		The Opinion Calculus	
Onlinian	Classes		

Combining Opinions

• Let
$$\varphi_1 = (b_1, d_1, i_1)$$
 and $\varphi_2 = (b_2, d_2, i_2)$ be independent:

$$\varphi_1 \otimes \varphi_2 = \left(\frac{b_1 b_2 + b_1 i_2 + i_1 b_2}{1 - b_1 d_2 - d_1 b_2}, \frac{d_1 d_2 + d_1 i_2 + i_1 d_2}{1 - b_1 d_2 - d_1 b_2}, \frac{i_1 i_2}{1 - b_1 d_2 - d_1 b_2}\right)$$

• Let $\varphi_i = (b_i, d_i, i_i)$, $1 \le i \le n$, be independent:

$$\begin{split} \varphi_1 \otimes \cdots \otimes \varphi_n \\ &= \left(\frac{1}{K} \left[\prod_i (b_i + i_i) - \prod_i i_i\right], \frac{1}{K} \left[\prod_i (d_i + i_i) - \prod_i i_i\right], \frac{1}{K} \prod_i i_i\right) \\ \text{for } K = \prod_i (b_i + i_i) + \prod_i (d_i + i_i) - \prod_i i_i > 0 \end{split}$$

• Click <u>here</u> to start demo

- $\Phi = \{(b,d,i): b+d+i=1\}$ is not closed under \otimes
 - $\blacktriangleright \, \otimes$ is undefined for p=(1,0,0) and n=(0,1,0)
 - Add inconsistent opinion z = (1, 1, -1)
 - Define $p \otimes n = n \otimes p = z$
 - Define $\varphi \otimes z = z \otimes \varphi = z$, for all $\varphi \in \Phi$
- $\Phi_z = \Phi \cup \{z\}$ is closed under \otimes
 - ▶ ⊗ is commutative
 - ▶ ⊗ is associative
- Therefore, (Φ_z,\otimes) is a commutative semigroup
 - e = (0, 0, 1) is the identity element: $e \otimes \varphi = \varphi \otimes e = \varphi$
 - ▶ z = (1, 1, -1) is the zero element: $z \otimes \varphi = \varphi \otimes z = z$
- Therefore, (Φ_z,\otimes,e) is a commutative monoid with zero element z

Other Opinion Monoids

Name	Notation	Definition	Identity	Zero
general	Φ_z	$\Phi \cup \{z\}$	e	z
non-negative	Φ_{\geq}	$\{(b,d,i)\in\Phi:b\geq d\}$	e	p
non-positive	Φ_{\leq}	$\{(b,d,i)\in\Phi:b\leq d\}$	e	n
simple non-negative	Φ_+	$\{(b,d,i)\in\Phi:d=0\}$	e	p
simple non-positive	Φ_{-}	$\{(b,d,i)\in\Phi:b=0\}$	e	n
indifferent	$\Phi_{=}$	$\{(b,d,i)\in\Phi:b=d\}$	e	u
Bayesian	Φ_0	$\{(b,d,i)\in\Phi:i=0\}\cup\{z\}$	u	z

Remarks:

- Φ_+ , Φ_- , $\Phi_=$, $\Phi_0 \setminus \{z\}$ possess a natural total order
- $\Phi_0 \setminus \{p, n, z\}$ forms a commutative group

Probabilistic Transformations

- A probabilistic transformation is mapping $f: \Phi_z \to \Phi_0$
 - Belief transformation:

$$g(\varphi) = \left(\frac{b}{b+d}, \frac{d}{b+d}, 0\right)$$

Plausibility transformation:

$$h(\varphi) = \left(\frac{1-d}{1+i}, \frac{1-b}{1+i}, 0\right) = \varphi \otimes u$$

Pignistic transformation:

$$p(\varphi) = \left(b + \frac{i}{2}, d + \frac{i}{2}, 0\right)$$

• For each $f \in \{g, h, p\}$, the total order over $\Phi_0 \setminus \{z\}$ defines a total preorder over Φ

Introduction

Probabilistic Transformations (cont.)

- **3** The Opinion Calculus
- 4 Evaluating Referee Scores

Referee Scores as Opinions

- Problem 1: Define a mapping from scores to opinions
 - Score: $s = (q, e) \in [0, 1] \times [0, 1]$
 - Opinion: $\varphi = (b, d, i) \in \Phi$
 - Mapping: $\Delta : [0,1] \times [0,1] \rightarrow \Phi$
- Solution: Probabilistic interpretation of q and e
 - e = P(E)

 \Rightarrow probability of the referee being an expert (event E)

$$\bullet \ q = P(Q|E)$$

 \Rightarrow conditional probability of the document being a high-quality paper (event Q), given that the referee is an expert (event E)

 \blacktriangleright If E and Q are probabilistically independent, then

$$\Delta(s) = (b, d, i) = (e \cdot q, e \cdot (1 - q), 1 - e)$$

Mapping Scores into Opinions

Remarks:

• Δ is invertible: $\Delta^{-1}(\varphi) = (q,e) = (\frac{b}{1-i},1-i)$, for $\varphi \neq e$

•
$$s = \Delta^{-1}(\Delta(s_1) \otimes \cdots \otimes \Delta(s_k))$$

		Evaluating Referee Scores	Conclusion
Docume	nt Ranking		

- Problem 2: Determine document ranking
 - Documents: $\mathcal{D} = \{1, \dots, n\}$
 - Scores: $S = \{s_1, \ldots, s_n\}$
 - Opinions: $\Delta = \{\varphi_1, \ldots, \varphi_n\}$
 - Define ranking r(i) for all $i \in \mathcal{D}$
- Solution: Use probabilistic transformation of φ_i
 - $f(\varphi_i) = (b_i, 1 b_i, 0) \text{ for } f \in \{g, h, p\}$
 - $i \leq j \iff f(\varphi_i) \leq_0 f(\varphi_j) \iff b_i \leq b_j$
 - $\bullet \ i \prec j \ \Leftrightarrow \ i \preceq j \land i \not\succeq j$
 - ▶ Ranking: $r(i) = |\{j \in \mathcal{D} : i \prec j\}| + 1$

Introduction

- 2 Problem Formulation
- 3 The Opinion Calculus
- 4 Evaluating Referee Scores

- Peer reviewing leads to an important judgement aggregation problem
- It can be solved using the opinion calculus (Dempster-Shafer theory)
- The method can be implemented efficiently
- Future work and open problems:
 - ▶ Get into a conference management tools (CyberChair, ...)
 - Empirical study based on data from real conferences
 - Compare/evaluate different probabilistic transformations