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Significance of computing influence

The mathematical study (under different names) of
pivotal agents and influences is quite basic in percolation
theory and statistical physics, as well as in probability
theory and statistics, reliability theory, distributed
computing, complexity theory, game theory, mechanism
design and auction theory, other areas of theoretical
economics, and political science.

- G. Kalai and S. Safra. (Threshold phenomena and
influence. In Computational Complexity and Statistical
Physics. Oxford University Press, 2006.)
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Simple Games

A simple voting game is a pair (N, v) where N = {1, ..., n}
is the set of voters and v is the valuation function
v : 2N → {0, 1}.
v has the properties that v(∅) = 0, v(N) = 1 and
v(S) ≤ v(T ) whenever S ⊆ T .

A coalition S ⊆ N is winning if v(S) = 1 and losing if
v(S) = 0.
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Simple Games

Background: Von Neumann and Morgenstern, Theory of Games
and Economic Behavior, 1944
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Simple Games

Reference: A. Taylor and W. Zwicker, Simple Games: Desirability
Relations, Trading, Pseudoweightings, New Jersey: Princeton
University Press, 1999.

...few structures arise in more contexts and lend
themselves to more diverse interpretations than do simple
games.
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Representations

1 (N,W ): (extensive winning form)

2 (N,W m): extensive minimal winning form

3 WVG: Weighted Voting Games

4 MWVG: Multiple Weighted Voting Game
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Weighted Voting Games

Voters, V = {1, ..., n} with corresponding voting weights
{w1, ...,wn}
Quota, 0 ≤ q ≤

∑
1≤i≤n wi

A coalition of voters, S is winning ⇐⇒
∑

i∈S wi ≥ q

Notation: [q;w1, ...,wn]
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MWVG

Definitions

An multiple weighted voting game (MWVG) is the simple game
(N, v1 ∧ · · · ∧ vm) where the games (N, vt) are the WVGs
[qt ;w t

1 , . . . ,w t
n] for 1 ≤ t ≤ m. Then v = v1 ∧ · · · ∧ vm is defined

as:

v(S) =

{
1, if vt(S) = 1, ∀t, 1 ≤ t ≤ m.
0, otherwise.
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Key Concepts

Being critical for a coalition

A player, i is critical for a losing coalition C if the player’s
inclusion results in the coalition winning.

Banzhaf Value

Banzhaf Value, ηi of a player i is the number of coalitions for
which i is critical.

Banzhaf Index

Banzhaf Index, βi is the ratio of the Banzhaf value of the player i
to sum of the Banzhaf value of all players.
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Shapley-Shubik index

Depends on permutations instead of coalitions.

Definitions

The Shapley-Shubik value is the function κ that assigns to any simple
game (N, v) and any voter i a value κi (v) where
κi =

∑
X⊆N(|X | − 1)!(n − |X |)!(v(X )− v(X − {i})). The

Shapley-Shubik index of i is the function φ defined by φi = κi

n!
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Player types

A player in a simple game may be of various types depending on its
level of influence.

Definitions

For a simple game v on a set of players N, player i is

dummy if and only if ∀S ⊆ N, if v(S) = 1, then
v(S \ {i}) = 1;

passer if and only if ∀S ⊆ N, if i ∈ S , then v(S) = 1;

vetoer if and only if ∀S ⊆ N, if i /∈ S , then v(S) = 0;

dictator if and only if ∀S ⊆ N, v(S) = 1 if and only if i ∈ S .
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Dictator

If a dictator exists, it is unique and all other players are
dummies.

This means that a dictator has voting power one, whereas all
other players have zero voting power.
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Dummy

We already know that for the case of WVGs, it is NP-hard to
identify dummy players. [Matsui and Matsui, 2000]

It follows that it is NP-hard to identify dummies in MWVGs.
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Lemma

A player i in a simple game v is a dummy if and only if it is not
present in any minimal winning coalition.

Proof.

Let us assume that player i is a dummy but is present in a minimal
winning coalition.

That mean that it is critical in the minimal winning coalition which leads
to a contradiction.

Now let us assume that i is critical in at least one coalition S such that
v(S ∪ {i}) = 1 and v(S) = 0.

In that case there is a S ′ ⊂ S such that S ′ ∪ {i} is a MWC.
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Proposition

For a simple game v,

1 Dummy players can be identified in linear time if v is of the form
(N,W m).

2 Dummy players can be identified in polynomial time if v is of the
form (N,W ).

Proof.

We examine each case separately:

1 If a player is not critical for any MWC, then it is a dummy.

2 Initialize a set of dummy players as N. For each coalition S ∈ W ,
check for each player i in S whether the defection of player i leads to
S becoming losing. If yes, remove i from the set of dummy players.
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Proposition

Vetoers can be identified in linear time for a simple game in the following
representations: (N,W ), (N,W m), WVG and MWVG.

Proof.

We examine each of the cases separately:

1 (N, W ): Initialize all players as vetoers. For each winning coalition, if a player is
not present in the coalition, remove him from the list of vetoers.

2 (N, W m): If there exists a winning coalition which does not contain player i ,
there will also exist a minimal winning coalition which does not contain i .

3 WVG: For each player i , i has veto power if and only if w(N \ {i}) < q.

4 MWVG: For each player i , i has veto power if and only if N \ {i} is losing.
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Passers & Dictators

Proposition

For a simple game represented by (N,W ), (N,W m), WVG or MWVG, it
is easy to identify the passers and the dictator.

Proof.

We check both cases separately:

1 Passers: This follows from the definition of a passer. A player i is a
passer if and only if v({i}) = 1.

2 Dictator: It is easy to see that if a dictator exists in a simple game,
it is unique. It follows from the definition of a dictator that a player
i is dictator in a simple game if v({i}) = 1 and v(N \ {i}) = 0.
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Complexity of player types

Table: Complexity of player types

Input→ (N,W ) (N,W m) WVG MWVG

IDENTIFY-DUMMIES P Linear NP-hard NP-hard
IDENTIFY-VETOERS linear linear linear linear
IDENTIFY-PASSERS linear linear linear linear
IDENTIFY-DICTATOR linear linear linear linear
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Desirability relation

In a simple game (N, v),

A player i is more desirable/influential than player j
(i �D j) if v(S ∪ {j}) = 1 ⇒ v(S ∪ {i}) = 1 for all
S ⊆ N \ {i , j}.

Players i and j are equally desirable/influential or
symmetric (i ∼D j) if v(S ∪ {j}) = 1 ⇔ v(S ∪ {i}) = 1 for all
S ⊆ N \ {i , j}.
A player i is strictly more desirable/influential than player j
(i �D j) if i is more desirable than j , but if i and j are not
equally desirable.

A player i and j are incomparable if there exist S ,
T ⊆ N \ {i , j} such that v(S ∪ {i}) = 1, v(S ∪ {j}) = 0,
v(T ∪ {i}) = 0 and v(T ∪ {j}) = 1.
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Linear

Linear simple games are a natural class of simple games:

Definitions

A simple game is linear whenever the desirability relation �D is
complete that is any two players i and j are comparable (i � j ,
j � i or i ∼ j).

For linear games, the relation R∼ divides the set of voters N into
equivalence classes N/R∼ = {N1, . . . ,Nt} such that for any i ∈ Np

and j ∈ Nq, i � j if and only if p < q.
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Linear games

Proposition

A simple game with three or fewer players is linear.

Proof.

For a game to be non-linear, we want to player 1 and 2 to be
incomparable i.e. there exists coalition S1, S2 ⊆ N \ {1, 2} such that
v({1} ∪ S1) = 1, v({2} ∪ S1) = 0, v({1} ∪ S2) = 0 and v({2} ∪ S2) = 1.

This is not clearly not possible for n = 1 or 2. For n = 3, without loss of
generality v is non-linear only if v({1} ∪ ∅) = 1, v({2} ∪ ∅) = 0,
v({1} ∪ {3}) = 0 and v({2} ∪ {3}) = 1.

However the fact that v({1} ∪ ∅) = 1 and v({1} ∪ {3}) = 0 leads to a
contradiction.
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Desirability ordering

A desirability ordering on linear games is any ordering on players such
that 1 �D 2 �D . . . �D n. A strict desirability ordering is the following
ordering on players: 1 ◦ 2 ◦ . . . ◦ n where ◦ is either ∼D or �D .

Proposition

For a WVG:

1 A desirability ordering of players can be computed easily.

2 It is NP-hard to compute the strict desirability ordering of players.
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Desirability ordering

Proof.

We check both cases separately:

1 WVGs are linear games. When wi = wj , then we know that
i ∼ j . Moreover, if wi > wj , then we know that i is at least as
desirable as j , that is i � j .

2 Follows from the fact that it is NP-hard to check whether two
players are symmetric. (Matsui and Matsui [2000])
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Linearity of MWVGs

The following is an example of a small non-linear MWVG:

Example

In game v = [10; 10, 9, 1, 0] ∧ [10; 9, 10, 0, 1],

{1} ∪ {4} wins, {2} ∪ {4} loses, {2} ∪ {3} wins and {1} ∪ {3}
loses.

Players 1 and 2 are incomparable.

So, whereas simple games with 3 players are linear, it is easy
to construct a 4 player non-linear MWVG.
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Linearity of MWVGs

Proposition

It is NP-hard to verify whether a MWVG is linear or not.

Proof:
We prove this by a reduction from an instance of the classical NP-hard
PARTITION problem.
Name: PARTITION
Instance: A set of k integer weights A = {a1, . . . , ak}.
Question: Is it possible to partition A, into two subsets P1 ⊆ A, P2 ⊆ A
so that P1 ∩ P2 = ∅ and P1 ∪ P2 = A and

∑
ai∈P1

ai =
∑

ai∈P2
ai?
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Linearity of MWVGs-Proof

Given an instance of PARTITION {a1, . . . , ak}, we may as well

assume that
∑k

i=1 ai is an even integer, 2t say.

Reduction: We can transform the instance into the multiple
weighted voting v = v1 ∧ v2 where
v1 = [q; 20a1, . . . , 20ak , 10, 9, 1, 0] and
v2 = [q; 20a1, . . . , 20ak , 9, 10, 0, 1] for q = 10 + 20t and k + 4 is the
number of players.

If A is a ‘no’ instance of PARTITION, then we see that a subset
of weights {20a1, . . . , 20ak} cannot sum to 20t. This implies that
players k + 1, k + 2, k + 3, and k + 4 are not critical for any
coalition. Since players 1, . . . , k have the same desirability ordering
in both v1 and v2, v is linear.

Aziz Comparing players in simple games



Introduction
Player types

Complexity of Desirability ordering
Power indices

Conclusion

Linearity of MWVGs-Proof

Given an instance of PARTITION {a1, . . . , ak}, we may as well

assume that
∑k

i=1 ai is an even integer, 2t say.

Reduction: We can transform the instance into the multiple
weighted voting v = v1 ∧ v2 where
v1 = [q; 20a1, . . . , 20ak , 10, 9, 1, 0] and
v2 = [q; 20a1, . . . , 20ak , 9, 10, 0, 1] for q = 10 + 20t and k + 4 is the
number of players.

If A is a ‘no’ instance of PARTITION, then we see that a subset
of weights {20a1, . . . , 20ak} cannot sum to 20t. This implies that
players k + 1, k + 2, k + 3, and k + 4 are not critical for any
coalition. Since players 1, . . . , k have the same desirability ordering
in both v1 and v2, v is linear.

Aziz Comparing players in simple games



Introduction
Player types

Complexity of Desirability ordering
Power indices

Conclusion

Linearity of MWVGs-Proof

Given an instance of PARTITION {a1, . . . , ak}, we may as well

assume that
∑k

i=1 ai is an even integer, 2t say.

Reduction: We can transform the instance into the multiple
weighted voting v = v1 ∧ v2 where
v1 = [q; 20a1, . . . , 20ak , 10, 9, 1, 0] and
v2 = [q; 20a1, . . . , 20ak , 9, 10, 0, 1] for q = 10 + 20t and k + 4 is the
number of players.

If A is a ‘no’ instance of PARTITION, then we see that a subset
of weights {20a1, . . . , 20ak} cannot sum to 20t. This implies that
players k + 1, k + 2, k + 3, and k + 4 are not critical for any
coalition. Since players 1, . . . , k have the same desirability ordering
in both v1 and v2, v is linear.

Aziz Comparing players in simple games



Introduction
Player types

Complexity of Desirability ordering
Power indices

Conclusion

Linearity of MWVGs-Proof

Given an instance of PARTITION {a1, . . . , ak}, we may as well

assume that
∑k

i=1 ai is an even integer, 2t say.

Reduction: We can transform the instance into the multiple
weighted voting v = v1 ∧ v2 where
v1 = [q; 20a1, . . . , 20ak , 10, 9, 1, 0] and
v2 = [q; 20a1, . . . , 20ak , 9, 10, 0, 1] for q = 10 + 20t and k + 4 is the
number of players.

If A is a ‘no’ instance of PARTITION, then we see that a subset
of weights {20a1, . . . , 20ak} cannot sum to 20t. This implies that
players k + 1, k + 2, k + 3, and k + 4 are not critical for any
coalition. Since players 1, . . . , k have the same desirability ordering
in both v1 and v2, v is linear.

Aziz Comparing players in simple games



Introduction
Player types

Complexity of Desirability ordering
Power indices

Conclusion

Linearity of MWVGs-Proof

If A is a ‘yes’ instance of PARTITION with a partition (P1,P2).
In that case players k + 1, k + 2, k + 3, and k + 4 are critical for
certain coalitions. We see that v({k + 1} ∪ ({k + 4} ∪ P1)) = 1,
v({k + 2} ∪ ({k + 4} ∪ P1)) = 0, v({k + 1} ∪ ({k + 3} ∪ P1)) = 0
and v({k + 2} ∪ ({k + 3} ∪ P1)) = 1. Therefore, players k + 1 and
k + 2 are not comparable and v is not linear.
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Makino’s result

Proposition

(Makino, 2002) For a simple game v = (N,W m), it can be verified
in O(n(|W m|)) time if v is linear or not.

Proof.

Makino [2002] proved that for a positive boolean function on n
variables represented by a set of all minimal true vectors minT (f ),
it can be checked in O(n|minT (f )|) whether the function is
regular(linear) or not. Makino’s algorithm CHECK-FCB takes
minT (f ) as input and outputs ‘Yes’ if f is regular and ‘No’
otherwise.
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Corollary

Corollary

For a simple game v = (N,W ), it can be verified in polynomial
time if v is linear or not.

Proof.

We showed earlier that (N,W ) can be transformed in to (N,W m)
in polynomial time. After that we can use Makino’s method to
verify whether the game is linear or not.
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Linearity

Proposition

Let v = (N,W m) be a linear simple game and let
dk,i = |{S : i ∈ S, S ∈ W m, |S | = k}|. Then for two players i and
j,

1 i ∼D j if and only if dk,i = dk,j for k = 1, . . . n.

2 i �D j if and only if for the smallest k where dk,i 6= dk,j ,
dk,i > dk,j .
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Proof part 1

(⇒)

Let us assume i ∼D j .

Then by definition, v(S ∪ {j}) = 1 ⇔ v(S ∪ {i}) = 1 for all
S ⊆ N \ {i , j}.

So S ∪ {i} ∈ W m if and only if S ∪ {j} ∈ W m.

Therefore, dk,i = dk,j for k = 1, . . . n.
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Proof part 1

(⇐)

Let us assume that i �D j . Since v is linear, i and j are comparable.

Without loss of generality, we assume that i �D j .

Then there exists a coalition S \ {i , j} such that v(S ∪ {i}) = 1 and
v(S ∪ {j}) = 0 and |S | = k − 1.

If S ∪ {i} ∈ W m, then dk,i > dk,j .

If S ∪ {i} /∈ W m then there exists S ′ ⊂ S such that S ′ ∪ {i} ∈ W m.

Thus there exists k ′ < k such that dk′,i > dk′,j .
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Proof part 2

(⇒)

Let us assume that i �D j and let k ′ be the smallest integer where
dk′,i 6= dk′,j .

If dk′,i < dk′,j , then there exists a coalition S such that
S ∪ {j} ∈ W m, S ∪ {i} /∈ W m and |S | = k ′ − 1.

S ∪ {i} /∈ W m in only two cases.

The first possibility is that v(S ∪ {i}) = 0 but this is not true since
i �D j .

The second possibility is that there exists a coalition S ′ ⊂ S such
that S ′ ∪ {i} ∈ W m.

But that would mean that v(S ′ ∪ {i}) = 1 and v(S ′ ∪ {j}) = 0.

This also leads to a contradiction since k ′ is the smallest integer
where dk′,i 6= dk′,j .
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Proof part 2

(⇐)

Let us assume that for the smallest k where dk,i 6= dk,j , dk,i > dk,j .

This means there exists a coalition S such that S ∪ {i} ∈ W m,
S ∪ {j} /∈ W m, |S | = k − 1.

This means that either v(S ∪ {j}) = 0 or there exists a coalition
S ′ ⊂ S such that S ′ ∪ {i} ∈ W m.

If v(S ∪ {j}) = 0, that means i �D j .

If there exists a coalition S ′ ⊂ S such that S ′ ∪ {j} ∈ W m, then
dk′,j > dk′,i for some k ′ < k.

This leads to a contradiction.
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Linearity

Proposition

Let v = (N,W m) be a linear simple game and let
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Algorithm

Algorithm 1 Strict-desirability-ordering-of-simple-game
Input: Simple game v = (N, Wm) where N = {1, . . . , n} and Wm(v) = {S1, . . . , S|Wm|} .

Output: NO if v is not linear. Otherwise output desirability equivalence classes starting from most desirable in case
v is linear.

1: X = CHECK-FCB(Wm)

2: if X = NO then
3: return NO
4: else
5: Initialize a n × n matrix D where entries di,j = 0 for all i and j in N

6: for i = 1 to |Wm| do

7: for each player x in Si do

8: d|Si |,x ← d|Si |,x + 1

9: end for
10: end for
11: return classify(N, D, 1)

12: end if
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Algorithm

Algorithm 2 classify
Input: set of integers classindex, n × n matrix D, integer k.
Output: subclasses.

1: if k = n + 1 or |classindex| = 1 then

2: return classindex

3: end if
4: s ← |classindex|
5: mergeSort(classindex) in descending order such that i > j if dk,i > dk,j .

6: for i = 2 to s do
7: subindex← 1; classindex.subindex ← classindex[1]

8: if dk,classindex[i ] = dk,classindex[i−1] then

9: classindex.subindex ← classindex.subindex ∪ classindex[i ]

10: else if dk,classindex[i ] < dk,classindex[i−1] then

11: subindex← subindex + 1; classindex.subindex ← {classindex[i ]}
12: end if
13: end for
14: Returnset← ∅; A← ∅
15: for j = 1 to subindex do

16: A← classify(classindex.j, D, k + 1); Returnset← A ∪ Returnset

17: end for
18: return Returnset
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Time complexity

The time complexity of Algorithm 1 is O(n.|W m|+ n2log(n))

Proof.

The time complexity of CHECK − FCB is O(n.|W m|).

The time complexity of computing matrix D is O(Max(|W m|, n2).

For each iteration, sorting of sublists requires at most O(nlog(n))
time.

There are at most n loops.

Therefore the total time complexity is
O(n.|W m|) + O(Max(|W m|, n2) + O(n2log(n)) =
O(n.|W m|+ n2log(n)).
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Linearity

Corollary

The strict desirability ordering of players in a linear simple game
v = (N,W ) can be computed in polynomial time.

Proof.

The proof follows directly from the Algorithm. Moreover, we know
that the set of all winning coalitions can be transformed into a set
of minimal winning coalitions in polynomial time.
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Summary

Table: Summary

Input→ (N, W ) (N, Wm) WVG MWVG

IS-LINEAR P P (Always linear) NP-hard
DESIRABILITY-ORDERING P P P NP-hard
STRICT-DESIRABILITY-ORDERING P P NP-hard NP-hard
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Holler index and Deegan Packel index

Definitions

We define the Holler value Mi as {S ∈ W m : i ∈ S}. The Holler
index which is called the public good index is defined by
Hi (v) = |Mi |∑

j∈N |Mj | .

Definitions

The Deegan Packel index for player i in voting game v is defined
by Di (v) = 1

|W m|
∑

S∈Mi

1
|S | .
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Complexity to compute power indices

It is NP-hard to compute the Banzhaf index, Shapley-Shubik
index and Deegan-Packel index of a player [Matsui and
Matsui,2000].

Similarly, one can prove that it is NP-hard to compute the
Holler index of players in a WVG. This follows directly from
the fact that it is NP-hard to decide whether a player is
dummy or not.

Prasad and Kelly [1990] and Deng and Papadimitriou [1994]
proved that for WVGs, computing the Banzhaf values and
Shapley-Shubik values respectively is #P-complete.
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Complexity

Proposition

For a simple game (N,W m), the Holler index and Deegan-Packel
index for all players can be computed in linear time.

Proof.

We examine each of the cases separately:

Initialize Mi to zero. Then for each S ∈ W m, if i ∈ S ,
increment Mi by one.

Initialize di to zero. Then for each S ∈ W m, if i ∈ S ,
increment di , by 1

|S | . Then Di = di
|W m| .

Aziz Comparing players in simple games



Introduction
Player types

Complexity of Desirability ordering
Power indices

Conclusion

Complexity

Proposition

For a simple game (N,W m), the Holler index and Deegan-Packel
index for all players can be computed in linear time.

Proof.

We examine each of the cases separately:

Initialize Mi to zero. Then for each S ∈ W m, if i ∈ S ,
increment Mi by one.

Initialize di to zero. Then for each S ∈ W m, if i ∈ S ,
increment di , by 1

|S | . Then Di = di
|W m| .

Aziz Comparing players in simple games



Introduction
Player types

Complexity of Desirability ordering
Power indices

Conclusion

Complexity

Proposition

For a simple game (N,W m), the Holler index and Deegan-Packel
index for all players can be computed in linear time.

Proof.

We examine each of the cases separately:

Initialize Mi to zero. Then for each S ∈ W m, if i ∈ S ,
increment Mi by one.

Initialize di to zero. Then for each S ∈ W m, if i ∈ S ,
increment di , by 1

|S | . Then Di = di
|W m| .

Aziz Comparing players in simple games



Introduction
Player types

Complexity of Desirability ordering
Power indices

Conclusion

Complexity of Power indices

Proposition

For a simple game v = (N,W ), Banzhaf index, Shapley Shubik
index, Holler index and Deegan-Packel index can be computed in
polynomial time.

Proof The proof follows from the definitions. We examine each of
the cases separately:

Holler index: Transform W into W m. This can be done in
polynomial time.

Deegan-Packel: Transform W into W m. This can be done in
polynomial time.
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Complexity of Power indices

Banzhaf index: Initialize Banzhaf values of all players to zero.
For each S ∈ W , check if the removal of a player results in S
becoming losing (not a member of W ). In that case increment
the Banzhaf value of that player by one. The time complexity
of the algorithm is polynomial in the order of input.

Shapley-Shubik index: Initialize Shapley value of all players to
zero. For each S ∈ W , check if the removal of a player result
in S becoming losing (not member of W ). In that case
increment the Shapley value of the player by
(|S | − 1)!(n − |S |)!. The time complexity of the algorithm is
polynomial in the order of input.
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Complexity of computing Banzhaf values in (N , W m)

Proposition

For a simple game v = (N,W m), the problem of computing the
Banzhaf values of players is #P-complete.

Proof:

The problem is clearly in #P.

We prove the #P-hardness of the problem by providing a reduction
from the problem of computing |W | which is #P-complete. This
result is due to Ball and Provan [1988]. Their proof is in context of
reliability functions so we give the proof in terms of simple games.

It is known that counting the number of vertex covers is
#P-complete.
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Complexity of computing Banzhaf values in (N , W m)

Now take a simple games v = (N,W m) where for any S ∈ W m,
|S | = 2.

Game v has a one to one correspondence with a graph G = (V ,E )
such that N = V and {i , j} ∈ W m if and only if {i , j} ∈ E (G ).

In that case the total number of losing coalitions in v is equal to the
number of vertex covers of G .

Therefore the total number of winning coalitions is equal to
2n−(Number of Vertex Covers of G ) and computing |W | is
#P-complete.

Now we take a game v = (N,W m) and convert it into another
game v ′ = (N ∪ {n + 1},W m(v ′)) where for each S ∈ W m(v),
S ∪ {n + 1} ∈ W m(v ′).

In that case computing |W (v)| is equivalent to computing the
Banzhaf value of player n + 1 in game v ′.

Therefore, computing Banzhaf values of players in games
represented by MWCs is #P-hard.
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Therefore the total number of winning coalitions is equal to
2n−(Number of Vertex Covers of G ) and computing |W | is
#P-complete.

Now we take a game v = (N,W m) and convert it into another
game v ′ = (N ∪ {n + 1},W m(v ′)) where for each S ∈ W m(v),
S ∪ {n + 1} ∈ W m(v ′).

In that case computing |W (v)| is equivalent to computing the
Banzhaf value of player n + 1 in game v ′.

Therefore, computing Banzhaf values of players in games
represented by MWCs is #P-hard.
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We examined the complexity of comparison of influence of
players from different angles.

For a simple game represented by minimal winning coalitions,
although it is easy to verify whether a player has zero or one
voting power, computing the Banzhaf value of the player is
#P-complete.

For a simple game with a set W m of minimal winning
coalitions, an algorithm to compute desirability ordering is
presented.

MWVGs are the only representations for which it is NP-hard
to verify whether the game is linear or not.
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Table: Summary of results

Input→ (N, W ) (N, Wm) WVG MWVG

IDENTIFY-DUMMIES P Linear NP-hard NP-hard
IDENTIFY-VETOERS linear linear linear linear
IDENTIFY-PASSERS linear linear linear linear
IDENTIFY-DICTATOR linear linear linear linear
IS-LINEAR P P (Always linear) NP-hard
DESIRABILITY-ORDERING P P P NP-hard
STRICT-DESIRABILITY-ORDERING P P NP-hard NP-hard
BANZHAF-VALUES P #P-complete #P-complete #P-complete
BANZHAF-INDICES P ? NP-hard NP-hard
SHAPLEY-SHUBIK-VALUES P ? #P-complete #P-complete
SHAPLEY-SHUBIK-INDICES P ? NP-hard NP-hard
HOLLER-INDICES P Linear NP-hard NP-hard
DEEGAN-PACKEL-INDICES P Linear NP-hard NP-hard
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It is conjectured that computing Shapley values and
Shapley-Shubik indices is #P-complete and it is NP-hard to
compute Banzhaf indices for a simple game represented by
(N,W m).
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Thank You

Thank you!
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