A fair payoff distribution for myopic rational

Stéphane Airiau ILLC - University of Amsterdam Sandip Sen University of Tulsa

- How to partition a population of agents?
 (e.g. making multiple teams from a pool of players, groups of students, etc.)
- Each agent has a valuation for a partition
- Preference of agents conflicts
- $\rightarrow\,$ there may not exist any stable partition.
 - Which partition to form?
 - How to make it stable?

- How to partition a population of agents?
 (e.g. making multiple teams from a pool of players, groups of students, etc.)
- Each agent has a valuation for a partition
- Preference of agents conflicts
- $\rightarrow\,$ there may not exist any stable partition.
 - Which partition to form?
 - How to make it stable?

Proposed Solution

- How to partition a population of agents?
 (e.g. making multiple teams from a pool of players, groups of students, etc.)
- Each agent has a valuation for a partition
- Preference of agents conflicts
- $\rightarrow\,$ there may not exist any stable partition.
 - Which partition to form?
 - How to make it stable?

Proposed Solution

• Form a partition s* that maximizes utilitarian social welfare (efficiency of the population)

- How to partition a population of agents?
 (e.g. making multiple teams from a pool of players, groups of students, etc.)
- Each agent has a valuation for a partition
- Preference of agents conflicts
- $\rightarrow\,$ there may not exist any stable partition.
 - Which partition to form?
 - How to make it stable?

Proposed Solution

- Form a partition s* that maximizes utilitarian social welfare (efficiency of the population)
- Use side payments to stabilize population

- How to partition a population of agents?
 (e.g. making multiple teams from a pool of players, groups of students, etc.)
- Each agent has a valuation for a partition
- Preference of agents conflicts
- $\rightarrow\,$ there may not exist any stable partition.
 - Which partition to form?
 - How to make it stable?

Proposed Solution

- Form a partition s* that maximizes utilitarian social welfare (efficiency of the population)
- Use side payments to stabilize population
- Agents have incentive to follow our mechanism.

Population N of n agents.

Definition (Coalition)

A coalition C is a set of agents: $C \in 2^N$.

 ${\mathscr C}$ is the set of all coalitions.

Definition (Coalition structure)

A coalition structure s is partition of agents into coalitions: $s = \{C_1, \ldots, C_k\}$ where $\cup_{i \in \{1...k\}} C_i = N$ and $i \neq j \Rightarrow C_i \cap C_j = \emptyset$

 \mathscr{S} is the set of all coalition structures. s(i) denotes the coalition of agent i in the coalition structure s

3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

- Valuation function $v: N \times \mathscr{S} \mapsto \mathbb{R}$
- \rightarrow private valuation (hedonic coalition formation flavor)
- $\rightarrow\,$ valuation may depend on other coalition in the population (externalities, endogeneous coalition formation)
- \rightarrow Preference order over CSs \succeq_i

Fair payoff distribution for myopic rational agents

Hypothesis

- Self interested agents: agents maximize expected private utility
- Myopic agents: agents only care about immediate reward and do/can not analyze future implication of their actions.
- + no coordinated change of coalition (only individual actions)
- + one agent at a time can change coalition
- + a coalition's member can veto the arrival of a new agent in the coalition (individually stable)

Fairness & efficiency

- Agents should feel that the payoff they obtain corresponds to their abilities
- The coalition chosen should maximize social welfare

< 🗗 ▶

Definition (\succeq_i denotes preferences over coalitions)

A coalition structure *s* is **core stable** iff $\nexists C \subset N \mid \forall i \in C, C \succ_i s(i)$.

A coalition structure *s* is **Nash stable** $(\forall i \in N) (\forall C \in s \cup \{\emptyset\}) s(i) \succeq_i C \cup \{i\}$

A coalition structure *s* is **individually stable** iff $(\nexists i \in N) (\nexists C \in s \cup \{\emptyset\}) | (C \cup \{i\} \succ_i s(i)) \text{ and } (\forall j \in C, C \cup \{i\} \succeq_j C)$

A coalition structure *s* is **contractually individually stable** iff $(\nexists i \in N) (\nexists C \in s \cup \{\emptyset\}) | (C \cup \{i\} \succ_i s(i)) \text{ and}$ $(\forall j \in C, C \cup \{i\} \succeq_j C) \text{ and } (\forall j \in s(i) \setminus \{i\}, s(i) \setminus \{i\} \succeq_j s(i))$

- < A > < B > < B >

Individual rationality: $\forall i \in N, u(i) \ge v(\{i\})$ agent obtains at least its self-value as payoff.

Pareto Optimal: $\nexists y \mid \exists i \in N \mid y_i > u_i \text{ and } \forall j \neq i, y_j \ge u_j.$ no agent can improve its payoff without lowering the payoff of another agent.

Example of a transition function

æ

Markov chains

Transient states: states the chain will eventually leave to never visit again **Ergodic states**: states the chain will keep coming back to **Communication class**: set of ergodic states where the chain is trapped (sink equilibrium). Which communication class is reached depends on 1) initial state 2) transient states visited

Provide an incentive to form a social welfare maximizing coalition structure

- Compute the expected utility of each agent *i*, *E*(*v_i*), when agents are acting as myopic rational agents (exact computation requires the analysis of a Markov chain)
- Share the value of the social maximizing coalition structure proportionally to the expected value.

$$u_i = \frac{E(v_i)}{\sum_{j \in N} E(v_j)} v(s^*)$$

• Guarantees a payoff that is at least the expected utility: $u_i = \frac{E(v_i)}{\sum_{j \in N} E(v_j)} v(s^*) \ge E(v_i),$

i.e., the payoff of an agent is at least as good as the expected utility that an agent would get on average if the agents are myopically rational.

• Guarantees a payoff that is at least the expected utility: $u_i = \frac{E(v_i)}{\sum_{j \in N} E(v_j)} v(s^*) \ge E(v_i),$

i.e., the payoff of an agent is at least as good as the expected utility that an agent would get on average if the agents are myopically rational.

Pareto Optimal

• Guarantees a payoff that is at least the expected utility: $u_i = \frac{E(v_i)}{\sum_{j \in N} E(v_j)} v(s^*) \ge E(v_i),$

i.e., the payoff of an agent is at least as good as the expected utility that an agent would get on average if the agents are myopically rational.

- Pareto Optimal
- Individually rational

If $(\forall s \in \mathscr{S}) v(i, s) \ge r_i$, then $u_i \ge r_i$.

- Guarantees a payoff that is at least the expected utility: $u_i = \frac{E(v_i)}{\sum_{j \in N} E(v_j)} v(s^*) \ge E(v_i),$
 - i.e., the payoff of an agent is at least as good as the expected utility that an agent would get on average if the agents are myopically rational.
- Pareto Optimal
- Individually rational If $(\forall s \in \mathscr{S}) v(i, s) \ge r_i$, then $u_i \ge r_i$.
- Requires revealing valuation in the general case (possibility for manipulation).

- Guarantees a payoff that is at least the expected utility: $u_i = \frac{E(v_i)}{\sum_{j \in N} E(v_j)} v(s^*) \ge E(v_i),$
 - i.e., the payoff of an agent is at least as good as the expected utility that an agent would get on average if the agents are myopically rational.
- Pareto Optimal
- Individually rational If $(\forall s \in \mathscr{S}) v(i, s) \ge r_i$, then $u_i \ge r_i$.
- Requires revealing valuation in the general case (possibility for manipulation).
- When the agents are sharing a niche, revelation of preference order is sufficient

- Guarantees a payoff that is at least the expected utility: $u_i = \frac{E(v_i)}{\sum_{j \in N} E(v_j)} v(s^*) \ge E(v_i),$
 - i.e., the payoff of an agent is at least as good as the expected utility that an agent would get on average if the agents are myopically rational.
- Pareto Optimal
- Individually rational If $(\forall s \in \mathscr{S}) v(i, s) \ge r_i$, then $u_i \ge r_i$.
- Requires revealing valuation in the general case (possibility for manipulation).
- When the agents are sharing a niche, revelation of preference order is sufficient
- Exact computation limits usability to small set of agents.

★聞▶ ★ 国▶ ★ 国▶

- Guarantees a payoff that is at least the expected utility: $u_i = \frac{E(v_i)}{\sum_{j \in N} E(v_j)} v(s^*) \ge E(v_i),$
 - i.e., the payoff of an agent is at least as good as the expected utility that an agent would get on average if the agents are myopically rational.
- Pareto Optimal
- Individually rational If $(\forall s \in \mathscr{S}) v(i, s) \ge r_i$, then $u_i \ge r_i$.
- Requires revealing valuation in the general case (possibility for manipulation).
- When the agents are sharing a niche, revelation of preference order is sufficient
- Exact computation limits usability to small set of agents.
- size of the share is "Fair" in the sense that, on average, assuming equal probability of the initial state, an agent gets $E(v_i)$.

Average payoff over all CSs, expected value, weight and protocol payoff for each agent for a random valuation function in $\ensuremath{\mathfrak{D}}$

agent	avg	$\overline{V_i}$	Wi	u _i
0	0.50	0.61	0.17	0.96
1	0.49	0.63	0.17	0.99
2	0.50	0.60	0.16	0.93
3	0.51	0.64	0.18	1.00
4	0.56	0.54	0.15	0.85
5	0.50	0.58	0.16	0.90
total	3.06	3.60	1.00	5.63

Dynamics of the error of the estimated payoff averaged over 50 instances of the ART problem

- ∢ ⊢⊒ →

• it is possible that, for each coalition $C \in s^*$, $\sum_{i \in C} u_i \neq \sum_{i \in C} v_i(s^*)$. (unbalanced inter coalition side payments)

- it is possible that, for each coalition $C \in s^*$, $\sum_{i \in C} u_i \neq \sum_{i \in C} v_i(s^*)$. (unbalanced inter coalition side payments)
- ② given the valuation function, the agents have the choice between signing a biding contract and receive u_i , or go on with a coalition formation process.

- it is possible that, for each coalition $C \in s^*$, $\sum_{i \in C} u_i \neq \sum_{i \in C} v_i(s^*)$. (unbalanced inter coalition side payments)
- ② given the valuation function, the agents have the choice between signing a biding contract and receive u_i , or go on with a coalition formation process.
- I a rational agent should choose our protocol.

- it is possible that, for each coalition $C \in s^*$, $\sum_{i \in C} u_i \neq \sum_{i \in C} v_i(s^*)$. (unbalanced inter coalition side payments)
- **2** given the valuation function, the agents have the choice between signing a biding contract and receive u_i , or go on with a coalition formation process.
- a rational agent should choose our protocol.
- problem: expensive, requires revelation of v_i or \succeq_i

- it is possible that, for each coalition $C \in s^*$, $\sum_{i \in C} u_i \neq \sum_{i \in C} v_i(s^*)$. (unbalanced inter coalition side payments)
- **2** given the valuation function, the agents have the choice between signing a biding contract and receive u_i , or go on with a coalition formation process.
- I a rational agent should choose our protocol.
- problem: expensive, requires revelation of v_i or \succeq_i

Future Work

- Analysis of approximations
- Analysis of manipulation
- Complete protocols

- ∢ 🗇 እ

Conclusion

stephane@illc.uva.nl

Airiau, Sen (UvA, TU) A fair payoff distribution for myopic rational

æ

∃ → (∃ →

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A