Retrieving the Structure of Utility Graphs
Used in Multi-ltem Negotiation through

Collabor ative Filtering!

Valentin Robu, Han La Poutré
CWI, Dutch Center for Mathematics and Computer Science

Kruislaan 413, NL-1098 SJ Amsterdam, The Netherlands
{robu, hip}@cwi.nl

Abstract

Graphical utility models represent powerful formalisms for modeling complex
agent decisions involving multiple issues [2]. In the context of negotiation, it has
been shown [8] that using utility graphs enables agents to reach Pareto-efficient
agreements with a limited number of negotiation steps, even for high-dimensional
negotiations over bundles of items involving complementarity/ substitutability de-
pendencies. This paper considerably extends the results of [8], by proposing a
method for constructing the utility graphs of buyers automatically, based on pre-
vious negotiation data. Our method is based on techniques inspired from item-
based collaborative filtering, used in online recommendation algorithms. Exper-
imental results show that our approach is able to retrieve the structure of utility
graphs online, with a relatively high degree of accuracy, for complex, non-linear
(k-additive) preference settings, even if a relatively small amount of data about
concluded negotiations is available.

1 Introduction

Negotiation represents a key form of interaction between providers and consumers in
electronic markets. One of the main benefits of negotiation in e-commerce is that it en-
ables greater customization to individual customer preferences, and it supports buyer
decisions in settings which require agreements over complex contracts. Automating
the negotiation process, through the use of intelligent agents which negotiate on be-
half of their owners, enables electronic merchants to go beyond price competition by
providing flexible contracts, tailored to the needs of individual buyers.

Multi-issue (or multi-item) negotiation models are particularly useful for this task,
since with multi-issue negotiations mutually beneficial (win-win”) contracts can be

1This paper has been recently presented at the RRS 06 workshop, Hakodate, Japan [12] (proceedings
to to appear as part of the Springer Lecture Notes in Computationa Intelligence series). In this ver-
sion of the paper, due to space limitations, the experimental set-up and tests performed to validate the
model were not included. The full paper [12] (which is considerably longer, and includes the experimen-
tal results) is available at: http://homepages.cwi.nl/~robu/rss2006.pdf. We should aso
mention that the RRS 06 paper [12] represents complementary work to work on multi-issue negotiation
model presented at the AAMAS 05 conference [8]. The interested reader can also consulte this paper at:
http://homepages.cwi.nl/~robu/aamasO5negotiation.pdf.



found [11, 4, 5, 8]. In this paper we consider the negotiation over the contents of a bun-
dle of items (thus we use the term “multi-item” negotiation), though, at a conceptual
level, the setting is virtually identical to previous work on multi-issue negotiation in-
volving only binary-valued issues (e.g. [4]). A bottleneck in most existing approaches
to automated negotiation is that they only deal with linearly additive utility functions,
and do not consider high-dimensional negotiations and in particular, the problem of
interdependencies between evaluations for different items. This is a significant prob-
lem, since identifying and exploiting substitutability/complementarity effects between
different items can be crucial in reaching mutually profitable deals.

1.1 Using utility graphs to model negotiations over bundles of
items

In our previous work [8], in order to to model buyer preferences in high-dimensional
negotiations, we have introduced the concept of utility graphs. Intuitively defined, a
utility graph (UG) is a structural model of a buyer, representing a buyer’s perception
of dependencies between two items (i.e. whether the buyer perceives two items to be
as complementary or substitutable). An estimation of the buyer’s utility graph can be
used by the seller to efficiently compute the buyer’s utility for a “bundle” of items,
and propose a bundle and price based on this utility. The main result presented in [8]
is that Pareto-efficient agreements can be reached, even for high dimensional negotia-
tions with a limited number of negotiation steps, but provided that the seller starts the
negotiation with a reasonable approximation of the structure of the true utility graph
of the type of buyer he is negotiating with (i.e. he has a maximal structure of which
issues could be potentially complimentary/substitutable in the domain).

The seller agent can then use this graph to negotiate with a specific buyer. During
this negotiation, the seller will adapt the weights and potentials in the graph, based
on the buyer’s past bids. However, this assumes the seller knows a super-graph of the
utility graphs of the class of buyers he is negotiating with (i.e. a graph which subsumes
the types of dependencies likely to be encountered in a given domain - c.f. Sec. 2.2).

Due to space limitations, and to avoid too much overlap in content with our previ-
ous AAMAS paper [8], in this paper we do not describe the full negotiation model, the
way seller weights are updated throughout the process, the initialization settings etc.
These results have been described in [8], and we ask the interested reader to consult
this work.

In this paper, we show this initial graph information can also be retrieved automat-
ically, by using information from completed negotiation data. The implicit assumption
we use here is that buyer preferences are in some way clustered, i.e. by looking at
buyers that have shown interest for the same combinations of items in the past, we can
make a prediction about future buying patterns of the current customer. Note that this
assumption is not uncommon: it is a building block of most recommendation mecha-
nisms deployed in Internet today [10]. In order to generate this initial structure of our
utility graph, in this paper we propose a technique inspired by collaborative filtering.



1.2 Collaborative filtering

Collaborative filtering [10] is the main underlying technique used to enable personal-
ization and buyer decision aid in today’s e-commerce, and has proven very successful
both in research and practice.

The main idea of collaborative filtering is to output recommendations to buyers,
based on the buying patterns detected from buyers in previous buy instances. There are
two approaches to this problem. The first of these is use of the preference database to
discover, for each buyer, a neighborhood of other buyers who, historically, had similar
preferences to the current one. This method has the disadvantage that it requires storing
a lot of personalized information and is not scalable (see [10]). The second method,
of more relevant to our approach, is item-based collaborative filtering. Item based
techniques first analyze the user-item matrix (i.e. a matrix which relates the users to the
items they have expressed interest in buying), in order to identify relationships between
different items, and then use these to compute recommendations to the users [10]. In
our case, of course, the recommendation step is completely replaced by negotiation.
What negotiation can add to such techniques is that enables a much higher degree of
customization, also taking into account the preferences of a specific customer. For
example, a customer expressing an interest to buy a book on Amazon is sometimes
offered a ”special deal” discount on a set (bundle) of books, including the one he
initially asked for. The potential problem with such a recommendation mechanism is
that it’s static: the customer can only take it, leave it or stick to his initial buy, it cannot
change slightly the content of the suggested bundle or try to negotiate a better discount.
By using negotiation a greater degree of flexibility is possible, because the customer
can critique the merchant’s sub-optimal offers through her own counter-offers, so the
space of mutually profitable deals can be better explored.

1.3 Paper structure and relationship to previous work

The paper is organized as follows. In Section 2 we briefly present the general setting
of our negotiation problem, define the utility graph formalism and the way it can be
used in negotiations. Section 3 describes the main result of this paper, namely how
the structure of utility graphs can be elicited from existing negotiation data. Section 4
discusses very briefly the experimental results from our model, fully presented in the
RRS’06 paper [12]. Section 5 concludes the paper with a discussion.

An important issue to discuss is the relationship of this paper with our previous
work. In our paper at the AAMAS’05 conference [8], we first introduced the utility
graph formalism and present an algorithm that exploits the decomposable structure
of such graphs in order to reach faster agreements during negotiation. That paper,
however, uses the assumption that a minimal super-graph of individual buyer graphs
is already available to the seller at the start of the negotiation. In the RRS’06 paper
[12], we provide show how collaborative filtering could be used to build the structure
of this super-graph and we propose a criteria for selecting the edges returned by the
collaborative filtering process. This paper can be viewed as an extended abstract of
these results.



For lack of space, we cannot present the full negotiation model from the AA-
MAS’05 paper [8] in this paper, except at a very general level. The interested reader
is therefore asked to consult [8] for further details.

2 Themulti-issue negotiation setting

2.1 Utility Graphs: Definition and Example

We consider the problem of a buyer who negotiates with a seller over a bundle of n
items, denoted by B = {I4,...,I,}. Each item I; takes on either the value 0 or 1:
1 (0) means that the item is (not) purchased. The utility function u : Dom(B) — R
specifies the monetary value a buyer assigns to the 2* possible bundles (Dom(B) =
{0,1}"™).

In traditional multi-attribute utility theory, « would be decomposable as the sum
of utilities over the individual issues (items) [7]. However, in this paper we follow the
previous work of [2] by relaxing this assumption; they consider the case where w is
decomposable in sub-clusters of individual items such that « is equal to the sum of the
sub-utilities of different clusters.

Definition: Let C be a set of (not necessarily disjoint) clusters of items C4, . .., C,
(with C; € B). We say that a utility function is factored according to C' if there
exists functions u; : Dom(C;) — R (i = 1,...,7 and Dom(C;) = {0,1}I%)
such that u(b) = >, ui(€;) where b is the assignment to the variables in B and ¢; is
the corresponding assignment to variables in C;.We call the functions w; sub-utility
functions.

We use the following factorization, which is a relatively natural choice within the
context of negotiation. Single-item clusters (|C;| = 1) represent the individual value
of purchasing an item, regardless of whether other items are present in the same bun-
dle. Clusters with more than one element (|C;| > 1) represent the synergy effect of
buying two or more items; these synergy effects are positive for complementary items
and negative for substitutable ones. In this paper, we restrict our attention to clusters of
size 1 and 2 (|C;| € {1, 2}, V4). This means we only consider binary item-item com-
plementarity/substitutability relationships, though the case of retrieving larger clusters
could form the object of future research.

The factorization defined above can be represented as an undirected graph G =
(V, E), where the vertexes V' represent the set of items I under negotiation. An arc
between two vertexes (items) 4,5 € V is present in this graph if and only if there
is some cluster Cj, that contains both I; and I;. We will henceforth call such a
graph G a utility graph. Example 1Let B = {I1,1Is,I3,I4} and C = {{L1}, {I=},
{6, Is},{I2,I3},{I,14}} such that u; is the sub-utility function associated with
cluster : ( = 1,...,5). Then the utility of purchasing, for instance, items I, I5,
and I5 (i.e., b = (1,1,1,0)) can be computed as follows: u((1,1,1,0)) = uy(1) +
u(1) + us((1,1)) + wa((1,1)), where we use the fact that us(1,0) = u5(0,1) = 0
(synergy effect only occur when two or more items are purchased). The utility graph
of this factorization is depicted in Fig. 1.



Figure 1: The utility graph that corresponds to the factorization according to C' in
Example 1. The + and — signs on the edges indicate whether the synergy represents a
complementarity, respectively substitutability effect.

2.2 Minimal super-graph for a class of buyers

The definition of utility graphs given in Section 2.1 corresponds to the modeling the
utility function of an individual buyer. In this paper, we call the utility graph of an
individual buyer the underlying or true graph (to distinguish it from the retrieved or
learned graph, reconstructed through our method). The underlying graph of any buyer
remains hidden from the seller throughout the negotiation.

We do assume, however, that the buyers which negotiate with a given electronic
merchant belong to a certain class or population of buyers. This means the utility
buyers assign to different bundles of items follow a certain structure, specific to a
buying domain (an assumption also used indirectly in [11, 10]). Buyers from the same
population are expected to have largely overlapping graphs, though not all buyers will
have all interdependencies specific to the class.

Definition: Let A = {A;,..A,} be a set (class, population) of n buyers. Each
buyer ¢ = 1..n has a utility function u;, which can be factored according to a set of
clusters C; = {C; 1, Ci,Q..CLT(,-)}. We define the super-set of clusters for the class of
buyers A = {4,,..A,}as: Ca =C1 UC2 U..UC,.

In graph-theoretic terms (as shown in Section 2.1), the set of clusters C; according
to which the utility a buyer A; is structured is represented by a utility graph G;, where
each binary cluster from {C; 1,..Cr ;) } represents a dependency or an edge in the
graph. The super-set of buyer clusters C'4 can also be represented by a graph G 4,
which is the minimal super-graph of graphs G;, ¢ = 1..n. This graph is called
minimal because it contains no other edges than those corresponding to a dependency
in the graph of at least one buyer agent from this class. We illustrate this concept by a
very simple example, which also relies on Fig. 1.

2.3 Application to negotiation

The negotiation, in our model, follows an alternating offers protocol. At each negotia-
tion step each party (buyer/seller) makes an offer which contains an instantiation with
0/1 for all items in the negotiation set (denoting whether they are/are not included in
the proposed bundle), as well as a price for that bundle. The decision process of the
seller agent, at each negotiation step, is composed of 3 inter-related parts: (1) take into



account the previous offer made by the other party, by updating his estimated utility
graph of the preferences of the other party, (2) compute the contents (i.e. item configu-
ration) of the next bundle to be proposed, and (3) compute the price to be proposed for
this bundle. In this model, the seller maintains of his buyer is represented by a utility
graph, and tailors this graph towards the preferences of a given buyer, based on his/her
previous offers.

The seller does not know, at any stage, the values in the actual utility graph of
the buyer, he only has an approximation learned after a number of negotiation steps.
However, the seller does have some prior information to guide his opponent modeling.
He starts the negotiation by knowing a super-graph of possible inter-dependencies be-
tween the issues (items) which can be present for the class of buyers he may encounter.
The utility graphs of buyers form subgraphs of this graph. Note that this assumption
says nothing about values of the sub-utility functions, so the negotiation is still with
double-sided incomplete information (i.e. neither party has full information about the
preferences of the other).

2.4 Overview of our approach
There are two main stages of our approach:

1. Using information from previously concluded negotiations to construct the
structure of the utility super-graph. In this phase the information used (past
negotiation data) refers to a class of buyers and is not traceable to individuals.

2. The actual negotiation, in which the seller, starting from a super-graph for a class
(population) of buyers, will negotiate with an individual buyer, drawn at random
from the buyer population above. In this case, learning occurs based on the
buyer’s previous bids during the negotiation, so information is buyer-specific.
However, this learning at this stage is guided by the structure of the super-graph
extracted in the first phase.

3 Constructing the Structure of Utility Graphs Using
Concluded Negotiation Data

Suppose the seller starts by having a dataset with information about previous con-
cluded negotiations. This dataset may contain complete negotiation traces for different
buyers, or we may choose, in order to minimize bias due to uneven-length negotiations,
to consider only one record per negotiation. This can be either the first bid of the buyer
or the bundle representing the outcome of the negotiation. The considered dataset is
not personalized, i.e. the data which is collected online cannot be traced back to in-
dividual customers (this is a reasonable assumption in e-commerce, where storing a
large amount of personalized information may harm customer privacy). However, in
constructing of the minimal utility graph which the customers use, we implicitly as-
sume that customers’ preference functions are related - i.e. their corresponding utility
graphs, have a (partially) overlapping structure.



Our goal is to retrieve the minimal super-graph of utility interdependencies which
can be present for the class or population of buyers from which the negotiation data
was generated. This past data can be seen as a IV * n matrix, where IV is the number
of previous negotiation instances considered and n is the number of issues (e.g. 50
for our tests). Item-based collaborative filtering [10] works by computing “similarity
measures” between all pairs of items in the negotiation set. The steps used are:

1. Compute item-item similarity matrices (from the raw statistics)

2. Compute qualitative utility graph, by selecting which dependencies to consider
from the similarity matrices.

In the following, we will use the following notations:
o N for the total number of previous negotiation outcomes considered

e For each item i=1..n, N;(1) and IV;(0) represent the number of times the item
was (respectively was not) asked by the buyer, from the total of N previous
negotiations

e For each pair of issues ¢, j = 1..n we denote by N; ;(0,0), N; ;(0, 1), N; ;(1,0)
and N; ;(1, 1) all possibilities of joint acquisition (or non acquisition) of items i
and j.

3.1 Computing the similarity matrices

The literature on item-based collaborative filtering defines two main criteria that
could be used to compute the similarity between pairs of items: cosine-based and
correlation-based similarity. In our work we have considered both, but experimen-
tal results showed that only correlation-based similarity seems to perform well for this
task. Cosine-based similarity is conceptually simpler, and, from our experience, works
well in detecting complementarity dependencies and only in the case when the data is
relatively sparse (each buyer expresses interest only in a few items). Correlation-based
similarity, however, does not have these limitations. Therefore, in this paper, we re-
port the formulas and experimental results only for correlation-based similarity. Since
the mathematical definitions (as presented in [10]) is given for real-valued preference
ratings, we derive a more simplified form for the binary values case.

3.1.1 Correlation-based similarity

For correlation-based similarity, just one similarity matrix is computed containing both
positive and negative values (to be more precise between -1 and 1). We first we define
for each item i = 1..n, the average buy rate:

Ni(1)

AUZ' = N (1)




The following two terms are defined:

’L/Jl = Nm-(O, 0) * AUZ' * Avj - Nm-(O, 1) * A’Ui * (1 — AU]')
—N; ;(1,0) % (1 — Av;) * Av; + N; j(1,1) * (1 — Av;) * (1 — Avj)

2%

and the normalization factor:

_[Ni(0) * Ny(1) [ N;(0) x N;(1)
Y2 = \/ N * \/ N

The values in the correlation-based similarity matrix are then computed as:
PPN )1
S’Lm(ll‘aj) = -0 (2)
Y2

3.2 Building the super-graph of buyer utilities

After constructing the similarity matrices, the next step is to use this information to
build the utility super-graph for the class of buyers likely to be encountered in future
negotiations. The item-item correlation similarity already provides a measure of how
strong complementarity/substitutability dependencies are on average, by closeness to
1 or -1. However, we still need a method for deciding how many of the item-item
relationships from the similarity matrices should be included in the final graph.

Ideally, all the inter-dependencies corresponding to the arcs in the graph repre-
senting the true underlying preferences of the buyer should feature among the highest
(respectively the lowest) values in the retrieved correlation tables. When an interde-
pendency is returned that was not actually in the true graph, we call this is an excess
(extra, erroneous) arc or interdependency. Due to noise in the data, it is unavoidable
that a number of such excess arcs are returned. For example, if item I; has a com-
plimentary value with I, and I is substitutable with I3, it may be that items I; and
I3 often do not appear together, so the algorithm detects a substitutability relationship
between them, which is in fact erroneous.

The question on the part of the seller is: how many dependencies should be con-
sidered from the ones with highest correlation, as returned by the filtering algorithm?
There are two aspects that affect this cut-off decision:

o If too few dependencies are considered, then it is very likely that some depen-
dencies (edges) that are in the true underlying graph of the buyer will be missed.
This means that the seller will ignore some interdependencies in the negotiation
stage completely, which can adversely affect the Pareto-efficiency of the reached
agreements.

o If too many dependencies are considered, then the initial starting super-graph of
the seller will be considerably more dense than the “true” underlying graph of
the buyer (i.e. it contains many excess or extra edges). Actually, this is always
the case to some degree, and in [8] we claim that Pareto-efficient agreements can
be reached starting from a super-graph of the buyer graphs. However, this super-
graph cannot be of unlimited size. For example, starting from a graph close to



full connectivity (i.e. with n2 edges for a graph with n issues or vertexes) would
be equivalent to providing no prior information to guide the negotiation process.

In the general case, we consider graphs whose number of edges (or dependencies)
is a linear in the number of items (issues) in the negotiation set. Otherwise stated, we
restrict our attention to graphs in which the number of edges considered is some linear
factor k times the number of items (vertexes) negotiated on. Framed in this way, the
problem becomes of choosing the optimal value for parameter & (henceforth denoted

by kopt)'

3.3 Minimization of expected loss in Gains from Trade as cut-off
criteria

Denote by Np,issing the number of edges that are in the “true”, hidden utility graph
of the buyer, but will not be present in the super-graph built through collaborative
filtering. Similarly, we denote by N..;., the number of excess (or erroneous) edges,
that will be retrieved, but are not in the true utility graph of the buyer.

The number of edges which are missing (not accurately retrieved) or excess (too
many extra edges) depend on the accuracy and precision of the underlying collabora-
tive filtering process. More precisely stated, the number of missing edges depends on 3
parameters: the type of filtering used (correlation or cosine-based), the amount of con-
cluded negotiation records available for filtering (we denote this number by N.) and
the number of edges considered in the cut-off criteria, k. Formally, we can thus write:
Npmissing(corr, Ny, k). In this section we focus, however, exclusively on choosing a
value for k&, and consider the other two parameters as already chosen at the earlier step.
Thus we simplify the notation t0: Np;ssing (k) and Negera(k), respectively.

As discussed in Section 3.2, both having missing and too many extra edges influ-
ences the efficiency of outcome of the subsequent negotiation process. Our goal is
to choose a value for k that minimizes this expected efficiency loss during the nego-
tiation. The efficiency loss, in our case, is measured as the difference in Gains from
Trade which can be achieved using a larger/smaller graph, compared to the Gains from
Trade which can be achieved by using the “true” underlying utility graph of the buyer
(in earlier work [11, 8], we have shown that maximizing the Gains from Trade in this
setting is equivalent to reaching Pareto optimality).

In order to estimate this error rate, we consider a second negotiation test set,
different from the one used for filtering. The purpose of this second test set is to obtain
an estimation of the loss in gains from trade which occurs if we use a sparser/denser
graph than the true underlying graph of the buyer. In more formal terms, the expected
utility loss for using k edges can be written as:

Eloss_G’T(k) = mam<Eloss_GT (Nmissing(k))aEloss_GT(Neztra(k))> (3)

The optimal choice of k£ can then be computed as:

kopt = argmingEypss o (k) )



Our criteria for choosing k presented in Equations 4 are not dissimilar to “min-max
regret” decision criteria, often used in preference elicitation problems [1]. We could
also use the name “regret” for the expected loss in gains from trade, but to keep the
names consistent with our earlier AAMAS work [8] we prefer the term ”GT loss”.

4 Experimental evaluation

The model above was tested for a setting involving 50 binary-valued issues (items).
For each set of tests, the structure of the graph was generated at random (with uniform
distribution), by selecting at random the items (vertexes) connected by each edge repre-
senting a utility inter-dependency. For 50 issues, 75 random binary dependencies were
generated for each test set, 50 of which were positive dependencies and 25 negative.
Two sets of tests were performed: one for assessing the efficiency of the collaborative
filtering itself (i.e. the cosine and correlation similarity criteria) and one for detecting
the cut-off limit for the maximal graph. In this paper we only report the results for
correlation-based filtering, since this was found to perform considerably better than
the cosine-based one. Next, we studied the effect of different cut-off criteria (values of
k) on the negotiation process itself.

4.1 Results for the efficiency of the filtering criteria
There are two dimensions across which the two criteria need to be tested:

e The strength of the interdependencies in the generated buyer profiles. This
is measured as a ratio of the average strength of the inter-dependency over the
average utilities of an individual item. Each buyer profile is generated as follows:

First, for each item, an individual value is generated by drawing from identi-
cal, independent normal distributions (i.i.d.) of center Cingividual—item = 1
and variance 0.5. Next, the substitutability/complementarity effects for each bi-
nary issue dependency (i.e. each cluster containing two items) are generated by
drawing from a normal i.i.d-s with a centers Cy,on—iinearity and the same spread
0.5. The strength of the interdependency is then taken to be %
The smaller this ratio is, the more difficult it will be to detect non-linearity (i.e.
complementarity and substitutability effects between items). In fact, if this ratio
takes the value 0, there are no effects to detect (which explains the performance
at this point), at 0.1 the effects are very weak, but they become stronger as it
approaches 1 and 2.

e Number of previous negotiations from which information (i.e. negotiation
trace) is available.

The performance measure used is computed as follows. Each run of an algorithm
(for a given history of negotiations, and a certain probability distribution for generating
that history) returns an estimation of the utility graph of the buyer. Our performance
measure is the recall, i.e. the percentage of the dependencies from the underlying



utility graph of the buyer (from which buyer profiles are generated) which are found
in the graph retrieved by the seller.
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Figure 2: Results for the correlation-based similarity. Left-side graph gives the per-
centage of correctly retrieved dependencies, with respect to the average interdepen-
dency strength, while right-side graph gives the percentage of correctly retrieved de-
pendencies with respect to the size of the available dataset of past negotiation traces.

4.2 Effect of the maximal graph size considered on the negotiation
process

After measuring the effect of the two similarity criteria considered (i.e. cosine and
correlation-based), as well as the effect of different amounts of data, we present results
for different cut-off sizes for the maximal graph (i.e. the k& parameter introduced in
Section 3.3). For all tests reported in this Section, we used correlation-based similarity
and we assumed 1000 records of previous negotiations are available for filtering. We
chose to focus on correlation-based similarity since this criteria clearly performs better,
in this setting, than cosine-based similarity. As shown in Sec. 4.1, 1000 records is a
reasonable amount of data to ensure a good retrieval accuracy.

From Figs. 3 and 4, several conclusions can be drawn. First, missing edges from
the graph the Seller starts the negotiation with has a considerably greater negative
effect than adding too many extra (erroneous) edges.

Thus, as shown in Fig. 3, in order to get above 90% of the optimal Gains from
Trade in future negotiations, the retrieval process cannot miss more than about 15%
of the true inter-dependencies in the true graph of the Buyer. However, having a con-
siderably denser starting graph does not degrade the performance so significantly. In
fact, as we see in Fig. 4, having 3 times as many edges than in the original buyer
graph (which means 2/3 of all edges are erroneous), only decreases performance with
around 4%. The fact that there is still a decreasing effect can probably be explained
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Figure 3: Effect of missing edges (dependencies) in the starting Seller graph on the
Pareto-optimality of reached negotiation outcomes
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Figure 4: Effect of excess (erroneous) edges in the starting Seller graph on the Pareto-
optimality of reached negotiation outcomes

from the interaction between the non-linear effects introduced by the structure and the
non-linear effects introduced by the tails of normal distributions in each cluster. Fi-
nally, we observe that, in both cases, the negotiation speed does not seem to be very
significantly affected and it remains around 40 steps/thread, on average.

5 Discussion

Several previous results model automated negotiation as a tool for supporting the
buyer’s decision process in complex e-commerce domains [11, 4, 6]. Most of the work
in multi-issue negotiations has focused on the independent valuations case. Faratin,
Sierra & Jennings [5] introduce a method to search the utility space over multiple at-



tributes, which uses fuzzy similarity criteria between attribute value labels as prior in-
formation. These papers have the advantage that they allow flexibility in modeling and
deal with incomplete preference information supplied by the negotiation partner. They
do not consider the question of functional interdependencies between issues, however.

A negotiation approach that specifically address the problem of complex inter-
dependencies between multiple issues is Klein et al. [4]. They consider a setting
similar to the one considered in this paper, namely bilateral negotiations over a large
number of boolean-valued issues with binary interdependencies. In this setting, they
compare the performance of two search approaches: hill-climbing and simulated an-
nealing and show that if both parties agree to use simulated annealing, then Pareto-
efficient outcomes can be reached. By comparison to our work, this approach does not
try to use prior information, in the form of the clustering effect between the preference
functions of different buyers, in order to shorten individual negotiation threads.

Our approach to modeling multi-issue negotiation relies on constructing an ex-
plicit model of the buyer utility function - in the form of a utility graph. A difference
of our approach (presented both in this paper and in [8]) from other existing negotia-
tion approaches is that we use information from previous negotiations in order to aid
buyer modeling in future negotiation instances. This does not mean that personalized
negotiation information about specific customers needs to be stored, only aggregate
information about all customers. The main intuition behind our model is that we ex-
plicitly utilize, during the negotiation, the clustering effect between the structure of
utility functions of a population of buyers. This is an effect used by many Internet
product recommendation engines today, in order to shorten the period required for
customers to search for items (though it comes under different names: collaborative
filtering, social filtering etc.). When adapted and used in a negotiation context, such
techniques enable us to handle high dimensional and complex negotiations efficiently
(with a limited number of negotiation steps).

The main contribution of this paper, in addition to the one highlighted in [8], is
that it shows that the whole process can be automatic: no human input is needed in
order to achieve efficient outcomes. We achieve this by using techniques derived from
collaborative filtering (widely used in current e-commerce practice) to learn the struc-
ture of utility graphs used for such negotiations. We thus show that the link between
collaborative filtering and negotiation is a fruitful research area, which, we argue, can
lead to significant practical applications of automated negotiation systems.

As future work, there are several directions which could be explored in this area.
An immediate one is to obtain a precise definition of the classes of non-linearity
(in terms of utility graph structure and density) for which it is possible to reach
efficient agreements with a linear number of negotiation steps. To this end, we in-
tend to make use of results from random graph theory [9] and constraint processing [3].
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