
Decentralization and Mechanism Design
for Online Machine Scheduling1

Birgit Heydenreich2 and Rudolf Müller and Marc Uetz

Abstract

We study the online version of the classical parallel machine schedul-
ing problem to minimize the total weighted completion time from a new
perspective: We assume that the data of each job, namely its release
date rj , its processing time pj and its weight wj is only known to the
job itself, but not to the system. Furthermore, we assume a decentral-
ized setting where jobs choose the machine on which they want to be
processed themselves. We study this problem from the perspective of
algorithmic mechanism design. We introduce the concept of a myopic
best response equilibrium, a concept weaker than the dominant strategy
equilibrium, but appropriate for online problems. We present a polyno-
mial time, online scheduling mechanism that, assuming rational behavior
of jobs, results in an equilibrium schedule that is 3.281-competitive. The
mechanism deploys an online payment scheme that induces rational jobs
to truthfully report their private data. We also show that the underly-
ing local scheduling policy cannot be extended to a mechanism where
truthful reports constitute a dominant strategy equilibrium.

1 Introduction

We study the online version of the classical parallel machine scheduling problem
to minimize the total weighted completion time3 from a new perspective: We
assume a strategic setting, where the data of each job, namely its release date
rj , its processing time pj and its weight wj is only known to the job itself,
but not to the system. Any job j is interested in being finished as early as
possible, and the weight wj represents its indifference cost for spending one
additional unit of time waiting. The time when job j is finished is called its
completion time Cj . While jobs may strategically report false values (r̃j , p̃j , w̃j)
in order to be scheduled earlier, the total social welfare is maximized whenever
the weighted sum of completion times

∑
wj Cj is minimized. Furthermore, we

assume a restricted communication paradigm, referred to as decentralization:
Jobs may communicate with machines, but neither do jobs communicate with
each other, nor do machines communicate with each other. In particular, there
is no central coordination authority hosting all the data of the problem. This

1A version of this paper has been published in the Proceedings of the Scandinavian Work-
shop on Algorithm Theory (SWAT) 2006, LNCS 4059, pp. 136-147, Springer

2Supported by NWO grant 2004/03545/MaGW ‘Local Decisions in Decentralised Planning
Environments’.

3The problem is P | rj |
P

wj Cj in the notation of Graham et al. [1].

leads to a setting where the jobs themselves must select the machine to be
processed on, and any machine sequences the jobs according to a (known) local
sequencing policy.

The problem P | rj |
∑

wj Cj is well-understood in the non-strategic setting
with centralized coordination. First, scheduling to minimize the weighted sum
of completion times with release dates is NP-hard, even in the off-line case [2].
Second, no online algorithm for the single machine problem can be better than
2-competitive [3] regardless of the question whether or not P=NP, and lower
bounds exist for parallel machines, too [4]. The best possible algorithm for the
single machine case is 2-competitive [5]. For the parallel machine setting, the
currently best known online algorithm is 2.61-competitive [6].

In the strategic setting, selfish agents trying to maximize their own benefit
can do so by reporting strategically about their private information, thus ma-
nipulating the resulting schedule. In the model we propose, a job can report
an arbitrary weight, an elongated processing time (e.g. by adding unnecessary
work), and it can artificially delay its true release date rj . We do not allow a
job to report a processing time shorter than pj , as this can easily be discovered
and punished by the system, e.g. by preempting the job after the declared pro-
cessing time p̃j before it is actually finished. Furthermore, as we assume that
any job j comes into existence only at its release date rj , it obviously does not
make sense that a job reports a release date smaller than the true value rj .

Our goal is to set up a mechanism that yields a reasonable overall perfor-
mance with respect to the objective function

∑
wj Cj . To that end, the mech-

anism needs to motivate the jobs to reveal their private information truthfully.
In addition, as we require decentralization, each machine must be equipped with
a local sequencing policy that is publicly known, and jobs must be induced to
select the machines in such a way that

∑
wj Cj is not too large. Known al-

gorithms with the best performance ratio, e.g. [6, 7], crucially require central
coordination to distribute jobs over machines. An approach by Megow et al. [8],
developed for an online setting with release dates and stochastic job durations,
however, turns out to be appropriate for being adopted to the decentralized,
strategic setting.

Related Work and Contribution. Mechanism design in combination
with the design of approximation algorithms for scheduling problems has been
studied, e.g., by Nisan and Ronen [10], Archer and Tardos [11], and Kovacs
[12]. In those papers, not the jobs but the machines are the selfishly behaving
parts of the system, and their private information is the time they need to
process the jobs. A scheduling model where the jobs are the selfish agents of
the system has been studied by Porter [13]. He addresses a single machine
scheduling problem, where the private data of each job consists of a release
date, its processing time, its weight, and a deadline. In all mentioned papers,
the only action of an agent (machine or job, respectively) is to reveal its private
data; the resulting mechanisms are also called direct revelation mechanisms.
The mechanism suggested in this paper is not a direct revelation mechanism,
since in addition to the revelation of private data, jobs must select the machine

to be processed on.
In the algorithm of Megow et al. [8], jobs are locally sequenced according

to an online variant of the well known WSPT rule [9], and arriving jobs are
assigned to machines in order to minimize an expression that approximates the
(expected) increase of the objective value. This algorithm achieves a perfor-
mance ratio of 3.281. The mechanism we propose develops their idea further.
We present a polynomial time, decentralized online mechanism, called Decen-
tralized LocalGreedyMechanism. Thereby we provide also a new algo-
rithm for the non-strategic, centralized setting, inspired by the MinIncrease
Algorithm of [8], but improving upon the latter in terms of simplicity. We show
that the Decentralized LocalGreedy Mechanism is 3.281-competitive as
well. The currently best known bound for the non-strategic setting is 2.61 [6].

As usual in mechanism design, the Decentralized LocalGreedy Mech-
anism defines payments that have to be made by the jobs for being processed.
Naturally, we require from an online mechanism that also the payments are
computed online. Hence they can be completely settled by the time at which a
job leaves the system. We also show that the payments result in a balanced bud-
get. The payments induce the jobs to select ‘the right’ machines. Intuitively, the
mechanism uses the payments to mimic a corresponding LocalGreedy online
algorithm in the classical (non-strategic, centralized) parallel machine setting
P | rj |

∑
wj Cj . Moreover, the payments induce rational jobs to truthfully re-

port about their private data. With respect to release dates and processing
times, we can show that truthfulness is a dominant strategy equilibrium. With
respect to the weights, however, we can only show that truthful reports are my-
opic best responses (in a sense to be made precise later). In addition, we show
that there does not exist a payment scheme extending the allocation rule of the
Decentralized LocalGreedy Mechanism to a mechanism where truthful
reporting of all private information is a dominant strategy equilibrium.

This extended abstract is organized as follows. We formalize the model
and introduce the required notation in Section 2. In Section 3 the Local-
Greedy algorithm is defined. In Section 4, this algorithm is adapted to the
strategic setting and extended by a payment scheme, yielding the Decentral-
ized LocalGreedyMechanism. Moreover, our main results are presented in
that section. We analyze the performance of the mechanism in Section 5, men-
tion a negative result in Section 6, and conclude with a short discussion in
Section 7.

2 Model and Notation

The considered problem is online parallel machine scheduling with non-trivial
release dates, with the objective to minimize the weighted sum of completion
times. We are given a set of jobs J = {1, . . . , n}, where each job needs to be pro-
cessed on any of the parallel, identical machines from the set M = {1, . . . , m}.
The processing of each job must not be preempted, and each machine can pro-

cess at most one job at a time. Each job j is viewed as a selfish agent and
has the following private information: a release date rj ≥ 0, a processing time
pj > 0, and an indifference cost, or weight, denoted by wj ≥ 0. The release date
denotes the time when the job comes into existence, whereas the weight repre-
sents the cost to a job for one additional unit of time spent waiting. Without
loss of generality, we assume that the jobs are numbered in order of their release
dates, i.e., j < k ⇒ rj ≤ rk. The triple (rj , pj , wj) is also denoted as the type of
a job, and we use the shortcut notation tj = (rj , pj , wj). By T = R+

0 ×R+×R+
0

we denote the space of possible types of each job.

Definition 1. A decentralized online scheduling mechanism is a procedure that
works as follows.

1. Each job j has a release date rj, but may pretend to come into existence
at any time r̃j ≥ rj. At that chosen release date, the job communicates
to every machine reports w̃j and p̃j (which may differ from the true wj

and pj)4.

2. Machines communicate on the basis of that information a (tentative) com-
pletion time Ĉj and a (tentative) payment π̂j to the job. This information
is tentative due to the online situation. The values Ĉj and π̂j can only
change if later another job chooses the same machine.

3. Based on this response, the job chooses a machine. This choice is binding.
The entire communication takes place at one point in time, namely r̃j.

4. There is no communication between machines or between jobs.

5. Depending on later arrivals of jobs, machines may revise Ĉj and π̂j. Even-
tually, the mechanism leads to an (ex-post) completion time Cj and an
(ex-post) payment πj of each job.

Hereby, we assume that jobs with equal reported release date arrive in some
given order and communicate to machines in that order. Next, we define an
online property of the payment scheme and the performance ratio of an online
mechanism.

Definition 2. If in a decentralized online scheduling mechanism for every job
j payments to and from j are only made between time r̃j and time Cj, then we
call the payment scheme of the mechanism an online payment scheme.

Definition 3. Let A be an online mechanism that seeks to minimize a certain
objective function. Let VA(I) be the objective value computed by A for an in-
stance I and let VOPT (I) be the offline optimal objective value for I. Then A
is called %-competitive if for all instances I

VA(I) ≤ % · VOPT (I).
4A job could even report different values to different machines. However, we prove exis-

tence of equilibria where the jobs do not make use of that option.

The factor % is also called performance ratio of the mechanism.

We assume that each job j prefers a lower completion time to a higher one
and model this by the valuation vj(Cj | tj) = −wj Cj . We assume quasi-linear
utilities, that is, the utility of job j equals uj(Cj , πj | tj) = vj(Cj | tj) − πj ,
which is equal to −wj Cj − πj . In this model, the utility uj is always negative.
Therefore, we assume that a job has a constant and sufficiently large utility
for ‘being processed at all’. Note that the total social welfare is maximized
whenever the weighted sum of completion times

∑
j∈J wj Cj is minimum, which

is independent of whether we do or do not carry these constants with us.
The communication with machines, and the decision for a particular machine

are called actions of the jobs; they constitute the strategic actions jobs can take
in the non-cooperative game induced by the mechanism. A strategy sj of a job
j maps a type tj to an action for every possible state of the system in which the
job is required to take some action. A strategy profile is a vector (s1, . . . , sn)
of strategies, one for each job. Given a mechanism, a strategy profile, and a
realization of types t, we denote by uj(s, t) the utility that agent j receives.

Definition 4. A strategy profile s = (s1, . . . , sn) is called a dominant strategy
equilibrium if for all jobs j ∈ J , all types t of the jobs, all strategies s̃−j of the
other jobs, and all strategies s̃j that j could play instead of sj,

uj((sj , s̃−j), t) ≥ uj((s̃j , s̃−j), t) .

We could simplify notation if we restricted ourselves to direct revelation
mechanisms, that is mechanisms in which the only action of a job is to report its
type. However, a decentralized online scheduling mechanism requires that jobs
decide themselves on which machine they are scheduled. Since these decisions
are likely to influence the utility of the jobs, they have to be modelled as actions
in the game. Therefore, it is not sufficient to restrict oneself to direct revelation
mechanisms.

We will see that the mechanism proposed in this paper does not have a
dominant strategy equilibrium, whatever modification we might apply to the
payment scheme. However, a weaker equilibrium concept applies, which we
define next. That definition uses the concept of the tentative utility, i.e., the
utility a job would have if it was the last to be accepted on its machine.

Definition 5. Given a decentralized, online scheduling mechanism as in Def-
inition 1, a strategy profile s, and type profile t. Let Ĉj and π̂j denote the
tentative completion time and the tentative payment of job j at time r̃j. Then
ûj(s, t) := Ĉwj − π̂j denotes j’s tentative utility at time r̃j.

If s and t are clear from the context, we will use ûj as short notation.

Definition 6. A strategy profile (s1, . . . , sn) is called a myopic best response
equilibrium, if for all jobs j ∈ J , all types t of the jobs, all strategies s̃−j of the
other jobs and all strategies s̃j that j could play instead of sj,

ûj((sj , s̃−j), t) ≥ ûj((s̃j , s̃−j), t).

2.1 Critical jobs

For convenience of presentation, we make the following assumption for the main
part of the paper. Fix some constant 0 < α ≤ 1 (α will be discussed later). Let
us call job j critical if rj < αpj . Intuitively, a job is critical if it is long and
appears comparably early in the system. The assumption we make is that such
critical jobs do not exist, that is

rj ≥ α pj for all jobs j ∈ J .

This assumption is a tribute to the desired performance guarantee, and in fact,
it is well known that critical jobs must not be scheduled early to achieve constant
performance ratios [5, 7]. However, the assumption is only made due to cosmetic
reasons. In the following we first define an algorithm and a mechanism on the
refined type space, where all jobs are non-critical. In Section 5.1, we extend the
type space and slightly adapt the mechanism such that also critical jobs can be
dealt with. This slight adaption leads to a constant performance bound while
preserving all desired properties concerning the strategic behaviour of the jobs.

3 The LocalGreedy Algorithm

We next formulate an online scheduling algorithm that is inspired by the Min-
Increase Algorithm from Megow et al. [8]. For the time being, we assume
that the job characteristics, namely release date rj , processing time pj and in-
difference cost wj , are given. In the next section, we discuss how to turn this
algorithm into a mechanism for the strategic, decentralized setting that we aim
at.

The idea of the algorithm is that each machine uses (an online version of)
the well known WSPT rule [9] locally. More precisely, each machine implements
a priority queue containing the not yet scheduled jobs that have been assigned
to the machine. The queue is organized according to WSPT, that is, jobs with
higher ratio wj/pj have higher priority. In case of ties, jobs with lower index
have higher priority. As soon as the machine falls idle, the currently first job
from this priority queue is scheduled (if any). Given this local scheduling policy
on each of the machines, any arriving job is assigned to that machine where the
increase in the objective

∑
wj Cj is minimal.

In the formulation of the algorithm, we utilize some shortcut notation. We
let j → i denote the fact that job j is assigned to machine i. Let Sj be the time
when job j eventually starts being processed. For any job j, H(j) denotes the
set of jobs that have higher priority than j, H(j) = {k ∈ J |wkpj > wjpk}∪{k ≤
j |wkpj = wjpk}. Note that H(j) includes j, too. Similarly, L(j) = J \ H(j)
denotes the set of jobs with lower priority. At a given point t in time, machine
i might be busy processing a job. We let bi(t) denote the remaining processing
time of that job at time t, i.e., at time t machine i will be blocked during bi(t)
units of time for new jobs. If machine i is idle at time t, we let bi(t) = 0.

Algorithm 1: LocalGreedy algorithm

Local Sequencing Policy:
Whenever a machine becomes idle, it starts processing the job with
highest (WSPT) priority among all jobs assigned to it.
Assignment:
(1) At time rj job j arrives; the immediate increase of the objectiveP

wj Cj , given that j is assigned to machine i, is

z(j, i) := wj

h
rj + bi(rj) +

X

k∈H(j)
k→i
k<j

Sk≥rj

pk + pj

i
+ pj

X

k∈L(j)
k→i
k<j

Sk>rj

wk.

(2) Job j is assigned to machine ij ∈ argmini∈M z(j, i) with minimum

index.

Clearly, the LocalGreedy algorithm still makes use of central coordi-
nation in Step (2). In the sequel we will introduce payments that allow to
transform the algorithm into a decentralized online scheduling mechanism.

4 Payments for Myopic Rational Jobs

The payments we introduce can be motivated as follows: A job j pays at the mo-
ment of its placement on one of the machines an amount that compensates the
decrease in utility of the other jobs. The final payment of each job j resulting
from this mechanism will then consist of the immediate payment j has to make
when selecting a machine and of the payments j receives when being displaced
by other jobs. We will prove that utility maximizing jobs have an incentive to
report truthfully and to choose the machine that the LocalGreedyAlgorithm
would have selected, too. Furthermore, the WSPT rule can be run locally on
every machine and does not require communication between the machines. We
will see in the next section that this yields a constant-factor approximation
of the off-line optimum, given that the jobs behave rationally. The algorithm
including the payments is displayed below as the Decentralized Local-
GreedyMechanism. Let the indices of the jobs be defined according to the
reported release dates, i.e. j < k ⇒ r̃j ≤ r̃k. Let H̃(j) and L̃(j) be defined
analogously to H(j) and L(j) on the basis of the reported weights.

Algorithm 2: DecentralizedLocalGreedyMechanism

Local Sequencing Policy:
Whenever a machine becomes idle, it starts processing the job with
highest (WSPT) priority among all available jobs queuing at this
machine.
Assignment:
(1) At time r̃j job j arrives and reports a weight w̃j and a processing
time p̃j to all machines.

(2) Every machine i computes

Ĉj(i) = r̃j + bi(r̃j) +
X

k∈H̃(j)
k→i
k<j

Sk≥r̃j

p̃k + p̃j and π̂j(i) = p̃j

X

k∈L̃(j)
k→i
k<j

Sk>r̃j

w̃k.

and informs j about both Ĉj(i) and π̂j(i).
(3) Job j chooses a machine ij ∈ M . Its tentative utility for being
queued at machine i is ûj(i) := −wjĈj(i)− π̂j(i).
(4) The job is queued at ij according to WSPT among all currently
available jobs on ij whose processing has not started yet. The payment
π̂j(ij) has to be paid by j.

(5) The (tentative) completion time for every job k with k ∈ L̃(j),

k → ij , k < j, Sk > r̃j increases by p̃j due to j ’s presence. As

compensation, k receives a payment of w̃kp̃j .

The DecentralizedLocalGreedyMechanism together with the stated
payments results in a balanced budget for the scheduler. That is, the payments
paid and received by the jobs sum up to zero, since every arriving job immedi-
ately makes its payment to the jobs that are displaced by it. Notice that the
payments are made online in the sense of Definition 2.

Theorem 7. Regard any type vector t, any strategy profile s and any job j
such that j reports (r̃j , p̃j , w̃j) and chooses machine m̃ ∈ M . Then changing the
report to (r̃j , p̃j , wj) and choosing a machine that maximizes its tentative utility
at time r̃j does not decrease j’s tentative utility under the Decentralized
LocalGreedyMechanism.

Proof. We only give the idea here. For the single machine case, an arriving job
j gains tentative utility p̃kwj − p̃jw̃k from displacing an already present job k.
WSPT assigns j in front of k if and only if p̃kw̃j − p̃jw̃k > 0. Thus, w̃j = wj

maximizes j’s tentative utility. For m > 1, the theorem follows from the fact
that j can select a machine itself.

Lemma 8. Consider any job j ∈ J . Then, under the Decentralized Lo-
calGreedyMechanism, for all reports of all other agents as well as all choices
of machines of the other agents, the following is true:
(a) If j reports w̃j = wj, then the tentative utility when queued at any of the
machines will be preserved over time, i.e. it equals j’s ex-post utility.
(b) If j reports w̃j = wj, then selecting the machine that the LocalGreedy
Algorithm would have selected maximizes j’s ex-post utility.

Proof. See full version of the paper.

Theorem 9. Consider the restricted strategy space where all j ∈ J report w̃j =
wj. Then the strategy profile where all jobs j truthfully report r̃j = rj, p̃j = pj

and choose a machine that maximizes ûj is a dominant strategy equilibrium
under the Decentralized LocalGreedyMechanism.

Proof. Let us start with m = 1. Suppose w̃j = wj , fix any pretended release
date r̃j and regard any p̃j > pj . Let uj denote j’s (ex-post) utility when
reporting pj truthfully and let ũj be its (ex-post) utility for reporting p̃j . As
w̃j = wj , the ex-post utility equals in both cases the tentative utility at decision
point r̃j according to Lemma 8(a). Let us therefore regard the latter utilities.
Clearly, according to the WSPT-priorities, j’s position in the queue at the
machine for report pj will not be behind its position for report p̃j . Let us
divide the jobs already queuing at the machine upon j’s arrival into three sets:
Let J1 = {k ∈ J | k < j, Sk > r̃j , w̃k/p̃k ≥ wj/pj}, J2 = {k ∈ J | k < j, Sk >
r̃j , wj/pj > w̃k/p̃k ≥ wj/p̃j} and J3 = {k ∈ J | k < j, Sk > r̃j , wj/p̃j >
w̃k/p̃k}. That is, J1 comprises the jobs that are in front of j in the queue for
both reports, J2 consists of the jobs that are only in front of j when reporting
p̃j and J3 includes only jobs that queue behind j for both reports. Therefore,
ũj − uj equals

−
∑

k∈J1∪J2

wj p̃k −
∑

k∈J3

p̃jw̃k − wj p̃j −
(
−

∑

k∈J1

wj p̃k −
∑

k∈J2∪J3

pjw̃k − wjpj

)

=
∑

k∈J2

(pjw̃k − wj p̃k)−
∑

k∈J3

(p̃j − pj)w̃k − wj(p̃j − pj).

According to the definition of J2, the first term is smaller than or equal to zero.
As p̃j > pj , the whole right hand side becomes non-positive. Therefore ũj ≤ uj ,
i.e. truthfully reporting pj maximizes j’s ex-post utility on a single machine.

Let us now fix w̃j = wj and any p̃j ≥ pj and regard any false release date
r̃j > rj . There are two effects that can occur when arriving later than rj .
Firstly, jobs queued at the machine already at time rj may have been processed
or may have started receiving service by time r̃j . But either j would have had
to wait for those jobs anyway or it would have increased its immediate utility at
decision point rj by displacing a job and paying the compensation. So, j cannot
gain from this effect by lying. The second effect is that new jobs have arrived
at the machine between rj and r̃j . Those jobs either delay j’s completion time
and j looses the payment it could have received from those jobs by arriving
earlier. Or the jobs do not delay j’s completion time, but j has to pay the jobs
for displacing them when arriving at r̃j . If j arrived at time rj , it would not
have to pay for displacing such a job. Hence, j cannot gain from this effect
either. Thus the immediate utility at time rj will be at least as large as its
immediate utility at time r̃j . Therefore, j maximizes its immediate utility at
time r̃j by choosing r̃j = rj . As w̃j = wj , it follows from Lemma 8(a) that
choosing r̃j = rj also maximizes the job’s ex-post utility on a single machine.

For m > 1, note that on every machine, the immediate utility of job j at de-
cision point r̃j is equal to its ex-post utility and that j can select a machine itself
that maximizes its immediate utility and therefore its ex-post utility. Therefore,
given that w̃j = wj , a job’s ex-post utility is maximized by choosing r̃j = rj ,
p̃j = pj and, according to Lemma 8(b), by choosing a machine that minimizes
the immediate increase in the objective function.

Theorem 10. Given the types of all jobs, the strategy profile where each job j
reports (r̃j , p̃j , w̃j) = (rj , pj , wj) and chooses a machine maximizing its tenta-
tive utility ûj is a myopic best response equilibrium under the Decentralized
LocalGreedyMechanism.

Proof. Regard job j. According to the proof of Theorem 7, ûj on any machine
is maximized by reporting w̃j = wj for any r̃j and p̃j . According to Theorem 9
and Lemma 8(b), p̃j = pj , r̃j = rj and choosing a machine that maximizes j’s
tentative utility at time r̃j maximize j’s ex-post utility if j truthfully reports
w̃j = wj . According to Lemma 8(a) this ex-post utility is equal to ûj if j
reports w̃j = wj . Therefore, any job j maximizes ûj by truthful reports and
choosing the machine as claimed.

Given the restricted communication paradigm, jobs do not know at their
arrival which jobs are already queuing at the machines and what reports the
already present jobs have made. Therefore it is easy to see that for any non-
truthful report of an arriving job about its weight, instances can be constructed
in which this report yields a strictly lower utility for the job than a truthful
report would have given. With arguments similar to those in the proof of
Theorem 9, the same holds for false reports about the processing time and the
release date.

Note that in order to obtain the myopic best response equilibrium (The-
orem 10), payments paid by an arriving job j need not necessarily be given
to the jobs delayed by j. But by doing so, the resulting ex-post payments re-
sult in a balanced budget and the tentative utility at arrival is preserved and
equals the ex-post utility of every job (Lemma 7). Furthermore, paying jobs
for their delay results in a dominant strategy equilibrium in a restricted type
space (Theorem 9).

5 Performance of the Mechanism

As shown in Section 4, jobs have a motivation to report truthfully about their
data: According to Theorem 7, it is a myopic best response for a job j to report
the true weight wj , no matter what the other jobs do and no matter which p̃j

and r̃j are reported by j itself. Given a true report of wj , it was proven in
Theorem 9 that reporting the true processing time and release date as well as
choosing a machine maximizing the tentative utility at arrival maximizes the
job’s ex-post utility. Therefore we will call a job rational if it truthfully reports
wj , pj and rj and chooses a machine maximizing its tentative utility ûj . In this
section, we will show that if all jobs are rational, then the Decentralized
LocalGreedyMechanism is 3.281-competitive.

5.1 Handling Critical Jobs

Recall that from Section 2.1 on, we assumed that no critical jobs exist, i.e. we
defined the Decentralized LocalGreedyMechanism only for jobs j with

rj ≥ α pj . We will now relax this assumption and allow jobs to have types
from the more general type space {(rj , pj , wj)|rj ≥ 0, pj ≥ 0, wj ∈ R}. With-
out the assumption, the DecentralizedLocalGreedyMechanism as stated
above does not yet yield a constant performance ratio; simple examples can be
constructed in the same flavor as in [7]. In fact, it is well known that early
arriving jobs with large processing times have to be delayed [5, 7, 8]. In order
to achieve a constant performance ratio, we also adopt this idea and use mod-
ified release dates as [7, 8]. To this end, we define the modified release date
of every job j ∈ J as r′j = max{rj , αpj}, where α ∈ (0, 1] will later be chosen
appropriately. For our decentralized setting, this means that a machine will not
admit any job j to its priority queue before time max{r̃j , αp̃j} if j arrives at
time r̃j and reports processing time p̃j . Moreover, machines refuse to provide
information about the tentative completion time and payment to a job before
its modified release date (with respect to the job’s reported data). Note that
this modification is part of the local scheduling policy of every machine and
therefore does not restrict the required decentralization. Note further that any
myopic rational job j still reports w̃j = wj according to Theorem 7 and that a
rational job reports p̃j = pj as well as communicates to machines at the earli-
est opportunity, i.e. at time max{rj , αpj}, according to the arguments in the
proof of Theorem 9. Moreover, the aforementioned properties concerning the
balanced budget, the conservation of utility in the case of a truthfully reported
weight, and the online property of the payments still apply to the algorithm
with modified release dates.

5.2 Proof of the Performance Ratio

It is not a goal in itself to have a truthful mechanism, but to use the truthfulness
in order to achieve a reasonable overall performance in terms of the social welfare∑

wj Cj . We derive a constant performance ratio for the Decentralized
LocalGreedyMechanism by the following theorem:

Theorem 11. Suppose every job is rational in the sense that it reports rj, pj,
wj and selects a machine that maximizes its tentative utility at arrival. Then the
Decentralized LocalGreedyMechanism is %-competitive, with % = 3.281.

The proof of the theorem partly follows the lines of the corresponding proof
of Megow et al. [8]. But the distribution of jobs over machines in their algo-
rithm differs from the decentralized distribution in the Decentralized Lo-
calGreedyMechanism when rational jobs are assumed. Therefore, our result
is not implied by the result of Megow et al. [8] and it is necessary to give a
proof here.

Proof. A rational job communicates to the machines at time r′j = max{rj , αpj}
and chooses a machine ij that maximizes its utility upon arrival ûj(ij). That

is, it selects a machine i that minimizes

−ûj(i) = wjĈj(i) + π̂j(i) = wj

[
r′j + bi(r′j) +

∑

k∈H(j)
k→i
k<j

Sk≥r′j

pk + pj

]
+ pj

∑

k∈L(j)
k→i
k<j

Sk>r′j

wk.

This, however, exactly equals the immediate increase of the objective value∑
wj Cj that is due to the addition of job j to the schedule. We now claim

that we can express the objective value Z of the resulting schedule as Z =∑
j∈J −ûj(ij), where ij is the machine selected by job j. Here, it is important

to note that −ûj(ij) does not express the total (ex-post) contribution of job j
to

∑
wj Cj , but only the increase upon arrival of j on machine ij . However,

further contributions of job j to
∑

wj Cj only appear when job j is displaced
by some later arriving job with higher priority, say k. This contribution by job
j to

∑
wj Cj , however, will be accounted for when adding −ûk(ik).

Next, since we assume that any job maximizes its utility upon arrival, or
equivalently minimizes −ûj(i) when selecting a machine i, we can apply an
averaging argument over the number of machines, like in [8], to obtain:

Z ≤
∑

i∈J

1
m

m∑

i=1

−ûj(i) .

The remainder of the proof utilizes the definitions of ûj(i) and particulary the
fact that, upon arrival of job j on any of the machines i (at time r′j), machine i
is blocked for time bi(r′j), which is upper bounded by r′j/α. This upper bound
is machine-independent, and follows from the definition of r′j , since any job k in
process at time r′j fulfills αpk ≤ r′k ≤ r′j . Furthermore, the proof utilizes a lower
bound on any (off-line) optimum schedule from Eastman et al. [14, Thm. 1].
For details, we refer to the full version of the paper. The resulting performance
bound 3.281 is identical to the one of [8] (for deterministic processing times),
when α is (

√
17m2 − 2m + 1−m + 1)/(4m).

6 Negative Result

Theorem 12. There does not exist a payment scheme that extends the Lo-
calGreedy algorithm to a truthful mechanism. Therefore, it is not possible to
turn the Decentralized LocalGreedyMechanism into a mechanism with a
dominant strategy equilibrium in which all jobs report truthfully by only modi-
fying the payment scheme.

Proof. If the Decentralized LocalGreedyMechanism can be turned into
a truthful mechanism by only modifying the payment scheme, then the Lo-
calGreedy algorithm can be completed by a payment scheme to a truthful
mechanism. Furthermore, we can show that a necessary condition for truthful-
ness, called weak monotonicity, is not satisfied by the LocalGreedy algorithm.
Weak monotonicity has been introduced in [15].

7 Discussion

It would be interesting to find a constant competitive decentralized online
scheduling mechanism such that there is a dominant strategy equilibrium in
which the jobs report all data truthfully. As we have seen in Section 6, the
LocalGreedyAlgorithm cannot be extended by a payment scheme such
that the resulting mechanism has the described properties. Furthermore,
recall that the currently best known performance bound for the non-strategic,
centralized setting is 2.61 [6]. This algorithm crucially requires a centralized
distribution of jobs over machines, and therefore does not seem to be suited for
decentralization. Nevertheless, it remains an interesting question to identify
general rules for the transformation of centralized algorithms to decentralized
mechanisms.

References

[1] Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Opti-
mization and approximation in deterministic sequencing and scheduling: A
survey. Ann. Discr. Math. 5 (1979), 287–326

[2] Lenstra, J.K., Rinnoy Kan, A.H.G., Brucker, P.: Complexity of machine
scheduling problems. Ann. of Discr. Math. 1 (1977), 343–362

[3] Hoogeveen, J.A., Vestjens, A.P.A.: Optimal on-line algorithms for single
machine scheduling. In: Cunningham, W.H., McCormick, S.T., Queyranne,
M., eds.: IPCO 1996, LNCS 1084 (1996), 404-414

[4] Vestjens, A.P.A.: On-line Machine Scheduling. PhD thesis, Eindhoven
University of Technology, Eindhoven, The Netherlands (1997)

[5] Anderson, E.J., Potts, C.N.: Online scheduling of a single machine to
minimize total weighted completion time. Math. Oper. Res. 29 (2004),
686-697

[6] Correa, J.R., Wagner, M.R.: LP-based online scheduling: from single to
parallel machines. In: Jünger, M., Kaibel, V., eds.: IPCO 2005. LNCS 3509
(2005), 196-209

[7] Megow, N., Schulz, A.S.: On-line scheduling to minimize average completion
time revisited. Oper. Res. Letters 32 (2004), 485-490

[8] Megow, N., Uetz, M., Vredeveld, T.: Models and algorithms for stochastic
online scheduling. Math. Oper. Res., to appear.

[9] Smith, W.: Various optimizers for single stage production. Nav. Res. Log.
Quarterly 3 (1956), 59-66

[10] Nisan, N., Ronen, A.: Algorithmic mechanism design. Games and Eco-
nomic Behavior 35 (2001), 166-196

[11] Archer, A., Tardos, E.: Truthful mechanisms for one-parameter agents.
In: Proc. 42nd FOCS. IEEE Computer Society (2001), 482-491

[12] Kovacs, A.: Fast monotone 3-approximation algorithm for scheduling re-
lated machines. In: Brodal, G.S., Leonardi, S., eds.: ESA 2005. LNCS 3669
(2005), 616-627

[13] Porter, R.: Mechanism design for online real-time scheduling. Proc. 5th
ACM Conf. Electronic Commerce, ACM Press (2004), 61-70

[14] Eastman, W.L., Even, S., Isaacs, I.M.: Bounds for the optimal scheduling
of n jobs on m processors. Management Science 11 (1964), 268–279

[15] S. Bikhchandani, S. Chatterjee, R. Lavi, A. Mu’alem, N. Nisan, and A. Sen.
Weak monotonicity characterizes deterministic dominant strategy imple-
mentation,. Econometrica, 74(4):1109–1132, 2006.

Birgit Heydenreich and Rudolf Müller and Marc Uetz
Maastricht University,
Quantitative Economics,
P.O.Box 616,
6200 MD Maastricht,
The Netherlands.
Email: {b.heydenreich,r.muller,m.uetz}@ke.unimaas.nl

