
Optimizing Streaming Applications with
Self-Interested Users using M-DPOP

Boi Faltings∗, David Parkes†, Adrian Petcu‡, Jeff Shneidman§

Abstract

In this paper we deal with the problem of optimally placing a set of query
operators in an overlay network. Each user is interested in performing
a query on streaming data and each query has an associated set of in-
network operators that filter, aggregate and process the data in various
ways. Each user has private information about the operators associated
with a query and about the utility from different combinations of operator
placements. Each server in the overlay network is able to perform some
set of operators, and servers differ in their network and computational
characteristics.
We model this problem as a Distributed Constraint Optimization
Problem (DCOP), and apply the M-DPOP algorithm from Petcu et al.
[19], executed here by clients associated with users and situated at nodes
on the overlay network. M-DPOP makes truth-telling an ex-post Nash
equilibrium and determines the social-welfare maximizing placement of
operators to servers. No client can benefit by deviating from the M-
DPOP algorithm and nodes need only communicate with other nodes
that have an interest in placing an operator on the same server. The
only central authority required is a bank that can extract payments from
users. Preliminary results from simulation show that message size will be
a bottleneck in applying M-DPOP to operator placement unless structure
can be enforced and then exploited.

1 Motivation

Recently, there has been interest in building long-lived data streaming
applications on the Internet. These applications typically involve querying,
processing, and delivering real-time data from multiple distributed data sources,
such as sensor networks, and making use of shared resources in the Internet to
aggregate, filter, or multicast this data. Commonly-cited target applications
include continuous monitoring of Internet paths and system loads [8], and
querying geographically diverse data sources [20].

These streaming applications can run on overlay networks that consist of
nodes that are capable of performing in-network processing. A few examples
of such overlays are IrisNet [7], PIER [8], Borealis [1], and SBON [20]. In
these networks, queries are submitted by users who wish to receive data from

∗boi.faltings@epfl.ch, EPFL, CH-1015 Lausanne
†parkes@eecs.harvard.edu, Harvard University, DEAS, Cambridge MA 02138, USA
‡adrian.petcu@epfl.ch, EPFL, CH-1015 Lausanne
§jeffsh@eecs.harvard.edu, Harvard University, DEAS, Cambridge MA 02138, USA



producers via one or more in-network operators. Examples of in-network
operators include database style “join” operators, or custom logic provided
by an end user.

One of the fundamental questions in these overlay networks is how to
perform query placement, which is the problem of mapping the operators in
a particular query to a collection of nodes (the servers) that will run those
operators. Placement can be formulated as a complex constrained optimization
problem; placements must be done subject to load and bandwidth node
limitations (where important), quality of service stream requirements, and done
in a computationally efficient way.

In practice, users have varying levels of happiness, or utility, for how
their queries are placed and executed. For example, a user with a jitter-
sensitive query should avoid operator placement on nodes with high variance in
communication latency. On the other hand, a user with a high volume query
may not care about latency but wants operators placed on nodes with high data
rates.

The goal of our research is to provide a distributed constrained optimization
algorithm that allows users to influence where their query operators are placed,
but seeks to maximize the aggregate utility across all users. This approach
is unique in that it is the first overlay query placement algorithm that uses
ideas from computational mechanism design to compute a value-maximizing
placement in the presence of self-interested nodes. Our solution leverages M-
DPOP [19], which provides a distributed algorithm for social choice problems,
and can exploit problem structure to scale well to large problems. M-DPOP
is a faithful distributed implementation [21], in the sense that even nodes
controlled by users (and thus open to manipulation) will choose to follow the
algorithm because this maximizes, in equilibrium, their individual self-interest.
Preliminary results from simulation show that message size will be a bottleneck
in applying M-DPOP to operator placement unless structure can be enforced
and then exploited.

2 Problem Statement

Each user is associated with a query and has a client located at a particular node
on the overlay network. Each query has an associated set of data producers,
known to the user and located at nodes on the network. Each query also requires
a set of operators, to be placed on (server) nodes between the producers and
the user’s node. Each user assigns values (or utilities) to various allocations
of operators to servers. This preference information is private, and users are
assumed self-interested and seek to maximize their individual utility.

We seek a distributed algorithm, to be executed by user clients situated
on network nodes, that will determine the allocation and also payments to be
made by each user for the outcome. The server nodes (i.e. the nodes that finally
execute the operators and respond to queries) are assumed to “opt-in” in that



they will implement whatever allocation is determined by users. Constraints on
server nodes, e.g. based on maximal load, are commonly known to users and
thus server nodes are represented in the decision procedure. However, server
nodes play no active role in the algorithm.

More formally, and adopting the term “agent” to represent a user and
“utility” to describe user values, we have:

• agents A = {A1, . . . , An}, each with a query

• server nodes B = {B1, . . . , Bm} ∪ φ where φ is the “null” node
(corresponds to operator not assigned)

• each agent Ai has ki operators Gi = {g1, . . . , gki
} and each must be

assigned to one node in the network (perhaps the null node, i.e. not
assigned)

• each agent determines a possibility set P (Ai, g) ⊆ B for each operator
g ∈ Gi, which is the set of nodes for which the agent could have non-zero
utility for placement (i.e. in some combination with other placements)

• each agent has a utility on allocations, with ui(x) ∈ R, where x :
{G1, . . . , Gn}→B defines an allocation of operators to the network. (The
utility is −∞ if an operator is allocated to a node outside of the possibility
set.)

• constraints to restrict the set of feasible allocations due to load and
bandwidth considerations.

We assume there is no collusion between users and that each user controls
only one client, namely its own client, and does not control any other
functionality on any other nodes.

Each operator is associated with an input data stream and an output data
stream. For instance, operators that process raw data received from one or
more producers associated with a query define the set of producers. Thus,
information about producers is implicit in the set of operators Gi associated
with a query. Server nodes may be capable of running query operators on behalf
of multiple concurrent queries, even allowing results of a particular operator to
be re-used and shared across multiple relevant queries [20]; e.g. when the same
aggregation from two producers is required by two different queries. Operator
semantics must be rich enough to allow these synergies to be identified. Notice
that the null node allows for the operator placement to decide to block one or
more queries completely, or drop some of the operators in a query completely,
when this is in the joint interest of all users.

Users can determine a possibility set of nodes for the placement of each
operator. This excludes only those nodes for which the user can be absolutely
certain that there is no value (to the user) for placing the operator on that



node.5 We assume that user clients can communicate without interference with
user clients representing queries that share a possible interest in a server. Each
user has a utility function, which describes her value for different assignments
of operators to nodes. We shall assume that a user’s utility encodes bandwidth
and latency considerations, and furthermore, a user is able to access enough
information to determine this utility information. For instance, previous work
has suggested the efficacy of various techniques to perform bandwidth and
latency [22, 20] estimation between pairs of nodes [10].

The main constraint in placing the operators is that each node can only
handle a limited number of operators, due to CPU and bandwidth limitations.

3 Background and Related Work

This work draws from 3 different research areas: distributed stream placement
optimization, distributed constraint optimization, and faithful implementations
of social choice functions.

3.1 Distributed Stream Placement Optimization

Distributed stream processing systems (DSPS) need to find a good placement
for the in-network operators required by user queries. Some systems relegate
this placement task back to the user. Others perform automated optimization
for a hard-coded node or network metric. For instance, Borealis [1] and
GATES [4] require the user to specify the initial operator locations. This
forces the user to perform any optimization off-line before specifying locations.
Other DSPSs, such as Medusa [3], place operators to improve application
performance by balancing node load. Still other DSPs effectively randomize
placement, as in PIER [8]. Neither placement strategy may be appropriate for
jitter or latency-sensitive queries. SAND [2], an extension to Borealis, performs
network-aware operator placement to minimize bandwidth of a query. SAND
also allows applications to specify delay constraints on the query, which affects
the placement decision. SBON [20] is also a system that performs network-
aware operator placement, minimizing a network usage metric.

None of these previous works have taken a value-maximization (or
preference-based) approach in choosing where to place operators. Rather, the
system assumed that all queries were equally important, and in many cases,
that queries were only concerned with latency or node load.

3.2 Distributed Constraint Optimization Framework

Distributed Constraint Optimization (DCOP), e.g. Modi et al. [11], can model
social choice problems where a set of self interested agents with private utility

5A more advanced implementation would allow a user to state general utility functions for
types of nodes – such as u(bandwidth), u(latency), and rely on the network to calculate the
candidate set and derive the utility of each node.



functions have to agree on a set of decisions (see Petcu et al. [19]). Each decision
is modeled as a variable that can take values in a well-defined domain, subject
to side constraints. The goal is to maximize the total utility across all agents.
Among many algorithms for this type of problems, we mention ADOPT ([11])
and DPOP ([15]). We define the general DCOP framework here. Later, in
Section 4 we will instantiate operator placement in the DCOP formalism.

Definition 1 (DCOP) A distributed constraint optimization problem
(DCOP) is a tuple < A,X ,D, C,R > such that:

A = {A1, ..., An} is a set of self-interested agents interested in the
optimization problem;

X = {X1, ...,Xm} is the set of public decision variables; X(Ai) are the
variables in which agent Ai is interested and does have relations. Agents Ai

for which Xj ∈ X(Ai) for some variable Xj form the community for variable
Xj, denoted A(Xj) ⊆ A.

D = {d1, ..., dm} is the set of finite public domains of the variables X ; each
domain di is known to all interested agents (i.e. agents Ajs.t.Xi ∈ X(Aj);

C = {c1, ..., cq} is a set of public constraints, where a constraint ci is
a function ci : di1 × .. × dik

→ {−∞, 0} that returns 0 for all allowed
combinations of values of the involved variables, and −∞ for disallowed ones;
these constraints are known and agreed upon by all agents involved in the
respective communities;

R = {R1, ..., Rn} is a set of private relations, where Ri is the set of
relations specified by agent Ai and relation r

j
i ∈ Ri is a function dj1 × ..×djk

→
R specified by agent Ai, which denotes the utility Ai receives for all possible
values on the involved variables {j1, . . . , jk} (negative values can be thought of
as costs). An agent’s utility for a complete assignment of values to variables is
defined by the sum of its relations.

The optimal solution is a complete instantiation X∗ of all variables in
X , s.t. X∗ = argmaxX∈D(

∑
Ri∈R

Ri(X) +
∑

ci∈C
ci(X)),6 where Ri(X) =

∑
r

j

i
∈Ri

r
j
i (X) is Ai’s utility for this solution.

Later, we use DCOP(−Ai) to denote the constraint optimization problem
without agent Ai, and refer to this as the “marginal problem without agent
Ai.”

In addition to private relations on public variables, DCOP allows an agent
to have private variables and arbitrary relations and constraints imposed on
subsets of private variables and public variables. Decisions about private
variables, as well as explicit information about these relations and constraints
remain private to an agent.

In our context, variables will be associated with each instance of an operator,
and domains with the servers that are of possible interest to the user associated

6Notice that the second sum is either −∞ if X is an infeasible assignment, or 0 if it is
feasible. Thus, optimal solution X∗ will always satisfy all hard constraints when that is
possible.



with the operator. Relations provide a method to express factored utilities,
with the utility for an allocation decomposed into an aggregate over utilities for
server assignments on groups of operators that are inputs and outputs to each
other.

3.3 M-DPOP: faithful utilitarian social choice

Petcu et al. [19] have proposed M-DPOP, a distributed optimization protocol
that faithfully implements (in the sense of Shneidman and Parkes [21]) the
Vickrey-Clarke-Groves (VCG) mechanism ([6]) for the problem of utilitarian
social choice. No agent can benefit by unilaterally deviating from any aspect of
the protocol, neither information-revelation, computation, nor communication.
Additionally, M-DPOP provides a faithful method to redistribute some of
the VCG payments back to agents (weak budget-balance). The optimization
algorithm itself is based on DPOP ([15]), which is a dynamic programming
algorithm adapted for distributed constraint optimization problems. Agents
need only communicate with other agents that have an interest in the same
variable, and provided that DPOP scales then the entire method of M-DPOP
scales.

Briefly, M-DPOP has the following phases:

1. Community formation and DFS creation: the agents interested in the
value of a variable Xi organize themselves in the community A(Xi) of
that variable (a community can be physically implemented as a public
medium like a bulletin board, a mailing list, etc.) All agents interested
in Xi subscribe to Xi’s community. Each agent Ai ∈ A(Xi) then creates
its own replica of Xi, and expresses its preferences on combinations of Xi

and other variables as local relations on the local copies of these variables.
By doing so, each agent creates its local optimization problem, denoted
COP(Ai). Copies of the private variables are synchronized among all
interested agents using equality constraints. Once the constraint graph
is established, a depth-first-search (DFS) traversal is constructed starting
from a randomly chosen node. This defines the control logic.

2. Solving the main problem: DPOP is run on the previously established DFS
structure, and the optimal solution for DCOP(A) is obtained. DPOP
involves a bottom-up propagation (and aggregation) of utility information
followed by a top-down propagation of assignment information.

3. Solving each marginal problem: DPOP is then run in parallel on each
marginal problem. Computation from the main problem (i.e. residual
local state) is reused for solving each marginal problem, DCOP(−Ai), in
a way that prevents manipulation by Ai. Finally, the VCG taxes are then
computed distributedly again in a non-manipulable fashion by all agents
except the one whose tax is computed, and levied by a trusted bank.



M-DPOP’s complexity in terms of number of messages is always linear in the
number of variables in the optimization problem. In terms of message size, the
largest message sent by any agent while executing M-DPOP is O(exp(w)), where
w the induced width of the constraint graph ([5]). Roughly, a small induced
width reflects problems with limited interconnectedness between decisions.

4 DCOP Models for Optimal Operator

Placement

The problem structure of an instance of DCOP(A) can be represented as
a multigraph, with the decision variables as nodes, and (possibly) multiple
relations belonging to different agents that involve the same variables, and
expressing their utilities. Figure 1(a) shows an example where the variables
are associated with servers, domains are combinations of operators, and agents
express preferences on combinations thereof, in the form of constraints and
relations on those variables.

We adopt an alternate formulation, depicted in Figure 1(b)), in which the
variables are associated with individual operators and the domains are servers
of possible interest for an operator.7 In order to allow multiple agents to express
preferences on the same set of variables, we require distributed models where
each agent can model its own interests as an internal optimization problem
(COP(Ai)), and interactions between agents (agreement, feasibility constraints)
are modeled as inter-agent constraints.8 This is reflected in the model of
operator placement.

4.1 DPOP model for Operator Placement

4.1.1 Local optimization problem

The local optimization problem COP(Ai) of agent Ai models Ai’s interests
and is composed of private variables and relations (see Figure 1(b) for an
example). Each agent Ai creates one variable Aigj for each one of its operators
gj . The domain of a variable Aigj is the possibility set P (Ai, gj) for the agent-
operator (Ai, gj) to whom the variable relates. These variables are private to
agents and each agent has as many variables as it has operators to assign.

Each agent has relations on the values assigned to its variables (blue edges
in Figure 1). These relations may be factored, e.g. perhaps one operator
must be placed on any of some set of nodes with particular properties (Linux,
high-bandwidth, etc.) while the other two operators should be within 3 hops of
each other. Intra-agent constraints (i.e. private) may constrain combinations of
operator positions that are not suitable to the agent. For example, in Figure 1),

7A subtle incentive problem exists with the servers-as-variables model which will be
explained in a longer version of this paper.

8Local, private variables do not show up in inter-agent communication and agents typically
need not solve the internal problem for all combinations of values of the public variables [23].



Figure 1: An operator placement problem: (a) community formation , (b)
DCOP model (operators-as-variables), and (c) DFS arrangement

A2 could express with its ternary relation (blue area connecting all its variables)
that it prefers to have all its operators assigned on machines with the same OS,
or that the sum of the bandwidths of the hosting servers must exceed a certain
threshold, etc.

4.1.2 Interdependencies between local optimization problems

Local optimization problems are connected through interagent constraints. In
this case, interagent constraints (commonly known to all agents) represent
capacity constraints. For instance, consider a particular node h and let X(h)
denote the variables that include h in their domain. For each such h, there could
be a constraint of the form “no more than Ch (some small integer) unique
operators can be assigned to this node.” For example, in Figure 1, agents
A1, A2, and A3 are each interested in placing an operator (A1 g3, A2 g3 and
A3 g3, respectively) on S3. Since S3 has limited capacity, all three variables are
connected through a ternary capacity constraint. Note that synergies can be
found between operators in this formulation since agents 1 and 2 may have the
same operator (e.g. apply an aggregation operator to readings from the same
two producer nodes), and thus the coordinated decision by both agents to place
this operator on the same node would only count once against the capacity of
that node. Agents must be able to identify this equivalence between operators.



4.2 Applying M-DPOP to Operator Placement

We describe in more detail the initial phase of M-DPOP whereby the
communities are formed and the DFS structure is constructed. As user’s
variables in this model are initially private the process is slightly changed from
that in Petcu et al. [19]:

1. Each agent Ai expresses internally its interests as an optimization problem
COP(Ai) (see 4.1.1)

2. Agents subscribe to the servers where they would like to place operators
(see Figure 1). Each server Sj maintains a public subscriber list A(Sj),
and at the end of the subscription process, notifies all subscribers. Agents
A(Sj) are referred to as the community of server Sj . Each subscriber
connects its corresponding variable to all other variables, thus forming a
clique that corresponds to an n-ary capacity constraint.

3. Every agent can infer (or the server can specify) what combinations of
operators observe the capacity of the server and capture this information
via hard constraints.

4. Once the constraint graph is thus established, a depth-first-search
traversal is constructed starting from a randomly chosen node (see
Figure 1(c) for an example DFS)

Next, the bottom-to-top utility propagation and top-to-bottom decision
propagation phases proceed as in M-DPOP. The capacity constraints from this
model are the equivalent of the hard-constraints in M-DPOP parlance. As
in M-DPOP, they are treated by the lowest agent in the DFS tree that has
a variable involved in the constraint. For example, in Figure 1(c), we have
the capacity constraint corresponding to S3 as the shaded area involving A1 g3,
A2 g3 and A3 g3. This would be handled by A1 when it sends its UTIL message
from A1 g3 to A3 g3. A1 does this by assigning −∞ to all value combinations
of A1 g3, A2 g3 and A3 g3 that violate the S3 capacity constraint, and the
normally computed valuations to the other combinations.

This ensures that throughout the whole propagation, all combinations of
operator assignments that violate at least one capacity constraint will be
assigned −∞ utility and will therefore be avoided. On termination, once DCOP
has been run for the main and each marginal problem the solution to the main
problem is adopted by the server nodes and the bank collects VCG payments
(defined in terms of the difference between main and marginal problem solutions
and reported in a distributed manner.)

Applying M-DPOP to this domain provides a protocol that is ex post Nash
faithful, meaning that if each client follows the M-DPOP algorithm then no
single client can benefit by deviating from the algorithm (including in reporting
untruthful information) whatever the private relations of the other agents.9

9In game-theoretic terms, the algorithm prescribes an ex post Nash equilibrium. The usual
dominant-strategy equilibrium property that is achieved in VCG mechanisms is weakened to



5 Scalability of M-DPOP

This section presents a theoretical complexity analysis of our algorithm
(Section 5.1), and an experimental evaluation on randomly generated problems
(Section 5.2).

5.1 Theoretical Complexity

At the core of M-DPOP([19]), we use the DPOP([15]) algorithm for constraint
optimization. Consequently, complexity-wise, M-DPOP can be seen as a
sequence of DPOP runs: one for the main economy, and then another one
for each marginal economy. M-DPOP has a mechanism for identifying parts of
the computation from the main economy that can be safely (manipulation-free)
reused in each marginal economy. Therefore, only in the worst case, when no
effort can be reused, M-DPOP requires n+1 times the effort spent by DPOP.
For more detail, please refer to Petcu et al. [19].

DPOP’s complexity can be specified along two dimensions. First, in terms
of number of messages, DPOP has the advantage that it requires only a linear
number of messages. Second, in terms of the size of the messages, DPOP
produces in the worst case messages whose size depends on the structure of the
problem graph. This structure is captured with a parameter called the induced
width of the graph, which depends on the clustering and the connectedness
of the graph. It is important to notice that the width of the graph does not
depend directly on the size of the graph, which means that certain types of
problems can be easily solved although they are very large. Specifically, large
but loose problems can be solved efficiently with DPOP. For more detail and
formal proofs, please refer to Petcu and Faltings [15].

5.2 Experimental Evaluation

It is well known that the VCG mechanism requires optimal solutions in
order to guarantee faithfulness. When applied to hard problems, this can
render such schemes unfeasible, because finding the optimal solutions may be
computationally impossible.

We present results from a simulation study to understand the scalability
of our algorithm for solving operator placement problems in a multi-user,
multi-server environment. We explore the relationship between the algorithm’s
computational and communication complexity and the number of agents and
servers in the system. All results were generated using the FRODO multiagent
simulation platform [13].

Users are divided into similarity classes so that users in different classes
have (mainly) non-overlapping interest in different operators. This models
a real overlay, where different classes of users issue non-overlapping queries.

ex post Nash: for example, truth-revelation is only a best-response if the other agents choose
to implement the rules of the VCG mechanism correctly (which they will in equilibrium.)



Agents Srvs Vars Constr Msgs MaxMsgSize TotalMsgSize
20 10 32 42 31 96896 403399
40 19 60 78 59 117248 386314
60 29 92 117 91 303104 458533
80 40 128 171 127 1255424 2295570
100 49 156 210 155 1128675 2966304
120 59 188 255 187 20067123 33897613

Table 1: M-DPOP experiments on operator placement problems.

In these experiments, the classes are generated and then around 10 random
users are added to a class. Classes are grouped in a hierarchy, according to
similarity criteria at the class level. Users from neighboring (similar) classes
can sometimes issue queries that cross class boundaries. Each user generates a
query consisting of a random subset of operators from this user’s similarity class
(high probability) or another similar class (low probability). Each query consists
of between one and five operators, which is consistent with previous work on
stream queries [20]. Servers with random capabilities are then generated: each
server is able to execute some random subset of the union of operators from a set
of neighboring similarity classes. For each operator, the user generates a random
possibility set, as described in Section 2. The possibility set for each operator
is limited, since each server is allowed to run only a subset of the available
operators. This models a real overlay where operators may require servers
with special capabilities, memory, operating systems, etc. The user assigns
random valuations for combinations of operator placements onto servers from
each operators’ possibility set. With all utility assignments made, the users
then run M-DPOP.

Table 1 shows how our algorithm scales up with the size of the problems. The
columns mean, in order: number of users in the network, number of servers,
number of variables in the resulting problem, number of constraints in the
resulting problem, number of messages required by DPOP to solve the problem,
the size of the largest UTIL message in DPOP, and the total size of the UTIL
messages generated in one solving process. The unit of the message size is
valuations; in DPOP terms, it is the number of valuations of a UTIL message.
The maximum message size is the size (in valuations) of the largest message,
and the total is the summed size (in valuations) of all messages.

This table shows an explosion in message size as the problem gets large.
This explosion is caused by two factors: the domain size of the variables, and
the width of the DFS structure used by the M-DPOP algorithm. The width is
adversely affected by the overlap of many queries on the same possible servers
that could execute them. In terms of our operator placement problem, one
can increase the scalability if one can make the similarity classes smaller and
more disjoint and the possibility sets more disjoint. We plan to investigate how



these conditions can be achieved in practice in order to achieve good scalability,
for instance by imposing constraints on the problem that will enforce sufficient
structure.

6 Discussion

6.1 Dynamic allocation problems

The streaming application problem is really a dynamic problem. For
dynamically evolving environments, Petcu and Faltings proposed in [17] a
self-stabilizing version of DPOP that is guaranteed to continuously follow the
evolution of a dynamic problem, always finding the optimal solution. An
extended version of this technique ([16]) also ensures that when a new solution
is derived upon a change, the cost of revising previously taken decisions is also
taken into account.

One can leverage these techniques for the purpose of optimizing streaming
applications as well. An important requirement is that the rate of change
in the environment is small enough to allow the algorithm to stabilize and
find the optimal solution. Provided this is the case, one can simply regard
this evolution as a sequence of M-DPOP executions, where computation can
be reused from DCOP(A, tk) to DCOP(A, tk+1), and from DCOP(−Ai, tk) to
DCOP(−Ai, tk+1). Optimal solutions are computed, and taxes are levied once
per time period. The ex post faithfulness properties are retained as long as
user utilities can be decomposed in a linear fashion across time periods (e.g.,
when query streams are interruptible and utility accrues for each period of time
a stream of a particular quality is received.) However, it will be important to
understand whether new, undesirable equilibria are introduced in moving to
the multi-period setting.

6.2 Approximations

M-DPOP is a complete algorithm (in the AI sense) and is guaranteed to
terminate with the optimal solution. However, this guarantee comes at the
cost of potentially large messages sizes. A practical systems solution must
avoid such worst-case behavior. In earlier work, Petcu and Faltings [14]
have shown that approximations of dramatically lower complexity still provide
results that can be expected to be quite close to the optimum. The challenge
in adopting approximate solutions within the framework of M-DPOP, and
thus mechanism design, is that approximations can cause the faithfulness and
incentives for truthfulness to unravel. The VCG payments continue to provide
“self-correcting” incentives even with approximations (see Nisan and Ronen
for example [12]), but progress in identifying useful equilibrium concepts in
this context remains an important open problem in computational mechanism
design. One way to retain faithfulness while introducing approximations is to
impose constraints on the space of solutions that will be considered, and in a



way that is fixed and independent of agent messages. Progress in this direction
remains future work.

7 Concluding Remarks

We have presented a distributed optimization approach to the optimal operator
placement problem. We have introduced a DCOP model for this problem, and
showed how one can apply M-DPOP to these problems. M-DPOP is a recently
introduced optimization algorithm that makes faithful execution an ex-post
Nash equilibrium. As M-DPOP is a derivative of DPOP, various techniques like
self-stabilization for dynamic systems (see [17]) or linear size messages (see [18])
can be applied.

Preliminary results from simulation demonstrate that it will be of critical
importance in large problem instance to identify, and then leverage, useful
problem structure. We believe, for example, that one can take advantage of the
special structure of the capacity constraints to develop more computationally
efficient techniques, like Kumar et al. [9]; we will investigate these avenues in
future work.

References

[1] D. Abadi, Y. Ahmad, H. Balakrishnan, et al. The Design of the Borealis Stream
Processing Engine. Technical Report CS-04-08, Brown University, July 2004.

[2] Y. Ahmad and U. Çetintemel. Network-Aware Query Processing for Stream-
based Applications. In VLDB, Aug. 2004.

[3] M. Balazinska, H. Balakrishnan, and M. Stonebraker. Contract-Based Load
Management in Federated Distributed Systems. In Proc. of NSDI’04, San
Francisco, CA, Mar. 2004.

[4] L. Chen, K. Reddy, and G. Agrawal. GATES: A Grid-Based Middleware for
Processing Distributed Data Streams. In Proc. of HPDC, June 2004.

[5] R. Dechter. Constraint Processing. Morgan Kaufmann, 2003.

[6] E. Ephrati and J. Rosenschein. The Clarke tax as a consensus mechanism
among automated agents. In Proceedings of the National Conference on Artificial
Intelligence, AAAI-91, pages 173–178, Anaheim, CA, July 1991.

[7] P. B. Gibbons, B. Karp, Y. Ke, S. Nath, and S. Seshan. IrisNet: An Architecture
for a World-Wide Sensor Web. IEEE Pervasive Computing, 2(4), Oct. 2003.

[8] R. Huebsch, J. M. Hellerstein, N. Lanham, et al. Querying the Internet with
PIER. In VLDB, Sept. 2003.

[9] A. Kumar, A. Petcu, and B. Faltings. H-DPOP: Using hard constraints to prune
the search space. In IJCAI’07 - Distributed Constraint Reasoning workshop,
DCR’07, Hyderabad, India, Jan 2007.

[10] K. Lai and M. Baker. Measuring bandwidth. In INFOCOM, pages 235–245,
1999.



[11] P. J. Modi, W.-M. Shen, M. Tambe, and M. Yokoo. ADOPT: Asynchronous
distributed constraint optimization with quality guarantees. AI Journal, 161:149–
180, 2005.

[12] N. Nisan and A. Ronen. Computationally feasible VCG mechanisms. In EC ’00:
Proceedings of the 2nd ACM conference on Electronic commerce, pages 242–252,
New York, NY, USA, 2000. ACM Press.

[13] A. Petcu. FRODO: A FRamework for Open/Distributed constraint
Optimization. Technical Report No. 2006/001, Swiss Federal Institute of
Technology (EPFL), Lausanne, Switzerland, 2006. http://liawww.epfl.ch/frodo/.

[14] A. Petcu and B. Faltings. Approximations in distributed optimization. In
Proceedings of the Eleventh International Conference on Principles and Practice
of Constraint Programming (CP’05), Sitges, Spain, October 2005.

[15] A. Petcu and B. Faltings. DPOP: A scalable method for multiagent constraint
optimization. In Proceedings of the 19th International Joint Conference on
Artificial Intelligence, IJCAI-05, Edinburgh, Scotland, Aug 2005.

[16] A. Petcu and B. Faltings. Optimal solution stability in continuous time
optimization. In IJCAI05 - Distributed Constraint Reasoning workshop, DCR05,
Edinburgh, Scotland, August 2005.

[17] A. Petcu and B. Faltings. S-DPOP: Superstabilizing, fault-containing multiagent
combinatorial optimization. In Proceedings of the National Conference on
Artificial Intelligence, AAAI-05, Pittsburgh, USA, July 2005.

[18] A. Petcu and B. Faltings. O-DPOP: An algorithm for Open/Distributed
Constraint Optimization. In Proceedings of the National Conference on Artificial
Intelligence, AAAI-06, Boston, USA, July 2006.

[19] A. Petcu, B. Faltings, and D. Parkes. M-DPOP: Faithful Distributed
Implementation of Efficient Social Choice Problems. In Proceedings of the
International Joint Conference on Autonomous Agents and Multi Agent Systems
(AAMAS-06), Hakodate, Japan, May 2006.

[20] P. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos, M. Welsh, and M. Seltzer.
Network-Aware Operator Placement for Stream-Processing Systems. In ICDE,
April 2006.

[21] J. Shneidman and D. C. Parkes. Specification faithfulness in networks with
rational nodes. In Proc. of the 23rd ACM Symposium on Principles of Distributed
Computing (PODC’04), St. John’s, Canada, 2004.

[22] B. Wong, A. Slivkins, and E. G. Sirer. Meridian: a lightweight network location
service without virtual coordinates. In SIGCOMM, pages 85–96, New York, NY,
USA, 2005. ACM Press.

[23] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. The distributed constraint
satisfaction problem - formalization and algorithms. IEEE Transactions on
Knowledge and Data Engineering, 10(5):673–685, 1998.


