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Abstract

We compare the manipulability of different choice rules by considering
the number of manipulable profiles. We establish the minimal number of
such profiles for tops-only, anonymous, and surjective choice rules, and
show that this number is attained by unanimity rules with status quo.
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1 Introduction

In choosing new parliamentary representatives most democracies apply voting
procedures that select among the top-ranked candidates reported by the vot-
ers. It is well known that such procedures are vulnerable to manipulation. For
example, if there is an electoral threshold, then votes for a small party might
be reconsidered and cast on a (second best) larger party which with high prob-
ability will meet the threshold. Also in a district dependent procedure, a voter
might opt for the second best if his best candidate has only small support,
and in that way prevent a third (worse) candidate to be elected as district
representative. In this paper we study voting procedures with respect to this
kind of manipulability. Using a natural measure of manipulation, we show that
unanimity rules with status quo are the least vulnerable among all reasonable
procedures.

We consider a framework in which voting procedures are modelled as choice
rules assigning alternatives (from a set of at least three alternatives) to pro-
files of individual preferences. These choice rules are assumed to be tops-only,
meaning that they only depend on the top-ranked alternatives of the voters. Ad-
ditionally, two standard and natural conditions are imposed: anonymity and
unanimity. Anonymity is an egalitarian principle, saying that the names of the
voters do not matter. Unanimity is a minimal sovereignty principle: it means
that if all voters have the same top candidate, then this candidate is elected.
To this setting, however, the well-known result of Gibbard [7] and Satterth-
waite [21] applies, and therefore any choice rule satisfying the three mentioned
conditions is vulnerable to manipulation. This means that, for any such rule,
there exist a profile and a voter who, by changing his preference, can induce
a new profile resulting in an outcome which is better for him. This kind of
manipulation may be undesirable for several reasons. First, the manipulating
voter may benefit on the expense of others. Second, in order to obtain a good



outcome, the right input should be given to the voting mechanism. Finally,
the impossibility of manipulation simplifies the decision process for the voters
because they only have to know their own preferences.

There are several strands of research dealing with this manipulability is-
sue. One concerns relaxations of the conditions on the rules at hand. Often,
stronger or similar impossibility results are found. See e.g. Pattanaik [19], [20]
and Ehlers et al. [5]. A second strand of literature is based on a stochastic
approach, again often resulting in similar impossibilities. See, e.g., Gibbard [8],
[9] and Dutta [4]. A third strand imposes preference domain restrictions, often
to single-peaked preferences. If the space of alternatives is one-dimensional,
preferences are single-peaked, and the number of voters is odd, then a Con-
dorcet winner exists, which is then a non-manipulable choice. See, e.g., Black
[2] or Moulin [18]. If the space of alternatives is more dimensional, then a Con-
dorcet winner usually fails to exist. Depending on the domain of admissible
preferences, non-manipulable choice rules may or may not exist. See, e.g., Kim
and Roush [13], Border and Jordan [3], and Zhou [22]. (Of course, the given
references are far from constituting a complete list.)

In this paper, we take a different approach. Since all choice rules are ma-
nipulable, a natural question is which choice rules are performing best in this
respect, i.e., are the least manipulable. To answer this question we need a mea-
sure of manipulability. An intuitive measure is to count the number of profiles
at which a given choice rule is manipulable: the larger this number the more
manipulable the choice rule is. This measure was introduced by Kelly [10]. He
found the minimal number of manipulable profiles for choice rules which are
unanimous and non-dictatorial in the case of two agents1 and three alterna-
tives. See also Kelly [11], [12]. In Fristrup and Keiding [6] this minimal number
was found for an arbitrary number of alternatives and two agents. Maus et
al. [14] obtain a general result for arbitrary numbers of agents and alterna-
tives: almost dictatorial rules are the least vulnerable to manipulation among
all non-dictatorial and unanimous rules. In Maus et al. [15] the minimal degree
of manipulation for surjective and anonymous choice rules is determined. In
Maus et al. [16] this degree is found for unanimous and anonymous choice rules
for the case of three alternatives and an arbitrary number of agents. By enu-
meration and simulation techniques, Aleskerov and Kurbanov [1] determine the
minimal number of manipulable profiles for twenty six well-known choice rules
such as Borda and plurality. They also discuss other measures for manipulation.

The present paper is different since we confine ourselves to tops-only choice
rules—often called voting rules. We show that among all unanimous and anony-
mous voting rules, the unanimity rule with status quo is doing best with respect
to manipulability. This rule chooses a given fixed alternative (the status quo)
unless all voters have the same best alternative, possibly different from the sta-
tus quo. We derive this result under the assumption that the number of agents
exceeds the number of alternatives. The fraction of manipulable profiles for

1In general we use the term “agent” rather than “voter”.



this rule turns out to be of order n · m2−n, where n is the number of agents
and m the number of alternatives. So this rule is among the few choice rules
which are not highly manipulable in the terminology of Kelly [12]. Clearly, this
choice rule is only occasionally used, for instance in the Council of the Euro-
pean Union, and its rigidity makes it hardly applicable in elections. Therefore,
the result presented here is an exploring step setting an absolute lower bound
on the measure of manipulation in voting rules, rather than a recommendation
to use unanimity with status quo rules. Moreover, we do not know if it holds
true if manipulation is measured differently (see Aleskerov and Kurbanov [1]).
On the other hand, this lower bound makes it possible to compare the level of
manipulation of a given rule to what is achievable in this respect.

Our proof of this result is based on combinatorial arguments which have
no bite if the number of agents does not exceed the number of alternatives.
For the latter case some partial results can be found in [17] and in the final
section of this paper. It turns out that for two agents unanimity rules with
status quo are not necessarily minimally manipulable. Also for two agents, we
obtain a characterization of all minimally manipulable rules under the stronger
condition of Pareto optimality instead of unanimity.

The paper is organized as follows. Section 2 contains preliminaries and
introduces unanimity rules with status quo. Section 3 presents the main result,
and Section 4 concludes.

2 Unanimity rules with status quo

Throughout we consider a finite set A of m alternatives and a set N =
{1, 2, ..., n} of agents. Unless stated otherwise we assume n > 2. The agents
have linear preferences over the alternatives, i.e. (strongly) complete, anti-
symmetric and transitive relations on A. Let L(A) denote the set of all these
preferences. A choice rule is a function f from L(A)N to A, where L(A)N de-
notes the set of profiles p of linear orderings. At a profile p the preference of
agent i ∈ N is denoted by p(i). Let a, b and c be three alternatives in A. Then
...a...b... = p(i) means that a is preferred to b at p(i) and c... = p(i) means
that c is best at p(i); in that case we also write top(p(i)) = c. For a profile p
in L(A)N the function top(p) in AN is defined by top(p)(i) = top(p(i)) for all
agents i ∈ N . Also, topset(p) = {top(p(i)) : i ∈ N} is the set of alternatives
that are at least once at the top of an agent’s preference in p. For a profile
p ∈ L(A)N and an alternative a in A let N(a, p) = {i ∈ N : top(p(i)) = a} and
n(a, p) = |N(a, p)|, where |S| denotes the cardinality of the set S.

A choice rule f is called anonymous if it is symmetric in its arguments. It
is called surjective if (as usual) f(L(A)N ) = A. Here, for all V ⊆ L(A)N , the
image of V under f is denoted by f(V ). A slightly stronger condition than
surjectivity is unanimity : this means that for profiles p, if topset(p) = {a} for
some alternative a, then f(p) = a. So, if all agents order alternative a best,
then it is chosen. A choice rule f is called tops-only if f(p) = f(q) for all profiles



p and q with top(p) = top(q). So the outcome of a tops-only choice rule at a
profile is completely determined by the best alternatives of the agents: such a
rule is usually called a voting rule.

For an agent i ∈ N , profiles p and q are i-deviations if p(j) = q(j) for all
j 6= i. A choice rule f is manipulable at profile p by agent i via profile q if
p and q are i-deviations, f(p) 6= f(q) and ...f(q)...f(p)... = p(i). In such a
case agent i can benefit at profile p by reporting q(i) in stead of p(i). Let Mf

denote the set of all profiles at which choice rule f is manipulable. Then |Mf |
measures the manipulability of choice rule f . If |Mf | is equal to zero, then
at every profile the choice rule is not manipulable, in which case it is said to
be strategy-proof. If there are at least three alternatives, then only dictatorial
rules are strategy-proof and surjective: this is the well-known result of Gibbard
[7] and Satterthwaite [21]. Let F denote the class of all anonymous, surjec-
tive and tops-only choice rules. Then the Gibbard-Satterthwaite result implies
min{|Mf | : f ∈ F} > 0 since dictatorial rules are tops-only and surjective but
not anonymous.

For an alternative a we define the unanimity rule with status quo a, denoted
by ua, as follows. Let p be a profile. Then ua(p) := x if {x} = topset(p) for some
x ∈ A, and ua(p) = a in all other cases. So an alternative x different from a is
chosen only if all agents consider it best. The main result of this paper is that
unanimity rules with status quo are the minimally manipulable rules among all
anonymous, surjective, and tops-only rules, provided n > m ≥ 3. The number
of manipulable profiles |Mua

| can be computed as follows. Consider a profile
p ∈ Mua

. Then for some agent i and some i-deviation q, ua(p) 6= ua(q) and
...ua(q)...ua(p)... = p(i). Clearly ua(p) = a and ua(q) 6= a. So, ua(q)... = p(j)
for all agents j ∈ N \ {i}. As ua(p) 6= ua(q) it follows that top(p(i)) 6= ua(q).
Since there are m!

2 preferences p(i) with ua(q) ranked above a but (m − 1)! of
these have ua(q) on top, it follows that there are m!

2 − (m− 1)! preferences p(i)
which result in a manipulable profile. Since we can choose i from a set of n
agents, ua(q) 6= a from m − 1 alternatives, and the other alternatives can be
ordered by the other agents in ((m− 1)!)n−1 ways, we find altogether that

|Mua
| = n · (m− 1) · (m!

2
− (m− 1)!) · ((m− 1)!)(n−1)

=
1
2
n(m− 1)(m− 2)((m− 1)!)n. (1)

We end this section with a combinatorial observation which is used extensively
in the following two sections.

Remark 1 Let m > 3 and let p be a profile with topset(p) = {x1, x2, ..., xk}.
Let the anonymous and tops-only choice rule f be manipulable at profile p by
agent i ∈ N(x1, p) via profile q. Then, obviously, f(p) 6= x1. There are

n!
n(x1, p)! · n(x2, p)! · . . . · n(xk, p)!

((m− 1)!)n (2)



profiles r which by anonymity and tops-onliness yield the same outcome as p
under f . As f(p) 6= x1, at most

n!
n(x1, p)! · n(x2, p)! · . . . · n(xk, p)!

((m− 1)!)n−n(x1,p) ·
(

(m− 1)!
2

)n(x1,p)

(3)

of these profiles are such that all agents in N(x1, p) prefer f(p) to f(q), and
therefore are not manipulable by such an agent at p via q. Subtracting (3) from
(2), we obtain

|Mf | >
n!

n(x1, p)! · n(x2, p)! · . . . · n(xk, p)!
((m− 1)!)n(1−

(
1
2

)n(x1,p)

). (4)

3 Minimal manipulation with three or more al-
ternatives

In this section, we prove the following theorem, which is the main result of this
paper.

Theorem 1 Let n > m > 3. Let f ∈ F . Then |Mf | 6 |Mg| for all g ∈ F if
and only if f is a unanimity rule with status quo.

So the theorem says that among all surjective, anonymous and tops-only choice
rules only unanimity rules with status quo are minimally manipulable, provided
that n > m > 3. In the concluding Section 4 we briefly discuss the case of two
agents.

Let f ∈ F such that |Mf | 6 |Mua |. For 1 6 k 6 m let Bk = {p ∈
L(A)N : |topset(p)| > k}. So Bk is the set of profiles at which there are at least
k different top alternatives. The proof of Theorem 1 is based on a series of
lemmas about f . The first lemma says that non-manipulability of f on profiles
with at least three top elements implies that f is constant on such profiles.

Lemma 1 Let n > m > 3 and let k > 3. Suppose Bk ∩Mf = ∅. Then there is
an alternative a such that f(Bk) = {a}.

Proof. Let p, q ∈ Bk and i ∈ N such that p and q are i-deviations. It is
sufficient to prove that f(p) = f(q). To the contrary assume that f(p) = a 6=
b = f(q). As neither p nor q are in Mf it follows that ...f(p)...f(q)... = p(i)
and ...f(q)...f(p)... = q(i).

Suppose top(p(i)) = c 6= f(p). Then for an i-deviation r of p such that
r(i) = c...f(q)...f(p)... we would have, by tops-onliness: f(r) = f(p), hence
i could manipulate at r via q. Since r ∈ Bk, this contradicts Bk ∩ Mf = ∅.
Hence top(p(i)) = f(p) = a. Similarly it follows that top(q(i)) = f(q) = b. So,
n(a, p) = n(a, q) + 1 and n(b, p) + 1 = n(b, q). Since p and q are i-deviations
in Bk and k > 3, there is an alternative c ∈ A \ {a, b} and an individual



j ∈ N(c, p) ∩N(c, q). Consider profiles v and w such that v is a j-deviation of
p with b... = v(j) and w satisfies v(i) = w(j), v(j) = w(i), and v(l) = w(l) for
all l 6= i, j. Note that q and w are j-deviations. Suppose f(v) 6= a. Then by
tops-onliness we may assume without loss of generality that ...f(v)...a... = p(j).
But then f is manipulable at p by j via v, a contradiction since p ∈ Bk and
therefore p /∈ Mf . So f(v) = a. Then, by anonymity, f(w) = a. Because of
tops-onliness we may assume without loss of generality that ...a...b... = q(j).
This makes f manipulable at q by j via w, which yields a contradiction since
q ∈ Bk and therefore q /∈ Mf . Hence, f(p) = f(q). �

In the next three lemmas we assume n > m > 4. We first show that B4 is
disjoint from Mf ; then that f is constant on B3; finally that f is constant on
B2.

Lemma 2 Let n > m > 4. Then B4 ∩Mf = ∅.

Proof. Let p ∈ B4 and suppose that f is manipulable at p. Let topset(p) =
{x1, x2, . . . , xk}, where k > 4. By (4) there is an alternative x1 such that

|Mf | >
n!

n(x1, p)! · n(x2, p)! · . . . · n(xk, p)!
((m− 1)!)n(1−

(
1
2

)n(x1,p)

) . (5)

Note that for arbitrary natural numbers c and d we have c! d! 6 (c + d − 1)! .
Repeated application of this inequality yields

n(x1, p)! · n(x2, p)! · . . . · n(xk, p)! 6

 k∑
j=1

n(xj , p)− (k − 1)

!

= (n− (k − 1))!
6 (n− 3)!

Here, the last inequality follows since k > 4. Observing moreover that 1 −(
1
2

)n(x1,p)
> 1

2 , (5) implies

|Mf | >
n!

(n− 3)!
· 1
2
· ((m− 1)!)n > |Mua | ,

where the final inequality follows by (1) and n > m. This is a contradiction,
which completes the proof. �

Lemma 3 Let n > m > 4. There is an alternative a such that f(B3) = {a}.

Proof. Lemma 2 implies that B4 ∩Mf = ∅. So Lemma 1 implies that there is
an alternative a ∈ A such that f(B4) = {a}. Let p ∈ B3 \ B4. It is sufficient
to prove that f(p) = a. To the contrary suppose f(p) 6= a. Since p ∈ B3 \ B4

it follows that |topset(p)| = 3, say topset(p) = {x1, x2, x3}.



First we show that A ⊆ {x1, x2, x3, a}. To the contrary suppose that b ∈
A \ {x1, x2, x3, a}. Since n > m > 4 we may without loss of generality assume
that n(x1, p) > 2. Let i ∈ N(x1, p) and consider an i-deviation q from p such
that b... = q(i) and ...f(p)...a... = q(i). Since q ∈ B4, f(q) = a. As f is
manipulable at profile q by i via p we have a contradiction with Lemma 2.
Hence, A ⊆ {x1, x2, x3, a}. In particular, m = 4 and a /∈ {x1, x2, x3}. We have
also proved that f(r) = a for any profile r ∈ B3 \B4 such that a ∈ topset(r).

Since f(p) 6= a, by tops-onliness we may assume without loss of generality
that f(p) = x1 and ...a...f(p)... = p(i) for some i ∈ N(x2, p)∪N(x3, p). Consider
an i-deviation q of p with a... = q(i). We claim that f(q) = a. Indeed, if q ∈ B4

then this follows from f(B4) = {a}, and if q ∈ B3 \ B4 this follows from
the observation in the last sentence of the previous paragraph. But now, f is
manipulable at p by i via q. Thus, by applying Remark 1 to p for an agent i in
N(x2, p) and also for an agent i in N(x3, p) we obtain

|Mf | >
n!

n(x1, p)!n(x2, p)!n(x3, p)!
· ((m− 1)!)n · (1−

(
1
2

)n(x2,p)

)

+
n!

n(x1, p)!n(x2, p)!n(x3, p)!
· ((m− 1)!)n · (1−

(
1
2

)n(x3,p)

)

>
n!

n(x1, p)!n(x2, p)!n(x3, p)!
· ((m− 1)!)n.

Hence
|Mf |
|Mua

|
>

n!
(n− 2)!

· 2
n(m− 1)(m− 2)

=
(n− 1)

3
> 1,

where the equality follows since m = 4. This is a contradiction, so f(p) = a
and the proof is complete. �

Lemma 4 Let n > m > 4 and let f(B3) = {a} for some a ∈ A. Then
f(B2) = {a}.

Proof. Let p ∈ B2 \ B3. It is sufficient to prove that f(p) = a. Let x and
y be two alternatives and S and T be two non-empty subsets of N , such that
S = N(x, p), T = N(y, p) and S ∪ T = N . Let s = |S| and t = |T |, such that
s > t. Suppose f(p) 6= a.

First suppose that t > 2. Consider profiles q ∈ B3 which are i-deviations
of p for some i ∈ N such that z...f(p)...a... = q(i) for some alternative z ∈
A \ {x, y, a}. Because of tops-onliness we may assume that for some j ∈ N we
have ...a...f(p)... = p(j), where j ∈ S if f(p) 6= x and j ∈ T if f(p) 6= y. So,
since f(q) = a it follows that f is manipulable both at p by j via q and at q by
i via p. So, by applying Remark 1 to profiles q and p we have

|Mf | > (m− 3) · n!
(s− 1)!t!

· ((m− 1)!)n · (1−
(

1
2

)1

)



+(m− 3) · n!
s!(t− 1)!

· ((m− 1)!)n · (1−
(

1
2

)1

)

+
n!
s!t!

· ((m− 1)!)n · (1−
(

1
2

)t

)

= (m− 3) ·
(

(
n!

(s− 1)!t!
+

n!
s!(t− 1)!

) · 1
2

+
n!
s!t!

· (1−
(

1
2

)t

)

)
· ((m− 1)!)n

= (m− 3) ·

(
n · n!
s!t!

· 1
2

+
n!
s!t!

· (1−
(

1
2

)t

)

)
· ((m− 1)!)n. (6)

Here, the first two terms after the inequality sign relate to manipulations at
profiles q via p : there are m− 3 possible choices for z, in the first term i ∈ S,
and in the second term i ∈ T ; and the last term relates to manipulations at p
via profiles q. From (6), as t > 2,

|Mf | > (m− 3) ·
(

n · n!
2 · s!t!

+
n!

2 · s!t!

)
· ((m− 1)!)n

and
|Mf |
|Mua

|
>

(m− 3)(n + 1) · n!
2 · s!t!

· 2
n(m− 1)(m− 2)

>
(m− 3)(n + 1)(n− 1)!

2!(n− 2)!(m− 1)(m− 2)

>
(m− 3)(n + 1)(n− 1)

2(m− 1)(m− 2)

>
(m− 3)(m + 2)m
2(m− 1)(m− 2)

> 1,

where the last inequality follows since m ≥ 4. This contradicts our assumption
|Mf | 6 |Mua

|. Hence, f(p) = a if t > 2.
Now let t = 1. Consider i-deviations q for i ∈ S such z... = q(i) for

z ∈ A \ {a, x} and ...f(p)...a... = q(i). Because q ∈ B3 in case z 6= y or
n(z, q) = 2 in case z = y, we have f(q) = a and therefore that f is manipulable
at q. Hence, by applying Remark 1 to profiles q for cases where z 6= y and for
cases where z = y we have that

|Mf | > (m− 3) · n!
(n− 2)!

· (1− (
1
2
)1) · ((m− 1)!)n

+
n!

(n− 2)!2
· (1− (

1
2
)2) · ((m− 1)!)n

= ((m− 3)
1
2

+
3
8
) · n!

(n− 2)!
· ((m− 1)!)n.



Hence

|Mf |
|Mua |

>
((m− 3) 1

2 + 3
8 ) · n!

(n−2)!

1
2 · n · (m− 1) · (m− 2)

=
(m− 3)(n− 1) + 3

4 (n− 1)
(m− 1)(m− 2)

>
m(m− 2 1

4 )
(m− 1)(m− 2)

> 1,

where the last inequality follows since m > 4. This contradicts our assumption
|Mf | 6 |Mua

| and therefore completes the proof. �

The next two lemmas deal with the case n > m = 3.

Lemma 5 Let n > m = 3. Then B3 ∩Mf = ∅.

Proof. Let p ∈ B3 and suppose that f were manipulable at p by some agent,
say i in N(x1, p). Remark 1 then implies that

|Mf | >
n!

n(x1, p)! · n(x2, p)!n(x3, p)!
((m− 1)!)n(1−

(
1
2

)n(x1,p)

).

So, |Mf | > 1
2 · n(n − 1) · ((m − 1)!)n. As n > 4 it follows that |Mf | > n((m −

1)!)n = |Mua
|. This contradiction completes the proof. �

Remark 2 By Lemmas 1 and 5 there is an a ∈ A such that f(B3) = {a}.

Lemma 6 Let a be an alternative such that f(B3) = {a}. Then f(B2) = {a}.

Proof. Let p be a profile in B2 \B3. It is sufficient to prove that f(p) = a. Let
x and y be two alternatives and S and T be two non-empty subsets of N , such
that S = N(x, p), T = N(y, p) and S ∪ T = N . Let s = |S| and t = |T |, and
assume s > t.

First we show that, if a ∈ {x, y}, then f(p) = a. So assume that a ∈ {x, y}.
Suppose f(p) 6= a. Then there is a z ∈ A \ {x, y}, an i ∈ S, and an i-deviation
q of p such that z... = q(i) and ...f(p)...a... = q(i). Since q ∈ B3, by assumption
f(q) = a and therefore f is manipulable at q by i via p. This contradicts Lemma
5. Hence, for all profiles r ∈ B2 with a ∈ topset(p), f(r) = a.

Next suppose a /∈ {x, y}. First consider the case t > 2. Suppose f(p) 6= a.
Let z ∈ {x, y}\{f(p)}. Since f is tops-only we may assume that z... = p(i) and
...a...f(p)... = p(i) for some i ∈ N(z, p). Let v be an i-deviation of p such that
a... = v(i). As topset(v) = {x, y, a}, Lemma 5 implies f(v) = a. Hence, f is



manipulable at p by i via v. Remark 1 implies |Mf | > n!
s!t! ((m−1)!)n(1−

(
1
2

)t).
So

|Mf |
|Mua

|
>

n!
2(n− 2)!

· 3
4
· 1
n

>
3(n− 1)

8
> 1,

where the last inequality follows since n > 4. This is a contradiction and
therefore f(p) = a.

Finally, consider the case t = 1 (and still a /∈ {x, y}). Suppose f(p) 6= a.
Consider, for i ∈ S, an i-deviation w of p with y... = w(i) and ...f(p)...a... =
w(i). By the previous paragraph f(w) = a and therefore f is manipulable at
w by i via p. By Remark 1 applied to the profile w it follows that |Mf | >

n!
(n−2)!2! ((m − 1)!)n(1 −

(
1
2

)2), and similarly as above this implies that |Mf | >

|Mua
|. This is a contradiction and therefore f(B2) = {a}. �

We are now sufficiently equipped to prove Theorem 1.

Proof of Theorem 1. Assume that |Mf | 6 |Mg| for all g ∈ F . It is sufficient
to show that f is a unanimity rule with status quo. By Lemmas 3 and 4, and
Remark 2 and Lemma 6 there is an alternative a ∈ A such that f(B2) = {a}.
For every x ∈ A let px denote a profile such that topset(px) = {x}. By tops-
onliness it is sufficient to prove that f(px) = x, for then f = ua, the unanimity
rule with status quo a. Let

A1 = {x ∈ A \ {a} : f(px) = x},
A2 = {x ∈ A \ {a} : f(px) = y for some y /∈ {x, a}},
A3 = {x ∈ A \ {a} : f(px) = a}, and
A4 = {x ∈ A \ {a} : f(pa) = x}.

Let mi = |Ai| for i ∈ {1, 2, 3, 4}. Then m4 ∈ {0, 1} and, by f(B2) = {a} and
surjectivity, m3 ∈ {0, 1} and m3 = 1 ⇒ m4 = 1. Hence, m4 > m3 and since
m1 + m2 + m3 = m− 1, we have

m1 + m2 + m4 > m− 1. (7)

By a similar argument as the one resulting in (1), there are exactly 1
2n(m −

2) ((m− 1)!)n manipulable profiles for each x ∈ A1, hence in total

m1 ·
1
2
n(m− 2) ((m− 1)!)n

. (8)

Now consider x ∈ A2. The total number of profiles of the format px is equal to
((m− 1)!)n. These profiles are manipulable unless f(px) is ranked above a for
each agent (since f(B2) = {a}). This results in n[((m− 1)!)n−((m− 1)!/2)n] =



n[((m− 1)!)n · (1− (1/2)n)] manipulable profiles. Furthermore, if q is an
i-deviation of px such that ...f(px)...a... = q(i) and x... 6= q(i), then f
is manipulable at q by i via px since f(q) = a. This results in another
n · (1/2) · (m!− (m− 1)!) · ((m− 1)!)n−1 manipulable profiles, namely all such
deviations with x not on top for exactly one agent and f(px) ranked above a
for the same agent. In total, this adds

m2 · n
(

(1−
(

1
2

)n

) +
1
2
(m− 1)

)
((m− 1)!)n (9)

manipulable profiles.
Next, consider x ∈ A4, hence x = fp(a) and x 6= a. Consider an i-deviation
q of pa such that ...a...f(pa)... = q(i) and ...a 6= q(i). Then, since f(q) = a,
f is manipulable at pa via q. This yields n ((m− 1)!)n manipulable profiles,
namely all profiles of the format pa. On the other hand, for an i-deviation q
of pa with ...f(pa)...a... = q(i) we have that f is manipulable by i at q via pa.
Since there are m!/2 preferences where f(pa) is ranked above a, this results in
another (m!/2) · n · ((m− 1)!)n−1 = 1

2nm ((m− 1)!)n manipulable profiles. So
to the total this adds

m4 · n(
1
2
m + 1) ((m− 1)!)n (10)

manipulable profiles. Combining (1) with (8)–(10), we obtain

1
2n(m− 1)(m− 2) ((m− 1)!)n

> |Mf |

> m1 ·
1
2
n(m− 2) ((m− 1)!)n

+m2 · n
(

(1− (
1
2
)n) +

1
2
(m− 1)

)
((m− 1)!)n

+m4 · n
(

1
2
m + 1

)
((m− 1)!)n

. (11)

If m2 6= 0 or m4 6= 0 then the right-hand side of (11) is strictly larger than

1
2
n ((m− 1)!)n · [m1(m− 2) + m2(m− 2) + m4(m− 2)]

>
1
2
n(m− 1)(m− 2) ((m− 1)!)n

,

where we use (7) for the last inequality. This contradicts (11), hence m2 =
m4 = m3 = 0 and m1 = m− 1. Thus, f(px) = x for all x ∈ A. This completes
the proof. �

Since, under the conditions of Theorem 1, unanimity rules with status quo
are the minimally manipulable ones among all rules in F , they are also the



minimally manipulable ones among the unanimous rules in F . Therefore, the
following consequence of Theorem 1 is immediate.

Corollary 1 Let n > m > 3. Let f ∈ F . Then |Mf | 6 |Mg| for all unanimous
g ∈ F if and only if f is a unanimity rule with status quo.

4 Conclusion

In Theorem 1 we have characterized all minimally manipulable tops-only, sur-
jective and anonymous social choice rules—hence all minimally manipulable
surjective and anonymous voting rules—under the assumption that there are
more agents (voters) than alternatives (candidates). Although this covers many
cases of interest, it is also worthwhile to investigate the case where the number
of agents is not larger than the number of alternatives. The combinatorial ar-
guments used to derive the results in the preceding sections can no longer be
used since they depend on the assumption n > m.

In Maus et al. [17] some results for the case of two agents are established. It
turns out, indeed, that unanimity rules with status quo are no longer per se the
minimally manipulable ones among all tops-only, surjective (or even unanimous)
and anonymous social choice rules. We do not have a complete characterization
for this case. We do, however, have a complete characterization (for n = 2) if
we strengthen unanimity to Pareto optimality. Call, as usual, an alternative
Pareto dominated in a profile of preferences if there is another alternative that
is ranked higher by all agents. A choice rule is Pareto optimal if it never picks
a Pareto dominated alternative.

Let R = a1a2...am be a linear ordering of the alternatives. Let the choice
rule fR : L(A){1,2} → A assign to every profile p the element of topset(p) which
is ranked higher under R, i.e., the element with the lower number. Obviously,
fR is tops-only, anonymous, and Pareto optimal. See [17] for a proof of the
following theorem.

Theorem 2 Let n = 2 and m > 3. Let f be a Pareto optimal, tops-only and
anonymous choice rule. Then |Mf | 6 |Mg| for all Pareto-optimal, tops-only
and anonymous choice rules g if and only if f = fR for some linear ordering R
of A.

Since unanimity rules with status quo are not Pareto optimal, Theorem 1 en-
tails that Pareto optimality is not implied by—and in fact inconsistent with—
minimal manipulability among all surjective, anonymous and tops-only rules for
n > m > 3. Since Pareto optimality is still a normatively weak requirement, it is
worthwhile to investigate minimal manipulability under this stronger condition
for the case of more than two agents as well. This is left to future research.
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