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Abstract

Voting systems that are used in practice, such as plurality with runoff or proportional systems with
thresholds, often fail to capture the complexity of voter preferences. This lack of expressiveness in
preference formats contributes to well-documented flaws, including the spoiler effect where similar
candidates split the vote, and wasted votes for parties falling below electoral thresholds, pushing
voters to vote strategically and potentially leading to the selection of undesirable outcomes.

This thesis argues that expressive preference formats (such as approval ballots, rankings, and
weak orders) can significantly mitigate these issues and potentially improve the democratic process,
and that they additionally provide insightful data for new types of descriptive analyses of the
political landscape.

Part I concentrates on voting problems. It proposes enhancements for three widely used voting
systems: improving plurality with runoff by using approval ballots in the first round; extending
instant runoff voting to handle voter indifference using weak orders; and reducing the amount of
wasted votes in proportional systems with thresholds by allowing ranked preferences. Part II shifts
focus to using expressive preferences as a tool for understanding the political landscape. This
includes developing methods to derive candidate orderings on an ideological axis using approval
patterns, and techniques to identify pairs of candidates that generate significant societal conflict
by analyzing ordinal preference data.

For each problem, we introduce new methods based on expressive ballot formats like approval
ballots, rankings, or weak orders. We then evaluate these methods both theoretically, through ax-
iomatic analysis, and empirically, via simulations on synthetic data as well as real-world preference
datasets, including data collected during actual high-stakes political elections.
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Résumé

Les systèmes de vote utilisés en pratique, tels que le scrutin uninominal majoritaire à deux tours ou
les systèmes proportionnels avec seuils électoraux, ne parviennent souvent pas à saisir la complexité
des préférences des électeurs. Ce manque d’expressivité des bulletins de vote est à l’origine de
défauts étudiés et documentés, comme la division des voix entre candidats similaires, et la non
prise en compte des votes pour les partis n’atteignant pas les seuils électoraux, incitant les électeurs
au vote stratégique (dit “vote utile”) et conduisant potentiellement à des résultats indésirables.

Cette thèse soutient que des formats de préférences expressifs (tels que les bulletins d’approbation
et les classements, avec ou sans égalités) peuvent atténuer significativement ces problèmes et po-
tentiellement améliorer le processus démocratique, et qu’ils fournissent en outre des données per-
tinentes pour mener de nouvelles formes d’analyses descriptives du paysage politique.

La première partie se concentre sur les problèmes liés aux systèmes de vote. Elle propose des
améliorations pour trois systèmes de vote largement utilisés en pratique : améliorer le scrutin
uninominal majoritaire à deux tours en utilisant des bulletins d’approbation au premier tour ;
étendre le vote alternatif (Instant Runoff Voting) aux classements avec égalités pour gérer les
indifférences ; et réduire le nombre de votes non pris en compte dans les systèmes proportion-
nels avec seuils en autorisant les classements de préférences. La deuxième partie se tourne vers
l’utilisation des préférences expressives comme outil pour comprendre le paysage politique. Cela
inclut le développement de méthodes pour déduire des ordonnancements de candidats sur des axes
idéologiques (par exemple gauche-droite) en utilisant les motifs d’approbation, ainsi que des tech-
niques pour identifier les paires de candidats générant le plus de conflit en analysant les préférences
ordinales.

Pour chaque problème, nous introduisons de nouvelles méthodes basées sur des bulletins ex-
pressifs, comme les bulletins d’approbation, les classements ou les ordres faibles. Nous évaluons
ensuite ces méthodes à la fois théoriquement, par une analyse axiomatique, et empiriquement,
via des simulations sur des données synthétiques ainsi que sur des jeux de données de préférences
réelles, incluant des données collectées lors d’élections politiques réelles.
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Chapter 1

Introduction

Today is election day. French citizens are voting for their next president. They gather in polling
stations for the first round of this election, after several months (even years) of campaigning, and
hundreds of polls. They will have to choose between eleven candidates, and the two candidates
with the most votes will go to the second round, which will take place two weeks later. The
candidate with the most votes in the second round will be elected president.

Today, Sarra is voting for the first time in France. As she enters the voting station, she is faced
with eleven piles of paper ballots: one for each candidate running in the election. On each ballot
is written the name of one candidate. Seeing these piles of paper lined up in a random order, it
occurred to her that arranging them by political position, from the most left-wing candidate to
the most right-wing one, would be far more practical. However, this might be difficult, as there
is no consensus on which ordering is the correct one. Considering this, she realizes that it would
be useful to have a theoretical method based on voters’ actual preferences that could determine a
good ordering of the candidates. After taking a few paper ballots from the piles, she enters the
voting booth where she has to place the ballot of her choice in a small envelope, which she will
ultimately put in the voting urn.

On the booth just next to hers, Bastien has been hesitating between two candidates for five
minutes now. He knows that his favorite candidate has no chance to make it to the second round,
since the last polls predicted him a score of 3%. Thus, he is considering voting strategically in favor
of the only candidate he finds tolerable enough and that might have a chance to get into the second
round, even though he disagrees with several of this candidate’s proposals. This dilemma reminds
him of the last election of the members to the German parliament (Bastien is Franco-German),
where he voted for his favorite party, which ended up with only 4.3% of the votes, while an electoral
threshold of 5% was required for a party to be allowed to get a seat in the parliament. Bastien was
frustrated, because his ballot was effectively discarded before the seat distribution. At the time,
he wished that he could have cast a back-up vote, that would have been used in case his favorite
party did not reach the threshold. On the other hand, if fewer people had voted strategically for
a more popular party (and had instead voted for his favorite party), maybe it would have reached
the 5% threshold.

Bastien concluded that both the German and the French voting systems were failing voters in
crucial ways. Still undecided between voting sincerely and strategically in the French presidential
election, Bastien thought that it would actually be less frustrating if it was possible to vote for
several candidates instead of just one, and decided to do so by placing the ballots of the two
candidates in the envelope. Unfortunately, this led his ballot to be invalidated.

13



14 CHAPTER 1. INTRODUCTION

(a) Uninominal ballot. (b) Approval ballot. (c) Ordinal ballot. (d) Cardinal ballot.

Figure 1.1: Examples of different ballot formats.

The case of Bastien demonstrates one of the numerous drawbacks of the voting systems that
are currently used for most political elections. Many of these drawbacks are due to voters being
often very constrained in the way they can express preferences: they have to choose one candidate
(or one list), and only one. Why not, as Bastien wished, allow voters to vote for several candidates
they like? Or, to allow them to provide a back-up vote in case their first choice does not make
it? Or even to rank candidates, as it is already done in some other countries? Exploring these
possibilities by allowing voters to cast more expressive ballots is the main focus of the first part of
this thesis.

Once we start thinking about the ways expressive preferences can be used to improve the voting
process, we notice that they can also become a great tool to learn the structure of the electorate,
and describe the political landscape. Consider for instance Sarra’s thought about ordering the
candidates from the most left-wing one to the most right-wing one: if we allow voters to vote for
several candidates they like, as Bastien suggested, or even to rank the candidates, then it becomes
possible: if a voter votes for two candidates, then it is likely that they run on similar platforms.
This is an example of a problem in which we want to learn the structure of the electorate, and
in which expressive preferences are found to be insightful. We study this kind of problems in the
second part of this thesis.

The remainder of this introduction is organized as follows. In Section 1.1, we introduce the
social choice framework and the key aspects of the methodology employed in all chapters of this
thesis, specifically how we evaluate and compare the different methods (or rules) we introduce. In
Section 1.2, we give an overview of the settings and problems studied in this thesis, and summarize
our main results. Finally, Section 1.3 lists all the published papers on which this thesis is based,
and additionally mentions omitted works that were conducted during the PhD, but that are not
included in this thesis.

1.1 Social Choice with Expressive Preferences

Formally, a social choice problem involves a set of candidates, a set of voters expressing their
preferences over the candidates (expressed using ballots, and grouped in preference profiles), and
a set of possible outcomes.

In a presidential election for instance, the possible outcomes are all the candidates running in
the election. The way preferences are expressed varies; in many countries, including France, voters
simply indicate the one candidate for whom they voted. In this case, we say that the preferences
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are uninominal : each voter chooses one candidate, and only one. In other countries, such as
Ireland, voters rank the candidates in order of preference. In this case, we say that the preferences
are ordinal. Other preference formats are sometimes used: in a few American cities, voters elect
their mayor using approval ballots, in which they can approve of as many candidates as they want.
Finally, in non-political contexts, such as evaluating movies, or evaluating candidates for a job,
‘voters’ generally give scores/grades to the ‘candidates’. In this case, we say that the preferences
are valued, or cardinal. Figure 1.1 provides examples of these four types of preferences.

All preference formats that go beyond uninominal open the door to many possibilities when
it comes to selecting a winner. In the last three centuries, a wide variety of methods have been
proposed based on inputs like ordinal preferences (rankings) and approval ballots. For rankings,
fundamentally different approaches exist: one can associate positions with scores and select the
candidate with the highest total (like Borda), or seek a candidate who defeats all others in pairwise
majority comparisons (like a Condorcet winner). For approval ballots, the most straightforward
method simply selects the most approved candidate (Approval Voting). Beyond these core ideas,
numerous other methods exist, particularly for rankings. More recently, the problem of selecting a
winning committee of several candidates has also gained significant interest, with methods proposed
for both ranking and approval inputs.

Once the problem is well-defined, and methods have been proposed for selecting good outcomes,
the question is now: which method should be used in practice? Unfortunately, this is generally
not an easy question to answer: most of the time, each method comes with some benefits, but also
with some drawbacks, and trade-offs naturally arise. For instance, the voting system that is used
for the presidential election in France has the advantage of being very simple to understand and
to implement due to the use of uninominal ballots, but this comes with many flaws, that could be
avoided with more expressive ballots (such as rankings or approval ballots).

Thus, we need ways to evaluate and compare these methods. To this aim, we distinguish
different approaches. The first to appear in the social choice literature was the axiomatic approach
(Brandt et al., 2016), which evaluates rules based on the theoretical properties (that generally
are normatively appealing) they satisfy. Thanks to the increasing availability of computers during
the second half of the twentieth century, scholars started to simulate the various voting methods
on computer-generated preference data, and observing their behavior. This quickly led to the
definition of probabilistic models that we now use to sample such synthetic preference data, and
this corresponds to the second approach for evaluating rules. Finally, the third approach is to
simulate the different methods not on artificially generated data, but instead on datasets of actual
preferences (we refer to it as real data). This approach gained in popularity in the last decades
(Boehmer et al., 2024), thanks to the possibility to collect large amounts of data on the preferences
of voters, generally using online platforms. These are the main three approaches that we will use
in this thesis to evaluate the methods we propose. Let us now go over each of these approaches in
more detail.

Comparing Methods using Axioms

The axiomatic approach is the traditional way to compare social choice rules. It relies on normative
properties, called axioms, that are considered desirable for a voting method to satisfy. Consider
for instance the Condorcet criterion, which says that if there exists a candidate who wins the
majority vote against every other candidate, it should be the winner (in that case, we say that it is
a Condorcet winner). This property is appealing because it means that if we select this candidate,
no majority group of voters exists where all members prefer some other single candidate over the
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winner. Failure of this property is often observed in actual elections: a typical example is the
2007 French presidential election, in which François Bayrou was a Condorcet winner (according
to the polls), but did not reach the second round of the election due to not being the favorite
candidate of enough voters.1 Another example is a 2022 vote in Lille concerning the future of one
of the largest avenue of the city.2 The four possibilities were (A) a park, (B) a park with a water
surface, (C) half a park, half a canal and (D) a canal. The voting system was the simplest possible:
each voter votes for one option, and the option with the most votes wins. The results were very
divided: option A (“a park”) won with 27% of the votes, while options C and D (“half a canal”
and “a full canal”) both got 26% of the votes (option B got the remaining 21%). The first option
won, but it is fair to assume that if people could have ranked the alternatives, a different outcome
would have been selected. Indeed, the supporters of option D probably have the following ranking:
D ≻ C ≻ B ≻ A (the more water, the better), while the supporters of option A likely have the
reverse ranking A ≻ B ≻ C ≻ D (the less water, the better). In that case, option C (“half a park,
half a canal”) would have been the Condorcet winner, and should have won instead of A.

This is only one of many axioms that have been studied in the social choice literature. They
generally aim at formalizing a behavior that is expected from a normative point of view. For
instance, in actual elections, many voters are voting strategically for a candidate who is not their
first choice. This behavior is known and widely supported by empirical evidence. Ideally, the
best voting strategy for any voter should be to vote sincerely, i.e., for their favorite candidate.
This motivates strategyproofness axioms. Unfortunately, it was shown by Gibbard (1973) and Sat-
terthwaite (1975) that for ordinal preferences, no reasonable voting method actually satisfies this
axiom when there are at least three candidates. This kind of negative result is formalized as an
impossibility theorem. On the more positive side, axiomatic analyses can also lead to character-
ization theorems, which say that a particular method is the only one from a family of methods
to satisfy a given set of axioms. In the axiomatic analyses of this thesis, we prove several such
impossibility and characterization results, and we consider several well-studied families of axioms,
such as symmetry properties (neutrality and anonymity), efficiency and representation properties
(for instance Pareto-efficiency or the Condorcet criterion), independence properties (in particular
the independence of ‘clones’), and strategyproofness and monotonicity properties.

Comparing Methods using Synthetic Data

In axiomatic analyses, conclusions are often quite binary: either a rule satisfies a given axiom,
or it does not. This motivates the use of experimental analyses, which generally provide more
fine-grained results. The idea is to run the different methods on datasets of preferences, and to
observe their behavior. Using probabilistic models, we can for instance sample artificial preference
profiles, on which we can simulate elections and compare the methods. Guilbaud (1952) was one
of the first to study the properties of voting methods using synthetic data. He used the simplest
probabilistic model, in which every ranking is equally likely (called impartial culture) and measured
the probability that there exists a Condorcet winner in a sampled preference profile.

Other probabilistic models have been proposed in the literature, some of the most popular
ones are Mallows’ model (Mallows, 1957) and the urn model (Eggenberger and Pólya, 1923). An
interesting feature of such probabilistic models is their modularity. Indeed, they generally rely on
some parameters, which allow us to change some aspects of the model, and thus discover potential

1“Sondage: au second tour, Bayrou gagnerait face à Sarkozy ou Royal”, Libération. https://www.liberation.
fr/france/2007/02/19/sondage-au-second-tour-bayrou-gagnerait-face-a-sarkozy-ou-royal_12708/

2“Avenue du Peuple Belge : résultats de la consultation”. https://www.lille.fr/Actualites/
Avenue-du-Peuple-Belge-resultats-de-la-consultation

https://www.liberation.fr/france/2007/02/19/sondage-au-second-tour-bayrou-gagnerait-face-a-sarkozy-ou-royal_12708/
https://www.liberation.fr/france/2007/02/19/sondage-au-second-tour-bayrou-gagnerait-face-a-sarkozy-ou-royal_12708/
https://www.lille.fr/Actualites/Avenue-du-Peuple-Belge-resultats-de-la-consultation
https://www.lille.fr/Actualites/Avenue-du-Peuple-Belge-resultats-de-la-consultation
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links between the outcome of a rule and the parameters of a model. This additionally allows us
to test the robustness of the results we obtain on a variety of scenarios. For a long time, the
social choice literature lacked a bridge connecting these synthetic probabilistic models. Moreover,
it was unclear whether any of these models was actually good at simulating actual preferences.
Recently, an approach called the map(s) of elections was proposed by Szufa et al. (2020) to study
the structure of the space of preference profiles, and to compare profiles sampled by different
probabilistic models, as well as profiles of real preferences. They showed that some models were
better than others to generate preference profiles that are similar to those observed in reality.
However, it still remains very hard to create artificial preferences with a realistic structure, which
motivates the use of real data in the experimental evaluation of the different methods.

Comparing Methods using Real Data

In contrast to synthetic data, datasets of real preferences allow for more realistic comparisons
of the different methods, and give useful insights on the behavior of the methods against actual
preference patterns. In particular, applying proposed methods to political preferences is often
instructive regarding the potential political consequences of the rule. The increased use of real
data in social choice research motivated the creation of platforms of preference data, such as
preflib.org (Mattei and Walsh, 2013) and pabulib.org (Stolicki et al., 2020).

To gather such datasets of real preferences, the traditional way is to conduct surveys on a sample
of voters, generally through field experiments. A typical example is the Voter Autrement project
(Laslier, 2019), which has been running since 2002 in France, and in which in situ experiments have
been conducted on the day of each presidential election in several French cities. These experiments
allow a few voters of these cities to try alternative voting methods (such as Borda or Approval
Voting), thus providing expressive ballots (such as rankings or approval ballots), which we can
then use in our analyses. Unfortunately, this approach is hard to scale, and the number of voters
that can be surveyed is limited.

However, we can nowadays collect larger datasets through online platforms. For instance, we
can adapt the surveys that are used in field experiments. In particular, this approach has been
used in the Voter Autrement project since 2017 (Bouveret et al., 2018), allowing us to collect
larger datasets of preferences than could be obtained from field experiments. More generally, we
all frequently create new preference data when interacting with online platforms: for instance, likes
can be seen as approval ballots and ratings of movies or restaurants as valued (or cardinal) ballots.

1.2 Overview of the Thesis

The contributions of this thesis are divided into two parts. In the first part, we study voting
problems, in which the goal is to incorporate more expressive preferences into existing voting
systems that are implemented for large-scale elections around the world, in order to tackle actual
issues that arise in practice. In the second part, we study learning problems, in which the goal is
to make use of expressive preferences to describe the political landscape, and to better understand
the structure of the electorate and of the candidate set.

Even though the two parts have different goals, the problems studied, and the ways we study
them have many similarities. In particular, we assume in all of them that we are given the
preferences of a set of voters over a set of candidates, and that these preferences are of a particular
format (approval ballots, rankings, weak orders, etc.), generally more expressive than uninominal
preferences. Then, we define what kind of outcome we want to obtain using these preferences.
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In the first part, outcomes can be a single winner, or a set of winners, while in the second part,
outcomes aim at learning something about the particular structure of voters’ preferences, and of
the candidate set. We then define rules (or methods) that take as input the preferences, and
return an outcome of the desired format. We analyze these methods using different tools, mainly
axiomatic and experimental analyses, that we described previously. These five key aspects of all the
problems we study (the preference format, the outcome, the methods, the axiomatic analysis, and
the data analysis) will be extensively discussed in Chapter 2, where we cover the relevant state of
the art for each of these aspects, giving a good starting point before delving into the more specific
problems studied in the rest of the thesis. Let us now give a quick overview of these problems.

Part I: Improving Voting Systems

As we mentioned, in the first part of this thesis, we focus on voting systems that are used in
practice, and on the ways to tackle their main issues using more expressive preferences.

Approval with Runoff (Chapter 3). The first voting system we improve upon is plurality
with runoff, which works in two rounds. In the first round, every voter votes for one candidate,
and the two candidates with the most votes go to the second round. The candidate who receives
the most votes in the second round is declared winner. This system is used in many contexts, in
particular for large-scale elections in several countries. In France, this system is almost associated
with the very idea of voting: it is used for the presidential election, which is the most important
one in the country, but variants of it are also used for the election of the parliament members,
for departmental elections, and even the election of mayors in most cities use a form of plurality
with runoff. However, this voting system has many flaws, which can be shown both theoretically
and in practice. For instance, it is very sensitive to the spoiler effect, which occurs when several
candidates are running on similar platforms and are at risk of losing the election because voters
are divided between them, while one of them might have won if they were the only one to run
on this platform. This causes many voters to vote strategically in favor of the candidate they like
the most among the ones that have a chance to get into the second round according to the polls,
instead of voting sincerely for their actual favorite candidate. Plurality with runoff also notably
fails monotonicity, an axiom saying that if a candidate is elected given a set of preferences, it
should still be elected if more voters support this candidate. We give concrete examples of these
issues in Chapter 3.

Our proposal in Chapter 3 is to keep the two rounds of elections, but instead of asking for
uninominal ballots in the first round, we would ask for approval ballots, meaning that every
voter can vote for as many candidates as they want. Then, we can for instance say that the two
candidates with the most votes go to the second round. However, this is not the only possibility:
we can also select the two candidates such that the largest number of voters approve at least one
of the two. These two rules can be different. Consider for instance a very simple election in which
51% of voters approve of Ann and Bob, and the remaining 49% only approve of Cora. In this case,
the first rule would select Ann and Bob, who both received the most votes, while the second one
would select Ann (or Bob) and Cora, as all voters approve of at least one of them. We show in
Chapter 3 that we can actually define many other rules based on approval preferences for selecting
the two finalists. We then analyze these rules using axiomatic analysis and experimental analysis,
and show in particular that some of the rules we define do not suffer from most of the issues of
plurality with runoff.
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Instant Runoff Voting with Indifferences (Chapter 4). The second voting system we
focus on is instant runoff voting (IRV), in which voters cast (possibly truncated) rankings of the
candidates, and the candidates are eliminated one by one until only one remains. To decide which
candidate to eliminate next, we look at how many voters rank each candidate first (among the non-
eliminated ones), and we eliminate the one with the lowest score. The supporters of the eliminated
candidate are transferred to the next candidate in their rankings that is not yet eliminated. This
system (or variants of it) is used in several countries for large-scale elections, including Ireland,
Australia, and New Zealand. It is also used in several states of the USA. On many normative
aspects, this system is better than plurality with runoff, mainly because voters provide rankings
of the candidates, and this expressivity gain allows for more interesting methods. However, it also
has some flaws. For instance, it does not satisfy monotonicity. Moreover, some voters might still
be undecided between several candidates, and may want to rank them at the same level.

Our proposal in Chapter 4 is to allow even more expressiveness in the ballots, and to ask
voters to cast weak orders of the candidates, meaning that they can rank several candidates at
the same level in the ranking they provide. With this ballot format, two generalizations of IRV
have been (briefly) discussed in the literature, called Approval-IRV and Split-IRV, but Split-IRV
is the only one that has actually been used in practice. In Chapter 4, we analyze these two
methods axiomatically and experimentally, and argue that Approval-IRV is more appealing than
Split-IRV in many contexts. In particular, we show two axiomatic characterizations of Approval-
IRV among a large family of methods, making it the most natural generalization of IRV to weak
orders. The first characterization says that Approval-IRV is the only method that satisfies the
generalization (to weak orders) of the most appealing normative properties satisfied by IRV, and
the second characterization says that it is the only method generalizing IRV that satisfies a weak
monotonicity axiom.

Proportional Elections with Thresholds (Chapter 5). The third and final voting prob-
lem we address concerns parliamentary elections, focusing not on electing a single winner but on
deciding which parties receive seats. In such parliamentary elections, an apportionment method
is used: voters cast uninominal ballots for one party (or a list of candidates), and the seats are
distributed among the parties, proportionally to the number of votes they received. The issue we
are addressing in this thesis comes from the existence of electoral thresholds in these elections.
Indeed, in many elections of this kind, there is a threshold (for instance, 5% of the total number
of votes) such that only parties that receive more votes than required by the threshold are given
seats. Other parties receive none. Because of this, all voters who voted for a party that does not
reach the threshold see their ballots effectively discarded and are not represented by the final seat
distribution. This causes once again many voters to vote strategically in favor of a party that is
likely to reach the threshold, leaving no chance for outsider parties.

Our proposal in Chapter 5 is to allow voters to provide back-up votes, by submitting truncated
rankings of the parties. Thus, if their favorite party does not reach the threshold, then we can
look at their second one, and their third one, and so on until we find a party that reaches the
threshold. However, with this ballot format, there are various ways we can select the set of parties
that reach the threshold, and which may receive seats: should we simply decide that only parties
that received more first-rank votes than the threshold can have a seat? Or should we use an
IRV-like method that eliminates parties one by one until all remaining parties reach the threshold?
We define five such methods to select the set of parties, and show that they all satisfy different
normative properties. We also compare them on a dataset of real preferences that we collected for
this purpose during the 2024 election of the French representatives to the European parliament.
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Part II: Describing the Political Landscape

In the second part of this thesis, we discuss problems in which the goal is to use the voters’
preferences to better understand the structure of the candidate and voter sets.

Ordering Candidates on an Axis (Chapter 6). We first study the problem of ordering
candidates on an axis. This is motivated by the idea that in politics, there exists an underlying
ideological left-right axis of the political landscape, on which we can approximately place the
different political parties. However, this problem finds applications in many other domains that
rely on binary information (which can be approximated as approval ballots).

In Chapter 6, we propose to learn such an axis of candidates using approval preferences of the
voters, following the simple idea that candidates that are often approved together are likely to be
close to each other on the axis, while candidates that are not approved together are likely to be
far apart. We introduce five methods to derive orderings from approval ballots, and we analyze
them axiomatically and experimentally. Our axiomatic and experimental analyses show that the
different methods can be placed on a spectrum based on the complexity of the information they use
from approval ballots. While methods based on less information seem more robust (satisfying for
instance a monotonicity axiom), the ones based on more information behave better regarding the
expected placement of particular candidates. We additionally use our methods to construct order-
ings of the justices of the Supreme Court of the USA, and of the candidates in French presidential
elections.

Identifying Candidates Inducing Conflict (Chapter 7). Finally, we conclude this thesis
with the problem of selecting pairs of candidates that induce the most conflict among the voters,
based on their ordinal preferences (rankings). Like in the settings from the first part of this thesis,
we want here to select candidates (in this case, pairs of candidates) based on voters’ preferences.
However, in this chapter, our motivation is to learn one aspect of the structure of the electorate,
and not to elect winners. In particular, we want to know which pair of candidates is dividing the
voters the most, motivated by the idea that identifying the sources of division is a necessary first
step before aiming at reducing this division.

In Chapter 7, we first define the different aspects of conflict that can be observed with rankings
by introducing quantitative measures of conflict. We then introduce several methods that select
pairs of candidates inducing conflict, and compare them using axiomatic analysis and experimental
analysis. Since this problem is very different from classical voting problems in which we select
winners, we need to define completely new axioms, that are more adapted to this problem, and
that we show to be incompatible with classical voting rules. Finally, we apply our methods on
synthetic and real data, selected based on the amount of conflict we expect to observe between the
voters.

1.3 Bibliographic Notes

Most of the work included in this thesis is derived from peer-reviewed papers published in conference
proceedings (or currently under review). I contributed to all results, proofs and experiments that
appear in this thesis, unless otherwise noted. Moreover, most of the text has been rewritten for
this thesis, and figures have been updated.
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Chapter 2

The Toolbox of Computational
Social Choice

2.1 Introduction

Each chapter of this thesis is centered around one voting problem. Despite their differences, these
problems all share at least five key aspects:

1. Preferences: In all of these problems, we are given the preferences of voters over candidates
(for instance, their rankings of the candidates).

2. Outcomes: The main objective is to aggregate these preferences to select a (social) outcome
of a particular kind (for instance, select the best candidate).

The question is now: how can we aggregate the preferences of the voters to obtain the desired
outcome? This is where the third aspect comes in:

3. Rules: We define rules (or methods) that aim at solving our problems. These rules are
functions that take as input the preferences of the voters, and return a social outcome (or
several tied outcomes).

These rules represent possible solutions to the problems. In this thesis, we define new rules, and
evaluate them to understand which ones are the best to solve a given problem, depending on the
context. To evaluate and compare the rules, we principally use the following two tools:

4. Axiomatic Analysis: We define sets of axioms/properties that we want our rules to satisfy,
and check which rules satisfy which axioms.

5. Data Analysis: We use real-world datasets and synthetic datasets to run simulations on
the rules, and we evaluate the rules based on the obtained results.

In this chapter, we cover the state of the art in (computational) social choice regarding these
five aspects. As the aim is not to go over everything that has been done in computational social
choice or even in voting theory, this chapter focuses on what is relevant to the problems that will
be studied in this thesis. For a more general overview of computational social choice, the reader
can refer to the books edited by Brandt et al. (2016) and Endriss (2017).

The remainder of this chapter is organized as follows. We first define different preference formats
in Section 2.2. In Section 2.3, we go over different types of social outcomes in voting problems, and
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we discuss classical rules that have been defined for each of these types of outcomes. In Section 2.4,
we introduce classical families of axioms that are frequently used to evaluate and compare rules in
the social choice literature. Finally, in Section 2.5, we go over the different kinds of synthetic and
real data used in this thesis. In particular, we introduce the Voter Autrement project, a collection
of datasets to which I contributed, and that will be repeatedly used throughout this thesis.

2.2 Preferences

All the problems we discuss in this thesis take as input preferences of voters over candidates,
sometimes called ballots. To make it more formal, we assume in the rest of the thesis that we have
a set V = {1, . . . , n} of n voters and a set C = {c1, . . . , cm} of m candidates. Candidates are not
necessarily individuals: they can be any kind of objects/concepts on which voters have preferences
(political parties, movies, dates for a meeting, bills, etc.).

We say that voters have preferences over these candidates, in the sense that they like some
more than others. They can express these preferences in different ways. In each of the problems
we study, the preferences are restricted to some particular family of preferences X , called the
preference domain. In this section, we introduce the most common ballot formats used in the
literature. Since every voter expresses their preferences over the candidates, we can associate some
preference Xi ∈ X to every voter i ∈ V , and we can collect all these preferences in a preference
profile P = (X1, . . . , Xn) ∈ Xn.

In the remainder of this section, we define uninominal preferences, rankings (ordinal prefer-
ences), approval preferences, weak orders, and valued preferences (such as utilities, costs, scores,
and labels). Finally, we discuss the particular case of structured preferences, and more specifically
single-peaked rankings and interval approval ballots.

2.2.1 Uninominal Preferences

The most common but arguably least expressive way a voter can express their preferences is by
indicating the name of a single candidate, for instance the candidate they prefer among the set
of possible candidates. We call these uninominal preferences. Formally, a uninominal preference
xi of a voter i ∈ V is a candidate c ∈ C. For instance, if C = {a, b, c}, the preference xi = b

can be interpreted by saying that voter i’s favorite candidate is b. The preference profile P =

(x1, . . . , xn) ∈ Cn for all i ∈ V is then a collection of uninominal preferences.

Uninominal Preferences
The domain of uninominal preferences is the candidate set X = C.

This ballot format does not give a lot of information about voters’ preferences: we can only
compute the number of votes received by each candidate, that we call the plurality score and denote
by S(c) = |{i ∈ V : xi = c}| for each candidate c ∈ C. Nonetheless, this ballot format is very easy
to understand and to collect, which partly explains why it is widely used in practice, from the papal
conclave to the election of the president of the United States. Actually, uninominal preferences are
likely as old as the concept of voting, as one of its earliest known uses is the procedure of ostracism
that was taking place in Athens twenty-five centuries ago (Pébarthe, 2020), and in which Athenians
had to write the name of the person they wanted to ostracize on a piece of pottery (the “ballot”):
if a person received more than 6 000 votes, they were exiled for 10 years.1

1In this case, the candidate given by a voter is not their favorite candidate, but their least favorite one.
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2.2.2 Rankings

Rankings are one of the most studied preference formats in the social choice literature. The
earliest written trace of a ranking-based voting method is from the fifteenth century, during which
the philosopher and theologian Nicholas Cusanus described a method that will later be known
as the Borda rule (McLean, 1990).2 Nowadays, several countries use ranked ballots for political
elections, such as Australia, New Zealeand, Ireland and Malta, as well as some states of the USA,
though the voters are often not required to cast a full ranking.

In a ranking, a voter order the candidates from their most favorite one to their least favorite
one. Note that this preference format is quite expressive, but it can be cognitively demanding for
voters, especially when the number of candidates is large: imagine having to rank all the movies
you have seen in your life, or all the 62 candidates of some political election, as was required in New
South Wales for the 1983 election of the Australian Senate (leading to 11.1% of invalid ballots).3

Formally, a ranking ≻ is a linear order (irreflexive, antisymmetric, transitive and complete
binary relation) over the set of candidates C. For instance, a ≻ b ≻ c is a ranking over {a, b, c} in
which a is preferred to b which is preferred to c. Each ranking ≻ can be associated with a rank
function σ such that for each candidate x ∈ C, σ(x) = |{y ∈ C : y ≻ x}|+ 1 is the rank of x in ≻.
For instance, in the ranking a ≻ b ≻ c, σ(a) = 1 and σ(c) = 3.

Rankings
The rankings domain is the set of all linear orders X = L(C).

A profile of rankings (or ordinal profile) is then a collection P = (≻1, . . . ,≻n) where ≻i is the
ranking of voter i ∈ V . For two candidates a, b ∈ C, we define V a≻b = {i ∈ V : a ≻i b} ⊆ V as
the subset of voters who rank a above b. We also define the majority relation ≻M such that for
a, b ∈ C, we have a ≻M b if the majority of voters prefers a to b, i.e., |V a≻b| > |V b≻a|. Using these
two notions, we can construct the weighted majority graph, in which there is an edge from a to b
if a ≻M b, and the weight of the edge is equal to |V a≻b| − |V b≻a|.

2.2.3 Approval Preferences

An approval ballot is a subset of candidates A ⊆ C such that all candidates a ∈ A are approved,
and all candidates b /∈ A are disapproved. The earliest known major elections that used approval
ballots were the papal conclaves from 1294 to 1691 (Colomer and McLean, 1998) and the election
of the Doge of Venice during the late Middle Ages and the Renaissance, with a procedure mixing
sortition and approval voting (Lines, 1986). Nowadays, approval ballots are used in some political
elections, in particular in the United States for some local elections (in St. Louis, Missouri and
Fargo, North Dakota), and in various organizations for internal elections. Moreover, approval
ballots are often used for low-stakes collective decisions, such as deciding on the date for a meeting
using apps like doodle.com, framadate.org or whale.imag.fr.

Approval ballots may be less cognitively demanding for voters than rankings, but they also seem
less expressive, as voters cannot indicate which candidate they prefer between two approved (or
disapproved) candidates.4 On the other hand, approval ballots allow to express actual indifferences
between candidates, which cannot be done with full rankings.

2McLean (1990) also discusses a voting rule proposed by Ramon Lull that follows the Condorcet principle,
but which is not really based on rankings. Voting procedures were an important topic in western Europe during
the Middle Ages and the Renaissance, especially for elections in the Church (Christin, 2014), though most of the
discussion focused on the majority principle.

3See the results of this election at theo.delemazure.fr/thesis/1983senatensw.txt.
4For m candidates, there exist m! possible rankings but 2m possible approval ballots, which is significantly less.

theo.delemazure.fr/thesis/1983senatensw.txt
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Figure 2.1: Examples of ballots for the different preference formats.

Approval Preferences
The domain of approval preferences is the set of all subsets of candidates X = 2C .

An approval profile is a collection of approval ballots P = (A1, . . . , An) where Ai is the approval
ballot of voter i ∈ V . For a candidate a ∈ C, we say that V a = {i ∈ V : a ∈ Ai} is the set of
voters who approve a, and S(a) = |V a| is the approval score of a.

2.2.4 Weak Orders

On one hand, approval preferences allow to express indifferences between candidates, but they do
not allow to express the relative intensity of the preferences between approved candidates. On the
other hand, rankings allow to express the relative intensity of the preferences, but they do not
allow indifferences. Weak orders are a more general type of preferences that gets the best of both
worlds: they allow voters to provide a ranking of the candidates, but still give the possibility to
put several (tied) candidates at the same position in the ranking.

More formally, a weak order ≽ is a complete pre-order (reflexive, transitive and complete binary
relation) over the set of candidates C. For a weak order ≽, we can define its asymmetric part ≻
such that a ≻ b if a ≽ b and not b ≽ a, and its symmetric part ∼ such that a ∼ b if both a ≽ b and
b ≽ a. In this case, a and b are ranked at the same position in the ranking, and we say that they
are part of the same equivalence class. For instance, a ≻ b ∼ c ≻ d is a weak order over {a, b, c, d}
in which a is preferred to b and c, which are tied and each preferred to d. For ease of reading, we
sometimes write a ≻ {b, c} ≻ d to indicate that b and c are in the same indifference class.

Weak Orders
The domain of weak orders is the set of all complete pre-orders over the set of candidates X =

R(C).

A preference profile of weak orders is then a collection P = (≽1, . . . ,≽n) where ≽i is the weak
order of voter i ∈ V . We can define V a≻b and the majority relation ≻M as for full rankings, using
the asymmetric parts of the weak orders. As for full rankings, each weak order ≽ can be matched
to a rank function σ such that for each candidate x ∈ C, σ(x) = |{y ∈ C : y ≻ x}|+ 1 is the rank
of x in ≽. For instance, in the weak order a ≻ b ∼ c ≻ d, σ(a) = 1, σ(b) = σ(c) = 2 and σ(d) = 4.

There exist several interesting sub-categories of weak orders. In particular, rankings and ap-
proval ballots are sub-categories. We can also define truncated rankings, in which voters strictly
rank a subset of the candidates, and the remaining candidates are put in the same indifference
class, below the ranked candidates. For instance, a ≻ b ≻ c ≻ {d, e, f} is a truncated ranking (we
generally write a ≻ b ≻ c and omit the non-ranked candidates for ease of reading). This kind of
weak orders is particularly useful when the number of candidates is large, and voters do not have
the time or the willingness to rank all the candidates. In particular, this is the actual preference
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format that is used in most political elections that ask voters to rank candidates (for instance in
Ireland and some local US elections). Examples of ballots for the different preference formats are
shown in Figure 2.1.

Weak Orders

Truncated Rankings

Rankings
Approval Preferences

Uninominal Preferences

Figure 2.2: There is an arrow from one
preference format to another if it is pos-
sible to express preferences from the
second format using preferences from
the first one.

Figure 2.2 summarizes the expressive power of the dif-
ferent types of preferences we introduced in this section.
In particular, it shows which preference format can be ex-
pressed using another format. The dotted arrow between
rankings and uninominal preferences indicates that it is
possible to derive the latter from the former by ignoring
a part of the ranking.

Truncated rankings can also be seen as the combina-
tion of approval ballots and full rankings, by saying that
the candidates that are ranked are the approved candi-
dates, and the non-ranked candidates the non-approved
ones. However, this does not exactly correspond to the
combination between approval ballots and rankings, as
we would not know the ranking of non-approved candidates. In Chapter 3, we discuss approval-
ordinal ballots,5 that are a true combination of approval ballots and rankings, in the sense that it
combines two preference profiles: one containing approval ballots PA, and one containing rankings
P≻, giving an approval-ordinal profile P = (PA, P≻).

2.2.5 Utilities, Costs, Scores, and Labels

With the preference formats we mentioned so far, everything could be expressed as a binary
relation, indicating for each pair of candidates whether one is preferred to the other. However,
there exist completely different ways to express preferences than through pairwise comparisons of
candidates. In particular, voters can express their preferences by assigning a value, taken from
an ordered set, to each candidate. This is what we are doing when we are rating restaurants
on Tripadvisor, movies on Letterboxd or Blablacar drivers. In these real-life scenarios, the set
of allowed scores is often Z = {0, 1, 2, 3, 4, 5}. In some other contexts, the scores can take any
positive real value, and in this case we often say that candidate c induces a utility ui(c) ∈ R⩾0 to
voter i. Equivalently, candidates can be costly for the voters (for instance if the candidates are
chores that need to be done), and we say that candidate c induces a cost ci(c) ∈ R⩽0 to voter
i. Finally, in some other contexts, the voters can give a label to each candidate, taken from an
ordered set. For instance, the Majority Judgement rule (Balinski and Laraki, 2011) uses the labels
{Excellent,Very Good,Good,Fair,Poor,To reject}. Another typical example is the grades given
to students in some countries, often taken from the set Z = {A,B,C,D,E, F} (sometimes with
additional grades such as A+ or A−). This inspired the concept of tierlists, which are now a part
of the internet culture. To make a tierlist, voters are given a set of categories ordered from the
best to the worst, and they have to say into which category each “candidate” falls (see Figure 2.3
for an example).

Considered more formally, all these examples correspond to the same family of preference for-
mats, in which there exists a set of possible values Z (scores, labels, utilities, costs, etc.) associated
with a strict total order >, and where each voter i ∈ V assigns a value zi(c) ∈ Z to each candidate
c ∈ C. We call these preferences valued preferences.

5Approval-ordinal ballots were introduced by Brams and Sanver (2009) under the name approval-preferences
ballots, but we do not keep this name to avoid any confusion with approval preferences.
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Figure 2.3: Example of a tierlist of single-winner voting rules (‘S’ being the best category, and ‘F’
the worst one).

Valued Preferences
Given an ordered set Z, the domain of Z-valued preferences is the set X = ZC .

We can then define the preference profile P = (z1, . . . , zn) as the collection of these functions.
We can induce weak orders from valued preferences. More precisely, we can define the weak order
≽i of voter i ∈ V such that for all candidates a, b ∈ C, we have a ≻i b when zi(a) > zi(b) and a ∼i b

when zi(a) = zi(b). Approval preferences are a special case of valued preferences with Z = {0, 1}.
Finally, note that if the elements in Z are real numbers (or more generally from a linearly ordered
abelian group), we also call this preference format cardinal preferences.

None of the problems we study in this thesis actually take such preferences as input, however
these preferences are very useful to evaluate rules. In particular, we sometimes use utilities (and
costs) preferences, consider the induced weak orders, and see which rules return the candidates
with highest utility, or lowest cost. We will discuss this use-case in more detail with the notion of
distortion in Section 2.5.2.

2.2.6 Structured Preferences

Aggregation of preferences is a very hard problem in the general case. In particular, we quickly en-
counter paradoxes and impossibility results, some of which will be discussed in Section 2.4. Among
the different ways to escape these impossibility results and paradoxes, one promising solution is to
restrict the preference domain X to preferences having a particular structure (Arrow, 1951; Black,
1948). In addition, it later appeared that some social choice problems that are computationally
hard in the general case (for instance computing the outcome of a voting rule) can be solved
efficiently if the preferences have a particular structure (starting with the work of Walsh (2007)).

In this thesis, we focus on two kinds of structured preferences: single-peaked rankings, and its
equivalent for approval ballots: interval approvals. Single-peakedness was introduced by Black
(1948), and is easily the most studied type of structured preferences in the social choice literature.
Interval preferences for approval ballots were introduced more recently by Elkind and Lackner
(2015) among other kinds of structured preferences. We direct the reader to the survey of Elkind
et al. (2017c) for a more complete overview of the recent works on structured preferences in
computational social choice, which goes over many other types of structured preferences.
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These two types of structured preferences have in common that they depend on a global ordering
of the candidates that we call an axis, and denote by ◁. Axes have exactly the same structure
as rankings, except that the direction of an axis does not matter. For instance, a ◁ b ◁ c ◁ d and
d ◁ c ◁ b ◁ a represent the same axis. For simplicity, we write ◁ = abcd instead of a ◁ b ◁ c ◁ d.
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Figure 2.4: Single-peaked
rankings for the axis ◁ =
abcdefgh.

The idea of single-peaked and interval preferences is that every
voter has a favorite candidate on the axis, and the further away
a candidate is from it in one direction on the axis, the less the
voter likes this candidate. For rankings, this means that if two
candidates a and b are on the same side of the favorite candidate,
and b is further away from it than a, then the voter prefers a to
b. For approval ballots, this means that if b is approved, then a is
approved too (as it is closer to the voter than b), and if a is not
approved, then neither is b (as it is further away from the voter
than a). Note that this is only true if both candidates are on the
same side of the voter’s favorite candidate (in contrast to Euclidean
preferences, see Section 2.5.1).

Thus, we say that a ranking is single-peaked on the axis ◁ if
when we plot the ranks of candidates along the axis, the plot has a single peak, i.e., it is always
decreasing when we move away from the peak (see Figure 2.4). More formally, a ranking ≻ is
single-peaked on the axis ◁ if for any three candidates a, b, c ∈ C such that a is the candidate
ranked first, σ(a) = 1 (i.e., it is the peak), if a ◁ b ◁ c or c ◁ b ◁ a on the axis, then b ≻ c. Note that
every ranking is single-peaked for some axis (for instance, ≻ is clearly single-peaked for ◁ = ≻).
The interest of single-peaked rankings appears when all voters’ rankings in a preference profile are
single-peaked on the same axis. In this case, we say that the preference profile is single-peaked.

a b c d e

Figure 2.5: Interval ap-
proval ballots on the axis
◁ = abcde.

We similarly define interval preferences for approval ballots, by say-
ing that an approval ballot A is an interval for the axis ◁ if the set of
approved candidates A forms an interval of the axis ◁ (See Figure 2.5).
More formally, an approval ballot A is an interval for the axis ◁ if for all
a, b ∈ A and c ∈ C, if a ◁ c ◁ b, then we have c ∈ A. As for single-peaked
rankings, we say that a preference profile of approval ballots is linear if
all approval ballots in the profile are intervals of the same axis.

Note that there exist polynomial time algorithms to recognize if an
ordinal profile is single-peaked for some axis (Bartholdi and Trick, 1986;
Doignon and Falmagne, 1994; Escoffier et al., 2008). In the case of approval ballots, there also
exist polynomial time algorithms to recognize if a preference profile is linear for some axis (Elkind
et al., 2017c), as this problem boils down to check if some binary matrix satisfies the consecutive
ones property (Booth and Lueker, 1976). We will discuss this property in more detail in Chapter 6.

An important motivation for studying these structured preferences is that in many contexts, it
is sometimes assumed that there exists some ‘natural’ ordering of the candidates. This is especially
true in politics, where it is often considered that the candidates can be ordered on some left-right
ideological axis. This is also true when candidates represent different options on a numerical axis.

2.2.7 Summary

In Table 2.1, we summarize the different preference formats introduced in this section, and in
Table 2.2, we indicate for each chapter of this thesis the preference format used as the input of
the problem. Note that we also use preference formats that are not necessarily the input of the
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Preferences Domain Example
Uninominal ballots C a
Rankings L(C) a ≻ b ≻ c
Approval ballots 2C {a, b}
Weak orders R(C) a ≻ {b, c} ≻ d
Truncated rankings ∪S⊆CL(S) a ≻ b
Valued preferences ZC z(a) = 5

Table 2.1: Summary of the preference formats introduced in this section.

Chapter Preferences

Chapter 3: Approval with Runoff Rules Approval-ordinal preferences
Chapter 4: Runoff Scoring Rules Weak orders
Chapter 5: Party Selection Rules Truncated rankings
Chapter 6: Axis Rules Approval ballots
Chapter 7: Conflict Rules Rankings

Table 2.2: Preference formats in the input of each chapter’s problem.

problem, typically to evaluate the rules (especially in the case of valued preferences), or to compare
them to similar rules that have been defined for other preference formats.

2.3 Outcomes and Rules

In the previous section, we have seen different preference formats that form the preference profiles
which are the inputs of the problems studied in this thesis. Let us now discuss the different kinds of
outcomes of these problems. A typical, and already non-trivial, example of outcome is the selection
of one candidate as the winner of an election, using the voters’ preferences. However, outcomes
are not restricted to the selection of winner(s), and we also consider in this thesis problems that
aim at describing the structure of the electorate.

More formally, our problems take their solutions in an outcome domain O. For instance, if we
want to find the winner of an election, then the possible outcomes are all the candidates: O = C.
Once we know the preference domain X and the domain of outcomes O, we can define rules
f : Xn → O that take as input a preference profile P ∈ Xn and return an outcome f(P ) ∈ O, or
a set of outcomes f(P ) ⊆ O if we allow tied outcomes in the output. In the first case, we say that
the rule is resolute, and in the latter that it is irresolute. Note that any irresolute rule can be made
resolute by using a tie-breaking mechanism on the possible outcomes (for instance, in many French
elections, when two candidates receive the same number of votes, the oldest candidate wins). In
this thesis, we will sometimes consider irresolute rules (in Chapters 3, 4, 6 and 7), and sometimes
resolute rules (in Chapter 5).

In the remainder of this section, we go over the different social choice problems that are discussed
in this thesis, their corresponding outcome domains, and the most common rules that have been
defined for each preference format. More specifically, we will introduce single-winner voting, multi-
winner voting, and the problem of obtaining an ordering of the candidates (not to be confused with
obtaining a ranking of the candidates, which is yet another voting problem, that is not discussed
in this thesis).
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2.3.1 Single-Winner Voting

Single-winner voting is surely the most studied problem in (computational) social choice. On
one hand, it is simple to define and widely used in our everyday life and within our political
institutions, but on the other hand, it is quite complex to solve, and trade-offs naturally appear
for some preferences formats. Political elections with one winner, like presidential elections, are
a typical example of single-winner voting: there is a set of candidates, and only one of them is
elected based on the preferences of the voters. This kind of election is not new: already during
the Middle Ages, various kinds of votes were conducted in European universities, brotherhoods
and Catholic institutions to decide who should hold important positions (Christin, 2014). We also
encounter single-winner voting situations quite often in our social life: when deciding on a date
for a meeting, when choosing a restaurant among a group of friends, or in some board games and
video games to determine which player to eliminate. It is thus not surprising that this problem has
been extensively studied. Before going over the different single-winner voting rules that exist for
each preference format, let us first look at what can be done when there are only two candidates.

The Majority Principle

When there are only m = 2 candidates, all the preferences formats we defined in Section 2.2
(except valued preferences) have the same expressive power: voters can only say which of the
two candidates they prefer (or potentially abstain by indicating indifference). Thus, a reasonable
principle is to select the candidate that is preferred by a majority of (non-abstaining) voters. We
call the corresponding rule the majority rule.

Majority Rule (when m = 2)
The majority rule selects the candidate(s) that are preferred by at least half of the (non-
abstaining) voters.

When the number of voters n is odd, this rule is resolute. It has been shown by May (1952) that
the majority rule is the only rule for m = 2 candidates that satisfies three very natural properties:

(1) treating all voters equally,

(2) treating all candidates equally, and

(3) if a candidate is winning and a voter who preferred the other one changes their ballot to now
vote for this candidate, then it should still win.

These three properties are respectively the anonymity, neutrality and positive responsiveness
(or monotonicity) properties, that we formally define in Section 2.4. Problems appear when we
have more than two candidates. First, because we need to decide on which preference format to
use, and second, because due to paradoxes and impossibilities, we often need to decide on some
trade-off. Let us now go over the different preference formats introduced in Section 2.2, and discuss
some classical single-winner voting rules for each of them.

Uninominal Ballots

With uninominal preferences, the only natural way to select a winner is to select the candidate(s)
with the highest plurality score S(c) = |{i ∈ V : xi = c}|. The (irresolute) rule f that selects those
candidates is called plurality, and is widely used in practice, especially for high-stakes elections.
It is sometimes referred to as first past the post, as the candidate that comes first in the election
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wins everything. This is for instance the system used in the United Kingdom for the election of
the members of the House of Commons, or in the United States for the election of the members of
the House of Representatives.

Plurality
The plurality rule selects the candidate(s) with the highest plurality score. Formally, we have
f(P ) = argmaxc∈C |{i ∈ V : xi = c}|.

Despite being widely used in practice, the plurality rule has numerous drawbacks. We discuss
some of them in this thesis.

Approval Ballots

If we have an approval profile P = (A1, . . . , An), we can generalize the plurality rule described
above by selecting the candidate(s) with the highest approval score S(c) = |{i ∈ V : c ∈ Ai}|. The
resulting (irresolute) rule is called approval voting (AV). In the literature, it was formally defined
by Brams and Fishburn (1978), but it was already used to elect the pope from 1294 to 1691.

Approval Voting (AV)
The approval voting rule selects the candidate(s) with the highest approval score. Formally, we
have f(P ) = argmaxc∈C |{i ∈ V : c ∈ Ai}|.

In most contexts, AV is the only reasonable single-winner voting rule based on approval ballots.
In particular, it has been shown to be the only approval-based rule that satisfies various sets of
desirable properties (Brandl and Peters, 2022). However, one might consider more complex rules,
such as split approval. With this rule, each voter i ∈ V distributes a total of one point, which is
divided equally between the candidates they approve, thus giving 1/|Ai| points to each of them.
The winner is the candidate with the highest split approval score. A false idea is that this rule is
fairer than AV, as every voter gives the same total amount of points. However, the opposite is true,
and this rule actually favors voters who approve fewer candidates. To see it, consider the simple
election with one voter approving {a} and one voter approving {b, c}. Split approval selects a, but
all candidates are supported by the same amount of voters. Still, this property can be interesting
in some contexts, for instance in truth-tracking (or epistemic social choice), in which there exists
only one “correct” candidate, and we want to favor voters who approve fewer candidates, as they
are more likely to be sure of their choice (Allouche et al., 2022). Note that in this context, ballots
encode voters’ beliefs rather than preferences (as there exists an actual best candidate).

Split Approval
The split approval rule selects the candidate(s) with the highest split approval score. Formally,
we have f(P ) = argmaxc∈C

∑
i∈V :c∈Ai

1/|Ai|.

Example 2.1
Consider an approval profile P = ({a, b}, {a}, {b, c}, {b, c, d}). The approval scores are S(a) =

S(c) = 2, S(b) = 3 and S(d) = 1 and the split approval scores are S(a) = 3/2, S(b) = 4/3,
S(c) = 5/6 and S(d) = 1/3. Thus, the approval winner is b and the split approval winner is a.
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Rankings

If we have a preference profile of rankings P = (≻1, . . . ,≻n), the situation gets a bit trickier, as
there is not one natural rule to select a winner, as it was the case for uninominal or approval
ballots. In fact, many rules have been defined in the literature, and some of them are being used
in practice. Let us go over the most common ones.

Scoring Rules In the rules we defined for uninominal and approval preferences, each voter was
assigning a score to each candidate, and the winner was the candidate with the highest score. We
can extend this principle for rankings with the family of scoring rules, by saying that each voter i
assigns a score to each candidate c, depending on the position of c in the ranking ≻i. Naturally,
the better ranked, the higher the score. More formally, a scoring rule is specified by a score vector
s = (s1, . . . , sm) with s1 ⩾ · · · ⩾ sm and s1 > sm, such that each voter gives sj points to the
candidate they rank in position j. Then, the score of a candidate c is the sum of the scores given
by every voter S(c) =

∑
i∈V sσi(c). The winners are the candidates with the highest score.

Scoring Rules
A scoring rule based on the score vector s is the rule f defined as f(P ) = argmaxc∈C

∑
i∈V sσi(c).

One of the most common scoring rules is the Borda rule, that is based on the score vector
sBorda = (m− 1,m− 2, . . . , 0). It takes its name from Jean-Charles de Borda, who suggested this
method at the end of the 18th century (de Borda, 1781). However, we can find traces of a similar
principle in writings of Ramon Lull from the late thirteenth century (McLean, 1990). Nowadays,
this method is mainly used by institutions (such as American universities) or for sports and art
awards. It is also used in a few political elections, for instance in Slovenia to elect two particular
members of the national Assembly.

Borda
The Borda rule is the rule f defined as f(P ) = argmaxc∈C

∑
i∈V (m− σi(c)).

We can also obtain the plurality rule that we defined for uninominal preferences by using the
vector sPlurality = (1, 0, . . . , 0), by considering that the top-ranked candidate of each voter is a uni-
nominal ballot. Another common rule is the veto rule (also called anti-plurality) that is based on the
vector sVeto = (1, . . . , 1, 0), and which selects the candidate that is ranked last by the fewest voters.
In between these two rules, we can find k-approval rules for 1 ⩽ k ⩽ m− 1 that are based on the
vectors sk-app = (1, . . . , 1, 0, . . . , 0) with k ones and m−k zeros. One can also define more complex
vectors. For instance, Formula 1 races use the vector (25, 18, 15, 12, 10, 8, 6, 4, 2, 1, 0) that is decreas-
ingly decreasing, and the Eurovision song contest uses the vector (12, 10, 8, 7, 6, 5, 4, 3, 2, 1, 0, . . . , 0).
Note that the family of scoring rules has been axiomatically characterized (Smith, 1973; Young,
1975). We will discuss this characterization in Section 2.4.

Example 2.2
Consider the following profile P :

6: a ≻ b ≻ c ≻ d
5: b ≻ d ≻ c ≻ a
4: d ≻ c ≻ a ≻ b
3: c ≻ d ≻ b ≻ a
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In this profile, with plurality, each voter gives one point to their top-ranked candidate, thus the
winner is clearly a. With veto, the winner is c as it is the only candidate that is never ranked
last. The Borda scores are S(a) = 22, S(b) = 30, S(c) = 28 and S(d) = 28. Thus, the Borda
winner is b. Finally, with 2-approval, the scores are S(a) = 6, S(b) = 11, S(c) = 7 and S(d) = 12,
thus the winner is d. In this example, four different scoring rules returned four different winners.

Runoff Rules We can also use the scoring vectors in a different way: instead of directly declaring
that the candidates with the highest score are the winners, we can use the scores to repeatedly
eliminate the candidate with the lowest score, until only one candidate remains. Intuitively, it
is like doing several rounds of voting, and at each round, the candidate with the lowest score is
eliminated. This is the idea behind the family of runoff scoring rules. Some rules from this family
have been used in practice since the early 20th century in Australia, motivating the study of these
rules in social choice (Smith, 1973).

To eliminate candidates, we again use scoring vectors s = (s1, . . . , sm). The first candidate to
be eliminated is the one with the lowest total score S(c) =

∑
i∈V sσi(c) (we explain later how we

handle ties). However, now that this candidate is eliminated, only m − 1 candidates remain and
we cannot use s⃗ to eliminate the next one, since it is defined for m candidates. Thus, we need
to define the score vectors for all numbers of candidates between 2 and m. Therefore, a runoff
scoring rule is actually specified by a sequence of score vectors (s2, . . . , sm) such that the candidate
eliminated when k candidates remain is the one with the lowest total score according to sk.

Runoff Scoring Rules
A runoff scoring rule based on the sequence of score vectors (s2, . . . , sm) is the rule f that selects
the remaining candidate when all candidates have been eliminated one by one according to the
sequence of score vectors.

One might wonder what happens in case of a tie between two candidates that both have the
lowest score at some point. One possibility is to assume that there exists a tie-breaking order to
be used in each round, and we would thus obtain a resolute rule. Another possibility is to explore
all possible ways to break ties. The result of the rule would then be the set of candidates that
win with at least one tie-breaking order. This is what is called parallel-universe tie-breaking and
results in an irresolute rule (Conitzer et al., 2009, Section 7).

The most famous runoff scoring rule is Instant Runoff Voting (IRV). IRV is based on the
plurality score vector sk = (1, 0, . . . , 0) for all k. In other words, at each step, the candidate with
the lowest plurality score is eliminated, and the votes of the voters who ranked this candidate first
are transferred to the next candidate in their rankings that has not been eliminated yet. This rule
is used in several countries for high-stakes elections, such as Australia and Ireland.

Instant Runoff Voting (IRV)
Instant Runoff Voting is the runoff scoring rule f based on the plurality score vector sk =

(1, 0, . . . , 0) for all k.

Some other runoff scoring rules have been defined and studied in the social choice literature, such
as Coombs’ rule based on the veto score vector sk = (1, . . . , 1, 0) (Grofman and Feld, 2004), and
Baldwin’s rule, based on the Borda score vector sk = (k−1, k−2, . . . , 1, 0) (Baldwin, 1926). There
is also Nanson’s rule, which is similar to Baldwin’s rule, but repeatedly eliminates all candidates
with a Borda score below the average one (Nanson, 1882). In that sense, Nanson’s rule eliminates
several candidates at each step, and thus is not formally part of the family of runoff scoring rules.
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Example 2.3
Consider the profile of Example 2.2. With IRV, the first candidate to be eliminated is c, as it
is ranked first by the fewest voters, thus increasing the score of d to 7. The next candidate to
be eliminated is b, increasing the score of d to 12, making it the winner of the election. With
Coombs, a is eliminated first, then b, then there is a tie between c and d. With Baldwin, a is
also eliminated first, according to the score computed in Example 2.2, then the Borda score on
the profile without a are S(b) = 22, S(c) = 16 and S(d) = 16. Thus, there is a tie between c and
d, but in any case b wins the last round, so it is the sole Baldwin winner.

We mentioned that runoff scoring rules simulate elections with several rounds, but that it
removes the need to organize several rounds by directly asking for the ranking of the voters.
However, we could still define rules that take place in several rounds. A famous example is plurality
with runoff (also called the two-round system) that is one of the most used rule for high-stakes
political elections, as it is used in 84 countries for electing the head of state. With this rule, voters
cast uninominal ballots in the first round. If one candidate receives more than half of the votes, it
wins. Otherwise, a second round is organized between the two candidates that received the most
votes in the first round. Then, the majority rule is used in the second round. We discuss this
rule and its numerous flaws in more detail in Chapter 3. In the literature, this rule is generally
formalized as a one-round rule based on rankings (still, some works studied it as a two-round
protocol, see for instance Sato (2016)).

Example 2.4
Consider again the profile from Example 2.2. The two candidates with the highest plurality
scores are a and b, and the winner of the second round is a.

Condorcet extensions Another popular family of rules is the family of Condorcet extensions
that rely on the notion of Condorcet winner. We say that a candidate c is a Condorcet winner
in an ordinal profile P if it wins the majority vote against every other candidate. More formally,
c is a Condorcet winner if for all d ∈ C \ {c}, we have c ≻M d, i.e. |V c≻d| > |V d≻c|. If it is
the case, then one can argue that this candidate should be the winner of the election. This is
what Le Marquis de Condorcet suggested at the end of the 18th century (Jean-Antoine-Nicolas de
Caritat, 1785).6 The rationale is that if we select the Condorcet winner, there is no group of
more than half of the voters that agree on changing the winner for another one. Unfortunately,
it is not always possible to find a Condorcet winner, as we can have a Condorcet cycle, that is
a cycle of candidates such that each candidate wins the majority vote against the next one, and
the candidates in the cycle win against all candidates outside the cycle. Consider for instance the
profile P = {a ≻1 b ≻1 c, b ≻2 c ≻2 a, c ≻3 a ≻3 b}. In this profile, a wins the majority vote
against b, b wins the majority vote against c, and c wins the majority vote against a. Thus, there
is no Condorcet winner. We similarly have no Condorcet winner in the profile from Example 2.2.
However, if we assume that the preferences of the voters are single-peaked (see Section 2.2.6), then
there cannot be a Condorcet cycle and there necessarily exists a Condorcet winner (Black, 1948).

To generalize the Condorcet principle to the case where there is no Condorcet winner, various
rules have been defined. These rules are called Condorcet extensions, as they always select the
Condorcet winner when there is one. Many Condorcet extensions are based on the weighted
majority graph described in Section 2.2.2. In other words, these rules solely rely on the pairwise

6Note that this principle has already been discussed prior to Condorcet, the earliest traces of it being again from
the thirteenth century in the work of Ramon Lull (McLean, 1990).
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majority margins Ma≻b = |{i ∈ V : a ≻i b}| − |{i ∈ V : b ≻i a}|. Fishburn (1977) categorized
these rules as the C2 rules. Moreover, rules that only use the majority relation ≻M (i.e., they
do not use the strength of the majority relation and only care if Ma≻b > 0 or not) are called C1
rules in Fishburn’s classification (Fishburn, 1977). A typical example of a C1 rule that is also a
Condorcet extension is the Copeland rule that selects the candidate(s) that win the most majority
votes against other candidates (Copeland, 1951). More formally, it selects the candidate(s) with
the highest Copeland score S(c) = |{d ∈ C :Mc≻d > 0}| = |{d ∈ C : c ≻M d}|.7

Borda is an example of a C2 rule that is not a Condorcet extension. Baldwin’s rule and Nanson’s
rule are C2 rules that also are Condorcet extensions. Many other C2 Condorcet extensions have
been defined in the social choice literature, such as Ranked Pairs (Tideman, 1987), Minimax
(Young, 1977), Black (Black et al., 1958), and Schulze (Schulze, 2011).

Another Condorcet extension is Kemeny’s rule (Kemeny, 1959). This rule was originally not
defined as a single-winner voting rule, but as a rule returning a ranking of the candidates. However,
it is possible to turn it into a single-winner voting rule by saying that the winner is the candidate
ranked first in the output ranking. If there exists a Condorcet winner, then it will be ranked first
in the ranking returned by Kemeny’s rule.

Intuitively, Kemeny’s rule returns the ranking of candidates that is the “closest” on average to
all the rankings in the profile. The distance between two rankings of the candidates ≻ and ≻′ is
defined as the number of swaps of adjacent candidates that need to be done to transform ≻ into
≻′. More formally, we have:

Kendall-tau Distance
The Kendall tau distance, or swap distance between two rankings ≻ and ≻′ is equal to

KT(≻,≻′) = |{(a, b) ∈ C2 : a ≻ b and b ≻′ a}|

For instance, the Kendall-tau distance between a ≻ b ≻ c ≻ d and b ≻ d ≻ a ≻ c is 3. This
distance will be used several times in this thesis, especially in Chapters 6 and 7. The Kemeny rule
is then defined as the rule f that selects the ranking(s) f(P ) = argmin≻∗∈L(C)

∑
≻∈P KT(≻,≻∗),

minimizing the average Kendall-tau distance to the rankings in the profile.

Other Rules There exist other ranking-based single-winner voting rules, that we will not discuss
in this thesis. In particular, we can allow randomness in the selection of the winner, leading to
randomized voting rules that return a lottery over the candidates. See the recent survey of Brandt
(2017) for more details.

Weak Orders

If the preferences given by the voters are weak orders, we can adapt most of the rules we defined
for rankings. For C1 and C2 rules, there exists a natural generalization to weak orders, as the
pairwise majority margins can be computed in the same way as for rankings Ma≻b = |{i ∈ V : a ≻i

b}|−|{i ∈ V : b ≻i a}|, and we ignore the voters for which a ∼i b. We focus now on generalizations
of scoring rules and runoff scoring rules to weak orders.

Truncated Rankings Most of the work covering weak orders is focused on truncated rankings
(also called top-truncated ballots), as they are the most common type of weak orders in practice.

7This version of Copeland is actually Copeland0, as pairwise ties don’t give any points, while they give half a
point in some other versions.
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Actually, most if not all major elections using ranking-based rules such as IRV and Borda are
actually using truncated rankings, and voters are generally not required to rank all candidates.

In particular, Borda is one of the most studied rule for truncated rankings, with generalizations
being discussed by Emerson (2013) and later by Baumeister et al. (2012), among other scoring
rules and Copeland’s rule. Terzopoulou and Endriss (2021) characterized different generalizations
of Borda to truncated rankings. Mainly four generalizations have been discussed in the case of
Borda, but they can easily be adapted to any other scoring rule. If we consider a truncated ranking
in which k candidates are ranked and m− k are not, these generalizations are:

1. Optimistic: every ranked candidate c ∈ C receives sσi(c) points, and every unranked candi-
date receives sk+1 points.

2. Pessimistic: every ranked candidate c ∈ C receives sσi(c) points, and every unranked candi-
date receives sm points (generally 0).

3. Averaged : every ranked candidate c ∈ C receives sσi(c) points, and every unranked candidate
receives (

∑m
j=k+1 sj)/(m− k) points (see Dummett (1997)).

4. Round-down: every ranked candidate c ∈ C receives sσi(c)+m−k−1 points, and every unranked
candidate receives sm points (generally 0). In other words, we only keep the last k+1 values
of the score vector (see Narodytska and Walsh (2014)).

For instance, assume that we have the weak order a ≻ b ≻ {c, d}, and the Borda score vector
sBorda = (3, 2, 1, 0). The optimistic generalization gives S(a) = 3, S(b) = 2, and S(c) = S(d) = 1.
The pessimistic generalization gives S(a) = 3, S(b) = 2, and S(c) = S(d) = 0. The averaged gener-
alization gives S(a) = 3, S(b) = 2, and S(c) = S(d) = 0.5. Finally, the round-down generalization
gives S(a) = 2, S(b) = 1, and S(c) = S(d) = 0.

Note that for plurality, the first three generalizations are equivalent (which makes sense, as
plurality can be defined for uninominal ballots, which are truncated rankings with only one can-
didate ranked). For veto, the round-down and pessimistic generalizations are equivalent, and for
Borda, the round-down and optimistic generalizations are equivalent, corresponding to what is
called modified Borda in the literature (Emerson, 2007).

We can similarly define generalizations of runoff scoring rules to truncated rankings, by gener-
alizing the score vectors in one of the four ways mentioned above. Similarly to plurality, there is
only one sensible generalization of IRV to truncated rankings, in which all non-ranked candidates
receive 0 points. Kilgour et al. (2020) study the prevalence and the impact of the use of truncated
rankings with the IRV rule using synthetic and real data.

Weak Orders If it is possible to easily extend the first three generalizations of scoring rules
and runoff scoring rules proposed for top-truncated ballots to weak orders, there seems to be little
work on the topic in the social choice literature. The optimistic generalization can be extended by
giving to each candidate the maximum number of points that they can obtain in their indifference
class, the pessimistic generalization by giving them the minimum, and the averaged generalization
by giving them the average. For instance, in the ranking a ≻ {b, c} ≻ d, the Borda score of a is
always 3, the one of d always 0, but the score of b and c depends on the generalization: it is 2
for the optimistic one, 1 for the pessimistic one, and 1.5 for the averaged one. The round-down
generalization cannot be extended to weak orders.

In a series of articles, Meek (1994, Section 6), Warren (1996), and Hill (2001) developed a way
in which IRV (and in fact, every ranking-based voting rule) can be generalized to weak orders.
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Their idea was to replace every weak order by several (weighted) ranking votes, corresponding to
all possible ways in which the indifferences can be broken. For example, a voter with a weak order
a ≻ {b, c} ≻ d, would be replaced by a voter of weight 1/2 with ranking a ≻ b ≻ c ≻ d and another
voter of weight 1/2 with a ≻ c ≻ b ≻ d. Similarly, a voter who reports indifference between all
candidates would be replaced by m! votes each with weight 1/m!. After this replacement operation,
the original (scoring or runoff) rule is applied on the obtained profile. This actually corresponds
to the averaged generalization. Consider the case of IRV: at each step, the candidates in the top
indifference class are receiving 1/k points each, where k is the size of the indifference class. We
study the particular case of the generalizations of IRV to weak orders in more detail in Chapter 4.

Partial Orders, Possible Winners and Necessary Winners Finally, the different rules
based on rankings have also been studied for partial orders, which is a preference format more
general than weak orders. For instance, {a ≻ b, c ≻ d} is a possible partial order in which a and c
are not comparable, but they are not part of an equivalence class either. Among other works, Pini
et al. (2009) generalized some classical social choice axioms and impossibility results to the case
of partial orders, and Terzopoulou and Endriss (2019) proposed a way to average such preferences
by assigning different weights to different ballots depending on their size (i.e., the number of pairs
of candidates that can be compared).

Another interesting approach is the possible and necessary winners approach, in which we have
a profile of partial orders, and a rule based on full rankings, and the goal is to find candidates that
are winning in every possible completion of the partial orders into full rankings, giving necessary
winners, or in at least one completion, giving possible winners (Konczak and Lang, 2005). Many
subsequent works provide solutions to these problems and show their computational complexity
for various ranking-based rules, especially scoring rules (Xia and Conitzer, 2011; Betzler and Dorn,
2010; Baumeister and Rothe, 2012). Some works also considered the particular case of weak orders
(Kenig, 2019; Chakraborty et al., 2021). Informally, these works assume that voters’ preferences
can actually be expressed as rankings, but we are given incomplete preferences. There can be
several possible reasons we only have partial information, for instance because of communication
costs. In this thesis however, we have another interpretation of weak orders, and assume that the
voters are actually indifferent between the candidates they put in the same indifference class.

Valued Preferences

Let us now mention the different principles that guide the possible ways to aggregate valued (or
cardinal) preferences, without delving into the details.

We have an ordered set of possible values Z. A first possibility is to aim at maximizing the
median value given to a candidate over all voters. In other words, each candidate is associated
to its median value z∗(c) such that half of the voters give a better value to c, zi(c) ⩾ z∗(c) and
the other half a lower value zi(c) ⩽ z∗(c). The candidates with the highest median are then the
winners. This is the idea behind the majority judgement rule proposed by Balinski and Laraki
(2011), which uses a nominal scale of five to seven values (e.g., Z = {Excellent, Very Good, Good,
Acceptable, Poor, Reject}). We can also select the candidate(s) that maximize the lowest value
over all voters z∗(c) = mini∈V zi(c), corresponding to the egalitarian principle (Rawls, 2017).

We can define more rules when the set of possible values is numerical, e.g. Z = R. In that
case, we can associate each candidate to the average value they receive from the voters z∗(c) =

(1/n)
∑

i∈V zi(c), and select the candidates with the highest average value (Gaertner and Xu, 2012).
This is the idea behind the utilitarian principle (Mill, 2016). When Z is a finite set of numerical
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values (e.g., Z = {−1, 0, 1, 2}), we often call range voting or evaluative voting (Hillinger, 2005) the
idea to vote using such scale and select the candidate with the highest average (or equivalently,
total) value. Finally, we can also select the candidates that maximize the product of the values
they receive z∗(c) =

∏
i∈V zi(c), which is the idea behind the Nash rule (Nash et al., 1950; Kaneko

and Nakamura, 1979).

2.3.2 Multi-Winner Voting

In multi-winner voting, the goal is to select a subset of k > 1 candidates W ⊆ C (also called a
committee) based on some criterion. We encounter multi-winner voting situations quite often: in
politics, to elect an assembly of representatives; in companies, to shortlist the best applicants; in
recommendation systems, to select which items to recommend to the user; in facility location, to
select where to build infrastructures; or in participatory budgeting, to select projects to fund.

Formally, the outcome domain of multi-winner voting is the set of all subsets of candidates
O = 2C . However, in many cases, there is a size constraint on the number of candidates in the
committee. Consider for instance that we have to choose an assembly of representatives with a
fixed number of seats. In that case, we say that we want to select a committee of size k and the
outcome domain is then O = {W ⊆ C : |W | = k}. In the following, and unless stated otherwise,
we consider that the number of candidates we want to select is fixed to k > 1. Thus, multi-winner
voting rules take as input a profile P and a desired committee size k, and we write f(P, k) for the
result of the rule. For a more detailed overview of the multi-winner voting problem, we recommend
the survey by Faliszewski et al. (2017).

Different Goals

Before going over the different rules that have been defined for multi-winner voting, we must
distinguish different goals that can be pursued when selecting a committee of candidates. In single-
winner voting, the goal is generally clear: we want to select the most preferred candidate. However,
in multi-winner voting, we might want to achieve different goals, depending on the context. Elkind
et al. (2017b) identify three main objectives that are often pursued in multi-winner elections:

1. Excellence: select the candidates that are individually the best according to voters’ prefer-
ences. Consider for instance a company that wants to shortlist applicants for a job.

2. Proportionality: select candidates such that each group of voters is represented in the com-
mittee in proportion to its size. Typical examples include parliamentary elections, and par-
ticipatory budgeting.

3. Diversity: select candidates such that each voter can be associated with one candidate in
the committee that is high in their preferences. In that sense, voters only care about the
candidate they like the most in the committee, and not about the other ones. Consider for
instance a facility location problem in which infrastructures need to be built in a city: it is
better to build the infrastructures uniformly around the city such that everyone is close to
one infrastructure than to build all of them in the city center, even if it is the best location
for the majority of the population.

Of course, other goals can be pursued in multi-winner voting. For instance, the goal in Chapter 7
is to select a committee that is inducing the most conflict among the voters. Another example is
the study by Dong et al. (2024), in which they aim at selecting a committee of candidates that are
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the most interlacing, in the sense that the selected candidates have overlapping sets of supporters.
In the rest of this section on multi-winner voting though, we focus on these three objectives, and
discuss the rules that have been defined for different ballot formats.

Uninominal Preferences

With uninominal ballots, the only possibility is to select the k candidates with the highest plurality
score, which is the rule called single non-transferable vote (SNTV).

Approval Ballots

Things get more interesting with approval preferences. Multi-winner voting with approval ballots
is often referred to as approval-based committee voting (ABC voting for short), and rules as ABC
rules. In this section, we introduce the rules that are discussed in Chapter 3. We redirect to the
survey on ABC rules by Lackner and Skowron (2023) for a more detailed overview of the literature.

Generalization of Single-Winner Rules The most natural rule is multi-winner approval vot-
ing, which selects the k candidates with the highest approval scores. As this rule selects the k
candidates that perform best according to the single-winner approval rule, it is an interesting
rule for the excellence objective (Lackner and Skowron, 2018b). However, this rule is not good if
we want to achieve proportionality or diversity. Consider for instance a profile with candidates
C = {a, b, c, d} in which 51% of voters approve {a, b} and 49% approve {c, d}. With a committee
size k = 2, the multi-winner approval rule selects {a, b}, and almost half of the voters are not
represented at all by the committee.

We can also generalize split approval to the multi-winner setting, by selecting the k candidates
with the highest split approval scores S(c) =

∑
i:c∈Ai

1/|Ai|. In the multi-winner setting, this rule
is sometimes called satisfaction approval voting (Brams and Kilgour, 2015). It is not known to be
a particularly interesting rule for any of the three objectives.

Example 2.5
Consider the following approval profile P with k = 2:

4: {a, b, c} 6: {a, b} 4: {c, d} 2: {b} 1: {d}

The approval scores of the candidates are S(a) = 10, S(b) = 12, S(c) = 8 and S(d) = 5.
Thus, multi-winner approval voting returns the committee {a, b}. The split approval scores
are S(a) = 4/3 + 6/2 = 26/6, S(b) = 4/3 + 6/2 + 2 = 38/6, S(c) = 4/3 + 4/2 = 20/6 and
S(d) = 4/2+ 1 = 3 = 18/6. Thus, multi-winner split approval also returns the committee {a, b}.

Thiele Rules An interesting family of ABC rules is the family of Thiele rules (Thiele, 1895),
named after the Danish astronomer Thorvald Nicolai Thiele. These rules follow a similar idea than
scoring rules for single-winner voting with rankings, in the sense that every voter assigns a score
to each committee, and the committee with the highest total score is selected. To determine the
score given by a voter to a committee, a Thiele rule is based on a score vector s = (s1, . . . , sk) such
that sj ⩾ 0 for all j. Then, voter i ∈ V gives Si(W ) =

∑li
j=1 sj points to the committee W where

li = |W ∩ Ai| is the number of candidates from the committee that are approved by i. The total
s-score of a committee W is then S(W ) =

∑
i∈V Si(W ), and the rule selects the committee(s) with

the highest score.
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Thiele Rules
A Thiele rule based on the score vector s⃗ is the rule f defined as:

f(P, k) = argmax
W⊆C,|W |=k

∑
i∈V

|W∩Ai|∑
j=1

sj .

Note that the multi-winner approval rule is a Thiele rule and is based on the vector s =

(1, . . . , 1), as all voters give one point to the committee for each candidate they approve. Some
other particular Thiele rules have been extensively studied in the literature:

• Chamberlin-Courant Approval Voting (CCAV), based on the score vector s = (1, 0, . . . , 0),
and which was independently proposed by Chamberlin and Courant (1983). With this rule, a
voter gives a point to a committee if they approve one candidate in it, and no point otherwise.
This rule follows the diversity objective (Lackner and Skowron, 2018b).

• Proportional Approval Voting (PAV), introduced by Thiele (1895), is based on the harmonic
score vector s = (1, 1/2, 1/3, . . . , 1/k). This enables PAV to balance between the demands of
large and small groups, and to satisfy strong proportionality properties (Aziz et al., 2017a).

Other less studied families of Thiele rules include threshold methods (Fishburn and Pekec, 2004),
in which a voter gives a point to a committee if and only if they approve at least a certain number
of candidates in the committee, and p-geometric rules (Skowron et al., 2016), that are based on
the score vector (pk−1, pk−2, . . . , 1) with p ⩾ 1, rules with high values of p being closer to CCAV,
and rules with low values of p to AV. Do et al. (2022) study generalizations of Thiele rules to an
online setting, in which candidates are proposed one by one. They show that it is still possible to
achieve some interesting proportionality and diversity properties in this setting.

Example 2.6
Consider the approval profile P from Example 2.5, still with k = 2. For a committee W , we
denote n1 the number of voters who approve exactly one candidate from the committee and
n2 the number of voters who approve both candidates. The CCAV score is then equal to the
total number of voters who approve at least one candidate n1 + n2. To compute the PAV score,
observe that voters who approve one candidate from the committee give 1 point, and voters who
approve two candidates give 1.5 points. The following table shows values of n1 and n2 for each
committee, as well as their PAV and CCAV scores:

{a, b} {a, c} {a, d} {b, c} {b, d} {c, d}

n1 2 10 15 12 17 5
n2 10 4 0 4 0 4

CCAV (n1 + n2) 12 14 15 16 17 9
PAV (n1 + 1.5n2) 17 16 15 18 17 11

Thus, CCAV selects the committee {b, d} and PAV selects the committee {b, c}.

One major drawback of Thiele rules such as CCAV and PAV is that they are NP-hard to
compute (see Procaccia et al. (2008) for CCAV, Skowron et al. (2016) for PAV, and Godziszewski
et al. (2021) for a more general result). A notable exception is the multi-winner approval voting
rule, which is clearly computable in polynomial time, as one just needs to compute the approval
score of each candidate. Peters and Lackner (2020) showed that the hardness of Thiele rules does
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not hold anymore when the approval profile is linear (i.e., all approval ballots are intervals of the
same axis ◁, see Section 2.2.6).

Sequential Thiele Rules To escape this computational hardness, a possible solution is to use
greedy approximations of these rules instead of computing the exact committee that maximizes
the score. This is the idea behind sequential Thiele rules, that were also defined in the original
paper by Thiele (1895). With sequential rules, the idea is to add the candidates to the committee
one by one instead of computing the best committee all at once. More precisely, for a sequential
Thiele rule based on the score vector s = (s1, . . . , sk), we start with an empty committee W = ∅,
and at each step l ⩽ k, we compute for each candidate c ∈ C \W the s-score of the committee
W ∪ {c}, and we select the candidate that maximizes this score. We then add this candidate to
the committee. We repeat the process until the committee is full, i.e., |W | = k.

We can thus define sequential-PAV and sequential-CCAV, the sequential versions of PAV and
CCAV. Note that the sequential version of the multi-winner approval rule is equivalent to the
non-sequential version: both select the k candidates with the highest approval score. Lu and
Boutilier (2011) and Skowron et al. (2016) showed that this greedy approach is actually a good
approximation of the exact rule, as the committee selected by the sequential Thiele rule based on
the vector s is guaranteed to have a score greater than 1−1/e ≈ 0.63 times the score of the optimal
committee for the original Thiele rule.

Example 2.7
Consider again the approval profile P from Example 2.5, with k = 2. For all sequential Thiele
rules, it is clear that the first candidate to be added to the committee is the approval winner b.
Now, using the table from Example 2.6, we can directly conclude that sequential CCAV selects
the committee {b, d} and sequential PAV selects the committee {b, c}.

Thiele (1895) also proposed greedy variants of the rules in which we start with a full committee
W = C and we repeatedly remove the candidate that contributes the least to the s-score of the
committee until we reach the desired size. This is the idea behind reverse sequential Thiele rules,
and is similar to the principle behind sequential runoff rules for ranking-based single-winner voting.

Other Proportional Rules We conclude this overview of ABC voting rules by mentioning a
few other rules that aim for proportionality and that are used in Chapter 3.

Sequential Phragmén is one of the many rules proposed by the Swedish mathematician Lars
Edvard Phragmén (Phragmén, 1894). As for sequential Thiele rules, we construct the committee
by adding the candidates one by one until it is full. The intuition behind the rule is the following
(Lackner and Skowron, 2023): each voter i ∈ V starts with a ‘budget’ of 0, and their budget
continuously increases over time. Thus, after a time t ∈ R>0, the budget of every voter is t. Now,
assume that the ‘cost’ of every candidate is 1, and as soon as there is a candidate c that is approved
by voters who have a total budget of 1 together, then this candidate can be ‘bought’, and is added
to the committee W =W∪{c}. The budget of all the voters who approved this candidate (but only
of these voters) is reset to 0. We repeat this process until the committee is full. Peters and Skowron
(2020) proposed a variant of this rule, called the Method of Equal Shares (MES) that satisfies even
stronger proportionality properties. The main difference resides in the fact that the voters are
given a fixed budget y(i) = k/n from the start, while it is continuously increasing in Phragmén’s
rule. Note that this rule does not always return a complete committee, and might require a second
phase to complete the committee. Finally, Phragmén also discussed another sequential rule, which
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is based on the idea that each candidate in the committee should represent a quota Q of voters
(for instance Q = n/k). This rule was independently proposed by another Swedish mathematician
Gustaf Eneström (Eneström, 1896), and is thus called the Eneström-Phragmén rule.

We note that in the profile from Example 2.5 and k = 2, it can be computed that all these
rules select the committee {b, c}, like PAV. This hints that these rules might be good for the
proportionality objective. Indeed, these rules have been shown to satisfy strong proportionality
properties (Peters and Skowron, 2020; Skowron, 2021). We refer to Lackner and Skowron (2023)
for a formal definition and a deeper analysis of these rules.

Rankings

Let us now move to ranking-based multi-winner voting rules, with still the three objectives of
excellence, proportionality and diversity in mind. Again, we will not discuss all existing rules, but
only the ones that are relevant to this thesis.

Excellence: Extending Single-Winner Rules A safe principle to construct a multi-winner
rule aiming for excellence is to start with a single-winner rule that assigns a score to each candidate,
and select the k candidates with the highest scores. This works for all scoring rules, but also for
Copeland and Minimax. Consider for instance the k-Borda rule:

k-Borda Rule
The k-Borda rule is the rule that selects the k candidates with the highest Borda scores.

This rule has been axiomatically characterized by Debord (1992). Another popular rule is Bloc,
which returns the k candidates with highest k-approval scores, using the same value of k as for the
desired committee size. Finally, as already mentioned for the case of uninominal ballots, the single
non-transferable vote (SNTV) selects the k candidates with the highest plurality scores. Note that
in the case of SNTV, it is not clear that it is a good rule for the excellence objective. These “best-k”
rules based on single-winner scoring rules are part of the more general family of committee scoring
rules, introduced by Elkind et al. (2017b).

Example 2.8
Consider the following preference profile P with k = 3:

6: a ≻ d ≻ e ≻ b ≻ c 5: b ≻ e ≻ d ≻ a ≻ c
4: c ≻ e ≻ d ≻ b ≻ a 2: e ≻ b ≻ a ≻ d ≻ c

In this profile, the Borda scores are S(a) = 33, S(b) = 36, S(c) = 16, S(d) = 38 and S(e) = 47.
Thus, k-Borda returns the committee {e, d, b}. Bloc returns {a, e, d}, as these are the three
candidates that are ranked in the top 3 the most. Finally, SNTV returns the committee {a, b, c}.

With the excellence objective in mind, Barberà and Coelho (2008) proposed another rule, called
sequential plurality, which sequentially constructs the committee by adding the candidate with the
highest plurality score at each step, and removing it from the profile. By eliminating the candidate,
this might lead to a very different committee than the one we obtain with SNTV, even though
both rules are based on plurality scores. Consider for instance the profile P = {3 : a ≻ b ≻ c, 2 :

c ≻ a ≻ b} with k = 2. In this profile, SNTV selects {a, c}, since the plurality score of b is 0.
However, sequential plurality first selects a and eliminates it from the profile, and then selects b,
giving the committee {a, b}.
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Diversity: Chamberlin-Courant Intuitively, a committee is diverse if many voters put one
of the candidates from the committee among the first candidates of their ranking. In a sense, the
SNTV rule is achieving some sort of diversity, as it maximizes the number of voters who rank one
of the candidates in the committee first. Still, a better rule for diversity is the Chamberlin-Courant
rule (Chamberlin and Courant, 1983), which takes into account the whole rankings of the voters
and not only the first-ranked candidates. It is based on the Borda score vector, but instead of
giving m − σi(c) points to each candidate c in the committee W like k-Borda, it only takes into
account the candidate from the committee that is ranked the highest by the voter. In other words,
each voter i ∈ V gives maxc∈W m− σi(c) points to the committee W .

Chamberlin-Courant
The Chamberlin-Courant rule selects the committee(s) W (of size k) that maximize the score

S(W ) =
∑
i∈V

max
c∈W

(m− σi(c)).

The Chamberlin-Courant rule is arguably one of the best rules based on rankings to achieve the
diversity objective (Elkind et al., 2017b). However, as for CCAV in the case of approval ballots,
(Procaccia et al., 2008) showed that Chamberlin-Courant is NP-hard to compute in general, and
polynomial time computable if the preference profile is single-peaked. Similarly to sequential
variants of Thiele rules in the approval case, we can define a greedy variant of Chamberlin-Courant
that is polynomial time computable. Skowron et al. (2015) showed that this greedy variant achieve
the same approximation bound of 1− 1/e ≈ 0.63 as sequential Thiele rules in the approval case.

Example 2.9
Consider again the profile from Example 2.8 with k = 3, and let us run the greedy Chamberlin-
Courant rule. According to Example 2.8, the candidate with the highest Borda score is e with
S(e) = 47. Thus, it is the first candidate added to the committee. Now, we can compute the
Chamberlin-Courant scores we obtain when we add each candidate in the committee. We obtain
59 for {e, a}, 52 for {e, b}, 51 for {e, c} and 53 for {e, d}. Thus, a is the second candidate added
to the committee. The Chamberlin-Courant scores when we add the remaining candidates are
now 64 for {e, a, b}, 63 for {e, a, c} and 59 for {e, a, d}. Thus, the committee returned by greedy
Chamberlin-Courant is {e, a, b}. It is possible to verify that this committee is also the one selected
by Chamberlin-Courant.

Proportionality: STV (and Monroe) Finally, we consider the proportional representation
objective. While finding the best rules for proportional representation is an active area of research
(Faliszewski et al., 2019b; Elkind et al., 2017b,a), the single transferable vote (STV) rule has been
shown to satisfy desirable proportionality properties (Tideman, 1995; Tideman and Richardson,
2000). Intuitively, STV can be seen as a generalization of IRV to the multi-winner setting, as it
proceeds by repeatedly eliminating or adding candidates to the committee. The rule is based on a
quota Q, for instance the Droop quota Q =

⌊
n

k+1

⌋
+ 1, and is defined as follows.

Single Transferable Vote
The Single Transferable Vote (STV) rule constructs the committee W as follows:

1. Start with the empty committee W = ∅ and the full set of candidates C ′ = C. Set the
weight of each voter to w(i) = 1.
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2. Repeat until |W | = k:

(a) If there is a candidate c ∈ C ′ ranked first among the remaining candidates C ′ by a
set of voters S with total weight at least

∑
i∈S w(i) ⩾ Q, then add this candidate to

the committee W , and remove it from the set of remaining candidates: C ′ = C ′ \ {c}.
Remove a total weight of Q from voters in the set S.

(b) If no candidate reaches the quota, we eliminate the candidate c ∈ C ′ with lowest total
weight

∑
i∈S w(i), where S is the set of voters ranking c first among candidates in C ′.

Thus, we set C ′ = C ′ \ {c}.

Note that the way we remove weight from voters in step 2.a does not affect the proportionality
properties satisfied by the rule. However, it might affect the outcome of the rule. A common
way to do it is to determine the minimal value α such that

∑
i∈S min(w(i), α) = Q, and then set

w(i) = w(i)−min(α, 0) for all voters i ∈ S.

Example 2.10
Let us consider again the profile from Example 2.8 with k = 3. We have n = 17, so the quota is
Q =

⌊
17
3+1

⌋
+1 = 5. Since a is ranked first by 6 voters, it is added to the committee and removed

from the profile. We also remove 5 of the 6 voters who ranked a first. We obtain:

1: d ≻ e ≻ b ≻ c 5: b ≻ e ≻ d ≻ c
4: c ≻ e ≻ d ≻ b 2: e ≻ b ≻ d ≻ c

Now, b is reaching the quota, as it is ranked first by 5 voters. Thus, it is added to the committee
and removed from the profile. We also remove the 5 voters who ranked b first. We obtain:

1: d ≻ e ≻ c 4: c ≻ e ≻ d 2: e ≻ d ≻ c

No candidate reaches the quota, so the candidate with lowest plurality score d is eliminated. This
gives one more supporter to e, however it is not enough for any candidate to reach the quota,
thus e is eliminated too, and c is now reaching the quota. Thus, STV returns {a, b, c}.

One of the earliest mention of the STV system is from the 19th century and the treatise by Hare
(1861). STV has been used in many large-scale political elections for over a century, in particular
in Australia, Ireland and Malta.

Finally, another well-studied rule that aims at returning a committee satisfying some form
of proportional representation is the Monroe rule (Monroe, 1995). Informally, it forces every
candidate in the committee c ∈ W to represent exactly Q = n/k voters (more precisely between
⌊n/k⌋ and ⌈n/k⌉ voters), and each candidate c in the committee receives a score m − σi(c) from
each voter i they represent. In that sense, it is quite similar to Chamberlin-Courant, except that
the voters are not necessarily represented by the candidate they prefer the most in the committee.
Like Chamberlin-Courant, Monroe’s rule is NP-hard to compute in general (Procaccia et al., 2008),
but in contrast to Chamberlin-Courant it has not been shown to be easier to compute with single-
peaked preferences (Betzler et al., 2013). For this rule, Skowron et al. (2015) also proposed a
greedy variant called greedy Monroe, that interestingly satisfies good proportionality properties,
that are not satisfied by the original rule.
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Weak Orders

There is much less work on multi-winner voting with weak orders, especially if we do not restrict
preferences to truncated rankings. If preferences are truncated rankings, most of what we saw in
Section 2.3.1 for the single-winner case can be adapted to the multi-winner case. In particular,
the definition of STV still works if rankings are top-truncated. If we now consider weak orders
and not only truncated rankings, there exist different generalizations of STV, that are analogous
of the generalizations of IRV to weak orders that we mentioned in Section 2.3.1 (and that we will
extensively discuss in Chapter 4). These generalizations of STV to weak orders are discussed on
the original version of the paper on which Chapter 4 is based (Delemazure and Peters, 2024).

Aziz and Lee (2020) introduced another rule based on weak orders that satisfies interesting
proportionality properties, called the expanding approval rule. On a high-level, it is similar to
STV, as it starts by considering the top-1 preference of each voter (i.e., their favorite candidate)
and adds to the committee all candidates that are reaching some quota Q in number of supporters,
but instead of eliminating candidates when none is reaching the quota, the rule instead considers
the top-2 preferences of the voters, and so on until it finds a candidate that reaches the quota.

Valued Preferences

We do not discuss multi-winner voting rules based on valued preferences in this thesis. However,
we note that all the rules discussed in Section 2.3.1 for the single-winner case can be adapted to
the multi-winner case by taking the top-k candidates, thus going in the direction of the individual
excellence objective.

Committees of Variable Size

We assumed so far that the size of the desired committee k was fixed. However, in some cases,
it might be more interesting to have a committee that is not constrained to a fixed size if this
committee is qualitatively better. For instance, in the shortlisting context, we might want to
select all candidates that are good enough to be part of the committee, without restricting its size.
Such rules have been studied in the literature, and are sometimes referred as dichotomy functions
(Duddy et al., 2014).

For the individual excellence objective, the rules based on scores can be adapted to the uncon-
strained size case by deciding to select in the committee all candidates that have a score higher than
some threshold τ (Lackner and Maly, 2021). For instance, with approval ballots, we can include in
the committee all candidates approved by more than half of the voters. This is actually what the
net approval rule, proposed by Kilgour (2010), does. In other words, with this rule each voter gives
+1 to each candidate in the committee they approve, and −1 to each candidate in the committee
they disapprove, which is equivalent to saying we maximize the value of

∑
i∈V |W ∩Ai| − |W \Ai|

over all committee W . Faliszewski et al. (2020) proposed a family of rules generalizing this princi-
ple by considering that approvals and disapprovals can have different weights (for instance, a voter
could give +1 to each approved candidate, and −1/2 to each disapproved candidate).

Another family of rules are next-r rules for r ⩾ 2 (Kilgour, 2016; Brams and Kilgour, 2012),
which select the smallest non-empty committee W such that every candidate in W has an approval
score higher than the sum of the scores of any set of r candidates that are not in the committee.
Kilgour (2016) also proposed first majority, which returns the smallest committee such that the
sum of the approval scores of the candidates in the committee is greater than the sum of the
approval scores of the candidates outside the committee.
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Lackner and Maly (2021) also proposed approval-based shortlisting rules. For instance, the
largest gap rule returns the committee that maximizes the minimal gap between the approval score
of a candidate in the committee and a candidate outside it. They also proposed the size priority
rule which comes with a preference order over possible sizes of the committee >, and returns the
committee of the most preferred size that maximizes the approval score, and which does not require
ties to be broken. Faliszewski et al. (2020) discussed another approval-based rule, this time aiming
for diversity, that returns all committees of minimal size such that every voter (with a non-empty
approval ballot) approves at least one candidate in the committee. They call this rule the minimal
representing committee rule.

Finally, another possible rule is to select all candidates that have an approval score higher than
the average approval score (Duddy et al., 2016). This is also the idea behind the ranking-based rule
Borda mean, proposed by Brandl and Peters (2019) and that returns a committee W containing
all candidates c that have a Borda score higher than the average Borda score. Note that this idea
can be applied to any scoring rule.

In Chapter 5 of this thesis, we discuss the problem of selecting a subset of candidates from
rankings such that each candidate in the committee represents at least a certain number of voters
(in the sense that these voters rank them higher than any other candidate from the committee).

Apportionment

We conclude this section on multi-winner voting by briefly discussing the closely related problem of
apportionment (Balinski and Young, 2010; Pukelsheim, 2014). A typical example of apportionment
is the allocation of seats in a parliamentary election. The main difference with the multi-winner
voting problem is that candidates (in general called parties) can receive more than one seat. More
formally, there is a total number of seats k to distribute to parties.

Most parliamentary elections in real life use uninominal ballots. However, contrary to the other
settings, there exists a variety of interesting rules to distribute the seats in a proportional fashion
among the parties with only uninominal preferences. The two most famous families of rules are
the largest remainder rules and the highest average rules. The most popular rule in practice is the
D’Hondt method, which is a highest average rule (Balinski and Young, 1978).

Brill et al. (2018) proposed adaptations of approval-based multi-winner rules to the apportion-
ment problem, which we further studied in Delemazure et al. (2023a). Airiau et al. (2023, Section
7) considered apportionment based on complete rankings of the competing parties. The problem
studied in Chapter 5 of this thesis is also closely related to this problem, as it discusses the problem
of selecting the subset of parties that will be allowed to have seats in a parliament from a preference
profile of rankings.

2.3.3 Candidate Ordering

Let us now move to another kind of problem, in which the goal is not to select winners, but instead
to learn the structure of the electorate and of the candidate set, based on the preferences. More
specifically, we consider the problem of obtaining an ordering (or axis) of the candidates ◁. The
intuition is that candidates supported by similar sets of voters should be close to each other on the
axis, while candidates who have very different sets of supporters should be far apart. For instance,
if the axis is a◁b◁c◁d, candidates b and c probably have overlapping sets of supporters, while it is
less likely for a and d. Thus, this problem is tied to the notions of structured preferences that we
discussed in Section 2.2.6, in particular single-peakedness and interval approval preferences, which
both rely on the idea that there exists an underlying ordering of the candidates. In a sense, we are
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looking for an axis for which the preference profile is almost single-peaked (for rankings) or linear
(for approval ballots).

This problem has numerous applications, from political science (where it is often assumed that
political parties can be approximately ordered on some left-right ideological axis), to relative dating
in archeology and geology, or scheduling (which all rely on temporal axes). We discuss these various
applications in more detail in Chapter 6.

Formally, the outcome domain of this problem is the set of all linear orders over candidates
O = L(C). However, this problem should not be confused with the one of obtaining a ranking of
the candidates: a ranking represents the preferences of the society, while the ordering describes
their structure. In particular, recall that the direction of the ordering does not matter, for instance
the orderings ◁ = abcd and ⃗◁ = dcba are equivalent. We call the rules that return such orderings
axis rules.

Clearly, if the preferences are uninominal, it is not possible to identify any relationship between
the candidates. The approval case is the topic of Chapter 6, and has not been discussed previously
(to our knowledge) in the computational social choice literature. Finally, a few papers have studied
the problem of obtaining an ordering using rankings. In the remainder of this section, we briefly
go over their main contributions.

Rankings

The main approach to uncover a good ordering of the candidates is to find the ones for which
the profile of rankings is nearly single-peaked, in the sense that the preference profile is almost
single-peaked for this axis. The most common definition of near single-peakedness is called partial
single-peakedness by Niemi (1969) and k-voter deletion single-peakedness in more recent works
(Elkind and Lackner, 2014; Faliszewski et al., 2014). Intuitively, a preference profile of rankings is
k-voter deletion single-peaked for an axis ◁ if it is possible to delete k voters from the profile such
that the remaining profile is single-peaked for ◁. This inspired the following axis rule:

Voter Deletion
The voter deletion rule selects the axes ◁ that minimize the number of voters to remove from the
profile to make it single-peaked for ◁.

Erdélyi et al. (2017) proposed a similar notion of near single-peakedness that relies on deleting
candidates instead of voters, which is called k-candidate deletion single-peakedness. They also in-
troduced k-global swaps single-peakedness that says we can perform k swaps of adjacent candidates
in voters’ rankings and obtain a single-peaked profile. Then, the global swaps rule selects the axes
that minimize the value of k for which the profile is k-global swaps single-peaked for them.

Faliszewski et al. (2014) introduced another interesting notion of near single-peakedness that
they call PerceptionFlipk single-peakedness. Intuitively, a profile is PerceptionFlipk single-peaked
for an axis ◁ if for each ranking in the profile, it is possible to make it single-peaked for ◁ by
performing at most k swaps of adjacent candidates on the axis. Erdélyi et al. (2017) proved that
this is equivalent to k-local swaps single-peakedness, in which swaps are not done on the axis, but
on the rankings, but unlike for the global swaps single-peakedness, here k is the maximum number
of swaps that can be done per ranking, and not globally.

Finally, Escoffier et al. (2021) introduced a notion of near single-peakedness based on the idea
of forbidden triples. Informally, a triple of candidates (a, b, c) is a forbidden triple for an axis ◁ and
a ranking ≻ if they are breaking the single-peakedness of ≻ for ◁. More formally, this means that
a is ranked first in ≻ and a ◁ c ◁ b or b ◁ c ◁ a, but a ≻ b ≻ c. Then, a profile is k-forbidden triples
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Chapter Outcome

Chapter 3: Approval with Runoff Rules Single-winner
Chapter 4: Runoff Scoring Rules Single-winner
Chapter 5: Party Selection Rules Multi-winner (unconstrained size)
Chapter 6: Axis Rules Orderings
Chapter 7: Conflict Rules Multi-winner (k = 2)

Table 2.3: Outcome types of each chapter’s problem.

single-peaked if there exists at most k forbidden triples in the profile for some axis. This inspired
the following rule:

Forbidden Triples
The Forbidden Triples rule selects the axes ◁ that minimize the number of forbidden triples in
the profile for ◁.

Tydrichová (2023) axiomatically analyzed the different axis rules and showed that Forbidden
Triples satisfies nice axiomatic properties. Some of the rules we discuss in Chapter 6 for the
approval case are inspired by the rules we just discussed.

Distance-rationalizable Rules

Before concluding this section, note that these axis rules, as well as some of the single-winner and
multi-winner rules, can be seen as what is called distance-rationalizable rules in the social choice
literature (Elkind et al., 2015). On a high level, a rule is distance-rationalizable if there exists a
distance function between ballots d(·, ·), and a class of preference profiles C ⊆ Xn in which there
is always a consensual outcome, such that for any preference profile P = (X1, . . . , Xn), the rule
will necessarily return the consensus outcome of the preference profile from the (consensus) class
P ′ = (X ′

1, . . . , X
′
n) ∈ C that is the closest to P according to the distance d. More formally, we have

f(P ) = f(P ′) where P ′ = argminP ′∈C d(P, P
′) = argminP ′∈C

∑
i∈V d(Xi, X

′
i).

For instance, in single-winner voting with rankings, it is clear by its definition that Kemeny’s
rule is distance-rationalizable for the Kendall-tau distance and the consensus class of strongly
unanimous profiles, in which all voters submit the exact same ranking. Meskanen and Nurmi (2008)
showed that many other well-known single-winner voting rules are distance-rationalizable. For
instance, Borda is distance-rationalizable for the Kendall-tau distance and the class of unanimous
profiles, in which all voters rank the same candidate first, and plurality is distance-rationalizable
for the same class of unanimous profiles, but using the discrete distance, which is equal to 1 if the
two rankings are different, and 0 otherwise. In other words, this distance counts the number of
voters that need to be removed to make the profile part of the consensus class.

Finally, for the rules returning an ordering of the candidates, that we discussed in this section,
it is clear by their definitions that they are distance-rationalizable if we consider the consensus class
of single-peaked profiles. In particular, voter deletion is distance-rationalizable using the discrete
distance, and global swaps is distance-rationalizable using the Kendall-tau distance.

2.3.4 Summary

Table 2.3 summarizes the outcome types of the problems discussed in this thesis. Note that in
Chapter 3, the outcome is a single candidate, but the rules we introduce are based on ABC rules.
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2.4 Axioms

We saw that for a given ballot format and a desired outcome type, we can generally define many
rules returning an outcome of the desired type based on the preferences of the voters. Once several
rules have been defined, the next step is to evaluate them, in order to better understand in which
context it is relevant to use each rule. The two main tools we use in this thesis to evaluate and
compare rules are the axiomatic analysis, in which we define desirable properties and check which
rules satisfy them, and the experimental analysis, in which we simulate preference profiles to see
how the rules behave in practice. These profiles can be artificially generated using some random
model (giving synthetic data), or based on real preferences (giving real data). In this section, we
focus on the axiomatic analysis, and we cover the experimental analysis in Section 2.5.

The idea of the axiomatic analysis is to define a set of normative axioms A1, . . . ,Ak, that
generally sound desirable. There is no in-between: either a rule f satisfies the axiom, or it does
not satisfy it. However, one axiom can be strictly stronger than another one (i.e., if a rule satisfies
the first, stronger axiom, then it must also satisfy the second, weaker one). The axiomatic analysis
relies on mathematical proofs to show whether or not rules satisfy axioms.

Besides proving which rules satisfy which axioms, the axiomatic analysis can lead to other
meaningful results. In particular, we often find incompatibilities between axioms, by saying that
no rule of a certain family can satisfy all of the axioms that are in some set {A1, . . . ,An}. Some
of these theorems are foundational results of social choice theory, such as Arrow’s and Gibbard’s
impossibility theorems. Impossibility theorems are quite negative, as they state that the set of
rules that satisfy a certain set of axioms is the empty set. We can also look for more positive
results, that state that the set of rules that satisfy a certain set of axioms is a singleton, meaning
that there exists exactly one rule f that satisfies all of the axioms. We call this an axiomatic
characterization of the rule f . A famous example of such result is May’s characterization of the
majority rule in the case we only have m = 2 candidates, that we discussed in Section 2.3.1. We
can also characterize families of rules instead of single rules. A typical example is the family of
scoring rules for ranking-based single-winner voting (Smith, 1973; Young, 1975).

In this section, we introduce several categories (or families) of axioms. Of course, each voting
problem has its own set of axioms, as many desirable properties depend on the particular context
of the problem. Thus, as for our overviews of preferences, outcomes and rules, we will not be
exhaustive in this section, and we will focus on the most studied families of axioms, that appear in
several chapters of this thesis. The different families of axioms we will introduce are the following:

• Symmetry (Section 2.4.1): What should happen if we permute the candidates or the voters
in the profile?

• Efficiency and representation (Section 2.4.2): What should happen in some specific profiles
for which there are clearly good outcomes or clearly bad outcomes?

• Reinforcement (Section 2.4.3): What should happen if we combine two profiles for which the
outcome is the same?

• Independence axioms (Section 2.4.4): What should happen if we remove one or several
candidates from the profile?

• Strategyproofness and monotonicity (Section 2.4.5): What should happen if one voter changes
their preferences?
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We can separate these axioms into two families based on Fishburn (1973) categorization: intra-
profile properties, that state what should be the outcome for some specific profiles, and inter-profile
properties, that state how the outcomes of different profiles are related. They are sometimes
also referred to as respectively functional and relational properties. Efficiency and representation
axioms say what should happen given one preference profile, so they are intra-profile (or functional)
properties, while the other axioms are inter-profiles (or relational) properties.

Zwicker (2016) proposes yet another categorization of axioms (in the single-winner voting con-
text) into three groups: the ones of low strength that must be satisfied by any reasonable rule,
the ones of middle strength that might or might not be satisfied by rules, and finally the stronger
ones, that are never satisfied by reasonable rules, generally due to impossibility theorems.

2.4.1 Symmetry

Neutrality and anonymity are some of the least controversial social choice axioms (at least, for
irresolute rules). Neutrality states that the rule should treat all candidates the same way, and
Anonymity states that the rule should treat all voters the same way. More formally, we have:

Anonymity
A rule f is anonymous if for any permutation π of the voters and any preference profile P =

(X1, . . . , Xn), we have f(π(P )) = f(P ).

In this definition, we have π(P ) = (Xπ(1), . . . , Xπ(n)). We define neutrality similarly:

Neutrality
A rule f is neutral if for any permutation π of the candidates and any preference profile P , we
have f(π(P )) = π(f(P )).

Here, π(P ) = (π(X1), . . . , π(Xn)) indicates that we permute the names of the candidates in
the preferences X1, . . . , Xn of the voters according to the permutation π. For instance, with the
permutation π = (a → b, b → c, c → a) we have π(a ≻ b ≻ c) = b ≻ c ≻ a if preferences are
rankings, and π({a, b}) = {b, c} if preferences are approval ballot.

For irresolute rules, these axioms are generally required. Actually, all the irresolute rules
introduced in Section 2.3, as well as the ones that are introduced in the different chapters of this
thesis satisfy anonymity and neutrality. Things get more difficult for resolute rules, as they need
to break ties in case there are several winners. Consider for instance a single-winner election with
two candidates a and b, and a profile P containing two voters with preferences respectively a ≻1 b

and b ≻2 a. Any resolute rule needs to return exactly one candidate, but the profile is perfectly
symmetric, so the choice needs to be arbitrary, or according to a tie-breaking order. Let us assume
without loss of generality that f(P ) = a. Then using the permutation π = (a → b, b → a) of the
candidates, we switch the names of a and b, but because the profile is symmetric, we fall back on
the same profile with voter 1 and 2 swapped. If we now consider a permutation π′ of the voters,
that swaps voter 1 and 2, then we exactly have π′(π(P )) = P . However, by neutrality we have
f(π(P )) = π(f(P )) = π(a) = b, and by anonymity we have f(π′(π(P ))) = f(π(P )) = b, which is a
contradiction with f(P ) = a. A generalization of this proof gives Moulin’s impossibility theorem
(Moulin, 1983) that states that no reasonable rule (i.e., that satisfies Pareto) can be resolute,
neutral and anonymous.

The issue is that if several candidates are tied as winners, we somehow need a way to break
the ties. The two main ways to break ties are to either favor some voter(s) (breaking anonymity),



52 CHAPTER 2. THE TOOLBOX OF COMPUTATIONAL SOCIAL CHOICE

or favor some candidate(s) (breaking neutrality). In practice, breaking anonymity would means
breaking the democratic principle “One man, one vote”. Thus, the latter is often done by using a
tie-breaking order over the candidates. It is also fair to assume that in most cases, if the number
of voters is large enough, the probability of ties is very low for most rules (Xia, 2021; Janeczko
and Faliszewski, 2023). For this reason, neutrality is often considered a too strong axiom when
we are dealing with resolute rules, and the weaker axiom of non-imposition is sometimes used
instead. It states that for every possible outcome in the outcome domain O, there exists at least
one preference profile for which this outcome is selected.

2.4.2 Efficiency and Representation

We now consider axioms that impose a constraint on the outcome for a subset of profiles. In
single-winner voting with rankings, the Condorcet criterion is an example of such an axiom: it
states that if there exists a Condorcet winner, then this candidate should be the winner. This
gives the Condorcet extension family of rules that we discussed in Section 2.3.1. We can also define
Condorcet losers, analogously to Condorcet winners: in an ordinal profile, the Condorcet loser is
the candidate c that loses the majority vote against any other candidate, i.e., for all d ∈ C such that
d ̸= c, we have d ≻M c. Then, the Condorcet loser criterion states that if there exists a Condorcet
loser, then this candidate should not be the winner. While the Condorcet criterion imposes the
outcome, the Condorcet loser criterion excludes one possible outcome. These two examples are
instances of respectively positive efficiency axioms (if there is a clearly correct outcome, then select
it) and negative efficiency axioms (if there is a clearly incorrect outcome, then do not select it).
Finally, we will also discuss representation axioms, that are a kind of positive efficiency axioms.

Negative Efficiency

We start with negative efficiency axioms. For the single-winner voting setting with rankings, we
already mentioned the Condorcet loser criterion. A less controversial axiom is the Pareto-efficiency
axiom, or Pareto principle (Pareto, 1919). Informally, it states that if all voters weakly prefer some
candidate a to another candidate b, and at least one voter strictly prefers a to b, then b should
not be the winner. Formally, we say that a candidate a Pareto-dominates another candidate b in
a profile P of weak orders if (1) for all i ∈ V , a ≽i b and (2) there exists i ∈ V such that a ≻i b.

If we restrict the preferences to rankings instead of weak orders, then a Pareto dominates b
if and only if a ≻i b for all voters, and if we restrict the preferences to approval ballots, then a

Pareto-dominates b if all voters who approve b also approve a and at least one voter approves a
and not b. The definition also works for valued preferences, since any evaluation function zi from
candidates to an ordered set Z induces a weak order ≽i.

Pareto-Efficiency
A rule f is Pareto-efficient if it never returns a Pareto-dominated candidate.

Note that this axiom can apply to resolute and irresolute rules. In particular, one can easily
check that all of the single-winner rules discussed in Section 2.3.1 satisfy this axiom. A weaker
version of this axiom, designed for irresolute rules, states that if for a preference profile P , f returns
a Pareto-dominated candidate b, then all the candidates that Pareto-dominate b should also be
returned by the rule for this profile (tied with b).

There are several ways to generalize Pareto-efficiency to multi-winner voting. For approval
ballots, Lackner and Skowron (2019) proposed an efficiency axiom which relies on a domination
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relation between committees. They say that a committee W dominates a committee W ′ if all
voters approve weakly more candidates in W than in W ′, and at least one voter approves strictly
more. As with Pareto-efficiency, we can define a weak version of this axiom for irresolute rules.
Lackner and Skowron (2020) later showed that surprisingly few ABC rules satisfy even the weak
version of the axiom: among the rules we introduced in Section 2.3.2, only Thiele rules and SAV
satisfy the weak version of the axiom, and only AV, PAV and SAV satisfy the strong version. For
the ordinal setting, Lainé et al. (2025) consider several notions that first transform voters’ rankings
over candidates into weak orders over committees (for instance using a lexicographic order), and
then apply the classical Pareto principle to these weak orders.

Positive Efficiency

In a sense, positive efficiency axioms are stronger than negative efficiency ones, as they impose the
outcome. We already mentioned the Condorcet criterion, which states the following:

Condorcet Criterion
A rule f satisfies the Condorcet criterion if for every profile P that admits a Condorcet winner,
it returns the Condorcet winner.

Fishburn (1981) generalized this principle to multi-winner voting by saying that a committee
W is a Condorcet committee if for any other possible committee W ′, a majority of voters prefers
W to W ′. In the approval case, we use the same preference notion between committees as the
one we used for Pareto-efficiency: a voter prefers the committee in which they approve the most
candidates. Another way to generalize the Condorcet criterion to the multi-winner setting is to
say that W is a Condorcet committee if every candidate c ∈W is preferred by a majority of voters
to every candidate d /∈W (Gehrlein, 1985; Ratliff, 2003).

Related to the idea of distance-rationalizable rules (Section 2.3.3), we can define a more general
family of axioms that says that if the preference profile is part of a consensus class, then the
outcome must be the ‘consensual’ one. The Condorcet criterion is an axiom of this family, with
the consensus class of profiles with a Condorcet winner. Similarly, we can define the unanimity
axiom for single-winner voting, that states that if all voters put the same candidate first in their
ranking (in case of rankings), or if all voters approve this candidate (in case of approval preferences),
then it should be the winner. This can be generalized to multi-winner voting with committee size
k by saying that if all voters put the same k candidates first in their rankings (not necessarily in
the same order) or approve all of them, then they should be selected (Elkind et al., 2017b).

For the problem of finding the best candidate ordering using voters’ rankings (that we discussed
in Section 2.3.3), an axiom of this sort would be the following:

Consistency with Single-Peakedness
An axis rule f is consistent with single-peakedness if for every profile P that is single-peaked for
an axis ◁, the rule returns all axes ◁ for which P is single-peaked.

Representation

Finally, let us briefly discuss some representation axioms. On a high level, these axioms states that
if a group of voters is large enough and cohesive in their preferences, they should be represented
somehow in the outcome. Axioms of this family have been particularly studied in the context of
multi-winner voting, and more specifically for the proportional representation objective. In the
case preferences are rankings, Dummett (1984) proposed the following axiom.
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Proportionality for Solid Coalitions
A rule f satisfies proportionality for solid coalitions if for every profile P and committee size k,
if there exists a value ℓ such that 1 ⩽ ℓ ⩽ k and a group of ℓ · n/k voters who all rank the same
ℓ candidates first, then these ℓ candidates should be in the committee(s) returned by f .

This is based on the principle that each candidate in the committee represents a quota Q = n/k

of voters, and if there exists a group of voters of size ℓ times the quota who all support the same
ℓ candidates, then these candidates should all be selected, as representatives of this group. None
of the rules we discussed in Section 2.3.2 satisfy proportionality for solid coalitions in general,
however Elkind et al. (2017b) showed that STV, as well as SNTV and greedy Monroe, satisfy a
weaker version of the axiom with ℓ fixed to ℓ = 1. Woodall (1994) proposed a variant of this axiom
called the Droop proportionality criterion, which uses the Droop quota Q = ⌊n/(k+1)⌋+1 instead
of the Hare quota Q = n/k, and which is satisfied by a variant of STV. Bardal et al. (2025) showed
that solid coalitions rarely occur in real-world elections, and propose other ways to measure the
proportionality of ranking-based multi-winner voting rules. Finally, this proportionality principle
has also been extended to the approval voting case through a series of proportionality axioms (Aziz
et al., 2017a; Sánchez-Fernández et al., 2017; Aziz et al., 2018; Peters et al., 2021).

Let us now consider the single-winner case. In a sense, the unanimity axiom can be seen as
a representation axiom: a large group of voters (here, all voters) is cohesive in their preferences
(they all put the same candidate first, or all approve it), so this group should be represented in the
outcome, by this candidate. It is actually equivalent to proportionality for solid coalitions with
k = 1. A weaker axiom in the case of rankings is the majority criterion, which corresponds to the
Droop proportionality criterion with k = 1. Formally, we have:

Majority Criterion
A rule f satisfies the majority criterion if for every profile P and every candidate c ∈ C, if a
majority of voters rank c first, then c should be the winner.

This follows the idea that the majority rule is the only good rule when m = 2 (May’s theorem).
It is at the same time a strengthening of the unanimity axiom and a weakening of the Condorcet
criterion, since a candidate ranked first by a majority of voters is necessarily a Condorcet winner. It
is actually referred to as the weak Condorcet criterion by Lepelley (1992), who showed that plurality
is the only scoring rule satisfying this axiom in the ranking setting (see also Sanver (2002)). One
(other) way to generalize the majority criterion to the multi-winner case is to say that if a majority
of voters rank all the candidates in a committee W among the first k candidates of their rankings,
then this committee should be selected (Debord, 1993). Brandl and Peters (2022) generalized the
majority criterion to approval preferences with the respect for unanimous majorities axiom, which
they used to characterize the single-winner approval voting rule.

Respect for Unanimous Majorities
A rule f satisfies respect for unanimous majorities if for every approval profile P , if a majority
of voters cast the same approval ballot A∗, then the candidate returned by f should be in A∗.

In Chapter 4, we define generalizations of the majority criterion to the case of weak orders, and
use it to characterize one of the generalization of IRV to weak orders.
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2.4.3 Reinforcement

For two profiles P 1 = (X1
1 , . . . , X

1
n1
) and P 2 = (X2

1 , . . . , X
2
n2
), we denote by P = P 1+P 2 the profile

that is the combination of the two profiles, i.e., P = (X1
1 , . . . , X

1
n1
, X2

1 , . . . , X
2
n2
). Reinforcement

(Smith, 1973; Young, 1974), sometimes referred as consistency, states that if a rule returns the
same outcome in two different profiles P1 and P2 with the same set of candidates C, but distinct
sets of voters V1 and V2 (with V1 ∩ V2 = ∅), it should also return this outcome in the combination
of the two profiles P = P 1 + P 2.

Reinforcement
A rule f satisfies reinforcement if for all profiles P 1 and P 2 with the same set of candidates but
distinct sets of voters, if f(P 1) ∩ f(P 2) ̸= ∅, then f(P 1 + P 2) = f(P 1) ∩ f(P 2).

The rationale behind this axiom is quite natural: if a candidate wins in districts A and B, it
should still win if we merge the two districts. Surprisingly, many rules, such as plurality with runoff
and IRV, fail this axiom. However, any rule that is based on a score function S(X,O) that assigns a
score to each possible outcome O ∈ O based on a ballot X ∈ X , and that returns the outcome(s) O∗

maximizing the sum of scores
∑

i∈V S(Xi, O
∗) clearly satisfies reinforcement. This is for instance

the case of the scoring rules in single-winner voting with rankings, and Smith (1973) and Young
(1975) actually showed that scoring rules are the only rules that satisfy neutrality, anonymity and
reinforcement in this setting. For the approval-based multi-winner setting, Lackner and Skowron
(2018b) discussed this axiom and proved that a family of rules they called ABC scoring rules,
and that includes Thiele rules and SAV, can be characterized by reinforcement and a few other
axioms. A weakening of reinforcement is homogeneity, which states that if we duplicate a profile ℓ
times, the outcome should be the same as in the original profile (Smith, 1973). More formally, if
P ′ = ℓP = P + · · ·+ P , then f(P ′) = f(P ).

2.4.4 Independence Axioms

We now move to independence axioms. Consider for instance the single-winner voting setting.
Independence axioms say that if we remove some candidates from the profile, the outcome should
not change (except of course if we remove the winner). In the following, we write PC′ the restriction
of the profile P to the subset of candidates C ′ ⊆ C, i.e., the profile in which we removed all
candidates in C \ C ′ from all preferences in the profile. For simplicity, if C \ C ′ = {c} (i.e., we
remove only one candidate), we write P−c. Independence axioms link the outcome of the rule for
a profile P to the outcome of the rule for a reduced profile PC′ .

Independence of Irrelevant Alternatives

Kenneth Arrow’s independence of irrelevant alternatives (IIA) axiom was originally introduced
for ranking-based rules returning a ranking of the candidates (Arrow, 1950). It informally states
that the society’s preference between two candidates a and b should only depend on the individual
preferences of voters between a and b, as opposed to taking into account how they rank the other
candidates. In other words, for a rule f that takes as input an ordinal profile and outputs an
aggregated ranking of the candidates, the preferences between a and b in the output ranking
should be the same in all pairs of profiles P , P ′ such that P{a,b} = P ′

{a,b}. Consider for instance
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the following profiles:

P : 51: a ≻ c ≻ d ≻ e ≻ b 49: b ≻ a ≻ c ≻ d ≻ e
P ′ : 51: a ≻ b ≻ c ≻ d ≻ e 49: b ≻ c ≻ d ≻ e ≻ a

These two profiles are such that P{a,b} = P ′
{a,b}, so IIA imposes that the relative order of a and b

should be the same in the output rankings f(P ) and f(P ′).
Then, Arrow’s theorem states that the only rules that take as input any possible ordinal pref-

erence profile, and that satisfy IIA and Pareto-efficiency, are dictatorships, i.e., the outcome is
always the ranking of some voter (the dictator). More formally, there exists a voter i ∈ V such
that for all profiles P , we have f(P ) = ≻i the ranking of voter i in P . Arrow’s theorem has had,
until today, a tremendous importance in social choice. It is often seen as negative, since there are
many compelling arguments in favor of IIA (see for instance Maskin (2020)). Still, IIA has been
criticized for not taking into account preference intensities, and this may result in a loss of social
welfare. To understand this argument, consider the two profiles P and P ′ displayed above. If it is
clear that a should be better ranked than b in the outcome of the first profile P , can we really say
the same for the second profile P ′, in which almost half of the voters rank a last, while all voters
rank b among their top 2? This issue has been previously discussed in the literature (Coakley, 2016;
Pearce, 2021; Osborne, 1976; Hillinger, 2005; Lehtinen, 2011), and we quantitatively analyzed in
Delemazure et al. (2024b), in which we used the notion of distortion to show that enforcing this
axiom may cause a loss of social welfare in many cases. This issue motivated Maskin (2020) to
propose a weak variant of IIA that can be satisfied by some rules, such as Borda.

If we adapt the definition of IIA to single-winner voting, we obtain the following axiom.

Independence of Losers
A rule f is independent of losers if for all profiles P with c /∈ f(P ), we have f(P ) = f(P−c).

In other words, removing losers from the profile should not change the result of the rule.
Intuitively, it seems appealing for a voting rule to satisfy this axiom: a losing candidate should not
be able to change the result of an election by withdrawing from the election. Situations in which a
losing candidate is preventing another candidate from winning because it is “stealing” votes from
them are very frequent in real-world elections, and are known as instances of the spoiler effect :
by running in the election, a third-party candidate is spoiling the election for another candidate,
generally one who is ideologically close to them, and is more likely to win.

Unfortunately, following Arrow’s impossibility theorem, independence of losers is not satisfiable
by any ranking-based rule. However, Black (1948) showed that Arrow’s impossibility result does
not hold anymore if we consider single-peaked preferences, since Condorcet extensions would select
the Condorcet winner, which does not change if we remove losers from the profile. For the approval-
based setting, Brandl and Peters (2022) showed that approval voting satisfies the axiom, and even
characterized the rule with this axiom and a few other uncontroversial axioms. If we adapt the
axiom to the multi-winner setting by saying that removing a candidate that is not in the committee
(or in any selected committee in the case of irresolute rules) should not change the outcome of
the rule, then we can check that Thiele and sequential Thiele rules satisfy it (including the multi-
winner approval rule), as the score of each committee only depends on the candidates inside the
committee. Finally, for valued preferences, most rules satisfy this axiom if we assume that voters
do not change their preferences depending on the set of candidates C on which they can express
preferences (a debatable assumption according to Sen (1993), as the set of candidates might bring
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context and new information to the voters).
Finally, for the problem of finding an ordering of candidates using rankings, Tydrichová (2023)

proposed the following heredity axiom, which is inspired by IIA and informally says that the axes
returned by the rule on the profile restricted to a subset of candidates should correspond to the
restriction of the axes returned by the rule on the original profile with all candidates.

Independence of Clones

Independence of clones was introduced by Tideman (1987) for ranking-based single-winner voting
rules, and it relies on the notion of clones and clone sets. Informally, we say that a set of candidates
are clones if all voters rank them next to each other. They could be for instance candidates from
the same political party, and running on the same platform. Independence of clones says that the
result of the election should not change if we remove one of the clones from the election. Conversely,
this implies that the result should not change if we add a clone of a candidate in the election. This
is a particular case of the spoiler effect, which we discussed to motivate independence of losers.
Most voting rules that are used for actual elections fail independence of clones. Indeed, we observe
that voters from the same side of the political spectrum are often split between several candidates,
which might cause their side to lose an election that they might have won otherwise. We will study
the particular cases of plurality with runoff (using the example of the French presidential election)
in Chapter 3, and of parliamentary elections with thresholds in Chapter 5.

More formally, given a profile P of weak orders, we say that a set of candidates T ⊆ C is a
clone set if for all candidates x /∈ T and all voters i ∈ V , we have either

c ≻i x for all c ∈ T , or c ∼i x for all c ∈ T , or x ≻i c for all c ∈ T .

Note that this definition of clones corresponds to the definition for weak orders given by Schulze
(2011) and by Holliday and Pacuit (2023, Section 5.3.2). When preferences are rankings, this
matches the definition of Tideman (1987), and when preferences are approval ballots, this matches
the definition of Brandl and Peters (2022). However, it is stronger than the way Tideman (1987,
p. 186) proposed to define independence of clones for weak orders (in his definition, it is not allowed
for a clone to be ranked equally to a non-clone).

We can then define independence of clones, which states that adding or removing clones should
not alter (significantly) the result of the election. In particular, non-clones either stay winning or
stay losing. The only thing that might change is that if a clone was winning, then another clone
can win instead. Formally, we have:

Independence of Clones
f satisfies independence of clones if for all profiles P with a clone set T ⊆ C, if P̂ is the profile
obtained by removing from P all candidates of T except one candidate ĉ ∈ T , from C, we have:

1. for every x /∈ T , x ∈ f(P ) if and only if x ∈ f(P̂ ), and

2. ĉ ∈ f(P̂ ) if and only if there exists c ∈ T such that c ∈ f(P ).

This definition is for irresolute rules. For resolute rules, strange things might happen, as the
rules will likely use a tie-breaking order, so the clones need to be next to each other in the tie-
breaking order too for the axiom to hold. We sometimes define independence of clones for pairs
of candidates only (i.e., for |T | = 2), giving a weaker axiom. However, most rules that satisfy the
weak version also satisfy the stronger version.
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Of course, it seems highly unlikely to have perfect clones in a real-life election, even more when
there are thousands of voters.8 However, this axiom gives a good intuition of the behavior of a
rule in the case similar candidates run in an election: can the fact that they are similar make them
lose the election? For instance, in the 2002 French presidential election that used plurality with
runoff, eight left-wing candidates were running, dividing the votes of the left-wing electorate, and
allowing a far-right candidate to reach the second round, illustrating that plurality with runoff
fails independence of clones. Tideman (1987) showed that IRV satisfies independence of clones
and introduced the ranked pairs rule, that satisfies this axiom. Most of the other rules do not
satisfy independence of clone, and only a few other Condorcet extensions, such as Schulze’s rule,
and some tournament solutions, are known to satisfy it (Schulze, 2011; Holliday and Pacuit, 2023).
In the case of approval ballots, Brandl and Peters (2022) characterized the single-winner approval
voting rule in yet another way using this axiom, reinforcement and a weak efficiency axiom. Elkind
et al. (2011) studied a problem related to the cloning axiom, with a deeper analysis of how prone
to manipulation by cloning were different voting rules, and on which specific profiles introducing
clones is the most harmful.

For the multi-winner problem, Woodall (1994) proposed several variants of independence of
clones, the most relevant ones being:

1. Removing clones from a clone set should not increase the number of candidates from the
clone set that are in the committee (or, the other way around, a candidate should not be
losing because of a clone).

2. Replacing a candidate by a clone set T should not make another candidate x /∈ T part of the
committee if it was not before.

He claimed that for approval preferences, the approval rule satisfies both variants, and for
ordinal preferences, STV satisfies the first one, but not the second one. Baumeister et al. (2024)
recently provided a proof that STV indeed satisfies the first variant when the clone set is of size 2.
Finally, Neveling and Rothe (2020) generalized the work of Elkind et al. (2011) on manipulation
by cloning to the multi-winner setting.

Finally, a strengthening of independence of clones in the single-winner voting setting is compo-
sition consistency, introduced by Laffond et al. (1996). On a high-level, composition consistency
says that if in a profile P we replace every set of clones T by a single candidate cT (such that
cT represents the clone set T ), giving a new profile P ′, if a single-winner voting rule returns the
candidate f(P ′) = cT on this new profile, then the winning candidate in P should be the winning
candidate in the restriction of P to candidates from the clone set T , i.e., f(P ) = f(PT ). One way
to see it is to think that each clone set is a political party representing many candidates, and the
winning candidate should be the same if all candidates from all parties run at the same time and if
we first run primary elections in each party, and then run an election with all winners of primary
elections. The relationship between independence of clones and composition consistency has been
explored by many papers in the literature, see for instance the work of Berker et al. (2025).

8Still, there are several examples of opposition candidates in Russia that found themselves to
run against spoiler candidates with the exact same name and surname recruited by the govern-
ment party to confuse the voters. The spoilers sometimes even changed their appearance to look
like the original candidate from the opposition. See https://www.theguardian.com/world/2021/sep/06/
three-near-identical-boris-vishnevskys-on-st-petersburg-election-ballot

https://www.theguardian.com/world/2021/sep/06/three-near-identical-boris-vishnevskys-on-st-petersburg-election-ballot
https://www.theguardian.com/world/2021/sep/06/three-near-identical-boris-vishnevskys-on-st-petersburg-election-ballot
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2.4.5 Strategyproofness and Monotonicity

We finally consider strategyproofness and monotonicity axioms, which played a key role in the
development of social choice theory. Axioms from these two categories link the outcome of a rule
for a profile P to the outcome of the rule for a profile P ′ that is obtained by altering the preferences
of one or several voters.

Strategyproofness

Informally, a rule is strategyproof if the best strategy for a voter is to report their true preferences,
or in other words, they cannot be better off by misreporting their preferences. For single-winner
voting with weak orders, we can define strategyproofness as follows:

Strategyproofness
A rule f is strategyproof if for all profiles P = (≽1, . . . ,≽n) and all voter i ∈ V , for all profiles
P ′ = (≽′

1, . . . ,≽
′
n) such that for all j ̸= i, ≽j=≽′

j , we have f(P ′) ̸≻i f(P ).

Recall that approval ballots and rankings are special cases of weak orders, so the definition
also works in these settings. This definition applies to resolute rules, but many generalizations
to irresolute rules have been proposed (see Barberà (2011) for a survey). One of them is Kelly-
strategyproofness (Kelly, 1977), which says that a manipulation is successful if all candidates in
f(P ′) are weakly preferred to all candidates in f(P ) by the manipulating voter i.

Unfortunately, Gibbard (1973) and Satterthwaite (1975) independently showed that in the
case of rankings and with m ⩾ 3, the only resolute, non-imposed and strategyproof rules are
dictatorships. This result might sound dramatic, but it can be tempered by the fact that the
manipulating voter is very unlikely to be pivotal would have to know the exact preferences of the
other voters to accurately compute the correct manipulation (which can be a hard computational
problem, see Conitzer and Walsh (2016)). The case of approval ballots is more hopeful, as Brandl
and Peters (2022) showed that the approval voting rule is strategyproof, and characterized it
(again) with this axiom, neutrality and reinforcement (see also Fishburn (1979)).

Generalizations to multi-winner voting with resolute rules are inspired by the ones for single-
winner irresolute rules (Gärdenfors, 1979). In particular, Kelly-strategyproofness is still relevant in
this context: a manipulation is successful if all candidates in the committee W ′ = f(P ′) are weakly
preferred to all candidates in the committee W = f(P ). In the approval setting, Peters (2021)
proposed the superset-strategyproofness, which states that a manipulation by a voter i is successful
if W ∩ Ai ⊊ W ′ ∩ Ai, where W = f(P ) is the committee obtained before the manipulation,
and W ′ = f(P ′) is the committee obtained after. A weaker variant, called Hylland’s free riding
condition (Hylland, 1992), states that a manipulating voter should not be able to obtain a superset
of approved candidates by removing candidates from their approval ballot, i.e., by casting A′

i ⊊ Ai.
Peters (2021) showed that even this weak strategyproofness notion is incompatible with a weak
proportional representation notion.9 On the positive side, we showed in Delemazure et al. (2023a)
that an even weaker notion of strategyproofness that we called strategyproofness for unrepresented
voters, and in which the possible manipulators are the voters who originally approve no candidates
from the committee, is compatible with proportionality, and that CCAV satisfies both properties.
Finally, Lackner and Skowron (2018a) considered strategyproofness notions that apply to irresolute
approval-based multi-winner rules (i.e., how voters compare sets of committees).

9However, multi-winner approval voting satisfies this notion of strategyproofness, and even stronger notions,
such as cardinality-strategyproofness, which states that no manipulating voter should approve more candidates in
W ′ than in W .
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Since it is quite unlikely for a voter to be pivotal in an election with a large set of voters
(Peleg, 1979; Slinko, 2002), some works have been studying coalitional strategyproofness (Saari,
1990; Durand, 2015), which states that coalitions of voters (instead of single voters) should not be
able to collectively misreport their preferences and all obtain a preferred outcome.

A related axiom to strategyproofness is the one of participation (Brams and Fishburn, 1978),
which states that a voter should not prefer the outcome of the election when they are abstaining to
the outcome when they are participating (and casting a sincere ballot). This failure of participation
is also known as the no-show paradox. This axiom is generally satisfied by rules that are based on
scoring functions S that associates a score S(X,O) to each possible outcome O ∈ O based on the
ballot X ∈ X , for similar reasons as why they satisfy reinforcement. In particular, in the single-
winner setting with rankings, scoring rules satisfy participation. On the contrary, no Condorcet
extension satisfies participation when m ⩾ 4 (Moulin, 1991).

Monotonicity

The general idea behind monotonicity is the following: if, given a profile P , the selected outcome
is O = f(P ), and we alter the preferences of the voter in order to make O an objectively better
outcome, then the rule should still select O. For instance, if a single-winner voting rule selects
some candidate c ∈ C as the winner, and we increase the position of c in a voter’s ranking without
changing the relative order of other candidates, then c should remain the winner (Fishburn, 1982).
More formally, for a candidate c ∈ C and a weak order ≽, we say that ≽′ is a c-improvement of ≽ if
(1) σ′(c) < σ(c) where σ and σ′ are the rank functions respectively associated with ≽ and ≽′, and
(2) for all a, b ̸= c, a ≽ b if and only if a ≽′ b. Thus, the only difference is that c is ranked higher in
≽′ than ≽. This definition naturally applies to rankings (for which it was originally defined) and
to approval ballots, in which c can only go from non-approved to approved. A preference profile
P ′ is a c-improvement of P if there is a voter i ∈ V such that ≽′

i is a c-improvement of ≽i, and
for all other voters j ̸= i we have ≽j = ≽′

j . We define monotonicity as the following.

Monotonicity
A rule f is monotonic if for any profile P and any candidate c ∈ C, if c ∈ f(P ) and P ′ is a
c-improvement of P , then c ∈ f(P ′).

Monotonicity can be seen as a weak version of strategyproofness. Indeed, if a rule fails mono-
tonicity for a profile P and a c-improvement P ′, this means that a voter i can change the status of c
from losing in P ′ to winning in P by decreasing its rank. Many other monotonicity properties have
been proposed, generally lying in strength between strategyproofness and standard monotonicity
(see Sanver and Zwicker (2012) for a survey). It is clear that scoring rules, as well as plurality and
approval, satisfy monotonicity. However, Smith (1973) showed (Theorem 2) that all runoff scoring
rules, including IRV, fail monotonicity.

Elkind et al. (2017b) adapted this monotonicity property to the multi-winner setting, as
candidate-monotonicity, which says that if a candidate c is part of the winning committee for
a profile P , it should also be part of the committee for any c-improvement P ′, and they showed
that with ordinal preferences, committee scoring rules (like k-Borda) satisfy this axiom. The same
axiom has also been considered in the approval case (Lackner and Skowron, 2018a; Janson, 2016),
for which variants have also been introduced (Sánchez-Fernández and Fisteus, 2019).

In the multi-winner setting, another (quite different) monotonicity axiom says that if for a
profile P a candidate is part of the committee W = f(P, k) when the desired size of the committee
is k, it should also be part of the committee W ′ = f(P, k+1) when the desired size is k+1: adding
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Ch. 3 Ch. 4 Ch. 5 Ch. 6 Ch. 7

Symmetry
Efficiency

Representation
Reinforcement

Independence of losers
Independence of clones

Strategyproofness
Monotonicity

Table 2.4: Summary of the axiom families discussed in this section, and the chapters of this thesis
in which they will be used.

more seats in the committee should not eliminate a candidate that was part of the committee.
This axiom is known as committee monotonicity (Elkind et al., 2017b) or enlargement consistency
(Barberà and Coelho, 2008). It is clear that every sequential rule satisfies committee monotonicity,
as it either constructs the committee by successively adding candidates to the committee (and
thus will only do one more ‘addition’ step) or by successively eliminating candidates from the
committee (and thus will do one less ‘elimination’ step). Similarly, all committee scoring rules (like
k-Borda) satisfy this axiom, as the score of each candidate is computed independently. Committee
monotonicity is particularly desirable for the excellence objective, but it often clashes with the
other two objectives. Finally, this axiom is also related to house monotonicity (Balinski and
Young, 2010) in the apportionment setting, in which candidates are parties and can get several
seats in the committee. This axiom says that increasing the total number of seats should not
decrease the number of seats received by any party.

2.4.6 Summary

Table 2.4 summarizes the axiom families that we discussed in this section, and the chapters in
which they will be studied. As each chapter corresponds to a particular problem with a specific
context, we will additionally consider context-specific axioms.

2.5 Experiments

In the previous section, we saw how we can evaluate rules by defining axiomatic properties and
checking which rules satisfy which properties. It is often desirable to complement this approach
with an experimental analysis, in which we run the rules on actual data and observe their behavior.

Ideally, we want to run the rules on real-world preference profiles, as it allows us to better
interpret the outcomes returned by the rules and the differences between them. We refer to this
kind of datasets as real data. In this thesis, we are particularly interested in datasets of political
preferences, as many of our problems are motivated by political elections. Unfortunately, it is
not always possible to have access to real data, especially if we are using non-standard ballot
formats: remember that most elections, especially political ones, use uninominal ballots, which are
not particularly interesting to us. Thus, we also use artificial preference profiles, that we create
by sampling ballots according to some probabilistic model. We refer to this kind of datasets as
synthetic data. Synthetic data has another interesting feature in comparison to real data: it is
possible to control the parameters of the model, such as the number of voters n and of candidates
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m. This modularity allows us to see how the rules’ behavior depends on these parameters, and
check the robustness of the observed results.

Experiments on such data have always been an important tool in social choice, but their use
has been increasing in the last years, as shown by Boehmer et al. (2024) in their recent survey
on experiments in computational social choice. In this thesis, we will run experiments with the
following objectives in mind:

1. Rule behavior: We will run the different rules on the datasets to see how they behave, and
how their behaviors relate to the axiomatic analysis. For instance, if a preference profile
contains very similar candidates, we can approximate them as clones, and check if the rules
satisfy independence of clones on this particular profile.

2. Similarities between rules: we will also compare the rules to each other, to see how similarly
they behave. For instance, we can check on which percentage of the sampled profiles the
rules agree on the outcome, and when they disagree, on how much they disagree.

3. Outcome quality: we want (if possible) to measure the quality of the outcomes returned by
our rules, and see which rules return in general the “best” outcomes. However, the existence
of a quality measure is not guaranteed: for instance, in real-life data of political elections,
we cannot really say that one candidate is objectively the best, and should win the election.
One approach to overcome this is to use the distortion, which relies on the idea that rankings
or approval ballots are derived from utility or cost functions (see Section 2.5.2). Another
approach is the one of epistemic voting in which there exists a ground truth and voters’
ballots are noisy estimates of this ground truth. We use this approach in Chapter 6.

4. Dataset analysis: Finally, the analysis of the dataset itself is sometimes already insightful
and might give a better understanding of the problem considered, of the structure of the
dataset, and of the challenges it poses. For instance, we analyze in Chapter 5 how voters
are strategizing their votes in parliamentary elections, and in Chapter 7 we compare the
polarization of voters in different datasets.

In the literature, some other objectives that we omit here are sometimes considered. In partic-
ular, if we are interested in the computational complexity of the rules, we can run experiments to
see how long the proposed algorithms take to compute or approximate some voting rule.

Importantly, a good experimental analysis should ideally be based on several distinct datasets
to ensure that the results are not specific to the particular dataset, or probabilistic model, that
was used to generate the data. It should also be easily reproducible, so that other scholars can
check the results and build upon them. This includes providing (as much as possible) the protocol
and the parameters used, and ideally giving access to the dataset if it is not already available, and
to the code used to run the experiments.10

The remainder of this section is organized as follows. We first introduce common probabilistic
models in Section 2.5.1, namely impartial culture (IC), Mallows’ model, and the Euclidean model.
In Section 2.5.2, we introduce the notion of distortion. Next, we discuss some of the real-world
datasets that are used in this thesis in Section 2.5.3, and put a special focus on the Voter Autrement
series of datasets in Section 2.5.4.

10All the experiments of this thesis have been done in Python and heavily rely on the numpy and pandas libraries.
Most of the code of the experiments that are in this thesis can be found on my GitHub github.com/TheoDlmz.

github.com/TheoDlmz
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2.5.1 Probabilistic Models

Many models have been introduced in the literature for generating preferences profiles, especially
for rankings and approval ballots. We will go over some of them in this section.

Impartial Culture

Let us start with the most natural and simple model one can think of: the impartial culture
model. In this model, we sample the preferences of each voter independently at random, and the
probability of each possible preference X ∈ X is the same, i.e. P(Xi = X) = 1/|X | (assuming that
X is finite). Note that this implies a complete symmetry between the candidates. In particular, as
the number of voters increases, all candidates in the sampled profile tend to have almost the same
Borda score, plurality score, approval score, etc.

This model was first introduced for ordinal preferences by Guilbaud (1952) to study the prob-
ability of a Condorcet paradox, and is the most common model to generate rankings in the social
choice literature (Boehmer et al., 2024). For rankings, the set of possible preferences is the set
of all permutations of the candidates, and the probability of each ranking is 1/m!. For approval
ballots, impartial culture says that every approval ballot Ai has the same probability 1/2m to be
selected. This is equivalent to saying that for each voter i, each candidate c is approved with
probability p = 1/2 independently of the other candidates. Generalizing on this idea, Bredereck
et al. (2019) introduced p-impartial culture, in which each candidate is approved with probability
p, independently of the other candidates. Since in real-world elections voters generally approve
only a few candidates, it is more realistic to use low values of p. Finally, in the case preferences are
utilities (or costs), the principle behind impartial culture corresponds to the uniform distribution
of utilities. In this case, the utility of each candidate is sampled independently at random from
some interval, typically I = [0, 1].

The impartial culture is the most popular model to generate synthetic preference profiles, and
is often used as a benchmark to compare the different rules. However, it is highly unrealistic and
it is recommended to use other, more interesting models to complement the analysis.

Mallows Model

The second most popular model to sample rankings in computational social choice is, according
to Boehmer et al. (2024), Mallows’ model (Mallows, 1957). The idea behind Mallows’ model is
that there exists an average ranking, or central ranking, ≻∗ of the society, and that voters are
more or less deviating from this central ranking depending on the dispersion parameter ϕ ∈ [0, 1].
The central ranking can also be seen as a “ground truth” ranking that the voters are trying to
estimate, with some noise. More formally, let ≻∗ be the central ranking, and ϕ ∈ [0, 1]. Then, the
probability for a voter to submit a ranking ≻∈ L(C) is given by

P(≻|≻∗, ϕ) =
1

K
ϕKT(≻,≻∗)

where KT(≻,≻∗) is the Kendall-Tau distance between ≻ and ≻∗ (defined in Section 2.3.1), and
K =

∑
≻∈L(C) ϕ

KT(≻,≻∗) is a normalizing constant, such that the sum of all probabilities is equal
to 1. Thus, if ϕ < 1, the more similar ≻ is to the central ranking, the more likely it is to be
sampled. On the extremes, if ϕ = 0, the only ranking with non-zero weight is the central ranking
≻∗, so every voter will submit this ranking, and if ϕ = 1, all rankings are equally likely, and we fall
back on impartial culture. Lu and Boutilier (2014) proposed a way to sample rankings according
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Figure 2.6: Example of a 2-dimensional Euclidean model with 20 voters (black dots) and 5 candi-
dates C = {a, b, c, d, e} (orange dots). The center plot shows how to compute the ranking of one
voter (here, we obtain d ≻ e ≻ c ≻ b ≻ a). The right plot shows the approval preferences of the
same voter with a threshold τ (here τ = 0.33 and Ai = {d, e, c}).

to the probabilities given by the Mallows model, by means of the random insertion model.
Mallows models are particularly interesting, as they seem to provide a good coverage of the

space of real-life preference profiles (Boehmer et al., 2022a), and the dispersion parameter ϕ allows
us to cover a wide variety of preference profiles. However, Boehmer et al. (2021) recently showed
that the parameter ϕ in the definition of Mallows’ model was not adapted to high numbers of
candidates (m > 25) and proposed a re-parameterization of Mallows’ model with a parameter
norm-ϕ. In this thesis, we will still use ϕ, since we only have m = 10 candidates in all experiments
involving Mallows’ models.

Mixtures of Mallows are a variant in which the voters are divided into several subsets, and
the preferences of voters in each subset are drawn according to a Mallows model with a different
central ranking. Generally, the different Mallows models share the same dispersion parameter ϕ,
but it could be different. More formally, for a k-Mallows, we have for all j ∈ [1, k], the probability
for the voters to be in the jth subset pj ∈ [0, 1] (with

∑
j pj = 1, generally pj = 1/k), the central

ranking ≻∗
j , and the dispersion parameter ϕj . Then, for each voter we first select a subset j ∈ [1, k]

according to the probabilities p1, . . . , pk, and then sample the ranking of the voter according to
the Mallows model with central ranking ≻∗

j and dispersion parameter ϕj .
For approval preferences, some models have been proposed that adapt the idea of sampling

preferences that deviate from a central vote A∗ ⊆ C, for instance the (p, ϕ)-resampling (Szufa
et al., 2022) where p is the desired approval rate and ϕ a dispersion parameter.

Euclidean Preferences

The Euclidean model (Enelow and Hinich, 1984, 1990) is another popular model in computational
social choice, for both ordinal and approval preferences. The idea behind the Euclidean model
is that voters and candidates are associated with positions in the d-dimensional Euclidean space
[0, 1]d, and the preferences of voters are determined by their distance to the candidates: the closer
the voter is to a candidate, the more they prefer this candidate. This model is particularly relevant
for some problems, such as facility location problems. The earliest works using a similar model in
game theory are Hotelling (1929) and Downs (1957), who analyzed the positions that a candidate
should take on a line (so, with d = 1) in order to maximize their chances of being elected. In
particular, they observed that all candidates end up having the same position. In this thesis, we
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Figure 2.7: Distributions of the positions of the candidates in the committees for selected rules
based on rankings (top row) and approval ballots (bottom row). The winners from a random
instance (the same for all rules) are highlighted in red. Reproduced from Elkind et al. (2017a);
Godziszewski et al. (2021)

will only consider the 1-dimensional and 2-dimensional setting.
More formally, let us denote pos(i) ∈ [0, 1]d the position of a voter i ∈ V and pos(c) ∈ [0, 1]d

the position of a candidate c ∈ C. Then, the ranking of the voter i is given by the increasing order
of their distances to the candidates, i.e., a ≻i b if and only if ∥pos(i)− pos(a)∥ < ∥pos(i)− pos(b)∥.
For approval preferences, we assume that there exists a threshold τ such that a candidate a is
approved if and only if ∥pos(i) − pos(a)∥ < τ (this approach is used for instance by Bredereck
et al. (2019) and Faliszewski et al. (2023b)). We give a visual example on Figure 2.6. Note that τ
could possibly be different for each voter, but in this thesis we always use the same τ for all voters.
An interesting aspect of this model is that from the same distribution of positions, we can derive
rankings, approval preferences and even weak orders, and thus compare rules that take as input
different preference formats. Finally, observe that the 1-dimensional Euclidean model always gives
single-peaked rankings, and interval approval preferences.

The way we described the Euclidean model so far does not say how we should choose the posi-
tions of voters and candidates, only how we can derive preferences from these positions. To do so,
we use probability distributions over positions in the space [0, 1]d. In this thesis, we will use uni-
form distributions over the whole space [0, 1]d, and Gaussian distributions, which are particularly
interesting as they put a high concentration of voters and candidates around the center.

Another interesting feature of the Euclidean model is that it allows us to visualize the behavior
of the rules, by seeing for instance in which area of the Euclidean space are the candidates elected
by the different rules. For instance, in the case of rankings, Elkind et al. (2017a) uses the 2-
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dimensional Euclidean model to visualize the positions of the candidates selected by different
ranking-based multi-winner voting rules, clearly observing differences between rules depending on
whether they aim at excellence, proportionality, or diversity. Godziszewski et al. (2021) reproduced
this experiment for approval-based multi-winner voting rules.

We reproduced these experiments in Figure 2.7 for some selected rules. We sampled 10 000
profiles of n = 100 voters and m = 50 candidates and we computed the winning committees of
size k = 10 for different rules (in the paper by Elkind et al. (2017a), they use n = m = 200

and k = 20). The positions of voters and candidates are selected uniformly at random in the
2-dimensional Euclidean space [0, 1]2. To compute the approval ballots of the voters, we used the
threshold τ = 1/4, leading to an average of ∼ 15 candidates approved by voter. We compared
three ranking-based rules: k-Borda, greedy Chamberlin-Courant, and STV; and three approval-
based rules: approval voting, sequential-CCAV and sequential-PAV. Note that in both cases, we
consider one rule aiming for the excellence objective (k-Borda and approval voting), one aiming for
diversity (greedy Chamberlin-Courant and sequential-CCAV) and one aiming for proportionality
(STV and sequential-PAV). Figure 2.7 shows the distributions of the positions of candidates that
are in the committees selected by each rule (black dots), as well as the winners for one random
instance (red dots). We can see that the rules aiming for excellence select candidates that are
close to the center, while the rules aiming for diversity and proportionality select candidates that
are more spread out. However, since we used a small radius for approval ballots (τ = 1/4), the
positions of the selected candidates with the approval rule still cover a large area of the space.

Other Models and the Maps of Elections

The three models we discussed so far are the main ones that are used in this thesis, but there exist
many other models, for both rankings and approval ballots.

Figure 2.8: Map of elections with the isomor-
phic swap distance. Picture from Boehmer
et al. (2022b).

Among the other popular models to sample rank-
ings, there are the Urn model (Eggenberger and
Pólya, 1923; Berg, 1985), and models designed to
only return single-peaked profiles (Conitzer, 2007;
Walsh, 2015). The similarities between preference
profiles sampled from different models have been
studied by Faliszewski et al. (2019a), by defining dis-
tances between preference profiles. These distances
were then used to construct “maps of elections” (Sz-
ufa et al., 2020; Boehmer et al., 2021, 2022b): pro-
files that are close according to some distance appear
close to each other on the map. Figure 2.8 shows an
example of such map, in which the distance used
is the isomorphic swap distance. In particular, it
shows profiles sampled with impartial culture on the bottom left corner, near the uniform profile
UN, in which every ranking appears exactly once. Mallows models are represented by blue dots,
which cover the space between the uniform profile UN (for ϕ = 1) and the identity profile ID (for
ϕ = 0), in which all voters submit the same ranking. Finally, Euclidean preferences correspond to
some of the green dots (1-Dim and Multi-Dim) in the center of the map. They are a bit closer to
the antagonistic profile AN, in which half of the voters submit the same ranking, and the other
half the reverse ranking. Such map can also be used to evaluate the behavior of the rules on a
large variety of profiles, and to see where on the map (i.e., for which models) are the interesting
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cases. We will for instance use it in Chapter 4 to test the robustness of our results.
For approval preferences, some other models than the ones we discussed have been proposed

by Szufa et al. (2022), who also introduced distances and maps of approval profiles.

2.5.2 Distortion

We mentioned that one of the goals of the experimental analysis is to evaluate the quality of the
outcomes returned by the rules. One possibility to do so is to use the concept of voting rules’
distortion, introduced by Procaccia and Rosenschein (2006). We now describe this tool, and we
recommend the survey by Anshelevich et al. (2021) for a broader view on the topic.

Normalized Distortion

Let us first describe the principle of distortion for ranking-based single-winner voting rules. The
idea is to assume that each voter i ∈ V has a true underlying utility function ui such that ui(c)
is the utility of candidate c for voter i (i.e., valued preferences). We denote U = (u1, . . . , un) the
profile of utilities and SU (c) =

∑
i ui(c) the social welfare of a candidate c in this profile. Then, we

can derive preferences from these utilities: the utility function ui can be associated with a ranking
≻i such that if ui(c) > ui(c

′), then c ≻i c
′. We say that a preference profile P = (≻1, . . . ,≻n)

is consistent with the utility profile U if for all voters i ∈ V , the ranking ≻i can be derived from
the utility function ui, and we denote it by P ≈ U . Then, the distortion of a voting rule for
profiles P and U is the ratio between the social welfare of the optimal outcome (i.e., the outcome
that maximizes the social welfare) and the social welfare of the outcome of the rule. Formally, the
distortion of a (resolute) rule f for profiles P and U such that P ≈ U is defined as:

dist(f, P, U) =
maxc∈C SU (c)

SU (f(P ))
.

In particular, the distortion is always greater than or equal to 1, and is best when equal to 1.
Then, the traditional way to study distortion is to look at the worst-case over all profiles. Thus,

in the literature, the distortion of a rule f is generally defined as the worst-case distortion over all
possible preference and utility profiles P and U such that P ≈ U , i.e.,

dist(f) = sup
P≈U

dist(f, P, U).

In the original distortion framework (Procaccia and Rosenschein, 2006), it is assumed that
utilities are normalized for each voter, i.e.,

∑
c ui(c) = 1 for all i, otherwise the distortion of all

rules can get infinitely large (Aziz, 2020). One of the main results in this model is that plurality
has distortion O(m2) (Caragiannis and Procaccia, 2011), and that it is the optimal distortion
(Caragiannis et al., 2017). On the other hand, Borda has unbounded distortion (Procaccia and
Rosenschein, 2006). The multi-winner setting was also studied by Caragiannis et al. (2017).

Metric Distortion

Anshelevich et al. (2018) later initiated the study of distortion in the metric setting. The general
definition of metric distortion can be based on any pseudometric space, but for simplicity we will
consider here that the space is the Euclidean space [0, 1]d. In this case, we consider the Euclidean
model defined in Section 2.5.1, in which every voter i is associated to a position pos(i) ∈ [0, 1]d and
every candidate c is associated to a position pos(c) ∈ [0, 1]d. We obtain a distribution of positions
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E ∈ ([0, 1]d)V ∪C . Then, the preferences of the voter i are determined by their distances to the
candidates. As in the other setting, we say that the preference profile P we obtain is consistent
with the distribution of positions E, and we denote it by P ≈ E.

In this model, the positions are not inducing utilities, but costs: the closer a candidate is to
the voter, the less costly it is for the voter if this candidate is selected. Thus, we say that the cost
of a candidate c for voter i is costi(c) = ∥pos(i)− pos(c)∥. The social cost of a candidate c in the
profile P is given by costE(c) =

∑
i costi(c). The distortion of a rule f for profiles P and E is then:

dist(f,E, P ) =
costE(f(P ))

minc∈C costE(c)
.

which is again always greater than or equal to 1. The worst-case distortion of a rule f is then:

dist(f) = sup
P≈E

dist(f,E, P ).

The metric distortion has been studied for numerous rules: Anshelevich et al. (2018) showed
that Copeland has a constant distortion of 5. A rule with optimal distortion of 3 called pluralityVeto
was proposed by Kizilkaya and Kempe (2022) (see also Kizilkaya and Kempe (2023) for a more
practical rule). Many distortion variants have been considered in this model, we refer to the survey
by Anshelevich et al. (2021) for more details.

To see why no rule can achieve a better worst-case distortion than 3, consider an election with
two candidates a and b, which have position pos(a) = 0 and pos(b) = 1, and n = 2k + 1 voters
such that k voters have position pos(i) = 0 (thus voting a ≻ b) and k + 1 voters have position
pos(i) = 1/2 + ε with ε = 1/(k + 1) (thus voting b ≻ a). Then, if the rule follows the majority
principle, it will select b as the winner, while the optimal outcome is a. The distortion is:

dist(f) =
costE(b)

costE(a)
=
k + (k + 1)(1/2− ε)
(k + 1)(1/2 + ε)

=
2k + (k + 1)(1− 2ε)

(k + 1)(1 + 2ε)
=

3k − 1

k + 3

which goes to 3 when k goes to infinity.

Average Distortion

Most of the work on distortion focused on the theoretical worst-case bounds of distortion, and
on the different ways we can optimize it. However, worst-case bounds generally rely on quite
unrealistic examples, such as the one we just discussed to show that no rule can achieve metric
distortion lower than 3. Thus, worst-case bounds are not necessarily representative of the behavior
of the rules on actual preference profiles.

This motivates the idea of average distortion, in which we consider a distribution over utility
functions (in the case of classical distortion), or over positions in the metric space (in the case of
metric distortion), and we compute the expected distortion of the rule over this distribution. For
instance, for a distribution over utility functions D, we define the average distortion of f as:

distavg(f) = EU∼D,P≈U [dist(f, U, P )].

For simplicity, we assume that there are no ties in utility profiles U , and that there is only one
preference profile P verifying P ≈ U (this assumption does not change the results). We can
similarly define average distortion in the metric setting.

In the case of utilities, this model was first studied by Boutilier et al. (2012), who showed that if
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the distribution over utility functions is neutral (i.e., all candidates are treated the same), then the
rule that minimizes the average distortion is a scoring rule. In particular, the rule that minimizes
the average distortion for the uniform distribution of utilities is Borda. Gonczarowski et al. (2023)
later proposed a scoring rule called binomial voting that performs well for all distributions. Another
related work is that of Cheng et al. (2017), who studied average distortion in the metric setting,
in the particular case where the candidates’ positions are drawn uniformly at random from the
distribution of voters’ positions, and obtained much better distortions than the worst-case bounds.

Finally, in Delemazure et al. (2024b), we explored a more experimental approach to the average
distortion. To compute the average distortion of the different rules for a given number of voters and
candidates, we used the Monte Carlo approach: We considered several distributions of utilities and
positions in the metric space, and sampled thousands of random profiles with these distributions,
then computed the average distortion of voting rules over these profiles. For high sample sizes,
Monte Carlo methods are known to converge to the true value of the expectation.

For instance, Figure 2.9 shows the average distortion of different voting rules with the uniform
distribution of utilities in [0, 1], based on the experiments from Delemazure et al. (2024b) that we
reproduced here. We used profiles of n = 30 voters (which is intentionally low in order to get
high enough average distortion) and m candidates, with m going from 2 to 15. We computed the
average distortion over 10 000 instances for each value of m. We compare the average distortion of
the following rules: plurality, veto, half-approval (i.e., k-approval with k = ⌈m/2⌉), Borda, STV,
and Copeland. We also considered the pluralityVeto rule proposed by Kizilkaya and Kempe (2022),
which has optimal worst-case distortion in the metric setting.
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Figure 2.9: Average distortion of voting rules
with the uniform distribution of utilities and
different values of m (over 10 000 instances).

This experiment confirms the theoretical find-
ings from Boutilier et al. (2012) that Borda is opti-
mal for the uniform distribution, but more surpris-
ingly, it shows that the more candidates there are,
the lower the distortion (for Borda and Copeland),
and thus the better the social welfare. This indicates
that in some contexts, “irrelevant alternatives” are
useful for increasing the welfare, and it hints that in-
dependence of irrelevant alternatives (Section 2.4.4),
is not always as appealing as it seems. On the other
hand, the distortion of veto and plurality quickly get
worse as the number of candidates increases, which
is not surprising since these two rules only use uni-
nominal information. PluralityVeto is not very good
either, and we show in Delemazure et al. (2024b)
that this is true even in the metric setting, high-
lighting that the worst-case distortion is not a good
indicator of the average performance of a rule.

2.5.3 Real-world Data

In addition to the synthetic datasets generated using the models described in Section 2.5.1, we will
also test rules on real-world data. Some of these datasets correspond to political elections, but this
is not the case for all of them, and we will often use data related to various different topics. To
gather real-world datasets, there are several possible approaches.

A first approach is to use an existing dataset from the literature or from a specialized bank of
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Dataset Source Chapter Preference type

San Sebastian poster competition Chapter 3 Approvals
Camp songs Chapter 3 Approvals
2002 Irish election data Chapter 4 Truncated rankings
Sushi data Kamishima (2003) Chapter 7 Full rankings
Skate data Smith (2000) Chapter 7 Full rankings

Table 2.5: Preflib datasets that are used in this thesis.

dataset. For voting problems, the Preflib library of datasets (Mattei and Walsh, 2013) is a very
useful resource. It contains a large number of datasets of preferences over various topics. Most of
the profiles in these datasets are rankings, but the ballots often contain ties. Table 2.5 summarizes
the different Preflib datasets that are used in this thesis. Another popular library in social choice
is Pabulib, that contains datasets of participatory budgeting votes (Stolicki et al., 2020).

A second approach is to collect datasets from the web, either by converting open-source datasets
to preference profiles, like we will do in Chapter 6 with the votes of the justices of the Supreme
Court of The United States, or by scraping data and converting it into a preference profile. This
is for instance the approach of Boehmer and Schaar (2023), who collected profiles of rankings
from various sources (like music charts and results of sports competitions). In this thesis, we
used this approach to build additional datasets of approval preferences used in Chapters 3 and 6.
These datasets are based on tierlists that were created on the website Tiermaker.com. As a
reminder, a tierlist is a list of items that are ranked by the user in different categories (generally
Z = {S,A,B,C,D, F}, with S being the best one and F the worst one). The Tiermaker website
allows users to create tierlists of any possible group of items (movies of one franchise, albums of
one singer, characters of a movie, school subjects, colors, etc.), and share them to other people so
that they can give their own tierlist on the same set of items. We collected tierlists submitted by
the users on some popular topics (of course, everything is anonymized), and converted the set of
items ranked in the best category into an approval ballot for each tierlist.

The last, and most time-consuming approach, is to collect the data ourselves. To do this, one
needs to either conduct an online survey, an in situ experiment on the field, or a lab experiment
in a controlled environment and with paid subjects. We explore the different ways to collect such
data in more detail in the next section, through the example of the Voter Autrement project.

2.5.4 Collecting Data: the Voter Autrement Project

We now present a series of datasets, that are used in all chapters of this thesis, and that were col-
lected during experiments conducted in parallel to the (first round of) French presidential elections
since 2002. Most of these experiments are part of the Voter Autrement project.11

These experiments were conducted at the same time or around the time of a presidential elec-
tion. In each of these experiments, participants were given the possibility to vote with alternative
voting methods, such as approval voting, range voting, Borda or IRV. Thus, they could provide
ballots that were more expressive than the uninominal ones that they are allowed to cast in the
actual elections. These experiments had several goals, which varied between years, but in general
they aimed at (1) analyzing how participants react to alternative voting methods, if they under-
stand them and if they like them, (2) computing the results of the elections with these alternative

11For more information (in French): https://www.gate.cnrs.fr/vote/

https://www.gate.cnrs.fr/vote/
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methods, and (3) collecting reliable data for evaluating rules (what we do in this thesis). Let us
now go over the different ways these data were collected.

The Different Kinds of Experiments

The first kind of experiments for collecting these data, which was reproduced during each French
presidential election since 2002, is to stay at the exit of voting booths, and invite voters to partic-
ipate in the experiment, following the tradition of field experiments in political science. We call
these experiments in situ experiments. Voters who agree to participate are given an explanation of
the alternative voting methods they will try, and are asked to fill a survey in which they give their
votes. Participants generally also have to fill an additional survey about their socio-demographic
profile, and sometimes answer questions regarding their preferences between the different voting
methods. In most cases, the experiment is organized in order to reproduce as much as possible the
conditions of a real election, using for instance actual voting urns and voting booths. Moreover,
voters are generally involved in the process before and after the election: they are informed by
mail that the experiment will take place in their city, they can join public meetings explaining the
experiment and its objectives, and they are informed after the election about the results of the
experiments (Laslier, 2019). Laslier and Van der Straeten (2004) conducted the first experiment
of this kind in 2002 in three cities. Such in situ experiments were conducted during all French
presidential elections from 2002 to 2022, but also in Germany in 2008 (Alós-Ferrer and Granić,
2012), in Benin in 2011 (Kabre et al., 2013), in Romania in 2012 (Roescu, 2014), and in Austria
in 2015 and 2019 (Darmann et al., 2017; Darmann and Klamler, 2023).

The second kind of experiment is to run surveys online instead of going on the field to find
participants. In online experiments, the process is the same as for in situ experiments: participants
are first familiarized with the alternative voting methods, then they vote with these methods,
and finally they are asked socio-demographic questions and questions on their preferences on the
different voting methods. Since everything is happening online and anyone can freely access the
website, this allows much more people to participate at the same time, and more voting methods
to be tested. Blais et al. (2012) were the first to conduct an experiment of this kind during a
Canadian provincial election in 2011. The first online experiment for a French presidential election
was held in 2012 Blais et al. (2015); Laslier et al. (2012), and then a similar experiment was
conducted in 2017 (Bouveret et al., 2018), and then again in 2022 (Delemazure and Bouveret,
2024). A similar experiment was conducted in the USA in 2016 (Igersheim et al., 2022). To test
the rules presented in Chapter 5, we conducted an online experiments during the 2024 election of
the French representatives to the European parliament. Another online experiment regarding the
election of the European parliament members, called EuroVote, was conducted in 2015 by Laslier
et al. (2015). In this experiment, they tested different voting methods than the ones tested in
our 2024 experiment. Finally, we also conducted an online experiment during the 2022 Italian
parliamentary election (Marsilio and Delemazure, 2022).

The participants of these online experiments were generally recruited through social media,
mailing lists, and sometimes traditional medias. Thus, they are generally quite interested in the
experiment and in the topic of alternative voting methods, and thus fill the form conscientiously
and sometimes give precious feedback.12 However, this often leads to very unrepresentative samples
of participants, from a demographic and political viewpoint: they are generally more educated,
younger, and more left-leaning than the general population. Thus, for some experiments, the

12In our 2024 experiments for the European election, we received more than 400 interesting comments on the
experiment and the voting methods that were proposed.
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Year Type City or name Rules tested Weighted n m

2002 In situ *Gy-Les-Nonains AV 365 16
2002 In situ *Orsay AV 2 220 16
2007 In situ *Louvigny AV, RV 1 063 12
2007 In situ *Cigné AV, RV 233 12
2007 In situ *Illkirch AV, RV 1 540 12
2007 In situ Faches-Thumesnil IRV 960 12
2007 In Situ Orsay MJ 1 733 12
2012 In situ *Strasbourg AV, RV 1 023 10
2012 In situ *Louvigny AV, RV 930 10
2012 In situ *Saint-Etienne AV, RV 387 10
2012 Online Vote pluriel AV, Plurality, IRV 8 044 10
2012 Online Vote de valeur RV 11 539 10
2017 In situ Fort-de-France Borda, IRV 508 11
2017 In situ *Allevard RV 836 11
2017 In situ *Strasbourg AV, RV 1 071 11
2017 In situ *Grenoble AV, Continuous 1 069 11
2017 In situ *Hérouville-Saint-Clair AV, RV 711 11
2017 In situ *Crolles AV, AVR, RV 2 617 11
2017 Online *Voter autrement AV, RV, Borda, IRV 37 462 11
2022 In situ *Strasbourg AV, RV, MJ 938 12
2022 Online *Representative AV, RV, MJ 2 122 12
2022 Online *Un autre vote AV, RV, MJ, Borda, IRV 2 307 12

Table 2.6: Experiments conducted during French presidential elections. Datasets preceded by “*”
are part of the Voter Autrement project.

sample of participants was recruited by a polling institute in order for it to be more representative
of the general population. This is what we call representative experiments. The drawback of
recruiting participants this way is that they are less interested in the topic, and thus sometimes
fill the form less conscientiously. Moreover, such experiments are generally quite expensive (count
several thousand of euros for 1 000 participants). Another way to reduce the representation bias is
to assign weights to the voters, as we will see at the end of this section.

Finally, a third popular kind of experiment in political science and social choice, is laboratory
experiments (see for instance Forsythe et al. (1993); Blais et al. (2007)). These experiments do not
necessarily take place during a large-scale election, and they generally have a very precise protocol
and controlled environment: the candidates are fictitious (while we use the actual candidates of
the election in in situ and online experiments), and the participants are paid. The goal of these
experiments is often to study the strategic behavior of voters with different voting rules.

A History of Experiments During French Presidential Elections

Table 2.6 summarizes the different experiments that were conducted in parallel to French presiden-
tial elections since 2002. The first experiment of this series was an in situ experiment conducted
in two cities (Gy-Les-Nonains and Orsay) by Laslier and Van der Straeten (2004), and only tested
the approval voting rule. In addition to computing the approval winner, the authors also used
the preferences to describe the relationships between the candidates (in particular, how much co-
approved was each pair of candidates) and used this information to embed them in a 2-dimensional
space, representing the political space.

Baujard and Igersheim (2009) conducted similar in situ experiments during the 2007 presiden-
tial election, in three other cities (Cigné, Louvigny, Illkirch). This time, the voters could vote using
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the approval voting rule, and a range voting rule with possible scores Z = {0, 1, 2} (see also Laslier
(2010b)). Baujard and Igersheim (2010) conducted an analysis of the experiments from 2002 and
2007 and provided extensive details on the protocol, the material and the surveys that were shown
to the participants. Baujard et al. (2011) used the preferences of voters to embed the candidates
in a 2-dimensional space. The same year, Farvaque et al. (2009) and Balinski and Laraki (2010)
conducted similar experiments outside of the Voter Autrement project. The first one took place in
the city of Faches-Thumesnil and focused on IRV and the simplicity criterion (i.e., how easy it is
to understand the rule). The second one took place in the city of Orsay and tested the Majority
Judgement rule.

In 2012, Baujard et al. (2013) conducted in situ experiments again, in three cities (Louvigny,
Saint-Etienne, Strasbourg), this time testing different range voting score scales in each city: re-
spectively {−1, 0, 1}, {0, 1, 2} and {0, 1, 2, . . . , 20} (see also Baujard et al. (2014)). This allowed
to show that voters adapt their preferences to the scale they are given (Baujard et al., 2018).
Lebon et al. (2017) used the approval preferences to construct a political axis of the candidates in
the 2012 French presidential election based on which candidates were often approved by the same
voters (inspiring our model in Chapter 6). Igersheim et al. (2016) compared the voters’ behavior
in this experiment to what could be observed in lab experiments with the same voting methods.
In parallel to these in situ experiments, two online experiments (that were not officially part of
the Voter Autrement project) were conducted in 2012. The first one, called Vote Pluriel (Van der
Straeten et al., 2013) tested various rules, including approval voting, plurality and IRV. The second
one, called Vote de Valeur (Laslier et al., 2012), tested range voting with Z = {−2,−1, 0, 1, 2}.

In 2017, Bouveret et al. (2019) conducted in situ experiments in five cities, testing different
rules in each city. In Allevard, voters tested range voting with one of three possible scales (either
{−1, 0, 1}, {−0.5, 0, 1} or {−2, 0, 1}), in Crolles they tested approval voting, approval with runoff
(see Chapter 3), and range voting with Z = {0, 1, . . . , 19, 20}. In Grenoble, they tested approval
voting, and a form of range voting with continuous values: for each candidate, voters had to
put a mark on a continuous line to indicate how much they like (or dislike) this candidate. In
Hérouville-Saint-Clair, they tested approval voting, and range voting with either Z = {0, 1, 2, 3} or
Z = {0, 1, 2, 3, 4, 5}. Finally, in Strasbourg, they tested approval voting and range voting with one of
{0, 1, 2}, {0, 1, 2, 3}, {−1, 0, 1} and {−1, 0, 1, 2}. In addition to these in situ experiments, Bouveret
et al. (2018) also conducted an online experiment in which more than 40 000 people participated,
and could vote with approval voting, range voting with the same scales as in Strasbourg, IRV, and
a variant of Borda asking to rank exactly 4 candidates. They could also give their opinion on each
candidate using an almost continuous slider going from 0 to 100. Baujard et al. (2021) studied
how the choice of the score scale in range voting impacted the voters’ behavior. The approval
preferences of the in situ experiments were used by Baujard and Lebon (2022) to construct a
political axis of the candidates in this election. In parallel to these experiments from the Voter
Autrement project, Kamwa et al. (2020) conducted another in situ experiment, testing IRV and
Borda (also asking to rank exactly 4 candidates) in the city of Fort-de-France, in Martinique.

Finally, the most recent presidential election took place in 2022, and once again, similar ex-
periments were conducted. An in situ experiment was conducted in the city of Strasbourg, where
participants tested approval voting, range voting with Z = {−1, 0, 1, 2, 3, 4} and the majority
judgement rule (Baujard et al., 2025b). The same voting rules were tested on an online experi-
ment with a representative sample of participants, recruited through a poll institute. Moreover,
we reproduced the 2017 online experiment that tested a wide range of voting rules, and added the
majority judgement rule to the set of tested rules (Delemazure and Bouveret, 2024).

Note that in addition to these experiments that took place during French presidential elections,
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Party LREM FN LR LFI PS DLF R NPA UPR LO SP

Actual 24.01 21.3 20.01 19.58 6.36 4.7 1.21 1.09 0.92 0.64 0.18
Sample 23.53 2.99 8.96 31.75 16.06 1.59 0.75 0.75 0.65 0.28 0.09
Weight 1.02 7.13 2.23 0.62 0.40 2.96 1.62 1.46 1.41 2.28 1.93

Table 2.7: Shares of votes of the candidates to the 2017 French presidential election (actual results)
and the share of votes they received from the participants of the 2017 experiment in Strasbourg.
The last line gives the weights assigned to each candidate’s supporters in order to correct the
biases.

we also conducted very similar online experiments for the 2022 Italian parliamentary election
(Marsilio and Delemazure, 2022) with a representative sample of participants, and for the 2024
European election in France (Delemazure and Bouveret, 2024).

Assigning Weights to the Votes

As already mentioned, in most cases the participants in these experiments did not constitute a
representative sample of the population, and there are important selection biases. In particular,
the political distribution of the participants is generally very different from that of the general
population (in general, it is more left-leaning). To observe this, participants were sometimes asked
to give their vote for the official election, allowing us to compare the distribution of votes among
the participants in the experiments to the official results.

In order to have more interpretable results in our experiments and to partially correct these
biases, we will assign weights to the voters (when it is possible). These weights will be based on
the actual votes of the participants at the election, such that the share of weights assigned to each
candidate is the same as the share of votes they received at the actual election. More specifically,
for each candidate, the weight of a participant i ∈ V who voted for this candidate is set to the ratio
between the share of votes this candidate received in the actual election Sactual(c)/nactual, divided
by its share of votes in the experiment Sexpe(c)/nexpe, i.e. wi = (Sactual(c)·nexpe)/(Sexpe(c)·nactual).
For instance, Table 2.7 gives the weights obtained in the experiment that took place in Strasbourg
during the 2017 election (the candidates are identified by their party’s name). Observe in particular
that the weights of participants who voted for the far-right party FN are quite high (7.13), as they
are underrepresented in the sample, while the weights of the participants who voted for the center-
left party PS are quite low (0.40), as they are overrepresented in the sample. Note also that we
assign a weight 0 to the voters who did not indicate their vote at the official election, or said
they voted (or will vote) blank, or that they abstained (or will abstain).13 Finally, note that the
weights need to be (re)computed for each sample of participants. For instance, if we only keep
the participants who tested one particular voting rule, we need to recompute the weights for this
subset of participants.

Conclusion

We now have seen different ballot formats that can be used to express preferences, as well as
several types of outcomes that we can obtain using these preferences. We defined the most common

13We could have included abstaining voters in the weighting process, but since so few participants in the exper-
iments said they abstained or will abstain, and so much of the population is actually abstaining, this would cause
this small group of abstaining voters in our experiment to decide the whole election.
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single-winner and multi-winner voting rules, and we also briefly discussed the problem of deriving
an ordering of candidates (or axis) from voters’ preferences. We introduced tools that we use to
evaluate and compare the rules we introduce. The first tool is axiomatic analysis, which allows us
to study the properties of the rules on different aspects of their behavior: symmetry properties,
reaction to adding or removing candidates, reaction to voters’ strategic behaviors, etc. The second
tool is experimental analysis, in which we evaluate the behaviors of the rules, the quality of their
outcomes (for instance, using distortion), and how similar they are, using datasets of real or
synthetic preferences. We discussed various models to generate synthetic data, and how they
relate to each other with the map of elections. Finally, we saw that we could also use real data,
and we discussed the particular case of experiments in which voters are given the opportunity to
try alternative voting methods in parallel to actual large-scale political elections, with the example
of the Voter Autrement series of experiments. We are now ready to define and model new (voting)
problems, propose new rules, and compare these rules using axiomatic and experimental analyses.
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Expressive Ballots for Voting
Systems
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Chapter 3

Approval with Runoff Voting
Systems

3.1 Introduction

The first part of this thesis is dedicated to the ways we can solve issues of existing voting systems
by allowing voters to give more expressive ballots. It is only natural for me to start with the voting
system I know the most, the cornerstone of French democracy: plurality with runoff (known in
France as the scrutin uninominal majoritaire à deux tours). This voting system works in two
rounds: in the first round, voters vote for one (and only one) of the candidates. If one candidate
receives more than half of the votes, they are declared the winner. Otherwise, a second round is
organized between the two candidates who obtained the most votes in the first round.1 Reducing
the election to two candidates is a way to ensure that the winner will be elected with an absolute
majority of the (expressed) votes. This voting system is so important in the French political
landscape that it is written in the Constitution of the Fifth Republic.2

Plurality with runoff, which was used for large-scale elections for the first time in France during
the 19th century, is now the most used voting system for electing heads of state around the world,
with 84 countries using it, as shown in Figure 3.1. In France and a few other countries, it is also
the voting system used for parliamentary elections.

Given its wide use, plurality with runoff is the topic of quite a number of studies in political
science. In particular, the rule tends to allow the viability of more political parties than simple
plurality, since voters’ rational behavior does not force them to concentrate on two candidates only
(Duverger, 1951). On the other hand, numerous drawbacks of plurality with runoff as a voting
system were pointed out by scholars and citizens in the recent decades. In particular, plurality
with runoff as a voting rule fails many desirable properties, including independence of clones and
monotonicity. These issues are not only theoretical: failing these axioms has a very concrete impact
on the outcome of the elections.

1There exist variants of this rule where the second round may involve more than two candidates, such as French
parliamentary elections.

2 “Le Président de la République est élu à la majorité absolue des suffrages exprimés. Si celle-ci n’est pas obtenue
au premier tour de scrutin, il est procédé, le quatorzième jour suivant, à un second tour. Seuls peuvent s’y présenter
les deux candidats qui, le cas échéant après retrait de candidats plus favorisés, se trouvent avoir recueilli le plus
grand nombre de suffrages au premier tour.”.
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Figure 3.1: Countries in which plurality with runoff is used for electing the head of state.

Sensitivity to Clones

Consider first the independence of clones property (which we introduced in Section 2.4.4), with the
following example of an election with three candidates Ann, Bob and Cora, having the following
scores in the first round:

Ann Bob Cora
35% 40% 25%

With these scores, Bob and Ann go to the second round. Let us say that most of Cora’s supporters
decide to vote for Bob in the second round, such that Ann receives 45% of the votes, and Bob wins
with 55%. Let us now assume that we add a new candidate Bobby in the election. Bobby is a
clone of Bob: every voter who likes Bob also likes Bobby, and conversely. For instance, this could
be the case if Bob and Bobby are two candidates from the same party. Independence of clones
says that if we keep the same voters as in the first election, the winner should not change, and be
either Bob or Bobby. If we assume that Bob’s supporters from the first election are equally divided
between Bob and Bobby, these are the results of the first round in this new election:

Ann Bob Bobby Cora
35% 20% 20% 25%

The two candidates reaching the second round are now Ann and Cora, and neither Bob nor Bobby
can win the election. Thus, plurality with runoff fails independence of clones.

This scenario may look oversimplified and purely theoretical, but it can be linked to actual
elections that used plurality with runoff. Consider the 2002 presidential election in France, in
which 16 candidates competed in the first round. The two candidates who reached the second
round were the incumbent president Jacques Chirac and the far-right candidate Jean-Marie Le
Pen with respectively 19.88% and 16.86% of the vote share: a second round that no polling
institute predicted. The candidate for the socialist party, Lionel Jospin, came third with 16.18%
of the votes. In this election, Jospin has the role of Bob from our toy example, as he had to
share the votes from left-wing voters with 7 other candidates (3 from the far-left, 4 from the left).
Together, these 7 candidates and Lionel Jospin actually got around 43% of the votes (32.45% for
the left and 10.44% for the far-left), but as the supporters from the left were divided between
a lot of candidates, none of them were able to get more votes than the leader of the far-right
Jean-Marie Le Pen, who only had one clone, who received only 2.34% of the votes. In the second
round, Jacques Chirac won by a large majority of the votes (82.21%) against Jean-Marie Le Pen.
However, in a second round between Jacques Chirac and Lionel Jospin, the results could have been
different, as the last polls were predicting a quasi-split election (with each getting around 50% of
the votes).
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Failure of Monotonicity

Another property failed by plurality with runoff is the monotonicity property (that we introduced
in Section 2.4.5). Informally, this property states that if a candidate is winning in an election
and we increase the number of people supporting this candidate, then it should still be winning.
Conversely, a failure of monotonicity implies that it is possible to make a candidate win an election
that they were not winning by decreasing their number of supporters (and in that sense, it is also a
failure of strategyproofness). Consider for instance another election between Ann, Bob and Cora:

Ann Bob Cora
37% 32% 31%

In this election, Ann and Bob go to the second round. Now, let us assume that many of Cora’s
supporters really do not like Ann, so in the second round most of them vote for Bob, who ends up
winning the election. However, let us assume that in this election, if the second round was between
Ann and Cora, Bob’s supporters would be evenly divided between them and Ann would actually
be the winner. Ann’s supporters know this, so some of them might vote for Cora instead of Ann
in the first round, so that the second round is against Cora instead of Bob. Thus, we obtain the
following scores:

Ann Bob Cora
35% 32% 33%

Here, the score of Ann decreased from the previous election, but it actually made her a winner,
while she was losing before, because the second round is now against Cora. This is an example of
a failure of monotonicity.

This flaw is well-known by politicians, who know how to use it to their advantage. Even if
this does not correspond exactly to a violation of monotonicity, they can organize their campaigns
such that they are ‘helping’ a candidate who will be easier to beat in the second round. Consider
for instance the case of the 1988 French presidential election. The main candidate for the left
was François Mitterand, and there were two main candidates for the right: Raymond Barre and
Jacques Chirac. Chirac was more conservative than Barre, so Mitterand had more chance to win a
second round against him (Barre would have got some of the centrist votes received by Mitterand).
This might be one of the reasons that lead him to focus his attacks against Jacques Chirac, making
him de facto his opponent, and the leader of the right (Giesbert, 1996, p. 520).

Because of these drawbacks (sensitivity to clones, failure of monotonicity), a lot of people are
voting strategically when plurality with runoff is used. For instance, in France, many people are
torn between voting sincerely and voting strategically (which is sometimes called “useful voting”),
creating a lot of frustration: voters who voted sincerely might think they could have changed the
result by being more strategic, and the ones who vote strategically without succeeding would have
preferred to support their actual favorite party.

The Runoff

Luckily, there exists a method that solves both of these issues, and even more: approval voting
(see Section 2.3.1). The principle is very simple: voters can vote for as many candidates as they
want, and the candidate who receives the most votes is declared the winner. This rule is widely
discussed in the scientific literature, and even promoted by some organizations (see for instance
the Center for Election Science in the US). It seems however that this change would be hard to
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accept for countries that are used to runoff systems, in particular in France, where every major
election has a runoff (except the election of the members of the EU Parliament, see Chapter 5).

There exists some theoretical benefits of the runoff (for instance, it prevents the election of a
Condorcet loser), but the main arguments in favor of having a second round are probably more
cultural and political: people are used to it, it focuses the debate between two candidates only,
and it ensures that the winner is supported by an absolute majority of voters, giving in principle
more legitimacy to the elected candidate.

This lead us to ask the question of whether it is possible to keep the benefits of the two-round
protocol, without having to bear the drawbacks of using plurality in the first round. Clearly,
if the answer to this question is positive, the format of the ballots in the first round must no
longer be uninominal. As detailed in Chapter 2, several possibilities exist, like ordinal ballots,
cardinal ballots or approval ballots. As we just discussed, voting with approval ballots has several
advantages when there is only one round, so we can expect to keep some of the benefits if we add
a second round. Moreover, approvals are simple and easy to express: changing the ballot of the
first round from uninominal to approval is probably the simplest change in the voting system that
can be done while still having a major positive impact on the voting process. We explore this
possibility seriously in this chapter.

Approval with Runoff

We define an approval with runoff election as a two-round protocol: In the first round, voters cast
approval ballots. We use these ballots to select two finalists and in the second round, voters cast
votes for one of them. The candidate with the majority of the votes wins the overall election. This
voting system was actually used in the municipal elections of St. Louis, Missouri in 2021 and 2025
after St. Louis voters passed a proposition called Proposition D in 2020.3 Approval voting with
runoff was also used in several cantons in Switzerland for multi-winner elections. The precise rules
vary from one canton to the other so that the second round is sometimes almost unused, as in the
canton of Zurich (Laslier and Van der Straeten, 2016; Van der Straeten et al., 2018).

In this chapter, we model approval with runoff as a voting rule, with a one-shot input, and
study its properties in a similar way as we would study the properties of plurality with runoff or
any single-winner voting rule. Then, two major questions arise: (1) What should the input of the
rule consists of? and (2) Which rule should be used to determine the two finalists?

For the first question, the answer becomes clear once we remark that we need the approval
preferences for computing the finalists, and the pairwise comparisons between the finalists for
computing the winner. As we cannot know in advance who the two finalists will be, we need to
be able to compare each pair of candidates, even if in the end we use pairwise comparisons for
only one pair of candidates. We will thus assume that we have access to each voter’s ranking of
the candidates. Combining this ranking with approval preferences, and assuming that the two are
consistent with each other, this means that the rankings come with a threshold that separates
approved candidates from disapproved candidates. We call this kind of data structure approval-
ordinal ballots. It was first introduced by Brams and Sanver (2009) under the name approval-
preference. They studied two rules based on this kind of input (preference approval voting and
fallback voting). Subsequent works studied possibility and impossibility results in the approval-
ordinal setting. Approval-ordinal ballots have also been defined for other kinds of output, such as
ranking with approval information (Kruger and Sanver, 2021), or consensus measures (Erdamar

3https://stlapproves.org/

https://stlapproves.org/
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et al., 2014). Erdamar et al. (2017), studied the manipulability of resolute rules based on approval-
ordinal profiles, showing an impossibility result.

Approval with runoff was first introduced in the literature by Sanver (2010), who compared
it to other rules based on approval-ordinal profiles. Approval with runoff was shown to satisfy
monotonicity and to fail independence of irrelevant alternatives. More recently, Green-Armytage
and Tideman (2020) compared approval with runoff, plurality with runoff and several other runoff
rules for selecting the finalists, with varying input formats (ordinal, approval, valued). For approval
ballots, they assume that every voter i votes sincerely according to a utility function ui, and they
approve a candidate if and only if the utility they receive from this candidate is larger than the
average utility over all candidates running (for this voter). They evaluate these rules along four
numerical criteria: expected utility of the winner, expected utility of the runoff loser, representa-
tiveness and resistance to strategic behavior. Their results come both from using real data and
from simulations. Among other conclusions, plurality with runoff scores particularly badly, and
approval with runoff, slightly better.

Notice that the approval-ordinal framework does not allow taking into account the evolution
of candidates’ campaigns and of voters’ preferences between the two rounds. For instance, in a
real election, candidates tend to move to the center in ideology and rhetorical complexity between
the first and the second round (Di Tella et al., 2023), and voters might change opinions after the
debate, which generally takes place between the two rounds. However, we leave these problems to
further research, and as it is often the case in social choice theory, we assume a fixed electorate
and we consider that the ballots cast by this electorate are sincere, meaning that they correspond
to the true preferences of the voters, and are not influenced by strategic considerations (although
several of our observations do not rely on this assumption).

For the second question (which rule should be used to determine the finalists?), things are
more complex because there is not a unique way to select two candidates from the approval ballots.
Indeed, the selection of two finalists from approval preferences is actually a restriction of the general
setting of approval-based committee voting that we discussed more thoroughly in Section 2.3.2. As
a reminder, for a committee size k ∈ N, approval-based committee rules (ABC rules) take as
input an approval profile and output a set of k candidates. In our case, we want to select k = 2

candidates. An extensive survey on ABC voting is Lackner and Skowron (2023), and we now
have a series of results that tell us which properties the various possible rules satisfy and in which
contexts they are suitable. Most importantly, the choice of the rule used in the first round has
strong implications about the very nature of the two-stage rule, both from a normative point of
view and from a political science point of view: should we send to the second round the two most-
approved candidates? Should we guarantee that the most-approved candidate is in the second
round? Should we ensure some diversity in the second round to be sure that enough voters feel
represented? Should we pay attention to proportionality issues? Therefore, in this chapter we will
consider approval with runoff not as just one rule, but a family of rules. Our aim is then to explore
the reasons that may guide us towards the choice of one of the rules in this family.

Outline of the Chapter

This chapter is organized as follows. We start by introducing the approval with runoff model and
we define several rules in Section 3.2. Then, we study the properties of these rules under the
axiomatic lens (Section 3.3), the statistical lens with an analysis of the behavior of the rules in the
1-dimensional Euclidean space (Section 3.4) and finally the experimental lens (Section 3.5). We
conclude and discuss further work in Section 3.6.



84 CHAPTER 3. APPROVAL WITH RUNOFF VOTING SYSTEMS

3.2 Approval With Runoff Rules

In this section, we introduce the approval with runoff setting and define several rules.

Approval-Ordinal Profiles

Informally, an approval with runoff rule works in two steps. In the first step, we use the approval
preferences of the voters to select the two finalists. In the second step, we do a majority vote
between these two finalists to select the winner. Since we cannot know in advance who the two
finalists will be, we need to be able to compare each pair of candidates. We thus assume that we
have access to voters’ rankings of the candidates. We call this structure an approval-ordinal ballot
(in the literature, Brams and Sanver (2009) introduced this data structure as approval-preferences).

More formally, we have an approval profile PA = (A1, . . . , An) containing approval ballots of the
voters, and an ordinal profile P≻ = (≻1, . . . ,≻n) containing the rankings of the voters. We denote
P = (PA, P≻) the approval-ordinal profile. For simplicity, we will assume ballot consistency, that is,
consistency between the approval preferences and the ordinal preferences of the voters. Formally,
this means that x ≻i y holds for all x ∈ Ai and y /∈ Ai. This implies that each voter i ∈ V has a
threshold in their ranking ≻i such that every candidate above the threshold is approved and every
candidate below is not. Thus, we will use the following notation from Brams and Sanver (2009):
x1 . . . xj |xj+1 . . . xm represents (≻i, Ai) with x1 ≻i · · · ≻i xm and Ai = {x1, . . . , xj}.

Ballot consistency may seem a mild behavioral requirement and is often taken for granted in
the approval voting literature. However, counterexamples can be found showing that it does not
necessarily hold if voters are strategic (Dutta et al., 2006) and observations show that it may fail
empirically when voters, in a single-winner election, take the opportunity of a multinominal ballot
to signal that they support a candidate who has no chance of winning (Baujard et al., 2021). In
our case a violation of the ballot consistency requirement would be observed when a voter approves
a candidate ci, disapproves a candidate cj but votes for cj when the second round is between ci
and cj . However, in this chapter, all results hold without this assumption, by slightly adapting the
definitions of the properties.

Approval-Based Committee Rules

The first step of approval with runoff rules relies on approval-based committee rules (ABC rules)
to select the two finalists. We already discussed ABC rules in Section 2.3.2, but we will recall here
the definitions of these rules in the particular case of committee size k = 2. We show that in this
case, most ABC rules can be defined using a simple formula. Note that we consider here irresolute
rules, that is, rules that can output several (tied) committees.

Given an approval profile PA, S(c) = |{i : c ∈ Ai}| is the approval score of a candidate c ∈ C,
and the candidates maximizing the score S are the approval winners. By extension, the approval
score of a set of candidates J ⊆ C is the number of ballots that contain all candidates from J , i.e.
S(J) = |{i : J ⊆ Ai}|. For simplicity, we will use the lighter notation S(abc) instead of S({a, b, c}).
We will also use this notation for writing profiles. For instance, (2 × a, 4 × bcd, 1 × ad) is the
approval profile containing 2 ballots {a}, 4 ballots {b, c, d} and 1 ballot {a, d}.

The most intuitive rule is probably (multi-winner) approval voting (AV), which simply selects
the two candidates with the highest approval scores.
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Approval Voting (AV)

AV(PA) = argmax
x ̸=y∈C

S(x) + S(y)

Note that this rule is the only rule that has been used in actual approval with runoff elections.
In particular, it was used in the 2021 and 2025 municipal elections of St. Louis, Missouri. Moreover,
the classical “approval with runoff” rule studied in the literature is based on this rule (Sanver, 2010;
Green-Armytage and Tideman, 2020).

Thiele Rules

With AV, if a group of voters is larger than the other groups and if it has at least two favorite
candidates, it is likely that the two finalists will be among the favorite candidates of this group,
leaving the other groups unrepresented in the second round. To bring some diversity to the
set of selected finalists, other rules such as Proportional Approval Voting (PAV) and Approval
Chamberlin-Courant (CCAV) discount the satisfaction of voters who are already satisfied by one
of the two finalists. For instance, under PAV a voter approving ℓ candidates of a committee W
gives a score s =

∑ℓ
j=1 1/j to the committee. For a committee of size k = 2, this means that a voter

approving one candidate gives a score of 1, and a voter approving both candidates a score of 1.5
to the committee. If we used AV, voters approving both candidates would give a score of 2. Under
CCAV, a voter approving both candidates gives a score of 1 to the committee. This rule therefore
favors committees that cover as many voters as possible: it maximizes the number of voters who
approve at least one of the finalists. As we mentioned in Section 2.3.2, PAV is conceptually related
to proportional representation (Brill et al., 2018), while CCAV is more related to diversity.

Another way to see the PAV and CCAV scores is to say that we discard respectively 0.5 and 1
point for each voter approving both candidates of the committee from the total approval score of
the pair of candidates. These rules can thus be written with simple formulas:

Proportional Approval Voting (PAV)

PAV(PA) = argmax
x ̸=y∈C

S(x) + S(y)− 1/2 · S(xy)

Approval Chamberlin Courant (CCAV)

CCAV(PA) = argmax
x̸=y∈C

S(x) + S(y)− S(xy)

In ABC voting, AV, PAV and CCAV all belong to the general family of Thiele rules (Orsted
et al., 1894), that we discussed in Section 2.3.2. When restricted to k = 2, all Thiele rules select
the pair of candidates x, y ∈ C maximizing S(x)+S(y)−αS(x, y) for some α ∈ [0, 1]. For instance,
this α is equal to 0 for AV, 1/2 for PAV and 1 for CCAV. We call these rules α-AV rules.

Example 3.1
Consider for instance the following approval profile PA:

2×a 6×ab 4×abc 4×cd 1×d

In this profile, we have S(a) = 12, S(b) = 10, S(c) = 8 and S(d) = 5. Moreover, all of b’s
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supporters also approve a, half of c’s supporters approve a and none of d’s supporters approve
a. Thus, the scores of the three pairs of candidates {a, b}, {a, c} and {a, d} for AV, PAV and
CCAV are the following:

AV PAV CCAV

{a, b} 12 + 10 = 22 12 + 10− (1/2) · 10 = 17 12 + 10− 10 = 12

{a, c} 12 + 8 = 20 12 + 8− (1/2) · 4 = 18 12 + 8− 4 = 16

{a, d} 12 + 5 = 17 12 + 5− (1/2) · 0 = 17 12 + 5− 0 = 17

It is easy to check that all other pairs of candidates get a lower score for all three rules. Thus,
the winning pairs are {a, b} for AV, {a, c} for PAV and {a, d} for CCAV. AV selects the pair with
maximal support (22 points) while CCAV selects the pair covering the highest number of voters,
as they all approve either a or d.

Sequential Rules

We saw in Section 2.3.2 that sequential versions of Thiele rules have also been defined in the
literature. The candidates are then picked sequentially, and the weight of each voter is updated
after a candidate is added to the committee. The main advantage in the general case is that
sequential rules are easier to compute than their non-sequential counterparts. More specifically,
Thiele rules are NP-hard to compute (except for AV). However, when we fix k = 2, Thiele rules
become polynomial-time computable. The sequential versions still have some interesting properties,
for instance they ensure that the first selected candidate is an approval winner.

We thus define α-seqAV rules that first select an approval winner x, then the candidate maxi-
mizing argmaxy∈C,y ̸=x S(y)− αS(xy). This is equivalent to saying that the weights of voters who
have approved the first finalist x are updated to 1 − α. Special cases of α-seqAV are S-PAV and
S-CCAV, defined below. In the former, the weight of already satisfied voters is updated to 1/2

(α = 1/2), in the latter, it is updated to 0 (α = 1). AV is equivalent to its sequential version.

Sequential Proportional Approval Voting (S-PAV)
The rule chooses the pairs {x, y} such that x maximizes S(x) and y maximizes S(y)−1/2 ·S(xy).

Sequential Approval Chamberlin Courant (S-CCAV)
The rule chooses the pairs {x, y} such that x maximizes S(x) and y maximizes S(y)− S(xy).

Example 3.2
In the approval profile PA from Example 3.1, observe that a is the unique approval winner. Thus,
it is selected first by all α-seqAV rules. This implies that the only possible pairs of finalists are
{a, b}, {a, c} and {a, d}. Since we know that PAV selects {a, c} and CCAV selects {a, d}, this
implies that the sequential variants select the same pairs of candidates as their non-sequential
counterparts.

Note that in Example 3.2, the sequential rules select the same pairs of candidates than their
non-sequential counterparts, but this is not the case in general. In particular, we will see in
Corollary 3.12 that the non-sequential rules might not select the approval winner among the two
finalists, while sequential rules always do.
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Other Sequential Rules

The Eneström-Phragmén rule (Camps et al., 2019) is another sequential ABC rule, which is not
part of the family of sequential Thiele rules in general. However, in the case k = 2, it almost falls
into the family of α-seqAV rules. Indeed, this rule first selects an approval winner x, and set the
weights of voters who approve x to max(0, 1−Q/S(x)), where Q ∈ [0, n/2] is a quota, for instance
the Droop quota and the Hare quota, which are equal to respectively n/3+1 and n/2 when k = 2.
For a fixed n, this rule is thus equivalent to the α-seqAV rule with α = min(1, Q/S(x)).

Eneström-Phragmén (EnePhr)
The rule chooses the pairs {x, y} such that x maximizes S(x) and y maximizes S(y) −
min(1, Q/S(x)) · S(xy).

Interestingly, the definition of the Eneström-Phragmén rule in the case k = 2 is also very close
to the one of the method of equal shares that was introduced recently by Peters and Skowron
(2020). When k = 2, it works as follows: the first selected candidate is an approval winner x.
If S(x) ⩾ n/2 and there exists y ̸= x such that S(y) − n/2 · S(xy)/S(x) ⩾ n/2, then select y
maximizing S(y) − n/2 · S(xy)/S(x) (exactly as in the Eneström-Phragmén rule with the Hare
quota Q = n/2). If the conditions on S(x) and S(y) are not fulfilled, there is no unique way
to select the winners under the method of equal shares. One recommended way is to complete
the committee using Sequential Phragmén, which we define below. However, when k = 2, using
Sequential Phragmén to select the second candidate is equivalent to using Sequential Phragmén
from the start.

Proposition 3.1
When k = 2, the method of equal shares is equivalent to Eneström-Phragmén with Q = n/2

when it returns a complete committee.

Thus, we will not consider the method of equal shares in our analysis. We now introduce
Sequential Phragmén. Its formulation is quite involved in the general case, but when k = 2, it
boils down to the following simple formula:

Sequential Phragmén (S-Phr)
The rule chooses the pairs {x, y} such that x maximizes S(x) and y minimizes:

1 + S(xy)/S(x)

S(y)

Example 3.3
We use the profile PA from Examples 3.1 and 3.2. For the Eneström-Phragmén rule, the Droop
quota is equal to Q = n/3 + 1 = 20/3 and the Hare quota to Q = n/2 = 17/2. Since a is the
approval winner, it is selected first, and α is equal to Q/S(a) which is equal to 20/36 for the
Droop quota, and 17/24 for the Hare quota. In the first case, observe that 20/36 is very close
to 1/2 and thus it is not surprising that the second selected candidate is c, as in S-PAV (that
uses α = 1/2). In the second case, c is also maximizing S(c) − (17/24) · S(ac) = 5.2. Finally,
c is also the candidate minimizing (1 + S(ac)/S(a))/S(c) and is thus selected by the Sequential
Phragmén rule. Thus, all these rules return the pair {a, c}.
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Other Rules

An idea that seems good but is in general bad is to decide that each voter gives one point that they
divide equally between their approved candidates. This is the idea behind Split Approval Voting :

Split Approval Voting (SAV)
The rule chooses the two candidates x, y ∈ C with x ̸= y that maximize the split approval score
Sp(x) =

∑
i:x∈Ai

1/|Ai|.

Example 3.4
In the approval profile PA from Example 3.1, the split approval scores are S(a) = 3+6/2+4/3 =

7+ 1/3, S(b) = 6/2 + 4/3 = 4+ 1/3, S(c) = 4/3 + 4/2 = 3+ 1/3 and S(d) = 4/2 + 1 = 3. Thus,
SAV returns the pair {a, b}.

We also define the trivial rule that returns all pairs of candidates. More formally, TRIV(PA) =

{{x, y} | x, y ∈ C, x ̸= y}. Note that when we will add a runoff to the trivial rule, it will not be
trivial anymore: it will output all candidates except the Condorcet loser whenever there is one.

The Runoff

We now define the family of approval with runoff rules (AVR rules). As we already mentioned,
the idea is that we use the approval ballots in the first round to select the two finalists, and the
second round consists of a majority vote between the two selected candidates. For this, we define
maj(P≻, {x, y}) as the set of winners of the majority vote between x and y in the ordinal profile
P≻. Note that this set of winners is a singleton except in the case of a tie between x and y.

Then, let f be an (irresolute) ABC rule, returning a non-empty set of pairs of candidates, then
fR is the (irresolute) AVR rule that applies the majority rule on every pair of candidates selected
by f . More formally, for an ABC rule f we have:

fR(P = (PA, P≻)) =
⋃

{x,y}∈f(PA)

maj(P≻, {x, y})

This directly gives us the definition of AVR, PAVR, CCAVR, S-PAVR, S-CCAVR, EnePhrR,
S-PhrR, SAVR, and TRIVR.

Example 3.5
Let us combine the approval profile PA from Example 3.1 with an ordinal profile P≻, such that
we obtain the following approval-ordinal profile P :

2×a|bcd 3×ba|dc 3×ab|dc 4×bac|d 2×cd|ba 2×dc|ba 1×d|bac

Observe that voters who approve {a, b} can have two different rankings: half of them prefer a to
b, and the other half prefer b to a. In this profile, maj(P≻, {a, b}) = {b} and maj(P≻, {a, c}) =
maj(P≻, {a, d}) = {a}. Thus, AVR(P ) = SAVR(P ) = {b} and for all the other ABC rules we
defined (except TRIV), fR(P ) = {a}. Finally, observe that d is a Condorcet loser in this profile,
and thus TRIVR(P ) = {a, b, c}.

Now that we have defined the model and some approval with runoff rules, we can study and
compare them in the next sections through axiomatic, statistical, and experimental analyses.
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3.3 Axiomatic Analysis

We start this axiomatic analysis with classical symmetry properties (Section 2.4.1). An AVR rule
fR is anonymous if for any permutation ρ of the voters and every profile P we have fR(ρ(P )) =
fR(P ), and it is neutral if for any permutation π of the candidates and every profile P , we have
fR(π(P )) = π(fR(P )). All the AVR rules defined in Section 3.2 satisfy these two properties.

Like other runoff rules (including plurality with runoff), AVR rules also satisfy the Condorcet
loser criterion (see Section 2.4.2), which states that a candidate who loses the majority vote against
every other candidate should not win the election. On the other hand, because of the runoff, we
expect that no AVR rule satisfies the reinforcement axiom defined in Section 2.4.3. Consider for
instance the two profiles P1 = {10× a|bc, 6× c|ba, 5× b|ca} and P2 = {10× b|ca, 6× c|ba, 5× a|cb},
in which all approval ballots are of size 1. In these profiles, any AVR rule selects the finalists {a, c}
in P1 and {b, c} in P2, and c wins the majority vote in both cases. However, in P1+P2, the finalists
are necessarily {a, b}, so c cannot be the winner.

Efficiency

For defining Pareto-efficiency, we first have to define Pareto-dominance. The following condition
is a strengthening of strict Pareto (see Section 2.4.2), adapted to the approval-ordinal case. We
say that candidate a dominates candidate b if

1. for every voter i ∈ V , a ≻i b and

2. for some voter i ∈ V , a ∈ Ai and b /∈ Ai.

Together with ballot consistency, this condition implies that every voter who approves b also
approves a, and at least one voter who approves a does not approve b. Note that this also implies
that S(a) > S(b) and that maj(P≻, {a, b}) = a. If we did not assume ballot consistency, we would
have required a third condition: (3) for every voter i ∈ V , b ∈ Ai implies that a ∈ Ai.

Pareto-efficiency
An AVR rule fR is Pareto-efficient if for any approval-ordinal profile P for which there exists
a, b ∈ C such that a dominates b, then b /∈ fR(P ).

Proposition 3.2
AVR, PAVR, S-PAVR, S-PhrR and SAVR are Pareto-efficient, but not CCAVR, S-CCAVR,
EnePhrR, and TRIVR.

Proof. Consider a profile P = (PA, P≻) in which a candidate a dominates another candidate b.
Let f ∈ {AV, PAV, S-PAV, S-Phr, EnePhr, SAV} and fR the associated approval with runoff rule.
We want to show that b /∈ fR(P ). We assume by contradiction that b ∈ fR(P ). Thus, there exists
a candidate x ∈ C such that {x, b} ∈ f(PA) and maj(P≻, {x, b}) = b.

It is clear that x ̸= a, because we know that maj(≻, {a, b}) = a since a dominates b. We are
going to show that for every considered ABC rule we have a contradiction.

• Let f be an α-AV rule with α < 1. Define s(y, z) the α-AV score of a pair of candidates
{y, z}:

s(y, z) = S(y) + S(z)− αS(yz) = S(y) + (1− α)S(z) + α(S(z)− S(yz))
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Since a dominates b, we have S(a) > S(b). Moreover, for any candidate x ∈ C, if voter
i approves b and not x, it also approves a. Thus, S(a) − S(ax) ⩾ S(b) − S(bx). We have
s(x, a) = S(a)+(1−α)S(x)+α(S(a)−S(xa)) > S(b)+(1−α)S(x)+α(S(b)−S(xb)) = s(x, b),
thus {x, b} cannot be a pair of finalists because the rule selects the pairs of candidates
maximizing s.

• Let f be an α-seqAV rule with α < 1. b is not the first finalist selected because S(a) > S(b).
Let x be the first finalist selected and define sx(y) as follows:

sx(y) = S(y)− αS(xy) = (1− α)S(y) + α(S(x)− S(xy))

Again, a dominates b, so we have S(a) > S(b) and for all x, S(a) − S(ax) ⩾ S(b) − S(bx).
Thus, sx(a) = (1− α)S(a) + α(S(x)− S(xa)) > (1− α)S(b) + α(S(x)− S(xb)) = sx(b) and
{x, b} cannot be selected because it is not maximizing sx.

• Let f be S-Phr. Since S(a) > S(b), b is not the first selected candidate. Let x be the first
finalist. For y ∈ C, let us define sx as:

sx(y) =
1 + S(xy)/S(x)

S(y)
=

1

S(x)

S(x) + S(xy)

S(y)

We want to prove that S(x)+S(xa)
S(a) < S(x)+S(xb)

S(b) . Now, observe that

S(x) + S(xb)

S(b)
⩾
S(x)

S(b)
> 1 ⩾

S(xa)− S(xb)
S(a)− S(b)

because S(a)− S(xa) ⩾ S(b)− S(xb). This gives

(S(x) + S(xb))(S(a)− S(b)) > (S(xa)− S(xb))S(b)
(S(x) + S(xb))S(a)− (S(x) + S(xb))S(b) > (S(xa)− S(xb))S(b)
(S(x) + S(xb))S(a) > S(xa)S(b) + S(x)S(b)

S(x) + S(xb)

S(b)
>
S(x) + S(xa)

S(a)

Therefore, sx(a) < sx(b), thus {b, x} cannot be a pair of finalists.

• If f is SAV, we denote by Sp(y) =
∑

y∈Ai

1
|Ai| the split approval score. Since b ∈ Ai implies

a ∈ Ai, and there exists i ∈ V such that a ∈ Ai and b /∈ Ai, it is clear that Sp(a) > Sp(b).
Thus {x, b} cannot be a pair of finalists if x ̸= a.

We showed that {b, x} /∈ f(PA) for all x. Therefore, b /∈ fR(P ) for f ∈ {AV, PAV, S-PAV, S-Phr, SAV}
and these rules are Pareto-efficient.

To show that the other rules are not Pareto-efficient, consider the profile P below with p > 3:

1×abc| 1×ab|c 1×a|bc p×|bca

For f ∈ {CCAV, S-CCAV}, f(PA) = {{a, b}, {a, c}} as both pairs cover 3 voters. However,
maj(≻, {a, c}) = c, so c ∈ fR(V ). However, b dominates c. Thus, f is not Pareto-efficient. For
EnePhr with quota Q > 0, observe that it is equivalent to S-CCAV if Q/S(a) ⩾ 1. Then, if
Q = βn = β(p + 3) with β ∈ [0, 1], we choose p such that Q/S(a) ⩾ 1, i.e. p ⩾ 3(1/β − 1). For
this value of p, EnePhr is equivalent to S-CCAV and thus fails Pareto-efficiency.
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The same profile P with p = 0 can be used to show that the trivial rule is not Pareto-efficient
(as {b, c} ∈ TRIV(PA) and maj(P≻, {b, c}) = b, which is dominated by a).

Note that this proof shows that all α-AVR and α-seqAVR rules with α < 1 satisfy Pareto-
efficiency. CCAVR and S-CCAVR fail Pareto-efficiency because CCAV and S-CCAV are sometimes
too irresolute. Still, they satisfy a weaker notion of Pareto-efficiency, which says that if a dominates
b and b ∈ fR(P ), then a ∈ fR(P ). We can also define a variant of CCAV, let us call it CCAV+, in
which ties between pairs of finalists with the same CCAV scores are broken in favor of the ones with
the highest AV score. This variant is Pareto-efficient because for every candidate b dominated by a
candidate a and every other candidate x ∈ C, the CCAV scores s(x, a) ⩾ s(x, b), and S(a) > S(b),
so {x, b} cannot be a pair of finalists. We can similarly define variants of S-CCAVR and EnePhrR.

Strategy-proofness

In most models, strategy-proofness notions (see Section 2.4.5) are incompatible with basic efficiency
or proportionality notions. The AVR framework is no exception, as we will prove that a certain
form of strategy-proofness is not compatible with our Pareto-efficiency axiom. However, we will
show that a weaker strategy-proofness notion is satisfiable by some of the rules. This contrasts
with the work by Erdamar et al. (2017), who studied the manipulability of resolute rules based on
approval-ordinal and showed an impossibility result.

Let us first define strategy-proofness for AVR rules. We say that a profile P ′ is an i-deviation of
P if for all voters j ̸= i we have Aj = A′

j and ≻j=≻′
j . Generally, a rule is said to be strategy-proof

if no voter can benefit from changing their vote. However, deciding what “benefit” means here can
take many forms. In particular, we can base the notion of benefit on the ordinal preferences or
on the approval preferences of the voters. There is little hope that any AVR rule can satisfy a
strategy-proofness notion based on rankings, since only the approval preferences are used to select
the finalists, so by changing their threshold, a voter can easily change the finalists. Thus, we only
consider strategy-proofness notions based on the approval preferences of the voters. In particular,
a weak notion would say that the manipulating voter should not be able to change the set of
winners from no candidate they approve to only candidates they approve.

Strategy-proofness
An AVR rule fR is strategy-proof if for every profile P there is no voter i ∈ V and i-deviation
P ′ of P such that fR(P ) ∩Ai = ∅ and fR(P ′) ⊆ Ai.

Interestingly, both AVR and CCAVR satisfy this strategy-proofness axiom. However, no α-AVR

rule for α /∈ {0, 1} satisfies it, and similarly for α-seqAVR rules.

Proposition 3.3
AVR, CCAVR and TRIVR are strategy-proof but not PAVR, S-PAVR, S-CCAVR, EnePhrR,
S-PhrR and SAVR.

Proof. We start by proving that AVR is strategy-proof. Assume by contradiction that it is not
and that there are profiles P and P ′ with b /∈ Ai winning in P and a ∈ Ai winning in P ′. This
means there is a pair {x, b} selected in P and not in P ′ and a pair {a, y} selected in P ′ and not in
P . Thus, S(x) + S(b) > S(a) + S(y). From P to P ′, the approval scores of a and b cannot change
since a is already approved in P and b already disapproved. However, the scores of x and y can
change, and they can change by 1 each.
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Obviously, x ̸= y since the scores of a and b do not change. Thus, x ̸= y. If only the score of
x or the score of y changes, this would mean that S(x) + S(b) < S(a) + S(y) + 1, which is not
possible since S(x) + S(b) > S(a) + S(y) and all approval scores are integer. For the same reason,
x ̸= a and y ̸= b.

Thus, the score of both x and y changes, meaning that voter i approved x and now disapproves
it and disapproved y and now approves it, and we have S(a)+S(y) < S(x)+S(b) < S(a)+S(y)+2,
which implies that S(x) + S(b) = S(a) + S(y) + 1.

Moreover, S(a) ⩽ S(b), otherwise {x, b} would not have been a possible pair in P and S(b) ⩽

S(a) otherwise {y, a} would not have been a possible pair in P ′. This means that S(a) = S(b) and
S(x) = S(y) + 1.

We can also say that S(y) ⩽ S(b) and S(a) ⩽ S(x), otherwise {x, b} would not have been
selected in P . Thus, S(a) ⩽ S(x) ⩽ S(a) + 1. There are now two cases: S(x) = S(a) or
S(x) = S(a) + 1.

If S(x) = S(a) = S(b) = S(y)+1, then {a, b} was a possible pair in P and is also a possible pair
in P ′, but in that case we cannot have only disapproved winners before and only approved winners
after (since there is a common winner in P and P ′). Similarly, if S(x) = S(a) + 1 = S(y) + 1 =

S(b) + 1, the pair {x, y} would have been selected in both cases. Since x ≻i y in P (as voter i
approves x but not y), we cannot have y winning before and losing after, or x winning after but
not before. Finally, if x is winning in P but not y, and y winning in P ′ but not x, this cannot fulfil
the condition of a successful manipulation. AVR is thus strategy-proof.

Let us now prove that CCAVR is strategy-proof. We still have a pair {x, b} selected in P and
not in P ′ and a pair {a, y} selected in P ′ and not in P . Thus, s(x, b) = S(x) + S(b) − S(xb) >
S(a) + S(y) − S(ay) = s(a, y) in P and s′(x, b) = S′(x) + S′(b) − S′(xb) < S′(a) + S′(y) −
S′(ay) = s′(a, y) in P ′. Since a is already approved and b already disapproved in P , we have
S(a) = S′(a) and S(b) = S′(b). For any x and y, the only possible change that decreases the score
of {x, b} and increases the score of {a, y} is if x goes from approved to disapproved by the voter
i. Since a is already approved by voter i, additionally approving y will not change the score of
{a, y}. Thus, the score of {x, b} would decrease by 1 and the score of {a, y} not change, giving
S(x) + S(b)− S(xb)− 1 < S(a) + S(y)− S(ay) < S(x) + S(b)− S(xb) which is not possible since
all approval scores are integer. This proves that CCAVR satisfies strategy-proofness.

TRIVR is strategy-proof as a corollary of Proposition 3.6, that we prove later.
Now, let us show that the other rules are not strategy-proof. For S-CCAVR, consider the

following profile:

P : 1×a|yb p+ 1×a|by p×b|ay p×ay|b p+ 1×by|a 2×|bay
P ′ : 1×y|ab p+ 1×a|by p×b|ay p×ay|b p+ 1×by|a 2×|bay

In P , the approval winner is a with S(a) = 2p+2 while S(b) = S(y) = 2p+1. Then, since S(ay) = p

and S(ab) = 0, the selected pair is {a, b} and b is winning the runoff. In P ′, the approval winner
is y with S(y) = 2p + 2 while S(b) = S(a) = 2p + 1. Then, since S(ay) = p and S(by) = p + 1,
the selected pair is {a, y} and a is winning the runoff. This is a successful manipulation from the
deviating voter, so S-CCAVR is not strategy-proof.

For α-AVR with 0 < α < 1, consider the following profiles, with p > 1/α:

P : 1×ax|yb p×xy|ab p×ax|by p×yb|xa p×ab|xy 1×b|axy 1×|bxay
P ′ : 1×ay|xb p×xy|ab p×ax|by p×yb|xa p×ab|xy 1×b|axy 1×|bxay
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In P , the score of the pairs are s(x, b) = 4p+2, s(a, y) = 4p+1 and s(x1, x2) ⩽ 3p+(1−α)p+2

for all other pairs of candidates. Clearly {x, b} is the only selected pair in P , and b wins the majority
vote so fR(P ) = {b}. Now, consider the profile P ′ which is an deviation of P by the first voter who
approved Ai = {a, x} and now approves A′

i = {a, y}. In this profile, the scores are s(x, b) = 4p+1,
s(a, y) = 4p+ 1+ (1− α) and s(x1, x2) ⩽ 3p+ (1− α)p+ 2 for all other pairs of candidates. With
α /∈ {0, 1} and p > 1/α, {a, y} is the only selected pair of candidates and a is winning the majority
vote so fR(P ′) = {a}. This is a successful manipulation and these rules are not strategy-proof,
including PAVR.

For α-seqAV rules, consider the following profiles:

P : 1×ax|b p1×x|ab p2×ab|x p3×b|ax p4×|abx
P ′ : 1×a|xb p1×x|ab p2×ab|x p3×b|ax p4×|abx

In these profiles, we will select the values of pi such that b is the sole approval winner, and the
second finalist is x in P but a in P ′. In order for b to be the approval winner, we need that
p2+p3 > p1+1. In order for x to be selected in P and a in P ′, we need p1+1 > 1+(1−α)p2 > p1.
This can be done if we choose p1 and p2 such that p1/(1 − α) > p2 > p1/(1 − α) − 1/(1 − α).
Integer values always exist for p1 and p2 if α /∈ {0, 1} since 1/(1−α) > 1. We then choose p3 such
that p2 + p3 > p1 +1, and finally we set p4 > p1 + p2 + p3 such that b is winning the runoff against
x but not a. Thus, fR(P ) = {b} and fR(P ′) = {a} and these rules are not strategy-proof. Note
that by correctly setting p4, and possibly changing the |abx votes to abx| votes, this result applies
to EnePhrR.

For S-PhrR, we take the same profiles as above, with p1 = p2 = p, p3 = p2 and p4 = p2 + 2p,
where p ⩾ 2. In these profiles, it is clear that b is the approval winner. Then the scores of the pairs
in P are s(b, x) = 1/(p+ 1) and s(b, a) = (1 + p/(p+ p2))/(p+ 1). In P ′, these are s′(b, x) = 1/p

and s′(b, a) = s(b, a). If we want that {x, b} is selected in P and {a, b} in P ′, we need:

1

p+ 1
<

1 + p/(p+ p2)

p+ 1
<

1

p
⇔ p+ 1 >

p+ 1

1 + p/(p+ p2)
> p

The first inequality is obvious. Now, we prove that (p+ 1)/(1 + p/(p+ p2)) > p:

p+ 1

1 + p/(p+ p2)
− p = p

(
1

1 + p/(p+ p2)
− 1

)
+

1

1 + p/(p+ p2)

= p

(
−p/(p+ p2)

1 + p/(p+ p2)

)
+

1

1 + p/(p+ p2)

=
1− p2/(p+ p2)

1 + p/(p+ p2)
> 0.

This proves that we have S-PhrR(P ) = {b} but S-PhrR(P ) = {a} and thus S-Phr is not
strategy-proof.

For SAVR, take the following profiles:

P : 1×abcd|efg 1×efg|abc
P ′ : 1×ab|cdefg 1×efg|abc

In P , the pairs of finalists are {e, f}, {e, g} and {f, g}. In P ′, the only pair of finalists is {a, b}.
This is a successful manipulation and SAVR is not strategy-proof.
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We can also deduce the following corollary:

Corollary 3.4
AVR and CCAVR are the only strategy-proof α-AVR rules and AVR is the only strategy-proof
α-seqAVR rule.

We can also slightly strengthen the strategy-proofness notion such that instead of requiring all
winners in P ′ to be approved by the manipulating voter, we only ask that one of them is approved.
Informally, this means that a voter cannot deviate from a profile in which they approve no winner
to a profile in which they approve at least one winner. This stronger notion implies the weaker
one, but it is still weaker than Kelly strategy-proofness for irresolute rules (Kelly, 1977) and weak
orders, which states that a manipulation is successful if all winners in P ′ are weakly preferred
by the manipulating voter to all winners in P . Kelly-strategyproofness has been used by Brandl
and Peters (2022) to characterize approval voting among approval-based single-winner voting rules.
Finally, the notion we define here is also equivalent to the strategyproofness for unrepresented voters
defined by Delemazure et al. (2023a) in the approval-based multi-winner setting.

Strong Strategy-proofness
An AVR rule fR is strongly strategy-proof if for every profile P , there is no voter i ∈ V and
i-deviation P ′ of P such that |fR(P ) ∩Ai| = 0 and |fR(P ′) ∩Ai| ⩾ 1.

Unfortunately, with this slight change, AVR and CCAVR are not strategy-proofness anymore.
Actually, we can show that it is even incompatible with Pareto-efficiency.

Theorem 3.5
No AVR rule is strongly strategy-proof and Pareto-efficient.

Proof. Let f be an ABC rule and assume that the AVR rule fR is Pareto-efficient and strongly
strategy-proof. Consider the following profiles that all have n = 13 voters.

P 1 : 2×a|bc 1×c|ab 10×abc|
P 2 : 2×a|cb 1×c|ab 10×cba|
P 3 : 2×a|bc 1×c|ab 10×cab|
P 4 : 1×ab|c 1×a|bc 1×c|ab 10×abc|
P 5 : 1×ab|c 1×a|bc 1×c|ab 10×cab|
P 6 : 1×ab|c 1×a|bc 1×c|ba 10×acb|
P 7 : 1×ab|c 1×a|bc 1×bc|a 10×bca|
P 8 : 1×ab|c 1×a|bc 1×cb|a 10×acb|
P 9 : 1×ab|c 1×a|bc 1×cb|a 10×cab|
P 10 : 1×ab|c 1×a|bc 1×c|ba 10×cab|

Observe that P 1
A = P 2

A = P 3
A, P 4

A = P 5
A = P 6

A = P 10
A and P 7

A = P 8
A = P 9

A.
In P 1, a dominates b, so by Pareto-efficiency, b /∈ fR(P 1). Since we have maj(P 1

≻, {b, c}) = b,
this implies {b, c} /∈ f(P 1

A). Similarly in P 2, c dominates b and maj(P 2
≻, {a, b}) = b so {a, b} /∈

f(P 2
A) = f(P 1

A). Thus, we necessarily have f(P 1
A) = {{a, c}}. This gives fR(P 1) = {a} and

fR(P 2) = fR(P 3) = {c}.
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In P 4, a dominates b, therefore by Pareto-efficiency, and since we have maj(P 4
≻, {b, c}) = b,

we have {b, c} /∈ f(P 4
A). Now observe that P 5 is a deviation of P 3, and since fR(P 3) = {c}, we

have by strong strategy-proofness that a /∈ fR(P 5). Since maj(P 5
≻, {a, b}) = a, this implies that

{a, b} /∈ f(P 5
A) = f(P 4

A). Therefore, f(P 4
A) = {{a, c}}. This gives fR(P 4) = fR(P 6) = {a} and

fR(P 5) = fR(P 10) = {c}.
In P 7, b dominates c and maj(P 7

≻, {a, c}) = c, so {a, c} /∈ f(P 7
A). Now observe that P 8 is a

deviation of P 6. We know that fR(P 6) = {a}, thus by strategy-proofness, c /∈ fR(P 8). Since
maj(P 8

≻, {c, b}) = c, this implies that {c, b} /∈ f(P 8
A) = f(P 7

A). Thus, f(P 7
A) = {{a, b}}, giving

fR(P 7) = {b} and fR(P 8) = fR(P 9) = {a}.
Finally, P 10 is a deviation of P 9, in which a is the winner. This implies that a should also be

the sole winner in P 10, as the deviating voter was approving b and c in P 9. However, we know
that fR(P 10) = {c}. This contradicts strong strategy-proofness, and proves the theorem.

Proposition 3.6
TRIVR is strongly strategy-proof, but not AVR, PAVR, CCAVR, S-PAVR, S-CCAVR, EnePhrR,
S-PhrR, and SAVR.

Proof. We know from Theorem 3.5 that no AVR rule is Pareto-efficient and strongly strategy-proof,
giving us the result for AVR,PAVR, S-PAVR, S-PhrR and SAVR. For CCAVR and S-CCAVR,
consider the following profile P with p ⩾ 4, and a deviation of it P ′:

P : 1×ca|b 1×c|ab 1×b|ca p×abc|
P ′ : 1×a|cb 1×c|ab 1×b|ca p×abc|

Both rules select {c, b} as finalists and b as a winner in P . In P ′, all pairs of finalists are possible,
thus a is a possible winner since maj(P ′

≻, {a, c}) = a. This is a successful deviation as the deviating
voter went from approving no winner to approving one. For EnePhrR, the same profile works by
taking p big enough so that it is equivalent to S-CCAVR (see proof of Proposition 3.2)

Let us now show that TRIVR is strategy-proof. Recall that it outputs all candidates except
the Condorcet loser, call it l, if there is one. The only possible occurence of a manipulation is
when l /∈ fR(P ) and a voter i with approval ballot Ai = {l} can deviate to a profile P ′ such
that l ∈ fR(P ′). Because this voter only approves l, it is necessarily ranked on top due to ballot
consistency, and thus the Condorcet loser status of l will not change for any deviation of this voter,
making it impossible to obtain l ∈ fR(P ′).

Monotonicity

Another axiom that is closely related to strategy-proofness is monotonicity (see Section 2.4.5).
Recall that we explained in the introduction of this chapter that plurality with runoff fails mono-
tonicity, partly because of the runoff. It is then natural to ask if we can find AVR rules that
satisfy monotonicity. In the approval-ordinal setting, we can adapt the notion of c-improvement
as follows: (A′

i,≽
′
i) is a c-improvement of (Ai,≽i) if A′

i = Ai ∪{c} or A′
i = Ai, and for all x, y ∈ C

with y ̸= c, if x ≽i y, then x ≽′
i y. In other words, a c-improvement is a deviation in which the only

possible changes are that the position of c in i’s ranking improved and it can become approved.
Then, monotonicity states that if c is a winning candidate in some profile and the support for

c increases (by doing c-improvements) then c should remain a winning candidate.
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Monotonicity
An AVR rule fR is monotonic if for every profile P , candidate c ∈ fR(P ) and every c-
improvement P ′ of P , we have c ∈ fR(P ′).

We use the same definition as Sanver (2010). Note that this definition also makes sense if
we do not require ballot consistency. Unfortunately, most of the rules defined in Section 3.2 fail
monotonicity.

Proposition 3.7
AVR and TRIVR are monotonic but not PAVR, CCAVR, S-PAVR, S-CCAVR, EnePhrR, S-PhrR,
and SAVR.

Proof. Let us first show that AVR is monotonic. Le P = (PA, P≻) be a profile and a ∈ AVR(P ) a
winning candidate. Thus, there exists x ∈ C such that {a, x} ∈ AV(PA) and maj(P≻, {a, x}) = a.
Consider P ′ = (P ′

A, P
′
≻) an a-improvement of P , and denote by S′ the approval score in P ′. We

know that S(a) ⩽ S′(a) and for all candidates y ̸= a, S′(y) = S(y). Therefore, {a, x} ∈ AV(PA)

directly implies that {a, x} ∈ AV(P ′
A). Moreover, since the only change in P ′ rankings is that the

position of a improved, it is clear that maj(P ′
≻, {a, x}) = a. Thus, a ∈ AVR(P ′) and AVR satisfies

monotonicity.
To show that TRIVR satisfies the property, recall that it returns all Condorcet non-losers. If a

is not a Condorcet loser in a profile P , then it is clearly still not one in any a-improvement of P .
Thus, TRIVR satisfies monotonicity.

For all the other rules, consider the following profiles:

P : 2×a|bc 1×b|ca 1×c|ba 10×cab|
P ′ : 2×a|bc 1×ba|c 1×c|ba 10×cab|

One can easily check that for all rules f ∈ {PAV, CCAV, S-PAV, S-CCAV, EnePhr, S-Phr,
SAV}, we have f(PA) = {{a, b}, {a, c}}. Additionally, maj(P≻, {a, b}) = a so for all the rules
considered, a ∈ fR(P ). It is clear that P ′ is an a-improvement of P . However, for all the rules
considered, this change disadvantages the pair of finalists {a, b} as b’s supporter is now already
satisfied by a. With all the rules considered, we have f(P ′

A) = {{a, c}} and since maj(P ′
≻, {a, c}) =

c, this means that a /∈ fR(P ′). Thus, none of these rules satisfies monotonicity.

The proof for (S-)PAVR and (S-)CCAVR actually works for all α-AVR and α-seqAVR rules,
giving us the following corollary.

Corollary 3.8
AVR is the only α-AVR rule and the only α-seqAVR rule that is monotonic.

The fact that approval with runoff satisfies monotonicity was already mentioned by Sanver
(2010) (Theorem 20.4.1). However, the author did not provide a proof for this result. It is
also, among the rules defined in Section 3.2, the only rule that satisfies both monotonicity and
Pareto-efficiency. However, there exist other AVR rules satisfying the two properties. Consider for
instance the rule fR where f returns all pairs of candidates {a, b} such that one of the following two
conditions is fulfilled: (i) neither a nor b is Pareto-dominated in PA, or (ii) a is the only candidate
dominating b in PA.

Let us show that this rule satisfies Pareto-efficiency and monotonicity. We start with Pareto-
efficiency. Let b be a candidate dominated by a in some profile P . We know that if there is some
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x ∈ C such that {x, b} ∈ f(PA), then x = a by the definition of the rule. Since a dominates b, it
is clear that maj(P≻, {a, b}) = a and b /∈ fR(P ). To show that it satisfies monotonicity, consider
a profile P and a winning candidate a ∈ fR(P ). Let P ′ be an a-improvement of P . Since a is
winning, there is a pair {x, a} ∈ f(PA) such that maj(P≻, {x, a}) = a. This means that x is either
not dominated or dominated only by a. If one new voter approves a in P ′, then x is still either
not dominated or dominated only by a, therefore we still have {x, a} ∈ f(P ′

A). If no new voter
approves a in P ′, we clearly have {x, a} ∈ f(P ′

A). Since P ′ is an a-improvement of P , it is clear that
maj(P ′

≻, {x, a}) = a and thus a ∈ fR(P ′). Therefore, this rule is Pareto-efficient and monotonic,
as well as neutral and anonymous, so we cannot characterize AVR with these four properties only.

Independence of Clones

Another property failed by plurality with runoff that we discussed in the introduction is indepen-
dence of clones (see Section 2.4.4). Informally, it states that adding a clone of a candidate in an
election should not alter significantly the outcome of this election (Tideman, 1987). As a reminder,
we say that two candidates a and a′ are clones if for every i ∈ V , (i) a ∈ Ai if and only if a′ ∈ Ai

and (ii) for all x ∈ C such that x /∈ {a, a′}, a ≻i x if and only if a′ ≻i x. In the following, we denote
by P−x the profile that is equivalent to P with the candidate x removed from the preferences. In
other words, the set of candidates of P−x is C \ {x}. Then, we have:

Independence of clones
An AVR rule fR is independent of clones if for any profile P in which two candidates a, a′ ∈ C
are clones, the following two conditions hold:

1. for every candidate x ̸= a, x ∈ fR(P ) if and only if x ∈ fR(P−a′).

2. a ∈ fR(P−a′) if and only if fR(P ) ∩ {a, a′} ≠ ∅.

Unfortunately, we can very easily show that no AVR rule satisfies this axiom. Consider the
simple profile on three candidates {a, b, c} with one ballot P = {abc|}, meaning that all candidates
are approved. Without loss of generality, let us assume that for an AVR rule fR, {b, c} is a selected
pair in PA (if it is not, we can swap the names of the candidates). Thus, b ∈ f(P ). Since b and
c are clones in P , then b should also win in P−c. However, the only pair in P−c is {a, b} and a is
preferred over b by the sole voter. Thus, b /∈ P−c. This contradicts independence of clones.

However, the profiles in which all or almost all rules fail independence of clones are profiles in
which one candidate is approved in every non-empty approval ballot. If we restrict the domain by
eliminating these pathological profiles, we can define a weaker version of independence of clones
that might be satisfied by some of our rules.

Weak independence of clones
An AVR rule fR is weakly independent of clones if it is independent of clones on every profile
P such that no candidate x ∈ C is approved by every non-empty ballot, i.e. for all x ∈ C there
exists i ∈ V such that Ai ̸= ∅ and x /∈ Ai.

We can show that CCAVR and S-CCAVR satisfy this property, but not the other rules defined
in Section 3.2. In particular, the rules satisfying monotonicity AVR and TRIVR fail this property.
Unfortunately, this can be generalized to every neutral monotonic AVR rule:
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Theorem 3.9
No AVR rule is monotonic and weakly independent of clones.

Proof. Let fR be an AVR rule that is monotonic. Consider the following profiles:

P 1 : 1×a|bc 1×b|ca 1×c|ab 10×cab|
P 2 : 1×a|bc 1×ba|c 1×c|ab 10×cab|
P 3 : 1×a|bc 1×ba|c 1×c|ab 10×cba|
P 4 : 1×ab|c 1×ba|c 1×c|ab 10×cba|

We assume without loss of generality that {a, b} ∈ f(P 1
A), otherwise we change the names of the

candidates. Since maj(P 1
≻, {a, b}) = a, we have a ∈ fR(P 1). Observe that P 2 is an a-improvement

of P 1, so a ∈ fR(P 2) by monotonicity. Since maj(P 2
≻, {a, c}) = c, this implies that {a, b} ∈ f(P 2

A).
Observe that P 2

A = P 3
A so {a, b} ∈ f(P 3

A) and thus b ∈ fR(P 3). Moreover, P 4 is a b-improvement
of P 3 so by monotonicity b ∈ fR(P 4) and since maj(P 4

≻, {b, c}) = c, we have {a, b} ∈ f(P 4
A).

Observe that a and b are clones in P 4, thus a should be a winning candidate in (P 4)−b. However,
it is clear that in this profile the only possible pair of candidate is {a, c} and thus fR((P 4)−b) =

maj(P 4
≻, {a, c}) = {c}, breaking weak independence of clones.

Observe that the proof of this theorem also works to show that no AVR rule is strongly strategy-
proof and weakly independent of clones. Indeed, P 1 is a deviation of P 2 in which the second voter
is manipulating. Thus, we cannot go from neither a nor b winning in P 2 to one of them winning
in P 1 by strong strategy-proofness. Since b is a Condorcet loser in both profile, this means that if
a is winning in P 1, it should also win in P 2, as in the original proof. Similarly, we can show that
if b is winning in P 3 it should also be a winner in P 4, and we obtain the exact same proof.

Corollary 3.10
No AVR rule is strongly strategy-proof and weakly independent of clones.

We already have a rule that satisfies monotonicity, we will now show that CCAVR and S-
CCAVR both satisfy weak independence of clones. All the other rules we study fail it. Note that
this implies that CCAVR satisfies both weak independence of clones and strategy-proofness.

Proposition 3.11
CCAVR and S-CCAVR are weakly independent of clones but not AVR, PAVR, S-PAVR, EnePhrR,
S-PhrR, SAVR, and TRIVR.

Proof. We first show that CCAVR and S-CCAVR satisfy weak independence of clones. Let P be
a profile in which there is no candidate approved in every non-empty ballot, and let a and a′ be
clones in P . Let us denote P ′ = P−a′ . In this proof, we will write s(x, y) = S(x) + S(y) − S(xy)
and s′(x, y) = S′(x) + S′(y)− S′(xy) the CCAV score of a pair {x, y} in respectively PA and P ′

A.
Since a and a′ are clones, for all x ̸= a, a′ we have S(xa) = S(xa′) = S′(xa). Therefore, for all

x, y /∈ {a, a′}, s(x, y) = s′(x, y) and s(x, a) = s(x, a′) = s′(x, a). Finally, s(a, a′) = S(a) + S(a′)−
S(aa′) = S(a) since S(a) = S(a′) = S(aa′).

We now prove that {a, a′} /∈ f(PA) for f ∈ {CCAV, S-CCAV}. If a is not an approval winner
in PA, let w be one approval winner. We have s(w, a) ⩾ S(w) > S(a) = s(a, a′), thus {a, a′} /∈
f(PA). Let us now assume that a is an approval winner in PA. Since no candidate is approved
in every non-empty ballot, there exist x ∈ C and i ∈ V such that x ∈ Ai and a /∈ Ai. Thus
s(a, x) = S(a) + S(x)− S(xa) ⩾ S(a) + 1 > S(a) = s(a, a′), thus {a, a′} /∈ f(PA).
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In both cases, {a, a′} /∈ f(PA) and all the other pairs of candidates have the same CCAV score.
Thus, for x, y ̸= a′, {x, y} ∈ f(PA) if and only if {x, y} ∈ f(P ′

A) and for all x, {x, a′} ∈ f(PA) if
and only if {x, a} ∈ f(P ′

A). Since the majority relations are unchanged between P≻ and P ′
≻, then

we have that for all x ̸= a′, x ∈ fR(P ) if and only if x ∈ fR(P ′) and a′ ∈ fR(P ) if and only if
a ∈ fR(P ′). This proves that CCAVR and S-CCAVR are weakly independent of clones.

We now give a counterexample for all the other rules. Consider the following profile P for
p ⩾ 2:

1×b|aa′ p×aa′|b p× baa′|

One can easily check that for f ∈ {AV, PAV, S-PAV, EnePhr, S-Phr, SAV, TRIV}, we have
that {a, a′} ∈ f(PA) and thus a ∈ fR(P ). However, in P−a′ the only possible pair of finalists is
{a, b} and maj((P≻)−a′ , {a, b}) = b so fR(P−a′) = {b}. This proves that all these rules fail weak
independence of clones.

Note that the counterexample used in the second part of the proof can be used to show that
α-AVR rules and α-seqAVR rules also fail independence of clones for α < 1, using a big enough
value of p in the profile P . This gives the following corollary:

Corollary 3.12
CCAVR and S-CCAVR are respectively the only α-AVR and α-seqAVR rules that satisfy weak
independence of clones.

Favorite consistency

Finally, we want to study one last property of the rules. Unlike the other properties discussed in
this section, this one is about the first round of the election, i.e. it is a property of the ABC rule
used to select the finalists, and not the AVR rule.

To motivate this property, consider the following example profile:

1×{b} 49×{a, b} 49×{a, c} 1×{c}

In this profile, 98% of voters approve a, and the other candidates are approved each by 50% of the
voters. However, if we use CCAV, the two finalists would be b and c, as they form the only pair of
candidates that covers all voters (every voter approves either b or c). In a real-world scenario, it
seems undesirable that an approval winner such as a, with an approval score of 98%, is not selected
for the second round of the election. This motivates the following axiom:

Favorite-consistency
An ABC rule f is favorite-consistent if every winning committee contains an approval winner,
i.e. for all W ∈ f(PA), we have |W ∩ argmaxx∈C S(x)| ⩾ 1.

Note that this property can also be defined for committees of size k > 2. By their definition,
all sequential rules satisfy this property. However, any α-AV rule (and thus Thiele rules in the
general case) breaks favorite-consistency for α > 0. We can prove it by adapting our motivating
example. Set p > 1/α and consider the following profile:

p− 1×{b} p×{a, b} p×{a, c} p− 1×{c}
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AV PAV CCAV S-PAV S-CCAV EnePhr S-Phr SAV TRIV

Pareto-efficiency
strategy-proofness

strong strategy-proofness
monotonicity

weak ind. of clones
approval-efficiency

Table 3.1: Summary of the axiomatic properties of the AVR rules.

In this profile, the approval winner is a but the score of the pairs {a, b} and {a, c} is 4p− 1− αp,
while the score of {b, c} is 4p − 2, which is strictly greater by our hypothesis on p. Thus, the
selected committee is {b, c}, contradicting favorite-consistency. This implies that PAV and CCAV
fail favorite-consistency. Using the same profile and p ⩾ 3, we can show that SAV also fails it.

Proposition 3.13
AV, S-PAV, S-CCAV, EnePhr, S-Phr satisfy favorite consistency while PAV, CCAV, SAV, and
TRIV fail it.

We can also turn this property of ABC rules into a property of AVR rules using an efficiency
axiom. Informally, this property states that a candidate cannot be a winner if it is not an approval
winner, or winning the majority vote against any approval winner.

Approval-efficiency
An AVR rule fR is approval-efficient if for all profiles P and all candidate a ∈ fR(P ), either a
is an approval winner a ∈ argmaxS or there exists an approval winner b ∈ argmaxS such that
maj(P≻, {a, b}) = a.

It is clear that if an ABC rule f satisfies favorite-consistency then the AVR rule fR satisfies
approval-efficiency. For α-AVR rules with α > 0 such as PAVR and CCAVR, as well as for SAVR

and TRIVR, the approval profile PA used as a counter example for favorite-consistency can be
used to construct an approval-ordinal profile P in which the approval winners a and b are winning
the majority vote against both c and d. Because {c, d} is a possible pair of finalists for all these
rules, they fail approval-efficiency.

Corollary 3.14
AVR, S-PAVR, S-CCAVR, EnePhrR, S-PhrR satisfy approval-efficiency while PAVR, CCAVR,
SAVR, and TRIVR fail it.

Corollary 3.15
AVR is the only α-AVR rule that satisfies approval-efficiency.

An open problem is whether AVR is the only neutral and anonymous AVR rule that satisfies
approval-efficiency and either strategy-proofness or monotonicity.

Summary of the Results

We conclude this section with a summary of the axiomatic results. Table 3.1 summarizes the
properties of the AVR rules, depending on the ABC rule they are based on. By additionally taking
into account the fact that some rules are easier to understand and explain than others, the rules
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strategy-proof monotonic weak independence of clones

Pareto-efficient (Theorem 3.5) (AVR) (CCAVR
+)

strongly strategy-proof (TRIVR) (Corollary 3.10)
monotonic (Theorem 3.9)

Table 3.2: Summary of the incompatibilities between pairs of axioms.

that have the most advantages are probably AVR and S-CCAVR (or S-CCAVR
+, that we recall

below), though they should be used in different contexts. With AVR, the two finalists will be the
most liked ones, but they might be very similar to each other. Thus, the choice in the second round
might not be interesting for a large part of the voters, that may not feel represented by any of
the finalists. On the contrary, S-CCAVR will select a diverse set of finalists. However, the second
finalist might not be as liked as the first one, making the victory too easy for the first candidate.

Table 3.2 summarizes the incompatibilities between pairs of axioms, and if they are compatible,
we give a rule satisfying both properties. Note that this is not a characterization. In this table,
CCAVR

+ corresponds to the rule in which the pairs of finalists are the one maximizing the CCAV
scores, and ties between pairs with the same CCAV score are broken according to the AV score.
Note that the sequential version S-CCAVR

+ also satisfies both axioms.

3.4 Statistical Analysis

We now want to explore the spectrum between ABC rules that select the most popular candidates,
typically AV, and rules that favour diversity in the set of finalists, typically CCAV and S-CCAV
or, to a lesser extent, PAV and S-PAV. We also want to study the difference between sequential
and non-sequential rules. We will proceed to two different analyses with these goals. The first one,
in this section, is based on statistical distributions over 1-dimensional Euclidean preferences and
provides theoretical insights, while the second one, in the next section, is based on experiments
and simulations using real data.

In this section, we study the behavior of α-AV and α-seqAV rules in the 1-dimensional Euclidean
model, described in Section 2.5.1. As a reminder, in this model there is a function pos that maps
voters and candidates to positions in R, and preferences of voters depend on their distances to
the candidates. For the approval votes, we use a threshold d such that every voter i approves all
candidates c ∈ C with | pos(c)− pos(i)| ⩽ d.

Note that this model ignores that voters might vote strategically. However, classical political
science Chapman (1955); Cox (1984, 1997) argues that in the first round of a runoff, voters concen-
trate on which candidate is going to arrive second and third (this is in practice the more pressing
question) and vote on this basis. For instance, voters might individually adapt their approval
thresholds such that they do not approve all three candidates that are expected to arrive first.
More precisely, Laslier and Van der Straeten (2016) put forward theoretical arguments that imply
putting the threshold at the utility level of the candidate supposed to arrive second.

We will now study how the choices of the threshold d and of the parameter α of α-AV and
α-seqAV rules have an impact on the positions of the candidates selected for the runoff, depending
on the density of voters at each point in the space. For simplicity, we assume that the positions
of the voters follow a continuous density function ϕ such that a proportion

∫ p′

p
ϕ(x)dx of voters

are between positions p and p′, and
∫ +∞
−∞ ϕ(x)dx = 1. In a sense, this can be seen as an Euclidean

preference profile with an infinite number of voters, drawn at random according to the density
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1 0 1

Triangular function

1 0 1

Gaussian function

1 0 1

Exponential function

Figure 3.2: Density functions considered in this section

function ϕ. This approach is very similar to the analysis conducted by Tomlinson et al. (2024), in
which the authors use this 1-dimensional Euclidean model with density functions to highlight the
moderating effect of Instant Runoff Voting (but using ordinal preferences).

In this section, we assume for simplicity that the density function is symmetric and single-
peaked, i.e. for all p ∈ R, ϕ(p) = ϕ(−p) and for all p, p′ ∈ R such that |p| < |p′|, ϕ(p) ⩾ ϕ(p′).
Figure 3.2 shows examples of such density functions, that will be analyzed later in this section.

α-AV rules

We start by computing the positions of the two finalists for α-AV rules. We can first show that
the positions of the finalists are symmetric. This makes sense since the distribution is symmetric
and the role of the two candidates are symmetric in the computation of the α-AV score.

Then, there are two cases: either the finalists have common supporters, which means that
the distance between them is less than 2d, or they have no common supporters. In that case,
if the density function is strictly decreasing on R+, the positions of the finalists are such that
| pos(x)| = | pos(y)| = d. In the former case, the positions that maximize the α-AV score are given
by a formula depending on the density function ϕ, the approval radius d, and the parameter α.
We will see later how we can reduce this formula for some specific density functions.

Proposition 3.16
For α-AV rules and a symmetric single-peaked density function ϕ, there are positions of the
finalists {x, y} such that p = pos(x) = − pos(y) > 0 and:

• If ϕ(2d)/ϕ(0) ⩽ 1− α, then p is such that ϕ(d+ p)/ϕ(d− p) = 1− α,

• Otherwise, p = d.

Proof. We first show that there exists a pair of finalists {x, y} such that pos(x) = − pos(y). In what
follows, we will write px = pos(x) (similarly for all other candidates). Assume by contradiction
that all pairs of finalists are such that |px| ≠ |py|. It is clear that there is a pair of finalists such
that the sign of px and the one of py are opposite, otherwise we reverse the position of one of them
and it will reduce the value of S(xy) without changing the value of S(x) and S(y).

Without loss of generality let us assume that px ⩽ 0 ⩽ py and |px| < |py|. We denote the
function h(t1, t2) that represent the density of voters between t1 and t2 as:

h(t1, t2) =

∫ t2

t1

ϕ(t)dt
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Observe that for all c ∈ C, we have S(c) = h(pc−d, pc+d), and we have S(xy) = h(py−d, px+d).
The α-AV score of the pair (x, y) is:

s(x, y) = S(x) + S(y)− αS(xy) = h(px − d, px + d) + h(py − d, py + d)− αh(py − d, px + d)

We know that (x, x′) with px = −px′ is not a possible pair of finalists so s(x, y) > s(x, x′) and:

h(px − d, px + d) + h(py − d, py + d)− αh(py − d, px + d)

> h(px − d, px + d) + h(−px − d,−px + d)− αh(−px − d, px + d)

which can be reduced to:

h(py − d, py + d)− αh(py − d, px + d) > h(−px − d,−px + d)− αh(−px − d, px + d)

(1− α)h(py − d, px + d) + h(px + d, py + d) > (1− α)h(−px − d, px + d) + h(px + d,−px + d)

and we obtain h(−px + d, py + d) > (1− α)h(−px − d, py − d).

Similarly, {y, y′} such that py′ = −py is not a possible pair of finalists, so s(x, y) > s(y, y′):

h(px − d, px + d) + h(py − d, py + d)− αh(py − d, px + d)

> h(py − d, py + d) + h(−py − d,−py + d)− αh(−py − d, py + d)

which can be reduced to:

h(px − d, px + d)− αh(py − d, py + d) > h(−py − d,−py + d)− αh(py − d,−py + d)

(1− α)h(py − d, px + d) + h(px − d, py − d) > (1− α)h(py − d,−py + d) + h(−py − d, py + d)

which gives (1 − α)h(−py + d, px + d) > h(−py − d, px − d). Because ϕ is symmetrical, we have
ϕ(−t) = ϕ(t) and for all t1, t2, h(t1, t2) = h(−t2,−t1), this gives:

(1− α)h(−px − d, py − d) > h(−px + d, py + d)

Which contradict what we previously obtained. This proves that there are no x, y with positions
|px| ̸= |py| and s(x, y) > max(s(x, x), s(y, y)) and thus there exists a position px such that the
maximum of s is obtained for x, x′ with px′ = −px.

Now, observe that the score of a pair x, x′ such that px′ = −px (assuming without loss of
generality that px > 0) and px ⩽ d is equal to:

s(x, x′) = 2h(px − d, px + d)− αh(px + d,−px + d)

= (2− α)h(px − d,−px + d) + 2h(−px + d, px + d)

= 2(2− α)h(0, d− px) + 2h(d− px, d+ px)

= (4− 2α)(Φ(d− px)− Φ(0)) + 2(Φ(d+ px)− Φ(d− px))

with Φ the integral of ϕ. Note that we used symmetry in the first line. The function reaches its
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maximum when ∂s(x,x′)
∂px

= 0, which happens when

(4− 2α)(−ϕ(d− px)) + 2ϕ(d+ px) + 2ϕ(d− px) = 0

(2α− 2)ϕ(d− px) + 2ϕ(d+ px) = 0

ϕ(d+ px)/ϕ(d− px) = 1− α

Note that ϕ(d + px) is decreasing with px and ϕ(d − px) is increasing with px. Thus, ϕ(d +
px)/ϕ(d− px) is decreasing with px. If ϕ(2d)/ϕ(0) ⩽ 1− α, the equation has at least one solution
px such that |px| ⩽ d. If no position satisfies this equation, this means that the score is increasing
until px = d is reached, and the positions maximizing the score are px = d and px′ = −d. After
these positions, s(x, x′) = 2

∫ px+d

px−d
ϕ(t)dt and ϕ(t) is decreasing when t increases, so s(x, x′) is

necessarily decreasing. This concludes the proof.

Based on the formula obtained in Proposition 3.16, it is clear that for any symmetric single-
peaked density function, the positions of the finalists move further from the center as α increases.
In particular, if α = 0, the position px = 0 satisfies the condition, since ϕ(d + px)/ϕ(d − px) =

ϕ(d)/ϕ(d) = 1. Note that in this proposition and in the next one, we give positions of some pairs
of finalists and not all pairs. Indeed, for some density functions, there can be much more than one
possible pair of finalists. Consider for instance the case of the uniform function in [−1, 1]. With an
approval radius d = 0.2, all pairs of candidates between −0.8 and 0.8 such that their positions are
at distance at least | pos(x)− pos(y)| ⩾ 0.4 are possible finalists. However, for the three functions
shown in Figure 3.2, there is always a unique pair of finalists.

α-seqAV rules

We now study the positions of the finalists for α-seqAV rules. Clearly, the first candidate is at the
position maximizing the approval score, and for any symmetric single-peaked density functions,
the position pos(x) = 0 satisfies this condition. Moreover, if the function is strictly monotonic on
R+, this is the only possible position for the first finalist.

Again, there are two main cases for the second finalist: either it shares common supporters
with the first one, and thus has position | pos(y)| ⩽ 2d, or it shares no common supporters, and
in that case a possible position maximizing the α-seqAV score for the second finalist is such that
| pos(y)| = 2d. Moreover, if the function is strictly monotonic on R+, this is the only possible
position. In the former case, we can again distinguish two cases: either the distance between the
two finalists is lower than one approval radius d, or it is between d and 2d. In both cases, the
positions need to satisfy a formula depending on the density function ϕ, the approval radius d,
and the parameter α. We will later see how to reduce these formulas for some specific density
functions.

Proposition 3.17
For α-seqAV rules and symmetric single-peaked density function ϕ, there is a pair of finalists
{x, y} such that the position of the first finalist x is pos(x) = 0 and the one of the second finalist
y given α and d is p = | pos(y)| given by:

• If ϕ(2d)/ϕ(0) ⩽ 1− α, then p is such that ϕ(d+ p)/ϕ(d− p) = 1− α.

• Otherwise, if mind⩽p⩽2d ϕ(p+ d)/ϕ(p− d) ⩽ 1−α, then p is such that ϕ(d+ p)/ϕ(d− p) =
1− α.
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• Otherwise, p = 2d.

Proof. We know that the distribution of voters follows the density function ϕ(t). The position of
the first finalist x is clearly pos(x) = 0 as the density function is single-peaked and symmetric (so
it reaches its peak at 0). Let y be a candidate at position pos(y) = p. Without loss of generality
we assume p ⩾ 0 (as the density function is symmetric).

First, consider positions p ⩽ d. Note that −d ⩽ p − d ⩽ 0. For a voter i ∈ V , the value of
Ai ∩ {x, y} where Ai is their approval ballot is given by:

pos(i) < −d {}
−d ⩽ pos(i) < p− d {x}

p− d ⩽ pos(i) ⩽ d {x, y}
d < pos(i) ⩽ p+ d {y}

p+ d < pos(i) {}

As in the proof of Proposition 3.16, we will use the function h(t1, t2) =
∫ t2
t1
ϕ(t)dt. The α-seqAV

score of y is given by:

s(y) =S(y)− αS(xy) = h(p− d, p+ d)− αh(p− d, d+ p)

=(1− α)h(p− d, 0)− αh(0, d) + h(0, d− p) + h(d− p, d+ p)

=(2− α)h(0, d− p) + h(d− p, d+ p) +K

by symmetry, with K a constant independent of p. Let Φ be the integral of ϕ. We have:

s(y) =(2− α)(Φ(d− p)− Φ(0)) + (Φ(d+ p)− Φ(d− p)) +K

=(1− α)Φ(d− p) + Φ(d+ p) +K ′

with K ′ a constant independent of p. This reaches its maximum when ∂s(y)
∂p = 0. This gives:

(α− 1)ϕ(d− p) + ϕ(d+ p) = 0

ϕ(d+ p)/ϕ(d− p) = 1− α

Now, observe that since p ⩽ d and ϕ is increasing on R⩾0 (by single-peakedness). Thus, ϕ(d+p) is
decreasing with p, ϕ(d− p) is increasing with p and ϕ(d+ p)/ϕ(d− p) is decreasing. For p = 0, we
have ϕ(d+p)/ϕ(d−p) = 1, so there exists a maximum with p ⩽ d if and only if ϕ(2d)/ϕ(0) ⩽ 1−α.
This gives the first part of the formula.

Let us now assume that d ⩽ p ⩽ 2d. The intervals corresponding to each approval set are the
same as in the previous case.

The score of y is now given by

s(y) =S(y)− αS(xy) = h(p− d, p+ d)− αh(d+ p, p− d)
=(1− α)h(p− d) + h(d, p+ d)

=(1− α)(Φ(d)− Φ(p− d)) + [Φ(p+ d)− Φ(d)]

This reaches a maximum when (α − 1)ϕ(p − d) + ϕ(p + d) = 0, i.e. ϕ(p + d)/ϕ(p − d) = 1 − α.
Note that this happens only if the minimum of ϕ(p+ d)/ϕ(p− d) between d and 2d is lower than
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1−α. Moreover, this can happen for several values of p, but this at least restrict the set of possible
positions.

If the score does not reach a maximum in the first two cases, then p ⩾ 2d. We now have
s(y) =

∫ p+d

p−d
ϕ(t)dt which can only decrease when p increases since ϕ(t) decreases with t. Thus, if

no maximum was found before, then the position with maximal score is p = 2d. This concludes
the proof.

Note that the first case of the proposition gives p ⩽ d, and the second case p ⩽ 2d.

Examples of functions

To get a better understanding of what these results mean, we will consider three different density
functions that satisfy the required conditions: the triangular function, the Gaussian function, and
the exponential function. They are displayed in Figure 3.2.

Triangular function

Let us start with the triangular density function ϕ(t) = (1/K)(1− t) for t ∈ [−1, 1], where K is a
normalization constant.

For α-AV rules, we need ϕ(d+ p)/ϕ(d− p) = 1− α for 0 ⩽ p ⩽ d. This gives:

(1− d− p)/(1− d+ p) = 1− α
1− d− p = (1− α)(1− d+ p)

−p = p− αp− α(1− d)
p(α− 2) = −α(1− d)

p = (1− d)α/(2− α).

We have p ⩽ d if (1 − d)α ⩽ (2 − α)d, which gives α ⩽ 2d. If α > 2d, then we have p = d. To
summarize, we have for α-AV rules:

p =

{
(1− d)α/(2− α) if α ⩽ 2d

d if α > 2d

For α-seqAV rules, we also have p = (1−d)α/(2−α) if α ⩽ 2d, as the formula is the same than
for α-AV rules. For positions such that d ⩽ p ⩽ 2d, we need ϕ(p+ d)/ϕ(p− d) = 1− α, giving:

(1− p− d)/(1− p+ d) = 1− α
1− p− d = (1− α)(1− p+ d)

−d = d+ αp− α(1 + d)

−pα = −α(1 + d) + 2d

p = 1 + d− 2d/α.

We have d ⩽ p ⩽ 2d if 0 ⩽ 1 − 2d/α ⩽ d and thus 2d ⩽ α ⩽ 2d/(1 − d). If α > 2d/(1 − d), then
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Figure 3.3: Distance between the center of the distribution and the positions of the finalists (resp.
the second finalist) for α-AV rules (resp. α-seqAV rules) and the triangular density function.

the position of the second finalist is p = 2d. To summarize, we have for α-seqAV rules:

p =


(1− d)α/(2− α) if α ⩽ 2d

1 + d− 2d/α if 2d ⩽ α ⩽ 2d/(1− d)
2d if α > 2d/(1− d)

Figure 3.3 shows the functions that describe these positions for d ∈ {0.1, 0.25, 0.33, 0.5}. We
can clearly see that after some α is reached, the positions of the finalists remain unchanged and at
distance d (for α-AV rules) or 2d (for α-seqAV rules). Moreover, for α-seqAV rules, we can easily
distinguish the three different cases for the position of the second finalist.

Normal function

Let us now consider the normal density function (with variance σ and centered in µ = 0 for
symmetry), which is frequently used in the 1-dimensional Euclidean model. We have for all t ∈ R,
ϕ(t) = (1/K)e−t2/(2σ2) where K is a normalization constant.

For α-AV rules, the condition ϕ(d+ p)/ϕ(d− p) = 1− α for 0 ⩽ p ⩽ d becomes:

e−(1/2σ2)((d+p)2−(d−p)2) = 1− α

e−(1/2σ2)(4dp) = 1− α

e−2dp/σ2

= 1− α
2dp/σ2 = log(1/(1− α))

p = (σ2/2d) log(1/(1− α)).

We have p ⩽ d if log(1/1− α) ⩽ 2d2/σ2 ⇔ 1 − α ⩾ e−2d2/σ2 ⇔ α ⩽ 1 − e−2d2/σ2

. Otherwise,
p = d is the optimal position. To summarize, we have for α-AV rules:

p =

{
(σ2/2d) log(1/(1− α)) if α ⩽ 1− e−2d2/σ2

d if α > 1− e−2d2/σ2



108 CHAPTER 3. APPROVAL WITH RUNOFF VOTING SYSTEMS

0 0.25 0.5 0.75 1
0.00

0.25

0.50

0.75

1.00
-AV rules

d = 0.1

d = 0.25

d = 0.33

d = 0.5

0 0.25 0.5 0.75 1
0.00

0.25

0.50

0.75

1.00
-seqAV rules

Figure 3.4: Distance between the center of the distribution and the positions of the finalists (resp.
the second finalist) for α-AV rules (resp. α-seqAV rules) and the normal density function.

For α-seqAV rules, the first case is based on the same formula, so if α ⩽ 1− e−2d2/σ2

, we also
have p = (σ2/2d) log(1/(1− α)). In the case d ⩽ p ⩽ 2d, we need ϕ(p + d)/ϕ(p − d) = 1 − α but
observe that this gives the same condition than in the first case, as ϕ(p − d) = ϕ(d − p). Thus,
p = (σ2/2d) log(1/(1− α)) and p ⩽ 2d if α ⩽ 1− e−4d2/σ2

. If α is greater than this value, then the
position of the second finalist is p = 2d. To summarize, we have for α-seqAV rules:

p =

{
(σ2/2d) log(1/(1− α)) if α ⩽ 1− e−4d2/σ2

2d if α > 1− e−4d2/σ2

The obtained functions are shown on Figure 3.4. In comparison to the triangular distribution,
there are here only two cases for the position of the second finalist with α-seqAV rules.

Exponential function

Finally, consider the exponential density function given by ϕ(t) = (1/K)e−β|t| for t ∈ R, with K

the normalization constant and β > 0 some parameter.
For α-AV rules, the condition for p ⩽ d is ϕ(d+ p)/ϕ(d− p) = 1− α and gives:

e−β((d+p)−(d−p)) = 1− α
2βp = log(1/(1− α))
p = (1/2β) log(1/(1− α))

Note that this is independent of the approval radius d. This position satisfies the condition p ⩽ d

if α ⩽ 1− e−2βd. Otherwise, we have p = d. To summarize, we have for α-AV rules:

p =

{
(1/2β) log(1/(1− α)) if α ⩽ 1− e−2βd

d if α > 1− e−2βd

Again, the first case of α-seqAV rules is based on the same condition as the one for α-AV rules.
For the case d ⩽ p ⩽ 2d, we have ϕ(p+d)/ϕ(p−d) = 1−α, which is true if and only if α = 1−e−2βd

and in that case all positions between d and 2d maximize the score for the second finalist. Finally,
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Figure 3.5: Distance between the center of the distribution and the positions of the finalists (resp.
the second finalist) for α-AV rules (resp. α-seqAV rules) and the exponential density function.

if α > 1− e−2βd, the position of the second finalist is p = 2d. To summarize, we have:

p =


(1/2β) log(1/(1− α)) if α < 1− e−2βd

d ⩽ p ⩽ 2d if α = 1− e−2βd

2d if α > 1− e−2βd

The obtained functions are shown on Figure 3.5. We can very clearly see that for the case in
which the two finalists share common supporters (i.e., the position satisfies p < d), their positions
do not depend on the approval radius d (the different curves are superimposed). Moreover, observe
that the curves for α-AV rules and α-seqAV rules are the same for α ⩽ 1 − e−2βd. However, in
the first case the other finalist has a symmetrical position while it has position 0 in the second
case. This implies that for the same α, the distance between the two finalists will be greater for
α-AV rules than for α-seqAV rules. Note that this observation actually holds for any symmetric
single-peaked density function, and α such that ϕ(2d)/ϕ(0) ⩽ 1− α.

3.5 Experimental Analysis

Finally, we evaluate the different rules with experimental analyses. In particular, we want to see
how the rules behave on real data and how they compare to each other.

Datasets

To conduct these experiments, we used approval preference datasets collected from various sources:

• Datasets from the Voter Autrement collection, gathered during political elections: partici-
pants were asked what they would vote at the election if the voting rule was different. We
refer to Section 2.5.4 for an extensive discussion of these datasets. In this analysis, we used
datasets that include approval preferences. The only dataset in which voters tested approval
with runoff (and not simple approval) is the dataset from the 2017 election in Crolles. We
additionally consider the dataset from the 2022 Italian parliamentary election (Marsilio and
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year type place rule weighted n m

2002 In Situ Gy-Les-Nonains AV 365 16
2002 In Situ Orsay AV 2220 16
2007 In Situ Louvigny AV 1063 12
2007 In Situ Cigné AV 233 12
2007 In Situ Illkirch AV 1540 12
2012 In Situ Strasbourg AV 1071 11
2012 In Situ Louvigny AV 930 11
2012 In Situ Saint-Etienne AV 387 11
2017 In Situ Strasbourg AV 1023 11
2017 In Situ Grenoble AV 1069 11
2017 In Situ Hérouville-Saint-Clair AV 711 11
2017 In Situ Crolles AV 1321 11
2017 In Situ Crolles AVR 2122 11
2017 Online - AV 20076 11
2022 In Situ Strasbourg AV 931 12
2022 Representative - AV 931 12
2022 Online - AV 1379 12

2022 Representative Italy AV 1021 14

Table 3.3: Datasets of the Voter Autrement collection used in this chapter.

Delemazure, 2022). Note that in some of these datasets, weights are assigned to the votes to
make the samples more representative of the general population (see Section 2.5.4).

• Datasets from Preflib (Mattei and Walsh, 2013) containing few voters (less than 100). Two
datasets are about song selection at a summer camp and the other two are votes in a best
poster competition during a summer school in San Sebastian.

• The dataset of the approval votes for the 2023 election of the representatives of the Society
for Social Choice and Welfare. Note that this was a multi-winner election.

• Datasets gathered from the platform TierMaker.com, as described in Section 2.5.3. These
datasets contain preferences of voters on a variety of topics. Voters assigned a category to
each candidate in their tierlists, and we convert the set of candidates ranked in the best
category to approval ballots. To get datasets with a lot of voters, we selected popular topics.
The number of voters ranges from 74 to 5 031 and the number of candidates from 8 to 51.

Table 3.3 summarizes the political datasets of the Voter Autrement collection that will be used
in this chapter. We provide for each dataset the number of participants n and the number of
candidates m. Table 3.4 summarizes the information about the non-political datasets. Overall, we
have 38 datasets, 18 of which are political datasets from the Voter Autrement collection. In our
analyses, we will often separate the political datasets from the other datasets.

Similarities between rules

We ran our rules on the different datasets, and Figure 3.6 shows the percentage of datasets on
which each pair of rules agrees on the finalists, for both the Voter Autrement datasets, and the
other datasets. For the former, we also compare the finalists selected by approval-based rules to
the actual finalists of the election (using plurality).
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source name n m

PrefLib poster-1 65 17
PrefLib poster-2 60 17
PrefLib song-1 39 8
PrefLib song-2 56 10

SSCW 2023 election 53 32

TierMaker Colors 286 33
TierMaker European Countries 1126 51
TierMaker Harry Potter Movies 512 8
TierMaker Months 296 12
TierMaker Numbers 74 10
TierMaker Planets 83 9
TierMaker Pokemon Starters 2265 27
TierMaker Pokemon Types 1359 18
TierMaker School Courses 323 15
TierMaker Spider-man Movies 431 10
TierMaker Star Wars Movies 5031 11
TierMaker Zodiac Signs 406 12
TierMaker Pixar Movies 843 27
TierMaker One Piece Arcs 493 31
TierMaker Taylor Swift’s Albums 201 12

Table 3.4: Datasets used in this chapter that are not part of the Voter Autrement collection.

First, we observe on Figure 3.6 (a) that approval-based rules very often select different finalists
than the plurality rule. This is especially true for AV, which coincides with plurality with runoff
on only 33% of the Voter Autrement datasets.

We also observe that α-AV rules and their sequential equivalents agree quite frequently: around
95% of the datasets for PAV and 97% for CCAV (100% for the Voter Autrement datasets). However,
we have a clear divide for α-AV and α-seqAV rules based on the value of α, especially for the Voter
Autrement datasets. For instance, AV agrees with CCAV and S-CCAV on only 39% of the datasets
(respectively 55% and 60% for non-political datasets). PAV lies in between the two as it agrees
with AV 67% of the time (70% for non-political datasets) and with CCAV 61% of the time (80% for
non-political datasets). As they share the same proportionality objective, sequential Phragmén and
Eneström-Phragmén very often agree with PAV and S-PAV (89% for Voter Autrement datasets),
and with each other (95%). Note that in these experiments, we use the Droop quota for Eneström-
Phragmén, and that the associated α values are between 0.6 and 0.8 for Voter Autrement datasets
and between 0.4 and 1 for other datasets. Finally, SAV is more isolated, as it is not particularly
similar to any other rule (on the political datasets, it has a similarity of 83% with S-PAV, but this
drops down to 60% for non-political datasets). Finally, we found that on 27% of Voter Autrement
datasets and 50% of the other datasets, all rules agree on the same pair of finalists.

Highlights from the data

We will now discuss some specific differences between the rules, using examples from the datasets.
In particular, we will focus on three aspects: the effect of α for α-AV rules and α-seqAV rules, the
difference between sequential and non-sequential rules, and the particular case of SAV.
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Figure 3.6: Percentage of agreement on the pairs of finalists between the rules on subsets of the
datasets.

The effect of α

Let us first analyze the impact of the parameter α for α-AV rules and α-seqAV rules. We have
already seen its importance in the statistical analysis (Section 3.4), which showed that rules with
small values of α choose similar candidates (often more centrist), while rules with high values of α
choose more diverse pairs of candidates. This is also what we observe in our datasets.

Let us look at the example of the Grenoble dataset of the 2017 Voter Autrement experiment.
We will focus on the five main candidates: the left-wing candidate Jean-Luc Mélenchon (JLM),
the candidate for the Socialist Party Benoît Hamon (BH), who is considered as center-left (though
Hamon represented the left branch of the party), the center/center-right candidate Emmanuel
Macron (EM), the right-wing candidate François Fillon (FF) (who represented the more conser-
vative branch of the party), and the far-right candidate Marine Le Pen (MLP). The table below
shows the approval scores of the different candidates in our dataset (after assigning weights to
the votes as described in Section 2.5.4). Even though he did poorly at the actual election, Benoît
Hamon is here the approval winner.

Candidate Approval score Actual score at the election

Jean-Luc Mélenchon (JLM) 40,67% 19,58%
Benoît Hamon (BH) 42,24% 6,36%

Emmanuel Macron (EM) 41,07% 24,01%
François Fillon (FF) 32,67% 20,01%

Marine Le Pen (MLP) 28,80% 21,30%

The pairs of candidates selected by AV, PAV, CCAV, S-PAV and S-CCAV are the following:

AV BH EM
S-PAV BH EM S-CCAV BH FF

PAV JLM EM CCAV BH FF
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Figure 3.7: Scores of pairs of candidates (resp. of potential second finalist) for α-AV rules (resp.
α-seqAV rules) for the Grenoble 2017 dataset of the Voter Autrement collection.

We observe that AV selects two candidates that are both considered close to the center (center-
left BH and center-right EM) and that are similar in some aspect (both were members of the
same party one year before the election). PAV and CCAV bring some diversity by replacing the
center-left candidate BH by the left-wing candidate JLM (in the case of PAV), or the center-right
candidate EM by the right-wing candidate FF (in the case of CCAV). One could argue that CCAV
returns the most diverse pair of candidates in this case.

Let us now look at sequential rules. They all select BH as their first finalist, since it is the
approval winner in this dataset. S-PAV selects the same finalists as AV, but S-CCAV replaces the
center-right candidate EM by the right-wing candidate FF, as CCAV.

To better understand these results, let us look at the co-approval of pairs of candidates, i.e.
the percentage of voters approving both candidates S(xy)/n. These co-approval values are given
in the following table. The diagonal values are the approval scores of the candidates.

JLM BH EM FF MLP

JLM 40,7% 28% 13,6% 3,7% 7,6%
BH 28% 42,2% 20,9% 4,5% 4,6%
EM 13,6% 20,9% 41,1% 14,1% 5,8%
FF 3,7% 4,5% 14,1% 32,7% 14,1%

MLP 7,6% 4,6% 5,8% 14,1% 28,8%

We observe that BH has a lot of common supporters with JLM and EM (but not necessarily
the same ones). By their definitions, α-AV rules and α-seqAV rules with high values of α select
candidates sharing less supporters than rules with low values of α. We can see this on Figure 3.7
which shows the scores of pairs of candidates (or of possible second finalists for sequential rules)
for different values α between 0 and 1. The stronger the slope of the line for a pair of candidates,
the more supporters they share and the more similar they are.

To see this effect more generally, we computed for each rule the average Jaccard similarity and
Hamming distance between the approval vectors of the two finalists (Figure 3.8). If we denote
A(c) = {i ∈ V | c ∈ Ai} the set of supporters of a candidate c ∈ C, the Jaccard similarity between
two candidates a and b is equal to |A(a) ∩ A(b)|/|A(a) ∪ A(b)|, i.e., the size of the intersection
of their supporters divided by the size of their union. The Hamming distance is equal to the
number of voters who approved one candidate but not the other |A(a) \A(b)|+ |A(b) \A(a)|. We
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Figure 3.8: The average Jaccard similarity (Figure a) and Hamming distance (Figure b) between
the two finalists over all datasets.
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Figure 3.9: The average distance between the two finalists (Figure a) and between each finalist and
the center (Figure b), over all the datasets, using the Forbidden Triples method from Chapter 6.

observe on Figure 3.8 that these metrics are tied to the value of α: while rules with low α (like
AV) select pairs of candidates with high Jaccard similarities and low Hamming distances, rules
with high α (like CCAV and S-CCAV) select pairs of candidates with low Jaccard similarities
and high Hamming distances. Actually, both metrics can be defined using the AV and CCAV
scores. Indeed, if we denote by SAV(a, b) = S(a) + S(b) and SCCAV(a, b) = S(a) + S(b) − S(ab)
respectively the AV and CCAV scores of {a, b}, then the Jaccard similarity is equal to (SAV(a, b)−
SCCAV(a, b))/SCCAV(a, b) = SAV(a, b)/SCCAV(a, b) − 1, and the Hamming distance is equal to
(2 · SCCAV(a, b)− SAV(a, b))/n.

The impact of α is more important on the Voter Autrement datasets, in which the two finalists
are generally less similar to each other than in the other datasets, likely because political datasets
are less consensual and more divided than other ones. Interestingly, we do not observe any strong
“clone effect” in our datasets, as the maximum Jaccard similarity between the finalists selected by
AV over all datasets is of 64 % (and of 53 % if we only consider the political datasets).

We also wanted to check the results from the 1-dimensional Euclidean setting that was intro-
duced in Section 3.4. For this, we used the axis rules that are discussed in Chapter 6. These axis
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Figure 3.10: The average distance between the two finalists (Figure a) and between each finalist
and the center (Figure b), over Voter Autrement datasets using endogenous and exogenous axes.

rules take as input an approval profile PA, and return an ordering (or axis) of the candidates such
that candidates that are close to each other on the axis are often approved together. For instance,
in a political setting, the axis can be interpreted as the left-right political spectrum. Using these
axis rules, we can then look at the positions of the selected finalists on the ordering, and look
at the distance between them, as well as their distance to the center of the axis. Following the
theoretical observations from Section 3.4, we should observe that the α-AV and α-seqAV rules
with low α return finalists close to each other and to the center, and that rules with high α return
finalists which are further from each other and from the center. For this experiment, we used the
Forbidden Triples rule, and we restricted the preference profile to the 8 most approved candidates
of each dataset (as the computational complexity of the rule grows exponentially with the number
of candidates). We assume that the distance between consecutive candidates on an axis is always
equal to 1. Thus, the center of the axis is between the fourth and the fifth candidate (at position
4.5). Figure 3.9 shows the results of the experiments, and we can see that our hypotheses are
verified on these datasets. This is especially true for the Voter Autrement datasets, in which the
average distance between the two finalists is of 1.4 for AV and 2.5 for CCAV and S-CCAV.

One criticism of using axis rules to build the axes is that both the axes and the finalists are
computed from the same profiles of approval preferences. In that sense, we say that the axes are
endogenous. Moreover, the axes returned by the Forbidden Triples rule are not always consistent
with the actual left-right political axes. In particular, this method often pushes the candidates
with high approval scores towards the center of the axis. To address this issue, we also computed
the same metrics using exogenous axes for the political datasets. We built these axes using the
orderings of the candidates on the Wikipedia pages relative to the polls conducted for each election,
which are more faithful to the actual left-right political spectrum. In Figure 3.10, we compare the
results for the political datasets using the exogenous and the endogenous axes. We observe that
the distances between the finalists and to center of the axis are generally higher for the exogenous
axes (because popular candidates are pushed towards the center on the endogenous axes), but the
relative performances of the rules regarding the distance between the two finalists are similar for
the two kinds of axes. However, with the exogenous axes, the distance between the finalists and
the center of the axis seems to be stable across the different rules.



116 CHAPTER 3. APPROVAL WITH RUNOFF VOTING SYSTEMS

Sequential or not

The second difference we want to discuss is the difference between rules that assign a score to pairs
of candidates (α-AV rules and SAV) and sequential rules (such as α-seqAV rules). As shown on
Figure 3.6, α-AV rules often return the same results as their sequential counterparts, but it is not
always the case. In particular, PAV did not select the approval winner as a finalist in one dataset,
and CCAV in two of them, illustrating the violation of favorite consistency. Note however that
the results on these datasets do not mean that PAV selects the approval winner less often than
CCAV in general. Interestingly, SAV returns the approval winner for all of our datasets, despite
not satisfying favorite consistency in theory.

As one can expect from the statistical analysis in Section 3.4, the differences appear when
sequential rules select a very centrist and consensual candidate, while non-sequential rules select
more diverse pairs of candidates, for instance one from the left and one from the right in a political
context. This is what we observe if we combine the three datasets of the 2007 presidential election
from the Voter Autrement collection. We will show that in this dataset PAV and CCAV disagree
with their sequential counterparts, as they do not select the approval winner.

We will focus on three candidates: the left-wing candidate Ségolène Royal (SR), the centrist
François Bayrou (FB), and the right-wing candidate Nicolas Sarkozy (NS). For this dataset, we do
not have access to the actual votes of the participants at the election, so we did not assign weights
to the voters. The table below shows the approval scores of these candidates. In this dataset,
Bayrou is the approval winner.

Candidate Approval score Actual score at the election

Ségolène Royal (SR) 41.5% 25.9%
François Bayrou (FB) 47.2% 18.6%
Nicolas Sarkozy (NS) 42.9% 31.2%
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Figure 3.11: Scores of pairs of candidates for
α-AV rules for the combined 2007 dataset of
the Voter Autrement collection.

In this dataset, François Bayrou has a lot of
common supporters with both Ségolène Royal (with
20.3% of participants approving both) and Nico-
las Sarkozy (with 20.7% of participants approv-
ing both). However, only 8.1% of participants ap-
proved both Ségolène Royal and Nicolas Sarkozy.
For this reason, this pair will be returned by the
non-sequential rules that favor diversity, while se-
quential rules will always return a pair involving
François Bayrou. Figure 3.11 shows the score of each
pair for α-AV rules with α varying between 0 and
1. While the AV rule, as all sequential rules, selects
the approval winner François Bayrou and Nicolas
Sarkozy, the PAV and CCAV rules both select Nico-
las Sarkozy and Ségolène Royal.

Moreover, according to the polls, François Bayrou would have won a runoff against both Sé-
golène Royal and Nicolas Sarkozy, so here sequential rules and non-sequential rules not only differ
on the pair of finalists, but also on the winner of the election.
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The case of the SAV rule

Finally, let us look at SAV. As voters divide their vote between the candidates they approve, the
ones who approve more candidates actually have less power. In that sense, SAV heavily suffers
from non-independence of clones, like plurality with runoff.

In the Voter Autrement datasets, this gives a disadvantage to left-wing candidates, as they
are generally more numerous, and thus co-approved with more candidates. In particular, in the 7
Voter Autrement datasets on which AV and SAV disagree, they disagree on one candidate, and in
all cases SAV chooses a candidate more right-wing than AV.

Consider for instance the Strasbourg dataset of the 2022 presidential election. We focus on
three candidates: the center-right candidate Emmanuel Macron (EM), the left-wing candidate
Jean-Luc Mélenchon (JLM) and the far-right candidate Marine Le Pen (MLP). The table below
shows the approval scores of these different candidates after weighting the votes, as well as the
average number of candidates approved by the supporters of each candidate.

Average number of
Candidate Approval score approved candidates

Jean-Luc Mélenchon (JLM) 40.1% 3.2
Emmanuel Macron (EM) 44.1% 2.8
Marine Le Pen (MLP) 32.9% 2.7

As we can see, Marine Le Pen’s supporters approved on average less candidates than Jean-
Luc Mélenchon’s supporters. Thus, SAV selects Marine Le Pen as the finalist against Emmanuel
Macron, even though she has much less approval votes than Jean-Luc Mélenchon.

3.6 Discussion

In this chapter, our starting point was to consider that approval with runoff is not one rule but a
family of rules, parameterized by the ABC rule chosen for determining the finalists. Our axiomatic,
statistical and experimental results show that this choice does make a big difference on the selection
of the finalists, and thus on the winner of the election.

Which Rule to Choose?

If approval with runoff has to be used in political elections, the choice of the ABC rule would be
crucial, and far from easy, but our results already give some useful pieces of information. What we
can conclude from both our theoretical and experimental results is that AV tends to select more
centrist and consensual finalists (possibly clones of each other), while CCAV tends to select very
different candidates, for instance a left-wing one and a right-wing one. PAV lies in between the
two and could be seen as a good tradeoff, however in most cases it is actually more interesting
to go for one of the extremes (AV or CCAV), as they are easier to interpret. To this, we add
that non-sequential rules, in addition to being more complicated to explain, might not select the
candidate that received the most approval support as a finalist. For this reason, the two rules that
seem reasonable to use in most contexts are the AV rule and the S-CCAV rule. On the other hand,
with sequential rules such as S-CCAV, the two finalists have a different status: one is the approval
winner, while the other is selected based on who is the approval winner, and could be seen as a
“contender”. Finally, SAV does not seem like a reasonable choice. It relies on the false idea that
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splitting the vote of each voter between approved candidates ensures that all voters have the same
voting power (since they all give the same total of points), while the opposite is true: voters who
approve more candidates have less power.

If we compare these rules to the one we aim to replace, plurality with runoff, we observe that
they have several advantages. First, the common advantage between all approval with runoff rules
is that voters can give more expressive preferences, and do not have to decide between different
candidates they like. Moreover, the approval with runoff rules do not suffer from all of the issues
that we can encounter with plurality with runoff. On the one hand, AVR satisfies the monotonicity
property, which is failed by plurality with runoff. On the other hand, S-CCAVR is independent of
clones, while plurality with runoff is not. AVR is not independent of clones either, but in a less
problematic way than plurality with runoff (with AVR, having a clone does not hurt a candidate,
but may help it).

Further work

Our work opens several perspectives for further work. Some have already been done since the
publication of the conference paper in 2021. In particular, Ebadian et al. (2023) study approval
with runoff under the lens of worst-case distortion in the utilitarian framework (see Section 2.5.2).
They assume that each candidate x ∈ C provides some utility ui(x) to each voter i ∈ V , with the
utilities summing up to 1 for each voter. Then they assume that there is a threshold τ ∈ [0, 1] such
that every voter approves candidates who provide them with a utility ui(x) ⩾ τ . They show that
for deterministic AVR rules, the worst-case distortion is at least Θ(m2), and this optimal value
is reached by AVR for τ = 1/m. Moreover, they show that in the same model approval voting
without runoff has worst-case distortion Θ(m), implying that the runoff might incur a welfare loss.
Additionally, they discuss how adding randomization (for the selection of the finalists, and for the
choice of the winner in the runoff) can decrease the worst-case distortion to O(m). However, like
most works on distortion, they focus on the worst-case distortion. An interesting question would
be to study the average distortion of these rules for several preference models.

It would also be interesting to look deeper into strategic aspects of these rules. In particular, the
simple 1-dimensional Euclidean model used in Section 3.4 could be extended to be more realistic.
For instance, we could adapt theoretical (Laslier and Van der Straeten, 2016) and empirical (Van
der Straeten et al., 2018) results saying that the approval thresholds of voters depend on which
candidates are expected to arrive in the first three positions.

Another interesting path for further work is to extend the study to approval rules with a
conditional runoff. In such setting, the runoff happens only if there is no clear winner in the first
round. In that sense, it is similar to the way plurality with runoff is implemented in most countries,
in which there is no second round when one candidate gets the majority of the votes in the first
round. One could then think of similar rules for the approval setting, in which we do not do a
second round in the case one candidate is approved by a quota of the voters (for instance half of
them), or/and if the first candidate’s score is much higher than the score of the second one.

Implementing Approval with Runoff

One of the main advantages of plurality with runoff is that this rule is widely used, well-known,
and easy to implement, while approval with runoff rules are probably harder to explain and to
implement. In that sense, an important question is: will citizens understand and accept such rules?
In particular, many people intuitively believe that allowing people to approve several candidates
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Figure 3.12: St. Louis voters’ opinions on approval voting.

give more power to voters approving more candidates, breaking the one person, one vote principle.
Another natural objection would be that this is an unnecessary change: people might actually

not use the opportunity to vote for several candidates, and just vote for their favorite. However,
real-life scenarios and all of our experiments show the opposite. In the St. Louis, Missouri municipal
elections of 2021 that used approval with runoff, people approved on average 1.6 candidates out
of 4. In the Voter Autrement experiments, the average number of candidates approved by the
participants that provided approval ballots ranges from 2.1 to 3.4.

Another question is whether people who used approval voting or approval with runoff in real-
life or in our experiments liked this rule, and whether they are willing to change for these new
rules. A poll conducted by Change Research and The Center for Election Science on St. Louis
voters after the approval with runoff election shows that a large majority liked the change of
voting system (Figure 3.124). In particular, 78% said that they found approval ballots easy to use,
and 60% that they liked the new system. We also note that 67% said they liked the increased
expressivity. In the Voter Autrement experiments, participants were sometimes asked to evaluate
the methods they just tried, including the approval rule (without runoff). Results vary a lot from
one dataset to another. In 2017, participants in Strasbourg were asked if they liked the voting
rules, and in Hérouville-Saint-Clair if they thought it was possible to adopt the voting rules for
the presidential election. While 49% of participants liked approval voting in Strasbourg, only 33%
of participants thought it was possible to adopt approval voting for the presidential election in
Hérouville-Saint-Clair. In the online experiments, we asked participants to evaluate the rules they
just tried. Here, the results are more positive. In the 2022 dataset, 74% of participants indicated
being “satisfied” or “very satisfied” by approval voting, which is the highest score over all rules
tested. In the 2017 dataset, approval voting comes second after Borda with 65% of “satisfied” or
“very satisfied” participants. Note however that these results are not representative of the general
population, since most participants on these online experiments are already interested in the topic
of voting rules. A survey conducted in 2022 on a representative sample showed that a majority of
people (56%) would prefer keeping the current voting system for the presidential election over a
new one (approval and the Majority Judgement were proposed as alternatives).

4Source of the figure: https://le.utah.gov/interim/2021/pdf/00002622.pdf (page 13)

https://le.utah.gov/interim/2021/pdf/00002622.pdf
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Chapter 4

Instant Runoff Voting with
Indifferences: Approval-IRV

4.1 Introduction

Figure 4.1: Ballot from
2016 Australian federal
election.

In the previous chapter, we discussed how we could replace the plurality
with runoff voting method by an approval with runoff method in which
voters are allowed to vote for several candidates in the first round of the
election. Plurality with runoff is not the only voting rule that is used for
high-stakes single-winner elections. One of its most popular alternatives
is Instant Runoff Voting, which goes under various names depending on
the place and the time: Alternative Vote in the UK, Preferential Voting
in Australia, or Ranked Choice Voting in the US. It is also sometimes
called Hare System, from the name of the British barrister Thomas
Hare, who is often credited for the conception of the rule.

Instant Runoff Voting

We first recall the process of the Instant Runoff Voting (IRV) rule, that
we introduced in Section 2.3.1. As a reminder, IRV is a single-winner
voting rule based on the voters’ rankings of the available candidates. It
works in rounds, by sequentially eliminating candidates: at each round,
we use voters’ rankings to associate them to their favorite candidate
among the ones that are not yet eliminated, and the candidate with the
fewest associated voters is eliminated. The last round is a majority vote
between the last two remaining candidates. As in plurality with runoff and approval with runoff,
there is the idea of doing several rounds of vote, with a reduced number of candidates at each
round. However, because voters provide a full ranking, runoffs can be done automatically, without
the need for voters to cast a new ballot at each round like with plurality with runoff and approval
with runoff.

While a wide variety of ranking-based voting rules have been studied over the centuries, IRV is
one of the few rules that has been adopted for high-stakes elections to political offices. Australia
was the first country to adopt it and uses this rule to elect its House of Representatives since 1918
(see Figure 4.1). Ireland uses it to elect its President, and it is used in Alaska and Maine for several

121
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offices. It is also in use at the local level in many jurisdictions, as well as within some societies and
political parties. Electoral reform advocates such as FairVote1 in the US and Electoral Reform
Society2 in the UK are pushing for further adoption, arguing that IRV and its ranking-based input
leads to election outcomes that better reflect voters’ preferences.

In particular, in addition to enabling voters to give more expressive preferences, IRV is known
to satisfy independence of clones, in contrast to plurality and plurality with runoff. However,
because it is based on the principle of runoffs, IRV does not satisfy monotonicity, and is prone
to various manipulations. To see the violation of monotonicity, consider the example used in the
introduction of Chapter 3 for plurality with runoff: since it contains only three candidates, the two
rules are equivalent.

Another drawback of IRV is a phenomenon which is sometimes called “favorite betrayal” (Small,
2010), or “compromise strategic voting” (Green-Armytage, 2014; Graham-Squire and McCune,
2023). Consider an election with three candidates Ann, Bob and Cora and the following votes:

32% Ann ≻ Bob ≻ Cora 33% Cora ≻ Ann ≻ Bob 35% Bob ≻ Cora ≻ Ann

In this election, Ann is eliminated first, and Bob wins the majority vote against Cora. However,
Cora’s supporters would rather have Ann elected than Bob, and they know that Bob wins the
majority vote against Cora, but not against Ann. Thus, some of them might decide to put Ann
first instead of Cora, so that Cora is eliminated first, allowing Ann to win the election. For instance,
we could have:

32% Ann ≻ Bob ≻ Cora 31% Cora ≻ Ann ≻ Bob 35% Bob ≻ Cora ≻ Ann

2% Ann ≻ Cora ≻ Bob

By betraying their favorite candidate Cora and voting for Ann, the 2% of voters who changed
their vote ensured that Ann was elected instead of Bob, thus being more satisfied than if they had
voted sincerely. This phenomenon is often used as an argument against IRV.

5 6 7 8 9 10 11 12

5%

15%

21% 22%
18%

11%
7%

1%

Figure 4.2: The fraction of voters in the
2022 Australian federal election that
needed to rank each number of candi-
dates between 5 and 12.

Another important drawback of IRV is the burden it
imposes on voters who may need to rank a large number
of candidates. This is particularly severe in Australia,
where voting is compulsory and a ballot is invalid if it
fails to rank every candidate. As we can see in Figure 4.2,
more than half of Australian voters need to rank 8 or
more candidates. Most other jurisdictions allow voters
to submit a truncated ranking, where the voter may rank
only some of the candidates, and the vote is not taken
into account (or “exhausted”) after all the candidates that
were ranked have been eliminated. However, voters who wish to rank some disfavored candidates
in low positions must rank the whole field. It also forces voters to clearly distinguish all candidates
that they favor, even when they may not have sufficient information to do so. In particular, voters
cannot just submit a simple “approval vote” where they indicate several candidates as acceptable.

1https://fairvote.org/
2https://www.electoral-reform.org.uk/

https://fairvote.org/
https://www.electoral-reform.org.uk/
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(a) Two top choices (b) Non-ranked candidate (c) An approval vote

Figure 4.3: Examples of ballots that can be interpreted as weak orders (2019 mayoral election in
San Francisco).

Benefits of Weak Orders

A possible solution to these issues is to use more expressive preferences, by allowing voters to
express indifferences, that is, to assign several candidates an equal rank, thus providing a weak
order instead of a ranking. There are several other arguments for moving from standard IRV to a
system that allows for weak orders.

First, allowing equal rankings gives voters more ways to express their preferences. For exam-
ple, some people might be truly indifferent between candidates, and forcing them to rank such
candidates would be distorting. For this reason, some have argued that Australia’s compulsory
voting forces voters to lie (Rydon, 1968; Orr, 1997). This would also mitigate the issue of favorite
betrayal. For instance, in the previous example, voters would be able to put both Ann and Cora
first, thus not betraying their favorite candidate for another one. Weak orders also allow voters
to give a high ranking to candidates they like and a low ranking to the ones they dislike, without
having to rank all candidates, and in particular the ones whom they are not familiar with. This
also makes it possible to submit a simple approval vote, which is a particular kind of weak order.
The additional expressive power is also useful in U.S. jurisdictions that allow voters to only use 3–5
ranks. Weak orders allow voting for more than 3–5 candidates within the same number of ranks.

Second, allowing weak orders can reduce the amount of invalid ballots. Indeed, compared to
elections using plurality or plurality with runoff, voting in an IRV election is more difficult, and
the voting instructions are more complicated to follow. In particular, some voters may not realize
that they must only place one candidate in each rank, submitting a ballot which encodes a weak
order will be counted as invalid. In the American context, this mistake is known as an “overvote”,
and such ballots are either rejected or partially counted (e.g., if the top ranks contain unique
choices, the ballot is counted as a vote for them, but once those candidates are eliminated and a
rank with several candidates is reached, the vote is ignored in the following rounds). Figure 4.3
shows examples of such ballots from the 2019 mayoral election in San Francisco that used IRV and
that can be interpreted as weak orders. For how many ballots would this make a difference, in
practice? One can try to quantify this via the number of overvotes reported by election officers.
McCune (2023) reports that in a very close 2021 City Council election in Portland, Maine, a
different treatment of overvotes would have changed the winner. One issue with reported overvotes
is that not all ballots containing overvotes encode valid weak orders. In particular, they might
assign multiple ranks to the same candidate and are therefore definitely invalid. Conveniently,
San Francisco makes very detailed vote data publicly available in a CVR JSON format, and even
complements these with image scans of every ballot.3 We analyzed this data to see how many

3https://www.sf.gov/results

https://www.sf.gov/results
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(a) Map of San Francisco election
precincts, colored by the fraction of
votes that could be interpreted as a
weak orders.
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(b) Among election precincts, median house-
hold income (horizontal axis) is negatively
correlated with percent of ballots showing a
weak order (vertical axis; r = −0.4, p <
0.001).

Figure 4.4: Ballot data from the 2019 mayoral election in San Francisco.

ballots could be interpreted as a weak order with at least one indifference between candidates.
For the 2019 mayoral election in San Francisco, we found 899 such ballots out of 206 117 ballots
submitted (0.4%); see Figure 4.3 for some examples. Voters casting such weak order ballots are
geographically concentrated (Figure 4.4 (a)) and the fraction of ballots that encode weak orders in
specific election precincts correlates negatively with median income (Figure 4.4 (b)). This mirrors
previous findings of higher rates of invalid ballots in precincts with lower incomes in San Francisco
(Neely and McDaniel, 2015) and New York City (Cormack, 2023), as well as of the frequency of
overvotes (Pettigrew and Radley, 2023). In Scotland’s 2017 local elections, 1.6% of ballots were
rejected because of multiple top choices (Electoral Commission, 2017).

Split-IRV

Because IRV is only defined for linear orders (rankings without indifferences), to implement this
solution we need to generalize IRV to weak orders (rankings with indifferences), and the right
way to generalize it is not obvious. In a series of articles in the journal Voting Matters, Meek
(1994, Section 6), Warren (1996), and Hill (2001) developed a way in which IRV (and in fact, every
ranking-based voting rule) can be generalized to weak orders. Their idea was to replace every weak
order by several (weighted) ranking votes for all possible ways in which the indifferences can be
broken. For example, a voter who has a complete ranking, except for an indifference between a

and b, would be replaced by a vote of weight 1/2 with a ranked above b and another vote of weight
1/2 with b above a. Similarly, a voter who reports indifference between all candidates would be
replaced by m! votes each with weight 1/m!. After this replacement operation, linear-order IRV is
applied.

Aziz and Lee (2020, footnote 8) note that, as described, this leads to an algorithm that may take
exponential time. However, there is an equivalent description of this rule that is polynomial-time
and easy to understand: for a voter who currently ranks t candidates on top (if we ignore candidates
that have been eliminated), the voter assigns 1/t points to each of these candidates, and the rule
repeatedly eliminates the candidate with the fewest points. This rule has some intuitive appeal
since it encodes the idea that every voter has a “single vote” and can only assign a total of one point,
which has to be split between all their top-ranked candidates. This follows the same principle as
Split Approval Voting, that we discussed in Section 3.2 (and in Chapter 3). Accordingly, we call this
rule Split-IRV. The multi-winner version of this rule Split-STV, generalizing Single Transferable
Vote to weak orders, is implemented in practice: Mollison (2023) reports that Split-STV “was first
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Figure 4.5: An example of Approval-IRV with voters v1, . . . , v5. The first eliminated candidate is
c, which is ranked on top only once. Then d is eliminated, and finally a wins the majority vote
against b. Thus, a is the winner.

used by the John Muir Trust (for Trustee elections) in 1998, and by the London Mathematical
Society in 1999”, and both still use Split-STV today. It is also implemented in the vote package
for R (Raftery et al., 2021, p. 682).

Approval-IRV

In this chapter, we argue that Split-IRV is not the correct generalization of IRV to weak orders,
and we suggest another generalization that we call Approval-IRV. This rule interprets each weak
order as an approval vote for the highest-ranked candidates that have not yet been eliminated.
It then repeatedly eliminates the candidate with the lowest approval score (i.e., the candidate
who is top-ranked by the fewest voters), until only one candidate remains and is declared the
winner. Figure 4.5 shows an example of how the rule works. Note that this rule is different from
Split-IRV: in Approval-IRV, each voter gives one point to all the top-ranked candidates, while in
Split-IRV, each voter divides one point between the top-ranked candidates. For instance, in the
example shown in Figure 4.5, a is the winner under Approval-IRV, but under Split-IRV, a is the
first candidate to be eliminated, as it received only 1/2 + 1/3 points, and b is the final winner.

To our knowledge, the only previous scholarly discussion of Approval-IRV (and its multi-winner
equivalent Approval-STV) is by Janson (2016, Section 18.2). He discovered the possibility of
generalizing IRV and STV via approval, based on his historical analysis of voting methods used
in Sweden in the early 1900s. He called this approach “Phragmén’s principle” after the Swedish
mathematician Lars Edvard Phragmén (1863–1937) who, around 1903, had proposed a similar
approach to extend certain voting rules to work with votes that have two levels of approval. Janson
did not analyze the properties of Approval-IRV, but wrote that “it would be interesting to compare
the two ways to handle weakly ordered lists. It seems that Phragmén’s principle [...] might have
some advantages over splitting the vote between total orderings as described [by Meek and Hill].”
In this chapter, we take up Janson’s research program and confirm his prediction: Approval-IRV
is a better generalization than Split-IRV.

Outline of the Chapter

This chapter is organized as follows. In Section 4.2, we formally define generalizations of IRV, in
particular Approval-IRV and Split-IRV. In Section 4.3, we study the axiomatic properties of these
rules. In particular, we prove two characterizations of Approval-IRV: First, as the only rule of
a particular family to satisfy the natural generalization to weak orders of the main properties of
IRV (independence of clones and the majority criterion), and second, as the only generalization of
IRV of a particular family to satisfy a weak monotonicity property. In Section 4.4, we present the
results of several experiments on synthetic and real data comparing Approval-IRV and Split-IRV.
Finally, in Section 4.5, we conclude and discuss further work.
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4.2 Runoff Scoring Rules for Weak Orders

In this section, we introduce the model and the rules. We first recall the notations related to the
notion of weak orders, and then we define the family of voting rules we study, namely runoff scoring
rules, with a special focus on two of them: Approval-IRV and Split-IRV.

Weak Orders

We assume in this chapter that we have a profile of weak orders P = (≽1, . . . ,≻n), where ≽i is
the weak order of voter i. As a reminder, we denote a ≻ b if a ≽ b and b ̸≽ a (strict preference)
and a ∼ b if both a ≽ b and b ≽ a (indifference). More generally, for sets A,B ⊆ C we say that
A ≻ B if a ≻ b for all a ∈ A and b ∈ B. We will often write weak orders ≽ in the following
format: {c1, c2} ≻ {c3} ≻ {c4}. More formally, every weak order partitions C into indifference
classes C1, . . . , Ck such that C1 ≻ · · · ≻ Ck and whenever a, b ∈ Cj for some j, then a ∼ b. We
will sometimes refer to C1 as the top indifference class of the weak order, and Ck the bottom one.

τ1111
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d

τ121
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b c

d

τ13

a

b c d

Figure 4.6: Examples of
weak orders with different
order types.

The order type of a weak order C1 ≻ · · · ≻ Ck is the ordered
list τ = (|C1|, . . . , |Ck|) of the sizes of its indifference classes. We
usually denote an order type using the notation τ|C1|...|Ck| if this
causes no ambiguity; for example τ121 for the order type (1, 2, 1).
Figure 4.6 shows some examples of order types. A weak order with
order type (1, 1, . . . , 1) (i.e., with no indifferences) is called a linear
order and corresponds to a ranking, and a weak order with an order
type τ with |τ | = 2 (e.g., τ23) is called dichotomous and corresponds
to an approval ballot.

Runoff Scoring Rules

In this chapter, we will study irresolute single-winner voting rules f that take as input a profile P
and output a non-empty set of tied winners f(P ) ⊆ C (usually a singleton). We will focus on runoff
scoring rules (Smith, 1973, Section 4) that we discussed in Section 2.3.1 for the case of rankings.
The principle can easily be generalized to weak orders, for which runoff scoring rules work as
follows: at each step, every voter assign a score to every candidate depending (i) on the order type
of their weak order and (ii) on the position of the candidate in that order. The candidate with
the lowest total score is eliminated from all orders, and we repeat the process with the remaining
candidates. As IRV is part of this family for linear orders, it is natural to focus on this family of
rules for defining generalizations of IRV to weak orders.

To define more formally these runoff scoring rules, we need the notion of (positional) scoring
systems for weak orders. A scoring system is a function s that maps order types τ to scores
s(τ) = (s(τ)1, . . . , s(τ)|τ |) ∈ R|τ |

⩾0 where s(τ)|τ | = 0 without loss of generality. Given a scoring
system s and a weak order C1 ≻ · · · ≻ Ck with order type τ , a candidate c ∈ Cj is assigned
a score of S≽,s(c) = s(τ)j . Given a profile P = (≽1, . . . ,≽n), the score of the candidate c is
SP,s(c) =

∑
i∈V S≽i,s(c). We often drop the subscript if P and s are clear from the context, and

write S(c) for SP,s(c). In this chapter, we will only consider monotone scoring systems, i.e., such
that s(τ)1 ⩾ . . . ⩾ s(τ)|τ | for all order types τ .

A runoff scoring rule associated to a scoring system s is then defined inductively as follows.
Consider a profile P , defined on a candidate set C. If the candidate set is a singleton C = {c}, we
set f(P ) = {c}. Otherwise, if |C| ⩾ 2, let L = {l ∈ C : SP,s(l) ⩽ SP,s(c) for all c ∈ C} be the set
of lowest-scoring candidates in P . Then we set f(P ) =

⋃
l∈L f(P−l) where P−l refers to the profile
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obtained from P by restricting all the weak orders in it to the candidate set C\{l} where l has been
deleted. Note that this way of breaking ties is known as parallel-universe tie-breaking (Conitzer
et al., 2009, Section 7), and leads to an axiomatically well-behaved rule. Deciding whether a
candidate is a winner under this tie-breaking is NP-hard (Boehmer et al., 2023, Theorem 6.2), but
this should not be a problem in political elections with moderately low m since the problem can
be solved using an O(2m · nm2) time algorithm (Boehmer et al., 2023, Theorem 6.1).

If we restrict ourselves to profiles of linear orders, we fall back on the definition of runoff scoring
rules for rankings introduced in Example 2.2. For profiles of weak orders, we are particularly
interested in two runoff scoring rules that generalize IRV in natural ways. All generalizations
of IRV need to use the plurality scores for linear orders s(τ1...1) = (1, 0, . . . , 0). Following the
idea that with IRV we only give a positive score to the top-ranked candidate of every order, our
generalizations of IRV will both only assign a positive score only to the candidates of the first
indifference class of every weak order.

The first generalization of IRV that we consider is Approval-IRV. In Approval-IRV, all the
top-ranked candidates will get one point, whatever the type of the weak order.

Approval-IRV
The Approval-IRV rule is the runoff scoring rule based on the approval scoring system:

s(τ) = (1, 0, . . . , 0) for all order types τ

The second generalization is Split-IRV, and this time each voter assigns a total of one point,
which is split evenly among the top-ranked candidates of the weak order. For example, if there are
three candidates in the top indifference class, each will receive a score of 1/3.

Split-IRV
The Split-IRV rule is the runoff scoring rule based on the split scoring system:

s(τ) = (1/τ(1), 0, . . . , 0) for all order types τ

4.3 Axiomatic Analysis

Let us now axiomatically evaluate these two rules. In particular, we will characterize Approval-IRV
in two ways: first, as the only runoff scoring rule that satisfies two axioms characteristic of IRV,
and second, as the only runoff scoring rule that generalizes IRV and satisfies a weak monotonicity
axiom.

Generalizing Properties of IRV

The IRV rule is known to satisfy several desirable properties that are failed by many other voting
rules. In particular, it satisfies independence of clones (Section 2.4.4) and the majority criterion
(Section 2.4.2). We will show that among runoff scoring rules for weak orders, Approval-IRV is
the only rule that satisfies natural generalizations of these two properties to weak orders.

Independence of Clones

Among social choice theorists, IRV stands out from most other ranking-based voting rules because
it satisfies independence of clones (Tideman, 1987). As a reminder, this axiom requires that adding
new candidates to an election who are very similar to existing candidates (so that all voters rank
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Figure 4.7: Examples of T = {c1, c2, c3} being a clone set or not being a clone set.

them in adjacent positions) should not change the outcome. Formally, given a profile P , a set of
candidates T ⊆ C is a clone set if for every voter i ∈ V and every candidate x ̸∈ T , we have either

c ≻i x for all c ∈ T , or c ∼i x for all c ∈ T , or x ≻i c for all c ∈ T .

See Figure 4.7 for examples and non-examples of clone sets.

We recall the independence of clones axiom defined in Section 2.4.4:

Independence of Clones
A voting rule f satisfies independence of clones if for all profiles P with clone set T ⊆ C, letting
P̂ be the profile obtained by removing all but one candidate ĉ from T , it holds that

1. for every x /∈ T , x ∈ f(P ) if and only if x ∈ f(P̂ ), and

2. ĉ ∈ f(P̂ ) if and only if there exists c ∈ T such that c ∈ f(P ).

9
a c c′

b

4
b

a

c c′

2
c c′
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Figure 4.8: Split-IRV fails
independence of clones.

Approval-IRV satisfies independence of clones. We can show this by
adapting the standard proofs that linear-order IRV satisfies the axiom
(Tideman, 1987; Freeman et al., 2014a), using the fact that cloning
a candidate does not change the score of any non-clone candidate in
any round of Approval-IRV. The formal proof is due to my coauthor
Dominik Peters and can be found in Delemazure and Peters (2024).

However, Split-IRV fails independence of clones. A simple coun-
terexample is shown in Figure 4.8, where a is eliminated with a score of 3 while other candidates
each have a score of 4; then finally one of the clones c and c′ wins. However, when removing the
clone c′ of c from the profile, we get a profile where the score of a is 4.5, the score of b is 4, and the
score of c is 6.5. Thus, b gets eliminated, after which a wins the majority vote against c. Thus,
the winner changed from c or c′ to a, which is not allowed by independence of clones.

Proposition 4.1
Approval-IRV is independent of clones, but Split-IRV is not.

Respecting Cohesive Majorities

Another characteristic property of linear-order IRV, often known as the majority criterion, is that
if a majority of voters places some candidate first in their ranking, then that candidate should win
(see Section 2.4.2). There are several ways to define such a condition for weak orders. A weak
version is respect for unanimous majorities (Brandl and Peters, 2022), which says that if a majority
of voters rank the same set T of candidates as their first indifference class, then only candidates
in T should be among the winners. This is satisfied by both Approval-IRV and Split-IRV.



4.3. AXIOMATIC ANALYSIS 129

Approval-IRV Split-IRV

Respect for unanimous majorities
Respect for cohesive majorities
Select some majority candidate

Table 4.1: Comparison of majority properties satisfied by the rules.
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Figure 4.9: A problem
with electing majority
candidates.

An axiom that is intuitive but undesirably strong is select some
majority candidate, which demands that if some candidate c ∈ C is a
majority candidate (i.e., is in the top indifference class of a majority
of voters), then all winning candidates must be majority candidates
(noting that there could be several). To see why this might be un-
desirable, consider the profile in Figure 4.9 where this axiom would
demand that a is the winner. However, candidate b is strictly preferred
over a by 49% of voters, while only 4% of voters have the opposite
strict preference. Thus, there is a good argument that b should be
the winner, and indeed it is the winner under Approval-IRV (it is also the Condorcet winner). In
contrast, Split-IRV selects a. In general, both rules fail this axiom.

We propose an axiom called “respect for cohesive majorities” that logically lies between these
two axioms (see Table 4.1). It says that if there is a majority of voters who rank some candidate c
on top (so they are “cohesive”), possibly among others, then the winning candidate must be ranked
top by at least one member of that majority. For instance, in the profile in Figure 4.9, the axiom
would demand that the winning candidate is either a or b.

Given a profile P , write topi = {c ∈ C : c ≽i d for all d ∈ C} for the top candidates of voter i.

Respect for Cohesive Majorities
A voting rule f respects cohesive majorities if for all profiles P and all subsets of voters S ⊆ V

such that |S| > n/2 and
⋂

i∈S topi ̸= ∅, we have f(P ) ⊆
⋃

i∈S topi.

Intuitively, if a group of n/2 + t voters is a cohesive majority that jointly ranks c on top, then
the group has a “default claim” that c should be elected. If a rule wants to override this claim, the
axiom says that it must choose some candidate x that at least t voters in that group think is at
least as good as c (and that they hence rank on top). Making this choice justifiably overrides the
claim because at most n/2 voters remain in the group, who do not form a majority on their own.

Figure 4.10 shows an example profile where a majority of voters (19 out of 37) are cohesive as
they agree on candidate a. Therefore, the axiom demands that the winning candidates are either
a, b, or c, but not d. On the shown profile, d is the winner under Split-IRV, which therefore fails
our axiom. Approval-IRV selects a, consistently with our axiom.

Respect for cohesive majorities is inspired by proportionality axioms, and is actually a special
case of the “generalized PSC” axiom for multi-winner rules introduced by Aziz and Lee (2020)
(adapted to the single-winner setting). Our axiom also implies the “weak defensive strategy cri-
terion” (Ossipoff, 2000), which says that if a majority of voters strictly prefers a over b, then
there should be votes that they can submit that ensure that b loses. The submitted votes should
be sincere (they only differ from the true preferences by including extra indifferences). Respect
for cohesive majorities implies this property, since each member of the majority can report all
candidates they strictly prefer to b as their top candidates, and they would thus form a cohesive
group.
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Figure 4.10: Split-IRV violates respect for cohesive majorities because it first eliminates a, then b
and c, and elects d.

As we mentioned, Split-IRV fails to respect cohesive majorities. In addition, all standard Con-
dorcet extensions fail the axiom, as the following result implies (see Section 2.3.1 for definitions):

Proposition 4.2
No C2 voting rule respects cohesive majorities.

Proof. Consider the following profile:
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a

cb

1
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1

Without loss of generality, because the voting rule is C2, we may assume c is a winner in this
profile (otherwise we can rename candidates in the profile but retain the same weighted majority
graph). However, a majority of voters places a in top position and none of these voters puts c in top
position. Therefore, by respect for cohesive majorities, c must not be a winner, a contradiction.

On the other hand, Approval-IRV does satisfy the axiom.

Proposition 4.3
Approval-IRV respects cohesive majorities, but not Split-IRV.

Proof. Let S be a subset of more than n/2 voters who all rank candidate c top. We need to show
that the winner under Approval-IRV is ranked top by some voter in S. If c is the winner, we are
done. Otherwise, consider the round at which c gets eliminated. At that time, a majority of voters
(at least S) ranks c on top, so it has approval score of more than n/2. Yet because it is about to
be eliminated, this is the lowest score. Therefore, every remaining candidate x is ranked top by a
majority of voters. Since two strict majorities must intersect, it follows that there is some voter
i ∈ S who ranks x top at this time, and because c is not yet eliminated, i must have ranked x top
from the start (as x and c are in the same indifference class). Therefore, at this time all remaining
candidates are top candidates for some voter in S, and hence this will also be true of the eventual
winner.

Characterization

We have seen that Approval-IRV satisfies independence of clones and respects cohesive majorities,
two properties that are characteristic of IRV in the linear-order context. Split-IRV fails both
axioms. We will now prove that Approval-IRV is actually characterized by these two properties
within the class of runoff scoring rules.

Freeman et al. (2014a, Theorem 1) previously characterized linear-order IRV to be the only
linear-order runoff scoring rule satisfying independence of clones. However, we cannot use their
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result since they interpreted IRV as a social welfare function that outputs a ranking of candidates
(the elimination order) and not a single winner. In this setting, independence of clones is a much
stronger property. Indeed, Freeman et al. (2014a) write that they “do not know whether other
nontrivial runoff scoring rules would satisfy the property” when looking at social choice functions,
because their “proofs relied heavily on being able to alter some position in the ranking”, while in
our characterization we need to reason about the set of final winners.

Theorem 4.4
When there are at least m ⩾ 4 candidates, Approval-IRV is the only runoff scoring rule that
satisfies independence of clones and respects cohesive majorities.

The proof is quite involved, since we need to characterize the scoring vector for every possible
order type. The goal is to show that if a runoff scoring rule satisfies independence of clones and
respects cohesive majorities, then every order type τ is associated to the score vector (1, 0, . . . , 0).
We first show that it is true for all linear order types τ1...1. Then, we show it for all order types on 3
and 4 candidates. We then use a variety of induction steps to deduce the result for all dichotomous
order types. Finally, another induction characterizes the score vector for all remaining order types.

Proof. Let f be a runoff scoring rule satisfying independence of clones and respect for cohesive
majorities. We want to show that for all order types τ , their scoring vector is s(τ) = (1, 0, . . . , 0).
We first prove it for linear order types τ = (1, 1, . . . , 1, 1), then for all other order types.

In this proof, if a ballot is indifferent between all candidates, i.e., its order type is of length
|τ | = 1, we say that s(τ) = (0) and no candidates get points. Moreover, in every profile, when we
use some q ∈ N, we assume that q is large enough (e.g., q > 100), such that what matters most is
the coefficient of q (for instance, we will consider that 2q > q + 5).

Because there is only one linear order type of length m, we denote s(m) = s(τ) for |τ | = m.
We know that s(m)1 > 0 otherwise s(m) = (0, 0, . . . , 0, 0) and a is not the only winner in the
profile with one ranking where a is first, contradicting respect for cohesive majorities. Thus, we
can assume without loss of generality that for all m, s(m)1 = 1 (as there is only one linear order
type for each number of candidates). In Lemma 4.5, we prove that s(τ) = (1, 0, . . . , 0) for all linear
order types τ .

Lemma 4.5
Let f be a runoff scoring rule satisfying independence of clones and respect for cohesive majorities.
Then any linear order type τ is associated to the scoring vector s(τ) = (1, 0, . . . , 0).

Proof. We prove it by induction on the number of candidates m. For m = 2 it is true because
τ11 = (1, 1) is the only order type, so we can assume it has scoring vector (1, 0). For m = 3, we will
use two order types: τ111 = (1, 1, 1) and τ21 = (2, 1). Denote x and y such that s(τ111) = (1, x, 0)

and s(τ21) = (y, 0) with x ∈ [0, 1] and y ⩾ 0. We want to prove that x = 0.
We will prove (1) y ⩽ 1, (2) if y < 1 then x = 0 and (3) if y = 1 then x = 0. This will prove

that x = 0. Note that in this lemma we will not determine the exact value of y.
Let us first prove that (1) y ⩽ 1. Assume for contradiction that y > 1. Let q ∈ N with

q > 1/(y − 1) and consider the following profile P :

q + 1 :{a} ≻ {b} ≻ {c} q :{b, c} ≻ {a}

By respect for cohesive majorities, a should be the winner. But the scores are S(a) = q + 1 and
S(b) ⩾ S(c) = qy. Since q > 1/(y − 1), a is eliminated first, a contradiction.
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Let us now prove that (2) if y < 1, then x = 0. Assume for contradiction that y < 1 and x > 0.
Let q ∈ N such that q > 1/x and q > 1/(1− y) and consider the profile P :

q :{c} ≻ {b} ≻ {a} q :{a, b} ≻ {c} 1 :{a} ≻ {c} ≻ {b}

In this profile, a is ranked top by more than half of the voters, so f(P ) ⊆ {a, b} by respect for
cohesive majorities. However, the scores are S(a) = qy + 1, S(b) = qy + qx and S(c) = q + x.
Because q > 1/x we have S(b) > S(a) and because q > 1/(1− y), we have S(c) > S(a). Thus, a is
eliminated first. The scores are now S(c) = q + 1 and S(b) = q, so c wins, a contradiction. Thus,
if y < 1, then x = 0.

Let us now prove that (3) if y = 1, then x = 0 again. Assume for contradiction that y = 1 but
x > 0. Let q ∈ N such that q > 1/x and q > 2 and consider the profile P :

q + 1 :{b, c} ≻ {a} q :{a} ≻ {c} ≻ {b} 1 :{a, b} ≻ {c} 1 :{a} ≻ {b} ≻ {c}

In this profile, a is ranked top by more than half of the voters, so f(P ) ⊆ {a, b} by respect
for cohesive majorities. However, the scores are S(a) = q + 2, S(b) = q + 2 + x > S(a) and
S(c) = q + 1 + qx. Since q > 1/x, we have S(c) > S(a) and a is eliminated first. Then the scores
are S(c) = q and S(b) = 2, so c wins, a contradiction.

Therefore, we must have x = 0 and s(τ111) = (1, 0, 0). Let us now prove it for m = 4 (i.e.
τ = (1, 1, 1, 1)). We already know that s(4)1 = 1. Assume for contradiction that s(4)2 = x > 0.
Let q ∈ N such that q > 1/x and consider the following profile:

q + 1 :{b} ≻ {c} ≻ {a} ≻ {a′} q :{c} ≻ {a} ≻ {a′} ≻ {b}
q :{a} ≻ {a′} ≻ {c} ≻ {b} q :{a′} ≻ {a} ≻ {c} ≻ {b}

In this profile, the scores are S(c) ⩾ q+(q+1)x, S(b) = q+1 and S(a) ⩾ S(a′) ⩾ q+ qx. Because
q > 1/x, we have S(c) > S(b) and S(a′) > S(b), so b is eliminated first. The scoring vectors are
now (1, 0, 0), so the scores are S(c) = 2q + 1 and S(a) = S(a′) = q so one of a or a′ is eliminated,
and c wins the majority vote in the final round. Note that in this profile a and a′ are clones, so c
should also win in the profile in which we remove the clone a′ of a. However, in this profile, the
scores are S(b) = q + 1, S(c) = q and S(a) = 2q, so c is eliminated first, a contradiction. This
proves that s(4)2 = 0 and thus s(4) = (1, 0, 0, 0).

We now prove by induction that for all m, s(m) = (1, 0, . . . , 0). Assume it is true for some
m ⩾ 4, let us prove it for m + 1. Assume for contradiction that s(m + 1)2 > 0. Let q ∈ N with
q > 1/s(m + 1)2 and consider the profile P of linear orders on C = {a, a′, b, c1, . . . , cm−2} which
contains:

• For each i ∈ [1,m − 2], q linear orders {ci} ≻ {b} ≻ {a} ≻ {a′} ≻ {ci+1} ≻ · · · ≻ {ci+m−3}
where the subscripts of ci have to be taken modulo m − 2 (for instance, the linear order
starting with c2 ends with c1).

• q − 1 linear orders {b} ≻ {a} ≻ {a′} ≻ {c1} ≻ · · · ≻ {cm−2}.

• q linear orders {a} ≻ {a′} ≻ {b} ≻ {c1} ≻ · · · ≻ {cm−2}.

• q linear orders {a′} ≻ {a} ≻ {b} ≻ {c1} ≻ · · · ≻ {cm−2}.
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Note that in this profile, each ci is ranked last in at least q orders. The scores are

S(a) ⩾ S(a′) = q + qs(m+ 1)2 + qs(m+ 1)3 + q(m− 2)s(m+ 1)4

S(b) = (q − 1) + q(m− 2)s(m+ 1)2 + 2qs(m+ 1)3

S(ci) ⩽ q + (3q − 1)s(m+ 1)4 + q(m− 4)s(m+ 1)5

We know that s(m+ 1)2 ⩾ s(m+ 1)3 ⩾ s(m+ 1)4 ⩾ s(m+ 1)5, so we can make the following
observation for all candidates ci:

S(b) ⩾ (q − 1) + q(m− 2)s(m+ 1)2 + 2qs(m+ 1)3

= q − 1 + qs(m+ 1)2 + q(m− 3)s(m+ 1)2 + 2qs(m+ 1)3

⩾ q − 1 + qs(m+ 1)2 + q(m− 3)s(m+ 1)3 + 2qs(m+ 1)3

= q − 1 + qs(m+ 1)2 + q(m− 1)s(m+ 1)3

= q − 1 + qs(m+ 1)2 + q(m− 4)s(m+ 1)3 + 3qs(m+ 1)3

⩾ q − 1 + qs(m+ 1)2 + q(m− 4)s(m+ 1)5 + 3qs(m+ 1)4

⩾ q − 1 + qs(m+ 1)2 + q(m− 4)s(m+ 1)5 + (3q − 1)s(m+ 1)4

> q + q(m− 4)s(m+ 1)5 + (3q − 1)s(m+ 1)4 (since q > 1/s(m+ 1)2)

⩾ S(ci).

Moreover, we have:

S(a) ⩾ S(a′) ⩾ q + q(m− 2)s(m+ 1)4 + (q − 1)s(m+ 1)3 + qs(m+ 1)2

= q + q(m− 4)s(m+ 1)4 + 2qs(m+ 1)4 + (q − 1)s(m+ 1)3 + qs(m+ 1)2

⩾ q + q(m− 4)s(m+ 1)4 + (3q − 1)s(m+ 1)4 + qs(m+ 1)2

> q + q(m− 4)s(m+ 1)5 + (3q − 1)s(m+ 1)4 (since s(m+ 1)2 > 0)

⩾ S(ci).

Therefore, one of the ci is eliminated first. By induction hypothesis, all scoring vectors are now
(1, 0, . . . , 0). The scores are now S(a) = S(a′) = q, S(b) = 2q − 1 and S(ci) = q for all ci that are
not eliminated. Moreover, the score of any candidate other than b is upper bounded by q as long
as b is not eliminated, except for a (or a′), which obtains a score of 2q once its clone a′ (or a) is
eliminated. Therefore, the ci are successively eliminated until a (or a′) and b remain. The scores
are S(a) = 2q and S(b) = q − 1 + q(m− 2). Because m ⩾ 4, S(b) > S(a) and b wins.

Note that in this profile, a and a′ are clones. Therefore, by independence of clones, b should
also win in the profile in which we remove the clone a′ of a. However, in this profile, all scoring
vectors are (1, 0, . . . , 0) by our induction hypothesis. The scores are S(a) = 2q, S(ci) = q for all ci
and S(b) = q − 1. Thus, b is eliminated first, a contradiction.

This proves that s(m+ 1)2 = 0. Because we know that s(m+ 1)i ⩽ s(m+ 1)2 for all i ⩾ 3, we
have s(m+ 1) = (1, 0, . . . , 0) and the induction hypothesis concludes the proof.

We now prove the result for all other order types. For this, we proceed in several steps. We
first show that some specific order types with length |τ | ⩽ 3 or defined for m ⩽ 5 candidates have
approval scores as their scoring vector. Then, we proceed by induction to prove the result for all
other order types.

First, we prove the results for τ21 and τ31.
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Lemma 4.6
Let f be a runoff scoring rule satisfying independence of clones and respect for cohesive majorities.
Then, s(τ21) = s(τ31) = (1, 0).

Proof. We will show that (1) s(τ21)1 ⩽ 1, (2) s(τ21)1 ∈ [0, 1/2]∪ {1}, (3) s(τ21)1 = s(τ31)1 and (4)
s(τ21)1 ⩾ 5/9. Combining these gives s(τ21) = s(τ31) = (1, 0).

We first prove that (1) s(τ21)1 ⩽ 1 using respect for cohesive majorities. Assume for a con-
tradiction that s(τ21)1 > 1. Let q ∈ N such that q > 1/(s(τ21)1 − 1) and consider the profile
P :

q :{c, b} ≻ {a} q + 1 :{a} ≻ {c} ≻ {b}

Here, a is in the top indifference class of more than half voters, but the scores are S(a) = q + 1

and S(c) = S(b) = qs(τ21)1. Since q > 1/(s(τ21)1 − 1), S(c) = S(b) > S(a) and a is eliminated
first, which contradicts respect for cohesive majorities.

We now prove that (2) s(τ21)1 ∈ [0, 1/2] ∪ {1} using respect for cohesive majorities. As-
sume for a contradiction that 1/2 < s(τ21)1 < 1 and let q ∈ N be such that q > max(1/(1 −
s(τ21)1), 1/(2s(τ21)1 − 1)). Consider the following profile P :

q + 1 :{a} ≻ {c} ≻ {b} 3q :{a, b} ≻ {c}
2q :{b, c} ≻ {a} 2q :{c} ≻ {b} ≻ {a}

In this profile, a is in the top indifference class of more than half of the voters. Respect for cohesive
majorities imposes that f(P ) ⊆ {a, b}. The scores are S(a) = q+1+3qs(τ21)1, S(b) = 5qs(τ21)1 and
S(c) = 2q+2qs(τ21)1. Since q > 1/(1−s(τ21)1), we have S(a) < S(c) and since q > 1/(2s(τ21)1−1)
we have S(a) < S(b). Thus, a is eliminated first and c wins the majority vote against b, which
contradicts respect for cohesive majorities.

We now prove that (3) s(τ21)1 = s(τ31)1 using independence of clones. First assume that
s(τ21)1 < s(τ31)1. Let q, q′ ∈ N such that qs(τ21)1 < q′ < qs(τ31)1. Consider the profile P :

q′ + 2 :{c} ≻ {c′} ≻ {b} ≻ {a} 2q′ :{b} ≻ {a} ≻ {c′} ≻ {c}
q′ + 1 :{c′} ≻ {c} ≻ {b} ≻ {a} q′ :{a} ≻ {b} ≻ {c} ≻ {c′}

q :{c, c′, a} ≻ {b}

In this profile, the scores are S(c) > S(c′) > S(a) = q′ + qs(τ31)1 > 2q′ and S(b) = 2q′. Thus, b
is eliminated first. The new scores are S(c) > S(c′) = q′ + 1 and S(a) = 3q′. Thus, c′ and c are
eliminated, and a wins. Now, observe that c and c′ are clones in P . Therefore, independence of
clones imposes that a should also be winning in the profile P ′ in which we remove c′. In P ′, the
scores are S(c) > S(a) = qs(τ21)1 + q′ < 2q′ and S(b) = 2q′. Therefore, a is eliminated first, which
contradicts independence of clones.

We now assume that s(τ21)1 > s(τ31)1. Let q, q′ ∈ N such that qs(τ21)1 > q′ > qs(τ31)1.
Using the same profiles P and P ′ as above, we have that a is eliminated first in P , but in P ′, b is
eliminated first, and a is the winner. This contradicts again independence of clones. We conclude
that s(τ21)1 = s(τ31)1.

We now prove that (4) s(τ21)1 ⩾ 5/9. Assume for a contradiction that s(τ21)1 < 5/9 and
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consider the following profile P .

4 :{a, b} ≻ {d} ≻ {c} 5 :{a, c} ≻ {d} ≻ {b}
5 :{b, d} ≻ {c} ≻ {a} 4 :{c, d} ≻ {b} ≻ {a}
1 :{b} ≻ {d} ≻ {c} ≻ {a} 1 :{c} ≻ {d} ≻ {b} ≻ {a}
10 :{d} ≻ {c} ≻ {b} ≻ {a} 13 :{a, b, c} ≻ {d}

In this profile, a is on the top indifference class of more than half of the voters, therefore by respect
for cohesive majorities we have f(P ) ⊆ {a, b, c}. The scores are S(a) = 9s(τ211)1 + 13s(τ31)1,
S(c) ⩾ S(b) = 9s(τ211)1 + 13s(τ31)1 + 1 > S(a) and S(d) ⩾ 10 + 9s(τ211)1. Note that we are
only lower bounding as we do not know if (τ211)2 = 0. Since s(τ31)1 = s(τ21)1 < 5/9 < 10/13, we
have that S(a) < S(d). Therefore, a is eliminated first. The new scores are S(b) = 18s(τ21)1 + 5,
S(c) = 17s(τ21)1 + 6 and S(d) = 10 + 9s(τ21)1, since s(τ21)1 < 5/6, we have S(b) < S(d), and
S(b) < S(c). So b is eliminated. Finally, d wins the majority vote against c. This contradicts
respect for cohesive majorities.

Thus, since s(τ21)1 ∈ [0, 1/2]∪{1} and s(τ21)1 ⩾ 5/9 > 1/2, we can conclude that s(τ21) = (1, 0).
Moreover, s(τ31) = (1, 0).

We now prove the following lemma that will be useful for the next steps.

Lemma 4.7
Let f be a runoff scoring rule satisfying independence of clones and respect for cohesive majorities.
Then, s(τ211)1 = 1.

Proof. We know from Lemma 4.6 that s(τ21) = s(τ31) = (1, 0), and from Lemma 4.5 that the
scoring vector of a linear order type is (1, 0, . . . , 0).

Let us first prove that s(τ211)1 ⩽ 1. Assume that s(τ211)1 > 1 and take q ∈ N such that
q > 1/(s(τ211)1 − 1). Consider the following profile P :

2q + 1 :{b, d} ≻ {c} ≻ {a} 3q :{a, b, c} ≻ {d}
2q − 1 :{c, d} ≻ {b} ≻ {a} q + 4 :{a} ≻ {d} ≻ {c} ≻ {b}

In this profile, a is in the top indifference class of more than half of the votes, so by respect for
cohesive majorities we should have f(P ) ⊆ {a, b, c}. The scores are S(a) = 4q + 4, S(b) > S(c) ⩾

3q+(2q−1)s(τ211)1 > 5q−1 > S(a) and S(d) = 4qs(τ211)1. Note that we are only lower bounding
S(c) and S(b) as we do not know if s(τ211)2 = 0. Since q > 1/(s(τ211)1 − 1), S(d) > S(a). Thus,
a is eliminated first. The new scores are S(b) > S(c) = 5q − 1 and S(d) = 5q + 4. Thus, c is
eliminated next, and d wins the majority vote against b, which contradicts respect for cohesive
majorities.

Let us now prove that s(τ211)1 ⩾ 1 with independence of clones. Assume that s(τ211)1 < 1.
Take q ∈ N such that q > 1/(1− s(τ211)1) and consider the profile P :

3 :{a} ≻ {c} ≻ {c′} ≻ {b} q + 2 :{c, c′, a} ≻ {b}
4 :{b} ≻ {c} ≻ {c′} ≻ {a} q + 2 :{c, c′, b} ≻ {a}
q :{a, b} ≻ {c} ≻ {c′}

In this profile, S(b) > S(a) = qs(τ211)1+q+5 and S(c) ⩾ S(c′) ⩾ 2q+4. Since q > 1/(1−s(τ211)1),
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we have S(c) > S(a). Thus, a is eliminated first. The new scores are S(b) = q+4, S(c) = q+5 and
S(c′) = q + 2 so c′ is eliminated next, then c wins the majority vote against b. Now observe that
c and c′ are clones in P , so by independence of clones, c should also win in the profile P ′ without
c′. However, in P ′, the scores are S(b) > S(a) = 2q + 5 and S(c) = 2q + 4, so c is eliminated first.
This contradicts independence of clones, and proves that s(τ211)1 = 1.

We now prove the result for τ12, τ22 and τ13, completing the proof for all dichotomous order
types on m ⩽ 4 candidates.

Lemma 4.8
Let f be a runoff scoring rule satisfying independence of clones and respect for cohesive majorities.
Then, s(τ12) = s(τ22) = s(τ13) = (1, 0).

Proof. We know from Lemma 4.6 that s(τ21) = s(τ31) = (1, 0), and from Lemma 4.5 that the
scoring vector of a linear order type is (1, 0, . . . , 0). We also know from Lemma 4.7 that s(τ211)1 = 1.

We first show that s(τ12)1 = 1. First, we show that s(τ12)1 ⩾ 1 using respect for cohesive
majorities. Take q ∈ N such that q > 1/(1− s(τ12)1) and consider the profile P :

q :{a} ≻ {b, c} q − 1 :{b, c} ≻ {a}

In this profile, a is ranked first in more than half of the votes, but the scores are S(a) = qs(τ12)1 and
S(b) = S(c) = q. By hypothesis on q, S(b) = S(c) > S(a) and a is eliminated first, a contradiction.

Assume now that s(τ12)1 > 1. Take q ∈ N such that q > 1/(s(τ12)1 − 1) and consider the
following profile P :

q + 2 :{a, b} ≻ {c} q :{c} ≻ {a, b}
4 :{b, c} ≻ {a} 3 :{a} ≻ {c} ≻ {b}

In this profile, a is in the top indifference class of more than half of the votes, thus by respect
for cohesive majorities f(P ) ⊆ {a, b}. The scores are S(a) = q + 5, S(b) = q + 6 and S(c) =

4 + qs(τ12)1. Since q > 1/(s(τ12)1 − 1), S(c) > S(a), thus a is eliminated first, and c wins the
majority vote against b. This contradicts respect for cohesive majorities. Therefore, we necessarily
have s(τ12) = (1, 0).

We now show that s(τ22)1 = 1. Assume that s(τ22)1 < 1. Take q ∈ N such that q > 1/(1 −
s(τ22)1) and consider the following profile P :

3 :{a} ≻ {b} ≻ {b′} ≻ {c} q + 2 :{b, b′} ≻ {c} ≻ {a}
4 :{c} ≻ {b} ≻ {b′} ≻ {a} q :{a, c} ≻ {b, b′}

Recall that s(τ211)1 = 1 (Lemma 4.7). In this profile, S(c) > S(a) = qs(τ22)1 + 3 and S(b) =

S(b′) = q+2. Since q > 1/(1−s(τ22)1), S(b) > S(a) and a is eliminated first, then b′ is eliminated,
and b wins the majority vote against c. Since b and b′ are clones, this means that in the profile P ′

in which we remove b′, b should still win. If we remove b′, the scores are S(c) > S(a) = q + 3 and
S(b) = q + 2, so b is eliminated first. This contradicts independence of clones.

Assume now that s(τ22)1 > 1. Take q ∈ N such that q > 1/(s(τ22)1 − 1) and consider the
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following profile P :

3 :{a} ≻ {b} ≻ {b′} ≻ {c} q :{b, b′} ≻ {a, c}
4 :{c} ≻ {b} ≻ {b′} ≻ {a} q − 2 :{a, c} ≻ {b} ≻ {b′}

Again, by Lemma 4.7, s(τ211)1 = 1. In this profile, S(c) > S(a) = q+1 and S(b) = S(b′) ⩾ qs(τ22)1.
Since q > 1/(s(τ22)1 − 1), S(b) > S(a) and a is eliminated, then b′ is eliminated and b wins the
majority vote against c. Since b and b′ are clones, by independence of clones, b should also win
in the profile P ′ in which we remove b′. If we remove b′, the scores are S(c) > S(a) = q + 1 and
S(b) = q, so b is eliminated first. This contradicts independence of clones. Thus, we necessarily
have s(τ22) = (1, 0).

We finally prove that s(τ13) = (1, 0). Assume first that s(τ13)1 < 1. Let q > 1/(1 − s(τ13)1)
and P be the profile:

q :{a} ≻ {b, c, d} q − 1 :{b, c, d} ≻ {a}

By respect for cohesive majorities, a should be the winner, but in this case a is eliminated first (as
s(τ31) = (1, 0)). This proves that s(τ13)1 ⩾ 1. Now assume that s(τ13)1 > 1. Let q ∈ N be such
that q > 1/(s(τ13)1 − 1) and consider the following profile P :

q + 2 :{a, b, c} ≻ {d} q :{d} ≻ {b, c, d} 4 :{a} ≻ {d} ≻ {b} ≻ {c}
6 :{b, c, d} ≻ {a} 1 :{a, b} ≻ {c, d}

In this profile, a is in the top indifference class of more than half of the votes, so respect for cohesive
majorities implies that f(P ) ⊆ {a, b, c}. The scores are S(a) = q + 7, S(b) = q + 9, S(c) = q + 8

and S(d) = qs(τ13)1 + 6. Because of hypothesis on q, S(d) > S(a) so a is eliminated first. The
scores are now S(d) = q+4, S(b) = q+3 and S(c) = q+2. c is eliminated and d wins the majority
vote against b. This contradicts respect for cohesive majorities. Therefore, s(τ13) = (1, 0).

We now prove the result for τ211.

Lemma 4.9
Let f be a runoff scoring rule satisfying independence of clones and respect for cohesive majorities.
Then, s(τ211) = (1, 0, 0).

Proof. We know from Lemmas 4.6 and 4.8 that the scoring vector of any order type of length
|τ | = 2 for m ⩽ 4 candidates is (1, 0), and from Lemma 4.5 that the scoring vector of a linear order
type is (1, 0, . . . , 0). We also know from Lemma 4.7 that s(τ211)1 = 1.

We now show that s(τ211)2 = 0. Assume for a contradiction that s(τ211)2 > 0. Take q ∈ N
such that q > 1/s(τ211)2 and consider the profile P :

q :{a, b} ≻ {c} ≻ {d} 2q − 2 :{c, d} ≻ {a, b}
q :{a, b} ≻ {d} ≻ {c} 5 :{b, c, d} ≻ {a}
4 :{a} ≻ {c} ≻ {d} ≻ {b}

In this profile, a is in the top indifference class of more than half of the vote, so by respect for
cohesive majorities we should have f(P ) ⊆ {a, b}. The scores are S(a) = 2q + 4, S(b) = 2q + 5,
S(c) = S(d) = 2q + 3 + qs(τ211)2. Since q > 1

/s(τ211)2, S(d) > S(a). Thus a is eliminated first.
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The new scores are S(b) = 2q, S(c) = 2q+2 and S(d) = 2q− 2 so d is eliminated next, and c wins
the majority vote against b. This contradicts respect for cohesive majorities. We conclude that
s(τ211)2 = 0. By combining this with Lemma 4.7, we obtain that s(τ211) = (1, 0, 0).

From the previous steps, we obtained that τ21, τ31, τ12, τ22, τ13 and τ211 are associated to
approval score vectors. We continue to focus on specific order types before the induction step. In
this step, we prove the result for τ112, τ212 and τ121, and thus we would have covered all order
types for m ⩽ 4 candidates.

Lemma 4.10
Let f be a runoff scoring rule satisfying independence of clones and respect for cohesive majorities.
Then, s(τ112) = s(τ212) = s(τ121) = (1, 0, 0).

Proof. We first show that s(τ112) = (1, 0, 0). To see that s(τ112)1 ⩾ 1, we can use the proof from
Lemma 4.8 for order type τ13, but replacing the order types τ13 in the profile by order types τ112.

We now prove that s(τ112)1 ⩽ 1. For this, assume by contradiction that s(τ112)1 > 1. Take
q ∈ N such that q > 1/(s(τ112)− 1) and consider the profile P :

q + 2 :{a, b, c} ≻ {d} q :{d} ≻ {c} ≻ {a, b} 4 :{a} ≻ {d} ≻ {b} ≻ {c}
6 :{b, c, d} ≻ {a} 1 :{a, b} ≻ {c} ≻ {d}

Then, we can again use the same reasoning as in Lemma 4.8 but with τ112 instead of τ13 to obtain
a contradiction.

Finally, we prove that s(τ112)2 = 0. Assume that s(τ112)2 > 0. Take q ∈ N such that q >
1/(s(τ112)2) and consider the profile P :

q :{a} ≻ {b} ≻ {c, d} q :{a} ≻ {c} ≻ {b, d}
q :{a} ≻ {d} ≻ {c, b} 3q − 1 :{b, c, d} ≻ {a}

In this profile a is in the top indifference class of more than half of the vote, thus it should win the
election by respect for cohesive majorities. The scores are S(a) = 3q and S(b) = S(c) = S(d) =

3q − 1 + qs(τ112)2. By our hypothesis on q, a is eliminated first, which contradicts respect for
cohesive majorities. We conclude that s(τ112) = (1, 0, 0).

We now show that s(τ212) = (1, 0, 0).
We first prove that s(τ212)1 ⩾ 1. Assume that s(τ212)1 < 1. Take q ∈ N such that q >

1/(1− s(τ212)1) and consider the profile P :

q :{a, b} ≻ {d} ≻ {c, c′} 4 :{a} ≻ {c} ≻ {c′} ≻ {b} ≻ {d}
q + 3 :{d, c, c′} ≻ {a, b} 5 :{b} ≻ {c} ≻ {c′} ≻ {a} ≻ {d}

In this profile, the scores are S(b) > S(a) = qs(τ212)1 + 4, S(d) ⩾ S(c) = S(c′) = q + 3. Since
q > 1/(1 − s(τ212)1), a is eliminated first, then c′ and d are eliminated, and c wins the majority
vote against b. Note that c and c′ are clones in this profile, so c should also win in the profile P ′

in which we remove c′. In P ′, we have S(b) > S(a) = q + 4 and S(c) = S(d) = q + 3, so c and d

are eliminated first. This contradicts independence of clones. Therefore, s(τ212)1 ⩾ 1.
We now prove that s(τ212)1 ⩽ 1. Assume that s(τ212)1 > 1. Take q ∈ N such that q >
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1/(s(τ212)1 − 1) and consider the profile P :

q + 2 :{d} ≻ {c} ≻ {c′} ≻ {a} ≻ {b} q + 1 :{a} ≻ {c} ≻ {c′} ≻ {b} ≻ {d}
q + 2 :{b} ≻ {c} ≻ {c′} ≻ {a} ≻ {d} q :{c, c′} ≻ {d} ≻ {a, b}

In this profile, the scores are S(d) ⩾ S(b) > S(a) = q + 1 and S(c) = S(c′) = qs(τ212)1. Because
of the hypothesis on q, S(c) > S(a), so a is eliminated first. Then, c′, b and d are eliminated and
c is the winner. By independence of clones, c should also be the winner if we remove its clone c′.
However, in this case, because s(τ112) = (1, 0, 0), c is eliminated first with score S(c) = q. This
contradicts independence of clones. Therefore, s(τ212)1 = 1.

We finally prove that s(τ212)2 = 0. Assume that s(τ212)2 > 0. Take q ∈ N such that q >
1/(s(τ212)2) and consider the profile P :

q − 2 :{d} ≻ {a} ≻ {c} ≻ {c′} ≻ {b} q − 1 :{a} ≻ {c} ≻ {c′} ≻ {b} ≻ {d}
q :{b} ≻ {a} ≻ {c} ≻ {c′} ≻ {d} q :{c, c′} ≻ {d} ≻ {a, b}

In this profile, the scores are S(c) = S(c′) = S(b) = q, S(a) = q − 1, and S(d) = q − 2 + qs(τ212)2.
By our hypothesis on q, we have S(d) > S(a) and a is eliminated first. By independence of clones,
this implies that if we remove the clone c′ of c, a should not be the winner. However, in this new
profile P ′ without c′, the scores are S(c) = S(b) = q, S(a) = q − 1 and S(d) = q − 2, so d is
eliminated first. Then S(c) = S(b) = q and S(a) = 2q − 3, so c or b is eliminated next. In both
cases, a wins the majority vote, which contradicts independence of clones. We can conclude that
s(τ212) = (1, 0, 0).

We now focus on τ121 = (1, 2, 1). To see that s(τ121)1 ⩾ 1, we can use the proof from Lemma 4.8
for order type τ13, but replacing the order types τ13 in the profile by order types τ112.

Assume now that s(τ121)1 > 1. Let q ∈ N with q > 1/(s(τ121)1 − 1) and consider the profile P .

q + 1 :{d} ≻ {b} ≻ {a, a′} q :{b} ≻ {a, a′} ≻ {d}
q + 2 :{a, a′} ≻ {b} ≻ {d}

In this profile, the scores are S(a) = S(a′) > S(d) = q + 1 and S(b) = qs(τ121)1. By hypothesis
on q, we have S(b) > S(d), and d is eliminated first. Then a′ (or a) is eliminated and b wins the
majority vote against a (or a′). Note that a and a′ are clones in P , so b should also be a winner in
the profile P ′ without a′. In P ′, the scores are S(a) > S(d) = q+1 and S(b) = q, so b is eliminated
first. This contradicts independence of clones.

We now prove that s(τ121)2 = 0. Let q ∈ N with q > 1/s(τ121)2 and consider the following
profile P .

q :{a} ≻ {b, c} ≻ {d} q :{a} ≻ {b, d} ≻ {c} 2q − 1 :{c, d, b} ≻ {a}

In this profile, a is in the top indifference class of more than half of the voters, so it should be the sole
winner by respect for cohesive majorities. The scores are S(b) > S(d) = S(c) = 2q − 1 + qs(τ121)2
and S(a) = 2q. By hypothesis on q, a is eliminated first. This contradicts respect for cohesive
majorities and proves that s(τ121) = (1, 0, 0).

We now proceed to induction steps. First, we focus on dichotomous orders and show that for
all dichotomous orders τ = (k, k′), we have s(τ) = (1, 0).
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Lemma 4.11
Let f be a runoff scoring rule satisfying independence of clones and respect for cohesive majorities.
Then, s(τ) = (1, 0) for all dichotomous orders τ = (k, k′).

Proof. We prove it by induction on m = k + k′. We know this is true for τ21, τ12, τ13, τ31, and
τ22 (Lemmas 4.6 and 4.8), so this is true for m = 3 and m = 4. More generally, we know that
s(τ) = (1, 0, . . . , 0) for all order types τ on m ⩽ 4 candidates, and for τ212.

Assume by induction that it is true up to some m ⩾ 4. Let τ = (k, k′) with k+k′ = m+1 ⩾ 5.
This means that either k ⩾ 3 or k′ ⩾ 3.

Assume first that k ⩾ 3, we will show that s(τ)1 = 1. Assume for a contradiction that s(τ)1 < 1.
Take q ∈ N such that q > 1/(1− s(τ)1) and consider the profile P :

q :{c1, . . . , ck−2, a, a
′} ≻ {b1, . . . , bk′}

∀j ∈ [1, k′] q − 1 :{bj} ≻ {c1} ≻ · · · ≻ {a} ≻ {a′}
∀i ∈ [2, k − 2] 1 :{ci} ≻ {c1} ≻ · · · ≻ {a} ≻ {a′}

1 :{a} ≻ {a′} ≻ {c1} ≻ . . .
1 :{a′} ≻ {a} ≻ {c1} ≻ . . .

In this profile, the scores are S(a) = S(a′) = qs(τ)1 + 1, S(c1) = qs(τ)1, S(ci) = qs(τ)1 + 1 for
i ∈ [2, k − 2] and S(bj) = q − 1 for j ∈ [1, k′]. Since q > 1/(1− s(τ)1), we have q − 1 > qs(τ)1 and
c1 is eliminated first. Thus, c1 is not the winner. Note that in this profile, a and a′ are clones, so
in the profile P ′ without a′, c1 should not be a winner. In P ′, by induction hypothesis all order
types have scoring vector (1, 0, . . . , 0). Thus, the scores are S(a) = q + 1, S(c1) = q, S(ci) = q + 1

for i ∈ [2, k − 2] and S(bj) = q − 1 for j ∈ [1, k′]. Therefore, bj are successively eliminated. After
this, the score of c1 is S(c1) = q + (q − 1)k′ and the score of all other candidates is q + 1. Since
k′ > 0, they are successively eliminated and c1 is the winner. This contradicts independence of
clones.

Assume now for contradiction that s(τ)1 > 1. Take q ∈ N such that q > 1/(s(τ)1 − 1) and
consider the profile P described above, but with q + 1 of {bj} ≻ {c1} ≻ · · · ≻ {a} ≻ {a′} for
each j, instead of q − 1. In this profile, the scores are S(a) = S(a′) = qs(τ)1 + 1, S(c1) = qs(τ)1,
S(ci) = qs(τ)1 + 1 for i ∈ [2, k − 2] and S(bj) = q + 1 for j ∈ [1, k′]. Since q > 1/(s(τ)1 − 1),
S(c1) > S(bj) for all bj , and some bj is eliminated first. From this point, all scoring vectors are
(1, 0, . . . , 0) by induction hypothesis. The score of c1 is now S(c1) = 2q + 1 and the score of any
other candidate is q+1. As long as c1 is not eliminated, no candidate can have a score higher than
q+ 2, so c1 survives until the end, and is the winner of the election. By independence of clones, it
should also be the winner in P ′ in which we remove the clone a′ of a. In this profile, all scoring
vectors are (1, 0, . . . , 0) by induction hypothesis. The scores are S(c1) = q and q + 1 for all other
candidates. Thus, c1 is eliminated first, which contradicts independence of clones. This implies
that s(τ)1 = 1.
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If k ⩽ 2 but k′ ⩾ 3, we use a similar reasoning. Let q ∈ N, and consider the following profile P :

q :{c1, . . . , ck} ≻ {b1, . . . , bk′−2, a, a
′}

∀j ∈ [1, k′ − 2] 2q ± 1 :{bj} ≻ {c1} ≻ · · · ≻ {a} ≻ {a′}
if k = 2 q + 1 :{c2} ≻ {c1} ≻ · · · ≻ {a} ≻ {a′}

q :{c1} ≻ {a} ≻ {a′} ≻ . . .
2q + 2 :{a} ≻ {a′} ≻ {c1} ≻ . . .
2q + 2 :{a′} ≻ {a} ≻ {c1} ≻ . . .

If we assume s(τ)1 < 1, we take q > 1/(1−s(τ)1) and the profile in which each order ranking some
bj first appears 2q − 1 times. In this profile, the scores are S(c1) = q + qs(τ)1, S(bj) = 2q − 1 for
all j ∈ [1, k′ − 2], S(a) = S(a′) = 2q + 2 and if k = 2, S(c2) > S(c1). Because of hypothesis on q,
S(bj) > S(c1) for all bj and c1 will be eliminated first. In this profile, a and a′ are clones, so in
the profile P ′ in which we remove a′, c1 should not be a winner. In P ′, the scores are S(c1) = 2q,
S(a) = 2q+2, S(bj) = 2q−1 for all j ∈ [1, k′−2] and if k = 2, S(c2) = 2q+1. Thus, the candidates
bj are eliminated, then c2 if k = 2. At least two candidates are eliminated since m ⩾ 4, and at
least one of them is a bj since k′ ⩾ 3, so the score of c1 is now S(c1) ⩾ 2q+(q+1)+ (2q− 1) = 5q,
and the score of a is S(a) = 4q + 4. c1 is the winner, which contradicts independence of clones.

If we now assume that s(τ)1 > 1, we take q > 1/(s(τ)1 − 1) and the profile P in which each
order ranking some bj first appears 2q + 1 times. This time, some bj is eliminated first, giving
2q + 1 additional points to c1, and all the other candidates bj and c2 (if k = 2) are eliminated
successively, then a′ is eliminated, and the scores are S(a) = 4q+4 and S(c1) ⩾ 5q+1 for the same
reasons as above, thus c1 is the winner. However, if we remove the clone a′ of a, c1 is eliminated
first with the lowest score of S(c1) = 2q. This contradicts independence of clones. We conclude
that s(τ) = (1, 0) for all dichotomous order types τ .

We now proceed to the ultimate step. Note that for all remaining order types τ where k = |τ |
is the length of the order, one of the following is true: (1) τ(1) ⩾ 3, (2) τ(k) ⩾ 3, (3) there is some
j /∈ {1, k} such that τ(j) ⩾ 2 or (4) there is some j /∈ {1, k − 1} such that τ(j) = τ(j + 1) = 1.
Note that any order type of size k = |τ | ⩾ 4 satisfies either (3) or (4). Moreover, we already prove
the results for dichotomous order types (Lemma 4.11). The only order types of size k = 3 which
do not satisfy any of the above conditions are τ111, τ211, τ112 and τ212, and we already prove the
results for all of these (Lemmas 4.9 and 4.10). Moreover, we also proved the result for τ121 and
thus for all order types on m ⩽ 4 candidates.

We prove the result for the remaining order types by induction on the number of candidates
m. Let us assume that the result is true up to some m ⩾ 4, let us prove it is true for m+1. Let τ
be an order type for m+1 candidates. We will use a similar idea as in the previous steps to prove
that s(τ) = (1, 0, . . . , 0). Let q ∈ N and P be the profile on C = {a, a′, b, d, c1, . . . cm−3} containing
the following orders:

• q orders of the type τ . We have b in the top indifference class (b ∈ C1) and d in the last
indifference class (d ∈ Ck). a and a′ are in a position to be clones, which is possible because
τ satisfies one of the 4 conditions detailed above. We either put them both in indifference
class j ∈ [1, k] (if τ satisfies one of the first three conditions) or we put a alone in indifference
class j /∈ {1, k− 1} and a′ alone in indifference class j+1 (if τ satisfies the fourth condition).
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• q linear orders {b} ≻ {d} ≻ · · · ≻ {a} ≻ {a′}.

• 2q ± 1 linear orders {d} ≻ {b} ≻ · · · ≻ {a} ≻ {a′}.

• For all cj that are in the top indifference class of orders of type τ , q + 2 linear orders
{cj} ≻ {b} ≻ · · · ≻ {a} ≻ {a′}.

• For all cj that are not in the top indifference class of the orders of type τ , 2q+2 linear orders
{cj} ≻ {b} ≻ · · · ≻ {a} ≻ {a′}.

• If a and a′ are in the top indifference class of the orders of type τ , 2 linear orders {a} ≻
{a′} ≻ {b} ≻ . . . , otherwise 2q + 2 such linear orders.

• If a and a′ are in the top indifference class of the orders of type τ , 2 linear orders {a′} ≻
{a} ≻ {b} ≻ . . . , otherwise 2q + 2 such linear orders.

We assume first that s(τ)1 > 1. Then, we take the profile P with 2q + 1 orders {d} ≻ {b} ≻
· · · ≻ {a} ≻ {a′}. Moreover, we take q > 1/(s(τ)1 − 1). The scores are S(a) ⩾ S(a′) ⩾ 2q + 2,
S(b) = q + qs(τ)1, S(d) = 2q + 1 and for all cj , S(cj) ⩾ 2q + 2. Because of hypothesis on q,
S(b) > S(d). Moreover, S(a) > S(d) and S(cj) > S(d) for all j ∈ [1,m− 3]. Thus, d is eliminated
first. From this point all order types have scoring vector (1, 0, . . . , 0) by induction hypothesis. The
new score of b is S(b) = 4q+1. As long as b is not eliminated, the score of any other candidate is at
most 2q+2, except for a which get a score 4q+4 once its clone a′ is eliminated. In the end, only a
and b remain, with S(b) ⩾ q+ q+2q+1+(m−3)(q+2) ⩾ 5q+3 (since m ⩾ 4) and S(a) = 4q+4.
Thus, b wins the majority vote. By independence of clones, b should also win in the profile P ′

without the clone a′ of a. By induction hypothesis, all orders have scoring vector (1, 0, . . . , 0) in
this profile. The scores are S(b) = 2q, S(d) = 2q + 1, S(cj) = 2q + 2 for all j ∈ [1,m − 3] and
S(a) = 4q + 4. Thus, b is eliminated first, which contradicts independence of clones.

We now assume that s(τ)1 < 1. Then, we take the profile P with 2q − 1 orders {d} ≻
{b} ≻ · · · ≻ {a} ≻ {a′}. Moreover, we take q > 1/(1 − s(τ)1). In this profile, the scores are
S(a) ⩾ S(a′) ⩾ 2q+2, S(b) = qs(τ)1+q, S(d) = 2q−1 and S(ci) ⩾ qs(τ)1+q+2 > S(b). Because
of hypothesis on q, we have that S(d) > S(b). Thus, b is eliminated first. By independence of
clones, this implies that in the profile P ′ without the clone a′ of a, b should not be a winner. By
induction hypothesis, all orders have scoring vector (1, 0, . . . , 0) in this profile, and thus the first
candidate eliminated is d with score S(d) = 2q− 1. The score of b is then S(b) = 4q− 1, the score
of a is S(a) = 4q+4 and all other candidates have score at most 2q+2 until b is eliminated. Thus,
the cj are successively eliminated until only a and b remain. The scores are S(a) = 4q + 4 and
S(b) ⩾ q + q + (2q − 1) + (m− 3)(q + 2) ⩾ 5q + 1 (since m ⩾ 4). b wins the majority vote, which
contradicts independence of clones. Therefore s(τ)1 = 1.

We finally show that s(τ)2 = 0. Assume that s(τ)2 > 0. Let q > 1/s(τ)2. If τ(1) = 1, consider
the profile P with C = {a, c1, . . . , cm} containing:

• For each i ∈ [1,m], q orders of the type τ with C1 = {a} as the top indifference class and
C2 = {ci, . . . , ci+τ(2)−1} as the second indifference class (subscripts should be considered
modulo m).

• mq − 1 dichotomous orders {c1, . . . , cm} ≻ {a}.

In this profile, a appears at the top of more than half of the votes, so by respect for cohesive
majorities it should be the sole winner. The scores are S(a) = mq and S(ci) ⩾ mq−1+qs(τ)2 > mq

by hypothesis on q. Thus, a is eliminated first, which contradicts respect for cohesive majorities.
Now, if τ(1) ⩾ 2, consider the following profile P on C = {a, a′, d, b, c1, . . . , cm−3}:
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• q orders of type τ with a and a′ in the top indifference class C1, b in the second indifference
class C2 and d in the last indifference class Ck (which is not the second one because τ is not
dichotomous).

• q − 2 linear orders {b} ≻ {d} ≻ {a} ≻ {a′} ≻ . . .

• q − 1 linear orders {d} ≻ {b} ≻ {a} ≻ {a′} ≻ . . .

• For all ci that are not in the top indifference class C1 of the orders with type τ , q linear order
{ci} ≻ {d} ≻ {b} ≻ {a} ≻ {a′} ≻ . . .

In this profile, the scores are S(a) = S(a′) = q, S(b) = q − 2 + qs(τ)2, S(d) = q − 1 and S(ci) ⩾ q

for i ∈ [1,m− 3]. By our hypothesis on q, S(b) > S(d) and d is eliminated first. By our induction
hypothesis, all scoring vectors are now (1, 0, . . . , 0). The score of b is now S(b) = 2q − 3 and the
score of any other candidate is at most q until b is eliminated. Thus, all candidates are successively
eliminated until only b remains and wins. By independence of clones, b should also win in the
profile P ′ in which we remove the clone a′ of a. In this profile, b has the lowest score S(b) = q− 2,
so it is eliminated first, which contradicts independence of clones. Therefore, s(τ)2 = 0.

We proved that s(τ)1 = 1 and s(τ)2 = 0, and by definition s(τ)1 ⩾ s(τ)2 ⩾ s(τ)3 ⩾ . . . ⩾

s(τ)k ⩾ 0, so s(τ) = (1, 0, . . . , 0). The induction concludes that for all order types τ , we have
s(τ) = (1, 0, . . . , 0), which means that f is Approval-IRV.

Each step of the proof depends on constructing families of profiles that witness violations of
one of the two axioms in the characterization. We found it helpful to use linear programs to obtain
such counterexample profiles for particular non-approval scoring systems, and then generalize these
examples. To do this, we guess (by iterating) the elimination order of the profile (for independence
of clones, of the two profiles) that might lead to a violation of an axiom, and then build an LP
that has a continuous variable for each possible weak order, indicating the fraction of the profile(s)
made up by voters with that weak order. Since the scoring system and the elimination order are
fixed, we can encode the behavior of the runoff scoring rule as linear constraints.

Note that the axioms in the characterization are independent. A runoff scoring rule that
respects cohesive majorities but fails independence of clones is the one that is like Approval-IRV
except that s(τ21) = (1/2, 0) (i.e., it flips to Split-IRV when it gets down to m = 3).4 A runoff
scoring rule that satisfies independence of clones but fails to respect cohesive majorities is the one
that is like Approval-IRV, but with scoring vector s(τ) = (1/2, 0, . . . , 0) for order types τ such that
τ(1) ⩾ 2 or such that |τ | = 2. Note that this rule also generalizes IRV on linear orders and approval
voting on dichotomous orders, as Approval-IRV. To see why this rule might satisfy independence
of clones, observe that adding a clone does not change the scores of the candidates, except when
the candidate that is cloned was alone in the top indifference class. In that case, this candidate or
its clone might get eliminated earlier, without changing the relative elimination order of the other
candidates. We leave for future work the question of whether there exists a natural rule satisfying
both axioms (but not being a runoff scoring rule).

IRV with monotonicity

Our second characterization of Approval-IRV has a somewhat different flavor: we are going to show
that it is the unique monotonic way to extend IRV to weak orders. To make this claim precise, we
need to be careful since IRV fails most monotonicity properties (which is in fact true for all runoff

4For this rule, the proof of Proposition 4.3 can be adapted by adding a special case when m = 3.



144 CHAPTER 4. INSTANT RUNOFF VOTING WITH INDIFFERENCES: APPROVAL-IRV

1
a

c

b

3
a

b

c

4
b

c

a

5
c

a

b

1
a c

b

3
a

b

c

4
b

c

a

5
c

a

b

Figure 4.12: Split-IRV violates indifference monotonicity because c wins in the first profile but b
is the sole winner in the second profile in which we applied a c-hover.

scoring rules, as shown by Smith (1973)). However, we identify a natural notion of “indifference
monotonicity” that is satisfied by Approval-IRV.

Indifference Monotonicity
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Figure 4.11: Indifference mono-
tonicity: if c is the winner and
a voter makes this change, then
c stays winning.

Suppose c ∈ f(P ) is a winner given some profile P . Mono-
tonicity requires that if we change the profile P to make c look
stronger, then c should still be the winner (see Section 2.4.5).
However, if we swap c with a candidate d above it (thereby mak-
ing c stronger), then under a runoff scoring rule we might now
have caused an earlier elimination of d which might ultimately
lead to c losing. In a sense, the reason for the failure is that not
only did we make c stronger, but we also made d weaker. Our
notion of indifference monotonicity considers a very restricted class of changes that make c stronger
without negatively affecting any other candidate. Formally, we say that a c-hover is the following
transformation from one weak order to another:

C1 ≻ · · · ≻ Cj ≻ {c} ≻ Cj+2 ≻ · · · ≻ Ck

7−→ C1 ≻ · · · ≻ Cj ∪ {c} ≻ Cj+2 ≻ · · · ≻ Ck

A c-hover starts from a weak order in which c is in a singleton indifference class, and ends in the
weak order where c has joined the indifference class just above it (see Figure 4.11). Note that a
c-hover cannot be applied to a weak order where c is indifferent with another candidate.

Our indifference monotonicity axiom applies only to changes corresponding to c-hovers.

Indifference monotonicity
A voting rule f is indifference monotonic if for every profile P and every c ∈ f(P ), whenever P̂
is obtained from P by applying c-hovers to some votes in P , we have c ∈ f(P̂ ).

Figure 4.12 shows an example in which Split-IRV fails indifference monotonicity. In the first
profile P , the scores are 4 for a and b and 5 for c. Thus, b can be eliminated, and c wins the
majority vote against a. If we apply a c-hover on the first voter, we get the second profile P̂ .
In this profile, the scores are 5.5 for c, 4 for b and 3.5 for a. Thus, a is eliminated first and b

wins the majority vote against c. This contradicts indifference monotonicity. We now show that
Approval-IRV satisfies indifference monotonicity.

Proposition 4.12
Approval-IRV is indifference monotonic, but Split-IRV is not.

Proof. Let f be Approval-IRV, let w ∈ f(P ), and let P̂ be obtained from P by applying some
w-hovers. Suppose that in P , Approval-IRV eliminates candidates in the order c1, . . . , cm−1, w.
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We will show that this is also a valid elimination order in P̂ , which implies that w ∈ f(P̂ ), as
required.

Suppose for a contradiction that this was not the case, and let round 1 ⩽ t ⩽ m− 1 be the first
time when in P̂ , Approval-IRV cannot eliminate candidate ct (which can be eliminated in round t
under P ). Let us compare the scores of candidates at this point in P and P̂ after the elimination
of candidates c1, . . . , ct−1. Note that, by definition of w-hover, every voter has the same current
top indifference class under P and P̂ , except that some voters may additionally have w in their
top indifference class under P̂ .

Thus, all candidates have the same scores under P and P̂ , except that w may have a higher
score under P̂ . But under P , the score of ct was lowest (and thus weakly lower than the score of
w), and so the same is true in P̂ , contradicting our assumption that ct could not be eliminated at
this time by Approval-IRV.

Characterization

We now characterize Approval-IRV using indifference monotonicity. This time, we do not charac-
terize it among all runoff scoring rules, but among the ones that generalize IRV. To this aim, we
define the following axiom.

Consistency with IRV
We say that a voting rule f is consistent with IRV if for every profile P of linear orders, f(P ) is
the set of IRV winners.

We can now state our second characterization of Approval-IRV.

Theorem 4.13
Approval-IRV is the unique runoff scoring rule that is consistent with IRV on profiles of linear
orders and that satisfies indifference monotonicity.

Consistency with IRV implies that linear orders must have score vector (1, 0, . . . , 0). Observe
that any order type τ can be obtained from a linear order by successively applying candidate-
hovers, for example τ111111 → τ21111 → τ3111 → τ312. Using indifference monotonicity, this allows
us to inductively deduce that every order type has score vector (1, 0, . . . , 0) by constructing coun-
terexample profiles ruling out all other score vectors. The formal proof is provided below.

Proof. Proposition 4.12 already shows that this rule satisfies indifference monotonicity. The con-
sistency with IRV is clear. Let us now show that no other runoff scoring rule satisfies these two
axioms. For this, we prove that for all order types τ = (τ(1), . . . , τ(k)), the associated scoring
vector is s(τ) = (1, 0, . . . , 0).

First, we use consistency with IRV to show that it is the case for all linear orders. Because
there is only one possible linear order type τ = (1, . . . , 1) for each number of candidates m, we
define s(m) = s(τ) for |τ | = m. We know that s(m)1 > 0 otherwise s(m) = (0, 0, . . . , 0, 0) and
a is not the only winner in the profile with one ranking in which a is ranked first. Thus, we can
assume without loss of generality that for all m, s(m)1 = 1 (as there is only one linear order type
for each number of candidates). We now prove that for all m, s(m)2 = 0.

We prove it by induction on m. It is clearly true for m = 2 as τ = (1, 1) so s(2) = (1, 0).
Assume it is true for m ⩾ 2, we prove it for m+ 1.

Assume for contradiction that s(m + 1)2 > 0. Let q ∈ N with q > 1/s(m + 1)2 and consider
the profile P on C = {a, c1, . . . , cm}:
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• For each i ∈ [1,m], q linear orders {ci} ≻ {a} ≻ {ci+1} ≻ · · · ≻ {ci+m−1}, where the index
of the ci have to be taken modulo m.

• q − 1 linear orders {a} ≻ {c1} ≻ · · · ≻ {cm}.

In this profile, observe that each ci appears at least q times last in a linear order (in the ones in which
ci+1 is ranked first). With IRV, a is eliminated in the first round, as it has score S(a) = q−1 while all
other candidates have score s(ci) = q. However, here the scores are S(a) = (q−1)+mqs(m+1)2, and
S(ci) ⩽ q+(m−1)qs(m+1)2+q·0. We only upper bound because we know that s(m+1)i ⩽ s(m+1)2
for all i ⩾ 3. However, because we assumed q > 1/s(m + 1)2, we have S(a) > S(ci) for all ci.
Thus, one ci is eliminated, assume c1 without loss of generality. By induction hypothesis, all
scoring vectors are of the form (1, 0, . . . , 0) from this point. The new score of a is S(a) = 2q − 1

and the score of all other candidates is upper bounded by q until a is eliminated. Therefore, a is
never eliminated, and wins the election, a contradiction. This shows that s(m + 1)2 = 0. Since
s(m+1)i ⩽ s(m+1)2 for all i ⩾ 3, then the scoring vector of the linear order on m+1 candidates
is s(m+ 1) = (1, 0, . . . , 0).

We can now show that this is true for all order types. The proof is done by induction on the
number of candidates m. It is clearly true for m = 2 as the only possible order is linear. Assume
that it is true up to m− 1 and let us show it for m ⩾ 3.

To show it is the case for all order types on some number of candidates m ⩾ 3, we will do
another induction, this time on the number of candidates that are not alone in their indifference
class (i.e., on p =

∑
i:τ(i)>1 τ(i)). If p = 0, this means that the order is linear, so we already know

that its scoring vector is (1, 0, . . . , 0). It is not possible to have p = 1, as if there is one candidate
that is not alone in their indifference class, there is at least another one. Assume it is true up to
some p ⩾ 1, and let us prove this is also true for p+ 1.

Assume by contradiction that there is an order type τ = (τ(1), . . . , τ(k)) with
∑

i:τ(i)>1 τ(i) =

p+ 1 but the scoring vector is such that s(τ)1 ̸= 1 or s(τ)2 > 0. Let j be the minimal index such
that τ(j) > 1. Define the order type τ ′ = (τ(1), . . . , τ(j) − 1, 1, τ(j + 1), . . . , τ(k)). Equivalently,
we have τ ′(i) = τ(i) if i < j, τ ′(j) = τ(j)− 1, τ ′(j + 1) = 1 and τ ′(i) = τ(i− 1) for i > j + 1. We
have

∑
i:τ ′(i)>1 τ

′(i) ⩽
∑

i:τ(i)>1 τ(i)− 1 ⩽ p, so by induction on p its associated scoring vector is
s(τ ′) = (1, 0, . . . , 0).

Let us assume first that s(τ)1 < 1. Take q ∈ N such that q > 3/(1 − s(τ)1), and consider the
following profile P ′ with candidate set C = {a, b, d, c1, . . . , cm−3}.

• q orders with order type τ ′ such that a ∈ Cj+1 (alone in its indifference class), b ∈ C1, and
d /∈ C1 (this is possible since τ has at least two indifference classes, so τ ′ has at least three).

• q + 2 linear orders {b} ≻ {d} ≻ {a} ≻ . . . .

• 2q linear orders {a} ≻ {d} ≻ . . . .

• 2q − 1 linear orders {d} ≻ {a} ≻ . . . .

• For all j ∈ [1,m− 3], 2q linear orders {cj} ≻ {d} ≻ {a} ≻ . . . .

Since τ ′ satisfies the inductive hypothesis on p and the other orders are linear orders, all order
types in this profile are associated with scoring vectors of the form (1, 0, . . . , 0). Then, the score of
every cj is S(cj) ⩾ 2q. The score of a is S(a) = 2q, the score of b is S(b) = 2q+ 2 and the score of
d is S(d) = 2q − 1. Therefore, d is eliminated first. By induction on m, for all the following steps
all scoring vectors are also of the form (1, 0, . . . , 0). Thus, the new score of a is S(a) = 4q − 1, the
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one of b is S(b) = 2q+2 and the score of all other candidates is S(ci) ⩽ 3q. After each elimination,
the score of a increases and the one of all other candidates is always upper bounded by 3q as long
as a is not eliminated. Thus, a is the winner of this election.

Now, consider the profile P in which we applied a-hover transformation to every order of type
τ ′, and thus obtained orders of type τ (by merging a with the indifference class above it). By
indifference monotonicity, a is still a winner in P . In P , the score of b is S(b) = q+2+ qs(τ)1, the
score of d is S(d) ⩾ 2q − 1, the score of a is S(a) ⩾ 2q and the score of all other candidates cj is
S(cj) ⩾ 2q. Because q > 3/(1− s(τ)1), we have S(d) > S(b), so b is eliminated first. Therefore, d
get ranked first in q+2 additional orders. By induction on m, for all the following steps all scoring
vectors are of the form (1, 0, . . . , 0). The new score of d is S(d) ⩾ 3q + 1, while the score of all
other candidates is at most 3q as long as d is not eliminated. Thus, d is the sole winner instead of
a. This shows by contradiction that s(τ)1 ⩾ 1.

Assume now that s(τ)1 > 1. Take q ∈ N such that q > (2s(τ)1− 1)/(s(τ)1− 1) > 1/(s(τ)1− 1)

and denote by P ′ the following profile.

• q − 2 orders with order type τ ′ with a ∈ Cj+1 (alone in its indifference class), b ∈ C1 and d

at the bottom of the order: If j < k, then d ∈ Ck+1 and if j = k, d ∈ Ck (in the second case,
Ck+1 = {a}).

• q linear orders {b} ≻ {a} ≻ {d} ≻ . . . .

• 2q linear orders {a} ≻ {b} ≻ . . . .

• 2q − 1 linear orders {d} ≻ {b} ≻ {a} > . . . .

• For all j ∈ [1,m− 3], 2q linear rankings {cj} ≻ {b} ≻ {a} ≻ . . . .

In this profile, all scoring vectors are (1, 0, . . . , 0). The score of a is S(a) = 2q, the score of b
is S(b) = 2q − 2, the score of d is S(d) = 2q − 1 and the score of all ci is S(ci) ⩾ 2q. Thus, b
is eliminated first. Now, by induction on m all scoring vectors are (1, 0, . . . , 0). The score of a is
S(a) ⩾ 3q, the score of d is S(d) ⩽ 3q − 3 and the score of all other cj is S(ci) ⩽ 3q. Moreover,
since d is in the last possible position in the first q − 2 orders (originally with order type τ ′), the
score of d is necessarily smaller than the one of all cj . Thus, d is eliminated next, and the score of
a is now at least S(a) ⩾ 5q − 1. The score of all other candidates cj is upper bounded 3q as long
as a is not eliminated. The candidates cj get successively eliminated and a is the winner.

Consider the profile P obtained from P ′ by applying a-hover transformations to all orders
with type τ ′ (thus giving an order with order type τ). By indifference monotonicity, a is also
a winner in this profile. Note that in the rankings with order type τ , d is always in the last
indifference class, therefore getting score 0 from the voters with this order type. In P , the score
of b is S(b) = (q − 2)s(τ)1 + q, the score of d is S(d) = 2q − 1, the score of a is S(a) ⩾ 2q and the
score of all other candidates cj is S(cj) ⩾ 2q. Since (2s(τ)1 − 1)/(s(τ)1 − 1), S(b) > S(d), thus
d is eliminated first. By induction on m, we can now assume that all order types are associated
with scoring vector (1, 0, . . . , 0). Therefore, b has score S(b) = 4q − 3, and a and all cj all have
score upper bounded by 3q − 2 as long as b is not eliminated. Moreover, the elimination of a or
any cj increases the score of b. Therefore, b wins instead of a in P . This shows by contradiction
that s(τ)1 = 1.

We now show that s(τ)2 = 0. Assume by contradiction that s(τ)2 > 0. Take q ∈ N such that
q > 1/s(τ)2 + 2 and consider the following profile P ′.
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• q − 2 orders with type τ ′ with a ∈ Cj+1 (alone in its indifference class), b ∈ C1 and d in the
second indifference class (a excluded): If j ̸= 1, then d ∈ C2 and otherwise d ∈ C3 (because
C2 = {a}).

• q + 1 linear orders {b} ≻ {d} ≻ {a} ≻ . . .

• 2q linear orders {a} ≻ {d} ≻ . . .

• 2q − 2 linear orders {d} ≻ {a} ≻ . . .

• For all j ∈ [1,m− 3], 2q linear orders {cj} ≻ {d} ≻ {a} ≻ . . . .

In this profile, all order types are associated with scoring vectors of the form (1, 0, . . . , 0). The
score of a is S(a) = 2q, the score of b is S(b) = 2q − 1, the score of d is S(d) = 2q − 2 and the
score of all cj is S(cj) = 2q. Thus, d is eliminated first. By induction on m, all order types are
now associated with scoring vectors of the form (1, 0, . . . , 0). The score of a is now S(a) = 4q − 2,
the score of b is S(b) = 2q − 1, and all other candidates have score lower than 3q − 2, but greater
than 2q. b is eliminated next, then the candidates cj . After each elimination (of b or some cj), the
score of a increases, and the score of all other candidates remains bounded by 3q − 2 as long as a
is not eliminated. Therefore, a is the winner in P ′.

If we apply a-hover transformations (by moving a in the indifference class above) for all orders
with type τ ′, we obtain orders with type τ , and a new profile P . By indifference monotonicity, a
should be a winner in P . Observe that d is always in the second indifference class in orders with
order type τ . In P , the score of b is S(b) = 2q − 1, the score of d is S(d) = (q − 2)s(τ)2 + 2q − 2,
the score of a is S(a) ⩾ 2q and the score of other candidates cj is S(cj) ⩾ 2q. Thus, since
q > 1/s(τ)2 +2, S(d) > S(b) and b is eliminated first. Now, by induction on m, all order types are
associated with scoring vectors of the form (1, 0, . . . , 0). The score of d is S(d) ⩾ 3q− 1. The score
of all other candidates (including a) is upper bounded by 3q − 2 as long as d is not eliminated.
Therefore, a and the candidates cj will be successively eliminated and there eliminations can only
make the score of d increase, as the other scores will still be upper bounded by 3q − 2. d wins the
election in P , which contradicts indifference monotonicity. This proves that s(τ)2 = 0.

Since by definition of scoring vectors we have s(τ)2 ⩾ s(τ)j for all j ⩾ 2, this implies that the
order type τ is associated to the scoring vector s(τ) = (1, 0, . . . , 0). Induction on p concludes that
this is true for all order types on m candidates. Induction on m concludes that it is true for all
order types.

The properties of this characterization result are logically independent. Split-IRV is a runoff
scoring rule that is consistent with IRV but fails indifference monotonicity. A runoff scoring
rule that satisfies indifference monotonicity but is not consistent with IRV can be constructed by
extending the Baldwin rule (defined in Example 2.2). For this, take the runoff scoring rule that
associates to each order type τ the Borda-style scoring vector

s(τ) = (m− 1,m− 1− τ(1),m− 1− τ(1)− τ(2), . . . ,m− 1−
k−1∑
i=1

τ(i)).

One can use the same proof as in Proposition 4.12 to show that this rule is indifference monotonic.
Finally, there are rules that satisfy both properties of the characterization but that are not runoff
scoring rules, such as the rule that returns the result of IRV on profiles of linear orders, and the
whole set of candidates C when the profile is not linear.
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Approval-IRV Split-IRV

Independence of Clones 1

Respect of Cohesive Majorities 1

Consistency with IRV 2

Indifference Monotonicity 2

Table 4.2: Summary of the axiomatic properties of the rules Approval-IRV and Split-IRV. The
superscripts 1 and 2 indicate the characterization results.

Summary of the Results

Table 4.2 summarizes the results from the axiomatic analysis. We showed that Approval-IRV can
be characterized among runoff scoring rules in two ways: as the only rule that satisfies the natural
generalization of the main axioms satisfied by IRV in the ranking setting, namely independence of
clones and respect of cohesive majorities, and as the only rule that generalizes IRV and satisfies
indifference monotonicity. Split-IRV, in contrast, fails these three axioms.

4.4 Experimental Analysis

Let us now experimentally compare the generalizations of IRV to weak orders using synthetic and
real data. We first present the datasets we used, and then detail our experimental results.

Datasets

We tested our rules on a variety of datasets, including synthetic data and real data. In both cases,
we used this data to sample profiles of linear orders (rankings). In a second step, we introduced
indifferences in these orders to obtain weak orders.

We used three types of models for synthetic datasets. First, we used the impartial culture
model (rankings are drawn i.i.d. among all possible rankings). Second, we used a mixture of k = 4

Mallows with ϕ = 0.5 (as a reminder, in a Mallows model, rankings tend to be similar to one
“central” ranking). Third, we used d-dimensional Euclidean models for d ∈ {1, 2}, where voters
and candidates are associated to ideal positions in a metric space and preferences are based on the
distances between the voters and the candidates. We sampled their positions uniformly at random
in [0, 1]d. We refer to Section 2.5.1 for a more detailed description of these models.

We also used datasets of real preferences. First, we used the 2017 and 2022 online datasets of the
Voter Autrement project, collected during French presidential elections, and in which participants
could vote using truncated rankings (Bouveret et al., 2018; Delemazure and Bouveret, 2024). We
refer to Section 2.5.4 for more details on Voter Autrement. Second, we used datasets of elections
held in Dublin, Ireland, in 2002, and for which the IRV method with truncated ballots was used.
These datasets are available on PrefLib (Mattei and Walsh, 2013).

In both cases, voters were allowed to only give truncated rankings, for instance by giving
only their top-4 candidates, and implicitly reporting indifference between all the others. In our
experiments, we only kept the voters who gave full rankings. We also assigned weights to voters
in the Voter Autrement datasets to reduce selection bias (see Section 2.5.4) Table 4.3 gives the
resulting number of voters n and candidates m for each election.

In our experiments, we randomly sample rankings from these datasets, with replacement (based
on voters’ weights if they exist, otherwise uniformly at random).
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France 2017 France 2022 Dublin Meath Dublin West

n 5 126 404 3 165 4 810
m 11 12 14 9

Table 4.3: Number of voters n and candidates m for dataset of real preferences.

Introducing Indifferences

All these datasets concern profiles of rankings, so we need a method to turn them into weak orders.
We used two such methods.

i

a

b

c

d

e

r r

Figure 4.13: A voter i ∈
V with {a, b} ≻i {c, d} ≻i

{e}.

The “coin-flip” method with parameter p ∈ [0, 1] works as follows:
in a ranking ≻, for each pair of consecutively ranked candidates a
and b, we add a tie between them (and thus put them in the same
indifference class) with probability p. For example, for the linear order
a ≻ b ≻ c ≻ d we flip 3 independent coins, one for each occurrence
of the “≻” symbol, and replace a strict preference by an indifference
when the coin comes up heads (which happens with probability p).
If the coins come up tails, heads, tails, the resulting weak order is
{a} ≻ {b, c} ≻ {d}.

The “radius” method is specific to Euclidean models, in which
voters i ∈ V and candidates c ∈ C are placed in random locations p(i), p(c) ∈ [0, 1]d in the
Euclidean space. The method is parameterized by a radius r ⩾ 0, which from the perspective of
voter i ∈ V divides the candidates into sets Cj = {(j − 1)r ⩽ ∥p(i)− p(c)∥ < jr}. This produces
the weak order C1 ≻i C2 ≻i · · · ≻i Ck for voter i. Figure 4.13 illustrates this model with an
example.

Results

To compare Split-IRV and Approval-IRV, we randomly sampled 10 000 instances from each of our
datasets for each value of the parameters p and r. For the coin-flip method, we tested values of
p between 0 (introducing no indifferences) and 0.9; we exclude p = 1 since this leads to complete
indifference. For the radius method, we tested values of r between 0 (no indifferences) and 0.5.
Each instance has n = 500 voters and m = 10 candidates, except for real data where we keep the
original number of candidates m (between 9 and 14, see Table 4.3).

Similarities with Ranking-based Rules

First, we looked at the frequency of agreement between the two rules on our datasets. In Fig-
ure 4.14, we computed the proportion of profiles in which Approval-IRV and Split-IRV return the
same candidate. This proportion is the highest when the parameter of the indifference model p or
r is small (as profiles are almost linear), or large. The rules are the most different for intermediate
values of p or r, when profiles are not linear, but also not full of indifferences. Finally, the rules
agree more frequently on the Dublin dataset as well as for the Impartial culture and the Mallows
model. They disagree the most in the Euclidean model.

Then, we looked at the properties of the winners selected by the two rules, and how they could
be related to winners of classical voting rules on profiles of rankings. In particular, we computed
the Borda scores of the winners, and checked whether they were the Condorcet winner or the IRV
winner in the original linear order profile (before introducing indifferences).
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Figure 4.14: Frequency of agreement between Approval-IRV and Split-IRV on our datasets.
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Figure 4.15: Frequency of agreement between the rules and linear-order IRV on our datasets.

In Figure 4.15, we show the proportion of profiles in which Approval-IRV and Split-IRV return
the candidate who is the IRV winner in the corresponding profile of rankings. This value decreases
when the parameter p or r of the indifference model increases. This is expected: by creating more
indifferences, we are going further away from the original linear order profile. In particular, when
p = 0 or r = 0, the frequency of agreement with IRV is obviously 1. For all of the datasets
we studied, and for all values of the parameters p and r, Split-IRV agrees more frequently than
Approval-IRV with linear-order IRV. Intuitively, this can be related to the alternative definition of
Split-IRV that we described in the introduction, which says that we first replace all weak orders in
the profile by all the possible linear orders that are compatible with these weak orders, and then
run the IRV rule on this profile of linear orders.

In Figure 4.16, we compute the proportion of profiles in which each rule selects the Condorcet
winner of the corresponding linear-order profile (before indifferences are introduced). The figure
also shows the proportion of profiles in which a Condorcet winner exists. The evolution of this
frequency of selecting the Condorcet winner for each rule heavily depends on the dataset: in some
it decreases (e.g. the Dublin datasets), in some it increases (e.g. the Euclidean datasets with the
coin-flip model for indifferences), and in others it is unclear (e.g. the Euclidean datasets with the
radius model for indifferences, or the 2017 French election). However, for all of the datasets, the
frequency of Condorcet winners is consistently higher for Approval-IRV than for Split-IRV.

In Figure 4.17, we compute the average Borda score of the winner where the Borda score is
computed with respect to the original profile of linear orders. Here, we normalized the Borda
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Figure 4.16: Frequency of finding the Condorcet winner, and frequency of such candidate existing
on our datasets.
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Figure 4.17: Average Borda score of the winner (normalized by dividing by the number of voters
n) on our datasets.

score by dividing by the number of voters n in the profile. (Thus, what is actually shown is the
average number of Borda points given by the voters). While one might expect that introducing
more indifferences (higher p or r) would lead our rules to select less interesting candidates, and
thus candidates with lower Borda score, in fact the opposite is the case. In almost all datasets, the
Borda score of the candidate selected by linear-order IRV in the original profile (p = 0 or r = 0) is
lower on average than the Borda score of the candidate selected by Approval-IRV and Split-IRV
(The main exception is impartial culture, for which the Borda score of the winner is going down
when p increases). We believe that the reason for this is that linear-order IRV depends mostly on
plurality scores, whereas the weak orders allow the rules to identify candidates that are frequently
ranked in high positions, but not necessarily first. Figure 4.17 also shows that if the difference
between Approval-IRV and Split-IRV is very small, the candidate selected by Approval-IRV has
on average higher Borda score than the one selected by Split-IRV, consistently across datasets.

We checked the robustness of this observation on various distributions over profiles of rankings,
using the map of elections framework (Boehmer et al., 2022b, Figure 1(a), 10×50 isomorphic
swap). Figure 4.18 shows a dot for each profile of the map, which is colored according to the
difference in Borda score between the winner of Approval-IRV and Split-IRV, where we used the
coin-flip method to transform the linear-order profile into a weak order one. For each dot, we
averaged over random weak order profiles sampled with the coin-flip method for each value of
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p ∈ {0.1, 0.2, . . . , 0.9} (giving 450 profiles per dot). In order to highlight the differences, we set the
color scale to range from −100 to 100, though some datasets have a difference higher than 2 000.

Figure 4.18: Map of elections, showing
the difference in Borda score between the
Approval-IRV and Split-IRV winners in the
coin-flip model, with blue dots indicating that
Approval-IRV selected on average a winner
with higher Borda score.

We observe that the Borda score of the
Approval-IRV winner is generally higher than that
of the Split-IRV winner (blue dots), especially for
structured preferences like single-peaked ones. For
profiles close to those drawn from impartial culture,
the difference is less pronounced (similar to what
we see in Figure 4.17), and some datasets show a
small advantage for Split-IRV. Profiles with little
difference between voters (those close to ID) show
almost no difference between the two rules, as there
is often a clear winner that both rules select.

Note that the frequency of agreement with IRV
is not particularly a measure that a rule is well-
behaved: when we are adding indifferences to the
profile, this changes the preferences of the voters.
In other words, this does not mean that we lost in-
formation. We might actually gain more informa-
tion, since some preferences can only be expressed
using indifferences. Since we changed the prefer-
ences of the voters, it is not surprising to obtain a different result. Similarly, the Borda score and
the frequency of Condorcet winners are not measures that a rule is well-behaved either. However,
this shows that while Split-IRV tends to behave more like IRV and to follow the majoritarian
principle, Approval-IRV, as a mix of approval voting and IRV, tends to select more consensual
winners, like Borda and Condorcet extensions. A typical example of this phenomenon is the Voter
Autrement dataset of the 2022 election, for which IRV and Borda disagree on the winner (Borda
selects the ecologist Yannick Jadot in 82% of the sampled profiles, while IRV selects Emmanuel
Macron in 68% of them). Both Approval-IRV and Split-IRV select the IRV winner when there are
no indifferences (p = 0) and the Borda winner when there are a lot of indifferences (p = 0.9), and
we can see for which value of p each rule is shifting from one to the other. For Approval-IRV, this
occurs for p ≈ 0.4, while for Split-IRV, this occurs for p ≈ 0.6. In a sense, Split-IRV “sticks” to
classical IRV a bit longer than Approval-IRV.

Average Distortion

For Euclidean datasets, we also computed the average metric distortion (Anshelevich et al., 2018)
induced by the winner selected by the rules, using the method detailed in Section 2.5.2. As a
reminder, the distortion of a rule f on a profile P based on an Euclidean model is defined as the
cost of the winner (i.e., the sum of the distances from this candidate to the voters) divided by
the cost of the cost-optimal candidate. The distortion of any candidate w is lower bounded by 1,
and the lower it is, the closer it is to optimal. Based on this definition, we compute the average
distortion over the 10 000 profiles for the Euclidean datasets.

Figure 4.19 (a) shows the average distortion of Approval-IRV and Split-IRV winners for the
Euclidean datasets with the coin-flip method and the radius method of adding indifferences. In
both cases, the distortion is decreasing when the parameters p and r are increasing, implying that
the average welfare of the winner gets higher the more we add indifferences in the profile, and the
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(a) Average distortion caused by the winner.
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Figure 4.19: The average distortion caused by the winner (Figure a) and the frequency of returning
the candidate with the lowest distortion for each rule (Figure b).

average distortion gets very close to the optimal distortion 1 for large p or r. It is particularly
true for the datasets using the radius method, in which indifferences have meaning in terms of
Euclidean distance: a voter is indifferent between two candidates if they are very close to each other.
In datasets using the coin-flip method, indifferences are not related to anything from the metric
space and appears randomly, but even in this case adding indifferences significantly decreases the
average distortion induced by the winner. Moreover, Approval-IRV consistently has better average
distortion than Split-IRV: it needs less indifferences than Split-IRV to identify “good” candidates.

Figure 4.19 (b) completes the picture and shows for the same datasets the proportion of sampled
profiles for which each rule returns a candidate with a better distortion, and the proportion of
profiles in which both rules agree on the winner (in gray). Overall, Approval-IRV selects more
often a “better” candidate in terms of distortion, especially in the 2-dimensional Euclidean model.

These results on distortion show that under a utilitarian view, Approval-IRV selects better
winners. This conclusion is supported by the fact that it more often returns Condorcet winners
and select candidates with higher Borda scores.

4.5 Discussion

In this chapter, we have studied generalizations of IRV to weak orders and have given formal
arguments why the “Approval” generalization behaves better than the “Split” generalization.

Which Rule to Choose?

We showed in Section 4.3 that Approval-IRV satisfies the generalizations to weak orders of the main
axioms satisfied by IRV, while Split-IRV does not (and in fact, no other runoff scoring rule does).
We also showed that it is the only runoff scoring rule extending IRV that satisfies a weak notion of
monotonicity. In Section 4.4, we experimentally compared the two rules on various datasets, and
showed that Approval-IRV selects better candidates in terms of Borda scores and distortion, while
Split-IRV returns candidates that more often correspond to the IRV winner in the original linear
order profile. Finally, another argument in favor of Approval-IRV is that the two most successful
strands of the electoral reform movement in America are advocates for IRV such as FairVote5, and

5https://fairvote.org/

https://fairvote.org/
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advocates for approval voting such as the Center for Election Science6. Approval-IRV is a rule
that combines properties of both rules, and may serve as a compromise position.

Further Work

However, there are additional avenues for comparing Approval-IRV and Split-IRV. For example,
we have not looked into strategic aspects, and the two rules may well differ in how often voters can
obtain a better outcome by misrepresenting their preferences. Another direction would be to study
the (worst-case) utilitarian welfare provided by these rules, for example in the metric distortion
model, where the worst-case performance of linear-order IRV has been studied (Anshelevich et al.,
2018; Anagnostides et al., 2022). It is also worth mentioning that in the original paper (Delemazure
and Peters, 2024), we also define generalizations of the multi-winner rule STV to weak orders, and
we show that Approval-STV satisfies generalized PSC, a proportionality axiom introduced by Aziz
and Lee (2020), while Split-STV fails it.

As to whether it would be desirable to move from linear-order IRV to Approval-IRV, future
work could address this question from several angles. User studies could explore whether voters
understand how weak order ballots work, and whether they understand Approval-IRV. Generally,
approval-based voting methods suffer from an intuitive (mis)impression that some voters get “more
votes” than others by ranking several candidates first, and it would be interesting to determine
whether this objection can be answered in an intuitively persuasive way. Models of political ideol-
ogy (such as strategic candidacy models) could be used to understand the impact on the political
landscape of a move to Approval-IRV. Finally, it would be interesting to provide a theoretical
foundation for our experimental finding that Approval-IRV selects higher-quality candidates (with
respect to Borda scores or distortion) than linear-order IRV.

Implementing Approval-IRV

Assuming there are no ties, computing Approval-IRV can clearly be done in polynomial time,
though just like for linear-order IRV the task cannot be efficiently parallelized (Csar et al., 2017),
because counting needs to proceed in rounds. Since some jurisdictions (notably Australia) count
IRV elections by hand using paper ballots, it makes sense to optimize the computation in terms
of the number of times each ballot needs to be handled, which Ayadi et al. (2019) analyze using
a query complexity model. It may be worth performing such an analysis for Approval-IRV. It
seems that this rule can still be easily counted by hand, as follows: For each candidate, make a
stack with all ballot papers placing this candidate in the first indifference class. If a ballot puts
t ⩾ 2 candidates in the first indifference class, assign the ballot to any one of the t stacks, and
additionally take t − 1 tokens (e.g., specially colored pieces of paper) and add one to each of the
other t−1 stacks. Determine the candidate c with the smallest stack and eliminate it, by throwing
away all the tokens in the stack and reassigning the ballot papers in the stack. To reassign, if a
ballot paper is indifferent between c and some non-eliminated candidate d, then add the ballot
paper to d’s stack in exchange for one of the tokens in that stack. Otherwise, we pass to the next
highest indifference class of the ballot, assign the ballot paper to one candidate in that indifference
class, and add tokens to other stacks as appropriate. Note that Split-IRV does not admit a similar
protocol, since we need to update the scores of all top-ranked candidates after each elimination. It
would also be interesting to adapt the work of Jelvani and Marian (2022), who proposed methods
to identify (possible) IRV winners when not all ballots are known.

6https://electionscience.org/

https://electionscience.org/
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Chapter 5

Rankings in Parliamentary Elections
with Threshold

5.1 Introduction

In the previous chapters, we have tackled the single-winning voting problem, focusing on voting
systems that are implemented in practice for large-scale elections, and proposing ways to improve
these systems by allowing voters to give more expressive preferences when voting. In this chapter,
we turn to another voting system, that is also widely used in practice, but for a different type
of election: parliamentary elections. In these elections, voters are electing several representatives,
who form the parliament. As for single-winner voting, many different systems are being used in
practice for parliamentary elections. In France, the country is divided into 577 districts, and in
each district the representative is elected using a form of plurality with runoff. In the United
Kingdom, the country is similarly divided, but the local representatives are elected using plurality.
In many other countries, parliaments are elected using proportional representation.

Proportional representation is typically implemented using lists of candidates, and each voter
votes for one of the lists. As these lists are often associated with a party, we will use in this
chapter the word party to refer to the candidates of the election. Then, the seats in the parliament
are allocated to the parties in proportion to the number of votes they received (this corresponds
to the apportionment problem, briefly discussed in Section 2.3.2). Proportional systems of this
kind are widely used in European and South American countries (but also in some African and
Asian countries) to elect the national parliament, and it is the norm for the election of the EU
parliament. The specificities of the different systems differ from one country to another, but they
overall all agree on the proportional representation objective. On the other hand, systems like the
ones in France and the United Kingdom ignore this proportionality aspect, and focus on the local
representation and the governability of the parliament.

Many countries that use proportional representation impose an electoral threshold, a minimum
percentage of votes (usually between 0 and 6%) that is necessary for a party to enter the parliament
(Farrell, 2011; Pukelsheim, 2014). Lists that do not gather the required votes get no seats, and
the votes for those lists are “lost”, or “wasted”, and not used to distribute seats in parliament. In
this chapter, we explore ways to prevent this phenomenon of wasted votes.
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The Threshold and the Lost Votes

Not all jurisdictions that use proportional representation impose a threshold. While no votes
are lost in such a system, it comes with the risk of having a fragmented parliament with many
parties, which makes forming and maintaining a governing coalition difficult. Infamously, the
Weimar Republic (1918–1933) did not use a threshold and saw the number of parties present
in the Reichstag steadily grow to up to 15 in 1930. This led to political chaos: over 13 years
there were 16 governments (only five of which had a majority) and 8 elections. The lack of a
threshold and the resulting popular dissatisfaction with the political system are widely seen as one
contributing factor to the rise of National Socialism (Falter, 2020), though the magnitude of its
influence is disputed (Antoni, 1980). Citing this experience, post-war Germany instituted a 5%
threshold in 1953. Limiting the fragmentation of the parliament is also the argument given by
the French Constitutional Council to justify the 5% threshold used in the election of the French
representatives to the EU parliament.1
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Figure 5.1: The fraction of lost votes in
German federal and state elections (shown
as red stars and blue circles, respectively)
between 1970 and 2022. Reproduced from
Benken (2023).

While thresholds limit the number of parties in the
parliament and improve governability, they also have
drawbacks. In particular, they can lead to a signifi-
cant number of wasted votes, which violates the princi-
ples of proportionality and equality of votes. Benken
(2023) has cataloged the fraction of votes that were
lost in German elections since 1970 and finds a steady
upward trend (Figure 5.1). His dataset includes the
2022 election in the state of Saarland, where a record
of 22% of votes were lost. The 2025 German federal
election also illustrates the issue: even though ‘only’
13.7% of votes were lost, two parties were just below
the 5% threshold, with respectively 4.98% and 4.33%
of the votes, and thus received no seats. Another ex-
ample is the 2019 election of the French representatives to the EU parliament, where the 5%
threshold led to 19.8% of wasted votes. The most extreme case of wasted votes happened in the
2002 Turkish general election, in which more than 46% of the votes were lost due to a 10% thresh-
old. This led to the first success of the AK party of Recep Tayyip Erdoğan, which did not leave
power since then.

Besides wasting votes and thereby harming representativeness, thresholds also discourage the
formation of new parties, hinder the growth of small parties, and require voters to vote strategically
(Decker, 2016). In particular, voters need to decide whether to vote for a party that might or might
not reach the threshold, or whether to instead vote for a safer party. There is also strategizing
on the part of the parties, who sometimes encourage their supporters to vote for allied parties
in order to help them to clear the threshold. This is for instance what we observed in the 2024
European election in France: the ecologist party was dangerously close to the threshold according
to the polls, and some politicians from other parties encouraged their supporters to vote for it.

Strategic voting behavior in elections using proportional representation systems with or without
thresholds have been observed in several empirical studies, including in a 2003 Israel election (Blais
et al., 2006), in the 2010 election in Sweden (Fredén, 2014), and in the 2014 elections in Belgium
(Verthé and Beyens, 2018), as well as in laboratory studies (Lebon et al., 2018; Fredén, 2016).

1Conseil Constitutionnel, Décision n° 2019-811 QPC du 25 octobre 2019, paragraph 10, https://www.
conseil-constitutionnel.fr/decision/2019/2019811QPC.htm

https://www.conseil-constitutionnel.fr/decision/2019/2019811QPC.htm
https://www.conseil-constitutionnel.fr/decision/2019/2019811QPC.htm
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Note that once again, the several drawbacks caused by thresholds can be linked to the inde-
pendence of clones axiom, which was central to the discussion in the previous chapters. Indeed,
if a party gets a little bit more supporters than required by the threshold, introducing a clone of
this party in the election would probably cause some supporters of the original party to vote for
the clone instead, increasing the chance none of them reach the threshold.

Second-chance Vote

Thus, naïvely, there appears to be a tradeoff between the problems of a threshold and the risk of
political fragmentation. However, there are promising proposals that could alleviate the problems
of the threshold without taking away its advantages. In particular, we could elicit additional
information from voters regarding their preferences over parties. For example, we could ask voters
for a second choice of party. If their first choice of party misses the threshold, their vote is instead
counted for the second choice. More generally, we could allow voters to provide a (truncated)
ranking of the parties, and keep redistributing the vote until we reach a party that met the
threshold. Thus, voters would not have to worry that their vote will be wasted, as long as they
rank at least one party that meets the threshold.

This idea has been extensively discussed in Germany under the name “replacement vote” (Er-
satzstimme, sometimes translated into English as “spare vote”). It appears in the election program
of one party for the 2025 German parliament election,2 and laws implementing it have been pro-
posed (but not adopted) in three German states between 2013 and 2015. It is also the main subject
of a recent academic edited volume in German language (Benken and Trennheuser, 2023). Else-
where, the idea has been discussed by the Independent Electoral Review (2023, numbers 4.34 and
4.58) in New Zealand, a committee established by the Justice Minister, which noted the strong
support that the proposal received during their consultation, though they recommended to instead
lower the threshold to not complicate the voting process.

Party Selection Rules

In the social choice literature, to the best of our knowledge, second chance voting has only been
studied from a computational complexity perspective with respect to bribery and control (Lauß-
mann et al., 2024). As we will see, there are many interesting voting-theoretic questions not
answered by the high-level description of how to process the voters’ second choices or rankings.

To study these questions, we introduce a new framework of party selection rules, which take as
input a profile of (possibly truncated) rankings over parties and a threshold τ ∈ N (an absolute
number of votes), and output a subset of parties: those that will be included in the parliament.
For a given selection of parties, a voter is represented by their most-preferred party c among the
ones in the selection. If the voter did not rank any party in the selection, they are considered
unrepresented. We require that a selection should be feasible, in the sense that each selected party
represents at least τ voters. We view such a feasible selection as fully specifying the make-up of
a parliament, though in practice we will need to apply an apportionment rule (such as D’Hondt)
to determine exactly how many seats each party obtains, as a function of the number of voters it
represents. One can conceptualize our formal model as ranking-based multi-winner voting, with
a variable number of winners in the output committee, though the literature generally studies
this topic with complete rankings (not truncated), and without the threshold condition. We refer

2Programm Volt Deutschland zur Bundestagswahl 2025, p. 17 (https://voltdeutschland.org/storage/
assets-btw25/volt-programm-bundestagswahl-2025.pdf)

https://voltdeutschland.org/storage/assets-btw25/volt-programm-bundestagswahl-2025.pdf
https://voltdeutschland.org/storage/assets-btw25/volt-programm-bundestagswahl-2025.pdf
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to Section 2.3.2 for a discussion on this particular model. Note that because our model allows
truncated rankings, it in particular allows for applications where voters can rank at most two
parties, which is the most commonly discussed variant in the threshold context.

As has been recognized in the discussion in Germany, there are at least two possible party
selection rules (Benken and Trennheuser, 2023, pp. 52–62). The simplest is what we call the
direct winners only (DO) rule, which selects exactly those parties who are ranked in first place by
at least τ voters, and assigns voters who do not rank any of those parties in first place to their
most-preferred party among this selected subset. Thus, under DO, there is just a single round of
reassignments. Another option reassigns votes in multiple rounds. We call the resulting rule the
single transferable vote (STV) due to its close similarity to the multi-winner rule of the same name
used in systems that let voters rank candidates instead of parties (see Section 2.3.2). In our model,
STV works by repeatedly identifying the party with the fewest first-place votes, and eliminates
it from the profile. It repeats this until the set of remaining parties is feasible. We add another
party selection rule to the collection: the greedy plurality (GP) rule sorts parties by the number of
voters placing it in first position, then iteratively adds parties to the selection starting from those
with largest score, as long as the addition keeps the selection feasible, and skipping the parties for
which it is not the case. Finally, we consider two optimization-based rules, that respectively select
the subset of parties (among feasible subsets) that maximizes the number of voters represented,
and the subset that maximizes the number of voters represented by the party they rank first.

Other Applications of the Problem

Although our main motivation is to design better parliamentary election systems, our formal model
of party selection rules applies more generally to any multi-item selection context where each item
is required to have enough voter support, where ‘voter support’ means being the voter’s preferred
item within the selection. This applies whenever we have to find a clustering of voters, each cluster
being associated with some item. For example, consider a university program that needs to select
which optional courses to open in a particular year, given that each student will choose their
preferred course from the selection, and that a course should be opened only if it is taken by a
minimal number of students. Other examples are selecting a set of activities to be organized for a
group on a given day, such that every participant will choose one, or ordering a set of dishes for a
company lunch, where everyone will eat a portion of their preferred dish out of the selection, given
that the caterer will not prepare a dish in small quantities.

In that sense, our model becomes a special case of the group activity selection problem with
group size constraints studied by Darmann et al. (2012, 2022), who focus on stability and efficiency
notions, their mutual compatibility, and the computational difficulty of finding solutions. The
model can also be seen as a type of facility location problem where facilities may only be opened
if they serve a minimum number of users. Algorithmic questions about such problems have been
studied (Svitkina, 2010; Ahmadian and Swamy, 2012; Li, 2019). However, upper bounds on the
number of users of a facility are much more common in the literature (see Aziz et al. (2020)). The
Monroe multi-winner voting rule (Monroe, 1995), designed for proportional representation, also
shares some similarities to our model, since it involves assigning voters to candidates. However,
this rule operates with a fixed number of winners, and does not necessarily assign voters to their
most-preferred committee member. Two major differences between parliamentary elections and
clustering-based settings are that the latter do not involve an apportionment step, and that voters’
preferences bear only on the item they are ultimately assigned to, while in parliamentary elections
they usually depend on the complete composition of the parliament.
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Outline of the Chapter

In the remainder of this chapter, we first formally define in Section 5.2 the model and the voting
rules. In Section 5.3, we analyze these rules using the axiomatic method, by defining a variety of
properties appropriate for the party selection model with thresholds. For example, we show that
DO is the only rule among the ones we study satisfying monotonicity, and we give an axiomatic
characterization of DO using a reinforcement-like consistency condition. For STV, we show that
it satisfies clone-proofness and represents solid coalitions, and we characterize STV using an in-
dependence condition that is quite strong but formalizes a common normative intuition advanced
in favor of STV. For GP, we note that it satisfies set-maximality, which is a kind of efficiency
axiom. Since avoiding strategic behavior due to the threshold is one of the main motivations of
this model, we also introduce a sequence of strategyproofness axioms. We find that STV fails
those axioms in the worst case, but are able to establish that DO and GP are strategyproof in a
number of politically plausible situations. In Section 5.4, we experimentally compare the rules on
a dataset of real preferences that we collected during the 2024 European election that was held in
France, motivated by the 2019 election in which a high percentage of votes were wasted. We find
that the rules we propose significantly reduce the number of wasted votes without fragmenting the
parliament. We also study the strategic behavior of the voters, and find that between 5% and 29%
of voters strategically vote for a larger party in the actual election, while choosing a smaller party
as their top-ranked party when given the possibility to provide a ranking. Finally, in Section 5.5,
we conclude and discuss future work.

5.2 Party Selection Rules

First note that in this chapter, we will use the word parties instead of candidates when referring
to the elements of C, as our main motivation is parliamentary elections. We assume that we have
a profile P = (≻1, . . . ,≻n) of truncated rankings, where each voter i ranks a subset of parties
(see Section 2.2.4). In particular, we write a ≻i ∅ to indicate that a party is ranked by voter i.
Moreover, for sets of parties S, T ⊆ C, we write S ≻ T if for all a ∈ S and b ∈ T , we have a ≻ b.

We say that a profile is a full profile if every voter ranks all parties, and that it is a uninominal
profile if every voter ranks exactly one party (as in the current system).

Feasible Outcomes

In this chapter, an outcome is a (possibly empty) subset of parties S ⊆ C. Together, an outcome
and a profile jointly define a unique mapping bestS,P : V → S ∪ {∅} that assigns every voter i
to their most-preferred party bestS,P (i) among those in S, and to the empty set if they do not
rank any party in S. We say that c = bestS,P (i) is the representative of voter i in S, and that
i is unrepresented in S if bestS,P (i) = ∅. We sometimes write that the votes of unrepresented
voters are wasted or lost. For a party c ∈ S, we define the supporters of c as the set of voters of
whom it is the representative in S, suppS,P (c) = {i ∈ V : bestS,P (i) = c} ⊆ V , and the score of
c is scoreS,P (c) = |suppS,P (c)|. Finally, we define as shareS,P (c) = scoreS,P (c)/(

∑
x∈S scoreS,P (x))

the share of representation of each party in the outcome. Thus, any outcome comes with a share
allocation, that we assume might be used in a later step to apportion the parliament seats among
the parties in the outcome. In particular, we assume that the higher the share of representation
of a party, the more seats it will get in the parliament.3

3This assumption will matter in Section 5.3, where we define strategyproofness notions.
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Given a profile P and a threshold τ ∈ N with 0 ⩽ τ ⩽ |V |, an outcome S is feasible if every party
c ∈ S has at least τ supporters, that is, scoreS,P (c) ⩾ τ for all c ∈ S. Note that in our model, the
threshold is an absolute number of voters rather than a fraction. This choice makes the notation
clearer. Clearly, the empty set is feasible, and a subset of a feasible set is feasible. If P is a full
profile, then every singleton set S = {c} is feasible, because we will then have scoreS,P (c) = n ⩾ τ .
When τ = 0, every subset of C is feasible. When τ = 1 and we have a full profile, then S is feasible
if and only if it does not contain two parties c and c′ such that c Pareto-dominates c′. When
τ = n (or more generally τ > n/2) and we have a full profile, then S is feasible if and only if it is
a singleton or the empty set. Hence, single-winner voting on full profiles is a special case of our
model with τ = n if we additionally force rules to return a non-empty outcome.

Once the party selection S has been determined, the parliament is made up using an appor-
tionment method, each party c ∈ S being represented proportionally to scoreS,P (c). Our setup
abstracts away issues arising due to apportionment: while in practice an outcome will need to
be reduced to a fixed number of available parliament seats, we will not study this “second step”,
trusting that it won’t affect our conclusions in interesting ways.

Party Selection Rules

A party selection rule is a function f that takes as input a profile P and a threshold τ , and returns
a feasible outcome f(P, τ). Note that in this chapter, we assume that the rules are resolute, that
is, they always return one outcome only. This assumption makes it easier to analyze the rules in
this case. However, all the results we present in this chapter can be extended to irresolute rules
with parallel-universe tiebreaking (Conitzer et al., 2009; Freeman et al., 2015), where all possible
ways to break ties are considered to obtain the set of outcomes (this is for instance what we did
in Chapter 4). To obtain resoluteness in rules, we assume that there exists some fixed tie-breaking
order on the parties to decide how to proceed when a rule encounters a tie. We now define the
rules that we study in this chapter.

Procedural Rules

This first rule we consider is arguably the most natural one and easy to explain to voters. It selects
in the outcome all parties that are the first choice of at least τ voters. In other words, the parties
that have a plurality score of at least τ . We call this rule Direct Winners Only (DO).

Direct Winners Only
This rule selects the outcome whose support consists of all parties who are ranked in top position
by at least τ voters:

DO(P, τ) = {c ∈ C : |{i ∈ V : c ≻i C \ {c}}| ⩾ τ} = {c ∈ C : scoreC,P (c) ⩾ τ}.

A nice way to implement this rule is to do two rounds of election, such that only the parties
reaching the threshold in the first round are allowed to participate in the second round. We will
discuss this implementation in more detail in Section 5.5.

Note that the uninominal rule that selects the parties above the threshold in actual parlia-
mentary elections with thresholds selects exactly those parties whose plurality score exceeds the
threshold. Therefore, as a party selection rule, it coincides with DO. However, because it forces
every voter to cast a uninominal ballot instead of a ranking, this rule cannot be defined directly
within our model (one can also think of it as first transforming the profile by removing everything
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below the first party ranked by each voter, and then running DO on the resulting uninominal pro-
file). Thus, the uninominal system ignores all votes that did not rank one of the selected parties
on top, wherea DO reassigns such ballots to the highest-ranked selected party.

This can lead to very different distributions of scores, and thus distributions of seats in the
parliament, as a large number of votes may be wasted. For example, in the profile

100: a 100: b 99: c ≻ b

with threshold τ = 100, the selected parties are {a, b}. Under the uninominal system, both parties
have 100 supporters, while under DO, party b receives the votes of c’s supporters, and thus has
almost twice as many supporters as a.

One drawback of this rule is that it does not always select some parties that would deserve to
be in the outcome because they have enough support. Consider the profile:

10: a 10: b 9: c 6: d ≻ c

with τ = 10. Here, DO selects {a, b} but it could be argued that c should be selected, since it has
15 supporters if we take into account the votes of d’s supporters.

We propose two ways to extend the set of selected parties from direct winners: either by
successively eliminating parties until we reach a feasible outcome, or by successively adding parties
to the outcome as long as it remains feasible. The first method is directly inspired by the Single
Transferable Vote (STV) rule, which is used in multi-winner elections, and successively eliminates
candidates until an acceptable outcome is reached (see Section 2.3.2).

Single Transferable Vote
This rule starts with the set S0 = C. Then, at each step k ⩾ 0, if Sk is feasible, it returns this
set. Otherwise, the rule identifies the party c ∈ Sk which minimizes scoreSk,P (c) (i.e., it is ranked
first the least among parties of Sk), and sets Sk+1 = Sk \ {c}.

The second method proceeds by adding parties to the outcome as long as it remains feasible.
We call this rule Greedy Plurality (GP).

Greedy Plurality
This rule starts with the empty set and goes over each party in decreasing order of plurality score
scoreC,P (c), adding it to the outcome set if the outcome remains feasible; otherwise it is skipped.

On uninominal profiles, it is clear that DO, STV and GP all coincide with the uninominal
system. However, in the general case, these rules can give different outcomes, as in the following
example.4

Example 5.1
Let P be the following profile:

4: a ≻ b ≻ c 3: b ≻ c 2: c ≻ b ≻ a 2: d 4: d ≻ b

with the threshold τ = 5. In this profile, the only party with a plurality score of at least 5 is d,
thus DO returns {d}. If we run the STV rule, we eliminate c first, as it has the lowest plurality

4Note that this example can easily be adapted to show that the rules are different even if we allow only two
ranked parties per voter.
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score, and then a because the c voters are now supporting b, and we obtain the outcome {d, b}.
Finally, if we run the GP rule, we add d first, then we add a since it is the party with the second
highest plurality score and {d, a} is feasible. However, we do not add b, since {d, a, b} is not
feasible (a has only 4 supporters), and same for c. Thus, the outcome of GP is {d, a}.

DO, STV, and GP are polynomial-time computable, as well as easy to understand and imple-
ment for parliamentary elections. However, other interesting rules can be defined. In particular,
one can consider rules that optimize some objective function over the set of feasible outcomes.

Optimization-based Rules

We now define two rules that optimize some objective function over the set of feasible outcomes.
More formally, let ϕ be a function that assigns a real value ϕ(P, S) ∈ R to each profile P and subset
of parties S ⊆ C. The optimization rules are of the form f(P ) = argmaxS⊆C,S feasible ϕ(P, S) for
some function ϕ. We will consider two rules of this kind: the first one maximizes the number of
voters who rank a party of the outcome in first position, the second one maximizes the number
of voters who rank any party of the outcome (and thus are represented). We call these rules
respectively Maximal Plurality (MaxP) and Maximal Representation (MaxR).

Maximal Plurality
This rule returns the feasible set S of parties that maximizes the number of voters who rank a
party of S in first position. Formally, it is based on:

ϕ(P, S) = |{i ∈ V : for all c ∈ C, bestS,P (i) ≽ c}| =
∑
c∈S

scoreC,P (c)

Maximal Representation
This rule returns the set S of parties that is feasible and that maximizes the number of voters
who include at least one party from the set in their ranking. Formally, it is based on:

ϕ(P, S) = |{i ∈ V : bestS,P (i) ≻ ∅}| =
∑
c∈S

scoreS,P (c)

In case multiple outcomes maximize the objective function, we assume that ties are broken in
favor of the set that is lexicographically maximal according to the fixed tie-breaking order on the
parties. Note that we could also break ties by maximizing some other objective function, such as
the number of voters who rank at least one party of the set in the first two positions, and so on.

Example 5.2
Consider the profile introduced in Example 5.3, still with a threshold τ = 5. The MaxP rule
returns {d, a}, with 10 voters having their top choice selected, and the MaxR rule either selects
{d, b} or {d, c} depending on the tie-breaking, with all voters represented.

We can show that in contrast to DO, STV and GP, the problem of computing the outcome of
MaxP and MaxR is NP-hard.

Theorem 5.1
The problem of computing the outcome of MaxP and MaxR is NP-hard.

Proof. We prove it by reduction from the independent set problem. Given a 3-regular graph G (in
which every vertex has degree 3), the problem is to find a set of vertices of maximal size such that



5.3. AXIOMATIC ANALYSIS 165

no two vertices are connected.
Let G = (U,E) be a 3-regular graph. Construct a profile P with party set C = U and such

that for each (u, v) ∈ E, we add one voter with preference u ≻ v and one voter with preference
v ≻ u. We set the threshold τ = 6. An outcome is feasible if and only if no two vertices of it are
connected by an edge in G (as there are exactly 6 voters ranking each vertex, they all need to be
represented by this vertex). Thus, since every vertex appears in 6 rankings, and 3 times in first
position, then the outcome of maximal size is necessarily the outcome of MaxP and MaxR.

Now, assume that there exists an independent set of size k in G, and denote it S ⊆ U . Then,
since vertices in S are independent, no voter in P ranks two vertices of S. Thus, every vertex
represents 6 voters, and the outcome S is feasible. Conversely, if the outcome is feasible, this
means that no voter ranks two vertices of the outcome, thus there are no edges between the
vertices of the outcome, and the outcome is an independent set of G.

Therefore, there is an independent set of size k in G if and only if there is a feasible outcome
of size k in P , and the problem of computing the outcome of MaxP and MaxR is NP-hard.5

In addition to being hard to compute, MaxP and MaxR are probably not appropriate to be
used in practice for parliamentary elections, as the way the outcome is selected can hardly be
explained to the voters. However, they can be useful in clustering contexts, where it can be more
important for voters to be satisfied with the outcome than to understand how it was selected. In
particular, for those contexts, it makes sense to maximize the number of voters who are assigned
to an element in the outcome.

5.3 Axiomatic Analysis

In this section, we define a set of axioms that we believe are desirable for a party selection rule
in the context of proportional representation with thresholds. We then analyze the different rules
with respect to these axioms. The proofs that are entirely due to my co-authors are omitted (more
specifically Theorems 5.9 and 5.13), and can be found in the original paper (Delemazure et al.,
2025b).

Efficiency Axioms

The definition of Pareto efficiency in our model is not completely clear, as this requires reasoning
about voters’ preferences over outcomes rather than parties. We can define an uncontroversial
axiom of weak efficiency that forbids rules from selecting the empty outcome unless they are
forced to.

Weak Efficiency
A party selection rule satisfies weak efficiency if f(P, τ) ̸= ∅ whenever there exists a non-empty
feasible outcome.

A stronger axiom can be defined by interpreting voters to prefer outcomes which contain a party
they like more. In this perspective, note that if we have two outcomes S and S′ such that S′ ⊇ S,
then bestS′,P (i) ≽i bestS,P (i) for every i ∈ V . This motivates the definition of the following axiom.

Set-maximality
A party selection rule satisfies set-maximality if f(P, τ) is inclusion-maximal among feasible

5The reduction used in this proof was proposed by Deepseek, prompted by Dominik Peters.
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outcomes for every profile P and threshold τ .

Note that set-maximality implies weak efficiency. Note also that while set-maximality leads to
selecting representatives that might be more preferred, it may also lead to selecting more parties,
which as we discussed may be undesirable: in the context of parliamentary elections, we are
searching for a good trade-off between representation and dispersion. Set-maximality ensures in
general a better representation, but at the price of a higher dispersion (which thresholds aim at
limiting in the first place). GP, MaxP and MaxR satisfy both efficiency axioms, but the other
rules do not.

Proposition 5.2
GP, MaxP and MaxR satisfy set-maximality. DO and STV fail weak efficiency.

Proof. For GP, let S be its outcome on some profile, and assume for a contradiction that there is
a party c ̸∈ S such that S ∪ {c} is feasible. Let S′ ⊆ S be the set of parties that GP has added
to the outcome by the time it considered c. Then S′ ∪ {c} is feasible since S′ ∪ {c} ⊆ S ∪ {c} and
feasibility is preserved under taking subsets. This contradicts that GP did not select c.

For MaxP and MaxR, the result is clear since we are maximizing some form of representation
among voters. So if there exists a superset of the outcome that is feasible, that means that we can
increase the representation of some voters, which is a contradiction.

For DO and STV, take the profile P = {2 : b ≻ c, 1 : c} with τ = 3. Both rules return ∅, even
though {c} is feasible.

We can always complete a non-maximally feasible outcome to make it maximally feasible using
some completion algorithm. This is for instance what GP is doing, starting with the outcome of
DO, but we could do the same by starting with the outcome of STV.

Representation Axioms

We now turn to representation axioms, which guarantee in different ways that groups of voters of
size at least τ are represented.

Inclusion of Direct Winners

The most basic axiom requires that all parties that receive enough first-place votes must be winners.
This axiom seems essential for political applications, but it also makes sense in other contexts.

Inclusion of Direct Winners
A party selection rule satisfies inclusion of direct winners if for every profile P and threshold τ ,
whenever c is a party such that at least τ voters rank c in top position, then c ∈ f(P, τ).

Since DO returns only the direct winners, a party selection rule f satisfies this axiom if and
only if DO(P, τ) ⊆ f(P, τ) for every profile P and threshold τ . It is easy to see that DO, STV, and
GP satisfy this axiom. Indeed, we always have DO(P, τ) ⊆ STV(P, τ) and DO(P, τ) ⊆ GP(P, τ).
Thus, there are at least as many unrepresented voters under DO as under STV or GP, by the
argument seen before introducing set-maximality.

Perhaps surprisingly, MaxP and MaxR fail inclusion of direct winners. Consider for instance
the profile P = {2 : a ≻ b, 2 : a ≻ c, 3 : c, 3 : b} with τ = 4. The only direct winner is a, however
both MaxP and MaxR return {c, b}.



5.3. AXIOMATIC ANALYSIS 167

Proposition 5.3
DO, STV and GP satisfy inclusion of direct winners, but MaxP and MaxR do not.

Representation of Solid Coalitions

One can strengthen inclusion of direct winners to apply to cases where enough voters support
a set of parties. For example, suppose that there are three “green” parties and that more than
τ voters rank them in the top three ranks, though they may disagree on their relative ordering.
The following axiom requires that at least one of the green parties is included in the outcome.
It is inspired by the “proportionality for solid coalitions” (PSC) axiom in multi-winner voting
(Dummett, 1984), which we discussed in Section 2.4.2.

Representation of Solid Coalitions
A party selection rule satisfies representation of solid coalitions if for every profile P and threshold
τ , if T ⊆ C is a set of parties such that |{i ∈ V : T ≻i C \ T}| ⩾ τ , then T ∩ f(P, τ) ̸= ∅.

Note that representation of solid coalitions implies inclusion of direct winners (consider singleton
T ). Thus, it is failed by MaxP and MaxR. It is also failed by DO, since it can happen that none
of the parties supported by a solid coalition has enough first-place votes. Actually, among the five
rules we are studying, only STV satisfies this axiom.

Proposition 5.4
STV satisfies representation of solid coalitions, but DO, GP, MaxP and MaxR do not.

Proof. For STV, assume that there is a profile P where the axiom is violated, i.e. there exists a
set T ⊆ C of parties with |{i ∈ V : T ≻i C \ T}| ⩾ τ , but T ∩ STV(P, τ) = ∅. Consider the first
step in the execution of STV at which all but one party of T are eliminated. At that point, this
party c ∈ T is ranked first by at least τ voters such that T ≻i C \T . Thus, c cannot be eliminated
in the subsequent steps and must therefore be included in the outcome, which is a contradiction.

DO and GP fail the property on the full profile P = {4 : a ≻ b ≻ c, 3 : b ≻ c ≻ a, 2 : c ≻ b ≻ a}
with τ = 5. The last 5 voters form a solid coalition for {b, c}. However, we have DO(P, τ) = ∅
since no party is ranked first by at least 5 voters, and GP(P, τ) = {a} since a is the party who
is ranked first by the most voters and any set containing more than one party is not feasible, as
τ > n/2.

For MaxP and MaxR, simply observe that the representation of solid coalitions is a stronger
property than inclusion of direct winners, which they fail.

Local Stability

One could strengthen this axiom further by forbidding that there is a party c outside the outcome
S for which τ voters prefer c to all parties in S. This is a version of the local stability axiom
studied in multi-winner voting (Aziz et al., 2017b; Jiang et al., 2020).

Local Stability
A party selection rule satisfies local stability if for every profile P and threshold τ , for all parties
c /∈ S = f(P, τ), we have |{i ∈ V : c ≻i S}| < τ .

Note that this axiom implies representation of solid coalitions, and thus inclusion of direct
winners. Unfortunately, this axiom cannot be satisfied for any τ /∈ {1, n}.
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Proposition 5.5
No party selection rule satisfies local stability when τ /∈ {1, n}.

Proof. For n ⩾ 3 and τ = n − 1, we can take a simple profile of m = n parties c1, . . . , cn with a
Condorcet cycle. This corresponds to the profile P = (≻1, . . . ,≻n) in which ≻i= ci+1 ≻ · · · ≻ cn ≻
c1 ≻ · · · ≻ ci−1 for all i. Because the threshold is greater than n/2, at most one party can be part
of the outcome. However, in a Condorcet cycle every ci is better ranked than ci+1 in n−1 rankings
(and cn is better ranked than c1 in n − 1 rankings), thus for any feasible outcome S = {ci}, we
have |{i ∈ V : ci+1 ≻i S}| = n − 1 ⩾ τ , and the rule fails the axiom. If S = ∅, the result is even
clearer.

For all other τ /∈ {1, n}, we can take a profile P with m = τ + 2 parties c1, . . . , cτ+1, d, such
that P contains the Condorcet cycle of the example above with m′ = τ + 1 parties and n′ = τ + 1

voters (so with parties c1, . . . , cτ+1), and add n−n′ dummy voters that only rank d. In this profile,
the outcome must contain at most one of the ci, as only τ +1 < 2τ voters ranked them. However,
for any ci ∈ S, we have |{i ∈ V : ci+1 ≻i S}| = n′ − 1 = τ , which breaks local stability. If no ci is
part of the outcome, again the result is even easier to see.

Note that for τ = n, the rule that selects a party with full support and which is not Pareto-
dominated (if such party exists) satisfies the axiom. Similarly, for τ = 1, the rule that selects all
parties that are ranked first by at least one voter satisfies the axiom.

Representation of Unrepresented Voters

Proposition 5.5 seems to show that it is too demanding to require that no party outside the outcome
should be better for more than τ voters. However, we can weaken the local stability axiom by
restricting the voters that can ask for a better representative to the set of unrepresented voters.
In other words, no party outside the outcome should be included in the (truncated) rankings of τ
unrepresented voters.

Representation of Unrepresented Voters
A party selection rule satisfies representation of unrepresented voters if for every profile P and
threshold τ , for all party c /∈ S = f(P, τ), we have |{i ∈ V : bestS,P (i) = ∅ and c ≻i S}| < τ .

The counterexample from the proof of Proposition 5.5 would not work anymore, since all voters
that are part of the Condorcet cycle are represented in the outcome. However, we can show that
this axiom is not satisfied either by any of the rules we introduced.

Proposition 5.6
DO, GP, STV, MaxP and MaxR do not satisfy representation of unrepresented voters.

Proof. To show that DO and STV fail this axiom, consider the following profile P = {3 : a, 2 : b ≻
c, 1 : c} with τ = 3. In this profile, DO(P, τ) = STV(P, τ) = {a}. But the last three voters all
ranked c and are unrepresented, thus breaking the axiom.

For GP, consider the profile P = {3 : a, 2 : b ≻ a, 2 : c ≻ b, 2 : d ≻ b} with τ = 4. The
first party added to the outcome is a, since it is ranked first by the most voters. Then, c and d

cannot be added because they are ranked by only two voters each, and b cannot be added because
it will reduce the number of supporters of a to only three, which is below the threshold, making
the set {a, b} unfeasible. Thus, GP (P, τ) = {a}, but the last τ = 4 voters all ranked b and are
unrepresented, breaking the axiom.
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For MaxP and MaxR, consider the profile P = {5 : a, 1 : a ≻ b, 1 : a ≻ c, 4 : b, 4 : c} with
τ = 5. The outcome of MaxP and MaxR is {b, c}, but the first τ = 5 voters all ranked a and are
unrepresented, breaking the axiom.

Still, it is possible to satisfy this axiom, and all our rules can be transformed into rules satisfying
it through a local search procedure. The idea is simply to add to the outcome any party that is
ranked by at least τ unrepresented voters (potentially removing other parties), as long as such a
party exists. Below, we provide an algorithm that implements this idea. We left some freedom in
the algorithm, that we will discuss later.

1. Start with any feasible set of parties S0 (e.g., the outcome of DO, STV or GP).

2. Repeat until there is no party c such that |{i ∈ V : bestSk,P (i) = ∅ and c ≻i ∅}| ⩾ τ :

(a) Let c be a party such that |{i ∈ V : bestSk,P (i) = ∅ and c ≻i ∅}| ⩾ τ .

(b) Identify all parties c′ which do not get enough support anymore if we add c. More
formally, this corresponds to the set S− such that c′ ∈ S− if |{i ∈ V : bestSk,P (i) =

c′ and c′ ≻ c}| < τ .

(c) Add c to the outcome, and remove all parties from S−: Sk+1 = Sk ∪ {c} \ S−.

Example 5.3
Consider the following profile with τ = 7:

7: a 6: b ≻ f ≻ a 6: c ≻ f ≻ a 1: e ≻ d ≻ c 1: d ≻ b 4: e ≻ d 3: d

The outcome of DO is {a}, and the outcome of STV and GP is {a, b, c}. However, the last 7
voters are unrepresented and all ranked d. If we run the algorithm described above starting with
{a, b, c}, we first add d to the outcome. This removes b and c from the outcome, as they now
represent only 6 voters each. We obtain {a, d}, and the algorithm terminates, as all voters are
now represented. However, observe that the new outcome is not maximal, as we could add f

and still obtain a feasible outcome.

We can show that this rule terminates. If it terminates, this means we cannot find any party
satisfying the condition of the axiom in step (2), and thus the representation of unrepresented
voters axiom is satisfied. As we mentioned, we left some freedom in the algorithm, as we can
choose the initial set of parties S0 and the way we break ties in the selection of the party to
add. For a rule f , we denote f+ the rule obtained by starting the algorithm with the set f(P, τ),
and breaking ties by selecting the party that is supported by the most unrepresented voters c =
argmaxc′ /∈Sk

|{i ∈ V : bestSk,P (i) = ∅ and c′ ≻i ∅}|.

Proposition 5.7
The algorithm described above terminates.

Proof. To see why it terminates, observe that if it does not, this means that it cycles. Thus, if
we denote Sk the outcome obtained at step k, then there exists k′ > k such that Sk′ = Sk. For a
subset S ⊆ C, denote r(S) the number of voters who ranked at least one alternative from S:

r(S) = |{i ∈ V | bestS,P (i) ̸= ∅} =
∑
c∈S

scoreS,P (c)
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We have r(Sk′) = r(Sk). Note that at each step we add a party to the outcome such that
there exists at least τ unrepresented voters who have ranked this party. If this causes some other
parties to be removed from the outcome, this means that these parties only had strictly less than
τ supporters putting them above all other parties from the outcome. Thus, by removing a party,
we add at most τ − 1 unrepresented voters. Therefore, we have the following for all j:

r(Sj+1) ⩾ r(Sj) + τ − (|Sj |+ 1− |Sj+1|) · (τ − 1)

r(Sj+1)− r(Sj) ⩾ 1− (|Sj | − |Sj+1|) · (τ − 1)

Thus, we have

r(Sk′)− r(Sk) =

k′−1∑
j=k

r(Sj+1)− r(Sj)

⩾
k′−1∑
j=k

1− (|Sj | − |Sj+1|) · (τ − 1)

=(k′ − 1− k)− |Sk|+ |Sk′ | = (k′ − 1− k)

since Sk = Sk′ . Moreover, we have k′ > k + 1, otherwise this means that Sk+1 = Sk, which is
impossible since we add a new party at each step. Thus, r(Sk′)− r(Sk) ⩾ 1, which contradicts the
fact that r(Sk′) = r(Sk). This proves that there is no cycle and the algorithm terminates.

Therefore, any rule of the type f+ satisfies representation of unrepresented voters. However,
this comes at the price of failing other axioms that are satisfied by the original rules. For instance,
GP+ fails set-maximality while GP satisfies it (see for instance Example 5.3).

Varying the Threshold

We now discuss what should happen to the outcome when the threshold changes. The first axiom
says that a losing party should stay losing if the threshold increases, and conversely a winning
party should stay winning if the threshold decreases. This is a natural requirement, as a higher
threshold should make it harder for a party to be selected.

Threshold Monotonicity
A party selection rule satisfies threshold monotonicity if for all profiles P and all thresholds
τ ⩽ τ ′, we have f(P, τ) ⊇ f(P, τ ′).

It is easy to see that DO and STV satisfy this axiom, but not the other rules.

Proposition 5.8
DO and STV satisfy threshold monotonicity, but GP, MaxP and MaxR do not.

Proof. The result for DO is clear: if a party is ranked first by τ ′ voters, it is ranked first by τ ⩽ τ ′

voters. For STV, the order of elimination for the parties is the same, but the rule might stop earlier
for a lower threshold; meaning fewer parties are eliminated, resulting in a superset outcome.

For GP, consider the profile P = {3 : a ≻ b, 2 : b}. With τ = 3, the outcome is {a} and with
τ ′ = 4, the outcome is {b}. For MaxP and MaxR, consider the profile P = {5 : a, 1 : a ≻ b, 1 : a ≻
c, 4 : b, 4 : c}. With τ = 5, the outcome is {b, c} and with τ ′ = 7, the outcome is {a}.
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Proponents of STV often argue in its favor using the following principle of procedural fairness:
once we have decided that some parties are losing, we should continue the procedure as if that
party hadn’t run in the first place (Meek, 1969). We can formalize this principle using the following
independence axiom, which says that once some parties are losing at some threshold, then for all
larger thresholds, the rule should behave as if none of the losing parties had been available.

Independence of Definitely Losing Parties
A party selection rule satisfies independence of definitely losing parties if for every profile P and
thresholds τ ⩽ τ ′, we have f(P, τ ′) = f(P |S , τ ′), where S = f(P, τ).

Here, PS denotes the profile obtained from P by deleting all parties outside of S. Independence
of definitely losing parties implies threshold monotonicity, because it requires that f(P, τ ′) =

f(PS , τ
′) ⊆ S = f(P, τ). Thus, GP, MaxP and MaxR necessarily fail it. The axiom is related to

the “independence at the bottom” axiom of Freeman et al. (2014b), and it encodes a key intuition
behind the functioning of the STV rule. In fact, in combination with inclusion of direct winners,
this axiom characterizes STV. To state the result formally, we need to restrict ourselves to profiles
on which we never have to use the tie-breaking order. Thus, we say that a profile P is generic if
for every S ⊆ C, in the profile PS there is a unique party c ∈ S with the lowest plurality score
scoreS,P (c). On generic profiles, the STV rule never encounters a tie.

Theorem 5.9
Let f be a party selection rule satisfying inclusion of direct winners and independence of definitely
losing parties. Then f equals STV on all generic profiles.

This characterization crucially depends on a variable-threshold setup, and can thus not be
adapted to characterize STV in other frameworks.

Corollary 5.10
DO, GP, MaxR and MaxP do not satisfy independence of definitely losing parties.

Independence of Clones

Another recurrent argument in favor of the STV rule in many models is that it satisfies the
independence of clones (Tideman, 1987). In this model too, the STV rule satisfies an independence
of clones axiom. As a reminder, we say that two parties c, c′ ∈ C are clones if for all i ∈ V and all
x ∈ C \ {c, c′}, c ≻i x⇔ c′ ≻i x and x ≻i c⇔ x ≻i c

′. This implies that every voter ranks c and
c′ consecutively. Note that we will consider here only pairs of clones, but our results could easily
be extended to sets of clones. The axiom says that when we have clones in a profile, the outcome
should not change if we remove one clone. For simplicity, we define independence of clones only
on generic profiles, on which STV never encounters a tie.

Independence of Clones
A party selection rule satisfies independence of clones if for every generic profile P and threshold
τ , if c and c′ are clones in P , writing S = f(P, τ) and S′ = f(PC\{c′}, τ) then

1. {c, c′} ∩ S ̸= ∅ if and only if c ∈ S′, and

2. for all x ∈ C \ {c, c′}, x ∈ S if and only if x ∈ S′.
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Note that this axiom is equivalent to independence of clones for single-winner irresolute voting
rules. It is satisfied by STV and MaxR, but not by the other rules.

Proposition 5.11
STV and MaxR satisfy independence of clones, but DO, GP and MaxP do not.

Proof. Let us first show that STV satisfies independence of clones. Let P be a generic profile and
P ′ another profile equivalent to P but in which some party c ∈ C has been cloned into another
party c′ /∈ C. In both profiles, we will eliminate parties one by one.

As long as neither c nor c′ is the plurality loser in P ′, the order of elimination will be the same
in P and P ′, since cloning c does not affect the relative order of all other parties in the rankings.
Note that STV stops when it finds a feasible outcome, which happens if and only if all remaining
parties are ranked first (among the remaining parties) by at least τ voters .

If after some eliminations (the same in both profiles), STV finds a feasible outcome in P ′ before
eliminating either c or c′, then this means every remaining party is ranked first among the set of
remaining party by at least τ voters, and thus this is also the case in P after the same elimination
steps, and STV(P ′, τ) ⊆ STV(P, τ)∪{c′}. Moreover, STV could not have found a feasible outcome
in P before this step, as the scores of parties other than c and c′ are the same in both profiles.
Thus STV(P ′, τ) = STV(P, τ) ∪ {c′}, and the conditions of the axiom are satisfied.

Now, assume that we reach a step such that c or c′ is the plurality loser in P ′ before finding
a feasible outcome. Without loss of generality, assume that c′ is the plurality loser, otherwise we
exchange the names of c and c′. Then, we eliminate c′ in P ′ and do nothing in P (because P is
generic, we can assume that c′ is eliminated in P ′). We now reached a step such that the two
profiles are perfectly equivalent as the set of remaining parties are identical, and thus after this
point the outcomes of STV on P and P ′ will necessarily be the same (remember that P is generic,
so we will never encounter any tie). This concludes the proof that STV satisfies independence of
clones.

For MaxR, simply observe that the number of voters represented by a set S ⊆ C in P ′ is the
same as in P , and the number of voters represented by S ∪ {c′} in P ′ is the same as in P if c ∈ S,
and is equal to that of S ∪ {c} otherwise. Thus, MaxR satisfies the conditions of the axiom.6

To show that DO, GP and MaxP do not satisfy independence of clones, consider the following
generic profile P = {6 : a, 4 : c′ ≻ c ≻ a, 3 : c ≻ c′ ≻ a} with τ = 7. In this profile, DO(P, τ) = ∅
and GP(P, τ) = MaxP(P, τ) = {a}. However, c and c′ are clones. Denote P ′ = {6 : a, 7 : c ≻ a}
the profile without the clone c′. In this profile, DO(P ′, τ) = GP(P ′, τ) = MaxP(P ′, τ) = {c},
contradicting independence of clones. Note that for GP and MaxP, we could also deduce it from
the fact that with τ = n and a full profile they are equivalent to the plurality rule in the single-
winner setting, which is not independent of clones.

When using parallel-universe tie-breaking, STV satisfies independence of clones even without
restricting the axiom to generic profiles.

Finally, we prove that if a rule f satisfies the independence of clones axiom, then its variant
f+ also does. Note that the proof relies on the weak condition that the clones c and c′ are also
clones in the tie-breaking order.

Proposition 5.12
If a party selection rule f satisfies independence of clones, then its variant f+ also satisfies it.

6Note that the proof for MaxR needs the additional condition that c and c′ are next to each other in the
tie-breaking order.
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Proof. Let τ be a threshold, f be a party selection rule satisfying independence of clones, P a
profile and P ′ a profile identical to P with a clone c′ of c ∈ C. Let S = f(P, τ) and S′ = f(P ′, τ).
Since f is independent of clones, S and S′ satisfy the conditions of the axiom. We will show that
the completion algorithm performs (almost) the same steps in both profiles (with possibly skipping
steps in P when a clone is removed or added in P ′), and thus the sets of parties obtained in both
profiles satisfy the condition of the axioms after k ⩾ 0 steps.

We know that it is true for k = 0. Now assume that it is true after k ⩾ 0 steps. If there are
no groups of τ unrepresented voters who rank the same party a, then by induction hypothesis, the
conditions of independence of clones are satisfied. Otherwise, assume that there exists a group of τ
unrepresented voters in P ′, and that a is the party which maximizes the number of unrepresented
voters ranking it (ties are broken the same way in both profiles). Since we assumed by induction
hypothesis that the sets of parties at this point are either the same on both profiles, or that the one
for P additionally contains c′, then the set of represented voters is the same in both profiles (since
every voter who ranks c′ also ranks c). Thus, if a /∈ {c, c′}, we add a to the set of parties for both
profiles, and if a ∈ {c, c′}, we add a to the set of parties for P ′, and c to the set of parties for P (they
have the same number of supporters among unrepresented voters and are next to each other in the
tie-breaking order). Adding a might cause the elimination of some other parties. If these parties
are neither c nor c′, then they will clearly be eliminated in both cases. If c is eliminated in P , then
c and c′ are eliminated in P ′ (if they were part of the current set of parties) and conversely, if c
and c′ are not part of the current set of parties for P ′ because one or both of them are eliminated,
then c must be eliminated in P . Finally, it is possible that only c or c′ is eliminated in P ′, while
both were part of the set of parties. In this case, since one is remaining, this means it has enough
support, and thus c will also have enough support in P and not be eliminated. At the end of the
step, the conditions of the axiom are still verified.

Since we know that the algorithm terminates, then f+(P ) and f+(P ′) will satisfy the conditions
of the axiom, therefore f+ satisfies independence of clones.

Reinforcement for Winning Parties

The next axiom connects the outcomes of a party selection rule on profiles defined on different sets
of voters, and imposes a consistency condition. The axiom is inspired by the reinforcement axiom
introduced by Young (1974) that we discussed in Section 2.4.3. Our axiom says that if a party is
winning in a profile P1 with a threshold τ1 and in a profile P2 with a threshold τ2, then it should
also be winning in the profile P1 +P2 with threshold τ1 + τ2, where P1 +P2 is the profile obtained
by “concatenating” P1 and P2.

Reinforcement for Winning Parties
A party selection rule satisfies reinforcement for winning parties if for all profiles P1 and P2 and
all thresholds τ1 and τ2, we have f(P1, τ1) ∩ f(P2, τ2) ⊆ f(P1 + P2, τ1 + τ2).

DO satisfies this. In fact, DO is the only party selection rule satisfying inclusion of direct
winners and reinforcement for winning parties, thus providing an axiomatic characterization of
this rule.

Theorem 5.13
DO is the only party selection rule that satisfies inclusion of direct winners and reinforcement
for winning parties.
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A direct corollary is that STV and GP fail reinforcement for winning parties. We can show that
MaxP and MaxR also fail it, with the profiles P1 = {τ1−1 : b ≻ a, 1 : a} and P2 = {τ2 : a, τ2+2 : b}.
The outcomes of MaxP and MaxR are {a} in P1 and {a, b} in P2, but in P1 + P2 the outcome is
{b} for both rules.

Proposition 5.14
STV, GP, MaxP and MaxR do not satisfy reinforcement for winning parties.

Monotonicity

The next axiom is the classical monotonicity axiom which says that if a party is selected in the
outcome, then it should remain selected if some voters place this party in a better position in their
vote, leaving unchanged the relative ranking of the other parties. It is based on the same notion
of c-improvement that we defined in Section 2.4.5, adapted to the case of truncated rankings.

Monotonicity
A party selection rule satisfies monotonicity if for every profile P and threshold τ , if c ∈ f(P, τ)
and P ′ is a c-improvement of P , then c ∈ f(P ′, τ).

Note that this axiom corresponds to monotonicity for single-winner irresolute voting rules,
which is known to be failed by IRV, the single-winner version of STV.

Proposition 5.15
DO satisfies monotonicity, but STV, GP, MaxP and MaxR do not.

Proof. For DO, consider a profile P and a threshold τ , and suppose that c ∈ DO(P, τ). Now,
consider a profile P ′ obtained from P by increasing the rank of c in one ranking without changing
the relative ranking of the other parties. Then, the voters who ranked c in top position in P still
rank c in top position in P ′, and thus c still has at least τ supporters in P ′, so c ∈ DO(P ′, τ).

For STV, consider the following profiles P and P ′ with τ = 13:

P : 5 : a ≻ c 6 : c 13 : d 4 : b ≻ a 2 : b ≻ c
P ′: 5 : a ≻ c 6 : c 13 : d 4 : b ≻ a 2 : c ≻ b

In P , a is eliminated first, then b, and the outcome is S = {c, d}. Now, observe that P ′ is a
c-improvement of P . In P ′, b is now eliminated first, then c, then a and the outcome is S′ = {d}.
Thus, c /∈ STV(P ′, τ), contradicting monotonicity.

For GP, consider the following profiles P and P ′ with τ = 7:

P : 5 : a ≻ c 2 : a ≻ b ≻ c 6 : c ≻ b 2 : b

P ′: 5 : a ≻ c 2 : b ≻ a ≻ c 6 : c ≻ b 2 : b

In P , a is added to the committee first. Then c is considered, but {a, c} is not feasible. Then b

is added to the committee, as {a, b} is feasible. Now, observe that P ′ is a b-improvement of P .
In P ′, c is added first to the committee, then a is considered, but {c, a} is not feasible. Then b is
considered, but {c, b} is not feasible. Thus, b /∈ GP(P ′, τ), contradicting monotonicity.
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For MaxP and MaxR, consider the following profiles P and P ′ with τ = 9:

P : 5 : b 1 : b ≻ c 5 : c 1 : c ≻ b 3 : a ≻ b 3 : a ≻ c 4 : a

P ′: 5 : b 1 : b ≻ c 5 : c 1 : b ≻ c 3 : a ≻ b 3 : a ≻ c 4 : a

In P , if a is in the outcome, then neither b nor c can be, because they will represent at most 8
voters each. Thus, the two possible outcomes of maximal size are {a} and {b, c}, and {b, c} is
the one maximizing both the number of voters represented and the number of voters represented
by their first choice. Now, observe that P ′ is a b-improvement of P . In this profile, a is still
incompatible with b and c, but now b and c are also incompatible together, as c will only represent
8 voters. Thus, the only possible outcomes of maximal size are singletons, and {a} is the one that
maximizes the objectives of MaxP and MaxR. This contradicts monotonicity.

Monotonicity can be seen as a weak version of strategyproofness: If it is possible that a party
goes from selected to not selected by increasing its rank in one ranking, then it is possible for a
voter to manipulate the outcome and change the status of this party from not selected to selected
by decreasing its rank. In the next subsection, we consider other notions of strategyproofness.

Incentive Issues

A major drawback of uninominal voting is that it incentivizes voters to strategically misreport
their preferences. In particular, in standard uninominal elections, voters whose favorite party will
not reach the threshold may instead vote for a large party (and thereby increase its share of the
parliament) or vote for a party near the threshold (and thereby potentially move it above the
threshold). This type of strategic voting is similar to what we observe in single-winner elections
with uninominal preferences, in which voters are incentivized to vote for a candidate who has a
chance to win. We refer to this type of strategic voting as tactical voting. We will study the extent
to which tactical voting can be avoided when using party selection rules.

A second distinct type of manipulation has been called coalition insurance voting (Gschwend,
2007; Fredén, 2017; Susumu Shikano and Thurner, 2009). Here, a voter whose preferred party
is guaranteed to reach the threshold decides to instead vote for a less-preferred party that is
in danger of missing the threshold. If that smaller party reaches the threshold, it may form a
governing coalition with the voter’s preferred party. Thus, while the voter is now contributing
their support to a worse representative, the voter will be more satisfied with the parliament as a
whole. This manipulation is specific to parliamentary elections with thresholds and has no analogue
in single-winner voting. We will consider this second type of manipulation separately.

Tactical Voting

Consider the common tactical vote in a uninominal election: a voter who supports a sub-threshold
party instead votes for a larger party in order to have their vote counted towards the parliament’s
final composition. By doing this, the voter increases the share of representation of the party they
vote for without any cost to their true favorite party (which anyway was not going to meet the
threshold). In the extreme case, a tactical vote can even cause a new party to enter the winning
set. In our model, we define tactical voting in two natural ways, depending on how we measure
the satisfaction of the voter with an outcome S:
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1. The satisfaction corresponds solely to the highest position of a party in S in the voter’s
truthful ranking.7

2. The satisfaction corresponds to the highest position of a party in S in the voter’s truthful
ranking, and to the share of representation shareS,P (c) = scoreS,P (c)/(

∑
x∈S scoreS,P (x)) of

that party.

Note that the second notion implicitly assumes that in practice, the allocation of seats would
be done proportionally to the share of representation. It also assumes that the higher the share of
representation, the more seats a party gets.

Of course, other notions of satisfaction are possible and could in principle depend on the
entire vector of shares of representation and the voter’s truthful truncated ranking. In particular,
these two notions are not sufficient to model the coalition insurance voting type of manipulation.
However, they will be sufficient to capture typical manipulations while being permissive enough
to allow for positive results. Note that obtaining full strategyproofness with respect to either of
these notions is hopeless. Assume that τ = n and that all voters submit complete rankings. Then,
if we additionally enforce efficiency, this exactly corresponds to single-winner voting, and we know
from the Gibbard–Satterthwaite theorem (Gibbard, 1973; Satterthwaite, 1975) that any rule that
is strategyproof is either a dictatorship (i.e., the outcome is always the favorite party of some voter
i ∈ V ) or imposing (i.e., some party is never selected). We will therefore consider strategyproofness
in restricted cases, considering a sequence of politically plausible situations where some of our rules
turn out to be immune to manipulations.

The notion of strategyproofness that we will first explore requires that no voter can improve
their most-preferred party among those selected.

Representative-Strategyproofness
A party selection rule is representative-strategyproof for a profile P and a threshold τ , if for any
voter i and any misreport ≻′

i, if P ′ = (≻1, . . . ,≻′
i, . . . ,≻n), S = f(P, τ), and S′ = f(P ′, τ), we

have bestS′,P ′(i) ̸ ≻ibestS,P (i).

In search of positive results, we will make statements that distinguish three types of parties
from the perspective of a voter i on a particular profile P , assuming that all other votes are fixed.

• A party is safe if it is included in the outcome no matter how i votes.

• A party is risky if it might be included or not in the outcome depending on how i votes.

• A party is out if it is not included in the outcome no matter how i votes.

Note that this partition of the parties depends on the rule f that is used. However, for all rules
that satisfy inclusion of direct winners (including DO, STV and GP), parties that are ranked first
by more than τ + 1 voters are always safe, and parties that are ranked by fewer than τ − 1 voters
among the voters who did not rank a safe party first are always out. The remaining parties can be
either safe, risky or out. Intuitively, risky parties are the ones that are neither clear winners nor
clear losers. In a real-world scenario, this corresponds to the parties that are dangerously close to
the threshold according to the polls.

We begin by considering the case where there exists at most one risky party. This is often
not an unrealistic assumption. For example, in the 2023 New Zealand general election, with a

7We note that this notion is particularly natural in a clustering-based context, where an agent prefers an outcome
to another whenever they are assigned to a better representative.
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threshold of 5%, only one party’s vote share fell in the interval (3.08%, 8.64%). The same is true
in 2020 for the interval (2.60%, 7.86%) and in 2017 for (2.44%, 7.20%).

In the current uninominal system, even with only one risky party, a voter can manipulate the
outcome by misreporting their preferences. For example, if a voter prefers a party that is out first,
and the risky party second, then they can misreport their preferences by putting the risky party
first, causing the risky party to be included in the outcome. Interestingly, for party selection rules,
we can show the following result.

Proposition 5.16
If a party selection rule satisfies set-maximality, then it satisfies representative-strategyproofness
when there is at most one risky party from the perspective of each voter.

Proof. Let f be a party selection rule that satisfies set-maximality, P a profile in which there is one
risky party from the perspective of every voter, and i ∈ V a voter that successfully manipulates
by misreporting, giving another profile P ′. Let S = f(P, τ) and S′ = f(P ′, τ). We assume
bestS′,P ′(i) ≻i bestS,P (i), and thus bestS′,P ′(i) /∈ S. Thus, c′ = bestS′,P ′(i) is a risky party from
the perspective of i. However, since c′ is better ranked than bestS,P (i) in the ranking of voter ≻i

and S′ is feasible in P ′, it is also feasible in P . Thus, by set-maximality, S′ ̸= S ∪ {c′}, but this
means that S\S′ ̸= ∅, and thus there exists a risky party in S different than c′, a contradiction.

A direct corollary is that GP, MaxP and MaxR satisfy representative-strategyproofness when
there is at most one risky party from the perspective of each voter. We can show that it is not the
case for DO and STV.

Proposition 5.17
GP, MaxP and MaxR satisfy representative-strategyproofness when there is at most one risky
party from the perspective of each voter. DO and STV do not.

Proof. For GP, MaxP and MaxR, this is a direct consequence of Proposition 5.16.
For STV, consider the profile P = {1 : b ≻ a, 1 : c ≻ a} with τ = 2. Parties b and c are out,

while a is risky. We have STV(P, τ) = ∅, but either voter could manipulate the outcome by placing
a first in their vote, which would result in the outcome {a} (assuming that ties are broken in favor
of a). For DO, consider the profile P = {1 : b ≻ a, 1 : a ≻ c} with τ = 2. We have DO(P, τ) = ∅,
but the first voter can manipulate by voting a ≻ b, resulting in outcome {a}.

Note that GP, MaxP and MaxR fail strategyproofness if we allow two risky parties. Consider
for instance the profile P = {4 : a, 2 : b ≻ c, 1 : c ≻ b ≻ a} with τ = 3 and GP. Party a is safe but b
and c are risky from the perspective of the last voter. GP selects {a, b} and is then unable to add
c. However, if the last voter reports c ≻ a ≻ b, GP will first add a, then consider b but not add
it (since {a, b} is no longer feasible), and finally add c and output {a, c}, which is better for the
manipulating voter.

We now turn to the second, stronger notion of strategyproofness, where the satisfaction of a
voter depends on both the position of their favorite selected party c and its share of representation
shareS,P (c) = scoreS,P (c)/(

∑
x∈S scoreS,P (x)).

Share-strategyproofness
A party selection rule is share-strategyproof for a profile P and a threshold τ if for any voter i and
any misreport ≻′

i, if P ′ = (≻1, . . . ,≻′
i, . . . ,≻n), S = f(P, τ), S′ = f(P ′, τ), and c = bestS,P (i),
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we have
(1) bestS′,P ′(i) ̸≻i c and (2) shareS′,P ′(c) ⩽ shareS,P (c)

First, we consider the case where every voter has a safe party among their top two preferences.
Clearly, uninominal voting fails share-strategyproofness in this case, as a voter can elevate a safe
party that is their second choice ahead of a party that is out but their true favorite, thus increasing
the share of the vote allocated to the safe party. Notably, this strategy is ineffective under DO.

Proposition 5.18
DO satisfies share-strategyproofness whenever the most-preferred or second-most-preferred party
of every voter is safe from the perspective of that voter. GP, STV, MaxP and MaxR do not.

Proof. For DO, consider a voter i with preference cj ≻i ck ≻i . . . . If cj is selected then i has no
incentive to misreport, as it is clear that no manipulation will increase the share of representation
of cj (in fact, they will all decrease it). If cj is not included, then ck is safe by assumption, and
therefore selected. Moreover, it is the representative of voter i. Since any manipulation by i can
only decrease the number of first-place votes received by cj , it is impossible for cj to be selected
after the manipulation: the party is out. Similarly, any manipulation by i can only decrease the
number of supporters of ck without decreasing the support of any other parties. Therefore, no
manipulation can result in an increase of share of representation for ck. This proves the result for
DO.

For MaxP, consider the profile P = {5 : b, 4 : a ≻ b, 4 : c ≻ a, 1 : b ≻ c} with τ = 5. The
feasible outcome that maximizes the plurality score is S = {b, a} ({b, c} is not possible because
c would only be supported by 4 voters). Moreover, party b is safe for every voter, and a is safe
for the voters with ranking c ≻ a: individually, they cannot make a replaced by c. The share of
representation of b is shareS,P (b) = 6/14. Now, assume that the last voter misreports and votes
c ≻ b. Now the only feasible outcome that maximizes the plurality score is S′ = {b, c}. The share
of representation of b is now shareS′,P ′(b) = 9/14 > 6/14. This violates share-strategyproofness.
We use the same profile for MaxR. Again, the outcome is S = {b, a}, b is safe, and a is safe for the
four voters with ranking c ≻ a for the same reasons. With the same manipulation, the outcome
S′ = {b, c} becomes feasible and has maximal score, and assuming that ties are broken in favor of
c, it is the outcome of MaxR.

For GP, we consider the profile P = {1 : a ≻ b, 5 : a, 3 : b ≻ c, 3 : c ≻ a} with τ = 4. GP
selects S = {a, c} and we have shareS,P (a) = 6/12. Note that party a is safe from the perspective
of every voter since it is a direct winner even if it loses a vote. Furthermore, party c is safe from
the perspective of the voters with preference b ≻ c, since no unilateral deviation from any of them
can cause b to be selected, and therefore c will be feasible to add to the set {a} with at least five
supporters (even if the deviator does not rank c). Therefore, every voter has a safe party in first or
second position and this profile satisfies the conditions of the proposition. However, if the first voter
changes their report to b then GP selects S′ = {a, b} and we have shareS′,P ′(a) = 8/12 > 6/12.
The identical example also demonstrates a violation of share-strategyproofness for STV, provided
that ties between b and c are broken in favor of b being eliminated.

Finally, we prove a result in which the set of possible misreports of a voter is restricted. In
particular, we assume that voters will only misreport by promoting their most-preferred party that
is selected under truthful voting to the first position in their misreport. This restriction can be
thought of as giving voters perfect knowledge of which parties are out (and therefore not worth
voting for), but not enough sophistication to perform arbitrarily “complex” manipulations.
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Proposition 5.19
DO and GP are share-strategyproof under the restriction that c = bestS,P (i) is ranked first in
≻′

i, but STV, MaxP and MaxR fail even representative-strategyproofness under this restriction.

Proof. For DO, it is clear that if a voter elevates bestS,P (i) to first position then neither the set of
direct winners nor their supporters undergo any change.

For GP, any misreport allowed by the proposition results in c receiving one additional plurality
vote, while i’s true first choice cj receives one fewer. GP may now consider c earlier and cj later
than under truthful voting, but the relative order of consideration for all other parties remains
unchanged. It is easy to see that if S′ is the outcome after the manipulation, then c ∈ S′ and
cj ̸∈ S′. For any other party ck, assume by induction that all parties considered before ck are
selected in S′ if and only if they are selected in S. If ck ∈ S then it must be feasible to add ck
to S′, since the outcome set at the time that ck is considered is a strict subset of S. Similarly,
if ck ̸∈ S then it must not be feasible to add ck to S′, since the outcome set at the time that ck
is considered in the misreported instance is a superset of the outcome set at the time that ck is
considered in the truthful instance (it might additionally contain c).

For STV, consider the following profiles P and P ′ with τ = 10:

P: 10 : b 4 : c ≻ d 3 : d ≻ c 2 : d ≻ b 3 : a ≻ b ≻ d 1 : a ≻ c ≻ b ≻ d
P’: 10 : b 4 : c ≻ d 3 : d ≻ c 2 : d ≻ b 3 : a ≻ b ≻ d 1 : b ≻ c ≻ a ≻ d

We assume that the tie-breaking order is a > b > c > d. In P , c is eliminated first, then a, then
the outcome S = {b, d} is feasible with scoreS,P (b) = 11 and scoreS,P (d) = 12. Now, in P ′ in which
the last voter is manipulating, a is eliminated first, then d and the outcome is S′ = {b, c} with
scoreS′,P ′(b) = 13 and scoreS′,P ′(c) = 10. Thus, the manipulating voter is more satisfied because
shareS′,P ′(b) = 13/23 > 11/23 = shareS,P (b), and also because this voter prefers c to b = bestS,P (i).

For MaxP, consider the profile P = {3 : b ≻ d, 4 : c, 2 : d ≻ b, 1 : a ≻ b ≻ c} with τ = 5. In this
profile, c and b cannot be both part of the outcome, otherwise it is not feasible. Similarly, b and
d cannot be both part of the outcome. Moreover, a is ranked by only one voter and thus cannot
be part of the outcome. Thus, the feasible outcome with maximum plurality score is S = {c, d}.
Now, if the last voter changes their vote to c ≻ a ≻ b, putting their representative c = bestS,P (i)
first, then the outcome {c, b} is now feasible and has a higher plurality score. However, the last
voter prefers b to c, thus it is a successful manipulation. We can use the same profile for MaxR.
The only feasible outcome that covers all voters in P is {c, d}, but {c, b} becomes feasible after
the manipulation. If we assume that ties are broken in favor of b, then we have a successful
manipulation.

It should be observed that Proposition 5.19 covers the typical manipulation that occurs with
uninominal voting: voters place their favorite safe party first instead of their favorite party, in
order to increase the vote count of this party (otherwise, their ballot would not be considered).
Consider for instance the profile P = {1 : a ≻ b, 3 : b, 3 : c} with τ = 3. With our rules, the first
voter can vote sincerely: their vote will support b since a is out. Under uninominal voting, they
have an incentive to vote for b.

Finally, note that STV is not covered by any of these positive results. However, in cases where
STV is manipulable, the manipulating voter causes the whole elimination order to change, and thus
some parties not to be added to the outcome anymore, possibly increasing the vote share of their
representative. This is arguably a very unnatural manipulation for voters, who need almost full
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knowledge of the preferences of the other voters to be able to predict the correct manipulation. This
is consistent with observations by Van der Straeten et al. (2010), who showed with lab experiments
that voters tend to vote sincerely in elections using IRV (the single-winner equivalent of STV), as
they are not able to predict the correct manipulation.

Coalition Insurance Voting

A separate type of manipulation is coalition insurance voting (Cox, 1997), where a supporter of
a safe party c instead votes for a risky party d that they also like in order to push d over the
threshold, thereby potentially allowing c and d to form a governing coalition (while in a parliament
without d, there would be no majority for c). Indeed, while c loses one supporter, party d gains
τ supporters by virtue of being included in the outcome. In many cases, the voter will be more
satisfied with the new outcome as a whole. In many countries with proportional representation
systems, parties announce intended coalitions in advance of the elections, and safe parties such as
c might even encourage their supporters to vote for d instead. Coalition insurance voting has been
observed in several countries including Germany and Sweden, and is well-studied using survey and
lab experiments (e.g., Fredén, 2017; Fredén et al., 2024).

Can such voting behavior be avoided when using party selection rules? Unfortunately, a simple
example suffices to show that no rule that satisfies the inclusion of direct winners axiom is immune
to manipulations of this type. Consider the profile P = {3 : a, 3 : b, 4 : c, 2 : d, 1 : c ≻ d} with τ = 3,
and suppose that the last voter likes both c and d and is close to indifferent between them, but
dislikes a and b. The outcome under truthful voting is S = {a, b, c} by inclusion of direct winners,
as all these parties have at least τ first-place votes, and including d would violate feasibility. The
last voter only likes party c from S, which makes up 5/11 ≈ 45% of the parliament, and {a, b} may
form the governing coalition. Now, if they change their vote to d ≻ c, then the outcome will be
S′ = {a, b, c, d} by inclusion of direct winners, as all parties get at least τ first choices. After this
manipulation, the last voter likes 7/13 ≈ 54% of the parliament, and {c, d} may now be forming a
governing coalition, thus including the most-preferred party of the manipulating voter.

While party selection rules cannot completely avoid this effect, one might expect that in practice
there is less motivation for this kind of manipulation in the case that voters can submit a ranking
than if they can only submit a uninominal ballot. In particular, if the smaller party d is not
selected, then presumably many votes cast for d will transfer to c as a second or third choice.
For instance, in the previous example, the d voters might have put c in second place if c and d

were running on similar platforms or had announced an intention of forming a coalition. However,
there is also a possibility that coalition insurance voting might increase under rankings, since this
strategy is less risky in this situation. Indeed, if voters preferring c instead cast the ranking d ≻ c,
then either the manipulation is successful (and d is selected), or it is unsuccessful and the vote is
transferred to c, which does not hurt the manipulator. In contrast, under uninominal voting, a
vote for d carries a risk that the vote will be lost. Further experiments are needed to determine
the actual impact of ranking ballots on this kind of manipulation.

Summary of the results

We conclude this section with a summary of the axiomatic results, displayed in Table 5.1, which
shows which of the five rules satisfy which axioms. It also shows the characterization results for
DO and STV. In addition to these results, we also described in this section an algorithmic method
to transform any party selection rule into another rule satisfying representation of unrepresented
voters.
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DO STV GP MaxP MaxR

Set-maximality
Inclusion of direct winners 1 2

Representation of solid coalitions
Representation of unrepresented voters
Threshold monotonicity
Independence of definitely losing parties 2

Independence of clones
Reinforcement for winning parties 1

Monotonicity
Representative-strategyproofness (one risky party)
Share-strategyproofness (safe first or second)
Share-strategyproofness (representative ranked first)

Table 5.1: Properties satisfied by the rules. The superscripts 1 and 2 indicate characterization
results.

5.4 Experimental Analysis

In the classical uninominal system, voters either vote sincerely, at the risk of wasting their vote, or
they choose to vote strategically. Inspired by our theoretical analysis, we want to check empirically
if under ranking-based systems, voters would vote less strategically, for instance by putting less
popular parties on top of their rankings. We also want to evaluate the extent to which these
systems allow better representation by decreasing the number of unrepresented voters, without
drastically increasing the number of parties included in the parliament (as the main argument for
the threshold is to reduce the number of parties).

To the best of our knowledge, the only existing empirical study on party selection rules is the one
by Graeb and Vetter (2018), who asked n = 828 participants in Germany in 2017 how they would
vote if they could indicate a second-choice replacement vote. They found that participants vote
more frequently for smaller parties, and that the number of lost votes decreases (they applied the
DO rule). However, their study does not compare different party selection rules, and it introduces
two different changes to the voting system simultaneously: addition of a replacement vote, but also
a combination of the person-bound and party-bound votes (Erststimme and Zweitstimme) into a
single vote, making it more difficult to estimate the impact of the replacement vote alone.

We base our study on a survey we ran in the context of the election of the French representatives
to the EU Parliament held in June 2024. The French representatives are elected by a nationwide
party-list proportional representation system, using the D’Hondt apportionment method with a
5% threshold. In the 2024 election, 38 lists took part in the election and 12.08% of votes were cast
on lists that did not reach the 5% threshold. Seven lists reached it, two of which were just above
the threshold (with 5.47% and 5.5% of vote share), so the proportion of wasted votes could have
been much worse (which happened in 2019, when it was around 20%).

The Datasets

Our datasets (Delemazure et al., 2024a) were collected through a survey that invited participants
to consider how they would vote in a system that allows them to rank either at most two lists, or
an arbitrary number of lists. The survey was administered through a custom-built online platform
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in French language.8 Participants were led through several steps:

1. Participants were briefly informed about the problem of wasted votes, with the help of data
visualizations of the results of the 2019 election, where 19.8% of ballots had been lost due
to the threshold. We then familiarized participants with the 38 lists participating in this
election: we displayed official posters and provided access to the campaign manifestos. We
sampled a random ordering of the lists for each voter, and we always displayed the lists in
that order in the subsequent steps.

2. In the second step, participants were told that to avoid losing votes for lists that do not reach
the threshold, they were allowed to specify a second choice if they wished so, which would be
taken into account if their first choice fell below the threshold of 5%. We then asked them
to indicate how they would vote under this system. Participants could rank 0, 1, or 2 lists.

3. In the third step, we explained further that voters could now vote for as many lists as desired.
We explained that if the first choice were to receive less than 5% of the votes, the second-
choice vote would be counted. If the second choice still receives less than 5%, the third-choice
vote would be counted, and so on. We then asked participants to indicate how they would
vote under this system. Participants could rank between 0 and 38 lists.

4. In the next step, participants were asked to say for which list they intended to vote on election
day (for participants taking the survey prior to election day), or for which list they had voted
(for those taking it after election day). Answering was optional.

5. Finally, participants were shown two questionnaires: one in which they could express their
opinion about moving to more expressive voting, and a second one in which they could
provide some socio-demographic data.

We ran this survey on two samples of participants:

• Self-selected sample. We recruited 3 046 participants through social media (mainly Twitter)
and mailing lists. These participants tended to be interested in the political process and
were very diligent in answering the survey. However, the resulting sample is clearly not
representative of the French population: it is very left-leaning (66% intended to vote for one
of the four largest left-oriented parties LFI, PCF, PS and the Ecologists, while they received
less than 32% of the votes at the election), young (72% are between 18 and 39, while 30% of
the French population is between 20 and 39), and highly educated (92% indicated a university
education level, while it corresponds to 42% of the general population). Participants were
not paid. This dataset only includes answers from those who indicated being registered to
vote. It was gathered between May 30th and June 26th 2024, however for this analysis we
only kept the 2 840 participants who completed the survey before the election day (June 6th).

• Representative sample. We recruited 1 000 participants through a survey research company.
Participants were paid a fixed amount of money to participate in the study. This sample
is more representative of the French population with respect to demographics and voting
behavior. However, it is of lower quality as some participants filled out the form as quickly
as possible. This dataset was collected between June 17th and 25th, after the election.

8The survey is available at www.lamsade.dauphine.fr/vote/.

www.lamsade.dauphine.fr/vote/


5.4. EXPERIMENTAL ANALYSIS 183

Self-selected Representative
Two votes Rankings Two votes Rankings

Inconsistent (c∗ not ranked) 3.5% 0.7% 8.6% 10.4%

Sincere (c = c∗) 73.5% 70.2% 84.3% 80.4%

Strategic (score(c) < score(c∗)) 22.7% 28.6% 5.0% 6.2%

↪→ out → safe 16.4% 21.0% 2.7% 3.2%
↪→ out → risky 2.2% 3.0% 0.3% 0.7%
↪→ risky → safe 2.6% 3.0% 0.8% 0.4%
↪→ others 1.5% 1.6% 1.3% 2.0%

Strategic (score(c) > score(c∗)) 0.3% 0.6% 2.1% 3.0%

↪→ safe → out < 0.1% 0.1% 0.7% 0.6%
↪→ safe → risky 0.3% 0.2% 0.3% 1.1%
↪→ safe → safe < 0.1% 0.2% 0.8% 0.7%
↪→ risky → out < 0.1% < 0.1% 0.2% 0.3%
↪→ others < 0.1% < 0.1% < 0.1% 0.2%

Table 5.2: Comparisons of voters’ voting intention c∗ and the list they ranked first c.

All the collected data were anonymized. Participants were informed before participating that
the data would be used for research purposes only, and they had the possibility to skip any question
they did not wish to answer. The study received ethics approval (Université Paris Dauphine - PSL,
décision du comité d’éthique de la recherche n°2024-01 and University of Virginia IRB protocol
number 6756). The dataset is available on Zenodo (Delemazure et al., 2024a).

For both samples, we used the voting intentions (or actual votes for participants who answered
the survey after the election) to assign weights to voters in order to reduce the representation bias
of our samples. We refer to Section 2.5.4 for more details on the weighting method. Participants
who did not provide any voting intention were assigned weight zero, leaving n = 2728 participants
with non-zero weight for the self-selected sample, and n = 895 for the representative sample. This
gives us a total of four preference profiles: self-selected and representative samples, together with
either two votes or rankings.

Strategic Voting

Using these datasets, we first investigate the strategic behavior of the voters in the actual election.
To do so, we compare the party c they put in first position in their ranking to the party c∗ they
actually voted for, or intended to vote for at the election. Here, we are making the assumption that
c is their true top choice: even though the ranking-based rules are still manipulable, voters had no
real incentive to vote strategically, as there are no stakes to the survey. Moreover, participants were
not familiar with ranking-based rules, and would have difficulty knowing how to strategize. Thus,
we assume a voter voted sincerely in the actual election if c and c∗ are equal, and strategically
otherwise.

For this analysis, we divide the parties into three groups according to their score in the actual
election. Intuitively, we want this partition to reflect the safe/risky/out categorization that we
introduced in Section 5.3. We have:

• 5 safe parties that received more than 7% of the votes at the actual election, and were
expected to reach the threshold,
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• 2 risky parties that received between 5% and 6% of the votes and were in danger of not
reaching the threshold according to the polls, and

• 31 out parties that received less than 3% of the votes and were expected to not reach the
threshold.

Then, we divided the voters into four categories depending on their voting intention c∗ and their
presumed favorite party c. The percentages of voters in each category are given in Table 5.2.

1. The inconsistent voters are those who did not include c∗ at all in their ranking. We call
them inconsistent as there are no sensible reasons to select some party c∗ when it is allowed
to select only one, but not select it when it is allowed to select several.9 There are much
fewer inconsistent voters in the self-selected sample than in the representative one.

2. The presumably sincere voters who ranked c∗ in first position (i.e., c∗ = c), and who cor-
respond to the large majority of participants. These voters represent around 70% of the
participants in the self-selected sample and 80% in the representative sample.

3. The strategic voters who ranked in first position a party c with a lower score (that is, vote
count) that of c∗. There are 22.7% and 28.6% (respectively, 5% and 6.2%) of such participants
in the two datasets from the self-selected (respectively, representative) sample. For a majority
of them, c is an out party while c∗ is a larger party (either risky or safe); this is the canonical
example of tactical voting.

4. The other strategic voters who ranked in first position a party c with a higher score that of
c∗. This behavior is less common. For a majority of these voters, c is safe and c∗ is either
risky (which resembles patterns observed in coalition insurance voting) or also safe.

The fact that voters are more likely to vote for an out party when they can cast rankings than
when they have to vote for only one party can be shown to be statistically significant (for the
representative sample, we obtain χ2(1, N = 895) = 9.8, p = 0.002 for length-two rankings and
χ2(1, N = 895) = 16.2, p < 0.001 for unlimited-length rankings). This corroborates the results
from Graeb and Vetter (2018).

From the questionnaire at the end of the survey, we also know that the question “Would you
be more likely to vote for a small list if you could give additional choices?” has been answered
positively by 75% and 52% of the participants respectively in the self-selected and representative
sample (and negatively by 19% and 29%), while “Would you be likely to vote for a small list closer
to your interests even if there is a chance for your vote to not be taken into account?” was answered
negatively by 60% and 37% of participants respectively in the self-selected and the representative
sample (and positively by 33% and 47%). These answers confirm that many voters are indeed
strategizing in uninominal elections and that the possibility to rank more parties limits the need
to do so.

Representativity

We now compare the results of our different rules with that of the actual election, in particular the
representativity of the outcomes. In this analysis, we will focus on the three procedural rules DO,
STV and GP, as they are the most relevant in the context of parliamentary elections.

9For the participants who completed the survey after the election, they might have changed their mind about
the list they voted for, but we assume that this is not the case for the majority of the participants.
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Self-selected Representative
Two votes Rankings Two votes Rankings

Actual 12.1% 12.1% 12.1% 12.1%

Uninominal 38.0% 34.6% 20.5% 21.4%

DO 11.7% 3.2% 10.8% 8.7%
STV 7.0% 2.3% 9.2% 7.2%
GP 7.0% 2.3% 9.2% 7.2%

Table 5.3: Percentages of unrepresented voters.

Self-selected Representative
Two votes Rankings Two votes Rankings

Actual 7 7 7 7

DO 6 7+ 6 6
STV 7 8+ 7 7
GP 7 8+ 7 7

Table 5.4: Number of selected parties. The ‘+’ indicates that a party not selected at the actual
election is selected.

Unrepresented Voters

We first compare the share of voters who are unrepresented (i.e., that did not rank any party that
is selected by the rule). In Table 5.3, we show these shares obtained from

(1) the actual election (12.1%),

(2) the uninominal rule which deletes everything below voters’ first choice, selects all parties
meeting the threshold, but leaves voters unrepresented if their first choice is not selected,

(3) the party selection rules DO, STV, and GP.

The discrepancy between (1) and (2) is due to voters’ strategic behavior in the actual election.
Indeed, as we just saw in Table 5.2, many voters, especially in the self-selected sample, ranked a
party that is out first in their ranking, but voted for a safe party at the election. Thus, applying
the uninominal rule on the “sincere” rankings (that we collected) would lead these voters to be
unrepresented, while they were represented in the actual election. This partly explains why we
observe a much higher percentage of wasted votes for the uninominal rule with our datasets than
in the actual election. Another part of the explanation is that because participants voted less
strategically, one risky party did not reach the threshold in first-rank votes anymore in each dataset,
and their supporters became unrepresented. Arguably, the numbers in (2) are counterfactual: if
the voters know they have to cast a uninominal vote, they will strategize and the outcomes will be
those in (1).

In that sense, the party selection rules are reducing the share of unused ballots not from the
12.1% of the actual election, but from the values obtained in (2). The difference between (1) and
(3) is therefore even more relevant, and the gain is all the more remarkable as voters have less
incentives to strategize in our model. In other words, allowing voters to cast rankings decreases
the amount of unrepresented voters and the need for them to strategize.
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Recall that the outcome of DO is always a subset of the outcomes of STV and GP. For each of
our datasets, it turns out that STV and GP return the same set of parties, and DO returns one
fewer party (see Table 5.4), explaining why there are more unrepresented voters with DO than
with STV and GP.

The representation gain is higher with ranking ballots than with 2-truncated ballots. This is
not surprising: when participants can rank more than two parties, they are more likely to rank at
least one safe party than when they can rank only two. In addition, for the ranking dataset of the
self-selected sample, one additional party (namely the Pirate party) is selected in the outcome for
each rule, further decreasing the number of unrepresented voters. However, this is almost entirely
due to a selection bias: the survey was shared among the supporters and people familiar with this
party, leading to more people ranking it first than in a representative sample.10

The representation gain is also higher for the self-selected sample than for the representative
sample. This is partly explained by the fact that in the representative sample, a significant number
of voters ranked only one party, thus limiting their chances to be represented. This corresponds
to around 40% of the unrepresented voters in the representative sample, but to less than 10% of
them in the self-selected sample.

Note that because more voters are represented, the score distribution at the end will differ
from the one of the actual election, and if we were to distribute the seats according to the scores
of the parties, the seat distribution would also be different. With our datasets, this difference is
accentuated by the fact that the Pirate party is selected in the outcome of STV and GP for the
self-selected sample, leading to completely different seat distributions.

Finally, recall that local stability is not satisfied by any of our rules; therefore, it makes sense to
check if it is violated in our datasets. It turns out that it is indeed violated by DO in all datasets:
for both samples there exists one list (the one that is selected in the actual election but not in
our datasets because participants voted less strategically, see Table 5.4) which is preferred to all
selected lists by at least 5% of the voters. It is not violated by STV and GP. On the other hand, we
do not observe any violation of the representation of unrepresented voters axiom in our datasets.
Still, it is close to being violated by DO for the self-selected sample, as 4.7% of the voters were
unrepresented and ranked the same list (the same list that caused a violation of local stability).

Impact of the Ballot Size

1 2 3 4 5 6 7 8 9 10-37 38
0%

10%

20%

30%
Self-selected

Representative

Figure 5.3: Distribution of the number
of candidates ranked by the voters.

Another interesting observation is that the representa-
tivity gain with ranked ballots is already quite high with
short ballots. Indeed, a large majority of voters are rep-
resented by a party ranked very high in their ranking.
For instance, Figure 5.2 (a) shows that for the ranking
dataset of the self-selected sample, if we use STV or GP,
around 70% of voters are represented by their first choice,
and almost all voters have their representative in their
top 3 choices. This is even clearer for the representa-
tive sample (see Figure 5.2 (b)) as voters in this sample
ranked fewer parties on average (see Figure 5.3).

To complete this analysis, Figure 5.4 shows the fraction of lost votes if all rankings are truncated
to rank k. For the representative sample, as soon as k ⩾ 3, increasing k has almost no impact on

10Note that this bias is not corrected enough by our weighting method, as many participants ranked this party
first without indicating voting for it at the election, probably for strategic reasons.
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Figure 5.2: Distribution of the ranks of the representatives in the rankings of the voters for STV
and GP with a 5% threshold, in the ranking datasets.
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Figure 5.4: Fraction of lost votes if all rankings are truncated to rank k.

representativity. For the self-selected sample, as voters ranked more parties (see Figure 5.3), we
need k ⩾ 5 to reach an almost maximal representativity level. This is important for the practical
implementation of such rules: limiting voters to rank at most three parties leads to an acceptable
cognitive load for them (and is more likely to be adopted in real-world political settings), while
still ensuring good representativity.

Varying the Threshold

The results above were obtained with a threshold of 5%, the one used in this election. As a
robustness check, we ran the same analyses with other thresholds. In particular, we applied the
rules to our datasets with thresholds varying between 1% and 10%, and computed the percentage
of unrepresented voters, as well as the distribution of ranks of the representatives. The results
are shown in Figure 5.5. They are compatible with our previous observations: STV and GP
consistently give similar results and a better representation than DO, especially for high threshold
values, for which DO ignores a significant part of the voters. Moreover, we observe that even for
high thresholds, most voters are represented by one of their top 3 choices.

Finally, we conducted experiments with random noise added to the data. The goal here is to
have enough noise to make the risky parties sometimes reach the threshold, and sometimes not.
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Figure 5.5: Distribution of the ranks of the representatives in the rankings of the voters, with
different thresholds. The threshold used is indicated on the horizontal axis. For each threshold,
the vertical slice above it shows how the voters are divided into unrepresented voters (black area)
and represented voters (colored areas, colored according to the rank of the voter’s representative).
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Figure 5.6: Median percentage of unrepresented voters (over 100 random profiles) for different
thresholds.
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We applied the noise to the weights of the voters, and we used the following random model to
alter the weights of the voters: for every single simulation, we sampled a multiplier for each party
c from a Gaussian distribution σc ∼ N (1, 0.1), and one multiplier for each voter i from another
Gaussian distribution σi ∼ N (1, 0.1). We then multiplied the original weights wc of the voters
(which depend on their voting intention or actual vote c ∈ C at the election) by these multipliers.
More formally, the new weights are w∗

i = wc × σc × σi. Thus, the global weights of the different
parties can change, and the two risky parties sometimes reach the threshold, and sometimes not.
We sampled 100 profiles for each dataset and each rule using this model, and computed the median
percentage of unrepresented voters for different values of the threshold, as well as the 20 and 80
percentiles. The results are displayed in Figure 5.6. It appears that the observation that STV and
GP give much better results than DO holds even when we add noise to the data. We also observe
that STV and GP are more robust to noise, and that their outcomes are again very similar.

5.5 Discussion

In this chapter, we studied whether allowing voters to rank party lists instead of voting for a single
list could help obtain more representativeness in parliamentary elections by reducing the amount
of unrepresented voters. To this end, we defined five party selection rules, three of which seem
applicable to parliamentary elections: DO, STV and GP. Both our theoretical and our empirical
results suggest that rankings can indeed be helpful, with results varying by rule.

Which Rule to Use?

On the one hand, STV and GP allow more parties to be represented, and relatedly, leave fewer
voters unrepresented than DO. On the other hand, DO is the easiest to implement. In particular,
one simple way to implement it is to do two rounds of voting, both using uninominal preferences,
such that only the parties receiving more than 5% of the votes in the first round are allowed to be
in the second round. Such a system would make sense in some countries that are used to elections
with a runoff, such as France, and it is actually quite close to the voting systems used in France
for city councils and regional elections, in which lists of candidates that received more than 10%
of the votes can go to the second round, and lists that received more than 5% are also allowed
to go if they merge with a larger list. However, in these elections, the list that receives the most
votes in the second round gets a bonus (either 25% or 50% of the seats). Note also that DO is the
only party selection rule that can be implemented this way, ensuring a minimal communication
complexity. Despite this, all three rules are simple and easy to understand, with DO being closest
to the uninominal voting system, and STV being closely related to the ranking-based election
systems that are widely used in practice, especially in English-speaking countries (such as Ireland
and Australia).

Axiomatically, the three rules are incomparable: DO and GP enjoy stronger strategyproofness
guarantees than STV, while STV satisfies independence of clones and representation of solid coali-
tions. Moreover, we characterized STV with an independence condition. We showed that DO is
the only one of the three rules that satisfies monotonicity, and we characterized it using a rein-
forcement axiom. GP is the only one of these three rules that satisfies set-maximality. Note that
MaxP and MaxR also satisfy set-maximality. However, they fail inclusion of direct winners, which
is a crucial axiom in the context of a parliamentary election. Indeed, in such election it would be
hard to defend that a party that reaches the threshold cannot receive any seat.
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Our experimental analysis confirmed that rules based on rankings could reduce the number
of unrepresented voters, while allowing voters to vote less strategically. This is particularly true
for high thresholds. Thus, countries that place substantial importance on governability could in
principle use methods like the ones we studied to combine proportional representation with a high
threshold (perhaps as high as 10%) without causing unacceptable amounts of wasted votes.

Further Work

Our theoretical results operate within social choice theory and the axiomatic method. It would be
interesting to study this setting from the perspective of strategic candidacy, evaluating the rules’
impact on party formation and political innovation. Our experiment could also be productively
repeated in other countries, to better understand the robustness of our conclusions. We could also
run similar experiments on synthetic data.

As we mentioned in the introduction, the model of party selection rules is also relevant in the
context of group activity selection (or facility location) with group size constraints. In this context,
the goals might be different from ones we focused on in this chapter. In particular, MaxP and MaxR
become more relevant, as inclusion of direct winners is less crucial to satisfy, and set-maximality
is probably more important. Thus, it would be interesting to conduct experiments using several
datasets of truncated rankings, either real or synthetic, to see how the different rules perform in
this context, and how similar they are.

Implementation in Practice

Finally, it would be interesting to investigate whether the electorate would accept or welcome a
switch to one of these rules. In our online experiments, we asked some closed questions to the
participants, and additionally gave them the possibility to write comments.11 When asked which
voting system they preferred between the current one, a system using two-choice votes, and a
system using rankings, 46% of the participants in the representative sample said they preferred
one of the alternative methods. This value is much higher (77%) for the self-selected sample (even
after assigning weights to the voters), as many participants in this sample are interested in the
topic of alternative voting methods. We observe that the share of participants who appreciated
alternative methods is higher among voters who voted strategically at the election (as described in
Table 5.2): 53% in the representative sample and 89% in the self-selected sample. It also appears
that left-leaning voters are more open to alternative voting methods (58% in the representative
sample and 91% in the self-selected one). Moreover, some participants appreciated having the
possibility to give more expressive preferences, and the fact they did not have to choose between
their favorite party and a safe party. Some of them also argued in favor of limiting the number of
parties allowed in the rankings to 3 or 4.

Some participants suggested that instead of dealing with the issues caused by the threshold, the
best solution would be to simply delete it. It would indeed be easier, however it appears that this
proposal is not as unanimously popular as it seems, at least in France. In our representative sample,
only 37% of the participants answered positively regarding the deletion of the threshold, and 36%
negatively. 42% answered positively regarding a reduction of the threshold, and 31% negatively.
The percentage however increases to 55% of participants in favor of reducing the threshold (and
32% against) in the self-selected sample. The recurring argument in favor of keeping the threshold

11Some of the feedbacks were very interesting. To read these comments and our answers, see the following blog
post in French language: https://www.lamsade.dauphine.fr/vote/questions.html.

https://www.lamsade.dauphine.fr/vote/questions.html
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among the participants is the need to reduce the number of parties in the parliament, to facilitate
the formation of a coalition.

Finally, the question of the practical implementation of the rules, and of the counting of the
votes, was raised by some participants. The counting would indeed take more time than is required
for the current method, but probably as much as is needed in countries that use STV and IRV for
major elections (such as Ireland and Australia, in which ballots are still counted by hand). Ayadi
et al. (2019) proposed an efficient procedure for counting ballots with STV that could be adapted
to our context, and which is similar to the one discussed in the previous chapter for counting
ballots with Approval-IRV (Section 4.5). An even easier method would be to simply centralize
all ballots numerically, and apply the rule directly on the obtained preference profile. However, it
would require that people trust ‘the algorithm’, as well as the whole process of recording votes in
a database.
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Chapter 6

Learning Candidate Axes from
Approval Data

6.1 Introduction

In the first part of this thesis, we have seen several voting contexts in which increasing the ex-
pressiveness level of voters’ preferences could help solve actual issues, by allowing the use new
voting rules, which generally satisfy interesting theoretical properties. In all of the problems we
considered so far, the preferences of the voters were used to select a winner, or a set of winners, in
other words, to make a social choice. In this second part, we consider problems in which we use
methods and concepts from social choice theory to learn the hidden structure of the sets of voters
and candidates, based on the preferences of the voters. This line of research includes for instance
the problem of identifying exact or approximate structured preferences, such as single-peakedness
(see Section 2.2.6), or comparing preference profiles, for instance by constructing maps of elections,
that we discussed in Section 2.5.1.

On a formal level, these problems look exactly like the ones we have seen so far: we have a
set of voters, a set of candidates, a profile of preferences, and we want to find the best outcome.
We define several rules, and we evaluate them based on their theoretical properties (by doing an
axiomatic analysis), and on their performance on real or synthetic data (by doing an experimental
analysis). The main difference resides in that the outcome is not the output of a collective decision,
but a structured representation of the preferences of the voters based on a given criterion. For
instance, if we are using approval preferences, we can identify some links between the candidates:
if two candidates are approved by the same voters and disapproved by the same voters, then they
are likely quite similar. In contrast, if we are using uninominal preferences, such an analysis cannot
be done, and we cannot learn anything about the structure of the electorate or the candidates. In
that sense, the expressivity gain brought by approval preferences is not only a way to select better
winners, but also a way to better understand the electorate and the candidates.

The Left-Right Axis

To represent the similarities between the candidates, and the structure of the political landscape,
it is common to use an ordering of the candidates, which we interpret as an axis. Intuitively, can-
didates that are next to each other on the axis have overlapping sets of supporters, and candidates
that are further away from each other on the axis have very different sets of supporters.

195
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In the political context, it is very common to assume that candidates have a position on an
ideological axis, that represents some left-right political spectrum. This idea that there exists
such an axis of the candidates is quite strong, with the left being generally associated to the more
progressive and social policies, and the right to the more conservative and economically liberal
ones. A lot of political parties (especially in European countries) even have names that directly
refer to the fact that they are from the left (The Left in the European parliament, Die Linke in
Germany, GroenLinks in the Netherlands, Vänsterpartiet in Sweden, etc.), the center (Centrist
Party of Canada in Canada, Les Centristes in France, The Centre in Switzerland, etc.) or the right
of the spectrum (Kongres Nowej Prawicy in Poland), though generally the parties claiming to be
from the right are actually from the far-right (Union des Droites pour la République in France, La
Destra in Italy, Die Rechte in Germany, etc.). Political axes are also used in the United States,
for instance to order the different justices of the Supreme Court.1

Figure 6.1: Picture of the seat distribution in the
national Assembly used by the newspaper Libera-
tion to show the results of the 2024 parliamentary
election in France.

These political axes find many applications.
First of all, they are directly used for assigning
seats to the parliament members. Second, po-
litical axes are frequently used in the medias,
for instance when results of a poll for an elec-
tion are discussed. Figure 6.12 illustrates this:
parties are displayed in a particular left-right
order inside the parliament, which more or less
matches their actual arrangement. Intuitively,
we could think that the axes used in these cases
are based on the analyses of political experts
who ordered the candidates based on the poli-
cies that they proposed. While it might be the
case for some of them, when we asked a polling institute representative how they decide on which
axis to use, they replied that they simply select an ordering that looks reasonable and on par with
the perceived position of each party on the political spectrum.

Discovering the Hidden Axes

Nonetheless, the problem of placing political parties on an axis is well studied in the political science
literature, and is not restricted to the left-right axis. For instance, there exists axes focusing on the
parties’ economic policies, or on their sentiment towards EU. To decide on the relative positions
of parties on these axes, one of the most common methods is to use the party manifesto and
the policies it contains to estimate the position of the party. In particular, this enables to see
how the position of a political party evolve over time. The most famous database of political
parties using this method is the Comparative Manifesto Project (Lehmann et al., 2024). However,
the positions returned by this method are not always reliable: for instance, in 2018 it placed the
French communist party further to the right than the centrist party Mouvement Democrates. Other
widespread methods for placing parties on a left-right axis are to aggregate opinions of experts (see
for instance the Chapel Hill Expert Survey, Jolly et al. (2022)), or the opinions of a representative
sample of the population (see for instance The Comparative Study of Electoral Systems (2023), or
the European Election Studies, Popa et al. (2024)).

1See for instance The political leanings of the Supreme Court justices, Axios (Oriana González, Danielle Alberti),
https://www.axios.com/2019/06/01/supreme-court-justices-ideology

2This picture was taken from the website of the newspaper Liberation, https://web.archive.org/web/
20250228053455/https://www.liberation.fr/resultats-elections/.

https://www.axios.com/2019/06/01/supreme-court-justices-ideology
https://web.archive.org/web/20250228053455/https://www.liberation.fr/resultats-elections/
https://web.archive.org/web/20250228053455/https://www.liberation.fr/resultats-elections/
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In this chapter however, we propose novel methods that use the preferences of the voters
to construct the ordering of the candidates. In that sense, these methods are endogenous to the
preferences, while the other methods we mentioned are exogenous. Obviously, the possible methods
we can use depend on the format of the preferences. For instance, the problem is well-studied in
the case of ranking preferences (Niemi, 1969; Elkind and Lackner, 2014; Faliszewski et al., 2014;
Escoffier et al., 2021), and we gave an overview of the main results in Section 2.3.3. In this chapter,
we focus on the case of approval preferences. There are several reasons why approval preferences
are interesting for this problem. In particular, it is easier to collect approval preferences than
rankings and approval preferences intuitively seem more natural for building an axis. Despite this,
there has been little work on this problem in the social choice literature. The main exception is
the work of Lebon et al. (2017); Baujard and Lebon (2022), who used the approval preferences of
participants in the Voter Autrement experiments (see Section 2.5.4) to construct an axis of the
candidates in the French presidential elections of 2012 and 2017. We include the rule they used in
our study, as well as several rules inspired by the literature on ranking preferences.

Note that approval preferences have also been used to describe the political landscape in other
ways than constructing an axis. Laslier (2006) proposed a method to place candidates and voters on
a multi-dimensional space using approval preferences, and tested it on the Voter Autrement data of
the 2002 French presidential election (see also Laslier (2010a)). In their model, the probability for a
voter to approve a candidate depends on the distance between them, and on the overall popularity of
the candidate. In that sense, their model is closer to the Euclidean preference model (Section 2.5.1).
Baujard et al. (2011) repeated this analysis on the data of the 2007 French presidential election.
Alós-Ferrer and Granić (2015) conducted a similar study on the data of a 2012 experiment in
Germany. These studies often conclude that one dimension is not enough to faithfully represent
the political landscape. Finally, this problem is not restricted to the political context: Peress and
Spirling (2010) propose for instance a way to embed movies in a multi-dimensional space based on
the preferences (here, ratings) of the users on the movies.

Interval Approval Ballots

Intuitively, an axis perfectly depicts the data if every voter approves an interval of the axis. In other
words, if a voter approves two candidates on the axis, then they must approve all candidates that
are placed between them. This corresponds to interval approval preferences, that we introduced
and discussed in Section 2.2.6. We say that the associated approval profile satisfies the Candidate
Interval (CI) property (Elkind and Lackner, 2015), or that it is linear. Of course, it is very unlikely
that real datasets will satisfy this property, and that there exists an axis that perfectly depicts the
preferences. Thus, the methods we propose aim at finding an axis that best approximate the
interval structure, and thereby provide a good ordinal one-dimensional embedding of the profile.

The most natural method, inspired by the Voter Deletion rule defined for ordinal preferences
(see Section 2.3.3), selects the axes which minimize the number of voters whose ballots need to be
removed from the profile so that all remaining votes are intervals of the axis. For their analysis
of the French political landscape, Lebon et al. (2017) used another method, which selects the axes
which minimize the total number of candidates that need to be added to approval ballots so that
all ballots become intervals of the axis. These are two examples of the five objective functions we
introduce and study in this chapter.

Algorithmically, the task of finding an axis optimizing a particular objective function is well
studied. First of all, to check whether a perfect axis exists (i.e., an axis in which every approval
ballot is an interval), one simply needs to check whether the 0–1 approval matrix satisfies the
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consecutive ones property (C1P), which can be done in linear time (Booth and Lueker, 1976).
The problem of finding an axis that makes as many votes as possible into an interval (the voter
deletion method) is NP-hard (Garey and Johnson, 1979, Problem SR14). Similarly, the problem
of minimizing the number of “1” to add to the matrix to satisfy C1P (corresponding to the method
used by Lebon et al. (2017)) is also known to be NP-hard (Problem SR16). More generally, the
study of the algorithmic problem of recognizing profiles that are nearly C1P has received thorough
attention in the literature (e.g., Hajiaghayi and Ganjali, 2002; Tan and Zhang, 2007; Chauve
et al., 2009; Dom et al., 2010; Narayanaswamy and Subashini, 2015). We refer to Dom (2009) for
an extensive survey on the consecutive ones property. However, these complexity-theoretic works
do not tell us which of these objective functions “work best”, which is what we want to uncover in
this chapter.

Other Applications

Our problem finds applications beyond ordering political candidates with voters’ approval pref-
erences. Looking at it more mathematically, we can summarize the problem as follows: given a
matrix of 0 and 1 (e.g., encoding approval ballots) that links row items (e.g., voters) to column
items (e.g., candidates), find an ordering of the column items such that similar items are close to
each other on this ordering, in the sense that they are associated with similar row items.

There exist many applications in which axes can help understanding and representing data,
as well as direct use-cases where the axis itself plays a key role. If we first stay in the political
context, we could use some other information than the approval preferences of voters to obtain
an ordering of parties (or candidates), as long as this information can be represented by a binary
matrix. For instance, we can interpret votes of the different parties that form a parliament on the
bills that are proposed to them as 0 if they vote against a bill, and 1 if they vote in favor, and we
could use our methods to find an ordering of the parties (here, the bills would be the “voters” that
“approve” the parties). There also exist several other use-cases beyond political ones. In particular,
archaeological seriation is a well-established approach in archaeology for ordering artefacts by their
age. The idea is to let the features that were temporarily “in fashion” (e.g., drawing styles) approve
artefacts on which they are found (Petrie, 1899; Baxter, 2003). In the true ordering by age, each
feature is likely to induce an interval, as artefacts from the same period generally have similar
features. Thus, a good axis rule will produce an ordering of artefacts by their age with few errors.
More generally, these methods can be used for relative dating of geological or biological events. A
typical example is if we want to order geological strata by chronological order, based on which kinds
of ammonite fossils can be found in each stratum (here, the ammonite fossils “approve” the strata).
This works well because such fossils have a very short lifespan as a species, but at the same time
they generally cover a large geographical territory. Finally, to stay on the theme of temporal axes,
our methods can also be used for scheduling purposes. Consider for instance a conference in which
the organizers ask attendees which talks they wish to see, and then use our methods to arrange
the talks so attendees can join for consecutive talks. In that sense, our problem is slightly related
to collective scheduling (Pascual et al., 2018), where the goal is to output a collective schedule
based on voters’ preferences over the possible schedules (the model and the existing methods are
however quite different). A different way of applying our methods (without the need to ask for
attendees preferences) is for keywords to “approve” the talks/papers that mention them, leading
to a thematically coherent ordering of the talks.
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Outline of the Chapter

In this chapter, we provide a framework for answering the question of what is the “best” objective
function, via the axiomatic analysis and the experimental analysis, as we did in the previous
chapters. We interpret different objective functions as rules that take an approval profile as input
and return an axis or a set of tied axes. In particular, we focus on the following five rules, which
we define more precisely in Section 6.2:

• Voter Deletion (VD) selects the axes which minimize the number of voters whose ballots are
not intervals.

• Minimum Flips (MF) selects the axes which minimize the number of approvals that need to
be added or removed from ballots to make all ballots intervals of the axis.

• Ballot Completion (BC) selects the axes which minimize the number of approvals that need to
be added to ballots to make all ballots intervals of the axis (but we cannot remove approvals).

• Minimum Swaps (MS) selects the axes which minimize the average number of swaps within
the axes that are needed to turn ballots into intervals of the axis.

• Forbidden Triples (FT) selects the axes which minimize the total size of holes in a ballot,
weighted by how many approved candidates they separate.

Note that all these rules aim to find an axis that minimizes some function. In that sense, all
these rules are part of the scoring rules family, on which we will be focusing in this chapter.

On a high level, these five rules can be ordered on a spectrum based on how much ballot
information they use to select the axes. This ranges from VD, which uses the least information
by only considering whether a ballot represents an interval on the axis, to FT, which uses the
most, as the placement of non-approved candidates among approved ones is a critical factor. Our
axiomatic analysis, in Section 6.3, shows that the rules that use less information are generally more
robust to changes. In particular, among the discussed rules, only VD and BC satisfy a desirable
monotonicity property. Moreover, VD is the only scoring rule that satisfies this monotonicity
property and independence of clones (Section 2.4.4), adapted to this context. On the other hand,
the rules that use more information seem to have more interesting behaviors in practice. For
instance, they tend to push disliked candidates towards the extremes of the axis. Moreover, FT is
the only one of the five rules to satisfy the clone-proximity axiom, which says that two candidates
that are approved by exactly the same voters should always be next to each other on the axis.
Interestingly, we can show an incompatibility between our two clone-related axioms for scoring
rules.

We complete the analysis in Section 6.4 by applying our rules to different datasets, including
Voter Autrement datasets, votes of the justices of the US Supreme Court, tierlist datasets, and
synthetic datasets. The simulations show how our rules differ, which perform best, and how they
compare to rules that are based on rankings rather than approvals.

6.2 Axis Rules

In this chapter, we assume that we have a profile P = (A1, . . . , An) of approval ballots, and that
we want to find an ordering of the candidates, called axis. We already introduced this structure in
Section 2.3.3, but we recall here the main notations and definitions. An axis ◁ ∈ L(C) is a strict
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linear order of the candidates, so that a ◁ b means that candidate a is strictly on the left of b on
the axis. We write a P b if a ◁ b or a = b. For brevity, we sometimes omit the ◁ and write for
instance abc for the axis a ◁ b ◁ c. The direction of an axis is irrelevant, so we informally treat the
axes ◁ = abcd and ⃗◁ = dcba as being the same axis.

We say that an approval ballot A is an interval of an axis ◁ if for all pairs of approved candidates
a, b ∈ A and every c such that a ◁ c ◁ b, we have c ∈ A. If instead there exist c /∈ A and a, b ∈ A
such that a ◁ c ◁ b, we say that c is an interfering candidate on ballot A. A profile P is linear if
there exists an axis ◁ such that all approval ballots in P are intervals of ◁. We also say that this
axis ◁ is consistent with the profile P . We write con(P ) ⊆ L(C) for the set of all axes consistent
with P . For instance, if P = ({a, b}, {b, c}, {c, d}), the axis ◁ = abcd is consistent with P , as all
approval ballots in P are intervals of ◁.

For an approval ballot A and an axis ◁ = c1c2 · · · cm with candidates relabeled by their position
on the axis, we denote by xA,◁ = (x1A,◁, . . . , x

m
A,◁) the approval vector where xjA,◁ = 1 if cj ∈ A,

and 0 otherwise. For instance, for the axis ◁ = abcd and the ballot A = {b, c}, we get the approval
vector (0, 1, 1, 0), while A′ = {a, d} gives the approval vector (1, 0, 0, 1) (which has two interfering
candidates b and c). The approval matrix of a profile P = (A1, . . . , An) has xAi,◁ as its ith row.
Thus, its (i, j)-entry is equal to 1 if cj ∈ Ai and equal to 0 if cj /∈ Ai. Note that a profile is linear
if and only if its approval matrix (derived from an arbritrary axis ◁) satisfies the consecutive ones
property (C1P), i.e., its columns can be reordered such that in each row, the “1”s form an interval.

An axis rule f is a function that takes as input an approval profile P and returns a non-empty
set of axes f(P ) ⊆ L(C), such that for each axis ◁ in f(P ) its reverse axis ⃗◁ is also in f(P ),
encoding the idea that the direction of the axis does not matter. In this chapter, we focus on the
family of scoring rules, which we define in analogy to other social choice settings (Myerson, 1995;
Pivato, 2013a). Let cost : 2C ×L(C)→ R⩾0 be a cost function, indicating the cost cost(Ai, ◁) that
a ballot Ai ∈ P incurs when the axis ◁ is chosen. By summing up these costs, we get the cost of
an axis ◁ for the profile P : cost(P, ◁) =

∑
i∈V cost(Ai, ◁). An axis rule f is a scoring rule if there

is a cost function costf such that f(P ) = argmin◁∈L(C) costf (P, ◁) for all profiles P .

A focus on this class of scoring rules can be justified as an analogue to scoring rules in voting
theory, in that every scoring rule satisfies the reinforcement axiom (Section 2.4.3), which says that
if f chooses at least one common axis ◁ in two disjoint profiles P1 and P2, so that f(P1)∩ f(P2) ̸=
∅, then the axes it chooses in the combined profile P1 + P2 are exactly the common axes, i.e.,
f(P1 + P2) = f(P1)∩ f(P2). Another motivation for scoring rules is their natural intepretation as
maximum likelihood estimators when there is a ground truth axis (similarly to what was observed
by Conitzer et al. (2009) and Pivato (2013b) in the voting setting). To see the connection, let ◁ be
the ground truth axis, and suppose voters obtain their approval ballots Ai i.i.d. from a probability
distribution P(Ai | ◁) (where intuitively ballots are more likely the closer they are to forming an
interval of ◁). Then, the likelihood of a profile P is P(P | ◁) =

∏
i P(Ai | ◁). To find the axis

inducing maximum likelihood, we solve:

MLE(P ) := argmax
◁

P(P | ◁) = argmin
◁

(
−
∑
i

log(P(Ai | ◁))

)
,

which is a scoring rule f with costs costf (Ai, ◁) = − log(P(Ai | ◁)).



6.2. AXIS RULES 201

Rules

We now introduce five scoring rules. Many are inspired by objective functions proposed for near
single-peakedness (that we discussed in Section 2.3.3), in which preferences are rankings (Fal-
iszewski et al., 2014; Escoffier et al., 2021). The first rule is called Voter Deletion (VD).

Voter Deletion
This rule returns the axes that minimize the number of ballots to delete from the profile P in
order to become consistent with it. This rule is a scoring rule based on the cost function costVD

such that costVD(A, ◁) = 0 if A is an interval of ◁ and 1 otherwise.

a b c d e costVD
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Figure 6.2: Costs of some ballots
under VD.

The idea behind this rule is that perhaps some “maverick”
voters are “irrational”, and should hence be disregarded. The
aim is to delete as few maverick voters as possible. Figure 6.2
shows the costs of some ballots under VD. Observe that the
rule gives the same cost to all non-interval ballots. An intu-
itive shortcoming of VD is that it does not measure the degree
of incompatibility of a given vote with an axis. For example,
VD does not distinguish ballots that miss just one candidate
to be an interval, and an approval ballot in which only the two
extreme candidates of the axis are approved. For this reason,
more gradual rules might do better.

The first rule in this direction is Minimum Flips (MF) which changes ballots by removing and
adding candidates. The idea behind this rule is that the approval ballots of the voters are “noisy”
versions of intervals of the axis, in the sense that some approvals ‘bits’ have been flipped (i.e.,
some candidates that should have been approved are not, and some candidates that should not
have been approved are). The rule aims to find the axes that minimize the number of flips needed
in each ballot to make the profile linear.

Minimum Flips
This rule returns the axes that minimize the number of candidates that need to be removed from
or added to approval ballots in order to make the profile linear. It is the scoring rule based on:

costMF(A, ◁) = min
x,y∈A:xPy

|{z ∈ A : z ◁ x or y ◁ z}|+ |{z /∈ A : x ◁ z ◁ y}|

a b c d e costMF
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Figure 6.3: Costs of some ballots
under MF. Candidates that need
to be added are represented by red
ticks, candidates that need to be
removed by blue ticks.

The definition of costMF optimizes the choice of the left
and right-most candidates x and y in the ballots after remov-
ing and adding candidates, and then counts the number of
candidates that need to be removed (first term of the sum)
and added (second term) to the ballot. We can equivalently
view MF as finding for each vote Ai the interval ballot closest
to Ai in Hamming distance, with that distance being the cost
of ◁. In another equivalent view, MF finds the linear profile
of minimum total Hamming distance to the input profile, and
returns the axes consistent with this profile. Figure 6.3 shows
the costs of some ballots under the MF rule. Observe that we
can obtain an interval by only removing candidates (second
ballot), by only adding candidates (third ballot), or by both
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removing and adding candidates (last ballot).
In many applications, adding approvals seems better motivated than removing them. For

example, a voter i might not approve a candidate c because they do not know who c is; fixing this
error corresponds to adding a candidate. On the other hand, approving a candidate by accident
seems less likely. The Ballot Completion (BC) rule implements this thought.

Ballot Completion
This rule returns the axes that minimize the number of candidates to add to approval ballots to
make the profile consistent with it. It is the scoring rule based on:

costBC(A, ◁) = |{b /∈ A : a ◁ b ◁ c for some a, c ∈ A}|

a b c d e costBC
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Figure 6.4: Costs of some ballots
under the BC rule. Candidates
that need to be added are repre-
sented by red ticks.

Thus, given a ballot A and an axis ◁, this rule counts all in-
terfering candidates with respect to A and ◁. To see the differ-
ence between MF and BC, observe that costBC({a, d}, abcd) =
2, as we need to add b and c to obtain an interval, while
costMF({a, d}, abcd) = 1, as we can just remove a. Figure 6.4
shows the costs of some ballots under the BC rule.

In the approval context, BC is the only rule we know of
that has already been used in the literature to find an under-
lying political axis of voters, on the data of Voter Autrement
experiments conducted during the 2012 and 2017 French pres-
idential elections (Lebon et al., 2017; Baujard and Lebon,
2022). The axes found by BC were close to the orderings commonly discussed in the media.

In all the rules introduced so far, we modify the ballots (by adding and/or removing candidates)
so that they become intervals of the optimal axis, and find the axis that require the minimal amount
of changes. The next rule, called Minimum Swaps (MS), modifies the axis rather than the ballots.
Given an approval ballot A, MS asks how many candidate swaps we need to perform in an axis ◁
until A becomes an interval of it: the cost costMS is the minimum swap distance between ◁ and an
axis ◁′ such that A is an interval of ◁′ (see Section 2.3.1 for a definition of the swap/Kendall-tau
distance). For instance, costMS({a, d}, abcd) = 2 because we need to have a next to d on any axis
consistent with {a, d} and we need at least two swaps to obtain this.

Minimum Swaps
This scoring rule is based on the cost function:

costMS(A, ◁) =
∑
x/∈A

min(|{y ∈ A : y ◁ x}|, |{y ∈ A : x ◁ y}|).

To see why this formula implements our swapping description of costMS(A, ◁), note that to
modify the axis ◁ such that A becomes an interval of it, we need to “push outside” all interfering
candidates (x /∈ A such that there exists y, z ∈ A with y ◁x◁z). Let us prove it more formally. Fix
some ballot A and some axis ◁. Let ◁′ be an axis of minimum swap distance to ◁ and such that
A is an interval of ◁′. Write KT(◁, ◁′) this minimum swap distance (or Kendall-tau distance). It
is clear that ◁ and ◁′ agree on the ordering of the approved candidates in A: if they ordered some
pair of approved alternatives in different ways, we could swap them in one of the axes and thereby
reduce the swap distance.

We first show that KT(◁, ◁′) ⩾
∑

x/∈A min(|{y ∈ A : y ◁ x}|, |{y ∈ A : x ◁ y}). Because A is an
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interval of ◁′, every non-approved candidates x /∈ A must appear either to the left or to the right of
all approved candidates in ◁′. Thus, x must have been swapped with at least all candidates y ∈ A
to its right or to its left, giving us the lower bound. To see that KT(◁, ◁′) ⩽

∑
x/∈A min(|{y ∈

A : y ◁ x}|, |{y ∈ A : x ◁ y}), partition the set C \ A of non-approved candidates into two parts,
corresponding to those candidates for which it is cheaper to push them to the left or to the right,
respectively:

L = {x ∈ C \A : |{y ∈ A : y ◁ x}| < |{y ∈ A : x ◁ y}|},
R = {x ∈ C \A : |{y ∈ A : y ◁ x}| ⩾ |{y ∈ A : x ◁ y}|}.
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Figure 6.5: Costs of some ballots
under the MS rule. Arrows indi-
cate the swaps needed to make the
vote an interval.

Consider the axis ◁′′ = ◁L ◁A ◁R obtained by placing the
candidates of L on the left, the candidates of A in the center
and the candidates of R on the right, but keeping the same
relative ordering of candidates as ◁ within each set L, A, and
R. By construction, A is an interval of ◁′′, and it is easy to
compute that the swap distance between ◁ and ◁′′ is precisely
KT(◁, ◁′′) = min(|{y ∈ A : y ◁ x}|, |{y ∈ A : x ◁ y}), which by
minimality of KT(◁, ◁′) must be at least as large as KT(◁, ◁′′).

Figure 6.5 shows the costs of some ballots under the MS
rule. Note that the order in which the swaps are performed
matters. For instance, we need to swap the same pairs of
candidates for the third and the fourth ballots ({c, d} and {d, e}), but we start by swapping c and
d in the third ballot and we start with d and e in the fourth ballot.

Our last rule Forbidden Triples (FT), is inspired by a proposal for rankings by Escoffier et al.
(2021). It is defined by counting the number of violations of the interval condition.

Forbidden Triples
This scoring rule is based on the cost function:

costFT(A, ◁) = |{(x, y, z) : x, z ∈ A, y /∈ A, x ◁ y ◁ z}|.
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Figure 6.6: Costs of some ballots
under the FT rule. The number of
forbidden triples involving each in-
terfering candidate is shown in red.

Note that there is one forbidden triple for each combina-
tion of an interfering candidate and a pair of candidate lying
on its left and its right, respectively. Thus, we also have:

costFT(A, ◁) =
∑
x/∈A

|{y ∈ A : y ◁ x}| × |{y ∈ A : x ◁ y}|.

For instance, we have costFT({a, b, d, e}, abcde) = 2 × 2 = 4

while costFT({a, b, c, e}, abcde) = 3 × 1 = 3. Intuitively, this
rule looks at the holes in a vote, with larger holes separating
many approved candidates counting more. Figure 6.6 shows
the costs of some ballots under the FT rule.

Observe that these rules are distance-rationalizable (as defined in Section 2.3.3), if we consider
the consensus class of linear profiles. In particular, the distance for VD is the discrete distance,
and the one for MF is the Hamming distance.
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◁1 a b c d

4 ×
4 ×
3 ×
1 ×
1 ×

◁2 d a b c

4 ×
4 ×
3 ×
1 ×
1 ×

◁3 a d b c

4 ×
4 ×
3 ×
1 ×
1 ×

◁4 a b d c

4 ×
4 ×
3 ×
1 ×
1 ×

Figure 6.7: Profile of Example 6.1 on 4 different axes. Red circles indicate interfering candidates.

Linking the Rules

The cost functions of our five scoring rules can be related via a chain of inequalities, suggesting
that they form a natural collection of rules to study.

Proposition 6.1
For all ballots A and axes ◁, we have:

costVD(A, ◁) ⩽ costMF(A, ◁) ⩽ costBC(A, ◁) ⩽ costMS(A, ◁) ⩽ costFT(A, ◁).

Proof. To see costVD(A, ◁) ⩽ costMF(A, ◁), note that if A is not an interval of ◁ then costVD(A, ◁) =

1 and at least one candidate must be flipped to make A an interval of ◁, so costMF(A, ◁) ⩾ 1. If A
is an interval then costMF(A, ◁) = costVD(A, ◁) = 0.

We have costMF(A, ◁) ⩽ costBC(A, ◁) because in MF we can add and remove approvals, but in
BC we can only add approvals. We can also see this from the formal definitions: costMF(A, ◁) is
a minimum, and if x and y are the left-most and right-most approved candidates in A, we obtain
the value of costBC(A, ◁), which must thus be at least as high as the minimum over x and y.

Finally, observe that for any interfering candidate x on A, min(|{y ∈ A : y ◁ x}|, |{y ∈ A :

x ◁ y}|) ⩾ 1. Moreover, as these are all natural numbers, min(|{y ∈ A : y ◁ x}|, |{y ∈ A : x ◁ y}|) ⩽
|{y ∈ A : y ◁ x}| × |{y ∈ A : x ◁ y}|. Thus, costBC(A, ◁) ⩽ costMS(A, ◁) ⩽ costFT(A, ◁) by the
definitions of these rules.

Note that the rules we consider here are invariant to rescaling the costs. Thus, we could
have different cost functions for the same rules (by multiplying all costs by some constant factor),
and they would not necessarily satisfy the inequalities in Proposition 6.1. However, the five cost
functions we consider in this result are all scaled such that the minimal cost of a ballot that is not
an interval of the axis is 1. Thus, it is a natural scaling for comparing the different rules.

We say that two axis rules f1 and f2 are equivalent if for all profiles P we have f1(P ) = f2(P ).
Note that if n ⩽ 2 or m ⩽ 2, every profile is linear. Moreover, if there are m = 3 candidates, all
the rules defined in this section are equivalent (as there is only one non-interval approval vector,
so the only possible costs are 0 and 1). If there are m = 4 candidates, VD and MF are equivalent
and BC and MS are equivalent, because their respective cost functions coincide. This does not
remain true for m ⩾ 5, for which the rules are pairwise non-equivalent. Example 6.1 discusses a
profile with m = 4 candidates for which VD, BC, and FT all select different axes.

Example 6.1
Consider the following profile P

4 : {b, c, d} 4 : {a, b} 3 : {a, d} 1 : {a, c} 1 : {b, c}
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On this profile, all rules agree that a ◁ b ◁ c, but they disagree on the position of d. Indeed,
◁1 = abcd is optimal for VD and MF, ◁2 = dabc for BC and MS, and ◁3 = adbc and ◁4 = abdc for
FT. Figure 6.7 shows the profile aligned according to the four possible axes. One can easily see
that among these axes (1) the axis ◁1 on the left minimizes the VD cost with only 4 non-interval
ballots, (2) the axis ◁2 in the center-right minimizes the BC cost with 5 interfering candidates
(red circles) and (3) the axes ◁3 and ◁4 on the right minimize the FT cost with 6 forbidden
triplets.

Computational Complexity

Problems about recognizing matrices that are almost C1P have long been known to be NP-hard.
Hardness of VD and BC is explicitly known, as computing VD is equivalent to the consecutive ones
submatrix problem (Booth, 1975, Theorem 4.24), and BC to the consecutive ones matrix completion
problem (Booth, 1975, Theorem 4.19), which are both NP-hard. Moreover, the reductions only
use approval ballots of size at most two (i.e., maxi |Ai| = 2). The result for all the rules follows
from the fact that if approval ballots have size at most two, MF is equivalent to VD and MS and
FT are equivalent to BC.

Theorem 6.2
The VD, MF, BC, MS, and FT rules are NP-hard to compute, even for profiles in which every
ballot approves at most 2 candidates.

6.3 Axiomatic Analysis

In this section, we conduct an axiomatic analysis of the rules we introduced. We start with
some basic axioms that all these rules satisfy. The first two are the classical symmetry axioms
(Section 2.4.1): a rule f is anonymous if whenever two profiles P and P ′ are such that every
ballot appears exactly as often in P as in P ′, then f(P ) = f(P ′). It is neutral if for every profile
P , renaming the candidates in P leads to the same renaming in f(P ). All scoring rules are by
definition anonymous, as they compute a sum of costs over all voters, regardless of which voters
have which preferences. The third basic property fundamentally captures the aim of an axis rule:
if there are perfect axes for the profile, then the rule should return exactly those.

Consistency with linearity
An axis rule f is consistent with linearity if f(P ) = con(P ) for all linear profiles P .

If f is a scoring rule and it satisfies these three axioms, this means that f can be associated with
a cost function that has a certain structure. In particular, the cost function attains its minimum
value for intervals, it is invariant under reversing the axis, and it is symmetric.

Lemma 6.3
Let f be a scoring rule. Then f is neutral and consistent with linearity if and only if there exists
a cost function costf that induces it and that satisfies:

(1) for all approval ballots A and all axes ◁, we have costf (A, ◁) ⩾ 0, and costf (A, ◁) = 0 if
and only if A is an interval of ◁,

(2) for all approval ballots A and all axes ◁, we have costf (A, ◁) = costf (A, ⃗◁), and
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(3) there exists a function g : {0, 1}m → R⩾0 such that for all approval ballots A and all axes
◁, we have costf (A, ◁) = g(xA,◁) = g(x

A, ⃗◁) (in other words, costf depends only on the
induced approval vector xA,◁).

Proof. Let f be a scoring rule induced by some cost function cost. It is straightforward to check
that if cost satisfies all three conditions, then f is neutral (due to (3)) and consistent with linearity
(due to (1)).

For the other direction, consider the cost function cost′ such that for all approval ballot A and
axis ◁, we have:

cost′(A, ◁) = cost(A, ◁)− min
◁′∈L(C)

cost(A, ◁′).

It is clear that cost′ still induces f as for all profiles P and axis ◁, we have cost′(P, ◁) = cost(P, ◁)−∑
A∈P min◁′∈L(C) cost(A, ◁

′), and the second term of the subtraction is constant for all axes ◁.
Thus, the axes minimizing cost are exactly the ones that minimize cost′. Moreover, we have
min◁ cost

′(A, ◁) = 0. We will show that this cost function cost′ satisfies (1) and (2), and afterwards
we will derive another cost function that also induces f , and that additionally satisfies (3).

We first show (1). That we always have cost′(A, ◁) ⩾ 0 is clear from our choice of cost function.
Assume for a contradiction that there is an axis ◁ and a ballot A such that cost′(A, ◁) = 0 but
A is not an interval of ◁. Then, on the linear profile P = {A}, we have ◁ ∈ f(P ), which is a
contradiction with consistency with linearity. Similarly, if A is an interval of ◁ but cost′(A, ◁) > 0,
then on the linear profile P = {A}, we have ◁ ̸∈ f(P ) while ◁ is consistent with P , a contradiction
with consistency with linearity.

We now show (2). If A is an interval of ◁, it is also an interval of ⃗◁, so from (1) we clearly have
cost′(A, ◁) = cost′(A, ⃗◁). Assume now that A is not an interval of ◁. Thus, y = cost′(A, ◁) > 0

and y′ = cost′(A, ⃗◁) > 0. Assume for a contradiction that y ̸= y′, and without loss of generality
that y < y′. Let us denote the candidates c1, . . . , cm such that ◁ = c1c2 . . . cm. Moreover, let z > 0

be the minimum value of cost′(A′, ◁) over all ballots A′ that are not intervals of ◁. Take q ∈ N
such that q > y/z and consider the profile P which contains A and q ballots {ci, ci+1} for each
i ∈ [1,m − 1]. Clearly, any axis ◁′ /∈ {◁, ⃗◁} is breaking at least one pair, inducing a cost greater
than q · z > y. The cost of ◁ is y and the cost of ⃗◁ is y′ > y. Thus, f(P ) = {◁} which contradicts
the definition of axis rules (which requires that whenever an axis is selected, then so is its reverse
axis). Therefore, y = y′ and cost′(A, ◁) = cost′(A, ⃗◁).

For (3), we show that f is induced by a cost function cost∗ such that cost∗(A, ◁) only depends
on xA,◁. Let Π be the set of all permutations of the candidates. For a permutation π ∈ Π,
for each ballot A we write π(A) = {π(a) : a ∈ A}, and for each axis ◁ = c1 . . . cm we write
π(◁) = π(c1) . . . π(cm). Then we define:

cost∗(A, ◁) =
∑
π∈Π

cost′(π(A), π(◁)) for all A and ◁.

We will show that this cost function still induces f , and that it satisfies conditions (1)–(3).
To show that f is still induced by this cost function, let ◁ ∈ f(P ) be an optimal axis for

profile P . Then, by neutrality, π(◁) ∈ f(π(P )) for all π ∈ Π. This implies that cost(π(◁), π(P )) ⩽

cost(π(◁′), π(P )) for all axes ◁′ ∈ L(C). Since this inequality carries over to the sum over all π ∈ Π,
this implies cost∗(◁, P ) ⩽ cost∗(◁′, P ) for all ◁′. For the other direction, let ◁′ /∈ f(P ) and fix some
◁ ∈ f(P ). With the same argument, we obtain cost∗(◁, P ) < cost∗(◁′, P ), which shows that, for all
profiles, an axis ◁ has minimal cost w.r.t. cost∗ if and only if it is chosen by f .
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Figure 6.8: Profile P and ballot A (the last row) with the axes aebcfd and ceabfd in the proof of
Proposition 6.4. Red circles indicate interfering candidates.

Finally, we check that cost∗ satisfies the conditions of the lemma. Because cost′ satisfies condi-
tions (1) and (2), it is clear that cost∗ also satisfies conditions (1) and (2). For condition (3), take
any A, ◁ and A′, ◁′ with the same approval vector, i.e., xA,◁ = xA′,◁′ . Then, there exists a permuta-
tion τ ∈ Π with τ(A) = A′ and τ(◁) = ◁′. Thus, we obtain that cost∗(A′, ◁′) = cost∗(τ(A), τ(◁)) =∑

π∈Π cost′(π(τ(A)), π(τ(◁))) =
∑

π′∈Π cost′(π′(A), π′(◁)) = cost∗(A, ◁).

Stability and Monotonicity

Some rules are more sensitive to changes than others. Intuitively, Voter Deletion rarely reacts to
changes in the profile, as it only checks whether the ballots are intervals of the axis or not. Thus,
a single voter will have little effect on the axes selected. Indeed, for VD, adding a new ballot to
the profile cannot completely change the set of optimal solutions. For other rules, this is not the
case. We can formalize this behavior with the following axiom.

Stability
An axis rule f satisfies stability if for every profile P and every approval ballot A, we have
f(P ) ∩ f(P + {A}) ̸= ∅.

This axiom is also considered by Tydrichová (2023, Sec. 4.4.2) in the context of rankings, and
a similar axiom is used by Ceron and Gonzalez (2021) to characterize approval voting among
approval-based single-winner voting rules.

Proposition 6.4
Stability is satisfied by VD, but not by MF, BC, MS and FT.

Proof. Let us prove that VD satisfies stability. Let P be a profile and A an approval ballot. If
VD(P + {A}) ⊆ VD(P ), then clearly VD(P ) ∩ VD(P + {A}) ̸= ∅. Otherwise, let ◁1 ∈ VD(P +

{A}) \VD(P ) and ◁2 ∈ VD(P ). Then, costVD(P, ◁2) ⩽ costVD(P, ◁1)− 1. Moreover, by definition
of VD, 0 ⩽ costVD(A, ◁) ⩽ 1 for all axes ◁. Put together, this gives:

costVD(P + {A}, ◁2) = costVD(P, ◁2) + costVD(A, ◁2)

⩽ (costVD(P, ◁1)− 1) + 1

⩽ costVD(P, ◁1) + costVD(A, ◁1)

= costVD(P + {A}, ◁1)

Therefore, costVD(P + {A}, ◁2) ⩽ costVD(P + {A}, ◁1) and thus, because ◁1 ∈ VD(P + {A}), we
must also have ◁2 ∈ VD(P + {A}), and thus VD(P ) ∩VD(P + {A}) ̸= ∅, as required.
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For f ∈ {MF,BC,MS,FT}, let us consider the following profile P :

1: {a, b, e} 1: {a, b, c, e} 1: {b, c, d, e, f}

By consistency with linearity, f(P ) = {aebcfd , aebcdf, abecdf, abecfd} (up to the reverse axes).
Now, consider the ballot A = {a, b, d, f}. For every ◁ ∈ f(P ), we have costMF(P + {A}, ◁) =

costBC(P + {A}, ◁) = 2, costMS(P + {A}, ◁) ∈ {3, 4} and costFT(P + {A}, ◁) ∈ {7, 8}.
However, let us consider the axis ◁′ = ceabfd /∈ f(P ). As one can see on Figure 6.8, the

only ballot in P + {A} that is not an interval of ◁′ is {b, c, d, e, f}, and thus we can calculate that
costMF(P+{A}, ◁′) = costBC(P+{A}, ◁′) = 1, costMS(P+{A}, ◁′) = 2 and costFT(P+{A}, ◁′) = 6.
Therefore, none of the axes in f(P ) is optimal for the profile P+{A}, and hence f(P )∩f(P+{A}) =
∅ for f ∈ {MF,BC,MS,FT}. Thus, these rules do not satisfy stability.

Whether stability is a desirable property depends on the context: while it implies that the rule
is robust, it also means that the rule might disregard too much information. In some cases, it
is clearer that robustness to changes is desirable. In particular, monotonicity axioms say that if
the input changes so as to more strongly support the current outcome, then the outcome should
remain selected after the change (see Section 2.4.5). In our setting, monotonicity says that if an
axis ◁ is selected and some voters complete their ballots by approving all interfering candidates
with respect to ◁, then ◁ should continue being selected.

Ballot monotonicity
An axis rule f satisfies ballot monotonicity if for every profile P , ballot A ∈ P and axis ◁ ∈ f(P )
such that A is not an interval of ◁, we still have ◁ ∈ f(P ′) for the profile P ′ obtained from P by
replacing A by the ballot A′ = {x ∈ C : ∃y, z ∈ A s.t. y P x P z}, which is an interval of ◁.

Both VD and BC satisfy this axiom. To see why, observe that for a profile P and ◁ ∈ f(P ), by
changing the ballot A to A′, we decrease the VD cost of ◁ by exactly 1 (because A′ is an interval
but not A), and the VD cost of all other axes by at most 1, so ◁ is still selected. Similarly, suppose
that the BC cost of A for ◁ is k > 0, this means that A′ contains k more candidates than A. Then,
the change to A′ reduces the BC cost of ◁ by exactly k, and the cost of all other axes by at most
k, so ◁ is still selected. On the other hand, MF, MS and FT fail this axiom.

Proposition 6.5
Ballot monotonicity is satisfied by VD and BC, but not by MF, MS and FT.

Proof. We first prove the result more formally for VD and BC. Let P be a profile and ◁ ∈ f(P ) an
optimal axis. Let A ∈ P be a ballot that is not an interval of ◁, A′ = {x ∈ C : ∃y, z ∈ A s.t. y P
x P z} the completion of A, and P ′ the profile obtained from P by replacing A by A′.

For VD, we have that costVD(A, ◁) = 1 and costVD(A
′, ◁) = 0. For every axis ◁′, we have

costVD(A, ◁
′) ⩽ 1 and costVD(A

′, ◁′) ⩾ 0. This gives the following.

costVD(P
′, ◁) = costVD(P, ◁)− costVD(A, ◁) + costVD(A

′, ◁) = costVD(P, ◁)− 1, and

costVD(P
′, ◁′) = costVD(P, ◁

′)− costVD(A, ◁
′) + costVD(A

′, ◁′) ⩾ costVD(P, ◁
′)− 1 for all ◁′.

Since ◁ ∈ f(P ), we have costVD(P, ◁) ⩽ costVD(P, ◁
′) and thus costVD(P

′, ◁) ⩽ costVD(P
′, ◁′) for

all axes ◁′. Therefore, ◁ ∈ f(P ′), and VD satisfies ballot monotonicity.
We use a similar reasoning for BC. Let k = costBC(A, ◁) and costBC(A

′, ◁) = 0. This means
that we add k > 0 candidates to ballot A, thereby obtaining a ballot A′ that forms an interval of
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◁. As before, since we added only k candidates, the cost of any other axis ◁′ decreases by at most
k, i.e., costBC(A, ◁

′)− costBC(A
′, ◁′) ⩽ k. Thus,

costBC(P
′, ◁) = costBC(P, ◁)− k + 0 = costBC(P, ◁)− k, and

costBC(P
′, ◁′) = costBC(P, ◁

′)− costBC(A, ◁
′) + costBC(A

′, ◁′) ⩾ costBC(P, ◁
′)− k for all ◁′.

Since ◁ ∈ f(P ), we have costBC(P, ◁) ⩽ costBC(P, ◁
′) and thus costBC(P

′, ◁) ⩽ costBC(P
′, ◁′) for

all ◁′. Therefore, ◁ ∈ f(P ′), and BC satisfies ballot monotonicity.
To see that the other rules do not satisfy ballot monotonicity, consider f ∈ {MF,MS,FT}, a

set of 6 candidates C = {a, b, c, d, e, f}, and the profile P containing each of the
(
6
4

)
possible ballots

of 4 candidates once. As f satisfies neutrality and the profile is symmetric, all axes are chosen,
and there is x ∈ R such that costf (◁, P ) = x for all ◁. Consider now the axis ◁1 = abcdef , and
the ballot A = {a, b, c, f} ∈ P . Let P ′ be the profile obtained from P in which A is replaced by
A′ = {a, b, c, d, e, f}. Since ◁1 ∈ f(P ), it suffices to show that ◁1 /∈ f(P ′). Let ◁2 = abdefc. For
every axis ◁, we have costf (◁,A

′) = 0, and thus by definition of P ′, we have

costf (◁, P
′) = costf (◁, P ) + costf (◁,A

′)− costf (◁,A) = x− costf (◁,A).

Additionally, note that for MF, MS, and FT, the cost of A on ◁1 is respectively 1, 2, and 6, while
the cost on ◁2 is respectively 2, 4, and 8. Therefore, we have costf (◁2, A) > costf (◁1, A), which
implies costf (◁2, P

′) < costf (◁1, P
′), and so ◁1 /∈ f(P ′), as required.

Centrists and Outliers

On a high level, good axes should place less popular candidates towards the extremes, where they
are less likely to destroy intervals. Conversely, popular candidates are safer to place in the center.
We define two axioms that identify profiles where this expectation is strongest, and that require
candidates to be accordingly placed in center or extreme positions.

Our first axiom considers the placement of highly unpopular candidates. The axiom is easiest
to satisfy by placing them at the extremes, but it does not require doing so in all cases.

Clearance
An axis rule f satisfies clearance if for every profile P in which some candidate x is never
approved, all ◁ ∈ f(P ) are such that there is no A ∈ P with y, z ∈ A and y ◁ x ◁ z.

Thus, under clearance, never-approved candidates cannot be interfering.

Proposition 6.6
Clearance is satisfied by BC, MS and FT, but not by VD and MF.

Proof. Let f ∈ {BC,MS,FT}. We show that f satisfies clearance. Let P be a profile with a never-
approved candidate x and let ◁ be an axis such that there is a ballot A in P with x interfering A
on ◁. We will show that ◁ ̸∈ f(P ). Consider the axis ◁′ identical to ◁ but in which x was moved
to the left extreme. As x is interfering A on ◁, we have

costBC(A, ◁
′) = costBC(A, ◁)− 1,

costMS(A, ◁
′) = costMS(A, ◁)−min(|{y ∈ A : y ◁ x}|, |{y ∈ A : x ◁ y}|), and

costFT(A, ◁
′) = costFT(A, ◁)− |{y ∈ A : y ◁ x}| · |{y ∈ A : x ◁ y}|.
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In each case, we have costf (A, ◁
′) < costf (A, ◁). This is true for all ballots A for which x is an

interfering candidate on ◁. For all other ballots A ∈ P for which x is not interfering, note that
already in ◁, candidate x is placed outside of all candidates approved by A (either to the left of
the left-most approved candidate, or to the right of the right-most approved candidate). In ◁′, we
have moved x to an even more extreme position, but it follows from the rules’ definitions that this
does not change the cost, i.e., costf (A, ◁′) = costf (A, ◁). Since there exists at least one ballot for
which x is interfering on ◁, we have that costf (P, ◁

′) < costf (P, ◁) and ◁ ̸∈ f(P ), as required.
Now let f ∈ {VD,MF}. Consider the profile P = ({a, b}, {a, c}, {a, d}) on the set of candidates

C = {a, b, c, d, e}. This profile is not linear because at most two of the candidates b, c, d can be
placed next to a on the axis. Thus, for each ◁ ∈ f(P ), we have costf (P, ◁) ⩾ 1. Consider the axis
◁ = baced. We have costf (P, ◁) = 1, so ◁ ∈ f(P ). But e is never approved and it interferes with
the ballot {a, d} on ◁. Hence f does not satisfy clearance.

While VD and MF always choose some axis that satisfies the clearance condition, they can
additionally choose axes which violate this condition, and hence they fail the axiom.

a b c d e

3 ×
2 ×
1 ×
2 ×

Figure 6.9: Example of a veto
profile.

For another way of formalizing the intuition that unpopular
candidates should be placed at the extremes, we consider veto pro-
files, in which every ballot has size m− 1, i.e., each voter approves
all candidates but one. An example of a veto profile is given in
Figure 6.9. In a veto profile, the only voters whose ballots are in-
tervals of an axis are those who veto a candidate at one extreme of
the axis. Thus, the best candidates to put at the left and right end
of the axis are the two most vetoed ones. All of our rules indeed
choose only such outcomes.

We can extend this intuition to say that candidates that are vetoed more frequently should
be placed at positions closer to the extremes. This would imply that the least vetoed candidate
should be placed in the center, so that as few ballots as possible have holes in the center.

Veto winner centrism
An axis rule f satisfies veto winner centrism if for every veto profile P , the median candidate
(or one of the two median candidates if the number of candidates is even) of every axis ◁ ∈ f(P )
has the highest approval score.

Among the rules studied in this chapter, only MS and FT satisfy veto winner centrism.

Proposition 6.7
Veto winner centrism is satisfied by MS and FT, but not by VD, MF, and BC.

Proof. Let P be a veto profile. Let us denote the candidates by c1, c2, . . . , cm, and let A−i be the
ballot approving all candidates but ci. For each i ∈ {1, . . . ,m}, we denote by ni the number of
occurrences of A−i in P . Since P is a veto profile, n = n1 + n2 + . . .+ nm.

Let us now prove that FT and MS satisfy veto winner centrism. For simplicity, we assume that
m is odd, and so there is only one median candidate on the axis, at position med := (m + 1)/2

(however, note that the reasoning below also works for m even, with only a slight straightforward
modification).

Regarding FT, given an axis ◁, let us denote by ki ∈ N the position of ci on ◁ (for instance,
the left-most candidate has position 1, and the rightmost position m). Then, each copy of A−i in
P creates tki

= (ki − 1) · (m− ki) forbidden triples and costFT(P, ◁) =
∑m

i=1 ni · tki
. Note that tki

is maximal when ki = med (i.e., when ci is the median candidate of ◁). Without loss of generality,
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let c1 be a most approved candidate and let c2 be a candidate with strictly fewer approvals,
i.e., n2 > n1. Consider any axis ◁ for which c2 is the median candidate (thus, tk2 = tmed),
and let ◁′ be an axis obtained from ◁ by swapping the positions of c1 and c2. We claim that
costFT(P, ◁

′) < costFT(P, ◁). For each i ̸= 1, 2, the number of forbidden triples induced by ballots
of type A−i is the same for both axes, as this number only depends on the position of ci on the
axis. Hence, costFT(P, ◁

′) and costFT(P, ◁) only differ in triples caused by ballots of type A−1 and
A−2. Thus,

costFT(P, ◁
′)− costFT(P, ◁) = (n1tmed + n2tk1

)− (n1tk1
+ n2tmed) = (n1 − n2)(tmed − tk1

) < 0,

as n1 < n2 and tmed > tk1
. This implies that no axis whose center candidate has fewer than the

maximum number of approvals can be optimal, and thus FT satisfies veto winner centrism.
Regarding MS, we proceed similarly, by noting that each copy of A−i in P generates tki

=

min{ki − 1,m − ki} swaps. Indeed, ci is the unique non-approved candidate in A−i, so it needs
to be swapped with all the candidates on its left, or its right. This value is maximal if ci is the
median candidate of the axis, i.e., if ki = med = (m+1)/2. It is now easy to see that the previous
argument also works for MS.

Regarding VD, MF, and BC, note that these three rules are all equivalent on veto profiles, since
their cost functions equal 1 for every ballot A−i that is not an interval of a given axis. Thus, each
axis ◁ with left- and rightmost candidates cl and cr has a cost of n − nl − nr according to these
rules. It follows that an axis is optimal if and only if its two outermost candidates correspond to
the two least approved candidates. In particular, the optimality of a solution is independent of
the position of the most approved candidate (provided it is not placed at the extremes). Hence, if
m ⩾ 5, for all veto profiles P ,there exists an optimal axis such that the most approved candidate
is not the median candidate. Therefore, VD, MF, and BC fail veto winner centrism.

In fact, on veto profiles, MS and FT always return axes on which the approval scores of the
candidates are single-peaked. By this, we mean that when going from left to right on the axis, the
approval score of candidates is always increasing until it reaches a peak, after what it is always
decreasing: thus, the distribution of approval scores along the axis has a single peak.

Of course, veto profiles, as well as never-approved candidates, are not likely to naturally arise
from preferences. However, clearance and veto winner centrism suggest that MS and FT use the
information in a profile accurately by correctly placing popular and unpopular candidates. Their
tendency to put low-approval candidates towards the extremes is also confirmed by our experiments
in Section 6.4. While this generally seems sound, in the political context it can sometimes lead
to wrong answers: for instance, there can be ideologically centrist candidates who don’t get many
votes due to not being well-known, and should not be placed at the extremes.

Clones

We now focus on the behavior of rules in the presence of essentially identical candidates. We recall
that a, b ∈ C are clones if for each voter i ∈ V , a ∈ Ai if and only if b ∈ Ai. While perfect
clones are rare, two candidates may have very similar sets of supporters, and studying clones gives
insights for how rules handle such similar candidates. Intuitively, one would expect clones to be
next to each other on any optimal axis. This is captured by the following axiom:
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Clone-proximity
An axis rule f satisfies clone-proximity if for every profile P in which a, a′ ∈ C are clones, for
every axis ◁ ∈ f(P ), every candidate x with a ◁ x ◁ a′ or a′ ◁ x ◁ a, and every A ∈ P , we have
x ∈ A whenever a, a′ ∈ A.

Informally, this axiom says that if there is a candidate x between two clones a and a′ on an axis
◁, then x must also be approved by all voters who approve a and a′. However, x is not necessarily
a clone of a and a′, because it can be approved by voters who do not approve a and a′.

Surprisingly, only FT satisfies clone-proximity. All of our rules choose at least one axis where
the clones are next to each other, but the rules other than FT may choose extra axes which violate
clone-proximity, as we show in the following result.

Proposition 6.8
Clone-proximity is satisfied by FT, but not by VD, MF, BC, and MS.

Proof. We first prove that FT satisfies clone-proximity. Let P = (A1, . . . , An) be a profile where a
and a′ are clones. For an axis ◁, we denote by T◁ the set of all forbidden triples (i, l, c, r) ∈ V ×C3

such that l ◁ c ◁ r and l, r ∈ Ai but c /∈ Ai. Then, costFT(P, ◁) = |T◁|.
First note that we cannot have a forbidden triple (i, l, c, r) ∈ T◁ with one of the clones as c (in

the center) and the other on one side (l or r), as a and a′ are always approved together. Thus,
the only triples in T◁ involving both a and a′ are those for which both sides l and r are one of
the clones, i.e., triples of form (·, a, ·, a′) and (·, a′, ·, a). For an axis ◁, let us denote by S{a,a′}

◁ the
number of such triples in T◁. Moreover, let Sa

◁ be the number of triples involving a and not a′ and
let Sa′

◁ be the number of triples involving a′ and not a. Finally, let S0
◁ be the number of triples

involving neither a nor a′. For every axis ◁, we have costFT(P, ◁) = S
{a,a′}
◁ + Sa

◁ + Sa′

◁ + S0
◁ .

Now take any ◁ where the clones are not next to each other, i.e., there exists x ∈ C such that
a ◁ x ◁ a′ or a′ ◁ x ◁ a and a ballot Ai ∈ P such that a, a′ ∈ Ai and x /∈ Ai. We will show that
◁ ̸∈ FT(P ). Note that by choice of ◁, we have S{a,a′}

◁ ⩾ 1. Assume without loss of generality that
Sa
◁ ⩽ Sa′

◁ . Let us consider the axis ◁′ obtained by moving a′ next to a on ◁, i.e., there is no x ∈ C
such that a ◁ x ◁ a′ or a′ ◁ x ◁ a. Thus, we have S{a,a′}

◁′ = 0, S0
◁′ = S0

◁ , and Sa′

◁′ = Sa
◁′ = Sa

◁ , as all
triples that do not involve a′ will not be affected by the move, and the triples involving a′ will be
the same as those involving a now that they are next to each other. Thus, we have the following:

costFT(P, ◁) = S
{a,a′}
◁ + Sa

◁ + Sa′

◁ + S0
◁

⩾ 1 + Sa
◁ + Sa

◁ + S0
◁

> 0 + Sa
◁′ + Sa′

◁′ + S0
◁′ = costFT(P, ◁

′).

Since ◁′ has a lower FT cost than ◁, we have ◁ ̸∈ FT(P ). Hence FT satisfies clone-proximity.
We now show that other rules do not satisfy clone-proximity. For VD, BC, and MF, consider

the following profile:

2× {a1, a2},
2× {a2, a3},
1× {x, x′, a1, a3}.

x a1 a2 a3 x′

2 ×
2 ×
1 ×

Because of the cycle among a1, a2, a3, this profile is not linear and so all axes have cost at least
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1. Now observe that the axis x ◁ a1 ◁ a2 ◁ a3 ◁ x′ has cost 1 for VD, BC, and MF. On this axis,
a2 is between the clones x and x′ but is never approved with them. Thus, these three rules fail
clone-proximity. (However, note that all these rules also choose the compliant axis x◁x′◁a1◁a2◁a3.)

For MS, consider the following profile:

1 : {a, a′, b, b′}, 1 : {b, b′, x, x′}, 1 : {x, x′, a, a′}

By neutrality of MS, the cost of all axes in which clones are next to each other is the same as the
cost of a◁a′ ◁x◁x′ ◁ b ◁ b′, which is 4. However, another axis has cost 4 for MS: x◁a◁a′ ◁x′ ◁ b ◁ b′.
On this axis, a is between the clones x and x′ but a is not approved in the ballot {b, b′, x, x′},
containing x and x′. Thus, MS also fails clone-proximity.

We can also adapt the independence of clones axiom from voting theory (Tideman, 1987) that
we introduced in Section 2.4.4 and that we discussed in the previous chapters of this thesis. In
our model, it would say that adding or removing a clone of a candidate from an approval profile
should not change the relative order of the other candidates on any optimal axis returned by the
rule, and conversely removing a clone from a profile should not change the relative order of the
other candidates either. To formally define it, we recall some notations. For a profile P defined on
a set C of candidates, we denote by PC′ the restriction of P to a subset of candidates C ′ ⊆ C. We
also denote by P−c the restriction of the profile to C \ {c} where c ∈ C is a given candidate. We
similarly define ◁C′ and ◁−c. We can now state the axiom:

Independence of clones
An axis rule f is independent of clones if for every profile P in which a, a′ ∈ C are clones,

(1) for all axes ◁ ∈ f(P ), we have ◁−a ∈ f(P−a), and

(2) for all axes ◁∗ ∈ f(P−a), there is an axis ◁ ∈ f(P ) with ◁−a = ◁∗.

Among the rules studied in this chapter, only VD is independent of clones.

Proposition 6.9
Independence of clones is satisfied by VD, but not by MF, BC, MS, and FT.

Proof. We start by proving that f = VD satisfies independence of clones. We first check (1).
Let ◁ ∈ f(P ); we need to show that ◁−a ∈ f(P−a). Because all interval ballots of P on ◁

will remain interval ballots of P−a on ◁−a, we have costVD(◁−a, P−a) ⩽ costVD(◁, P ). Now, as-
sume for a contradiction that ◁−a /∈ f(P−a) and instead some axis ◁′ ∈ f(P−a) is optimal, with
costVD(◁

′, P−a) < costVD(◁−a, P−a). Consider the axis ◁′+a obtained from ◁′ by placing a next to
a′. Because a and a′ are clones, an approval ballot of P is an interval of ◁′+a if and only if its
restriction in P−a is an interval of ◁′. Thus, costVD(◁

′
+a, P ) = costVD(◁

′, P−a). Combining all of
this, we have:

costVD(◁
′
+a, P ) = costVD(◁

′, P−a) < costVD(◁−a, P−a) ⩽ costVD(◁, P )

which contradicts the optimality of ◁ for P . Hence ◁−a ∈ f(P−a).
Next, we check (2) using the same reasoning. Let ◁ ∈ f(P−a) and let ◁+a be the axis obtained

from ◁ by placing a next to a′. We will show that ◁+a ∈ f(P ). Again, we have costVD(◁+a, P ) =

costVD(◁, P−a). Now assume for a contradiction that there is ◁′ ∈ f(P ) with a lower cost than ◁+a,
i.e., cost(◁′, P ) < cost(◁+a, P ). As explained above, we have costVD(◁

′
−a, P−a) ⩽ costVD(◁

′, P ).
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Figure 6.10: Profile P with the axes aa′bcd and daa′bc in the proof of Proposition 6.9. Red circles
indicate interfering candidates, and the clone a′ of a is grayed out.

Combining these three inequalities gives costVD(◁
′
−a, P−a) < costVD(◁, P−a), which contradicts the

optimality of ◁. Hence ◁+a ∈ f(P ), as required.
To prove that BC does not satisfy independence of clones, we consider the following profile P :

3× {b, a, a′} 4× {c, a, a′} 2× {b, c}

It is easy to check that the unique optimal axis (up to reversal, and up to permutation of a and
a′) is ◁ = bcaa′ with costBC(P, ◁) = 3. Indeed, if a and a′ are not next to each other, at least two
types of ballot will not be interval of the axis, which will yield a BC cost of at least 5, and the
axes on which b and c are the extremities have a BC cost of at least 4 due to ballots {b, c}. This
leaves bcaa′ and cbaa′ with cost 3 and 4 respectively. However, if we remove the candidate a′, the
BC cost of ◁−a′ = bca is 3. It is hence no longer optimal, as the axis ◁∗ = bac achieves a lower BC
cost of 2.

We use a very similar idea to prove that MF does not satisfy independence of clones. We
consider the following profile P :

2× {b, a, a′} 1× {b, d} 1× {b, c, d, e}
2× {c, a, a′} 1× {c, e}

We can check that the axis ◁ = dbecaa′ is optimal for MF with costMF(P, ◁) = 2. If a and a′ are
not next to each other on the axis, at least two of the ballot types {b, a, a′}, {c, a, a′} and {b, c, d, e}
are not intervals, which yields a MF cost of at least 3. Any axis such that two candidates are on
the left of a and a′ and two candidates on their right has a MF cost greater or equal than 2 because
of ballots {b, c, d, e}. Any axis with one candidate on one side of a and a′ and three candidates on
their right has a MF cost of at least 2: the ballots {b, c, d, e} generates at least 1 flips, and at least
one of the ballots {b, d}, {c, e} is not an interval either. Now, if a and a′ are on an extremity, only
one of {b, a, a′} and {c, a, a′} can be an interval, imposing a MF cost of at least 2. Thus, ◁ is indeed
minimizing the MF cost. However, ◁−a′ = dbeca is not optimal for P−a′ : costMF(P−a′ , ◁−a′) = 2.
The axis ◁∗ = dbace has a lower cost of 1. This contradicts independence of clones.

To prove that FT and MS do not satisfy independence of clones, let us consider the following
profiles:

P : 3× {a, b} 3× {b, c} 1× {a, c, d}
P ′ : 3× {a, a′, b} 3× {b, c} 1× {a, a′, c, d}

Let f ∈ {FT,MS}. We have f(P ) = {◁1, ◁2} with ◁1 = abcd and ◁2 = dabc. Indeed, costFT(P, ◁
i) =

2 and costMS(P, ◁
i) = 1 for i ∈ {1, 2}. These are the only axes on which both {a, b} and {b, c} are

intervals – in other words, the cost of any other axis will be at least 3. We now focus on P ′, in
which we have added a candidate a′, clone of a. Under independence of clones, there should be an
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axis ◁ ∈ f(P ′) such that ◁−a = ◁1. Among all possible axes generalizing ◁1, the best one for MF
and FT (up to the permutation of a and a′) is ◁ = aa′bcd, with a cost of 4 for FT and 2 for MS.
However, axis ◁∗ = daa′bc has cost 3 for FT and 1 for MS. Hence, there is no ◁ ∈ f(P ′) such that
◁−a = ◁1. Thus, FT and MS do not satisfy independence of clones.

We can actually show that independence of clones and ballot monotonicity characterize VD
among scoring rules. This not only distinguishes VD from the other introduced rules, but shows
its normative appeal among the entire class of scoring rules.

Theorem 6.10
Let m ⩾ 6, and let f be a neutral scoring rule. Then f satisfies consistency with linearity, ballot
monotonicity, and independence of clones if and only if it is VD.

Proof sketch. Let f be a scoring rule satisfying neutrality, consistency with linearity, independence
of clones and ballot monotonicity. As shown in Lemma 6.3, f is induced by a symmetric cost
function cost with cost(A, ◁) = 0 if and only if A forms an interval in ◁. Further, cost only
depends on the approval vector xA,◁, i.e., there exists a function g : {0, 1}m → R⩾0 such that
cost(A, ◁) = g(xA,◁) for all ballots A and axis ◁.

The steps of the proof are as follows:3

1. Using ballot monotonicity, we show that there is a function h such that for all A and ◁

such that A is not an interval of ◁, cost(A, ◁) = h(m, kapp, kint), where m is the number
of candidates, kapp = |A| is the number of approved candidates and kint is the number of
interfering candidates.

2. Using independence of clones, we show that for A not interval of ◁, cost(A, ◁) only depends
on the sum kapp + kint, i.e., there is h such that cost(A, ◁) = h(m, kapp + kint).

3. We show that for A not interval of ◁, cost(A, ◁) can only take two values: cost(A, ◁) = h∗m if
kapp + kint = m and cost(A, ◁) = hm otherwise.

4. Finally, we show that h∗m = hm and that the rule is thus VD.

Regarding the independence of the axioms in this characterization among neutral scoring rules,
note that the trivial rule TRIV returning all axes satisfies every axiom but consistency with lin-
earity, the rule that minimizes the total number of contiguous holes (and which is the scoring rule
based on the function costG(A, ◁) = |{(x, y) ∈ A : ∃z, x ◁ z ◁ y and ∀z s.t. x ◁ z ◁ y, z /∈ A}|) only
fails ballot monotonicity, and BC only violates independence of clones. We do not have an example
showing that neutrality is necessary, but this axiom can be dropped if we allow an infinitely large
ground set of candidates, because then independence of clones and consistency with linearity imply
neutrality for scoring rules, using standard arguments (Brandl et al., 2016, Lemma 1).

Finally, observe that the two clone axioms are quite strong: each excludes all but one of our
rules. Actually, we can show that if a scoring rule satisfies neutrality and consistency with linearity,
then clone-proximity and independence of clones are incompatible.

Theorem 6.11
No neutral scoring rule satisfies independence of clones, clone-proximity, and consistency with
linearity.

3The full proof is mainly due to my coauthor Chris Dong and can be found in the original paper (Delemazure
et al., 2025a).
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Proof. Let f be a scoring rule satisfying all four axioms, and costf its cost function. As proven in
Lemma 6.3, by neutrality there is a function gf : {0, 1}m → R⩾0 such that costf (A, ◁) = gf (xA,◁) =

gf (xA, ⃗◁), where xA,◁ is the approval vector of A and x
A, ⃗◁ is the reversed vector.

Let y be the minimal cost over all approval vectors that are not intervals. In particular,
y ⩽ gf ((1, 0, 1, 0)) = gf ((0, 1, 0, 1)) and y ⩽ gf ((1, 0, 0, 1)). By Lemma 6.3 (using consistency with
linearity), y > 0. Moreover, let y′ = gf ((1, 0, 1, 1)) = gf ((1, 1, 0, 1)). Let q ∈ N with q > y′/y and
consider the following profiles:

P : q×{b, c} q×{c, d} 1×{a, b, d}
P ′ : q×{b, b′, c} q×{c, d} 1×{a, b, b′, d}
P ′′ : q×{b, c} q×{c, d} 1×{a, a′, b, d}

In P , for ◁ ∈ {◁1, ◁2} with ◁1 = abcd and ◁2 = bcda, we have costf ({a, b, d}, ◁) = y′. All other
axes break one of the pairs {b, c}, {c, d}, thus ensuring a cost of at least q · y > y′. Therefore,
◁1, ◁2 ∈ f(P ).

Since b and b′ are clones in P ′, by clone-proximity they should be next to each other on
every axis ◁ ∈ f(P ′). By independence of clones, there exists ◁3 (resp. ◁4) in f(P ′) extending
◁1 (resp. ◁2). Combining this with neutrality, f(P ′) contains ◁3 = abb′cd and ◁4 = bb′cda,
which thus must have the same cost. Since the ballots {b, b′, c} and {c, d} are intervals of both
of these axes and the rule is consistent with linearity, they contribute a cost of 0 and thus the
cost difference of the two axes only depends on the remaining ballot {a, b, b′, d}. This implies
costf ({a, b, b′, d}, ◁3) = costf ({a, b, b′, d}, ◁4), i.e., gf ((1, 1, 1, 0, 1)) = gf ((1, 1, 0, 1, 1)).

Now, consider the profile P ′′ which is a copy of P but with a clone a′ of a. Using the same
arguments as in the case of P ′ yields two optimal axes ◁5 = aa′bcd and ◁6 = bcdaa′. However, let us
now compare ◁5 to ◁7 = abcda′. The ballots {b, c} and {c, d} are intervals of both axes, and the cost
of {a, a′, b, d} is the same on both, as we already showed that gf ((1, 1, 1, 0, 1)) = gf ((1, 1, 0, 1, 1)).
Thus, ◁7 is also an optimal axis for P ′′, which is in contradiction with clone-proximity, since a and
a′ are not next to each other.

Heredity and Partition Consistency

Independence of clones can be strengthened to heredity, as defined by Tydrichová (2023) for axis
rules based on rankings. This axiom is equivalent to the independence of irrelevant alternatives
axiom from voting theory (see Section 2.4.4), and states that if we remove any candidate from the
profile (not just a clone), the rule should return the original axes with that candidate omitted.

Heredity
An axis rule f satisfies heredity if for every profile P and every subset of candidates C ′ ⊆ C, we
have that for each axis ◁ ∈ f(P ), there exists ◁∗ ∈ f(PC′) such that ◁C′ = ◁∗.

However, no reasonable axis rule can satisfy this axiom, which is not too surprising as in most
contexts, independence of irrelevant alternatives is considered too strong and is not satisfiable
together with very natural properties (the canonical example being Arrow’s theorem).

Proposition 6.12
No axis rule satisfies heredity and consistency with linearity.

Proof. Let f be an axis rule satisfying heredity and let P = ({a, b}, {a, c}, {a, d}). Let ◁ ∈ f(P ).
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In ◁, there must be at least two candidates on the same side of a (as there are two sides and three
candidates b, c, and d), without loss of generality b and c. By heredity, if we remove d, in f(P−d)

there must be an axis where a is in an extreme position. However by consistency with linearity,
f(P−d) = {bac, cab}, a contradiction.

a b c d w x y z

5 ×
4 ×
3 ×
2 ×
1 ×
1 ×
1 ×

Figure 6.11: Profile P with the approval-
path partition C1 = {a, b, c, d} and C2 =
{w, x, y, z}.

Because of this impossibility, we cannot con-
struct an axis greedily by successively adding can-
didates. However, if a profile can be decomposed
into subprofiles, we can expect the optimal axes to
be the various concatenations of the optimal axes
for the subprofiles. Specifically, given a profile P ,
consider the co-approval equivalence relation ∼ on
C, with x ∼ y whenever there is some ballot A ∈ P
with x, y ∈ A. Moreover, take its transitive closure
∼∗ such that x ∼∗ y whenever there is a sequence
x = x1, x2, . . . , xk = y with xi ∼ xi+1 for all i.
We call the equivalence classes C1, . . . , Ck of ∼∗ the
approval-path partition of P . Consider for instance
the profile given in Figure 6.11. The approval-path
partition of this profile consists of C1 = {a, b, c, d} and C2 = {w, x, y, z}, since every ballot forms a
subset of one of these two classes. We can partition P into two subprofiles P1 and P2 in which only
candidates of respectively C1 and C2 are approved. Note that even if they are never co-approved
together, x and z are in the same equivalence class, as they are both co-approved with y. We now
define a property called partition consistency, which in this example says that if the optimal axis
in P1 is abcd and in P2 is wxyz, then the optimal axes for the complete profile P = P1+P2 should
be abcdwxyz, abcdzyxw, dcbawxyz and dcbazyxw (up to reversal).

Partition consistency
An axis rule f satisfies partition consistency if for every profile P with approval-path partition
C1, . . . , Ck, we have that ◁ ∈ f(P ) if and only if for each j ∈ [1, k], the class Cj is an interval of
◁ and the axis ◁Cj

∈ f(PCj
).

If a rule satisfies the partition consistency axiom, we can reduce the computation time, as it
becomes possible to divide the task into several sub-profiles with smaller numbers of candidates
(formally, computing an optimal axis can be done in time that is fixed-parameter tractable with
respect to the size of the largest set Cj in the partition). Moreover, partition consistency implies
clearance, as a never-approved candidate x forms a singleton equivalence class. Thus, since VD
and MF fail clearance, they also fail partition consistency.

Proposition 6.13
Partition consistency is satisfied by BC, MS and FT, but not by VD and MF.

Proof. Let f ∈ {BC,MS,FT}. We show that f satisfies partition consistency. Let P be a profile
with co-approval partition C1, . . . , Ck. Let ◁ be an axis on which we have a ◁ b ◁ a′ for some
candidates a, a′ ∈ Cj and b ̸∈ Cj . We will show that ◁ /∈ f(P ). Let us denote by Cl

j and Cr
j the

sets of candidates of Cj on the left and right of b respectively. We have Cl
j ̸= ∅ (it contains a) and

Cr
j ̸= ∅ (it contains a′). If there is no ballot A containing at least one candidate of Cl

j and one
candidate of Cr

j , then the two sets would not be part of the same equivalence class, a contradiction.
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VD MF BC MS FT

Consistency with linearity 1

Independence of clones 1

Stability
Ballot monotonicity 1

Clearance
Partition consistency
Veto-winner centrism

Clone-proximity

Table 6.1: Properties of the axis rules. The superscripts 1 indicate the characterization of VD.

Thus, there exists a ballot A∗ that approves some a ∈ Cl
j and some a′ ∈ Cr

j . Because b /∈ Cj , b is
an interfering candidate for A∗.

Let ◁′ = ◁C1
. . . ◁Ck

, where ◁Cj
is the restriction of ◁ to candidates from Cj . Since every ballot

contains only candidate from one of the Cj and since the relative order of the candidates in each
subaxis is preserved, we only removed interfering candidates for each ballot by moving from ◁ to ◁′.
It follows that costf (A, ◁) ⩾ costf (A, ◁

′) for all ballots. As we already showed, there is some ballot
A∗ ∈ P containing a and a′, but not b, which is thus an interfering candidate for A∗. By moving
from ◁ to ◁′, the candidate b is not interfering A∗ anymore, so we strictly reduce the number of
interfering candidates. Fom the definition of f , we deduce that costf (A

∗, ◁) > costf (A
∗, ◁′). This

proves that ◁ /∈ f(P ).
Thus, in all optimal axes ◁ ∈ f(P ), all the sets Cj form intervals, and we can write each such axis

as ◁ = ◁σ1
. . . ◁σk

for some permutation (σ1, . . . , σk) of [1, k], where ◁j orders the candidates in Cj .
For each j, let PCj be the profile obtained from P by restricting to Cj . From the definition of f , for
each ballot A ∈ PCj

, we have costf (A, ◁) = costf (A, ◁j). Thus costf (P, ◁) =
∑k

j=1 costf (PCj
, ◁j).

From this we directly deduce that ◁ ∈ f(P ) if and only if ◁j ∈ f(PCj
) for all j ∈ [1, k]. This proves

that f satisfies partition consistency.
For f ∈ {VD,MF} we can use the examples from the proof of Proposition 6.6 with C1 =

{a, b, c, d} and C2 = {e}, P1 = P and P2 = ∅ to show that f does not satisfy partition consistency.

Summary of the results

In Table 6.14, we summarize the axiomatic results of this section. We can see that depending
on the amount of information they use, the rules satisfy very different properties. Rules that use
low amounts of information like VD are more robust to changes, while rules that use a lot of
information like FT return more precise axes, with popular candidates being more central on the
axes, and clones close to each other.

6.4 Experimental Analysis

We now evaluate the different axis rules with an experimental analysis, based on synthetic and
real datasets. While the rules are in general hard to compute, for m up to about 12, we can find

4Note that this table could be interpreted as a binary matrix, and we could use our rules to identify an axis of
the axis rules. In this case, all the rules return the same axis MF ◁ VD ◁ BC ◁ MS ◁ FT, as the profile is actually
linear.
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the best axes in reasonable time, using pruning and heuristics, and/or ILP encodings.
In addition to the axis rules introduced in this chapter and which are based on approval pref-

erences, we will also consider axis rules based on rankings, that we introduced in Section 2.3.3.
In particular, we will consider two rules from the literature (Faliszewski et al., 2014; Tydrichová,
2023). The first one is the equivalent of Voter Deletion for ordinal preferences, and it returns the
axis ◁ that minimizes the number of rankings to remove for the profile to be single-peaked. We will
refer to this rule as VD-rank. The second rule is the equivalent of Forbidden Triples for ordinal
preferences, and it returns the axis ◁ that minimizes the number of triples of candidates that break
single-peakedness. This corresponds to triples of candidates (x, y, z) such that x is ranked first in
the ranking ≻i, and x ◁ y ◁ z or z ◁ y ◁ x, but x ≻i z ≻i y. We will refer to this rule as FT-rank.

We do not include the global swaps and local swaps rules (which are somewhat similar to MF
and MS, respectively) in our analysis, since these are quite expensive to compute (Erdélyi et al.,
2017, Theorem 6.21).

In the remainder of this section, we first compare the different rules on synthetic data, with
probabilistic models with which we sample a linear profile based on a ‘correct’ ground truth axis
and add random noise to the ballots. Then, we test our rules on real data. In particular, we use
political datasets, so that we can compare the resulting axes to existing endogenous left-right axes.
In particular, we focus on the Voter Autrement datasets, and votes of the Supreme Court justices
of the United States of America. Finally, we also test our rules on tierlist datasets covering various
non-political topics.

Probabilistic Models

We first ran our rules on very simple probabilistic noise models. For each of our models, we first
draw uniformly at random a ground truth axis, then we sample approval ballots i.i.d., based on
this axis. As we mentioned in Section 6.2, for such probabilistic model, there necessarily exists a
scoring rule that is a MLE for this model. Therefore, the performance of the rules on the different
models are likely to reflect simply how similar they are to the MLE of these models. However,
these experiments can give an idea of how well the rules can generalize to different models.

We first consider four models, each inspired by one of our rules, though only the Maverick
Voters model actually is the probabilistic model of which VD is the MLE. For the other rules (MF,
BC, and MS), the precise models for which they are MLEs are less natural than the intuitively
similar models that we decided to use. Below, we define these models.

• Maverick Voters: For each voter, we randomly decide if they are a “maverick voter”. With
probability p ∈ [0, 1/2), they are a maverick and we sample an approval ballot at random
(whether or not it is an interval of the axis), otherwise we sample an approval ballot that is
an interval of ◁ uniformly at random.

• Random Flips: First, we sample for each voter an approval ballot that is an interval of the
axis ◁ uniformly at random (among all interval ballots). Then, for each candidate, we switch
its status in the ballot (from approved to not approved, or conversely) independently with
probability p ∈ [0, 1/2).

• Random Omissions: First, we sample for each voter an approval ballot that is an interval
of the axis ◁ uniformly at random (among all interval ballots). Then, for each approved
candidate, we switch its status (from approved to not approved) with probability p ∈ [0, 1/2).
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VD MF BC MS FT

Maverick
Voters

Random
Flips

Random
Omissions

Random
Swaps

1.96 2.41 2.65 2.75 2.82

3.28 2.78 2.81 2.72 2.87

0.31 0.27 0.09 0.14 0.21

1.6 1.22 0.84 0.73 0.69

(a) Not normalized.

VD MF BC MS FT

Maverick
Voters

Random
Flips

Random
Omissions

Random
Swaps

1.0 1.23 1.35 1.4 1.44

1.21 1.02 1.04 1.0 1.06

3.27 2.88 1.0 1.49 2.26

2.3 1.75 1.21 1.05 1.0

(b) Normalized.

Figure 6.12: Average Kendall-tau distance to the ground truth axes for different rules and proba-
bilistic models, averaged over 1 000 profiles.

• Random Swaps: For each voter i, we sample an axis ◁i using a Mallows model with center
◁ and dispersion parameter ϕ ∈ [0, 1]. As a reminder, the probability of ◁i in this model is
proportional to ϕKT(◁,◁i), where KT is the Kendall-tau distance (defined in Section 2.3.1).
Once ◁i is sampled, we sample uniformly at random an approval ballot which is an interval
of ◁i.

For each model, we sampled 1 000 random profiles with m = 7 candidates and n = 100 voters.
We then ran the different rules on each profile and computed the Kendall-tau (KT) distance between
the axes returned by the rules and the ground truth axis. In case of a tie, we take the average KT
distance over all returned axes. As a reminder, the Kendall-tau distance is defined as the number
of pairwise disagreements between two rankings (KT(◁, ◁′) = |{(x, y) ∈ C2 : x◁ y and y ◁′ x}|). We
report here the average KT distance over all 1 000 profiles. We used the following parameters for the
models: p = 0.2 for Maverick Voters, p = 0.3 for Random Flips, p = 0.45 for Random Omissions,
and ϕ = 0.5 for Random Swaps. These parameters were chosen to obtain roughly similar KT
distances across models. Figure 6.12 (a) presents those average KT distances. Despite our choice
of parameters, some models clearly yield more difficult profiles than others. In particular, even
with p = 0.45, the Random Omissions model generates profiles that are very close to the original
one. In Figure 6.12 (b), we show the same results normalized such that the minimal value is 1 for
each particular model. The main conclusion is that no rule really generalizes well to all models,
but VD is particularly bad at generalizing beyond the Maverick Voters model. It is also interesting
to note that MF and MS are not the rules that minimize the KT distance in the models they are
respectively associated with, Random Flips and Random Swaps.

Euclidean Model

We now consider the 1-dimensional Euclidean model, in which voters and candidates have positions
on a 1-dimensional Euclidean space (as in Section 2.5.1), but voters have noisy observations of the
positions of the candidates, and their preferences depend on their distance to the observed positions
of the candidates. This model is inspired by random utility models such as the Thurstone–Mosteller
model (Thurstone, 1927; Mosteller, 1951).

More formally, each candidate and voter x ∈ C ∪ V is associated with a position pos(x) ∈ R
on the line. The positions pos(c) of the candidates describe a ground truth axis ◁ = c1c2 . . . cm



6.4. EXPERIMENTAL ANALYSIS 221

0.2 0.3 0.4 0.5 0.6
Approval radius r

0.6

0.8

1.0

1.2

1.4

A
ve

ra
ge

 K
T

 d
is

ta
nc

e

VD

MF

BC

MS

FT

FT-rank

(a) σ = 0.1

0.2 0.3 0.4 0.5 0.6
Approval radius r

1.00

1.25

1.50

1.75

2.00

2.25

A
ve

ra
ge

 K
T

 d
is

ta
nc

e

VD

MF

BC

MS

FT

FT-rank

(b) σ = 0.2

0.2 0.3 0.4 0.5 0.6
Approval radius r

2.0

2.5

3.0

3.5

4.0

A
ve

ra
ge

 K
T

 d
is

ta
nc

e

VD

MF

BC

MS

FT

FT-rank

(c) σ = 0.3

0.2 0.3 0.4 0.5 0.6
Approval radius r

3

4

5

A
ve

ra
ge

 K
T

 d
is

ta
nc

e

VD

MF

BC

MS

FT

FT-rank

(d) σ = 0.4

Figure 6.13: Evolution of the average KT distance between the axes returned by the rules and the
ground truth axes, for r ∈ [0.2, 0.6] and different values of σ, averaged over 1 000 random samples.

such that pos(c1) ⩽ pos(c2) ⩽ . . . ⩽ pos(cm). Each voter i estimates the position of each candidate
c under independent normal noise: pi(c) = pos(c) + εi(c) with εi(c) ∼ N (0, σ), where σ is a
parameter of the model. Voters approve and rank candidates based on their estimations and not
on the actual positions of the candidates. More precisely, the approval set of voter i contains
all candidates such that | pos(i) − pi(c)| ⩽ r, where the approval radius r is a parameter of the
model. The ranking of voter i is given by increasing distances between p(i) and pi(c): the closer
the better. An interesting feature of this model is that we can compare our axis rules based on
approval preferences to ranking-based ones.

We conducted experiments on 1 000 random profiles with m = 7 candidates and n = 100 voters
for each set of parameters with σ ∈ {0.1, 0.2, 0.3, 0.4} and r ∈ {0.2, 0.3, 0.4, 0.5, 0.6}. Figure 6.13
shows the average Kendall-tau distance between the axes returned by the axis rules and the ground
truth axes. VD-rank is not included in the charts as it always returns axes that are very far from
the ground truth, with KT distances greater than 7 on average.

We find that for most values of σ and r, rules using approval preferences actually perform
better than FT-rank, returning axes with a lower average KT distance to the ground truth. This
is surprising, as intuitively rankings provide more information than approvals. We note however
that FT-rank is better than the approval-based methods when r is either very small or very large.
These are the cases in which many approval sets are of size either 0 or 1 (for small r) or of size m
(for large r), and thus provide no information on candidates’ proximity, giving a strong advantage
to ranking-based methods. Note that none of these two extremes is particularly realistic: in the
majority of real-world approval datasets, voters approve on average between 2 and 3 candidates.
FT-rank is also slightly better when σ is small, but in this case all approval-based rules also perform
quite well. Finally, we observe that for all values of the parameters, the axes returned by rules using
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Institute Axis ◁

BVA LO NPA LFI PS EM LR DLF FN UPR SP R

Opinionway LO NPA LFI PS EM LR DLF FN UPR SP R

IFOP LO NPA LFI PS EM R LR DLF FN UPR SP

IPSOS LO NPA LFI PS EM R LR DLF FN SP UPR

Harris Interactive LO NPA LFI PS EM R LR DLF SP UPR FN

Odoxa LO NPA LFI PS EM R LR DLF UPR SP FN

Elabe NPA LO LFI PS EM R LR UPR DLF FN SP

Table 6.2: Axes used by polling institutes during the 2017 French presidential election.

more information (e.g., FT) are on average closer to the ground truth axes than those returned by
rules using less information (e.g., VD).

Voter Autrement

We also ran our rules on datasets from the Voter Autrement collection, which we introduced in
Section 2.5.4. We used the datasets collected during the French presidential election from 2007 to
2022, for which the approval rule was tested. We did not consider datasets from the 2002 election,
as the running time of our rules would be too long due to the high number of candidates (16).
The number of candidates of the other elections were 12 in 2007, 10 in 2012, 11 in 2017 and 12
in 2022. We recall that the votes are weighted so that the share of total weight assigned to voters
who voted for each candidate matches the national vote share of this candidate.

Baseline Axes

For these elections, there are no official “exact” axes of the candidates. Thus, to evaluate our rules,
we will compare the axes they return to the ones obtained using exogenous information (e.g., based
on expert or voter surveys) or to the axes used in practice by polling institutes. Indeed, polling
institutes frequently order the candidates of the presidential elections, for instance in the questions
they ask in their surveys (“For which candidate would you vote if the election was next Sunday?”),
or when presenting the results of their surveys.

Consider for instance the case of the 2017 election. The axes used by the polling institutes are
reported in Table 6.2. We can see that they mostly agree on the relative positions of the main
parties, and that most of their disagreements are about some of the “small” candidates, for which
it is actually hard to say if they are right-wing or left-wing. In 2017, this was the case for Jean
Lassalle ( R ), François Asselineau (UPR), and Jacques Cheminade ( SP ). Even though they might
be more right-wing than left-wing, they were not the most far-right candidates of the election: if
they are often placed at the extremes, this is more because they are not fitting the axis. The other
main kind of disagreements between polling institutes is for pairs of adjacent parties, for instance
between the trotskyist parties NPA (New Anticapitalist Party) and LO (Worker Struggle) in 2017,
or the center-left parties EELV (Green Party) and PS (Socialist Party) in 20225. We similarly
collected all the axes used by the polling institutes for the other French presidential elections, and
we provide them in Appendix A.

Let us now turn to existing methods for building axes of candidates or parties. The Manifesto
Project (Lehmann et al., 2024) uses information extracted from the parties’ manifestos to assign

5This particular couple of parties appears very ideologically similar to the voters. In the 2012 CSES survey (The
Comparative Study of Electoral Systems, 2023), 37.7% of respondents ordered EELV on the left of PS , 36.9% had
the reverse opinion, and 25.4% placed them on the exact same position.
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them a position on a left-right scale, from which we can derive an ordering. However, it is often
criticized for being unreliable. For instance, in their most recent dataset (2018), they place the
communist party PCF on the right of the center-right party MoDem .

Another popular method is to decide the positions of the candidates and parties based on
opinions of experts or representative samples of voters. Opinions are collected in surveys, that
generally ask respondents to place parties (or candidates) on a scale from 0 to 10 based on their
left-right ideology. We can aggregate the answers by taking the median or average position, and
then order the parties. The Chapel Hill Expert Survey (Jolly et al., 2022) is maybe the most
important expert survey asking for the political position of parties. The experts have to indicate
the position of parties on different scales, in particular a “left-right ideology” scale, and a “left-right
economic” scale. On the “left-right ideology” scale, the aggregated answers of the 2019 survey gives
the following order (note that other parties were not proposed by the survey):

PCF ◁ LFI ◁ EELV ◁ PS ◁ MoDem ◁ EM ◁ LR ◁ DLF ◁ FN

Note however, that on the “left-right economic” scale, the order is slightly different:

LFI ◁ PCF ◁ EELV ◁ PS ◁ MoDem ◁ EM ◁ FN ◁ DLF ◁ LR

indicating that the problem of ordering the candidates is not perceived as unidimensional by
experts. If we now look at a voter survey, such as The Comparative Study of Electoral Systems
(2023), we obtain the order LFI ◁ PS ◁ EM ◁ LR ◁ FN , which is consistent with the axes used by
polling institutes, but only covers a small subset of the parties (other parties were not proposed
by the survey). We also computed axes for the 2007 and 2012 elections based on these two surveys
using the same methodology, and we provide them in Appendix A.

Qualitative Analysis

We now look at the axes returned by the axis rules we introduced in this chapter. We will continue
to focus on the 2017 election, but the axes obtained for the datasets of the other elections are
provided in Appendix A. Table 6.3 shows the axes returned by our axis rules for the datasets of
the 2017 election. We can see that, like polling institutes, all the rules mostly agree on the position
of the main parties, and disagree only on the positions of the small “hard to place” parties R ,
UPR and SP . Because our rules tend to push the less popular candidates towards the extremes
(as shown by our axiomatic analysis), these small candidates are almost always placed at one of
the extremes, generally on the right of the axes, as they seem to share more supporters with the
candidates from the right. The second important source of disagreement is the relative order of
similar parties, such as the center-left parties PS and LFI or the far-right parties FN and DLF . In
particular, the rules that use more information such as MS and FT tend to put the most popular
candidate of each pair closer to the center, which can cause some inaccuracies (for instance, FT
places LFI closer to the center than PS in some datasets). Overall, the axes returned by our rules
are consistent with the axes used by polling institutes and with the opinion-based ones.

For the online dataset, we also ran the ranking-based axis rules, using the rankings submitted
by the participants for the IRV method, and restricting to the 5 755 participants that ranked all
candidates. The results are displayed in the last rows of Table 6.3. The VD-rank axis is clearly
less convincing than any of the axes returned by the approval-based rules. This corroborates other
observations in the literature. For instance, Sui et al. (2013) ran experiments on 2002 Irish General
Election data and found that the VD-rank axis only fits 0.4%–2.9% of voters. Escoffier et al. (2021)
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Dataset Rule Axis ◁

Strasbourg
VD, MF R LO NPA LFI PS EM LR DLF FN UPR SP

BC, MF R LO NPA PS LFI EM LR FN DLF UPR SP

FT R LO NPA PS LFI EM LR DLF FN UPR SP

HSC
VD, MF SP UPR LO NPA LFI PS EM LR FN DLF R

BC UPR LO NPA LFI PS EM LR FN DLF R SP

MS, FT SP UPR LO NPA LFI PS EM LR FN DLF R

Grenoble VD, MF LO NPA LFI PS EM LR FN DLF UPR R SP

BC, MS, FT LO NPA LFI PS EM LR FN DLF R UPR SP

Crolles 1
VD, MF LO NPA LFI PS EM LR FN DLF UPR SP R

BC, MS LO NPA LFI PS EM LR FN DLF R UPR SP

FT LO NPA PS LFI EM LR FN DLF R UPR SP

Crolles 2
VD R LO NPA LFI PS EM LR FN DLF SP UPR

MF R LO NPA LFI PS EM LR FN DLF UPR SP

BC LO NPA LFI PS EM LR FN DLF R UPR SP

Online

VD R LO NPA LFI PS EM LR DLF RN UPR SP

MF LO NPA LFI PS EM LR DLF RN UPR R SP

BC, MS LO NPA LFI PS EM LR DLF RN R UPR SP

FT LO NPA PS LFI EM R LR DLF RN UPR SP

Online VD-rank FN DLF R LO NPA LFI PS EM SP UPR LR

FT-rank LO NPA R LFI PS EM LR DLF FN UPR SP

Table 6.3: Axes returned by axis rules on the datasets of the 2017 French presidential election. In
case of ties, we report all the axes returned by the rule.

ran experiments on a similar French presidential election dataset and also observed that the optimal
axis found using VD-rank was very different from the orderings discussed in French media. In our
case, the optimal VD-rank axis only covers less than 4% of voters. For comparison, the approval
version of VD returns an axis covering more than 60% of voters for the same dataset. The FT-rank
axis is however much closer to the ones returned by approval-based rules and the ones used by the
polling institutes, the main disagreement being again the position of Jean Lassalle ( R ).

The Optimal Costs

In Figure 6.14, we show the costs of the optimal axes for all the datasets we considered, using VD
and MS. Note that for each dataset, we divided the costs by the number of voters who approved
at least two candidates (more precisely by the sum of their weights). We can see that the costs of
the optimal axes for VD are quite similar across datasets, ranging between 0.3 and 0.5 per voter,
meaning that in general, between 50% and 70% of all voters approving at least two candidates
approve an interval of the optimal axis. With MS, we observe that different datasets of the same
election have similar costs for their optimal axes, but costs differ from one election to another. For
instance, the cost of the optimal axes are lower for the 2012 election than for the 2022 one. This
remains true if we reduce the set of candidates in the preference profiles such that each dataset
has m′ = 10 candidates. One way to interpret this is to say that the political landscape was
more unidimensional in 2012 than in 2022. However, the optimal costs heavily depend on which
candidates are running in the election. In particular, we suspected that some “small” candidates,
that are hard to place on the axis, even for a political experts, were contributing a lot to the cost of
the optimal axes, relatively to their importance. Figure 6.15 highlights this phenomenon. Indeed,
while for most candidates, there exist candidates with whom they are very often co-approved,



6.4. EXPERIMENTAL ANALYSIS 225

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Illkirch (2007)

Cigné (2007)

Louvigny (2007)

Saint-Etienne (2012)

Louvigny (2012)

Strasbourg (2012)

Strasbourg (2017)

HSC (2017)

Grenoble (2017)

Crolles 2 (2017)

Crolles 1 (2017)

Online (2017)

Strasbourg (2022)

Representative (2022)

Online(2022)

All candidates 10 candidates

(a) Voter Deletion.

0.0 0.5 1.0 1.5 2.0 2.5

Illkirch (2007)

Cigné (2007)

Louvigny (2007)

Saint-Etienne (2012)

Louvigny (2012)

Strasbourg (2012)

Strasbourg (2017)

HSC (2017)

Grenoble (2017)

Crolles 2 (2017)

Crolles 1 (2017)

Online (2017)

Strasbourg (2022)

Representative (2022)

Online(2022)

All candidates 10 candidates

(b) Minimal Swaps.

Figure 6.14: Costs of the optimal axes when considering all candidates, and when restricting the
profile to the 10 candidates with the most votes at the actual election, for datasets of the Voter
Autrement collection, using VD and MS. All the costs are divided by the total weight of voters
who approved two or more candidates.
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21% 36% 62% 56% 43% 46% 31% 47% 72% 52%

Figure 6.15: Co-approval of pairs of candidates for the Voter Autrement dataset of the 2017
election, collected in Grenoble. The number in each cell indicates the percentage of time the
column candidate was approved by a voter who approved the row candidate.
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Figure 6.16: Costs of the optimal axes when considering all candidates and when excluding some
candidates from the Voter Autrement datasets, using VD and MS. Costs are divided by the total
weight of voters with two or more approved candidates. The new number of candidates are respec-
tively 10, 9, 8 and 11 for the 2007, 2012, 2017 and 2022 elections.

and candidates with whom they are almost never co-approved, for some other candidates, their
relationship to other candidates is unclear. For instance, we can see on Figure 6.15 that in the
dataset collected in Grenoble in 2017, Jacques Cheminade ( SP ), François Asselineau (UPR) and
Jean Lassalle ( R ) have high co-approval values with almost all other candidates, indicating that
they do not have clear “neighbours” or clear “opponents” on the axis.

Thus, we additionally computed the cost of the optimal axis excluding from the profile the
“small” candidates for which it is unclear where they should be placed on the axis (note that these
are not necessarily the least popular candidates). This corresponds to four candidates: Frédéric
Nihous CPNT (2007), Jacques Cheminade SP (2012 and 2017), François Asselineau UPR (2017)
and Jean Lassalle R (2017 and 2022). We also removed Gérard Schivardi from the 2007 datasets
since he was not approved by enough voters, leading to inaccuracies. This leaves 10 candidates
in 2007, 9 in 2012, 8 in 2017 and 11 in 2022. The axes we obtain with our axis rules using
these reduced profiles are the same as the ones in Table 6.3 when restricted to the new subset of
candidates (thus satisfying the heredity property), but with much lower costs, as we can see in
Figure 6.16. In particular, for the 2017 datasets, we almost halved the MS cost by removing only
three “small” candidates from the election.

Finally, we observed in these datasets that in the majority of the cases, there is no violation
of the heredity property when adding one candidate (i.e., adding a candidate did not change the
relative order of the other candidates). Still, all our rules violate this property in some datasets,
but when it is the case, the changes are marginal, generally a “small” candidate switching from one
extreme to another, or two similar candidates being swapped.

Supreme Court

We now present our experiments based on the data from the Supreme Court of the United States.
We used our rules to obtain an ordering of the 9 justices of the Supreme Court. The dataset
is based on the opinions authored and joined by the justices, derived from the Supreme Court
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Figure 6.17: Statistics about the SCOTUS dataset. In particular, the number of cases and opinions
per year, and the distribution of the number of justices who joined an opinion. Note that the
number of cases corresponds to the number of majority opinions.

Database6 (Spaeth et al., 2023),which contains data for Supreme Court decisions since 1946.

The Dataset

The Court consists of 9 justices who vote on each case about which of the two parties to the case
wins. The Court then publishes a majority opinion explaining the Court’s reasoning. Justices can
also submit concurring opinions and dissenting opinions, and join any of the opinions submitted
by others. Concurring opinions explain additional or alternative reasons, written by justices who
voted with the majority. Dissenting opinions explain why a justice did not vote with the majority.
Note that there might be several dissenting and concurring opinions. Each opinion, concurrence, or
dissent becomes a ballot “approving” the justices that joined in it (so in that sense, the “candidates”
are the justices, and the “voters” are the opinions). The intuition is that justices joining the same
opinion share an ideology and should be placed close together.

In our experiments, we discarded all terms with more than 9 justices (e.g., if one justice is
replaced mid-term), giving us 65 terms between 1946 and 2021, and thus 65 approval profiles. We
also removed all opinions joined by only one justice, so that all “approval ballots” contain at least
two justices. In Figure 6.17, we show some statistics about these datasets. The average number
of opinions per year is n = 240 (for 121 cases per year on average). Moreover, around 48% of the
opinions are joined by only two justices.

The Martin-Quinn Method

The problem of ordering the justices has been extensively studied; the standard method used by
political analysts is the Martin-Quinn (MQ) method, which uses a dynamic item response theory
model (Martin and Quinn, 2002). The Martin-Quinn method for deriving an axis of justices uses
only the binary vote data (i.e., whether a justice voted for or against the winning opinion), and
its underlying model assumes that a decision divides the axis of justices in the middle, with all
justices to one side of the cutoff voting the same way. One issue with this approach is that justices
may vote for (or against) the same opinion but have different reasons for it. It could be that the

6http://scdb.wustl.edu/

http://scdb.wustl.edu/
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Rule Avg KT Same median Same axis

VD 4.94 53.8 % 1.54 %
MF 4.22 58.5 % 3.08 %
BC 3.68 56.9 % 3.08 %
MS 3.55 64.6 % 1.54 %
FT 3.43 66.2 % 7.69 %

Table 6.4: Average Kendall-tau distance between the axes returned by the rules and the MQ axes,
percentage of the time the axes have the same median justice than the MQ ones, and percentage
of the time the rules return the MQ axis.
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Figure 6.18: Percentage of exact match and average Kendall-tau distance between the axes returned
by the different rules.

most progressive and most conservative justices vote the same way, while the centrist justices vote
the other way, for example due to procedural reasons. This is not well-captured by the model.
In addition, the model does not use some relevant information. For example, if two justices very
frequently join each other in their concurring or dissenting opinions, this suggests that these justices
should be placed near each other on the axis.

Axis Rules Comparison

We computed the axes returned by our rules for these 65 terms and compared them to the axes
obtained by the established Martin-Quinn method, by computing the KT distance between the
axes. Table 6.4 shows the average KT distance between the axes returned by our rules and the
Martin-Quinn axes. We see that these distances are on average quite low (noting that the worst
possible KT distance for m = 9 is 18), even if the returned axes rarely match exactly with the
Martin-Quinn ones. Moreover, we observe that FT comes closest, while VD is relatively far away.
We also checked how often the axes computed by our rules agreed with the Martin-Quinn axis on
which justice is placed in the median position. This is of particular interest since the median justice
tends to be pivotal. All rules agreed with MQ on who was the median justice for more than half of
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the terms. FT agrees most frequently, choosing the same median justice in 66% of the terms. We
also compared the axes returned by our rules to each other. Figure 6.18 shows the percentage of
terms for which the axes returned by the different rules are the same, and the average KT distance
between them. We see that the axes returned by the rules are in general quite similar, especially
between BC and MS, with an average KT distance of 1.83, and 34% of exact matches.

Figure 6.19 shows the evolution of the positions of the justices on the axes for the terms between
2010 and 2021, according to the axes produced by the Martin-Quinn method and by our rules. It
is very clear that the Martin-Quinn method is smoother over time, which is by the rule’s design,
since it takes the justices’ positions of the last term as a prior to compute their positions in the
next term. Our rules are less stable, but they clearly separate the more conservative from the
more liberal justices. From these figures, the rules that use more information, such as MS and
FT, seem to be more stable over time than rules that use less information, such as VD and BC.
For future work, we see potential in adapting our rules to obtain methods that are smoother over
time, and perhaps more interesting than the Martin-Quinn method (as they will satisfy axiomatic
properties).

Evolution of the Optimal Costs

The axes returned by the rules are not the only interesting information that we can obtain, and
as for the Voter Autrement datasets, we were also interested in the costs of the optimal axes for
each rule. We also wanted to compute the costs of the Martin-Quinn axes with our rules and
compare them to the optimal costs. Since each term has a different number of opinions n, we
divided the costs by the number of opinions joined by at least two justices. The results are shown
on Figure 6.20. The first observation is that for most terms, the cost of the Martin-Quinn axes are
very close to the cost of the optimal axes, especially for BC, MS and FT. The second observation
is that the costs of the optimal axes and of the Martin-Quinn axes seem to slightly decrease over
time, regardless of the rule. One way to interpret this is through the lens of the global polarization
of American politics, that can also be observed in Congress and among partisan voters during the
last decades (McCarty et al., 2006). One consequence of this polarization is a global ideological
alignment of the opinions of each party’s supporters on a wide range of topics (i.e., if they agree on
one topic, they will agree on most of the others), and which might be one reason why the optimal
axes are becoming more accurate over time. Finally, Figure 6.20 (f) shows again that the optimal
costs of some rules are close: this is the case for VD and MF, and for BC and MS. In our dataset,
the average cost per opinion of the optimal axes is 0.44 for VD (i.e., on average 56% of the opinions
are intervals of the optimal axis), 0.52 for MF, 0.89 for BC, 1.09 for MS and 2.72 for FT.

Tierlists

Finally, we conducted experiments on tierlist datasets, that we introduced in Section 2.5.3 and
used in the experiments of Chapter 3. As a reminder, these datasets were collected from the
website TierMaker.com, on which users can create tierlists by ranking sets of items in different
categories. Formally, a tierlist contains a set of labels (e.g., {S,A,B,C,D, F}), and the voter
associates each candidate to some label. Since there exists a relative order between the labels (e.g.,
S ≻ A ≻ · · · ≻ F ), this gives us a weak order of the candidates for each voter. The approval
ballots are the set of candidates that received the best possible label for each voter.
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Figure 6.19: Axes of the justices of the Supreme Court of the United States between 2010 and
2021, using the Martin-Quinn method and using our axis rules.
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Figure 6.20: Figures (a) – (e) show, for each term, the costs of the optimal axes and of the Martin-
Quinn axis, divided by the number of opinions joined by at least two justices. In Figure (f), we
compare the optimal costs (divided by the number of opinions) of the different rules.
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Dataset n m m∗ #app.

Planets 58 9 – 2.64
Numbers 50 10 – 2.56
Months 244 12 – 2.80
Harry Potter Movies 324 8 – 2.66
Star Wars Movies 4 002 11 – 2.71
Spider Man Movies 346 10 – 2.80
Taylor Swift Albums 169 12 – 3.24
Colors 618 11 – 3.08
School Courses 214 11 15 2.67
European Countries 624 10 51 3.94

Table 6.5: Datasets of tierlists used in the experiments. n is the number of voters, m the number
of candidates used for the experiments, m∗ the original number of candidates, and #app. the
average number of approved candidates per voter.

Dataset Months Star Wars Spider Man School Courses European Countries

Axis ◁

March Solo Venom Chemistry Italy
Apr. Ep. II Amazing SM 2 Physics France
May Ep. I Amazing SM 1 Math UK
Aug. Rogue One SM 3 Technology Germany
June Ep. III SM 1 Music Switzerland
July Ep. V SM 2 Art Sweden
Dec. Ep. IV Spiderverse PE Norway
Oct. Ep. VI No way home History Denmark
Nov. Ep. VIII Homecoming Social studies Iceland
Sep. Ep. VII Far from home Foreign lang. Finland
Jan. EP. IX Literature
Feb.

Table 6.6: Axes returned by FT for some tierlist datasets. The colors indicate groups of candidates
(e.g., seasons of the year or trilogies of movies).

Optimal Axes

We list in Table 6.5 the datasets used in our first experiment.7 We selected datasets on topics for
which there exists a (more or less) “natural” axis. For instance, the order of the months in the year,
or the chronological order of the movies of some series. However, we do not expect that axis rules
will return these axes: there is not necessarily a good reason for them to be correlated with voters’
preferences. For some datasets, we reduced the number of candidates in order to keep the running
time reasonable. In that case, we removed the candidates with the least approvals. Moreover, we
removed voters approving zero or one candidate from all the datasets, as their votes are intervals
of any axis.

We show in Table 6.6 the axes returned by the Forbidden Triples rule for some of these datasets.
The complete results for all rules and all datasets can be found in Appendix A. Most of the resulting
axes are hard to interpret, and not particularly close to the natural axis. However, our rules seem
to have correctly identified clusters of similar candidates. For instance, the movies of each trilogy
are grouped together on the axes of the Star Wars dataset, and similarly for the Spider Man

7Recall that these datasets contain preferences of the voters, even if it seems unnatural to have preferences on
some of these topics (e.g., months of the year, planets, or numbers).
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Figure 6.21: Distribution of approval scores based on the positions of the candidates on the axis.
Red lines indicate single-peaked distributions.

dataset. On the European countries dataset, the nordic countries are grouped together, and on the
School courses dataset, the hard science courses are grouped together, as well as the humanities
courses. Finally, the best example is probably the Months dataset, for which the axes returned by
our rules group the months by season, and even order the seasons correctly.

What is striking on these axes is that the popular candidates are generally close to the center,
and the less popular ones are near the extremes. This is especially true for the rules that use more
information, like FT. To illustrate this phenomenon, we show in Figure 6.21 the distribution of
approval scores along the axes returned by VD and FT for all the tierlist datasets. While it is
not that obvious for VD, we clearly see a “centralization effect” of the popular candidates for FT.
Moreover, for 6 of the 10 axes returned by FT, the distributions of approval scores along the axes
are single-peaked: when going from left to right on the axis, the approval scores of candidates are
increasing until we reach a peak (the approval winner), then the scores are decreasing. This leads
to some surprising “bugs” in the axes, in which a popular candidate is placed in the middle of a
group to which it does not belong. This is for instance the case of December in the Months dataset,
which is the most popular month, and appears between the summer and autumn months on the
axes (see in Table 6.6). Note that we did not observe a centralization effect this strong for the
SCOTUS dataset, in which the distribution of approval scores along the axis was single-peaked for
only 5% of the terms when we used the FT rule. This is likely due to the fact that in the SCOTUS
dataset, all the justices have similar “approval scores” (i.e., number of opinions joined).

Optimal Costs

Finally, Figure 6.22 shows the costs of the optimal axes for the different datasets. All the costs are
divided by the number of voters with two or more approved candidates. We added to the figure
the average costs of the axes obtained with the SCOTUS dataset, for comparison. We see that for
most datasets, the optimal costs are quite high. In particular, for half of these datasets, we have
more than 60% of non-interval voters for the optimal VD axes. However, for some datasets, the
optimal axes have small costs, sometimes smaller than for the SCOTUS dataset. In particular,
with the Spider Man and Star Wars datasets, our rules returned axes with low costs. This could
be explained by the fact that in these datasets, there are clear groups of candidates (e.g., different
trilogies), while this is not always the case for other datasets.
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Figure 6.22: Costs of the optimal axes for the different rules on the tierlists datasets, divided by
the number of voters with two or more approved candidates. The blue bars indicate the average
cost of the optimal axes for the SCOTUS dataset.

Color Axes

Finally, we conducted experiments on two additional tierlist datasets of preferences over colors
(different from the dataset mentioned in Table 6.5). They each have 33 candidates (which are
different colors), and respectively 268 and 283 voters. Because of the high number of candidates,
the palette is more nuanced and several colors are very similar, which makes the analysis more
interesting. Indeed, we can select subsets of colors that contain interesting nuances, or groups of
similar colors. Figure 6.23 shows the axes returned by our rules on four selected subsets, and we
provide figures for more color palettes in Appendix A. We observe again that our rules are good at
clustering similar candidates (here, colors), as it is the case in Figure 6.23 (c), in which we selected
four pairs of quasi -clones, and in Figure 6.23 (d), in which we selected the four most flashy and the
four most dull colors of the palette. In both cases, the similar colors are correctly grouped together.
However, it seems that the axes returned are not always “satisfying” in the sense that they do not
show the colors in the correct nuance order. This is for instance the case in Figure 6.23 (b) in
which we would have expected to have red and blue at the extremities and the more purple/rose
colors in the center. A reason why it is not the case here is probably the same as we discussed
earlier: more popular candidates tend to go to the center of the axis, and less popular candidates
are pushed towards the extremes. In some cases though, the returned axes are quite satisfying,
like the one returned by FT in Figure 6.23 (a).
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Figure 6.23: Axes of colors for some subsets of eight colors, obtained using the different axis rules.
We provide the number of voters with at least two approved candidates for each subset.

6.5 Discussion

In this chapter, we introduced a new model for deriving orderings of candidates solely based on
the approval ballots expressed by the voters. In particular, we introduced a family of scoring rules
and analyzed five natural rules from this family.

Which Rule to Use?

First of all, our axiomatic and experimental analyses showed that we can order these rules on
a spectrum from the least informational (Voter Deletion) to the most informational (Forbidden
Triples). We saw that two of these rules satisfy a monotonicity property, and that we could charac-
terize Voter Deletion based on this property and an independence of clones property. Furthermore,
we showed an incompatibility between two natural clones-related axioms.

Our experiments showed that all of the rules we introduced were able to correctly identify
clusters of similar candidates, and to return axes that are close to the “natural” (for real data)
or “correct” (for synthetic data) axes. Based on these experiments, it also seems that the more
informational rules, like Forbidden Triples or Minimal Swaps, generally perform better and return
axes that are closer to the correct ones. Finally, our analysis showed that our axis rules tend to
push popular candidates towards the center of the axis, and less popular ones towards the extremes.

When it comes down to recommending one of the methods, it seems that the rules that use more
information have more advantages in terms of axis quality, and the rules that use less information
are easier to interpret. However, the choice of the rule should depend on the context of the
application. For instance, in a context of ordering parties based on their votes on a set of bills,
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approvals and disapprovals have symmetrical roles, and it would make sense to use a rule like
Minimal Flips, which treats approvals and disapprovals the same.

Applications of the Problem

This study gives a new perspective on the problem of building a left-right axis of political parties
or leaders, that is based on concrete data and explainable methods, and not on the perception of
experts or voters. Moreover, with the introduced rules, one can interpret the cost of the optimal
axis as how “unidimensional” the political spectrum actually is, given a set of candidates. As we
already explained, we can build an axis that is based on the preferences of voters over the political
parties, but we can also use our rules to build an axis based on the votes of the parties at the
parliament, as we did with the opinions of the justices of the US Supreme Court.

If we mainly focused on the political applications of the model in this chapter, our methods
can be used in a variety of fields, as long as we can represent the problem as a binary matrix. As
already discussed in the introduction, this is for instance the case of the relative dating problem
from geology and archaeology, in which we respectively want to date strata based on the fossils they
contain, and items or tombs based on the designs appearing on them. However, in these contexts,
and in many others (including political ones), the computational hardness of the rules can be a curb
on the applicability of the model. In particular, our algorithms can take several days for datasets
of more than 15 candidates. If we want to order all the items found in an archaeological site, all
the politicians of a parliament, or all the projects of a participatory budgeting election, we need
to find faster methods. We also need faster methods if we want to order small sets of candidates,
but want to have immediate feedback. Consider for instance an interactive website that displays
an axis of candidates or parties based on the votes of the visitors, and votes are constantly being
added. For these reasons, it would be useful to design polynomial-time computable rules that
produce acceptable outputs. Greedy versions of our rules are a natural starting point, but maybe
better techniques exist.

Extensions of the Model

It would also be interesting to study extensions of this model that tackle some of the issues we
mentioned in this chapter. One of them is the fact that the popular candidates are pushed towards
the center of the axis, which can create some inaccuracies. To tackle this, we could design rules
that take into account the popularity of each candidate when building the axis (similarly to what
was done by Laslier (2006) for multi-dimensional spatial representation of candidates). We could
also design rules that first identify the relevant subset of candidates on which axes can be built,
for instance by removing candidates that have a high co-approval value with all other candidates.

Another interesting extension tackles the stability over time issue that we encountered with
the Supreme Court dataset. Indeed, it would be interesting to design rules that take into account
the axis of the previous term when building the next one. We could also generalize our model to
approval profiles with incomplete preferences (Imber et al., 2022). This is for instance interesting if
we want to order the parties in a parliament and they can either vote in favor, against, or abstain.

Other interesting directions for future work include studying how we can adapt our model to
other types of structures, like circular axes, in which the first and last candidates of the axis are
next to each other. We could also study how to adapt this model to more than one dimension, or
how to introduce metric distances between candidates on the axis.



Chapter 7

Identifying Conflicting Pairs of
Candidates via Rankings

7.1 Introduction

In the previous chapter, we saw that we could apply methods and concepts from social choice
theory to solve problems beyond the selection of winners. In particular, we saw how we could
take advantage of expressive preferences to learn about the structure of the electorate, and of the
set of candidates. Unlike the problems studied in the first part of this thesis, the goal was not to
find a social outcome for the voters based on their preferences, but to describe the organization
of the society. In this chapter, we study another problem, in which we aim at learning about
the electorate. Motivated by the increasing polarization of our societies, our objective will be to
identify the pairs of candidates that are inducing the most conflict among voters.

Since each voter has their own perspective, and their own opinions on the candidates, it is
almost inevitable in a situation of collective decision that there will be conflicts. Not only it is
inevitable, but the existence of conflicts and disagreements between voters is generally sane: A
society in which everyone thinks the same is characteristic of a totalitarian society. On the other
hand, having a lot of divisions and conflicts is not desirable either, and it can even be dangerous for
the survival of the society. This is a major concern of our century: several recent studies showed
that global polarization and social conflicts are on the rise in many countries (Boxell et al., 2024;
Draca and Schwarz, 2024), and that the increase in polarization is often correlated to the erosion
of the democracy, and to a lack of trust in the institutions (Somer and McCoy, 2019; McCoy
et al., 2018). In that sense, one motivation for identifying the largest sources of conflict within
an electorate is to use this knowledge to hopefully reduce this conflict. First, because identifying
conflicting groups of voters can help to find communication channels to improve dialogue between
those groups. Second, because by identifying the candidates, or issues, that are causing the most
conflict, we can address these issues as a priority and seek compromises.

This is not the only reason why identifying conflicting pairs of candidates is interesting. Con-
sider for instance that someone wants to organize the most engaging sports events involving two
teams or players. Then, selecting the pairs of candidates that are inducing the most conflict among
sport supporters could be an interesting idea. Similarly, a political debate between the candidates
that are inducing the most conflict would be very engaging. For socially relevant deliberations, as
well as scientific or business discussions, debating conflicting ideas is a way to boost the creativity

237
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with passionate discussions. This reasoning can be applied to any field: the more conflict is induced
by two alternative choices, the more engaging will be a “clash” between them.

How to Measure Conflict?

Thus, our goal is to find pairs of candidates that are generating conflict in the electorate, using only
the preferences of the voters. First, we need to specify what we mean by conflict. Intuitively, two
candidates a and b are inducing the most conflict when the following two conditions are fulfilled:
(1) half of the electorate prefers a to b, and the other half prefers b to a, and (2) every voter likes a
or b the most and the other one the least. The first condition ensures that the electorate is perfectly
divided between the two candidates, and the second condition that the voters have very strong
opinions on these candidates. More generally, we want to find two candidates that are supported
by two groups of voters of similar sizes, and that are perceived ideologically as far from each other
as possible in these two groups. However, this dual nature of conflict poses a significant conceptual
challenge, as we need to balance these two aspects. For instance, if one pair of candidates divides
more evenly the electorate than another pair, but voters have stronger opinions on the candidates
of the other pair, which one should be considered as the most conflicting?

Let us now analyze how we can measure conflict under different preference formats. Clearly,
uninominal preferences are not expressive enough when there are more than m ⩾ 3 candidates, as
we only know the favorite candidate of each voter.

The natural way to define conflict with approval preferences would be to say that the conflict
induced by two candidates is linked to the number of voters who approve one but not the other.
Thus, let us denote na≻b the number of voters who approve a but not b, and nb≻a the number
of voters who approve b but not a. Then, the conflict is maximal when na≻b and nb≻a are as
large as possible, but also as close as possible (to ensure that we have a balanced conflict). Two
natural ways to find pairs of candidates inducing the most conflict would then be to select the
pairs that maximize the product na≻b × nb≻a, or the minimum min(na≻b, nb≻a). Maximizing the
sum is not interesting, as it might lead to selecting a pair {a, b} such that every voter approves a
and disapproves b (so everyone agrees on which candidate is the best). While no work in social
choice specifically looked at this problem, the product of the sizes of different supporters groups has
already been identified as a good measure of ethnic polarization and potential conflicts (Montalvo
and Reynal-Querol, 2005). Unfortunately, approval preferences completely hide the intensity of
the preferences that voters have over the candidates. For instance, if a is approved by a voter but
not b, that could mean that a is his favorite candidate and b his least favorite, or that a is just
above their approval threshold, and b just below.

In this chapter, we define solutions to our problem that use the ordinal preferences (rankings)
of voters. Note that with ordinal preferences, we can still define na≻b as the number of voters
who prefer a candidate a to another candidate b as in the approval case, but we can also use the
intensity of the preferences each voter has for the candidates, which is maximal when one of the
two candidates is ranked first, and the other is ranked last.

Multi-winner Rules

As we aim at selecting a pair of candidates using voters’ preferences, our task technically falls
into the framework of multi-winner voting rules, that we discussed in Section 2.3.2. Such rules,
given the preferences of voters and a committee size, select a winning committee (i.e., a subset of
the candidates) of the desired size that aims at meeting a certain objective. As we mentioned in
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Section 2.3.2, most multi-winner voting rules follow one of three objectives: (1) individual excel-
lence, focusing on selecting candidates that are individually the best ones, (2) diversity, focusing on
representing as many voters as possible, and (3) proportional representation, focusing on selecting
a committee that proportionally represents the voters.

Our case is different, as our objective is not to select the winners of an election, but to identify
the candidates that are inducing the most conflict. Focusing on diverse candidates might appear
as an interesting start to fulfil our goal: intuitively, the two most diverse candidates are more likely
to also be those that divide the voters the most. However, this is not necessarily the case, for the
simple reason that rules seeking diversity are still aiming to find popular candidates. Indeed, if
half of the voters have the preferences a ≻ b ≻ c, and the other half a ≻ c ≻ b, then any rule
designed for electing winners, including the ones aiming for diversity, will include a in the selected
committee, while the only pair of candidates that induces conflict among the voters is {b, c}: for
the other pairs, all voters agree on the ordering of the candidates.

Finally, Dong et al. (2024) pursued yet another goal, that can be seen as opposite to ours, as
they aim at selecting a committee of candidates that are the most interlacing, in the sense that
the selected candidates should have overlapping sets of supporters. In that sense, they aim at
minimizing the conflict induced by the candidates in the committee. Another difference with our
work is that they use approval preferences while we are using ordinal preferences.

Related Polarization Measures

In the literature, several interesting notions of conflict and polarization have already been defined,
and some of them are based on ordinal preferences. However, in all of these works, the aim is to
measure conflict either at the level of single candidates (i.e., the voters are very divided on this
candidate/issue and have strong opinions on it) or at the level of the whole profile (i.e., the voters
are very divided on most candidates/issues), while in this chapter, we aim at measuring conflict at
the level of pairs of candidates. Further works could generalize our approach to measure conflict at
the level of subsets of candidates of any size. To see the differences between these several notions
of conflict, consider the following three profiles of ordinal preferences:

P1 : 50% a ≻ b ≻ x1 ≻ · · · ≻ x99 50% x1 ≻ · · · ≻ x99 ≻ a ≻ b
P2 : 50% a ≻ x1 ≻ · · · ≻ x99 ≻ b 50% b ≻ x1 ≻ · · · ≻ x99 ≻ a
P3 : 50% a ≻ x1 ≻ · · · ≻ x99 ≻ b 50% b ≻ x99 ≻ · · · ≻ x1 ≻ a

In P1, both candidates a and b are very divisive candidates: half of the voters put them first, and
the other half put them last. Nonetheless, they do not form a conflictual pair: they are next to
each other in all rankings, and all voters agree that a is better than b. In P2 however, the two
candidates form a conflicting pair: the voters who place a in first position in their ranking also
place b in last position, and conversely. Still, the profile as a whole is not very polarized: the voters
only disagree on the positions of a and b. A more polarized preference profile is P3, in which the
first half of the voters rank the candidates in the reverse order of the second half.

The earliest notions of polarization based on preferences are inspired by the work of Esteban
and Ray (1994), who investigated a measure of polarization for a distribution of values. In other
words, individuals are described by a value in some set (for instance N), representing one of their
characteristics. In this paper, the authors identify three key aspects of polarization, of which
two align with the aspects of conflict we mentioned earlier: “(1) there must be a high degree of
heterogeneity between the different groups and (2) there must be a high degree of homogeneity
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within each group”. Consequently , the measure they introduce relies on the size of the groups (the
larger and more equally divided, the more polarized) and on the “ideological” distance between the
groups (the more distant, the more polarized). This work was later generalized by Ozkes (2013),
who adapted these measures to the case of ordinal preferences.

More recently, Can et al. (2015, 2017) investigated and characterized another family of polar-
ization measures, that is also based on ordinal preferences. In this work too, the goal is to quantify
the polarization of preference profiles as a whole. Interestingly, the polarization measure they focus
on is defined as a sum of some pairwise polarization measure over all pairs of candidates. Thus,
they are indirectly defining a measure of conflict for pairs of candidates, which can be linked to
the conflict measure “partitioning ratio” we introduce in Section 7.2. Faliszewski et al. (2023a)
also investigated polarization measures for preference profiles, though they are using a completely
different approach, based on the properties of the Kemeny rule. They additionally investigated the
related notions of diversity and agreement in elections with rankings. Other works study related
measures for preference profiles of rankings, for instance diversity measures (Hashemi and Endriss,
2014) and cohesiveness measures (Alcalde-Unzu and Vorsatz, 2016).

Finally, some other works aim at measuring the divisiveness induced by individual candidates.
Colley et al. (2023b) recently proposed such a divisiveness measure (see also Navarrete et al.
(2023)). In their work, they are also quantifying how divisive a candidate is by doing the sum
of some pairwise conflict measure over all pairs of candidates that include this candidate. This
pairwise conflict measure also shares similarities with the “partitioning ratio” measure that we
introduce in Section 7.2. Note however that taking the two most divisive candidates will not
necessarily give a pair of candidates that induces a lot of conflict, as these candidates might be
individually divisive, but not necessarily conflicting with each other (consider for example the
profile P1 at the beginning of this subsection).

Outline of the Chapter

The first contribution of this chapter is the various measures of conflict that we introduce, and the
trade-off that naturally arises from these notions (Section 7.2). We then define in Section 7.3 several
rules that aim at selecting the most conflicting candidates, and we analyze how they relate to our
conflict measures. We proceed in Section 7.4 to axiomatically evaluate these rules. In particular,
we establish new foundational axioms and show that they are totally incompatible with classical
multi-winner voting rules. Defining more demanding axioms, we arrive at an impossibility result
between a monotonicity and an efficiency axiom. Finally, we present the experimental evaluation of
the rules and of the conflict measures in Section 7.5, using both synthetic and real-life preferences.
These experiments enable us to validate our theoretical insights and to show how the rules would
behave in some real-world applications.

7.2 Conflict Measures

In this chapter, we consider profiles of rankings P = (≻1, . . . ,≻n). By
←−
P = (

←−≻1, . . . ,
←−≻n), we

denote profile P with all ballots being reversed. In particular, for all i ∈ V , and all a, b ∈ C, a ≻i b

if and only if b ←−≻i a.
Let di(a, b) be the rank difference between two candidates a and b in a vote ≻i, that is di(a, b) =

σi(a)− σi(b) (where σi(c) is the rank of candidate c ∈ C). Note that this value can be negative if
a is ranked below b. For instance, in the vote a ≻i b ≻i c ≻i d ≻i e, we have σi(b) = 2, σi(e) = 5,
di(b, e) = 5−2 = 3 and di(e, b) = −di(b, e) = −3. We also denote by σ−1

i the inverse of the ranking



7.2. CONFLICT MEASURES 241

σi, that is σ−1
i (j) = c if and only if c is the candidate ranked j-th in ≻i. Furthermore, for all pairs

of candidates a, b ∈ C, we recall that V a≻b = {i ∈ V | a ≻i b} is the set of voters preferring a to b
in P . We have V a≻b ∪ V b≻a = V and V a≻b ∩ V b≻a = ∅. Finally, we say that a pair of candidates
{a, b} is conflicting if their ordering is not unanimous, i.e. V a≻b ̸= ∅ and V b≻a ̸= ∅. In other
words, a pair of candidates is conflicting if neither of them Pareto-dominates the other one in P .

We consider in this chapter the multi-winner voting model that we introduced in Section 2.3.2.
As a reminder, an (irresolute) committee voting rule f is a function that takes as input a profile
P and a committee size k ⩾ 2 and outputs a non-empty set f(P, k) of committees, such that for
each committee W ∈ f(P, k), we have |W | = k and W ⊆ C. In this chapter, we focus on the case
of two candidates (i.e., k = 2), and thus write f(P ) instead of f(P, 2) for simplicity.

Before defining any rule, we need to understand better what it means for a pair of candidates
to induce conflict among the voters (beyond the non-Pareto domination condition). To this end,
we propose in this section several measures of conflict, which are not always compatible.

Intuitively, a pair of candidates is perfectly polarizing if there are two groups of equal sizes
that have conflicting preferences on this pair (i.e., they disagree on which candidate is better), and
all voters have very strong opinions on the candidates. In other words, a pair {a, b} is maximally
conflicting if half of the voters rank a first and b last and the other half rank b first and a last.
We formalize these two features to describe the conflict between two candidates in the notions of
social partitioning ratio α and candidates’ discrepancy β. However, these two measures are not
sufficient to capture all the aspects of the conflict between two candidates, and we can have the
same values of α and β for two pairs of candidates that are in very different conflicting situations.
Thus, we introduce two other measures to complete the picture, called the discrepancy balance γ
and the group discrepancy imbalance ϕ.

Partitioning Ratio

The social partitioning ratio α represents the “global” aspect of the conflict between two candidates.
It is maximal when the voters are perfectly divided into two groups of equal sizes, one preferring
a to b and the other b to a. Formally, we define the partitioning ratio as follows.

Partitioning Ratio α

The partitioning ratio of a pair of candidates a, b ∈ C is:

α(a, b) =
2

n
min(|V a≻b|, |V b≻a|) ∈ [0, 1].

If all voters prefer a over b, then |V b≻a| = 0, and the partitioning ratio α(a, b) = 0 is minimal.
Thus, a pair of candidates a, b ∈ C is conflicting if and only if α(a, b) > 0. If voters are perfectly
divided between a and b, then |V a≻b| = |V b≻a| = n/2 (assuming n is even) and the partitioning
ratio α(a, b) = 1 is maximal. We also note that the partitioning ratio α satisfies a form of inde-
pendence of irrelevant alternatives (defined in Section 2.4.4): the value of α(a, b) is independent
of other candidates c ̸= a, b. A drawback of satisfying this axiom is that the measure completely
ignores the intensity of the preferences of the voters, that can be inferred from the positions of the
candidates in the rankings. The next measure aims at capturing this intensity.

This measure of conflict is rather natural. In particular, we can find very similar ideas used in
the definitions of the measures of polarization that exist in the literature and that we mentioned
in the introduction. For instance, Can et al. (2015) propose a way to measure the polarization of
a preference profile as a whole, that is equal to the average partitioning ratio α(a, b) over all pairs
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of candidates a, b ∈ C. Similarly, the partitioning ratio appears in the formula used to compute
the divisiveness of a single candidate in the work of Colley et al. (2023b).

Discrepancy

The “local” aspect of conflict is that the voters might individually have strong opinions on the
candidates. We measure this with the candidates’ discrepancy β:

Discrepancy β

The discrepancy of a pair of candidates a, b ∈ C is:

β(a, b) =
1

n · (m− 1)

∑
i∈V

|di(a, b)| ∈ [0, 1].

The discrepancy β(a, b) is maximal when all voters rank one of a and b first and the other
one last. In that case |di(a, b)| = m − 1 for all i ∈ V , and β(a, b) = 1. Note that it is in
particular maximal when all voters rank a first and b last, though in this case, a and b are not
really “conflicting” (a Pareto-dominates b). On the other hand, it is minimal if a and b are clones
(defined in Section 2.4.4). In that case, we have |di(a, b)| = 1 for all i ∈ V , and β(a, b) = 1/(m−1).
Note that the discrepancy is always strictly greater than 0.

Moreover, for a given profile P , the maximal discrepancy between two candidates is always
greater than 1/3. To see that, one just needs to observe that the average discrepancy over all pairs
of candidates is always 1/3. Indeed, we have:

∑
a,b∈C

|di(a, b)| =
m−1∑
k=1

k∑
j=1

|di(σ−1
i (k + 1), σ−1

i (k + 1− j))| =
m−1∑
k=1

k∑
j=1

j =

m−1∑
k=1

k(k + 1)

2

=
(m− 1)m(2m− 1)

12
+
m(m− 1)

4
=

(m− 1)m(m+ 1)

6

Moreover, there are m(m− 1)/2 pairs of candidates, giving the following average discrepancy:∑
a,b∈C β(a, b)

m(m− 1)/2
=

1

n · (m− 1)

∑
a,b∈C

∑
i∈V |di(a, b)|

m(m− 1)/2

=
1

n · (m− 1)

∑
i∈V

∑
a,b∈C |di(a, b)|

m(m− 1)/2

=
1

n · (m− 1)

n ·m(m− 1)(m+ 1)/6

m(m− 1)/2
=

1

(m− 1)

m+ 1

3
> 1/3

By pigeonhole principle, there exists at least one pair of candidates which has a discrepancy greater
than the average discrepancy, i.e. maxa,b∈C β(a, b) > 1/3.

Discrepancy Balance

Partitioning ratio and discrepancy already highlight a trade-off between giving more importance
to voters having strong opinions or to be evenly split. Yet, there is another phenomenon involved
for understanding the conflict induced by candidates. Consider the following profile of two voters:

a ≻ x ≻ c ≻ d ≻ y ≻ b
c ≻ y ≻ b ≻ a ≻ x ≻ d
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In this profile, both (a, b) and (x, y) have discrepancy β = 3/5 and partitioning ratio α = 1.
However, the discrepancy of the pair (a, b) is not equally distributed between the two voters.
Indeed, the supporter of a strongly prefers a over b, while the supporter of b is close to indifferent
between the two candidates. On the other hand, the discrepancy of the pair (x, y) is equally
distributed between the two voters. This motivates the notion of discrepancy balance γ:

Discrepancy Balance γ

The discrepancy balance of a pair of candidates a, b ∈ C is:

γ(a, b) = min(µa≻b/µb≻a, µb≻a/µa≻b) ∈ [0, 1],

where µa≻b is the average discrepancy between a and b among supporters of a:

µa≻b =

∑
i∈V a≻b |di(a, b)|
|V a≻b|

.

If V a≻b = ∅ or V b≻a = ∅, we define γ(a, b) = 0. The intuition behind this measure is that we
want the average discrepancy of each group of supporters to be as similar as possible, in order for
the conflict to be balanced. This measure is maximal if the average discrepancy is the same in
both groups of supporters, regardless of the size of each group. In particular, it can be equal to
1 even if n − 1 voters prefer a to b and only one voter prefers b to a. Measures α, β and γ are
not independent of each other. For instance, β(a, b) = 1 and α(a, b) > 0 implies γ(a, b) = 1 (but
γ(a, b) = 1 does not imply anything for β(a, b)).

Note that α measures if the electorate is evenly divided between two candidates, and γ measures
if the discrepancy is well balanced between the two groups of supporters. By combining these two
ideas, we obtain our last measure, called group discrepancy imbalance ϕ.

Group Discrepancy Imbalance ϕ

The group discrepancy imbalance of a pair of candidates a, b ∈ C is:

ϕ(a, b) =
|
∑

i∈V di(a, b)|∑
i∈V |di(a, b)|

∈ [0, 1].

Note that contrary to the other measures, there is more conflict between a and b when ϕ is min-
imal and not maximal. In particular, if ϕ(a, b) = 0, then the sum of the individual discrepancy be-
tween a and b is the same inside both groups of supporters, i.e.,

∑
i∈V a≻b di(a, b) =

∑
i∈V b≻a di(b, a).

Conversely, it is equal to ϕ(a, b) = 1 when the groups are totally imbalanced (in that case the par-
titioning ratio is α(a, b) = 0). Contrary to γ, the group discrepancy imbalance ϕ is sensitive to the
sizes of the groups. In particular, if the rank differences between a and b are equal for every voter
(i.e., |di(a, b)| = β · (m − 1) for all i ∈ V ), then γ(a, b) = 1, while ϕ(a, b) = 1 − α(a, b). Thus, we
expect ϕ and α to be very (negatively) correlated in practice.

To get a better understanding of these measures, consider the following example:

Example 7.1
Consider the following profile P of four voters:

x ≻1 a ≻1 b ≻1 y a ≻3 y ≻3 x ≻3 b

x ≻2 a ≻2 b ≻2 y b ≻4 y ≻4 x ≻4 a
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In this profile, the pair {x, y} has the highest partitioning ratio α(x, y) = 1 as half of the voters
prefer x to y and the other half prefer y to x. On the other hand, for every other pair, one
candidate is supported by three voters, and the other by only one, giving a partitioning ratio of
1/2. It is easy to see that the values of discrepancy for the pairs {a, b} and {x, y} are the same
since in both cases two voters have extreme opinions on the candidates, and two voters have them
next to each other in their rankings. This gives a discrepancy β(a, b) = β(x, y) = 2/3. Finally,
we can see that the conflict is more balanced for the pair {a, b} than for {x, y}, as γ(a, b) = 5/9

and ϕ(a, b) = 1/4, while γ(x, y) = 1/3 and ϕ(x, y) = 1/2 (recall that the conflict is more balanced
when ϕ is lower). We can compute the values of all four measures for all the pairs of candidates
in this profile, and we obtain the following table.

{a, b} {x, y} {a, x} {b, y} {a, y} {b, x}

α 1/2 1 1/2 1/2 1/2 1/2
β 2/3 2/3 5/12 5/12 7/12 7/12
γ 5/9 1/3 1/2 1/2 5/6 5/6
ϕ 1/4 1/2 1/5 1/5 3/7 3/7

Characteristic Profiles

We can also look at the values these measures take in some specific profiles. In particular, the
characteristic profiles studied by Faliszewski et al. (2023a) are an interesting start.

In the identity (ID) profile, all voters have the same ranking P = (≻, · · · ,≻). In this profile
the partitioning ratio α(a, b) is equal to 0 for all pairs of candidates. The discrepancy β(a, b) is
equal to |σ(a) − σ(b)|/(m − 1) where σ(c) is the rank of c in ≻. Thus, it is equal to 1 for the
pair {a, b} where a is the first ranked candidate and b the last ranked candidate in ≻. Finally,
the discrepancy balance γ(a, b) is equal to 0 and the group discrepancy imbalance ϕ(a, b) is equal
to 1 for all pairs of candidates. This makes sense, as the identity profile is the least conflicting
profile. In particular, there are no conflicting pairs of candidates, in the sense that for each pair,
one candidate always Pareto-dominates the other.

In the uniform (UN) profile, every possible ranking appears exactly once. In this profile, the
partitioning ratio is maximal α(a, b) = 1 for each pair of candidates a, b ∈ C, as there are as
many rankings with a ≻ b than there are with b ≻ a. The discrepancy β(a, b) is equal to the
average one for all pairs of candidates, i.e. β(a, b) = (m + 1)/(3(m − 1)) ≈ 1/3. Finally, the
discrepancy balance is maximal (i.e., γ(a, b) = 1) and the group discrepancy imbalance is minimal
(i.e., ϕ(a, b) = 0) for all pairs of candidates, as for every ranking with a ≻ b, the profile also contains
the ranking identical except that the positions of a and b are swapped. Thus, in the identity profile
ID, the “local” conflict, represented by the discrepancy, was maximal, while the “global” conflict,
represented by the partitioning ratio, was minimal. In the uniform profile UN, the opposite is true.

Let us now consider a third characteristic profile, called antagonism (AN), in which half of the
voters submit a ranking ≻, and the other half submit the opposite ranking ←−≻ . In this profile, we
have α(a, b) = 1 for all pairs of candidates, and the discrepancy is equal to β(a, b) = 1 for the pair
of candidates a, b ∈ C where a is the first ranked candidate in ≻ and b is the last one. Finally,
the discrepancy balance is also maximal γ(a, b) = 1 (and the imbalance minimal ϕ(a, b) = 0) for
all pairs of candidates by symmetry of the profile. Thus, as expected, the antagonism profile AN
is the one for which all of our conflict measures are maximal. Table 7.1 summarizes the values of
the different measures for these three characteristic profiles.
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Identity (ID) Uniform (UN) Antagonism (AN)

α 0 1 1
βmax 1 m+1

3(m−1) 1
γ 0 1 1
ϕ 1 0 0

Table 7.1: Values of the different measures for the three characteristic profiles.

7.3 Conflict Rules

Let us now introduce some rules that aim to select the most conflicting pairs of candidates. One
simple way to find conflicting pairs is to select the ones that maximize some function of the
different measures α, β, γ and ϕ. More formally, the rule f would be endowed with a scoring
function s(α, β, γ, ϕ) from [0, 1]4 to R⩾0, and would select the pairs of candidates maximizing the
value s(α(a, b), β(a, b), γ(a, b), ϕ(a, b)). However, it is not clear what scoring function should be
used, and how to balance the different measures, as this approach lacks an intuitive interpretation
of the rule. Still, we define one simple family of scoring functions solely based on the partitioning
ratio α and the discrepancy β, that we name p-MaxPolarization rules (p-MaxPolar in short).

p-MaxPolarization
The p-MaxPolarization rule selects the pairs of candidates that maximize the value of the scoring
function sp(α, β) = α · βp, for p > 0.

Clearly, the higher the value of α(a, b) and β(a, b), the more conflicting the pair of candidates
{a, b} is, and the more likely it is to be selected by these rules. Moreover, the higher the value of
p, the more weight is put on the discrepancy β in comparison to the partitioning ratio α.

Pairwise Conflict

In Section 7.2, we introduced several measures of conflict that each capture one aspect of conflict
induced by a pair of candidate. Another way to see if a pair of candidates introduces a lot of
conflict is to start from pairs of voters and see how strongly they disagree on their preferences
between the two candidates. Intuitively, a pair of candidates {a, b} is inducing a conflict between
two voters if they disagree on the ordering between a and b. Moreover, the more distant a and b

are in the voters’ rankings, the greater the conflict. Starting with this, we define the sum pairwise
conflict, noted conf+, and the Nash pairwise conflict, noted conf×.

Pairwise conflict
For ◦ ∈ {+,×}, let the conflict induced by a pair of candidates {a, b} between two voters i, j be:

conf◦i,j(a, b) =

{
0 if di(a, b) · dj(a, b) > 0

|di(a, b)| ◦ |dj(a, b)| otherwise

For instance, the Nash pairwise conflict induced by a and b between rankings a ≻i b ≻i c and
b ≻j c ≻j a is conf×i,j(a, b) = 1 × 2 = 2, and the sum pairwise conflict is conf+i,j(a, b) = 1 + 2 = 3.
One could also think of using the operators ◦ = min and ◦ = max. However, these operators are
less appealing: if we only consider the maximum (or minimum) of the two values, we completely
ignore the other value. The following example illustrates this issue: if we have di(a, b) = 1 and
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dj(a, b) = 50, and di(x, y) = dj(x, y) = 49, then the max-pairwise conflict will say that the conflict
induced by a and b between the voters i and j is higher than the conflict induced by x and y. A
similar example can be made for the min-pairwise conflict.

By extension, one way to define the conflict induced by a and b in a profile is to sum the
pairwise conflict over all pairs of voters. We can first define the MaxSumConflict rule (MaxSum
for short), based on the sum pairwise conflict conf+.

MaxSumConflict
The MaxSumConflict rule selects the pairs of candidates that maximize∑

i,j∈V

conf+i,j(a, b) = |V b≻a|
∑

i∈V a≻b

di(a, b) + |V a≻b|
∑

i∈V b≻a

di(b, a).

To derive the second formula, simply observe that we are doing a sum of |di(a, b)|, and we just
need to count how many times each |di(a, b)| appears in this sum. Since every voter i ∈ V a≻b is
conflicting with every voter j ∈ V b≻a, we can deduce that |di(a, b)| = di(a, b) appears |V b≻a| times
in the sum. Similarly, for all j ∈ V b≻a, |dj(a, b)| = dj(b, a) appears |V a≻b| times in the sum.

We similarly define the MaxNashConflict rule (MaxNash for short).

MaxNashConflict
The MaxNashConflict rule selects the pairs of candidates that maximize

∑
i,j∈V

conf×i,j(a, b) =

 ∑
i∈V a≻b

di(a, b)

×
 ∑

i∈V b≻a

di(b, a)

 .

The second formula is obtained through the same reasoning as for MaxSum. Interestingly, this
rule can also be expressed using some of the measures introduced in Section 7.2:

Proposition 7.1
MaxNash returns the pairs of candidates which maximize β2(a, b)(1− ϕ2(a, b)).

Proof. For two candidates a, b ∈ C, let us denote by s(a, b) =
(∑

i∈V a≻b di(a, b)
)
×
(∑

i∈V b≻a di(b, a)
)

the MaxNashConflict score of the pair {a, b}. Let us now define the sum of discrepancies in
each group of supporters Da≻b =

∑
i∈V a≻b di(a, b) and Db≻a =

∑
i∈V b≻a di(b, a). Then define

Dmin = min(Da≻b, Db≻a) and Dmax = max(Da≻b, Db≻a). Now observe that:

β(a, b) =
1

n · (m− 1)

∑
i∈V

|di(a, b)|

=
1

n · (m− 1)
(Da≻b +Db≻a)

=
1

n · (m− 1)

(
Dmax +Dmin

)
, and

β(a, b)ϕ(a, b) =
1

n · (m− 1)

∣∣∣∣∣∑
i∈V

di(a, b)

∣∣∣∣∣
=

1

n · (m− 1)
|Da≻b −Db≻a|

=
1

n · (m− 1)

(
Dmax −Dmin

)
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From this, we can deduce:

Dmax =
n · (m− 1)

2
(β(a, b)(1 + ϕ(a, b))) and Dmin =

n · (m− 1)

2
(β(a, b)(1− ϕ(a, b)))

Finally, observe that the MaxNashConflict score is equal to

Da≻b ×Db≻a = Dmax ×Dmin =
n2(m− 1)2

4
β2(a, b)(1− ϕ2(a, b))

Since n2(m − 1)2/4 is a constant, we can conclude that MaxNash selects the pairs of candidates
which maximize β2(a, b)(1− ϕ2(a, b)).

Number of Swaps

Finally, another approach to define a rule is to select, in a preference profile P , the pairs of
candidates {a, b} that maximize the distance between P and a profile in which a and b would
be non-conflicting (i.e., all voters have the same ordering between a and b). This approach is
conceptually similar to the distance-rationalizable rules from classical social choice theory, which
we discussed in Section 2.3.3. As a reminder, these rules aim at selecting the candidate for which
the distance between the current preference profile and a profile in which there is some consensus
that this candidate is the winner (e.g., voters are unanimous) is minimal (Elkind et al., 2015).

In the case of conflict, we define a rule that selects the pairs of candidates {a, b} that maximize
the minimum number of swaps of adjacent candidates to make {a, b} a non-conflicting pair in the
profile P . The distance we use is the swap-distance (or Kendall-tau distance, see Section 2.3.1),
as it is the most natural distance for this model. Intuitively, the more swaps we need to perform
before all voters agree on the ordering between a and b, the more conflict a and b are inducing.
We call the corresponding rule MaxSwap.

MaxSwap
The MaxSwap rule selects the pairs of candidates that maximize

min

 ∑
i∈V a≻b

di(a, b),
∑

i∈V b≻a

di(b, a)

 .

To see how we obtain this formula, observe that the minimal number of swaps we need to per-
form in order to have b ≻i a (resp. a ≻i b) for all voters is

∑
i∈V a≻b di(a, b) (resp.

∑
i∈V b≻a di(b, a)).

Interestingly, we can also express MaxSwap using some of the measures introduced in Section 7.2.

Proposition 7.2
MaxSwap returns the pairs of candidates which maximize β(a, b)(1− ϕ(a, b)).

Proof. We reuse the notation of Da≻b and Db≻a from the proof of Proposition 7.1, as well as Dmin

and Dmax. Then, we simply note that the MaxSwap score is equal to

min (Da≻b, Db≻a) = Dmin =
n · (m− 1)

2
β(a, b)(1− ϕ(a, b))

Thus, the MaxSwap rule selects the pairs of candidates {a, b} which maximize β(a, b)(1− ϕ(a, b)).
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Example 7.2
Consider the profile P from Example 7.1:

x ≻1 a ≻1 b ≻1 y a ≻3 y ≻3 x ≻3 b

x ≻2 a ≻2 b ≻2 y b ≻4 y ≻4 x ≻4 a

In Example 7.1, we computed the values of partitioning ratio, discrepancy and global discrepancy
imbalance for each pair of candidates:

{a, b} {x, y} {a, x} {b, y} {a, y} {b, x}

α 1/2 1 1/2 1/2 1/2 1/2
β 2/3 2/3 5/12 5/12 7/12 7/12
ϕ 1/4 1/2 1/5 1/5 3/7 3/7

From this, we deduce that any p-MaxPolar rule chooses {x, y}, since the pair has both the
highest value of α and of β. Now, let us define Dc≻d =

∑
i∈V c≻d |di(c, d)| for c, d ∈ C. We

have 3 voters preferring a to b with Da≻b = 1 + 1 + 3 = 5 and 1 voter preferring b to a with
Db≻a = 3. Thus, the scores of {a, b} are 1 · 5 + 3 · 3 = 14 for MaxSum, 5 · 3 = 15 for MaxNash
and min(5, 3) = 3 for MaxSwapConflict. On the other hand, we have 2 voters preferring x over
y with Dx≻y = 3 + 3 = 6 and 2 voters preferring y over x with Dy≻x = 1 + 1 = 2. Thus, the
scores of {x, y} are 2 · 2 + 2 · 6 = 16 for MaxSum, 6 · 2 = 12 for MaxNash and min(2, 6) = 2 for
MaxSwapConflict. We can similarly compute the scores of all pairs of candidates:

{a, b} {x, y} {a, x} {b, y} {a, y} {b, x}

MaxSum 14 16 9 9 11 11
MaxNash 15 12 4 4 10 10
MaxSwap 3 2 2 2 2 2

Thus, MaxSum chooses the pair {x, y}, while MaxNash and MaxSwap choose the pair {a, b}.
We can also check the latter using Propositions 7.1 and 7.2.

Note that if we consider the case of approval preferences, which we briefly discussed in the
introduction, we can easily adapt our notion of pairwise conflict. In this case, the pairwise conflict
induced by a pair of candidates {a, b} is equal to 1 if one voter approves a but not b, and the
other approves b and not a, and is 0 otherwise. This implies that MaxSum and MaxNash would
correspond to maximizing the product of the size of the groups (as proposed in the introduction),
and MaxSwapConflict to maximizing the size of the smallest of the two groups.

Partitioning Ratio versus Discrepancy

We will now investigate how the rules we introduced behave regarding the trade-off between the
partitioning ratio α and the discrepancy β. To do so, consider a preference profile P with m

candidates and n voters, and in which the pairs of candidates {a1, b1} and {a2, b2} are such that
the first one has maximal discrepancy β(a1, b1) = 1, and the second one has maximal partitioning
ratio α(a2, b2) = 1. In other words, every voter has a strong preference between a1 and b1 (but
voters are not necessarily equally divided between them), and voters are perfectly divided between
a2 and b2 (but voters might have weak preferences on them). This is for instance the case in the
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following profile:

a1 ≻1 a2 ≻1 · · · ≻1 b2 ≻1 b1 a1 ≻3 a2 ≻3 · · · ≻3 b2 ≻3 b1

a1 ≻2 b2 ≻2 · · · ≻2 a2 ≻2 b1 b1 ≻4 b2 ≻4 · · · ≻4 a2 ≻4 a1

For clarity, we additionally assume that the discrepancy balance is maximal γ(a1, b1) = γ(a2, b2) =

1. This implies that the average discrepancy is the same in each group of supporters, i.e.,
µa1≻b1 = µb1≻a1

= β(a1, b1) and µa2≻b2 = µb2≻a2
= β(a2, b2). Understanding the interplay

between discrepancy and partitioning ratio boils down to the question: Which of the two pairs is
more conflicting in this scenario for different values of α1 = α(a1, b1) and β2 = β(a2, b2)? A rule
that more often selects {a1, b1} would favor the discrepancy β, while a rule that more often selects
{a2, b2} would favor the partitioning ratio α.

We can first prove that under our hypothesis on the discrepancy balance, we have for all pairs
of candidates ϕ(a, b) = 1− α(a, b). Let nmin = min(|V a≻b|, |V b≻a|) and nmax = n− nmin. We have:

ϕ(a, b) =
|
∑

i∈V di(a, b)|∑
i∈V |di(a, b)|

=
|
∑

i∈V a≻b di(a, b) +
∑

i∈V b≻a di(a, b)|∑
i∈V a≻b di(a, b) +

∑
i∈V b≻a di(b, a)

=
(nmax − nmin)β(a, b)

nminβ(a, b) + nmaxβ(a, b)
=
nmax − nmin

n
=
n− 2nmin

n

= 1− 2

n
nmin = 1− α(a, b)

The equality between the first and the second lines holds because the average discrepancy is the
same among both sets of voters V a≻b and V b≻a and is equal to β(a, b). Thus, the sum of the rank
differences |di(a, b)| is equal to nminβ(a, b) for the smallest set of voters, and to nmaxβ(a, b) for the
largest set. We can easily derive from this and Propositions 7.1 and 7.2 that MaxNash selects the
pair of candidates that maximizes s(a, b) = β(a, b)2α(a, b)(2−α(a, b)) and MaxSwapConflict a pair
that maximizes s(a, b) = β(a, b)α(a, b). Thus, in this special case with γ(a1, b1) = γ(a2, b2) = 1,
MaxSwapConflict is equivalent to 1-MaxPolar.

We can also show that under our hypothesis, MaxSum selects the pair that maximizes s(a, b) =
β(a, b)α(a, b)(2− α(a, b)):

|V b≻a|
∑

i∈V a≻b

di(a, b) + |V a≻b|
∑

i∈V b≻a

di(b, a)

=|V b≻a||V a≻b|β(a, b) + |V a≻b||V b≻a|β(a, b)
=2nmin(n− nmin)β(a, b)

=
n2

2
· 2
n
nmin · (2−

2

n
nmin) · β(a, b)

=
n2

2
α(a, b)(2− α(a, b))β(a, b)

Now that we have simple formulas that only depend on α(a, b) and β(a, b) for all rules, we can
see under which conditions each rule selects the pair {a1, b1} or {a2, b2} as the most conflicting.
Since we assumed that β(a1, b1) = 1 and α(a2, b2) = 1, we have that MaxSum selects the pair
{a1, b1} as more conflicting than {a2, b2} if and only if α1(2 − α1) > β2. On the other hand,
MaxNash selects the pair {a1, b1} if and only if α1(2− α1) > β2

2 . Since β2 ⩾ β2
2 , we can conclude

that MaxSum gives less importance to the discrepancy β(a, b) than MaxNash (because it more
easily selects the pair with high partitioning ratio {a2, b2}). Similarly, MaxSwap selects the pair
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Figure 7.1: Areas in which the different rules find {a1, b1} (in blue) or {a2, b2} (in red) more
conflicting in the (α1, β2) plane.

{a1, b1} if and only if α1 > β2, and since 2 − α1 > 1, we can conclude that MaxSwap gives less
importance to the discrepancy β(a, b) than MaxSum. These results are also clear in Figure 7.1,
which shows for which values of β2 and α1 the different rules select {a1, b1} or {a2, b2} as the most
conflicting pair between the two: the blue area corresponds to the values for which {a1, b1} (which
maximizes the discrepancy) is more conflicting, and the red area to the values for which {a2, b2}
(which maximizes the partitioning ratio) is more conflicting. Thus, the larger the blue area, the
more important is the discrepancy β for the rule, and the larger the red area, the more important
is the partitioning ratio α.

7.4 Axiomatic Analysis

Now that we have defined rules and seen how they are linked to the conflict measures we defined,
we proceed with axiomatic properties that we would like our rules to satisfy. Almost all the axioms
that we discuss in this section are new, and have not been studied in the literature before.

Fundamental Axioms

We start by defining some fundamental axioms expected from conflict rules. First, it is clear that
all the rules we introduced satisfy neutrality and anonymity, which have the same definition as
in classical social choice theory (see Section 2.4.1). Let us now define axioms that are specific to
our model. The first one is an efficiency axiom which ensures that unless all voters cast the same
ranking, only conflicting pairs can be selected.

Conflict Consistency
A rule f is conflict consistent if for any profile P different from the identity profile ID, all pairs
{a, b} ∈ f(P ) are conflicting, i.e., α(a, b) > 0.

Note that this axiom is already incompatible with the well-studied unanimity axiom of multi-
winner voting (see Section 2.4.2), which states that if a committee appears on top of every ranking
in the profile, it should be returned by the rule. For instance, in the profile P = {a ≻ b ≻ c ≻
d, a ≻ b ≻ d ≻ c}, unanimity says that the rule should return the pair {a, b}. However, the
only conflicting pair in this profile is {c, d}, making it impossible to satisfy both. This highlights
that our model stands in stark contrast to all established objectives of multi-winner voting rules,
namely, individual excellence, proportionality, and diversity, in which rules are expected to satisfy
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the unanimity axiom. This is the main difference with the classical paradigm of social choice:
conflict rules specifically avoid consensual candidates.

Our second fundamental axiom for conflict rules comes from the observation that we want
“love” and “hate” to have symmetrical purposes. Thus, the most polarizing pair in a profile should
remain the most polarizing one if we reverse all rankings.

Reverse Stability
A rule f is reverse stable if for any profile P , we have f(P ) = f(

←−
P ).

Note that this axiom could be discussed, as it is not always clear that intensities of preferences
are linear in the order of the ranking. In particular, voters might have stronger opinions between
their first and second choices than between their second to last and last choices. This has been
observed in surveys in which voters give both their rankings and ratings of the candidates (e.g.,
Bronfman et al. (2015)), and this has been formalized by Segal-Halevi et al. (2020).

Proposition 7.3
MaxNash, MaxSum, MaxSwap and p-MaxPolar rules are conflict consistent and reverse stable.

Proof. All these rules give a score s(a, b) = 0 to non-conflicting pairs, and a score s(a, b) > 0 to
any conflicting pair. Thus, it is clear that they are all conflict consistent.

For reverse stability, observe that |di(a, b)| has the same value in P and
←−
P for all voters i ∈ V .

Thus, the pairwise conflict induced by any pair of candidates between two voters is the same in
both profiles. This directly implies that MaxSum and MaxNash are reverse stable. By additionally
observing that the sets V a≻b and V b≻a are swapped in

←−
P , we can deduce that MaxSwap is reverse

stable. Finally, these two observations also imply that α(a, b) and β(a, b) are the same in both
profiles, and thus p-MaxPolar is also reverse stable.

Efficiency

We now turn to axioms that sound desirable but are unfortunately not always possible to satisfy.
The next axiom is inspired by efficiency axioms from classical social choice (Section 2.4.2). In
particular, it is inspired by Pareto-domination, as it relies on a notion of domination between pairs
of candidates. Given profile P and two conflicting pairs of candidates {a, b} and {x, y}, we say
that {a, b} is matching-dominating {x, y} if there exists a bijective function g : V → V such that

(1) g(V a≻b) = V x≻y and g(V b≻a) = V y≻x,

(2) for all voters i ∈ V , we have |di(a, b)| ⩾ |dg(i)(x, y)|, and

(3) there exists a voter i ∈ V such that |di(a, b)| > |dg(i)(x, y)|.

Note that the first condition of matching-domination imposes that |V a≻b| = |V x≻y| and
|V b≻a| = |V y≻x|, meaning that the two pairs of candidates have the same partitioning ratio
α(a, b) = α(x, y).

Example 7.3
Consider the following profile P of four voters:

a ≻1 x ≻1 y ≻1 b b ≻3 x ≻3 a ≻3 y

a ≻2 y ≻2 x ≻2 b b ≻4 y ≻4 a ≻4 x
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We will focus on the pairs of candidates {a, b} and {x, y}. We have V a≻b = {1, 2}, V b≻a = {3, 4},
V x≻y = {1, 3} and V y≻x = {2, 4}. Consider the matching g = {1→ 1, 2→ 3, 3→ 2, 4→ 4}. We
verify that it meets all the conditions:

(1) Clearly, g(V a≻b) = V x≻y and g(V b≻a) = V y≻x.

(2) It is easy to verify that for all i ∈ V , |di(a, b)| ⩾ |dg(i)(x, y)|, since mini |di(a, b)| = 2 and
maxi |di(x, y)| = 2.

(3) We have g(1) = 1 and |d1(a, b)| = 3 > 2 = |d1(x, y)|.

Hence, the pair {a, b} dominates the pair {x, y}.

Now, the axiom we introduce says that a dominated pair should not be selected.

Matching Domination
A rule f satisfies matching domination if for any profile P and any two conflicting pairs of
candidates {a, b} and {x, y}, if {a, b} is matching-dominating {x, y}, then {x, y} /∈ f(P ).

We can now show the following result.

Proposition 7.4
MaxSum, MaxNash and p-MaxPolar rules satisfy matching domination, but not MaxSwap.

Proof. Consider a profile P and two conflicting pairs of candidates {a, b} and {x, y} such that
{a, b} is matching-dominating {x, y}. Let g be the matching function that satisfies the conditions
of matching-domination. We will show that {x, y} is not selected by MaxSum, MaxNash and
p-MaxPolar rules.

For MaxSum and MaxNash, observe that two voters i and j agree on the ordering between a

and b if and only if g(i) and g(j) agree on the ordering between x and y, because g(V a≻b) = V x≻y

and g(V b≻a) = V y≻x. If they do not agree, then we have

conf◦g(i),g(j)(x, y) = |dg(i)(x, y)| ◦ |dg(j)(x,y)| ⩽ |di(a, b)| ◦ |dj(a, b)| = conf◦(i, j)(a, b)

for ◦ ∈ {+,×} because of the second condition of matching-domination. Moreover, there exists
i ∈ V with |dg(i)(x, y)| < |di(a, b)|, so if we take j ∈ V that does not agree with i on the ordering
between a and b, we have conf◦g(i),g(j)(x, y) < conf◦(i, j)(a, b). Because g is bijective and MaxSum
and MaxNash sum the pairwise conflict over all pairs of voters, the score of {a, b} will necessarily
be higher than that of {x, y}, which will thus not be selected.

For p-MaxPolar, we clearly have β(a, b) > β(x, y) because of the second and third conditions
of matching-domination, and α(a, b) = α(x, y) because of the first one. Thus, the score of {a, b}
will be higher than that of {x, y}, which will thus not be selected.

Let us now show that MaxSwap fails this axiom. Consider the following profile P :

10 : a ≻ x ≻ y ≻ b 1 : y ≻ b ≻ x ≻ a 1 : b ≻ y ≻ a ≻ x

We can show that {x, y} is matching-dominated by {a, b}. Indeed, let g be the identity function.
We have g(V a≻b) = V x≻y and g(V b≻a) = V y≻x. Moreover, we can easily check that |di(a, b)| ⩾
|di(x, y)| for all i ∈ V , and that for the first 10 voters, the inequality is strict. Thus, the three
conditions are satisfied and {x, y} is dominated. However, we need 1 swap to make {a, x} and
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{b, y} non conflicting, and 4 swaps for {a, y}, {b, x}, {x, y} and {a, b}. Thus MaxSwap(P ) =

{{a, y}, {b, x}, {x, y}, {a, b}} and MaxSwap does not satisfy matching domination.

Note that in the example from this proof, MaxSwap returns both {x, y} and the pair that
dominates it, {a, b}. More generally, this rule satisfies a weaker version of the axiom which asks
that if a dominated pair is included in the outcome, the dominating pair should also be included.

Monotonicity

The next axiom is inspired by the monotonicity notions from the literature of classical social choice
(see Section 2.4.5). The idea is the following: if one pair of candidates is the most conflicting in a
given profile, adding more conflict between the two candidates should not make another pair the
most conflicting, and thus be selected instead of the original one.

More formally, we say that we increased the conflict between a and b in some ranking ≻i

if we increased the absolute rank difference |di(a, b)| by swapping either a or b with one of its
neighbouring candidates in the ranking. For instance, we can increase the conflict between a and
b in the ranking a ≻i c ≻i b ≻i d by swapping b and d: a ≻i c ≻i d ≻i b. Similarly, we say that we
increased the conflict between a and b in a profile P if we increased it in one ranking ≻i and all
other rankings remained the same.

Conflict Monotonicity
A rule f is conflict monotonic if for each profile P and each selected pair {a, b} ∈ f(P ), it holds
that if we increase the conflict between a and b in P to obtain profile P ′, then {a, b} ∈ f(P ′).

Unfortunately, we can show that it is not possible to satisfy this axiom together with conflict
consistency and matching domination.

Theorem 7.5
No rule can satisfy conflict consistency, matching domination and conflict monotonicity.

Proof. Let f be a rule satisfying these three axioms, and consider the following profile P :

a ≻1 b ≻1 c ≻1 d b ≻2 a ≻2 d ≻2 c

By conflict consistency, only {a, b} and {c, d} can be selected. Assume without loss of generality
that {a, b} ∈ f(P ). Now, consider the profile P ′ obtained by increasing the conflict between a and
b in the second ranking twice:

a ≻1 b ≻1 c ≻1 d b ≻2 d ≻2 c ≻2 a

By conflict monotonicity, {a, b} ∈ f(P ′). However, with the matching g = {1 → 2, 2 → 1},
we can check that {a, d} dominates the pair {a, b} in P ′. By matching domination, we have
{a, b} /∈ f(P ′), which is a contradiction. A similar reasoning proves the result if {c, d} is selected
instead of {a, b}.

A direct consequence of this result is that MaxNash, MaxSum and p-MaxPolar rules do not
satisfy conflict monotonicity, since they already satisfy conflict consistency and matching domi-
nation. Moreover, the same profiles that are used in the proof above can be used to show that
MaxSwap does not satisfy conflict monotonicity either, as it selects {a, b} in P but {a, d} in P ′.
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Proposition 7.6
MaxNash, MaxSum, MaxSwap, and p-MaxPolar rules do not satisfy monotonicity.

This example highlights why conflict monotonicity is quite hard to achieve, but an extreme (and
weaker) version of it can actually be satisfied by our rules. The idea is that instead of increasing
the conflict in only one ranking, we increase it in every ranking at once, and we increase it as
much as we can in every ranking. More formally, we say that P ab is an antagonization of a profile
P with respect to a pair {a, b} if, in all votes from V a≻b, we shift a to the first position and b to
the last, and in all votes from V b≻a, we shift b to the first position and a to the last. The relative
order of all the other candidates remains the same. Note that the sets V a≻b and V b≻a are the
same in both profiles (so the value of α(a, b) does not change), and for all i ∈ V , |di(a, b)| = m− 1

in P ab (i.e., β(a, b) = 1).

Antagonization Consistency
A rule f is antagonization consistent if for any profile P , if {a, b} ∈ f(P ), then {a, b} ∈ f(P ab).

This axiom is much easier to satisfy, and we can show that all our rules satisfy it.

Proposition 7.7
MaxNash, MaxSum, MaxSwap and p-MaxPolar rules are antagonization consistent.

Proof. Let us show that MaxSum, MaxNash and MaxSwap satisfy this axiom. Let f be one of
these rules. Let P be a profile and {a, b} ∈ f(P ), and consider the antagonization profile P ab. We
will show that {a, b} ∈ f(P ab).

We first show the result for MaxSum, MaxNash and MaxSwap. It is clear that the score of
{a, b} does not decrease when we go from P to P ab for any of these rules, as for all voters i ∈ V ,
|dabi (a, b)| ⩾ |di(a, b)|, where dabi is the equivalent of di in P ab. Moreover, the sets V a≻b and V b≻a

are the same in both profiles, so the pairwise conflict induced by {a, b} between any two voters is
greater or equal in P ab than in P . Similarly, the minimal number of swaps required to make the
pair non-conflicting can only increase.

Now, we show that for all candidates x, y ∈ C \{a, b}, the scores of {x, y} for the different rules
are lower or equal in P ab than in P . Since the relative order between all candidates except a and
b is the same in both profiles, the only difference is that a and b can be placed between x and y in
P , but they surely are not in P ab as a and b are both at the extremes of every ranking. Thus, for
all i ∈ V , |dabi (x, y)| ⩽ |di(x, y)|. Moreover, it is clear that the sets V x≻y and V y≻x are the same
in both profiles, so the pairwise conflict induced by {x, y} between any two voters is lower or equal
in P ab than in P . Similarly, the number of swaps required to make the pair non-conflicting can
only decrease.

Finally, we show that the MaxSum and MaxNash scores of {a, b} in P ab are higher than the
scores of {a, x} and {x, b} for any x ∈ C \ {a, b}. We prove it here for {a, x}, the proof for {x, b}
is similar. Recall that in P ab, a is ranked first and b last in all rankings of voters i ∈ V a≻b, and
conversely in all rankings of voters i ∈ V b≻a. Thus, it is clear that for voters in V a≻b we have
a ≻ x (since a is ranked first), and in V b≻a we have x ≻ a (since a is ranked last). Therefore,
V a≻x = V a≻b and V x≻a = V b≻a. Moreover, for all i ∈ V , |dabi (a, b)| = m − 1 > |dabi (a, x)|.
Thus, it directly follows from the formulas of the rules that the score of {a, b} is higher than the
score of {a, x} in P ab. Similarly, the number of swaps required to make the pair non-conflicting is
necessarily higher for {a, b} than for {a, x} in P ab, showing the result for MaxSwap.

We can now conclude for MaxSum, MaxNash and MaxSwap: {a, b} has the highest score in P ,



7.4. AXIOMATIC ANALYSIS 255

and it can only be higher in P ab. On the other hand, the scores of all pairs not involving a or b
are lower or equal in P ab than in P . Thus, the pair {a, b} still has a higher score than these pairs
in P ab. Moreover, it has a higher score in P ab than all the pairs that involve either a or b and
another candidate x ̸= a, b. Thus, {a, b} ∈ f(P ab).

The proof for p-MaxPolar rules follows the same idea. Let us denote by α (resp. αab) and
β (resp. βab) the values of the partitioning ratio and the discrepancy in P (resp. P ab). We
clearly have αab(a, b) = α(a, b) and βab(a, b) ⩾ β(a, b). Thus the score of {a, b} in P ab is higher
than in P : sab(a, b) = (αab(a, b))pβab(a, b) ⩾ (α(a, b))pβ(a, b) = s(a, b). Moreover, for all x, y ∈
C \ {a, b}, we have αab(x, y) = α(x, y) and βab(x, y) ⩽ β(x, y) for the same reasons as detailed in
the proof of the other rules, so the score of {x, y} in P ab is lower or equal than in P : sab(x, y) =
(αab(x, y))pβab(x, y) ⩽ (α(x, y))pβ(x, y) = s(x, y). Since {a, b} ∈ f(P ), we have s(a, b) ⩾ s(x, y),
and thus sab(a, b) ⩾ sab(x, y). Finally, for all x ∈ C \ {a, b}, we have αab(a, x) = αab(a, b) and
βab(a, x) < βab(a, b) = 1, so the score of {a, x} in P ab is lower than that of {a, b}: sab(a, x) <
sab(a, b). We can similarly prove that for all x ∈ C \ {a, b}, sab(x, b) < sab(a, b). Thus, {a, b} still
maximizes the p-MaxPolar score in P ab and {a, b} ∈ f(P ab).

Balance Preference

In Section 7.2, we highlighted the role of the discrepancy balance between the supporters of one
candidate and those of the other one, motivating the definition of the measures γ and ϕ. We could
argue that the conflict is more important when it is more balanced between these two groups of
supporters. In this section, we define an axiom that also captures this idea, based on another
dominance relation between pairs of candidates.

Formally, we say that a pair of candidates {a, b} balance-dominates another pair {x, y} in a
profile P if the following conditions are true:

(1) There exists a bijective function g : V → V such that for all i ∈ V , |di(a, b)| = |dg(i)(x, y)|,

(2) we have |
∑

i∈V di(a, b)| < |
∑

i∈V di(x, y)|.

Note that these two conditions directly imply that β(a, b) = β(x, y) and ϕ(a, b) < ϕ(x, y):

β(a, b) =
1

m

∑
i∈V

|di(a, b)| =
1

m

∑
i∈V

|dg(i)(x, y)| = β(x, y)

ϕ(a, b) =

∣∣∑
i∈V di(a, b)

∣∣∑
i∈V |di(a, b)|

<

∣∣∑
i∈V di(x, y)

∣∣∑
i∈V |dg(i)(x, y)|

= ϕ(x, y).

Thus, rules that take into account the discrepancy balance will likely prefer {a, b} over {x, y}. We
can now define the balance preference axiom.

Balance Preference
A rule f satisfies balance preference if for any profile P , if {a, b} balance-dominates {x, y}, then
{x, y} /∈ f(P ).

The intuition behind this axiom is that if two pairs of candidates induce the same total amount
of conflict (measured by the discrepancy) among the voters, the pair for which this amount is
better divided between the supporters of the two candidates should be selected. The following
example illustrates this idea.
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MaxSum MaxNash MaxSwap MaxPolar

Reverse Stability
Conflict Consistency

Conflict Monotonicity
Antagonization Consistency

Matching Domination
Balance Preference

Table 7.2: Summary of the axiomatic results.

Example 7.4
Consider again the profile P introduced in Example 7.1:

x ≻1 a ≻1 b ≻1 y a ≻3 y ≻3 x ≻3 b

x ≻2 a ≻2 b ≻2 y b ≻4 y ≻4 x ≻4 a

In this profile, voters are evenly divided between x and y, but x supporters are extreme while
all y supporters are more indifferent. On the other hand, a is preferred to b by 3 voters, and b is
preferred to a by 1 voter, but they each have at least one extreme supporter. In this scenario,
{x, y} is more balanced in terms of group size, but {a, b} is more balanced in terms of group
discrepancy. More precisely, α(x, y) = 1 > 1/2 = α(a, b), and ϕ(x, y) = (6− 2)/(6 + 2) = 1/2 >

1/4 = (5− 3)/(5+ 3) = ϕ(a, b). Moreover, using the matching g = {1→ 3, 2→ 4, 3→ 1, 4→ 2},
we can check that {a, b} balance-dominates {x, y}, as for all i we have |di(a, b)| = |dg(i)(x, y)| and
|
∑

i di(x, y)| = 6 − 2 = 4 > 2 = 5 − 3 = |
∑

i di(a, b)|. Thus, a rule satisfying balance preference
does not select {x, y} in this profile.

We can show the following result.

Proposition 7.8
MaxNash and MaxSwap satisfy balance preference, but not MaxSum and p-MaxPolar rules.

Proof. Using the profile of Examples 7.2 and 7.4, we already showed that p-MaxPolar rules and
MaxSum select the pair {x, y}, which is balance-dominated by the pair {a, b}. Thus, these rules
do not satisfy balance preference.

Let us now prove that MaxNash and MaxSwap satisfy balance preference. For this, we can
simply use the formulas of the rules obtained in Propositions 7.1 and 7.2. Since the conditions
of the axiom imply that β(a, b) = β(x, y) and ϕ(a, b) < ϕ(x, y), we can directly conclude that
{x, y} /∈ f(P ).

Summary

We conclude this section with a summary of the axiomatic results, presented in Table 7.2. As we
can see, the only axioms that are discriminating between the rules are matching domination and
balance preference. Overall, it appears that MaxNash is the one that satisfies the most axioms
among the ones we introduced.
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7.5 Experimental Analysis

We now compare the behavior of the rules we introduced with experiments based on synthetic and
real data. We also compare them to some classical multi-winner voting rules, in order to highlight
the natural incompatibility between these traditional rules and our conflictual setting.

We ran experiments on both synthetic and real data. For synthetic data, we use two different
families of models: 2-dimensional Euclidean models, and mixtures of Mallows. For real data, we
focus on three datasets, each intuitively representing a different level of conflict.

The 2-dimensional Euclidean model

We first consider the 2-dimensional Euclidean framework, which we introduced in Section 2.5.1.
As a reminder, voters and candidates are associated with positions in a 2-dimensional Euclidean
space, and the preferences of voters are based on their distances to candidates (Anshelevich et al.,
2018). For a voter i ∈ V , we have a ≻i b if i is closer to a than to b. This 2-dimensional
Euclidean framework has been extensively studied in the social choice literature, as it enables us
to easily visualize the behavior of the rules (Enelow and Hinich, 1984). In particular, it has been
used by Elkind et al. (2017a) to visualize the differences between multi-winner voting rules that
have different objectives: excellence, diversity, and proportional representation (a part of their
experiments is reproduced in Section 2.5.1). In this analysis, we sample profiles of n = 100 voters
and m = 10 candidates, and consider two distributions of positions in the space:

(1) The uniform distribution on [0, 1]2.

(2) The Gaussian distribution centered in (0.5, 0.5) with standard deviation σ = 0.15 (in order
to have most of the points in [0, 1]2).

Visualizing the Conflict

This model is particularly interesting because it gives an intuition of what the different rules
are doing by visualizing the positions of the selected candidates. In Figure 7.2, we show the
positions of the selected pairs of candidates for 10 000 profiles sampled from the uniform or Gaussian
distributions (in this case, positions of voters and candidates follow the same distribution). For
three random instances, we marked the positions of the selected candidates by different colors.
This figure shows the outcomes of three rules: MaxNashConflict, Chamberlin-Courant and Borda.
For the definitions of Chamberlin-Courant and Borda in the multi-winner setting, we refer to
Section 2.3.2. The goal is to highlight the fundamental difference between our rules that aim at
maximizing the conflict, and classical voting rules, that have different objectives. In particular, an
excellence objective for Borda, and a diversity objective for Chamberlin-Courant, which appears
intuitively closer to our objective. Note that we do not present other conflict rules, as the positions
of the selected candidates look very similar to the ones obtained with MaxNashConflict.

We clearly see on Figure 7.2 that while both Chamberlin-Courant and Borda select candidates
that are close to the center of the space (especially Borda), MaxNashConflict selects candidates
that are more on the periphery of the distribution. In particular, it clearly avoids the center of
the space. Moreover, if we look at the colored points for the three random profiles, we observe
that the candidates selected by MaxNashConflict are opposed to each other in the space, while the
candidates selected by Borda are closer to each other. The candidates selected by Chamberlin-
Courant are in between, but it is still more similar to Borda than to MaxNashConflict.
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Figure 7.2: Distributions of the positions of the candidates selected by different rules and distri-
butions of positions. Each pair of colored points corresponds to selected candidates in a single
election.
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Figure 7.3: Example of a figure
showing the values of the conflict
measures.

We now compare the conflict rules to each other. In particular,
we focus on MaxSum, MaxNash, MaxSwap and 2-MaxPolar.
As we said, we cannot really see differences between the be-
havior of the different rules by simply visualizing the distribu-
tion of the positions of the selected candidates in the plane.
Thus, we will not look at their positions, but compute the
values of the conflict measures introduced in Section 7.2 for
the pairs of candidates selected by each rule. Then, we will
plot the results in a scatter plot, where each point corresponds
to a pair of candidates selected in one profile, with the x-axis
corresponding to the value of the partitioning ratio α (maxi-
mal when the voters are evenly divided) and the y-axis to the
value of the discrepancy β (maximal when voters have strong
opinions on the candidates). Moreover, the size of the points
will be proportional to the value of the discrepancy balance γ and their color will depend on the
group discrepancy imbalance ϕ: the redder the dot, the lower the imbalance (and thus the more
balanced the conflict is). An example is given in Figure 7.3. In this figure, A has both high α and
β, indicating that it represents a highly conflicting pair of candidates. B also has a high α, but an
average β, indicating that voters are quite divided between the candidates of the pair, but do not
necessarily have strong opinions on them. Finally, C has a low α but a very high β, indicating that
most voters agree on the ordering of the two candidates, but they have strong opinions on them.

In this experiment, and in the similar ones we conducted with the other datasets, we sampled
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Figure 7.4: Values of the conflict measures for the pairs of candidates selected by different rules in
the 2-dimensional Euclidean model. The x-axis corresponds to the partitioning ratio α(a, b), the
y-axis to the discrepancy β(a, b), the size of the points to the discrepancy balance γ(a, b) and the
color to the group discrepancy imbalance ϕ(a, b) (if ϕ is lower, the conflict is more balanced and
the dot is more red).
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1 000 profiles of 100 voters and 10 candidates. We used three different settings for sampling the
positions of voters and candidates: (i) Uniform distribution for both voters and candidates, (ii)
Gaussian distribution for both and (iii) Uniform distribution for the candidates and Gaussian for
the voters. Figure 7.4 shows the values of the conflict measures for the different rules in these
settings. Moreover, we included in the first row the values of the conflict measures for a random
selected pair from each profile, to give an idea of the distribution of the values of the conflict
measures in each setting. In particular, we observe that no pair of candidates has a very high
value of discrepancy β (y-axis), especially in the first two settings. Finally, in the last setting, we
observe that pairs with high α have a low β and conversely, pairs with high β have a low α. We
clearly see that the partitioning ratio α is very correlated with the group discrepancy imbalance ϕ,
as points on the right are redder and points on the left are bluer. This corroborates our theoretical
observations from Section 7.2, which already showed that α and ϕ were linked.

These results confirm the theoretical analysis of the rules and their link to the conflict mea-
sures. Clearly, MaxSwap gives more importance to the partitioning ratio α (x-axis) and the group
discrepancy imbalance ϕ (color) than MaxSum, which itself gives more importance to these two
values than MaxNash. Indeed, MaxSwap sometimes returns pairs of candidates with quite low
discrepancy β (< 0.4) if their partitioning ratio α is high, while MaxNash sometimes returns pairs
of candidates with low partitioning ratio α (< 0.4) if their discrepancy β is high. In that sense, 2-
MaxPolar is closer to MaxNash, as it seems to give more importance to the discrepancy, especially
in the last setting, in which it returns pairs with very low α (< 0.3) but quite high β. Remember
that 2-MaxPolar is also technically “blind” to the balance measures γ and ϕ, which can explain
why we observe more points with a smaller size and a bluer color.

Mixture of Mallows models

We now present our experiments on Mallows models, or more precisely on mixtures of Mallows. We
introduced Mallows models and mixtures of Mallows in Section 2.5.1, but we recall here the main
points. A Mallows model has two parameters: a central ranking ≻ and a parameter ψ ∈ [0, 1].1

The ranking ≻ is the “average” ranking of the voters, but they all deviate a bit from it. If ψ = 0,
we obtain the identity profile (ID) and all voters have the same ranking ≻, and if ψ = 1, we
obtain impartial culture and each ranking is equiprobable. Thus, a Mallows model with 0 < ψ < 1

would be something that is between the identity and uniformity, and it will probably not be much
conflictual, as most voters would have a ranking similar to ≻.

To obtain more antagonistic profiles, we can sample rankings from mixtures of two Mallows,
sharing the same parameter ψ, but with different central rankings ≻1 and ≻2. Then, we sample
each ranking in the profile randomly from one Mallows with probability 1/2. This way, we obtain
a profile in which half of the voters have a ranking close to ≻1, and the other half close to ≻2.

We expect these 2-Mallows models to have a more antagonistic structure. To confirm this,
we looked at the values of conflict measures in profiles sampled from 1-Mallows and 2-Mallows
models, using different values for the parameter ψ. In Figure 7.5, we show the average value of
each measure over all pairs in the profile, except for the discrepancy β, for which we show the
maximal value (since the average is a constant by definition). These values are averaged over 50
profiles. We observe that pairs of candidates are on average more conflictual in 2-Mallows models
with respect to the partitioning ratio α, the discrepancy balance γ and the group discrepancy
imbalance ϕ, especially for low values of the parameter ψ. This makes sense, as in 1-Mallows

1Note that we denoted this parameter ϕ in Section 2.5.1 and in the other chapters of this thesis, but in this
chapter ϕ already denotes the group discrepancy imbalance.
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Figure 7.5: Mean/max values of different measures in profiles sampled from 1-Mallows and 2-
Mallows models, averaged over 50 profiles.
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Figure 7.6: Values of conflict measures for pairs of candidates in profiles sampled from 1-Mallows
and 2-Mallows models. The x-axis corresponds to α(a, b), the y-axis to β(a, b), the size of the
points to γ(a, b) and the color to ϕ(a, b) (if ϕ is lower, the conflict is more balanced and the dot is
more red).

models with low ψ, voters have almost the same ranking, and thus pairs of candidates are not
highly conflictual. As ψ increases, the profiles get closer to uniformity, in which the conflict is by
definition balanced (but not necessarily high), and thus these three measures tend to 1 for both
1-Mallows and 2-Mallows. However, the maximal discrepancy β is higher for 1-Mallows models
than for 2-Mallows models for all values of ψ. To see why, observe that with 1-Mallows models, all
rankings are similar to the central ranking ≻, thus the first candidate of ≻ is often ranked among
the first candidates in voters’ rankings, and the last candidate of ≻ is often ranked among the last
ones, ensuring a high discrepancy for that pair (though almost all voters rank them in the same
order). With 2-Mallows, this effect is reduced due to having two different central rankings that
might cancel out each other. Finally, we deduce from Figure 7.5 that the “sweet spot” for obtaining
conflicting pairs of candidates with 2-Mallows is between ψ = 0.1 and 0.4.

Another way to see all of this is to look at the plot of the values of the conflict measures of
the different pairs of candidates from the profiles sampled using 1-Mallows and 2-Mallows, as we
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Figure 7.7: Values of the conflict measures of the pairs of candidates selected by the different rules
with 2-Mallows models and three different values of ψ. The x-axis corresponds to the partitioning
ratio α(a, b), the y-axis to the discrepancy β(a, b), the size of the points to the discrepancy balance
γ(a, b) and the color to the group discrepancy imbalance ϕ(a, b) (if ϕ is lower, the conflict is more
balanced and the dot is more red).
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do in Figure 7.6. We see again that for low values of ψ (here, ψ = 0.1), 1-Mallows models fail
to generate pairs with high partitioning ratio α, as all voters have a ranking similar to ≻, while
2-Mallows models generate pairs with either a high value or a low value of the partitioning ratio
α, but no pair with an average value of α. The pairs with a high α are the ones which are ordered
differently in the two central rankings ≻1 and ≻2: around half of the voters rank one candidate
above the other, and the other half have the reverse order. The pairs with low α are the ones
which are ordered the same in the two central rankings. Note that the pairs with high α do not
necessarily have a high discrepancy β. In order to have a pair with both high partitioning ratio
and high discrepancy, we would need for instance that ≻2=

←−≻1. Finally, we observe that when ψ
increases, the two models become much more similar, with only pairs having a high partitioning
ratio α and an average discrepancy β (characteristic of the uniform profile UN).

We show in Figure 7.7 the values of the conflict measures for the pairs of candidates selected
by our rules, as we did for the Euclidean setting. Moreover, we also show these values for random
pairs from each profile in the first row. As in the Euclidean setting, we sampled 1 000 profiles
of 100 voters and 10 candidates. We observe the same differences between conflict rules with
the Mallows models as with the Euclidean models. In particular, if we look at the setting with
ψ = 0.1, MaxSwap always selects pairs of candidates with a high partitioning ratio α, i.e., such
that the candidates are ranked in a different order in the two central rankings ≻1 and ≻2. However,
MaxNash and 2-MaxPolar sometimes select pairs with a very low partitioning ratio, which means
that the candidates are ranked in the same order in both central rankings. MaxSum mostly selects
pairs with high partitioning ratios, however it seems to care less about the conflict balance than
MaxSwap, as the latter returns pairs with a higher discrepancy balance γ (larger dots) and a lower
group discrepancy imbalance ϕ (redder dots).

Real Data

Finally, we consider three different datasets of real preferences, each representing a different level
of conflict:

(1) Voter Autrement : This dataset includes two preference profiles of voters over the candidates
to the French presidential elections of 2017 and 2022, collected during online experiments.
In these datasets, participants had to give a (truncated) ranking of candidates for the instant
runoff voting (IRV) rule. For more details on these datasets, we refer to Section 2.5.4. We
kept only the participants that ranked all the candidates. We have n = 5755 voters and
m = 11 candidates in the 2017 profile, and n = 412 voters and m = 12 candidates in the
2022 profile. Recall that the voters are assigned weights based on their actual vote at the
election such that the distribution of weights matches the actual results of the election.

(2) Sushi : This dataset contains a single profile of n = 5000 voters giving their preferences on
m = 10 types of sushi (Kamishima, 2003).

(3) Figure Skating : This dataset contains juries’ rankings of contestants performances in figure
skating competitions (Smith, 2000). This dataset contains 49 profiles, each having n ∈ [8, 10]

judges and m ∈ [10, 25] contestants.

The last two datasets are part of the Preflib collection of datasets (Mattei and Walsh, 2013).
We expect the first dataset, about the French presidential elections, to be the most conflictual, as
conflict is an integral part of politics. On the other hand, we expect the last dataset, about figure
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Figure 7.9: Divisiveness values (Colley et al., 2023b) of the different candidates of the real-life
datasets, sorted in decreasing order.

skating, to be the least conflictual, as in this kind of sport competition, the performance of the
contestants is usually judged on their technical skills and on the acrobatic figures presented.

These intuitions are confirmed by analyzing the values of the conflict measures of the pairs
of candidates in these datasets, as shown in Figure 7.8. For the figure skating plot, we took one
random dataset among the 49 available, but they all have a similar structure. At first glance, the
plot for the figure skating dataset looks quite similar to what we obtained with 1-Mallows and a low
value of ψ (in which all pairs have very low values of partitioning ratio α and discrepancy balance
γ). However, it differs a bit as we still observe pairs of candidates with high values of α and very
low discrepancy β. These are the pairs of contestants that have comparable figure skating skills,
making them appear next to each other in every ranking, but for whom the judges are very divided
as to which of the two is the best. On the other hand, the pairs with low α and high β correspond
to pairs of contestants with a clear skill gap, such that all judges rank one very high and the other
very low, but they all rank them in the same order. The plot for the Voter Autrement dataset
looks more similar to the one of a 2-Mallows, with pairs that have high partitioning ratio and
other with low partitioning ratio, but very few pairs with an average partitioning ratio. Finally,
the sushi dataset has a structure similar to a 1-Mallows with an intermediate value of ψ, with not
many pairs having both a high partitioning ratio and a high discrepancy.
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2017 2022

MaxNash PS } FN LFI } RN

MaxSum PS } FN NPA } RN

MaxSwap NPA } FN NPA } REC

2-MaxPolar NPA } FN NPA } RN

Borda LFI } EM LFI } EELV

Chamberlin-Courant LFI } LR EELV } RN

Table 7.3: Pairs of candidates selected in the Voter Autrement datasets by different rules.

These different level of conflict can also be observed if we compute polarization measures defined
in the literature for whole profiles or for single candidates. Figure 7.9 shows the divisiveness values
of the candidates, as defined by Colley et al. (2023b). For the Voter Autrement plot, we used the
2017 profile, and only one dataset was used for the figure skating plot. We observe that in the
figure skating dataset, no candidate seems particularly divisive, while the two other datasets contain
candidates with high divisiveness values. We obtain a similar picture if we compute the polarization
of the preference profiles as a whole, using the measure proposed by Can et al. (2015), and which is
equal to the average partitioning ratio over all pairs of candidates 2

m(m−1)

∑
a,b∈C,a ̸=b α(a, b). We

obtain a polarization of 0.76 for the two Voter Autrement profiles, of 0.68 for the Sushi dataset,
and between 0 and 0.20 for the figure skating profiles.

Conflict Measures

First, we performed the same experiment as the one we conducted with the synthetic models,
by sampling random profiles from our datasets. To do so, we sampled 1 000 random profiles by
selecting n = 100 random voters and m = 10 random candidates from the original profiles for
each of them. Then, we compare the values of the conflict measures of the pairs of candidates
selected by each rule, as well as the same values for a random pair of candidates in each profile.
In this experiment, we only used the 2017 Voter Autrement profile, and for the figure skating
dataset, each subprofile is sampled from one of the 49 profiles, selected at random. The results are
presented in Figure 7.10, and the observations are the same as for the synthetic models. The case
of the figure skating dataset is particularly interesting, as most pairs either have low partitioning
ratio α or low discrepancy β. While rules like MaxNash and 2-MaxPolar, and to a lesser extent
MaxSum, sometimes select pairs with very low α but a high β, MaxSwap never selects such pairs
and almost always prioritizes the partitioning ratio α. Moreover, we observe that a lot of dots
on the 2-MaxPolar plot for the figure skating dataset are very small and very blue, corresponding
to unbalanced conflicts. This typically corresponds to pairs of candidates such that one is always
ranked among the first and the other one always ranked among the last. If the notion of conflict
is a bit tricky in such consensual datasets, it appears nevertheless that 2-MaxPolar has the worst
performance, and one could argue that MaxSwap is performing best.

Analysis of the Voter Autrement Datasets

Let us now focus more specifically on the outcomes of the rules on the Voter Autrement datasets,
that were gathered during the 2017 and 2022 French presidential elections. The results on the
full datasets (so, without sampling as in the previous experiment) are shown in Table 7.3. As a
reminder, the ideological axes of candidates that seem to be the most natural according to the poll
institutes and to our axis rules, discussed in Chapter 6, are shown in Table 7.4. Note that we have
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Figure 7.10: Values of the conflict measures of the pairs of candidates selected by the different rules
with three different real-life datasets. The x-axis corresponds to the partitioning ratio α(a, b), the
y-axis to the discrepancy β(a, b), the size of the points to the discrepancy balance γ(a, b) and the
color to the group discrepancy imbalance ϕ(a, b) (if ϕ is lower, the conflict is more balanced and
the dot is more red).
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2017 LO ◁ NPA ◁ LFI ◁ PS ◁ EM ◁ LR ◁ DLF ◁ FN

2022 LO ◁ NPA ◁ LFI ∼ PCF ◁ PS ∼ EELV ◁ LREM ◁ LR ◁ DLF ◁ RN ◁ REC

Table 7.4: Natural ‘ideological’ order of the candidates on the left-right axis for the 2017 and 2022
French presidential elections.

intentionally removed some candidates from the axes, as they are difficult to place on a left-right
spectrum (see Section 6.4 for more details), and are not relevant to our analysis.

First, we clearly see a difference between our conflict rules and traditional multi-winner voting
rules such as Borda or Chamberlin-Courant: conflict rules always select one candidate from the left
or the far-left, and one candidate from the nationalist far-right, while the two other rules always
select at least one more centrist candidate. Let us now compare the conflict rules to each other.
In these datasets, a pair of candidates has a high partitioning ratio α in two cases: either the two
candidates are from opposite sides of the axis, and are thus dividing the society (e.g., LFI and
FN ), or they are close to each other, but they have a similar level of popularity, so voters are
very split between them (e.g., PS and EELV). The first case might explain why MaxSwap, which
prioritizes the partitioning ratio α, selects candidates that are close to the extremes. On the other
hand, rules favoring the discrepancy β like MaxNash selects candidates that are more well-known
(in the sense that they have more supporters), even if they are dividing the society less evenly, as
voters generally have stronger preferences on them: these candidates are ranked higher by their
supporters and lower by their detractors. This is for instance the case in the 2022 dataset, for
which MaxNash selects LFI (21.95% of the votes) and RN (23.15% of the votes) while MaxSwap
selects the more extreme but less popular NPA (0.77% of the votes) and REC (7.07% of the votes).

We also observe that MaxSwap selected candidates with higher divisiveness values (as defined
by Colley et al. (2023b)). This is not too surprising, since both MaxSwap and the divisiveness
measure heavily rely on the partitioning ratio α. For the 2022 dataset, MaxSwap is actually the
only rule that selects the REC candidate, which has the highest divisiveness (0.41), while the other
far-right party RN ranks fifth in divisiveness with 0.30 (though there is a difference of less than
0.001 between this party and the second, third and fourth most divisive ones LO , DLF , NPA).
Overall, all the conflict rules select candidates with high or medium divisiveness, which is not the
case of the Borda and Chamberlin-Courant rules. For instance, they both selected EELV in the
2022 dataset, which has a very low divisiveness of 0.05.

Finally, we show in Figure 7.11 the values of α and β for pairs of candidates of the 2017 Voter
Autrement dataset, displayed in the order of the left-right axis. Interestingly, it appears that
the discrepancy β is more correlated to the relative positions of the candidates on the axis than
α, despite having a much lower variance. This makes sense: voters from the left likely rank all
candidates from the left above all candidates from the right, and conversely. Thus, candidates that
are close to each other on the axis are also close in voters’ rankings.

7.6 Discussion

In this chapter, we proposed and analyzed rules that aim at selecting the most conflicting pairs of
candidates using ordinal preferences of voters, and we have shown that these rules fundamentally
differ from standard multi-winner voting rules. We also proposed several measures that allow us
to better understand the different forms under which conflicts appear in the preferences, as well as
which of these forms are prioritized by our different rules. In particular, these measures enabled us
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(a) Values of α(a, b).
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Figure 7.11: Values of conflict measures of pairs of candidates in the 2017 Voter Autrement dataset.

to show that there is a natural trade-off between the partitioning ratio α, representing the division
of the society into two groups of similar sizes, and the discrepancy β, representing the strength of
voters’ feeling towards the candidates.

Which Rule to Choose?

We saw through theoretical and experimental analyses that MaxSwapConflict tends to prioritize
pairs of candidates having a high partitioning ratio α, while MaxNashConflict tends to prioritize the
ones having a high discrepancy β. MaxSumConflict and 2-MaxPolar rules fall in between. These
facts should be taken into account when selecting one of these rules for a specific application. In
particular, MaxNash satisfies more axioms than the other rules. However, in our experiments,
MaxSwap often selected pairs of candidates that would be considered more conflicting, especially
in contexts where the conflict is not too high.

Further Work

A natural, and fairly non-trivial, follow-up direction for this work is to analyze how we could extend
our rules and our axioms to a model in which we want to select subsets of more than just two
candidates, such that candidates in the subset are as conflicting as possible. It is less clear how to
define conflict for more than two candidates, but a possibility would be to say that it corresponds
to the sum of the conflicts induced by each pair of candidates in the subset, or to the minimum
conflict induced by any of the pairs. With this interpretation, we can easily adapt our rules to this
new setting. Nonetheless, other approaches evaluating the whole committee at once, rather than
pairs of candidates, might turn out to return better results. In particular, we could get inspiration
from the measures used to quantify the polarization of preference profiles as a whole (Esteban and
Ray, 1994; Ozkes, 2013; Can et al., 2015).



Concluding Remarks

In this thesis, we studied five problems motivated by real-world application of preference aggre-
gation. In the first part of the thesis, we proposed ways to improve upon existing voting systems
using more expressive ballots than the current ones. In the second part, we proposed tools that use
these expressive ballots to analyze the structure of the electorate and of the candidate set, which
can be particularly useful for political analyses. For each setting, we have proposed novel methods,
and evaluated these methods axiomatically and experimentally. We concluded these analyses by
making recommendations regarding which method(s) to use, depending on the context and on the
desired normative properties. In some cases, we additionally suggested ways to implement these
new methods in practice. In this short conclusion, we briefly discuss the next important step of
this kind of work: the dissemination of the methods to the general public and to policy makers.
We also discuss some other democratic settings in which it would be interesting to apply methods
similar to the ones we used in this thesis.

Dissemination of Alternative Voting Methods

If we want the alternative voting methods we propose (in the first part of this thesis, but also in
general in social choice) to be used in practice, or at least to be considered in the public debate
regarding potential voting reforms, it is essential to make them known outside of the academic
social choice community. There exist several channels we can use to disseminate our works. A first
possibility is to inform policy makers (e.g., the members of the Parliament) about these methods,
and show their benefits, while still being honest about their possible drawbacks. For instance, I
had the opportunity to briefly present the methods we introduced in Chapter 5 to some policy
makers, in anticipation of the debate regarding the reform of the voting system used to elect
the members of the French Parliament.2 However, to attract the attention of policy makers to
alternative methods, the easiest way is probably to first convince the general public of the value
of these methods. Indeed, it is essential to disseminate our works to the general public, and
this is one of the goals of the Voter Autrement project, which allows anyone to try alternative
voting methods through in situ and online experiments. More generally, online platforms such as
the Voter Autrement surveys or the Whale3 voting platform are great tools for dissemination, as
they allow people to use in practice the rules that we propose. Still with this dissemination goal
in mind, I sometimes discuss voting methods on my blog4, among other data analyses. Finally,
making datasets of preferences with alternative methods open and freely accessible is crucial to
increase the interest in these methods, by allowing anyone, including other scholars, to analyze

2They seemed genuinely interested in our work, though they made it clear that they would not advocate for
these methods now, because the current system is too far from them (the representatives of each constituency are
currently elected with plurality with runoff) and this would make a change too radical.

3https://whale.imag.fr/
4https://theo.delemazure.fr/blog.html

269

https://whale.imag.fr/
https://theo.delemazure.fr/blog.html


270 CHAPTER 7. IDENTIFYING CONFLICTING PAIRS OF CANDIDATES

and use the datasets. For instance, I frequently use Preflib datasets (Mattei and Walsh, 2013)
in my experiments. This is also why the datasets which were collected for this thesis are freely
accessible (Delemazure et al., 2024a; Delemazure and Bouveret, 2024). I have also started to clean,
reformat, and publish datasets collected through past experiments, but that were not yet in open
access (Baujard et al., 2025c,a).

Crucially, the methods proposed in both parts of this thesis are not only applicable to major
political elections, but are also relevant for any group decision-making process involving multiple
alternatives. Therefore, advocating for the adoption of these methods in smaller organizations such
as local communities, associations, or companies, could be a pragmatic first step towards broader
acceptance, potentially preceding large-scale political reform.

Social Choice Beyond Voting

In this thesis, we have applied the axiomatic and experimental methods to voting problems, in
which voters can only express preferences through ballots. It would be interesting to find ways to
conduct similar analyses in other democratic settings. For instance, we could use the axiomatic
method to study the normative properties of deliberative processes, which are currently gaining
attention, such as Citizens’ Assemblies (Setälä and Smith, 2018; Dryzek et al., 2011; Setälä, 2014),
or to compare elective methods and sortition methods of choosing representatives (Revel, 2023;
Ebadian et al., 2022; Revel et al., 2024; Caragiannis et al., 2024). These axiomatic analyses could
be complemented by experimental analyses, based on data gathered from actual deliberation or
sortition processes.
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Appendix A

Details on the Experimental Analysis
of Axis Rules

Poll Institutes

Institute Axis ◁

IFOP PT LO LCR PCF JB PS LV CPNT UDF UMP MPF FN

BVA PT LO LCR PCF JB PS LV CPNT UDF UMP MPF FN

Ipsos PT LO LCR PCF JB PS LV CPNT UDF UMP MPF FN

Sofres LO LCR PT PCF JB PS LV UDF UMP MPF FN CPNT

CSA PT LO LCR JB PCF LV PS CPNT UDF UMP MPF FN

Table A.1: Axes used by polling institutes during the 2007 French presidential election.

Institute Axis ◁

BVA LO NPA PG PS EELV MoDem UMP DLR SP FN

Harris Interactive LO NPA PG PS EELV MoDem UMP DLR SP FN

IFOP LO NPA PG PS EELV MoDem UMP DLR FN SP

Sofres LO NPA PG PS EELV MoDem UMP DLR FN SP

OpinionWay SP LO NPA PG PS EELV MoDem UMP DLR FN

LH2 SP LO NPA PG PS EELV MoDem UMP DLR FN

Table A.2: Axes used by polling institutes during the 2012 French presidential election.

Institute Axis ◁

BVA LO NPA LFI PS EM LR DLF FN UPR SP R

Opinionway LO NPA LFI PS EM LR DLF FN UPR SP R

IFOP LO NPA LFI PS EM R LR DLF FN UPR SP

IPSOS LO NPA LFI PS EM R LR DLF FN SP UPR

Harris Interactive LO NPA LFI PS EM R LR DLF SP UPR FN

Odoxa LO NPA LFI PS EM R LR DLF UPR SP FN

Elabe NPA LO LFI PS EM R LR UPR DLF FN SP

Table A.3: Axes used by polling institutes for the 2017 French presidential election.
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Institute Axis ◁

BVA LO NPA LFI PCF PS EELV LREM LR DLF REC RN R

Opinionway LO NPA PCF LFI PS EELV LREM LR R DLF REC RN

IFOP LO NPA PCF LFI PS EELV LREM LR DLF RN REC R

IPSOS NPA LO LFI PCF EELV PS LREM LR R RN DLF REC

Harris Interactive LO NPA PCF LFI PS EELV LREM LR DLF RN REC R

Cluster17 LO NPA PCF LFI EELV PS LREM R LR DLF RN REC

Odoxa LO NPA PCF LFI EELV PS LREM R LR DLF RN REC

Elabe NPA LO PCF LFI PS EELV LREM LR DLF RN REC R

Table A.4: Axes used by polling institutes during the 2022 French presidential election.

Surveys

Year Scale Axis ◁

2014 Ideology PG PCF EELV PS MoDem UMP MPF FN

Economic PG PCF EELV PS FN MoDem UMP MPF

2010 Ideology PCF EELV PS MoDem UMP MPF FN

Economic PCF PS EELV MoDem UMP MPF FN

2006 Ideology PCF EELV PS UDF UMP MPF FN

Economic PCF PS EELV UDF FN UMP MPF

Table A.5: Axes derived from the answers to the Chapel Hill Expert Survey.

Year Axis ◁

2017 LFI PS EM LR FN

2012 PG PS EELV MoDem UMP FN

2007 LCR PCF PS LV UDF UMP FN

Table A.6: Axes derived from the answers to the CSES.
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Axes Returned by our Rules

Dataset Rule Axis ◁

Louvigny
VD, MF PT LO PCF LV JB LCR PS UDF UMP MPF FN CPNT

BC, MS PT LO PCF JB LV LCR PS UDF UMP MPF FN CPNT

FT PT LO PCF JB LCR PS LV UDF UMP MPF FN CPNT

Cigné

VD,MF* CPNT LO PCF LV JB LCR PS UDF UMP MPF FN PT

MF* PT CPNT LO PCF LV JB LCR PS UDF UMP MPF FN

MF* CPNT PT LO PCF LV JB LCR PS UDF UMP MPF FN

BC PT LO PCF LV JB LCR PS UDF UMP MPF FN CPNT

MS, FT LO PCF LV JB LCR PS UDF UMP MPF FN CPNT PT

Illkirch

VD PT CPNT PCF LO JB LCR LV PS UDF UMP FN MPF

MF* PT PCF LV JB LO LCR PS UDF UMP FN MPF CPNT

MF* CPNT PCF LV JB LO LCR PS UDF UMP FN MPF PT

BC,MS PCF LO JB LV LCR PS UDF UMP FN MPF CPNT PT

FT* PCF JB LO LV LCR PS UDF UMP FN MPF CPNT PT

FT* PCF LO JB LV LCR PS UDF UMP FN MPF CPNT PT

Table A.7: Results for the 2007 French presidential election. The ‘*’ indicate ties between axes.

Dataset Rule Axis ◁

Strasbourg VD*, MF LO NPA EELV PG PS MoDem UMP FN DLR SP

VD*, BC, MS, FT SP LO NPA EELV PG PS MoDem UMP FN DLR

Louvigny VD SP LO NPA EELV PG PS MoDem UMP FN DLR

MF, BC, MS, FT LO NPA EELV PG PS MoDem UMP FN DLR SP

Saint Etienne VD, MF, BC, MS SP LO NPA EELV PG PS MoDem UMP FN DLR

FT SP LO NPA EELV PG PS MoDem FN UMP DLR

Table A.8: Results for the 2012 French presidential election. The ‘*’ indicate ties between axes.
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Dataset Rule Axis ◁

Strasbourg
VD, MF R LO NPA LFI PS EM LR DLF FN UPR SP

BC, MF R LO NPA PS LFI EM LR FN DLF UPR SP

FT R LO NPA PS LFI EM LR DLF FN UPR SP

HSC
VD, MF SP UPR LO NPA LFI PS EM LR FN DLF R

BC UPR LO NPA LFI PS EM LR FN DLF R SP

MS, FT SP UPR LO NPA LFI PS EM LR FN DLF R

Grenoble VD, MF LO NPA LFI PS EM LR FN DLF UPR R SP

BC, MS, FT LO NPA LFI PS EM LR FN DLF R UPR SP

Crolles 1
VD, MF LO NPA LFI PS EM LR FN DLF UPR SP R

BC, MS LO NPA LFI PS EM LR FN DLF R UPR SP

FT LO NPA PS LFI EM LR FN DLF R UPR SP

Crolles 2
VD R LO NPA LFI PS EM LR FN DLF SP UPR

MF R LO NPA LFI PS EM LR FN DLF UPR SP

BC LO NPA LFI PS EM LR FN DLF R UPR SP

Online

VD R LO NPA LFI PS EM LR DLF RN UPR SP

MF LO NPA LFI PS EM LR DLF RN UPR R SP

BC, MS LO NPA LFI PS EM LR DLF RN R UPR SP

FT LO NPA PS LFI EM R LR DLF RN UPR SP

Table A.9: Results for the 2017 French presidential election.

Dataset Rule Axis ◁

Strasbourg

VD PCF LO NPA LFI EELV PS LREM LR REC RN R DLF

MF PCF LO NPA LFI EELV PS LREM LR R RN REC DLF

BC, MS LO NPA PCF PS LFI EELV LREM LR RN R REC DLF

FT LO NPA PCF PS LFI EELV LREM LR R RN REC DLF

Representative

VD PCF LO NPA LFI EELV PS LREM LR RN REC DLF R

MF LR LREM PS EELV LFI NPA LO PCF R DLF RN REC

BC LO NPA PCF PS EELV LFI LREM LR R RN REC DLF

MS LO PS NPA PCF EELV LFI R LREM LR RN REC DLF

FT LO NPA PS EELV PCF LFI R LREM LR RN REC DLF

Online

VD PCF LO NPA LFI EELV PS LREM LR DLF REC RN R

MF LO NPA LFI PCF PS EELV LREM LR R RN REC DLF

BC LO NPA PCF LFI EELV PS LREM LR R RN REC DLF

MS LO NPA PCF LFI PS EELV LREM LR R RN REC DLF

FT LO NPA LFI PCF PS EELV LREM LR R RN REC DLF

VD-rank DLF R PCF LO NPA LFI EELV PS EM LR RN REC

FT-rank LO NPA PCF LFI PS EELV EM LR R RN DLF REC

Table A.10: Results for the 2022 French presidential election
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Tierlists

Rule VD MF BC MS FT

Score 0.60 0.75 1.58 1.64 3.20

Feb. Mar. Mar. Mar. Mar.
Mar. Apr. Apr. Apr. Apr.
Apr. May May May May
May Aug. Aug. Aug. Aug.
Aug. Jun. Jun. Jun. Jun.
Jun. Jul. Jul. Jul. Jul.
Jul. Dec. Dec. Dec. Dec.
Dec. Oct. Oct. Oct. Oct.
Oct. Nov. Nov. Nov. Nov.
Nov. Jan. Sep. Sep. Sep.
Sep. Feb. Jan. Jan. Jan.
Jan. Sep. Feb. Feb. Feb.

Table A.11: Ordering of the months given by the different rules. Each color corresponds to a
season.

Rule VD MF BC MS FT

Score 0.47 0.53 0.90 0.93 1.5

Pluto Pluto Pluto Mercury Pluto
Jupiter Mars Mercury Uranus Mercury
Earth Jupiter Mars Neptune Jupiter
Saturn Earth Earth Saturn Saturn

Neptune Saturn Saturn Earth Earth
Uranus Neptune Jupiter Jupiter Neptune
Venus Uranus Neptune Mars Uranus
Mars Venus Uranus Venus Mars

Mercury Mercury Venus Pluto Venus

Table A.12: Ordering of the planets given by the different rules. Red corresponds to rocky planets
and blue to gas planets.
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Rule VD MF BC MS FT

Score 0.58 0.72 1.5 1.62 2.88

8 8 8 8 8
6 3 6 6 6
9 6 9 9 9
7 9 7 3 3
3 7 3 7 7
1 4 4 4 4
2 2 2 2 2
4 1 1 1 1
5 10 10 10 10
10 5 5 5 5

Table A.13: Ordering of the numbers from 1 to 10 given by the different rules.

Rule VD MF BC MS FT

Score 0.60 0.69 1.10 1.19 1.98

Ep. 2 Ep. 2 Ep. 2 Ep. 2 Ep. 2
Ep. 1 Ep. 1 Ep. 1 Ep. 1 Ep. 1
Ep. 4 Ep. 5 Ep. 4 Ep. 4 Ep. 4
Ep. 3 Ep. 7.2 Ep. 3 Ep. 3 Ep. 3

Ep. 7.2 Ep. 3 Ep. 7.2 Ep. 7.2 Ep. 7.2
Ep. 5 Ep. 4 Ep. 5 Ep. 5 Ep. 5

Ep. 7.1 Ep. 6 Ep. 6 Ep. 6 Ep. 6
Ep. 6 Ep. 7.1 Ep. 7.1 Ep. 7.1 Ep. 7.1

Table A.14: Ordering of the Harry Potter movies given by the different rules. Red corresponds to
2001–2005 movies and blue to 2007–2011 movies.

Rule VD MF BC MS FT

Score 0.46 0.53 0.87 0.91 1.68

Solo Solo Solo Solo Solo
Ep. II Ep. II Ep. II Ep. II Ep. II
Ep. I Ep. I Ep. I Ep. I Ep. I

Ep. VI Ep. VI Rogue One Rogue One Rogue One
Ep. IV Ep. IV Ep. III Ep. III Ep. III
Ep. V Ep. V Ep. V Ep. V Ep. V
Ep. III Ep. III Ep. IV Ep. IV Ep. IV

Rogue One Rogue One Ep. VI Ep. VI Ep. VI
Ep. VIII Ep. VIII Ep. VIII Ep. VIII Ep. VIII
Ep. VII Ep. VII Ep. VII Ep. VII Ep. VII
Ep. IX Ep. IX Ep. IX Ep. IX Ep. IX

Table A.15: Ordering of the Star Wars movies given by the different rules. Red corresponds to the
prequels, green to the original trilogy, and blue to the sequels.
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Rule VD MF BC MS FT

Score 0.40 0.49 0.83 0.91 1.91

Amazing SM 2 Venom Venom Venom Venom
Amazing SM Amazing SM Amazing SM 2 Amazing SM 2 Amazing SM 2

Venom Amazing SM 2 Amazing SM Amazing SM Amazing SM
SM 3 No way home SM 3 SM 3 SM 3
SM Spiderverse SM SM SM

SM 2 SM 2 SM 2 SM 2 SM 2
Spiderverse SM Spiderverse Spiderverse Spiderverse

No way home SM 3 No way home No way home No way home
Homecoming Homecoming Homecoming Homecoming Homecoming

Far from home Far from home Far from home Far from home Far from home

Table A.16: Ordering of the Spiderman movies given by the different rules. Red corresponds to
the Sam Raimi trilogy, green to the MCU movies, and blue to the Amazing Spiderman movies.

Rule VD MF BC MS FT

Score 0.67 0.93 1.69 1.89 4.34

Fearless (T) Fearless Fearless Fearless Fearless
Fearless Red Red Red Red

Red Speak Now Fearless (T) Fearless (T) Speak Now
Speak Now Red (T) Speak Now Speak Now Red (T)

Folklore Evermore Evermore Red (T) Evermore
Evermore Folklore Folklore Evermore Folklore
Red (T) Reputation Red (T) Folklore 1989

Midnights 1989 1989 1989 Reputation
Reputation Midnights Reputation Reputation Midnights

1989 Lover Midnights Midnights Lover
Lover Fearless (T) Lover Lover Fearless (T)

Taylor Swift Taylor Swift Taylor Swift Taylor Swift Taylor Swift

Table A.17: Ordering of the Taylor Swift albums given by the different rules. Red corresponds to
the 2008-2014 albums, blue to the 2017–2022 albums.

Rule VD MF BC MS FT

Score 0.72 0.91 1.74 1.93 3.90

Gray Gray Gray Brown Gray
White White White Gray Pink
Black Black Black Green White
Red Red Red White Black

Green Green Purple Black Purple
Blue Blue Blue Red Blue

Purple Purple Green Blue Red
Pink Pink Pink Purple Green

Orange Orange Orange Pink Yellow
Yellow Yellow Yellow Orange Orange
Brown Brown Brown Yellow Brown

Table A.18: Ordering of the colors given by the different rules.
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Rule VD MF BC MS FT

Score 0.68 0.85 2.10 2.25 4.03

Literature Chemistry Chemistry Chemistry Chemistry
Art Physics Physics Physics Physics

Technology Math Math Math Math
Math Technology Technology Technology Technology

Physics PE Music Music Music
Chemistry Music Art PE Art

Music Art PE Art PE
PE Literature History History History

Social studies Social studies Social studies Social studies Social studies
History History Foreign language Foreign language Foreign language

Foreign language Foreign language Literature Literature Literature

Table A.19: Ordering of the school courses given by the different rules. Red corresponds to the
humanities and blue to the sciences.

Rule VD MF BC MS FT

Score 0.66 0.91 1.77 2.09 5.15

Italy Italy Italy Italy Italy
France France France France France

UK UK UK UK UK
Germany Germany Germany Germany Germany

Switzerland Sweden Sweden Switzerland Switzerland
Sweden Switzerland Switzerland Sweden Sweden
Norway Norway Norway Norway Norway

Denmark Denmark Iceland Iceland Denmark
Finland Finland Finland Finland Finland
Iceland Iceland Denmark Denmark Iceland

Table A.20: Ordering of the European countries given by the different rules. Blue indicates to the
Nordic countries.



281

Colors Tierlists

FT
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VD

(a) Nuances of blue (138 voters).
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VD

(b) Nuances of red (85 voters).
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(c) From blue to green (124 voters).

FT

MS

BC

MF

VD

(d) Colors of the rainbow (130 voters).

FT

MS

BC

MF

VD

(e) Clones of candidates (119 voters).

FT

MS

BC

MF

VD

(f) From blue to purple (121 voters).

Figure A.1: Axes of colors for some subsets of eight colors, obtained using the different axis rules.
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FT
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VD

(a) Green to brown (61 voters).
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(b) Nuances of blue (113 voters).
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(c) From pink to purple (83 voters).
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(d) From yellow to red (76 voters).
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(e) Colors of the rainbow (101 voters).

FT
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MF

VD

(f) From green to blue (104 voters).

Figure A.2: Axes of colors for some subsets of eight colors, obtained using the different axis rules.
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Résumé long en français

B.1 Introduction

Les systèmes de vote que nous connaissons et que nous utilisons régulièrement pour les élections
politiques majeures comme les présidentielles ou les législatives souffrent de nombreux défauts,
largement documentés et bien connus des électeurs : division des voix entre candidats proches,
dilemme du vote « utile », ou encore le fait que les votes pour les partis sous le seuil électoral soient
ignorés dans les élections parlementaires proportionnelles. Beaucoup de ces défauts découlent du
format des bulletins de vote, souvent trop peu expressifs : en général, les électeurs ne peuvent
choisir qu’un seul candidat. Pourquoi ne pas plutôt permettre aux électeurs de s’exprimer sur
plusieurs candidats, en indiquant par exemple lesquels ils approuvent parmi la liste qui leur est
proposée, ou quel est leur classement des candidats ? Dans la première partie de cette thèse, nous
considérons sérieusement ces possibilités.

Une fois que l’on commence à s’intéresser aux formats de bulletins de vote expressifs comme
les bulletins d’approbation ou les classements dans le cadre des systèmes de vote, on remarque que
ces bulletins peuvent également être très utiles pour décrire le paysage politique et la structure
de l’électorat. En particulier, ils permettent de facilement observer que certains candidats sont
proches, typiquement s’ils sont appréciés par les mêmes électeurs. Partant de cette idée, dans la
seconde partie de cette thèse, nous étudions des problèmes dont l’objectif est de construire des
outils d’analyse politique à partir des préférences des électeurs.

Choix social et préférences expressives

Formellement, un problème de choix social est défini par un ensemble de candidats, un ensemble
de votants qui expriment leurs préférences sur les candidats (à l’aide de bulletins de vote), et
d’un ensemble de résultats possibles. Par exemple, dans une élection présidentielle, les résultats
possibles sont les différents candidats.

Il existe plusieurs formats de bulletins de vote pour exprimer des préférences : uninominal
(chaque votant choisit un seul candidat), d’approbation (les votants peuvent choisir plusieurs can-
didats), par classement (les votants classent les candidats par ordre de préférence), ou encore
cardinal (les votants associent une note à chaque candidat). Dès lors que l’on utilise des bulletins
au format plus expressif que le format uninominal, la littérature académique a montré que l’on
peut définir de nombreuses méthodes intéressantes pour la sélection de gagnants.

Une fois que le problème est bien défini et que des méthodes d’agrégation de préférences ont été
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proposées, la question est alors de savoir laquelle de ces méthodes devrait-on utiliser en pratique ?
Il n’y a généralement pas de réponse toute faite, et chaque méthode s’accompagne d’avantages et
d’inconvénients. Il nous faut alors des moyens d’évaluer et de comparer ces méthodes. Différentes
approches existent, et dans cette thèse, nous allons nous concentrer sur deux d’entre elles.

Une des approches les plus anciennes d’étude des méthodes d’agrégation de préférence en choix
social est l’analyse axiomatique, qui repose sur la définition de propriétés considérées comme désir-
ables pour ces méthodes. On vérifie alors quelles méthodes satisfont quelles propriétés. Avec la
normalisation de l’informatique et des ordinateurs au cours du XXe siècle, l’analyse expérimentale
est devenue un autre outil incontournable pour étudier les méthodes d’agrégation. L’idée était
d’abord de simuler des profils de préférences à l’aide de modèles probabilistes, puis de tester les
méthodes sur ces profils artificiels. Enfin, de plus en plus d’analyses expérimentales se font main-
tenant aussi sur des données réelles, puisque de nombreux jeux de données de préférences ont été
collectés ces dernières années. Ces deux approches (axiomatique et expérimentale) sont complé-
mentaires, et permettent de mieux comprendre les méthodes d’agrégation, ce qui est essentiel pour
choisir laquelle de ces méthodes utiliser en pratique.

Aperçu du contenu de la thèse

Les contributions de cette thèse sont organisées en deux parties. Dans la première partie, nous
étudierons comment des bulletins de vote plus expressifs peuvent servir à améliorer des systèmes
de vote utilisés en pratique. Dans la seconde partie, nous verrons comment il est possible d’utiliser
les bulletins de vote expressifs pour construire des outils d’analyse et de description du paysage
politique.

Malgré la diversité des problèmes étudiés dans cette thèse, nous verrons dans la Section B.2 que
ces problèmes ont de nombreuses similarités. En particulier, pour évaluer les méthodes proposées,
nous conduisons systématiquement une analyse axiomatique et une analyse expérimentale.

Partie I : Améliorer les systèmes de vote. Cette première partie est consacrée à l’étude de
trois problèmes de vote, tous motivés par des applications concrètes. Dans la Section B.3, nous
étudierons le vote par approbation à deux tours, une amélioration du scrutin uninominal majoritaire
à deux tours, qui est très utilisé pour des élections à vainqueur unique (notamment en France),
mais qui souffre de nombreux défauts à la fois en théorie et en pratique. Notre proposition est
de remplacer les bulletins uninominaux du premier tour par des bulletins d’approbation. Dans
la Section B.4, nous étudierons le vote alternatif, un système de vote utilisé dans de nombreux
pays (comme l’Irlande ou l’Australie), qui est basé sur des bulletins de vote par classement. Nous
proposerons alors de généraliser ce mode de scrutin en permettant aux électeurs de voter avec
des préordres complets, c’est-à-dire des classements qui peuvent contenir des égalités. Ce type
de bulletin est plus expressif que les bulletins de vote par classement, et permet aux électeurs
d’indiquer lorsqu’ils sont indifférents entre certains candidats. Enfin, dans la Section B.5, nous
nous pencherons sur le problème des « votes perdus » dans les élections parlementaires avec seuil
électoral (comme en France pour les élections Européennes, ou en Allemagne), et nous verrons
comment il est possible d’améliorer la représentation des électeurs en leur permettant de voter
avec des classements (tronqués).

Partie II : Construire des outils d’analyse du paysage politique. Cette seconde partie
est quant à elle consacrée à l’étude de deux problèmes dans lesquels l’objectif est d’agréger les
préférences des électeurs pour obtenir une représentation de certains aspects du paysage politique.
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Dans la Section B.6, nous verrons comment il est possible d’utiliser les préférences d’approbation
des électeurs pour construire un axe gauche-droite (c’est-à-dire un axe unidimensionnel) des can-
didats, à l’aide de méthodes explicables et interprétables. Enfin, dans la Section B.7, nous pro-
poserons des méthodes d’identification des paires de candidats induisant le plus de conflit au sein
de l’électorat, à partir des classements des votants.

Chacun des cinq problèmes de cette thèse repose sur un article scientifique publié dans une
conférence internationale (AAAI, IJCAI ou EC), bien que chaque chapitre ait été ici réécrit pour
rendre la thèse plus cohérente et agréable à lire. D’autres travaux de recherche ont été réalisés
durant cette thèse, mais ont été omis pour des raisons de cohérence et de longueur de la thèse.
Cela inclut cinq articles publiés dans des conférences internationales, ainsi que deux articles en
cours de soumission dans des revues. Ces articles sont énumérés dans la Section 1.3.

B.2 Outils d’analyse du choix social computationnel

Chaque chapitre de cette thèse est consacré à l’étude d’un problème d’agrégation de préférences.
Malgré leur diversité, ces problèmes partagent cinq aspects majeurs : (1) Pour chaque problème,
nous avons à disposition les préférences des électeurs (ou votants) sur des candidats; (2) L’objectif
principal est d’agréger ces préférences pour obtenir un résultat d’un certain type (par exemple,
choisir le meilleur candidat); (3) Pour ce faire, nous définissons des règles (ou méthodes) qui
prennent en entrée les préférences des votants et retournent un résultat du type attendu. Enfin,
nous comparons ces règles entre elles au travers (4) d’une analyse axiomatique et (5) d’une analyse
expérimentale. Dans cette première partie, nous présentons ces différents aspects.

Les préférences

Soit un ensemble V de votants de taille |V | = n et un ensemble C de candidats de taille |C| = m. On
suppose que l’on connaît le profil P = (X1, . . . , Xn) de préférences des votants sur les candidats,
exprimées dans un certain format Xi ∈ X (où X est le domaine des préférences). Le format
des préférences (généralement exprimées à l’aide de bulletins de vote) joue un rôle crucial dans
la manière dont un problème peut être résolu. Ci-dessous, nous passons en revue les différents
formats possibles.

Préférences uninominales. Le format le plus basique (et le plus ancien) d’expression de
préférence est le format uninominal, qui consiste pour un votant à ne donner le nom que d’un
seul candidat, généralement celui qu’il préfère.

Classements. Un autre format très courant est celui des classements (notés ≻1, . . . ,≻n). Dans
leurs classements, les votants ordonnent les candidats par ordre de préférence (on parle également
de préférences ordinales). Formllement, un classement ≻i est un ordre strict total.

Bulletins d’approbation. Dans les bulletins d’approbation (notés A1, . . . , An), les votants peu-
vent sélectionner plusieurs candidats à la fois (on dit alors que ces candidats sont approuvés par le
votant). Formellement, Ai ⊆ C est un sous-ensemble de l’ensemble des candidats, sans contrainte
de taille. Ce format est très ancien, et était notamment utilisé pour les conclaves papaux entre
1294 et 1691 (Colomer and McLean, 1998).
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Figure B.1: Exemples de bulletins de différents formats.

Classements avec égalités. D’un côté, les classements permettent à l’électeur de s’exprimer sur
tous les candidats, mais ne permettent pas d’exprimer des indifférences. À l’inverse, les bulletins
d’approbation créent deux niveaux d’indifférence (les candidats approuvés et les non-approuvés),
mais ne permettent pas de hiérarchiser les candidats au sein de ces deux groupes. Les classements
avec égalités (notés ≽1, . . . ,≽n) sont un compromis entre les deux, et conservent les avantages
des deux formats. Un classement avec égalités est un classement dans lequel plusieurs candidats
peuvent être classés à la même position (ce qui permet d’exprimer des indifférences). Formellement,
un classement avec égalités ≽i est un préordre total (en anglais, on parle de weak order). Les
classements et les bulletins d’approbation sont des cas particuliers des classements avec égalités,
mais il y en a d’autres, comme les classements tronqués, où un votant ne classe qu’une partie des
candidats. La Figure B.1 donne des exemples de bulletins de vote dans ces différents formats.

Évaluations. Enfin, on parle d’évaluation lorsqu’à partir d’un ensemble (ordonné) Z de « notes »
possibles, un votant associe une note à chaque candidat. Des exemples typiques sont les avis en
ligne sur de nombreux sites (avec Z = {0, 1, 2, 3, 4, 5} pour le nombre d’étoiles) ou bien les mentions
au bac (avec Z = {Très bien,Bien,Assez Bien,Passable, Insuffisant}). Il est également possible de
prendre un ensemble continu, comme Z = R, ou Z = [0, 1]. On parle aussi parfois d’utilité, de
coût, de score, ou de préférences cardinales.

Familles de problèmes et règles de vote

Nous venons de voir différents formats de préférences (ou de bulletins de vote) possibles, intéressons-
nous maintenant à ce que l’on peut souhaiter obtenir comme résultat en agrégeant ces préférences.
Un problème typique est le choix d’un vainqueur unique d’une élection. Cependant, le résultat
désiré n’est pas forcément une sélection de vainqueur, et nous considérons également dans cette
thèse des problèmes dont l’objectif est d’obtenir une description de la structure de l’électorat.

Une fois que le type de résultat souhaité est bien déterminé, on peut définir des règles (ou
méthodes) d’agrégation, prenant en entrée un profil de préférences P = (X1, . . . , Xn) et retournant
un résultat O ∈ O, où O est l’ensemble des résultats possibles. Par exemple, dans une élection à
vainqueur unique, O = C l’ensemble des candidats. Si l’on autorise la règle à retourner plusieurs
résultats possibles (par exemple des ex aequo), on dit que la règle est irrésolue. Si à l’inverse,
la règle ne retourne toujours qu’un seul résultat, on dit qu’elle est résolue. Deux problèmes en
particulier ont été très étudiés dans la littérature du choix social, et sont au cœur de cette thèse :
les élections à vainqueur unique et les élections de comités (ou élections à vainqueurs multiples).



B.2. OUTILS D’ANALYSE DU CHOIX SOCIAL COMPUTATIONNEL 287

Élections à vainqueur unique.

Ce problème est sûrement le plus étudié de la littérature du choix social. L’objectif est de sélec-
tionner un candidat c ∈ C à partir des votes des électeurs. Lorsqu’il n’y a que deux candidats, la
solution est simple et une seule règle satisfait un ensemble de propriétés désirables (May, 1952) :
la majorité, qui retourne le candidat recevant le plus de voix entre les deux. Les choses deviennent
plus complexes lorsque l’on a plus de deux candidats.

Bulletins uninominaux. Avec des bulletins uninominaux, il n’y a pas beaucoup de possibilités,
la règle la plus sensée étant la Pluralité, qui consiste à élire le candidat recevant le plus de voix (on
parle alors de score de pluralité). C’est par exemple le système utilisé au Royaume-Uni pour élire
les membres du Parlement.

Bulletins d’approbation. Avec des bulletins d’approbation, on peut de la même manière utiliser
la règle d’approbation, qui consiste à élire le candidat ayant reçu le plus de voix. Cette règle est
connue pour satisfaire de nombreuses propriétés intéressantes (Brandl and Peters, 2022). Il existe
cependant des variantes, comme l’approbation divisée (split approval voting en anglais), où chaque
votant distribue au total un point, qu’il divise équitablement entre les candidats qu’il approuve.

Classements. Avec des classements, il existe cette fois de très nombreuses règles de vote :

• Parmi les plus étudiées, il y a les règles de scores positionnelles, qui attribuent un score à
chaque candidat en fonction de sa position dans le classement de chaque votant. Le gagnant
est alors le candidat avec le plus grand score total. L’exemple le plus connu est la règle de
Borda, où chaque votant attribue les scores (m − 1,m − 2, . . . , 1, 0) aux candidats classés
respectivement 1, 2, . . . ,m dans son classement.

• Une autre grande famille de règles est celle des règles de score à éliminations successives,
où l’on utilise également des vecteurs de scores pour calculer le score de chaque candidat,
mais où l’on élimine successivement les candidats ayant le plus petit score. Après chaque
élimination, les classements sont modifiés pour tenir compte de l’élimination. L’exemple le
plus connu est celui du vote alternatif (instant runoff voting en anglais), qui est utilisé dans
de nombreux pays, comme l’Australie et l’Irlande. Une autre règle s’inscrit également dans
cette idée d’élimination : le vote uninominal majoritaire à deux tours, qui est le système
utilisé en France pour les élections présidentielles et législatives. Dans ce système, si aucun
candidat n’obtient plus de 50% des voix au premier tour, les deux candidats (parfois plus)
ayant obtenu le plus de voix se qualifient pour un second tour, où le candidat recevant le plus
de voix est élu.

• Une autre grande famille de règles est celle des règles de Condorcet, qui élisent nécessairement
le gagnant de Condorcet s’il existe. On dit qu’un candidat est un gagnant de Condorcet s’il
est préféré à tous les autres candidats par la majorité des votants (dans un duel). Puisqu’il ne
peut jamais y avoir une majorité de votants qui s’accorde pour choisir un autre candidat à la
place d’un gagnant de Condorcet, ils sont souvent considérés comme des gagnants naturels.
Cependant, il n’existe pas nécessairement de gagnant de Condorcet : il peut y avoir un cycle
de domination. De nombreuses règles ont alors été proposées pour généraliser le principe
de Condorcet aux cas où il n’existe pas de tel candidat. C’est le cas par exemple des règles
de Copeland (Copeland, 1951), de Minimax (Young, 1977) ou de Ranked Pairs (Tideman,
1987).



288 APPENDIX B. RÉSUMÉ LONG EN FRANÇAIS

Il existe bien sûr de nombreuses autres règles, comme la règle de Kemeny (Kemeny, 1959).

Classements avec égalités. Lorsque les préférences sont des classements avec égalités (c’est-
à-dire des préordres complets), il est souvent possible de généraliser les règles définies pour les
classements. Cela est particulièrement vrai si les classements en question sont des classements
tronqués.

Évaluations. Enfin, il existe plusieurs manières d’agréger des évaluation pour sélectionner un
candidat. Il est par exemple possible de choisir le candidat ayant la meilleure évaluation médi-
ane (comme dans le Jugement Majoritaire de Balinski and Laraki (2011)), ou bien celui ayant
la meilleure évaluation minimale (c’est le principe égalitariste). Enfin, si les évaluations sont
numériques, on peut également choisir le candidat ayant la meilleure moyenne (c’est le principe
utilitariste).

Élections de comités.

Regardons maintenant les différentes règles qui ont été introduites pour les élections à vainqueurs
multiples, ou élections de comités. Dans ce genre d’élection, la taille du comité est généralement
fixée à l’avance, on la note k ⩾ 2. Les élections de comités peuvent suivre différents principes,
dont trois principaux ont été identifiés par Elkind et al. (2017b) : (1) l’excellence, où l’on cherche
à sélectionner les candidats qui sont les meilleurs individuellement; (2) la proportionalité, où l’on
cherche à représenter les groupes de votants proportionnellement à leur taille; et (3) la diversité,
où l’on cherche à satisfaire le plus grand nombre de votants. De nombreuses règles d’élection de
comités ont été proposées dans la littérature :

Bulletins uninominaux. Si les préférences sont uninominales, on peut choisir les k candidats
ayant reçu le plus de voix, c’est le vote non-transférable (SNTV).

Bulletins d’approbation. Avec des bulletins d’approbation, il existe un grand nombre de règles.
Tout d’abord, on peut généraliser les règles d’élection à vainqueur unique en sélectionnant k can-
didats au lieu d’un. On peut également utiliser les règles de Thiele ou leurs versions séquentielles
(Thiele, 1895), pour lesquelles un votant reçoit de moins en moins de satisfaction pour chaque
candidat en plus qu’il approuve dans le comité. Enfin, un très grand nombre de règles ont été
proposées pour des élections proportionnelles, comme les règles de Phragmén (Phragmén, 1894) ou
la méthode des parts égales (Peters and Skowron, 2020). Nous recommandons le livre de Lackner
and Skowron (2023) pour une revue de la littérature sur les élections de comités par approbation.

Classements. Avec des classements, on peut également généraliser les règles d’élection à vain-
queur unique. Par exemple, la règle de k-Borda, basée sur les scores de Borda, est intéressante si
l’on veut satisfaire le critère d’excellence. La règle de vote transférable (STV), généralisation du
vote alternatif (IRV) est quant à elle intéressante pour le critère de proportionnalité (Tideman,
1995; Tideman and Richardson, 2000). Enfin, la règle de Chamberlin-Courant (Chamberlin and
Courant, 1983) est adaptée pour le critère de diversité (Elkind et al., 2017b).

Les règles que nous venons de présenter considèrent toutes que la taille du comité est fixée, mais
d’autres règles ont également été proposées pour des élections de comités où la taille du comité
n’est pas fixée à l’avance (Duddy et al., 2014; Lackner and Maly, 2021; Faliszewski et al., 2020;
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Kilgour, 2016; Brandl and Peters, 2019). Enfin, le problème d’élection de comités est également
proche de celui d’établir une distribution des sièges dans un parlement à partir de scores (problème
d’apportionment), très étudié en théorie du choix social (Balinski and Young, 2010; Pukelsheim,
2014).

Axiomes

Une fois que différentes règles ont été proposées pour un problème donné, l’étape suivante est
d’évaluer et de comparer ces règles. Les deux outils principaux que nous utilisons dans cette thèse
sont l’analyse axiomatique et l’analyse expérimentale. Concentrons-nous d’abord sur l’analyse
axiomatique. L’idée est de définir un ensemble de propriétés désirables, appelées axiomes, que l’on
souhaiterait que les règles vérifient. Pour un axiome donné, il n’y a pas d’entre-deux : une règle
est soit conforme à l’axiome, soit elle ne l’est pas.

En plus de montrer quelles règles satisfont quels axiomes, on trouve fréquemment des incom-
patibilités entre axiomes, c’est-à-dire que l’on prouve que pour un ensemble donné d’axiomes, il
ne peut exister de règle qui les satisfont tous. Dans d’autres cas plus positifs, on peut prouver
qu’il existe une unique règle de vote qui satisfait un ensemble donné d’axiomes, on parle alors de
caractérisation. Nous allons maintenant passer rapidement en revue les familles d’axiomes que
nous utiliserons dans cette thèse.

Symétrie. La neutralité et l’anonymité font partie des axiomes les moins controversés du choix
social (pour les règles irrésolues, c’est-à-dire pouvant retourner des ex-aequo). Le premier impose
que le résultat ne dépende pas de l’identité des candidats, et le second qu’il ne dépende pas de
l’identité des votants.

Efficacité et Représentation. Les axiomes d’efficacité donnent des contraintes sur le résultat
pour certains profils de préférences. Par exemple, pour les élections à vainqueur unique, le critère
de Condorcet impose que s’il existe un gagnant de Condorcet, alors celui-ci doit être élu. Ainsi,
un axiome d’efficacité peut imposer un gagnant (comme c’est le cas ici), mais il peut à l’inverse
imposer un (ou des) perdant(s), comme le fait le critère du perdant de Condorcet, qui dit qu’un
candidat perdant le duel à la majorité contre tous les autres candidats ne devrait pas être élu, ou
encore le principe de Pareto (Pareto, 1919). Enfin, pour les élections de comités, les axiomes de
représentation imposent que si un groupe de votants est assez nombreux et assez homogène dans
ses préférences, alors ce groupe doit être représenté dans le comité (proportionnellement à sa taille)
par ses candidats préférés (Dummett, 1984; Aziz et al., 2017a; Sánchez-Fernández et al., 2017; Aziz
et al., 2018; Peters et al., 2021)

Renforcement. L’axiome de renforcement (Smith, 1973; Young, 1974) impose que si l’on obtient
le même résultat avec deux profils de préférences P1 et P2, alors on doit également obtenir ce
résultat si l’on combine les deux profils en un seul P ′ = P1 + P2. L’idée est que si un candidat
gagne dans une région A et une région B, alors il doit gagner si l’on combine les deux régions.

Axiomes d’indépendance. Les axiomes d’indépendance imposent que le résultat d’une rè-
gle reste inchangé lorsque l’on ajoute ou enlève des candidats dans l’élection (et donc dans les
préférences des votants). Le plus fort de ces axiomes est l’indépendance aux perdants (adaptée
de indépendance aux alternatives non pertinentes introduite par Arrow (1950)), qui impose que
le résultat reste inchangé lorsque l’on enlève un perdant de l’élection. Un axiome plus faible est



290 APPENDIX B. RÉSUMÉ LONG EN FRANÇAIS

l’indépendance aux clones (Tideman, 1987), qui impose que le résultat reste inchangé lorsque l’on
ajoute ou enlève un candidat qui est un clone d’un autre candidat dans l’élection. On dit que deux
candidats sont clones si ils sont classés l’un après l’autre dans tous les classements des votants
(dans le cas où les préférences sont des classements), ou s’ils sont toujours approuvés ensemble
(dans le cas des bulletins d’approbation).

Vote stratégique et monotonie. Les axiomes de résistance au vote stratégique impose qu’un
votant ne puisse pas obtenir un résultat qu’il préfère en donnant de fausses préférences. Autrement
dit, la meilleure stratégie pour le votant doit être de donner ses préférences sincères. Cet axiome
étant trop fort dans la plupart des cas (Gibbard, 1973; Satterthwaite, 1975), on restreint générale-
ment les manipulations autorisées pour le votant stratégique. Enfin, l’axiome de monotonie (Fish-
burn, 1982) impose quant à lui que si un candidat gagne une élection pour un profil de préférences
P , alors il doit également gagner si l’on modifie les préférences de certains votants de telle sorte
que le gagnant reçoivent plus de soutien qu’avant (par exemple, en améliorant sa position dans
certains classements).

Expériences

L’analyse axiomatique est un outil puissant pour comparer les règles de vote, mais il est souvent
souhaitable de compléter cette approche par une analyse expérimentale. L’idée est d’observer le
comportement des règles qui ont été introduites en pratique sur des données réelles, ou des données
simulées, générées à partir de modèles probabilistes.

Les objectifs de l’analyse expérimentale sont multiples. D’une part, on veut étudier le com-
portement des règles, et essayer de relier ces comportements aux résultats de l’analyse axiomatique.
Il est également intéressant d’étudier les similarités entre les règles. D’autre part, et lorsque c’est
possible, on veut pouvoir comparer la qualité des résultats retournés par les règles. Pour cela, il
faut une mesure qui permettent de déterminer quel résultat est objectivement le meilleur. Une
approche possible est celle de la distorsion (Procaccia and Rosenschein, 2006; Anshelevich et al.,
2021). Enfin, l’analyse du jeu de données en lui-même est parfois très instructive, et peut permettre
de mieux comprendre la structure des préférences des votants.

Modèles probabilistes. Pour générer des profils de préférences lorsque l’on ne dispose pas de
suffisamment de données réelles, il est très fréquent d’avoir recours à des données synthétiques,
générées à l’aide de modèles probabilistes, dont Boehmer et al. (2024) ont fait une revue. Ceux
que nous utilisons dans la thèse sont aussi les plus courants dans la littérature. En particulier,
dans le modèle d’Impartial Culture (la culture impartiale), toutes les préférences possibles sont
équiprobables. Par exemple, pour les préférences ordinales, chaque classement a la même probabil-
ité d’être choisi. Au contraire, dans le modèle de Mallows (Mallows, 1957), il existe une préférence
« moyenne » (par exemple, un classement moyen), et les préférences des votants sont générées à
partir de cette préférence moyenne en y ajoutant du bruit aléatoire. Enfin, un autre modèle très
utilisé et très présent dans cette thèse est le modèle euclidien (Enelow and Hinich, 1984, 1990).
Dans ce modèle, candidats et votants sont associés à des positions dans un espace multidimension-
nel. Les préférences des votants sont alors basées sur leur distance aux candidats : plus ils en sont
proches, plus ils les préfèrent.

Données réelles. Dans cette thèse, nous allons toujours tester nos règles sur des jeux de données
réels (souvent en complément de données synthétiques). Les sources de ces données sont multi-
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ples, mais beaucoup viennent de la bibliothèque de jeux de données Preflib (Mattei and Walsh,
2013), ou des expérimentations réalisées dans le cadre du projet Voter Autrement. Ces expéri-
mentations ont eu lieu en France, en parallèle des élections nationales (généralement, les élections
présidentielles), depuis 2002. Ces expérimentations se sont faites selon plusieurs modalités. Dans
les expérimentations in situ, des chercheurs se rendent le jour de l’élection dans certains bureaux
de vote pour proposer aux électeurs de voter à une « élection parallèle », dans laquelle des modes
de scrutin alternatifs (et basés sur des préférences plus expressives) sont utilisés, comme le vote
par approbation, le vote alternatif, le vote de Borda, ou le Jugement majoritaire (Laslier and
Van der Straeten, 2004; Baujard and Igersheim, 2009; Farvaque et al., 2009; Balinski and Laraki,
2010; Baujard et al., 2013; Bouveret et al., 2019; Kamwa et al., 2020; Baujard et al., 2025b).
Dans les expérimentations en ligne, les électeurs sont invités à se rendre sur un site web pendant
les quelques semaines précédant l’élection, pour encore une fois voter avec des modes de scrutin
alternatifs (Van der Straeten et al., 2013; Laslier et al., 2012; Bouveret et al., 2018; Delemazure
and Bouveret, 2024).1 Ces expérimentations ont permis de récolter des données sur les préférences
des électeurs, mais aussi sur leurs comportements de vote, et sur leurs opinions sur les différents
modes de scrutin. Au total, ces expérimentations ont permis de collecter une vingtaine de jeux de
données, cumulant plus de 70 000 participants.

B.3 Le vote par approbation avec second tour

Étant donné que la première partie de cette thèse est consacrée aux manières d’améliorer les
systèmes de vote utilisés en pratique grâce à des bulletins de vote plus expressifs, il était naturel
pour moi de commencer par le système de vote que je connais le plus, la pierre angulaire de la
démocratie française : le scrutin uninominal majoritaire à deux tours. Ce mode de scrutin se
déroule en deux tours. Au premier tour, les électeurs votent pour un candidat (et un seul). Si
un candidat obtient plus de 50% des voix, il est élu. Sinon, les deux candidats ayant obtenu le
plus de voix se qualifient pour le second tour, où les électeurs votent à nouveau pour l’un des deux
candidats. Le candidat qui obtient le plus de voix au second tour est élu. Ce mode de scrutin,
ou des variantes de celui-ci, est utilisé pour quasiment toutes les élections politiques à vainqueur
unique en France, ainsi que dans de nombreux autres pays (84 pays l’utilisent pour élire leur chef
d’État).

Ce mode de scrutin est cependant critiqué. Il a notamment été prouvé qu’il ne satisfait pas
de nombreuses propriétés désirables, comme l’indépendance aux clones et la monotonie. La non-
satisfaction de ces axiomes n’est pas seulement théorique : elle a des conséquences concrètes sur
l’issue des élections. Par exemple, la non-satisfaction de l’axiome d’indépendance aux clones est
causée par la division des voix entre les candidats proches, ce qui est une des causes de l’échec de
la gauche à l’élection présidentielle française de 2002, où 8 candidats de gauche se sont présentés
au premier tour, dispersant les voix de gauche et permettant à l’extrême-droite de se qualifier pour
le second tour. Ce phénomène pousse également de nombreux électeurs à voter « utile ».

Il existe cependant une alternative qui ne souffre pas des mêmes défauts, le vote par approba-
tion. Dans ce mode de scrutin, les électeurs peuvent voter pour plusieurs candidats. Le candidat
qui obtient le plus de voix est élu. On peut toutefois se demander si un tel mode de scrutin serait
facilement accepté dans les pays habitués aux élections à deux tours, comme la France. D’autant
plus que le second tour permet de satisfaire quelques propriétés intéressantes (par exemple, il rend

1J’ai notamment contribué à l’édition 2022 de l’expérimentation en ligne, et je m’en suis inspiré pour en conduire
une autre en 2024 dans le cadre de l’élection Européenne (voir Section B.5).
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l’élection d’un perdant de Condorcet impossible). Une possibilité est alors de conserver le second
tour, mais de modifier le premier tour en permettant aux électeurs de voter pour plusieurs candi-
dats, c’est-à-dire en utilisant le vote par approbation. C’est cette proposition que nous explorons
dans ce chapitre.

Dans un protocole de vote par approbation avec second tour, la question est alors de savoir de
quelle manière sont choisis les deux finalistes pour le second tour. La solution la plus naturelle est
de choisir les deux candidats ayant obtenu le plus de voix au premier tour. C’est par exemple ce qui
est fait pour les élections municipales de Saint-Louis dans le Missouri, où ce système est en place
depuis 2021. Cependant, il existe de nombreuses autres manières de choisir les finalistes. Nous en
explorons quelques-unes dans ce chapitre, et montrons que ces différentes méthodes vérifient des
propriétés théoriques différentes, et peuvent avoir un impact important sur l’issue de l’élection en
pratique.

Règles d’approbation avec second tour

Pour calculer le gagnant d’une élection par approbation avec second tour, nous avons à la fois
besoin de connaître les votes d’approbation des électeurs pour le premier tour, et leurs classements
des candidats afin de départager les finalistes au second tour, quels qu’ils soient. On utilise pour
cela la structure de classement avec seuil (approval-ordinal ballots en anglais) introduite par Brams
and Sanver (2009).

Formellement, on a un profil de votes d’approbation PA = (A1, . . . , An), ainsi qu’un profil
de votes par classement P≻ = (≻1, . . . ,≻n), où Ai est l’ensemble des candidats approuvés par
l’électeur i, et ≻i est son classement des candidats. On suppose que les deux profils sont com-
patibles, c’est-à-dire que pour tout i, pour tout x ∈ Ai et y /∈ Ai, on a x ≻i y. Dans la suite,
on note pour x, y ∈ C, S(x) = |{i ∈ V | x ∈ Ai}| le score d’approbation du candidat x, et
S(xy) = |{i ∈ V | x ∈ Ai and y ∈ Ai}| le score d’approbation de la paire de candidats {x, y}.

La première étape consiste à sélectionner deux finalistes, et repose donc sur la famille des
règles d’élection de comités par approbation (approval based committee rules en anglais), avec une
taille de comité fixée à k = 2. Nous recommandons le livre de Lackner and Skowron (2023) pour
une revue de la littérature sur ces règles. Il est à noter que les règles que nous étudions ici sont
irrésolues, et peuvent donc retourner plusieurs paires de finalistes (en cas d’ex aequo).

La règle la plus naturelle est l’approbation classique (AV), qui sélectionne comme finalistes les
deux candidats ayant reçu le plus de votes. Le défaut de cette méthode est que si un groupe de
votants est plus nombreux que tous les autres groupes, et que ces votants approuvent tous au moins
deux candidats en commun, alors ces deux candidats seront choisis comme finalistes, laissant les
autres groupes sans représentants au second tour. Pour obtenir plus de diversité, on peut utiliser
l’approbation proportionnelle (PAV) ou bien l’approbation de Chamberlin-Courant (CCAV). L’idée
est qu’un votant qui approuve les deux finalistes contribue moins au score de la paire que dans le
cas de l’approbation classique. Dans le cas de Chamberlin-Courant, une paire de candidats reçoit
un seul point de chaque votant qui approuve au moins un des deux candidats, même si le votant
approuve les deux.

Plus formellement, on a AV(PA) = argmaxx ̸=y∈C S(x)+S(y), PAV(PA) = argmaxx ̸=y∈C S(x)+

S(y)− (1/2)S(xy) et CCAV(PA) = argmaxx ̸=y∈C S(x) + S(y)− S(xy). On peut alors généraliser
ces règles pour obtenir la famille des règles α-AV, qui sélectionnent la paire de candidats {x, y} qui
maximise S(x) + S(y)− αS(xy), pour α ∈ [0, 1]. On retrouve AV pour α = 0, PAV pour α = 1/2,
et CCAV pour α = 1.

Plutôt que de choisir les deux finalistes en une seule fois, on peut également utiliser des règles
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AV PAV CCAV S-PAV S-CCAV EnePhr S-Phr SAV TRIV

Efficacité de Pareto
Rés. stratégique

Rés. stratégique forte
Monotonie

Ind. aux clones faible
Efficacité d’approbation

Table B.1: Résumé des propriétés des règles d’approbation avec second tour.

séquentielles, qui sélectionnent les finalistes l’un après l’autre. On peut par exemple définir des
variantes des règles α-AV ainsi : le premier finaliste x ∈ C est le candidat qui maximise le score
d’approbation S(x), et le second finaliste y ∈ C \ {x} est le candidat qui maximise S(y)−αS(xy).
On obtient ainsi la règle α-AV séquentielle (notée α-seqAV). On peut en particulier définir S-PAV
et S-CCAV, qui sont les variantes séquentielles de PAV et CCAV. En dehors de cette famille de
règles, nous étudions également la règle d’Eneström-Phragmén (EnePhr) et la règle séquentielle de
Phragmén (S-Phr).

Enfin, nous étudions la règle d’approbation divisée (SAV), où un votant i contribue 1/|Ai| au
score de chaque candidat x ∈ Ai (de telle sorte qu’un votant qui approuve plusieurs candidats
divise sa voix entre ceux-ci). Nous ajoutons également à l’analyse la règle triviale (TRIV) qui
sélectionne toutes les paires de finalistes possibles.

On peut maintenant définir la famille des règles d’approbation avec second tour (AVR). On
définit pour cela maj(P≻, {x, y}) comme le gagnant du vote de majorité (i.e., du second tour)
entre x et y selon le profil de classement P≻. Ainsi, si f est une règle d’élection de comité par
approbation, on définit la règle (irrésolue) d’approbation avec second tour associée fR comme suit :

fR(PA, P≻) =
⋃

{x,y}∈f(PA)

maj(P≻, {x, y}).

Cela permet directement de définir les règles AVR, PAVR, CCAVR, S-PAVR, S-CCAVR, SAVR,
EnePhrR, S-PhrR et TRIVR. Des exemples illustrant ces règles sont donnés en Section 3.2.

Analyse axiomatique

Nous étudions d’abord les propriétés axiomatiques des règles que nous venons d’introduire. Les
résultats sont résumés dans la Table B.1. Ci-dessous, nous détaillons ces résultats.

Efficacité de Pareto. Une règle satisfait l’efficacité de Pareto si elle n’élit jamais un candidat
qui est dominé par un autre candidat, c’est-à-dire si elle n’élit jamais un candidat b pour lequel
il existe un candidat a tel que (1) pour tout votant i ∈ V , on a a ≻i b et (2) il existe un votant
i ∈ V tel que a ∈ Ai et b /∈ Ai. Cette propriété est très faible et est satisfaite par la plupart des
règles (Proposition 3.2). Il est à noter qu’il est possible de définir de légères variantes de CCAV
et S-CCAV dans laquelle on résout les cas d’ex aequo en faveur de la paire avec le meilleur score
d’approbation classique (AV), et qui satisfont alors l’efficacité de Pareto.

Résistance stratégique. Une règle est résistante au vote stratégique si un votant qui n’approuve
aucun des gagnants en votant sincèrement ne peut pas changer le résultat de l’élection en votant
stratégiquement, de telle sorte que tous les gagnants soient désormais des candidats qu’il approuve.
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Il est intéressant de voir que AVR et CCAVR sont les seules règles α-AV qui satisfont cette propriété
(Proposition 3.3 et Corollary 3.4). Il est possible de rendre la propriété plus forte en demandant
qu’aucun des gagnants ne soit approuvé par le votant lorsque celui-ci vote stratégiquement (toujours
à condition qu’il n’approuve également aucun gagnant en votant sincèrement). On dit alors que la
règle est fortement résistante au vote stratégique. Cependant, cette propriété est trop forte pour
être satisfaite, et elle est incompatible avec l’efficacité de Pareto (Theorem 3.5).

Monotonie. Une règle est monotone si un candidat qui est élu reste élu lorsque des votants
améliorent sa position dans leurs classements, ou bien l’approuvent alors qu’ils ne l’approuvaient
pas auparavant. AVR est la seule règle que nous étudions (hormis la règle triviale) qui satisfait
cette propriété (Proposition 3.7).

Indépendance aux clones. Dans ce contexte, deux candidats sont des clones si tous les votants
qui approuvent l’un approuvent également l’autre, et si tous les votants classent les deux candidats
l’un à la suite de l’autre. Une règle est indépendante aux clones si un candidat gagne dans un profil
avec des clones si et seulement s’il gagne également dans un profil où un des clones a été enlevé
(sauf si il s’agit du clone qui a été enlevé, dans ce cas, son clone doit gagner à sa place). On peut
cependant montrer que cette propriété est trop forte pour n’importe quelle règle d’approbation avec
second tour. On définit alors une version plus faible, qui restreint la propriété à certains profils
de votes non pathologiques. On dit alors qu’une règle est faiblement indépendante aux clones. On
peut montrer que CCAVR et S-CCAVR satisfont cette propriété (Proposition 3.11), et que cette
propriété est incompatible avec la monotonie (Theorem 3.9).

Efficacité d’approbation. Enfin, une règle satisfait l’efficacité d’approbation si le gagnant
est soit un gagnant du vote d’approbation (c’est-à-dire un candidat qui reçoit le plus de voix
d’approbation), soit un candidat qui bat un gagnant du vote d’approbation au vote majoritaire.
Autrement dit, cette propriété s’assure qu’au moins un des deux finalistes est un gagnant du vote
d’approbation au premier tour, ce qui semble être naturel dans de nombreux contextes (il serait
en effet difficile de concevoir que le candidat recevant le plus de votes au premier tour ne puisse
pas participer au second). Nous montrons que cette propriété est satisfaite par toutes les règles
séquentielles, incluant AVR (Corollary 3.14).

Analyse probabiliste

À l’aide d’une analyse probabiliste dans le modèle euclidien à une dimension, nous avons étudié le
lien entre le paramètre α des règles α-AV et α-seqAV et les positions des finalistes dans l’espace
euclidien. Dans ce modèle, candidats et votants x ∈ C ∪ V sont chacun associés à une position
pos(x) ∈ R, et un votant i approuve un candidat c ssi | pos(c)− pos(i)| ⩽ d, où d est un paramètre
du modèle. Le classement d’un votant s’obtient quant à lui en ordonnant les candidats par ordre
croissant de leur distance au votant. On suppose pour cette analyse qu’il existe une fonction
continue de densité ϕ sur R telles qu’une proportion

∫ p′

p
ϕ(x)dx des votants ont une position

dans l’intervalle [p, p′]. On suppose de plus que cette fonction est symétrique en 0, et qu’elle est
unimodale.

Nos résultats montrent que pour les règles α-AV, les finalistes ont des positions symétriques
par rapport au centre (c’est-à-dire 0), et que leur position vérifie une équation dépendante de α et
du paramètre d (Proposition 3.16). De manière générale, plus α est grand, plus les finalistes sont
éloignés l’un de l’autre. Pour les règles séquentielles (α-seqAV), le premier finaliste est toujours le
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candidat le plus proche de 0, et la position du second finaliste dépend encore une fois des paramètres
α et d (Proposition 3.17). De manière générale, plus α est grand, plus le second finaliste est éloigné
du premier finaliste (et donc de 0). Nous avons étudié en particulier trois fonctions de densité (la
fonction triangulaire, la Gaussienne, et la fonction exponentielle), avec plusieurs valeurs de d.

Analyse expérimentale

Enfin, nous avons implémenté les différentes règles et comparé leurs résultats sur des jeux de
données réels de votes par approbation. Nous avons utilisé pour ces expériences 38 jeux de données
provenant de sources diverses : 18 sont des jeux de données politiques collectés dans le cadre des
expériences de vote « Voter Autrement », les autres incluent notamment les votes pour les élections
de la Society for Social Choice and Welfare (SSCW), des votes pour des posters de conférences,
pour des chansons, ainsi que des jeux de données de Tierlists transformés en votes d’approbation.

On observe tout d’abord (Figure 3.6) que les différentes règles d’approbation retournent souvent
des paires de finalistes différentes les unes des autres, et dans le cas des jeux de données politiques,
les règles d’approbation avec second tour retournent souvent des paires de finalistes différentes de
celles du scrutin uninominal majoritaire à deux tours, utilisé pour ces élections. Nous avons ensuite
étudié quelques différences spécifiques entre les règles proposées.

Impact du paramètre α. Tout d’abord, nous avons étudié l’impact du choix du paramètre
α pour les règles α-AV et α-seqAV. Les résultats des expériences confirment ceux de l’analyse
probabiliste, et montrent que plus α est grand, plus les finalistes sont éloignés idéologiquement l’un
de l’autre. Par exemple, AVR choisira des finalistes assez proches idéologiquement (et proches du
centre), tandis que CCAVR choisira des finalistes plus éloignés idéologiquement (et plus éloignés du
centre). C’est notamment le cas pour le jeu de données de l’expérimentation « Voter Autrement »
de Grenoble en 2017, pour lequel AVR choisit Benoît Hamon et Emmanuel Macron, tandis que
CCAVR choisit Benoît Hamon et François Fillon (Figure 3.7).

Versions séquentielles. Nous avons ensuite comparé les règles α-AV à leurs versions séquen-
tielles. Notamment, nous avons observé que les règles non-séquentielles choisissent rarement une
paire de finalistes qui ne contient pas le gagnant d’approbation du premier tour, et retournent
donc souvent la même paire que leurs versions séquentielles. Il peut cependant arriver que cela ne
soit pas le cas, comme pour le jeu de données de l’expérimentation « Voter Autrement » de 2007,
où ni PAVR ni CCAVR ne choisissent comme finaliste le gagnant d’approbation du premier tour
François Bayrou, et choisissent à la place Ségolène Royal et Nicolas Sarkozy (Figure 3.7).

L’approbation divisée. Enfin, nous nous sommes intéressés au cas de SAVR. Nous avons
notamment observé que cette règle défavorise les candidats de gauche dans la plupart de nos jeux
de données, puisque ceux-ci sont souvent co-approuvés avec de nombreux autres candidats (et que
plus un votant approuve de candidats, plus son poids dans l’élection est faible).

Conclusion et perspectives

Ces différentes analyses nous ont permis de montrer que le vote par approbation avec second tour
n’est pas une seule règle, mais une famille de règles, et que les différentes règles de cette famille
vérifient des propriétés axiomatiques différentes, ce qui peut avoir un impact important sur l’issue
de l’élection. En se basant sur nos analyses, il semblerait que les règles les plus intéressantes
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pour remplacer le scrutin uninominal majoritaire à deux tours soient les règles AVR (approbation
classique) et S-CCAVR. La première semble cependant la plus simple à comprendre et à mettre en
place pour une élection de grande envergure. Enfin, des résultats d’un sondage mené à Saint-Louis,
dans le Missouri (où cette règle est utilisée depuis 2021), montrent que la majorité des électeurs sont
satisfaits du nouveau système de vote, et en particulier de la possibilité d’exprimer des préférences
plus complexes qu’avec un bulletin uninominal.

B.4 Le vote alternatif avec des indifférences

Dans la section précédente, nous avons étudié une amélioration du scrutin uninominal majoritaire
à deux tours, très utilisé pour des élections à vainqueur unique. Dans cette section, nous nous
intéressons à une alternative populaire à ce mode de scrutin : le vote alternatif (instant runoff
voting (IRV) en anglais). Ce mode de scrutin est notamment utilisé en Australie et en Irlande.

Dans ce mode de scrutin, les électeurs classent les candidats par ordre de préférence. On compte
tout d’abord le nombre de voix reçues par chaque candidat, en ne prenant en compte que le premier
choix de chaque votant, puis on élimine le candidat ayant reçu le moins de voix. On redistribue
alors ses voix aux candidats suivants dans le classement des votants qui l’ont choisi en premier. On
élimine ainsi les candidats un par un, jusqu’à ce qu’il n’en reste qu’un. Ce mode de scrutin est assez
attractif pour plusieurs raisons : en plus de permettre aux votants de donner des préférences plus
expressives, IRV satisfait des propriétés intéressantes comme l’axiome d’indépendance aux clones,
et est donc moins sensible à la division des voix entre candidats proches. Cette méthode satisfait
aussi le critère de majorité, qui impose qu’un candidat classé en première position par plus de la
moitié des votants soit le vainqueur de l’élection. Cependant, IRV ne satisfait pas la monotonie
: il est possible que le gagnant d’un profil de votes soit éliminé dans un autre profil de votes où
certains votants ont amélioré la position de ce candidat dans leurs classements.

Un autre défaut de ce mode de scrutin est qu’il est parfois nécessaire de classer tous les candidats
pour voter (à cause des règles de l’élection), ce qui nécessite un effort supplémentaire de la part
des votants. Cependant, dans beaucoup de cas, les votants peuvent se limiter à classer seulement
un sous-ensemble des candidats. Dans ce cas, le bulletin est ignoré une fois que tous les candidats
qu’il classe ont été éliminés. Mais si un votant souhaite classer un candidat tout en bas de son
classement, il doit alors classer tous les candidats au-dessus de celui-ci. Un vote par classement
force également les votants à avoir un avis tranché sur chaque candidat, sans pouvoir exprimer
d’indifférences (un votant pourrait trouver plusieurs candidats équivalents, et ne pas vouloir les
classer l’un avant l’autre).

Une solution à ces problèmes est d’autoriser les indifférences dans les classements des votants,
ce qui rendrait les bulletins de vote encore plus expressifs. Les votants donneraient ainsi des classe-
ments avec égalités sur les candidats, c’est-à-dire des classements pouvant contenir des égalités. En
plus de permettre aux votants d’exprimer des indifférences, cela réduirait le nombre de bulletins
invalides (comme ceux présentés en Figure 4.3).

Dans ce chapitre, nous étudions donc des généralisations du vote alternatif qui permettent aux
votants d’exprimer des indifférences à l’aide de classements avec égalités. Une première possibilité
a été discutée dans le journal Voting Matters (Meek, 1994; Warren, 1996; Hill, 2001). Dans cette
généralisation, un votant qui classe k ⩾ 1 candidats à égalité en première position de son classement
(parmi les candidats non éliminés) donne à chacun de ces candidats 1/k points, et 0 pour les autres.
Le candidat avec le moins de points au total est éliminé. On répète cette procédure jusqu’à ce qu’il
ne reste qu’un seul candidat. Nous allons appeler cette règle Split-IRV dans ce qui suit.
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Approval-IRV Split-IRV

Indépendance aux clones 1

Respect des majorités cohérentes 1

Cohérence avec IRV 2

Monotonie d’indifférence 2

Table B.2: Résumé des propriétés axiomatiques des règles Approval-IRV et Split-IRV. Les super-
scripts 1 et 2 indiquent les deux caractérisations de Approval-IRV.

Dans ce chapitre, nous plaidons en faveur d’une autre généralisation de IRV, que nous appelons
Approval-IRV, et dont le fonctionnement est le suivant. Chaque votant donne 1 point à chaque
candidat qu’il classe en haut de son classement (parmi les candidats non-éliminés), et 0 points aux
autres. On élimine alors le candidat ayant reçu le moins de points, et on répète cette procédure
jusqu’à ce qu’il ne reste qu’un seul candidat. Nous allons montrer avec des arguments axiomatiques
et expérimentaux que cette généralisation semble plus naturelle que Split-IRV.

Règles de score à élimination successives avec indifférences

Nous supposons dans cette partie que nous connaissons un profil de classements avec égalités
P = (≽1, . . . ,≽n), où ≽i est le classement avec égalités (c’est-à-dire un préordre complet) de
l’électeur i. Formellement, un classement avec égalités partitionne l’ensemble des candidats en
différentes classes d’indifférences (C1, . . . , Ck) telles que C1 ≻i C2 ≻i · · · ≻i Ck. On note alors
τ = (|C1|, . . . , |Ck|) le type du classement avec égalités. En particulier, τ = (1, 1, . . . , 1, 1) corre-
spond à un ordre strict (c’est-à-dire un classement), et τ = (x, y) correspond à des préférences
dichotomiques (et donc à un vote par approbation).

Nous allons concentrer notre étude sur une famille de règles : les règles de score à éliminations
successives (Smith, 1973, Section 4), dont le principe se généralise aisément aux classements avec
égalités. Le principe est le suivant : à chaque étape, chaque votant attribue un score à chaque
candidat selon (i) le type de son classement, et (ii) la position du candidat dans son classement
avec égalités. On compte alors le score de chaque candidat, et on élimine le candidat ayant reçu
le moins de points. On répète cette procédure jusqu’à ce qu’il ne reste qu’un seul candidat. Plus
formellement, une règle de score à éliminations successives f est associée à une fonction de score
s qui associe à chaque type d’ordre τ un vecteur de score s(τ) = (s1, . . . , sk), où si est le score
attribué à un candidat classé i-ème dans le classement avec égalités. On considère dans notre
analyse que les règles sont irrésolues, et peuvent donc retourner plusieurs candidats ex aequo.

Les deux règles principales que nous étudions sont définies formellement comme suit. Approval-
IRV est la règle de score à éliminations successives associée à la fonction de score s définie par s(τ) =
(1, 0, . . . , 0) pour tout type d’ordre τ . Split-IRV est la règle de score à éliminations successives
associée à la fonction de score s définie par s(τ) = (1/τ(1), 0, . . . , 0) pour tout type d’ordre, où
τ(1) est le nombre de candidats classés premiers à égalité dans le classement.

Analyse axiomatique

Nous étudions d’abord les propriétés axiomatiques des règles que nous venons d’introduire. Les
résultats sont résumés dans la Table B.2. En particulier, nous avons prouvé deux caractérisations
de Approval-IRV, qui sont détaillées ci-dessous.
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Indépendance aux clones. Dans le cas des classements avec égalités, deux candidats sont des
clones si leur relation aux autres candidats est la même dans chaque classement. Nous avons prouvé
que Approval-IRV est indépendante aux clones, tandis que Split-IRV ne l’est pas (Proposition 4.1).

Respect des majorités cohérentes. Soit un profil de préférences dans lequel plus de la moitié
des votants classent un même candidat c en première position. Une règle respecte les majorités
cohérentes si le vainqueur de ce profil est c ou un candidat classé en première position avec c par un
des votants de la majorité qui classent c en première position. Nous avons prouvé que Approval-IRV
respecte les majorités cohérentes, tandis que Split-IRV ne le fait pas (Proposition 4.3).

Première caractérisation de Approval-IRV. Nous avons prouvé que Approval-IRV est la
seule règle de score à élimination successives qui satisfait l’indépendance aux clones et le respect
des majorités cohérentes (Theorem 4.4). Ce résultat est très intéressant, puisque ces deux axiomes
sont des généralisations aux classements avec égalités de propriétés que IRV satisfait dans le cas des
ordres stricts. En particulier, le respect des majorités cohérentes est une généralisation du critère
de majorité de IRV. Ce résultat indique donc que Approval-IRV est une généralisation naturelle
de IRV aux classements avec égalités, et qu’elle conserve les propriétés intéressantes de IRV.

Cohérence avec IRV. Les deux règles que l’on considère sont cohérentes avec IRV, c’est-à-dire
que si on considère un profil d’ordres stricts P , alors les deux règles retournent le même candidat
que IRV.

Monotonie d’indifférence. Une règle est monotone d’indifférence si un candidat qui est élu
reste élu lorsqu’un votant pour qui ce candidat forme une classe d’indifférence à lui seul change
son vote pour le classer à égalité avec le ou les candidats qu’il classait directement au-dessus de lui.
Nous avons prouvé que Approval-IRV satisfait cette propriété, tandis que Split-IRV ne la satisfait
pas (Proposition 4.12).

Deuxième caractérisation de Approval-IRV. Enfin, nous avons prouvé que Approval-IRV
est la seule règle de score à élimination successives cohérente avec IRV et qui satisfait la monotonie
d’indifférence (Theorem 4.13). Ce résultat est intéressant, puisqu’IRV est réputé pour ne pas
satisfaire la monotonie, et qu’en autorisant les égalités dans les classements, on arrive à satisfaire
une forme plus faible de monotonie.

Analyse expérimentale

Nous avons ensuite implémenté les deux règles et les avons comparées sur des jeux de données
de votes réels, et des jeux de données synthétiques, générés par différents modèles probabilistes
(préférences euclidiennes en une et deux dimensions, culture impartiale et modèles de Mallows).
Nous avons également utilisé des modèles probabilistes pour introduire des indifférences dans les
préférences des votants, puisque tous les jeux de données contiennent à l’origine des ordres stricts.
Les paramètres de ces modèles permettent de faire varier le nombre d’indifférences.

Nous observons tout d’abord que les deux règles retournent souvent les mêmes vainqueurs,
et cela est particulièrement vrai lorsqu’il y a très peu d’indifférences (lorsqu’il n’y en a pas du
tout, les deux sont égales à IRV), ou quand il y en a beaucoup. Pour des valeurs intermédiaires,
les règles retournent parfois des vainqueurs différents. Nous avons également comparé les vain-
queurs de ces règles aux gagnants de différentes règles basées sur les ordres stricts, c’est-à-dire
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avant l’introduction des indifférences par notre modèle probabiliste. On observe que Approval-IRV
retourne plus souvent le vainqueur de Condorcet que Split-IRV (Figure 4.16), et sélectionne des
candidats avec un meilleur score de Borda (Figure 4.17). À l’inverse, Split-IRV retourne plus sou-
vent le vainqueur de IRV que Approval-IRV (Figure 4.15). Cependant, cela ne nous permet pas
de conclure que l’une des deux règles est meilleure que l’autre, puisque les préférences des votants
sont modifiées par l’introduction des indifférences.

Enfin, nous avons comparé la distorsion des vainqueurs de chaque règle dans le cas des mod-
èles euclidiens. Nous observons que Approval-IRV retourne des vainqueurs ayant en moyenne
une distorsion plus faible (et donc meilleure) que les vainqueurs de Split-IRV (Figures 4.19 (a)
and 4.19 (b)).

Conclusion et perspectives

Dans ce chapitre, nous avons étudié deux généralisations du vote alternatif aux classements avec
égalités, et nous avons montré que Approval-IRV semble être une généralisation naturelle de IRV,
qui conserve les propriétés intéressantes de IRV, et en apporte de nouvelles. Sur le plan expéri-
mental, les résultats sur la distorsion tendent à montrer que Approval-IRV est une généralisation
de IRV plus attractive que Split-IRV. Cependant, il serait intéressant de mener des expériences
supplémentaires pour confirmer ces résultats. Approval-IRV est également plus facile à comprendre
et à mettre en place pour des élections de grande envergure. Des travaux futurs pourraient étudier
la résistance aux votes stratégiques de ces règles.

B.5 Classer les candidats pour les élections parlementaires
avec seuil électoral

Dans les deux sections précédentes, nous nous sommes intéressés à des modes de scrutin pour des
élections à vainqueur unique, et nous avons proposé des améliorations de ces modes de scrutin
reposant sur des bulletins de vote plus expressifs. Dans cette section, nous nous intéressons à un
autre type d’élection : les élections parlementaires. Dans ces élections, différents partis politiques
se présentent, et plusieurs candidats d’un même parti peuvent être élus.

Comme pour les élections à vainqueur unique, il existe de nombreux modes de scrutin pour les
élections parlementaires en pratique, mais beaucoup d’entre eux reposent sur l’idée de représen-
tation proportionnelle, c’est-à-dire que les sièges dans le parlement soient répartis entre les partis
politiques proportionnellement au nombre de voix qu’ils ont reçues. Ce genre de système est
notamment très utilisé en Europe et en Amérique du Sud pour élire les parlements nationaux.

Afin d’éviter une trop grande fragmentation politique, qui peut rendre difficile la formation
de coalitions de gouvernement, de nombreux pays qui utilisent la représentation proportionnelle
imposent un seuil électoral, c’est-à-dire un pourcentage minimum de voix (en général, entre 0 et
6%) qu’un parti doit recevoir pour pouvoir obtenir des sièges au parlement. Les partis qui ne
reçoivent pas ce pourcentage minimum de voix sont exclus de la répartition des sièges, et les votes
pour ces partis sont alors « perdus » ou « gaspillés ». Par exemple, pour l’élection des représentants
français au Parlement Européen de 2019, près de 20% des votes ont été « perdus » de la sorte. Ce
phénomène pousse également les électeurs à voter stratégiquement, en votant pour un parti qui a
une chance d’atteindre le seuil électoral, plutôt que pour le parti qu’ils préfèrent vraiment.

Dans ce chapitre, nous proposons des manières d’éviter ce gaspillage de votes, en permettant
aux votants de classer les candidats. Cette idée n’est pas nouvelle, et a déjà été évoqué dans
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le débat public dans de nombreux pays. En Allemagne, l’idée d’un « Vote de remplacement »
(Ersatzstimme) qui serait utilisé à la place du vote original si le parti pour lequel on a voté ne
dépasse pas le seuil électoral a été proposé par certains activistes et politiciens.

Pour étudier ces propositions, nous introduisons le modèle formel des règles de sélection de par-
tis, qui prennent en entrée un profil de classements tronqués et un seuil électoral, et qui retournent
la liste des partis qui peuvent obtenir des sièges au parlement. On ne s’intéresse donc pas à la
répartition des sièges entre les partis, mais seulement à la sélection des partis qui peuvent obtenir
des sièges.

Règles de sélection de partis

Formellement, on a un profil de préférences P = (≻1, . . . ,≻n), où ≻i est le classement (tronqué)
du votant i, c’est-à-dire que seul un sous-ensemble des partis S ⊆ C est classé par le votant i.

Pour une sélection de partis S ⊆ C, on note bestS(i) le parti favori de l’électeur i parmi
les partis de S. Si i n’a pas classé de parti de S, on note bestS(i) = ∅. On note également
scoreS(c) = |{i ∈ V | bestS(i) = c}| le score du parti c dans la sélection S. Étant donné un seuil
électoral 0 ⩽ τ ⩽ |V |, une sélection de partis S est dite valide si chaque parti c ∈ S est le parti
favori de plus de τ électeurs, c’est-à-dire si scoreS(c) > τ .

Une règle de sélection de partis f est alors une fonction qui prend en entrée un profil de
classements tronqués P et un seuil électoral τ , et qui retourne une sélection de partis f(P, τ) ⊆ C
valide. On supposera dans ce qui suit que les règles étudiées sont résolues, c’est-à-dire qu’elles ne
retournent pas d’ex aequo (les cas d’ex aequo pouvant par exemple être résolus à l’aide d’un ordre
total sur les partis). Nous définissons trois règles procédurales, qui semblent appropriées pour des
élections politiques :

• Gagnants Directs Seulement (Direct Winners Only, DO). Cette première règle sélectionne
uniquement les partis qui sont le parti favori de plus de τ votants, c’est-à-dire que DO(P, τ) =

{c ∈ C | scoreC(c) ⩾ τ}.

• Vote Transférable (Single Transferable Vote, STV). Cette règle est inspirée du vote alternatif.
On commence avec l’ensemble de tous les partis S0 = C, et, à chaque étape k ⩾ 0, si Sk

est valide, on retourne Sk. Sinon, on élimine le parti c ayant le score le plus faible dans Sk,
c’est-à-dire qui minimise scoreSk

(c), et on considère la sélection de partis Sk+1 = Sk \ {c}.
On répète cette procédure jusqu’à ce que l’on trouve une sélection valide.

• Pluralité Gloutonne (Greedy Plurality, GP). On commence avec l’ensemble vide S0 = ∅, et
on considère les partis un par un par ordre décroissant de score de pluralité scoreC(c). Pour
chaque parti c, si Sk ∪ {c} est valide, on ajoute c à Sk, et on considère la sélection de partis
Sk+1 = Sk ∪ {c}. Sinon, on ne rajoute pas le parti c (dans ce cas, Sk+1 = Sk). On répète
cette procédure jusqu’à ce que l’on ait considéré tous les partis. On retourne alors la sélection
de partis finale Sn.

Il est à noter que les sélections de partis retournées par STV et GP contiennent systématique-
ment celles retournées par DO, et que ces trois règles sont calculables en temps polynomial.

Nous considérons également deux règles basées sur l’optimisation de fonctions, c’est-à-dire qui
retournent une sélection de partis S qui maximise une certaine fonction de score ϕ(P, S). La règle
Pluralité Maximale (MaxP) est basée sur la fonction de score ϕ(P, S) =

∑
c∈S scoreC(c), c’est-à-dire

que MaxP retourne la sélection de partis S qui maximise le nombre total de première places reçues
par les partis de S. La règle Représentation Maximale (MaxR) est basée sur la fonction de score
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DO STV GP MaxP MaxR

Maximalité de la sélection
Inclusion des gagnants directs 1 2

Représentation des coalitions
Monotonie de seuil
Indépendance aux partis éliminés 2

Indépendance aux clones
Renforcement des partis gagnants 1

Monotonie
Representative-strategyproof (un parti « à risque »)
Share-strategyproof (parti « sûr » premier ou deuxième)
Share-strategyproof (représentant classé premier)

Table B.3: Propriétés satisfaites par les règles de sélection de partis. Les exposants 1 et 2 indiquent
des résultats de caractérisation.

ϕ(P, S) =
∑

c∈S scoreS(c), c’est-à-dire que MaxR retourne la sélection de partis S qui maximise le
nombre total de votants qui ont classé au moins un parti de S. Ces deux règles semblent moins
adaptées à un contexte politique, et elles sont NP-difficiles à calculer (Theorem 5.1). Cependant,
elles sont intéressantes à étudier et peuvent trouver des applications dans d’autres contextes (par
exemple en facility location).

Analyse axiomatique

Encore une fois, nous allons d’abord étudier les propriétés axiomatiques des règles que nous venons
d’introduire. Les résultats sont résumés dans la Table B.3, et détaillés ci-dessous.

Axiomes d’efficacité. Nous introduisons deux axiomes d’efficacité. Le premier, l’efficacité
faible, impose que la sélection de partis S soit non-vide s’il existe une sélection valide non-vide. Le
second, plus fort, est l’axiome de maximalité de la sélection, qui impose que si S est la sélection de
partis retournée par la règle, alors il n’existe pas de sélection valide S′ ⊋ S. Alors que GP, MaxP
et MaxR satisfont ces deux axiomes, DO et STV ne satisfont aucun des deux (Proposition 5.2).

Axiomes de représentation. Nous introduisons ensuite une série d’axiomes de représentation.
Le plus faible est l’inclusion des gagnants directs, qui impose que si un parti c est le parti favori
(c’est-à-dire classé en première position) de plus de τ électeurs, alors il doit être dans la sélection
retournée par la règle. Cet axiome est satisfait par DO, STV et GP, mais pas par MaxP et MaxR
(Proposition 5.3). Il est possible de renforcer cet axiome en imposant que s’il existe une coalition
de plus de τ votants qui classent un sous-ensemble de partis T ⊆ C en haut de leur classement
(possiblement dans des ordres différents pour chaque votant), alors au moins un des partis de T
doit faire partie de la sélection retournée par la règle. On dit alors que la règle satisfait l’axiome
de représentation des coalitions. Cet axiome est satisfait par STV, mais pas par les autres règles
(Proposition 5.4).

Variations du seuil. Les deux axiomes suivants s’intéressent aux effets des variations du seuil.
En particulier, l’axiome de monotonie de seuil impose que si on augmente le seuil électoral τ , alors
la sélection de partis retournée par la règle ne peut que diminuer, c’est-à-dire que f(P, τ) ⊇ f(P, τ ′)
pour tout τ ′ > τ et pour tout profil de préférences P . Cet axiome est satisfait par DO et STV,
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mais pas par GP, MaxP ou MaxR (Proposition 5.8). Le second axiome, l’indépendance aux partis
éliminés, impose que si S = f(P, τ) est la sélection de partis retournée par la règle pour un seuil
τ , alors pour tout seuil τ ′ ⩾ τ , la règle sélectionne les mêmes partis dans le profil complet et dans
le profil restreint aux partis de S, c’est-à-dire que f(P, τ ′) = f(P |S , τ ′). Cet axiome, combiné à
l’inclusion des gagnants directs, caractérise STV (Theorem 5.9).

Indépendance aux clones. Deux partis sont des clones s’ils sont toujours classés l’un après
l’autre dans les classements des votants. Nous avons montré que STV et MaxR sont indépendantes
aux clones, tandis que DO, GP et MaxP ne le sont pas (Proposition 5.11).

Renforcement des partis gagnants. L’axiome de renforcement des partis gagnants impose
que si un parti est sélectionné par une règle pour un profil P et un seuil τ , et qu’il est également
sélectionné pour un profil P ′ et un seuil τ ′, alors il doit être sélectionné pour la combinaison des
deux profils P + P ′ et pour le seuil τ + τ ′. Combiné avec l’inclusion des gagnants directs, cet
axiome caractérise DO (Theorem 5.13).

Monotonie. L’axiome de monotonie impose que si un parti est sélectionné par une règle pour
un profil P et un seuil τ , et qu’un votant change son vote pour améliorer la position de ce parti
dans son classement (sans toucher à l’ordre relatif des autres partis), alors le parti doit toujours
être sélectionné pour le profil P ′ obtenu et pour le même seuil τ . Cet axiome est satisfait par DO,
mais pas par les autres règles (Proposition 5.15).

Résistance au vote stratégique. Enfin, nous introduisons plusieurs axiomes liés au vote
stratégique. On considère pour cela deux axiomes : le premier, dit representative-strategyproofness,
impose qu’un votant ne peut pas obtenir un représentant qu’il préfère s’il donne un classement
insincère que lorsqu’il donne un classement sincère; le second, dit share-strategyproofness, impose
qu’un votant ne peut pas obtenir un représentant qu’il préfère ou améliorer le score relatif (la part
du score parmi la somme des scores) de son représentant en donnant un classement insincère. Ces
deux axiomes étant trop forts pour être satisfaits par n’importe quelle règle dans le cas général,
nous nous restreignons à certains cas particuliers, basés sur une classification des partis en différents
groupes (Proposition 5.17 à 5.19)

Analyse expérimentale

Nous avons ensuite implémenté les règles que nous venons d’introduire, et les avons comparées sur
un jeu de données de votes réels que nous avons collectées au cours d’une expérience de vote en
ligne. En effet, nous avons construit un site internet dans le cadre de l’élection des représentants
français au Parlement Européen de 2024, sur lequel nous informions les participants du problème
des votes perdus, et leur proposions de voter pour les partis de leur choix en utilisant un classement
tronqué (d’abord en ne classant que deux partis, puis en en classant autant que souhaité).

Nous avons collecté deux échantillons de participants. Le premier est l’échantillon auto-
sélectionné, que nous avons recruté via des mailing-lists et sur les réseaux sociaux. Les partic-
ipants rejoignaient l’expérience volontairement et n’étaient pas rémunérés. Nous avons réussi à
obtenir 3 046 participants en une semaine pour cet échantillon. Cependant, l’échantillon n’est pas
représentatif de la population française (en particulier, les jeunes, les personnes diplômées, et les
personnes de gauche sont sur-représentées). Nous avons donc également collecté un échantillon
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représentatif, en recrutant des participants via un institut de sondage professionnel. Cet échantil-
lon est représentatif de la population française et compte 1 000 participants, qui ont été rémunérés
pour leur participation.

Les principaux résultats de nos expériences sont les suivants. Tout d’abord, les participants
étaient beaucoup plus nombreux à classer un « petit parti » (c’est-à-dire un parti qui ne dépasse
pas le seuil électoral) en première position de leur classement lorsqu’ils avaient la possibilité de
classer les candidats, plutôt que de voter pour un seul parti. En particulier, de nombreux votants
ont classé un plus petit parti en haut de leur classement que celui pour lequel ils ont indiqué voter
à l’élection (Table 5.2).

Deuxièmement, nous constatons une diminution du nombre de votes « perdus » grâce aux
modes de scrutin par classement. En effet, alors qu’il y avait au total 12.1% de votes perdus dans
cette élection, nous obtenons jusqu’à 2.3% de votes perdus pour STV et GP dans l’échantillon
auto-sélectionné, et 7.2% dans l’échantillon représentatif (Table 5.3). De plus, ce gain en représen-
tativité n’entraîne pas une augmentation de la fragmentation politique, puisqu’au plus un parti
supplémentaire est sélectionné par nos règles (Table 5.4).

On constate également que la plupart des votants sont représentés par un parti qu’ils ont
classé dans leurs trois premières positions (Figure 5.2). Par conséquent, on obtient une importante
réduction du nombre de votants non-représentés même en tronquant les classements des votants à
trois ou quatre candidats (Figure 5.4), ce qui serait plus facile à mettre en place dans la pratique.

Enfin, nous avons également regardé quels seraient les résultats avec différents seuils (Fig-
ure 5.5), et si l’on observait les mêmes résultats en ajoutant du bruit dans les données (Figure 5.6).

Conclusion et perspectives

Dans cette section, nous avons étudié des règles de sélection de partis pour les élections parlemen-
taires avec seuil électoral. Nous avons introduit un modèle formel pour ces règles, et nous avons
étudié leurs propriétés axiomatiques. Nous avons également implémenté les règles et les avons
comparées sur des données réelles collectées lors d’une expérience de vote en ligne. Nos résultats
expérimentaux montrent que les règles que nous avons étudiées permettent de réduire le nombre
de votes perdus.

Les différentes règles DO, STV et GP satisfont des propriétés axiomatiques différentes, mais il
semble qu’en pratique STV et GP soient très similaires et permettent une meilleure représentation
que DO. Cependant, DO a l’avantage d’être plus simple à mettre en place, par exemple en effectuant
deux tours de scrutins avec des votes uninominaux.

Dans notre expérience en ligne, nous demandions aux participants d’indiquer quelle méthode ils
préféraient entre celles qu’ils avaient testées et la méthode actuelle. Dans l’échantillon représentatif,
ils sont 46% à préférer les alternatives, et 77% dans l’échantillon auto-sélectionné. De plus, ce
pourcentage est plus élevé parmi les participants qui ont voté « utile » à l’élection (c’est-à-dire
stratégiquement), ainsi que chez les électeurs de gauche.

B.6 Axes de candidats à partir de votes d’approbation

Dans les trois premières sections, nous avons vu comment des bulletins de vote plus expressifs
pouvaient améliorer la façon dont nous élisons nos représentants, que cela soit pour des élections à
vainqueur unique ou pour des élections parlementaires. Cependant, ces bulletins de vote expressifs
présentent d’autres intérêts. En particulier, ils nous donnent des informations sur la structure
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sous-jacente des préférences des votants, en indiquant par exemple quels candidats sont proches
les uns des autres (car appréciés par les mêmes votants).

C’est ce que nous allons faire dans cette section, dans laquelle nous étudions comment il est
possible d’utiliser les votes d’approbation des votants pour construire un axe unidimensionnel
des candidats. L’idée qu’il existe un axe unidimensionnel des candidats, ou des partis, est très
présente en politique : c’est le fameux axe « gauche-droite ». Cependant, l’axe gauche-droite exact
est souvent débattu, et il n’existe pas de consensus clair sur l’axe des partis et des candidats.
Lorsque les médias, ou les instituts de sondage, présentent les candidats sur un axe gauche-droite,
ils se fient généralement à leur intuition, ou à des estimations d’experts dans le meilleur des cas.
Nous proposons dans cette section des méthodes systématiques, mathématiques et explicables pour
construire de tels axes, que nous analysons avec les outils classiques de la théorie du choix social.

Ce problème trouve des applications dans de nombreux autres domaines que la politique. En
réalité, partout où l’on souhaite ordonner des « objets » pour lesquels nous possédons des infor-
mations binaires (0 ou 1), il est possible d’utiliser les méthodes que nous allons présenter. C’est le
cas par exemple en archéologie pour la datation relative des artefacts, ou des tombes, ou bien en
géologie pour celle des couches terrestres.

Règles d’axes

Pour ce problème, nous connaissons un profil de votes d’approbation P = (A1, . . . , An), où Ai ⊆ C
est l’ensemble des candidats approuvés par l’électeur i. L’objectif est d’obtenir un axe ◁ des
candidats, c’est-à-dire un ordre total strict sur les candidats C. Cependant, contrairement à un
classement, tout axe ◁ est équivalent à son axe opposé (c’est-à-dire en inversant le sens).

On dit qu’un bulletin d’approbation A est un intervalle d’un axe ◁ si pour chaque paire de
candidats approuvés a, b ∈ A, pour tout candidat c ∈ C tel que a ◁ c ◁ b, on a c ∈ A. En d’autres
termes, le bulletin d’approbation forme un intervalle contigu sur l’axe ◁. S’il existe un candidat
c ∈ C tel que a ◁ c ◁ b, mais c /∈ A, on dit que ce candidat interfère avec l’intervalle A.

Ainsi, un axe ◁ est totalement compatible avec un profil de votes d’approbation P si chaque
bulletin d’approbation Ai est un intervalle de ◁. Dans ce cas, on dit que le profil P est linéaire et
l’axe gauche-droite que l’on cherche est ◁. Cependant, il n’existe en général aucun axe totalement
compatible avec les profils d’approbation, il faut donc se contenter d’axes partiellement compatibles,
et définir des règles qui choisissent de tels axes.

Les règles d’axes que nous allons introduire sont des fonctions (irrésolues) f qui prennent en
entrée un profil de votes d’approbation P et qui retournent un ensemble d’axes. Dans notre analyse,
nous allons nous concentrer sur des règles dites de score. Une règle de score est associée à une
fonction de coût cost qui associe à chaque bulletin A et axe ◁ un coût cost(A, ◁) ⩾ 0. Intuitivement,
si le bulletin d’approbation A est un intervalle de l’axe ◁, alors le coût est de 0, et plus le bulletin
est loin d’être un intervalle de l’axe, plus le coût est élevé. On note cost(P, ◁) =

∑n
i=1 cost(Ai, ◁)

le coût total de l’axe ◁ pour le profil P . Une règle de score f est alors une fonction qui prend en
entrée un profil de votes d’approbation P et qui retourne les axes qui minimisent le coût total,
c’est-à-dire f(P ) = argmin◁′ cost(P, ◁′).

Nous définissons cinq règles de la sorte:

• Voter Deletion (VD), ou suppression de votants, est la règle qui sélectionne les axes qui
minimisent le nombre de votants dont le bulletin d’approbation n’est pas un intervalle de
l’axe. La fonction de coût associée est donc costVD(A, ◁) = 0 si A est un intervalle de ◁,
et costVD(A, ◁) = 1 sinon. Cette règle est très simple à comprendre, mais ne distingue pas
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les différents bulletins qui ne sont pas des intervalles. Par exemple, le coût est le même peu
importe le nombre de candidats qui interfèrent avec A.

• Minimum Flips (MF), ou minimum d’inversions, est la règle qui sélectionne les axes qui
minimisent le nombre de candidats qui doivent être ajoutés et/ou supprimés des bulletins
pour que chaque bulletin d’approbation soit un intervalle de l’axe. La fonction de coût
associée est :

costMF(A, ◁) = min
x,y∈A:xPy

|{z ∈ A : z ◁ x or y ◁ z}|+ |{z /∈ A : x ◁ z ◁ y}|

Ici, la notation x P y indique que x ◁ y ou x = y.

• Ballot Completion (BC), ou complétion de bulletin, est la règle qui sélectionne les axes qui
minimisent le nombre de candidats qui doivent être ajoutés aux bulletins d’approbation pour
que chaque bulletin soit un intervalle de l’axe. La fonction de coût associée est :

costBC(A, ◁) = |{b /∈ A : il existe a, c ∈ A tels que a ◁ b ◁ c}|

L’idée est que les votants aient pu oublier d’inclure certains candidats dans leurs bulletins
(possiblement par manque d’information). Cette méthode est la seule qui a déjà été utilisée
dans la littérature pour construire des axes politique à partir de votes d’approbation (Lebon
et al., 2017; Baujard and Lebon, 2022).

• Minimum Swaps (MS), ou minimum d’échanges, est une règle où l’on compte des modifica-
tions de l’axe plutôt que du bulletin d’approbation. En effet, pour un bulletin de vote A et
un axe ◁, le coût est le nombre minimum d’échanges de candidats adjacents sur l’axe qu’il
faut effectuer pour que A devienne un intervalle de l’axe. La fonction de coût associée est :

costMS(A, ◁) =
∑
x/∈A

min(|{y ∈ A : y ◁ x}|, |{y ∈ A : x ◁ y}|).

• Forbidden Triples (FT) ou triplets interdits, est une règle qui minimise le nombre de « triplets
interdits » de candidats. Un triplet de candidat (a, b, c) est dit interdit pour un axe ◁ si on
a a ◁ b ◁ c et a, c ∈ A, mais b /∈ A (donc b interfère avec l’intervalle A). La fonction de coût
associée est donc :

costFT(A, ◁) = |{(x, y, z) : x, z ∈ A, y /∈ A, x ◁ y ◁ z}|.

Toutes ces règles sont NP-difficiles à calculer (Theorem 6.2).

Analyse axiomatique

Nous avons tout d’abord étudié les propriétés axiomatiques des règles d’axes que nous venons
d’introduire. Les résultats sont résumés dans la Table B.4, et détaillés ci-dessous.

Cohérence avec la linéarité. Cet axiome basique impose que si le profil de votes d’approbation
P est linéaire, c’est-à-dire qu’il existe un axe ◁ tel que chaque bulletin d’approbation est un
intervalle de ◁, alors la règle retourne l’axe ◁. Toutes les règles satisfont cet axiome.
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VD MF BC MS FT

Cohérence avec la linéarité 1

Indépendance aux clones 1

Stabilité
Monotonie 1

Externalisation
Cohérence des partitions

Centralité des gagnants de Veto
Proximité des clones

Table B.4: Propriétés des règles d’axes. Les exposants 1 indiquent la caractérisation de VD.

Stabilité et monotonie. L’axiome de stabilité impose qu’une règle retourne au moins un axe en
commun entre le profil P et le profil P+{A} dans lequel un votant a été ajouté. Parmi les règles que
nous avons défini, seul VD satisfait cet axiome (Proposition 6.4). Une propriété plus intéressante
est celle de la monotonie, qui impose que si un axe ◁ est retourné par la règle pour un profil P , alors
si on prend un des bulletins A ∈ P du profil qui n’est pas un intervalle de ◁ et qu’on le complète pour
qu’il devienne un intervalle de ◁ (en le remplaçant par A′ = {x ∈ C : ∃y, z ∈ A s.t. y P x P z}),
alors la règle retourne toujours l’axe ◁. Parmi les règles que nous avons définies, seules VD et BC
satisfont cet axiome (Proposition 6.5).

Centristes et extremistes. L’axiome d’externalisation (clearance dans sa version anglaise)
impose qu’un candidat x ∈ C qui n’est approuvé par aucun votant ne doit interferer avec aucun
bulletin d’approbation A ∈ P . L’idée est donc que les candidats moins populaires, plus extremistes,
soient poussés vers les extrémités de l’axe, là où ils ne « cassent » pas les intervalles. Les règles BC,
MS et FT satisfont cet axiome, mais pas les autres (Proposition 6.6). L’axiome de centralité des
gagnants de Veto impose quant à lui que dans un certain type de profil où chaque votant approuve
exactement m− 1 candidats, le candidat au centre de l’axe retourné par la règle soit celui qui est
approuvé par le plus de votants. Cet axiome est satisfait par MS et FT, mais pas par les autres
règles (Proposition 6.7).

Clones. Deux candidats sont des clones s’ils sont approuvés par exactement les mêmes votants.
L’axiome d’indépendance aux clones impose que si l’on ajoute un clone d’un candidat dans un
profil, l’ordre relatif des autres candidats soit le même sur l’axe retourné par la règle avec le clone
et sur l’axe retourné par la règle sans le clone. Cet axiome est satisfait par VD, mais pas par
les autres règles (Proposition 6.9). De plus, il est possible de caractériser VD (parmi les règles
de score neutre) avec l’indépendance aux clones, la cohérence avec la linéarité et la monotonie
(Theorem 6.10). L’axiome de proximité des clones impose quant à lui que si deux candidats sont
des clones, alors ils doivent être adjacents sur l’axe retourné par la règle (ou bien séparés par
d’autres clones). Cet axiome est satisfait par FT, mais pas par les autres règles (Proposition 6.8).
Nous avons également montré que ces deux axiomes liés aux clones sont incompatibles, et qu’aucune
règle de score neutre ne peut satisfaire la cohérence avec la linéarité, l’indépendance aux clones et
la proximité des clones (Theorem 6.11).

Hérédité et cohérence des partitions. Enfin, l’axiome d’hérédité impose que lorsque l’on
supprime un candidat d’un profil, l’ordre relatif des autres candidats reste le même sur les axes
retournés par la règle. Cet axiome, proche de celui d’indépendance aux alternatives non pertinentes,
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est impossible à satisfaire par une règle cohérente avec la linéarité (Proposition 6.12). On ne peut
donc pas espérer construire les axes de manière séquentielle, en ajoutant les candidats les uns après
les autres. Cependant, si les candidats forment une partition C1, . . . , Ck de sorte qu’il n’existe aucun
« chemin de co-approbation » entre deux candidats de deux classes différentes, alors on peut diviser
le problème en k sous-problèmes, un pour chaque classe. C’est l’idée de l’axiome de cohérence des
partitions, qui est satisfait par BC, MS et FT, mais pas par VD et MF (Proposition 6.13).

Analyse expérimentale

Malgré le fait que les règles d’axes soient NP-difficiles à calculer, nous les avons implémentées, et
grâce à un algorithme optimisé, il est possible de calculer les résultats de ces règles pour des profils
ayant jusqu’à une douzaine de candidats en un temps raisonnable. Nous avons testé ces règles sur
de très nombreux jeux de données d’approbation, à la fois synthétiques et réels. Nous en avons
également profité pour comparer nos règles basées sur les votes d’approbation avec les règles basées
sur des classements de votants (notamment celles présentées par Tydrichová (2023)). Ci-dessous,
nous donnons un aperçu des résultats que nous avons obtenus.

Modèles probabilistes. Nous avons tout d’abord étudié les règles sur des jeux de données syn-
thétiques, generés selon des modèles probabilistes pour lesquels il existe un axe sous-jacent. Ainsi,
les bulletins d’approbation peuvent être vus comme une approximation bruitée d’un intervalle de
cet axe sous-jacent. Nous avons ensuite calculé la distance de Kendall-tau moyenne entre les axes
retournés par les règles et l’axe sous-jacent. On observe que différentes règles sont plus efficaces
pour différents modèles probabilistes (Figure 6.12). Cependant, la règle VD retourne de bien moins
bon axes que les autres règles pour les modèles probabilistes qui ne sont pas « taillés » pour cette
règle, tandis que les autres règles semblent plus robustes.

Modèle euclidien. De manière similaire, nous avons étudié un modèle euclidien à une dimen-
sion, pour lequel il existe un axe sous-jacent des candidats (selon leurs positions dans l’espace
unidimensionnel), et les votants font des observations bruitées de ces positions, et basent leurs
préférences sur ces observations bruitées (en approuvant tous les candidats proches de leur posi-
tion, à une distance inférieur à un paramètre r). On observe que pour ce modèle, FT est la règle
qui retourne les axes les plus proches de l’axe sous-jacent (suivie dans l’ordre de MS, BC, MF et
VD), et que les règles basées sur les votes d’approbation sont souvent meilleures que celles basées
sur les classements (Figure 6.13).

Voter Autrement. Nous avons ensuite calculé les axes pour les différents jeux de données
recoltés lors des expérimentations du projet Voter Autrement, qui ont eu lieu lors des présidentielles
françaises depuis 2002. On obtient alors des axes très proches des axes gauche-droite communé-
ment utilisés par les médias et par les institut de sondages (Table 6.2 et 6.3). On observe également
que la majorité du coût des axes retournés, et des désaccords entre les différentes règles sont dus
à une poignée de « petits » candidats dont le positionnement politique est plus flou (Figures 6.15
and 6.16).

Cour Suprême des États-Unis. Nous avons calculé les axes des juges de la Cour Suprême des
États-Unis, en utilisant les décisions des juges sur les affaires de la Cour Suprême. Ici, c’est donc
plutôt un axe des votants que des candidats, mais cela ne change rien au modèle, qui est totalement
symétrique puisque toutes les données sont binaires. On compare les axes que l’on obtient à la
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baseline actuelle, basée sur la méthode de Martin-Quinn (Martin and Quinn, 2002). Parmi nos
règles, FT semble être la meilleure, et celle qui se rapproche le plus des axes de Martin-Quinn
(Table 6.4). De plus, elle semble être plus stable que les autres au fil des années (Figure 6.19).

Tierlists. Enfin, nous avons testé les règles sur des jeux de données de tierlists, qui sont des
classements de candidats (ou d’objets) en catégories. Nous avons collecté de nombreuses tierlists
sur des sujets variés (Table 6.5), qui admettent généralement un axe « naturel », par exemple des
séries de films (avec un axe chronologique). Si l’axe « attendu » n’est pas toujours parfaitement
préservé, les règles parviennent néanmoins à grouper les éléments similaires ensemble (Table 6.6 et
Figure 6.23), par exemple les films d’une même trilogie. Cependant, on observe que les règles ont
tendance à « pousser » les éléments les plus populaires vers le centre de l’axe, et les éléments les
moins populaires vers les extrémités, ce qui n’est pas toujours souhaitable (Figure 6.21).

Conclusion et perspectives

Dans ce chapitre, nous avons étudié comment construire des axes de candidats à partir de votes
d’approbation. Nous avons introduit un modèle formel pour ces règles, et nous avons étudié leurs
propriétés axiomatiques. Nous avons également implémenté les règles et les avons comparées sur
de nombreux jeux de données réels et synthétiques. Nos résultats semblent montrer que la règle des
triplets interdits (FT) est la plus efficace pour construire des axes, et qu’elle possède de meilleures
propriétés. Cependant, elle est moins explicable et plus difficile à calculer que d’autres règles. La
règle de completion de bulletins (BC) semble être un compromis intéressant entre la simplicité de
calcul et de l’explicabilité, et la qualité des axes retournés.

Ce modèle admet de nombreuses extensions qu’il serait intéressant d’étudier. On pourrait par
exemple s’intéresser aux axes « circulaires », dans le sens ou les deux extrémités sont reliées,
ou bien vouloir augmenter le nombre de dimensions pour représenter les candidats. Enfin, une
autre piste intéressante est celle de définir des règles calculables en temps polynomial pour les
cas d’applications avec plus de candidats (par exemple en adaptant les règles que nous avons
introduites).

B.7 Identifier les paires de candidats sources de conflit

Dans la section précédente, nous avons vu que l’on pouvait appliquer les méthodes et concepts
de la théorie du choix social pour résoudre des problèmes plus larges que la simple sélection de
gagnants. En particulier, nous avons étudié une manière d’apprendre la structure des candidats
à partir des préférences des votants. Dans cette section, nous allons étudier un autre problème
qui est également motivé par l’idée que l’on peut apprendre des informations sur l’électorat et
les candidats à partir des préférences des votants. En effet, nous nous intéressons à la question
de savoir comment identifier des paires de candidats qui sont le plus sources de conflit entre les
votants, à partir de leurs classements.

L’étude de ce problème est motivée par l’augmentation de la polarisation et de la conflictualité
dans nos sociétés (Boxell et al., 2024; Draca and Schwarz, 2024), ce qui peut mettre à mal nos
systèmes démocratiques. Identifier les sources de polarisation au sein d’une population semble être
une étape nécessaire pour résoudre ces conflits. On pourrait alors se concentrer sur la résolution
de ces conflits en priorité. L’identification des plus grosses sources de conflit dans une population
peut également avoir une tout autre motivation, comme par exemple l’organisation d’un affronte-
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ment (par exemple un débat, ou un match sportif) qui soit le plus intéressant possible pour les
spectateurs.

Il est important de souligner que nous souhaitons ici identifier des paires de candidats qui sont
sources de conflit, dans le sens où la population sera divisée en deux groupes, l’un préférant le
premier candidat de la paire, et l’autre préférant le second candidat de la paire. Ce problème se
distingue donc d’autres problèmes déjà abordés dans la littérature, comme celui d’identifier les
candidats individuellement les plus polarisants (Colley et al., 2023b), ou celui de mesurer le degré
de polarisation d’un profil de préférences, tous candidats confondus (Can et al., 2015; Faliszewski
et al., 2023a). Notre objectif semble donc plus proche de l’élection de comités. Cependant, aucun
des objectifs classiques des règles d’élection de comités (excellence, proportionnalité et diversité)
ne correspond réellement à notre objectif de conflictualité. Il va donc falloir définir de nouvelles
règles et de nouveaux axiomes pour ce modèle.

Mesures de conflit

Pour ce problème, nous supposons que nous avons un profil de préférences P = (≻1, . . . ,≻n), où
≻i est le classement du votant i. Pour des candidats a, b ∈ C, on note V a≻b = {i ∈ V : a ≻i b}
le sous-ensemble des votants qui préfèrent a à b. Pour un votant i ∈ V , on note également
di(a, b) = ranki(a) − ranki(b) la différence de rang entre les candidats a et b dans le classement
du votant i. Cette différence de rang est positive si le votant préfère a à b et négative si le votant
préfère b à a.

Avant de définir des règles de sélection de paires de candidats conflictuels, il est nécessaire de
définir ce que l’on entend par conflit entre deux candidats. Nous allons voir qu’il existe différentes
notions de conflit, qui ne sont pas toujours compatibles entre elles.

La partition du conflit. La première notion de conflit que nous introduisons est celle de par-
tition du conflit. L’idée est que le conflit induit par deux candidats est maximum si exactement
la moitié des votants préfère le premier candidat de la paire, et l’autre moitié préfère le second
candidat de la paire. Cela motive la définition du ratio de partition α :

α(a, b) =
2

n
min(|V a≻b|, |V b≻a|) ∈ [0, 1].

L’intensité du conflit. Une seconde notion de conflit est celle de l’intensité du conflit. L’idée
est que le conflit est plus important si les votants ont des opinions très tranchées sur les deux
candidats. En particulier, l’intensité du conflit entre deux candidats est maximale pour un votant
si celui-ci classe un des candidats en première position, et l’autre en dernière position. On peut
donc définir l’intensité du conflit β entre deux candidats a et b comme suit :

β(a, b) =
1

n · (m− 1)

∑
i∈V

|di(a, b)| ∈ [0, 1].

L’équilibre du conflit. Enfin, à ces deux notions s’ajoute une troisième, qui est l’équilibre du
conflit. L’idée est que l’intensité du conflit doit être équilibrée entre les deux groupes de votants,
c’est-à-dire que l’on ne doit pas avoir un groupe aux préférences très tranchées, et l’autre avec
des préférences plus nuancées. On peut alors définir deux notions d’équilibre du conflit que nous
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notons γ et ϕ. La première est définie comme suit :

γ(a, b) = min(µa≻b/µb≻a, µb≻a/µa≻b) ∈ [0, 1],

où µa≻b est l’intensité moyenne de conflit dans un groupe de votants :

µa≻b =

∑
i∈V a≻b |di(a, b)|
|V a≻b|

.

La seconde est définie comme suit :

ϕ(a, b) =
|
∑

i∈V di(a, b)|∑
i∈V |di(a, b)|

∈ [0, 1].

Une paire parfaitement conflictuelle est donc une paire de candidats (a, b) telle que α(a, b) = 1,
β(a, b) = 1, γ(a, b) = 1 et ϕ(a, b) = 0 (Table 7.1). Cependant, il y a généralement un compromis à
faire entre les différentes notions de conflit, qui peuvent être maximales pour des paires de candidats
différentes dans un même profil. C’est pour cela que l’on définit des règles de sélection de paires de
candidats conflictuels, dont on va voir qu’elles ont chacune tendance à favoriser certaines notions
de conflit plutôt que d’autres.

Règles de conflit

On peut désormais définir différentes règles (irrésolues) de sélection de paires de candidats con-
flictuels. Ces règles prennent en entrée un profil de préférences (sous forme de classement) et
retournent un ensemble de paires de candidats.

MaxPolarisation. Pour une valeur de p ∈ R>0, la règle de p-MaxPolarisation retourne les paires
de candidats (a, b) qui maximisent la valeur de α(a, b)× β(a, b)p.

Pairwise conflict. Pour définir les deux règles suivantes, on utilise la notion de pairwise conflict
(conflit par paires en français), qui mesure le conflit induit par une paire de candidats (a, b) pour
une paire de votants (i, j), et est défini comme suit :

conf◦i,j(a, b) =

{
0 si di(a, b) · dj(a, b) > 0

|di(a, b)| ◦ |dj(a, b)| autrement

avec ◦ ∈ {+,×}. On peut alors définir des règles qui sélectionnent les paires de candidats qui
maximisent la somme de ces conflits par paires

∑
i,j∈V conf◦i,j(a, b). Avec l’opérateur ◦ = +, on

obtient la règle MaxSumConflict, et avec l’opérateur ◦ = ×, on obtient la règle MaxNashConflict.

Maximum d’échanges. Enfin, la dernière règle que nous introduisons, MaxSwap (Maximum
d’échanges en français), sélectionne les paires de candidats qui maximisent le nombre minimum
d’échanges (de swap) de candidats adjacents dans les classements des votants nécessaire pour que
tous les votants préfèrent le même candidat de la paire. C’est donc une mesure de distance entre
le profil de préférences et un profil où il y aurait un consensus sur cette paire de candidats. On
peut définir formellement le swap score d’une paire de candidats {a, b} comme suit :
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MaxSum MaxNash MaxSwap MaxPolar

Stabilité par l’inverse
Cohérence au conflit

Monotonie par rapport au conflit
Cohérence à l’antagonisation

Efficacité d’intensité
Priorité à l’équilibre

Table B.5: Résumé des résultats axiomatiques.

min

 ∑
i∈V a≻b

di(a, b),
∑

i∈V b≻a

di(b, a)

 .

MaxNash et MaxSwap peuvent être exprimées à partir uniquement des mesures de conflit β et ϕ
(Proposition 7.1 et 7.2). Enfin, à l’aide d’un exemple simple (Figure 7.1), il est possible de montrer
que certaines de ces règles favorisent les paires avec une haute valeur d’intensité du conflit (c’est
le cas de MaxNash) tandis que d’autres favorisent les paires avec une valeur élevée de partition du
conflit (c’est le cas de MaxSwap).

Analyse axiomatique

Encore une fois, nous avons d’abord étudié les propriétés axiomatiques des règles que nous venons
d’introduire. Les résultats sont résumés dans la Table B.5, et détaillés ci-dessous.

Axiomes fondamentaux. Nous introduisons deux axiomes fondamentaux pour notre modèle.
La stabilité par l’inverse impose que si une paire de candidats {a, b} est sélectionnée par la règle
pour un profil de préférences P , alors la même paire {a, b} doit être sélectionnée dans le profil
P ′ dans lequel tous les classements ont été inversés. Cet axiome part de l’idée que l’adoration
et la haine envers les candidats sont symétriques. Le deuxième axiome fondamental est celui de
cohérence au conflit, qui impose que pour tout profil de préférence P non unanime (c’est-à-dire
qu’il existe au moins deux votants aux classements différents), la règle retourne uniquement des
paires de candidats qui sont conflictuelles, c’est-à-dire pour lesquelles il n’y a pas de consensus des
votants sur l’un des candidats de la paire (autrement dit, α(a, b) > 0). L’idée est simple : s’il
existe une paire qui induit du conflit, il ne faut pas choisir une paire qui n’en induit pas. Toutes
les règles que nous avons définies satisfont ces deux axiomes (Proposition 7.3).

Efficacité d’intensité. Cet axiome repose sur la notion de domination d’intensité entre deux
paires de candidats {a, b} et {c, d}, qui s’inspire de la domination de Pareto (voir Example 7.3).
Nous avons prouvé que MaxSum, MaxNash et p-MaxPolarisation satisfont cet axiome, tandis que
MaxSwap ne le satisfait pas (Proposition 7.4).

Monotonie et antagonisation. L’axiome de monotonie par rapport au conflit impose que si
une paire de candidats {a, b} est sélectionnée par la règle pour un profil de préférences P , alors si
l’on augmente l’écart |di(a, b)| entre a et b dans le classement d’un votant sans toucher à l’ordre
relatif des autres candidats, la paire {a, b} doit toujours être sélectionnée. Cet axiome est très



312 APPENDIX B. RÉSUMÉ LONG EN FRANÇAIS

fort, et aucune des règles que nous avons définies ne le satisfait. En fait, cet axiome est même
incompatible avec la cohérence au conflit et la domination d’intensité (Theorem 7.5). Cependant,
on peut définir un axiome plus faible, l’axiome de cohérence à l’antagonisation, qui impose que si
une paire de candidats {a, b} est sélectionnée par la règle pour un profil de préférences P , alors
si l’on change chaque classement de sorte que ces deux candidats soient désormais en première et
dernière position du classement (et dans le même ordre qu’auparavant), sans changer l’ordre relatif
des autres candidats, alors la paire {a, b} doit toujours être sélectionnée. Cet axiome, bien plus
faible, est satisfait par toutes les règles que nous avons définies (Proposition 7.7).

Priorité à l’équilibre. Enfin, nous introduisons l’axiome de priorité à l’équilibre, qui fonctionne
également sur une relation de domination entre paires de candidats (la domination d’équilibre, voir
Example 7.4). L’idée est de favoriser les paires de candidats dont l’intensité du conflit est plus
équilibrée entre les deux groupes de votants. Cet axiome est satisfait par MaxNash et MaxSwap,
mais pas par MaxSum et p-MaxPolarisation (Proposition 7.8).

Analyse expérimentale

Nous nous penchons maintenant sur l’analyse expérimentale des règles de conflit que nous avons
définies. Nous avons implémenté les différentes règles que nous venons d’introduire, et nous les
avons testées sur de nombreux jeux de données réels et synthétiques. Nous avons également
comparé les résultats qu’elles retournent à ceux de règles d’élection de comités plus classiques,
comme la règle de k-Borda ou celle de Chamberlin-Courant.

Positions dans l’espace euclidien. Nous avons tout d’abord testé les règles sur un modèle
euclidien à deux dimensions, dans lequel votants et candidats sont associés à des positions dans
l’espace, et les votants classent les candidats en fonction de leur distance à leur position (le plus
proche en premier, le plus loin en dernier). Nous avons d’abord observé où se situaient les can-
didats sélectionnés par différentes règles pour différentes distributions de positions dans l’espace
(Figure 7.2). On observe notamment que les règles de conflit, comme MaxNash, retournent des
paires de candidats éloignés du centre de l’espace, mais aussi éloignés l’un de l’autre, tandis que
les règles classiques d’élection de comités, qu’elles favorisent l’excellence comme k-Borda, ou la
diversité comme Chamberlin-Courant, retournent des candidats plus proches du centre de l’espace.

Mesures de conflit. Nous avons ensuite calculé les valeurs des différentes mesures de conflit
pour les paires de candidats sélectionnées par les différentes règles de conflit. Ces analyses ont
été faites sur des jeux de données de préférences euclidiennes (Figure 7.4), sur des préférences
générées à partir de modèles de Mallows (Figure 7.7), et sur des préférences issues de données
réelles (Figure 7.10). On observe bien que certaines règles sélectionnent des paires de candidats
dont la partition du conflit α est plus forte, comme MaxSwap, tandis que d’autres règles favorisent
des paires de candidats avec une intensité du conflit β plus forte, comme MaxNash. On observe
également que les règles de p-MaxPolarisation ont tendance à ignorer l’équilibre du conflit (γ et ϕ).

Voter Autrement. Enfin, nous nous sommes intéressé aux résultats des règles de conflit sur les
données des expériences du projet Voter Autrement de 2017 et 2022, pour lesquels nous possédons
de nombreux classements de votants. On observe encore une fois de grandes différences entre les
résultats des règles de conflit et ceux des règles d’élection de comités classiques. Si l’on se réfère
aux axes gauche-droite calculés dans la section précédente, on observe que les règles de conflit
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sélectionnent des candidats aux extrémités de l’axe (Table 7.3). De plus, MaxNash (qui favorise
l’intensité du conflit) sélectionne parfois des candidats plus « populaires » (c’est-à-dire ayant reçu
un meilleur score à l’élection) mais moins « extrêmes » que les candidats sélectionnés par MaxSwap
(qui favorise la partition du conflit).

Conclusion et perspectives

Dans ce chapitre, nous avons étudié comment identifier des paires de candidats qui sont le plus
sources de conflit entre les votants, à partir de leurs classements. Nous avons introduit différentes
notions de conflit, et nous avons défini des règles de sélection de paires de candidats conflictuels.
Après avoir étudié les propriétés axiomatiques de ces règles, nous les avons testées sur de nombreux
jeux de données réels et synthétiques. Nos résultats semblent montrer que MaxNash est plus efficace
pour sélectionner des paires de candidats avec une forte intensité du conflit, tandis que MaxSwap
est plus efficace pour sélectionner des paires avec une forte partition du conflit.

Une possibilité d’extension de ce travail serait de définir des règles de sélection d’ensemble
de candidats conflictuels de taille k > 2. Pour cela, on pourrait définir par exemple des règles
séquentielles, qui sélectionnent les candidats un par un, en maximisant à chaque étape le conflit
avec les candidats déjà sélectionnés, ou bien on pourrait généraliser le principe des règles proposées
(ce qui se fait plutôt facilement pour MaxSwap, par exemple).

B.8 Conclusion et perspectives de la thèse

Dans cette thèse, nous avons étudié cinq problèmes, tous motivés par des applications concrètes
d’agrégation de préférences. Dans les trois premiers problèmes, nous avons proposé des manières
d’améliorer les systèmes de vote utilisés en pratique, en utilisant des bulletins de vote plus ex-
pressifs que ceux utilisés actuellement. Dans les deux derniers problèmes, nous avons proposé des
outils qui utilisent les préférences des votants pour apprendre des informations sur la structure
de l’électorat et de l’ensemble des candidats, ce qui peut être particulièrement intéressant pour
l’analyse politique. Pour chaque problème, nous avons introduit un modèle formel ainsi que dif-
férentes règles, avant d’étudier leurs propriétés axiomatiques. Nous avons également comparé ces
règles expérimentalement sur de nombreux jeux de données réels et synthétiques.

Chacun des problèmes introduits dans cette thèse admet de nombreuses extensions intéres-
santes, que nous avons déjà évoquées dans les conclusions respectives de chaque section. Mais
l’étape la plus importante de la suite de ce travail est probablement d’introduire ces méthodes
dans le débat public, et dans le débat politique. Pour cela, il est possible de directement s’adresser
aux acteurs de la vie politique (députés, conseillers locaux, etc.), comme j’ai commencé à le faire
pendant ma thèse, mais aussi de sensibiliser le grand public à ces questions, et de les convaincre
de l’intérêt des alternatives que nous proposons. C’est d’ailleurs un des objectifs du projet Voter
Autrement, en plus de la collecte de données. J’essaie également de participer à cette sensibili-
sation en écrivant des articles de vulgarisation sur mon blog. Enfin, il est crucial de rendre les
jeux de données de préférences expressives (classements, approbation, etc.) ouverts et accessibles
librement, afin de permettre à d’autres chercheurs (ou simplement des curieux) de les utiliser pour
étudier ces questions, et bien d’autres. Ainsi, tous les jeux de données collectés dans le cadre de
cette thèse sont accessibles (Delemazure et al., 2024a; Delemazure and Bouveret, 2024).

Enfin, une autre piste de recherche que j’aimerais explorer pour poursuivre le travail que j’ai
commencé, serait d’appliquer les méthodes utilisées dans les différents problèmes de ma thèse à
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d’autres cadres démocratiques. Il serait par exemple très intéressant d’appliquer la méthode ax-
iomatique pour étudier les propriétés normatives des processus de délibération, qui gagnent en pop-
ularité ces dernières décennies, notamment à travers la multiplication des conventions citoyennes
dans de nombreux pays. Ces analyses axiomatiques pourraient également être complétées par des
analyses expérimentales, en utilisant les données collectées lors de ces processus de délibération.
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MOTS CLÉS

Choix social, Théorie du vote, Intelligence artificielle, Analyse de données, Modes de scrutin, Préférences,
Simulations, Axiomes, Politique, Représentation proportionnelle, Collecte de préférences

RÉSUMÉ

Les systèmes de vote utilisés en pratique, tels que le scrutin uninominal majoritaire à deux tours ou les systèmes pro-
portionnels avec seuils électoraux, ne parviennent souvent pas à saisir la complexité des préférences des électeurs. Ce
manque d’expressivité des bulletins de vote est à l’orgine de défauts étudiés et documentés, comme la division des voix
entre candidats similaires, et la non prise en compte des votes pour les partis n’atteignant pas les seuils électoraux,
incitant les électeurs au vote stratégique (dit “vote utile”) et conduisant potentiellement à des résultats indésirables. Cette
thèse soutient que des formats de préférences expressifs (tels que les bulletins d’approbation et les classements, avec
ou sans égalités) peuvent atténuer significativement ces problèmes et potentiellement améliorer le processus démocra-
tique, et qu’ils fournissent en outre des données pertinentes pour mener de nouvelles formes d’analyses descriptives du
paysage politique.

ABSTRACT

Voting systems that are used in practice, such as plurality with runoff or proportional systems with thresholds, often fail
to capture the complexity of voter preferences. This lack of expressiveness in preference formats contributes to well-
documented flaws, including the spoiler effect where similar candidates split the vote, and wasted votes for parties falling
below electoral thresholds, pushing voters to vote strategically and potentially leading to the selection of undesirable
outcomes. This thesis argues that expressive preference formats (such as approval ballots, rankings, and weak orders)
can significantly mitigate these issues and potentially improve the democratic process, and that they additionally provide
insightful data for new types of descriptive analyses of the political landscape.

KEYWORDS

Social choice, Voting theory, Artificial intelligence, Data analysis, Voting systems, Preferences, Simulations,
Axioms, Politics, proportional Representation, Preference collection
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