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Abstract

Most existing models of opinion diffusion on networks neglect the existence of logical con-
straints correlating individual opinions on multiple issues. In this paper we study the diffusion
of constrained opinions on a social network as an iterated process of aggregating neighbouring
opinions. We propose a model based on individual updates on subsets of the issues at stake,
overcoming the main problem of dealing with inconsistent influencing opinions. By adapting
notions from the theory of boolean functions, we characterise the set of integrity constraints
under which the diffusion model is closed under influence. We also identify sufficient condi-
tions on the network topology to guarantee the termination of the diffusion process.a

aA previous version of this paper appears in the proceedings of the 4th AAMAS Workshop on Exploring
Beyond the Worst Case in Computational Social Choice (EXPLORE 2017), with the title “Propositionwise
Opinion Diffusion with Constraints”.

1 Introduction
The diffusion of information in a social network is the subject of a vast literature combining socio-
logical with algorithmic considerations (see, e.g., Easley and Kleinberg (2010) and Jackson (2008)),
with applications ranging from product adoption to disaster information diffusion. In this diverse
range of applications, only a few models have considered that opinions may be structured by the
presence of an integrity constraint, relating the multiple issues at stake. Two recent examples are
the work of Friedkin et al. (2016) in sociological modelling—who consider how beliefs spread and
change in a group—and the work by Schwind et al. (2015) in the area of belief merging.

In this paper we consider individual opinions defined on a set of binary issues. The presence
of constraints permits us to define a variety of applications: a jury needing to reach a decision on
whether a defendant is guilty based on the validity of the evidence; or a participatory budgeting
algorithm in which users decide which project to fund under a budget constraint; to the problem of
artificial agents influencing each other in a distributed manner.

We take a normative perspective to opinion diffusion in a constrained domain, replying to the
question of how the diffusion process should be constructed to “fit” the integrity constraint defining
the problem. Let us showcase the main problems tackled by our paper with a concrete example.

Example 1. Consider the case of four agents deciding whether a skyscraper (S), a hospital (H), or
a new road (R) should be constructed in their city. While the first three agents are rather certain of
their view, the fourth agent is influenced by the first three, and will change her opinion according
to the majority.1 The law imposes that when both an hospital and a skyscraper are built then a new
road must be constructed as well, a constraint that can be represented as (S ∧H) → R. Suppose
that the first agent wants only the hospital; the second, only the skyscraper; and the third would like
the whole package—skyscraper, hospital and road. Thus the fourth agent is facing an aggregated
opinion which says yes to the skyscraper and the hospital, but no to the road; this opinion, of course,
does not satisfy the constraint, hence blocking the influence of the first three agents on the fourth.

We argue that information should not always spread by looking at the entire set of issues. If the
fourth agent in the example above consulted her influencers on one single issue, such as: “should a
hospital be built?”, then she would be able to update her opinion to a consistent one by changing her
opinion on this single issue.

1Corresponding to a simple threshold model (Granovetter, 1978).
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The main problem tackled in this paper is to identify the minimal amount of information
exchange—in terms of the ‘scope’ of the questions asked by agents to influencers—that allows an
information diffusion system to work properly given a certain integrity constraint. We characterise
the class of constraints that allow influence to spread for bound k on the number of issues updated,
borrowing and building on notions from boolean functions. We also investigate the effects of the
order of the updates on the result of the diffusion process, and provide intuitive initial results on the
termination of iterative processes defined by propositionwise updates.

The paper is organised as follows. In Section 2 we define our model of propositionwise opinion
diffusion under constraints. Section 3 introduces and studies a useful class of integrity constraints,
which is used in Section 4 to obtain our main results. Section 5 identifies networks on which the
termination of the diffusion system is guaranteed, and Section 6 concludes.

Related work
Diffusion on networks has been extensively studied in the field of social network analysis, be it dif-
fusion of diseases, information, or opinions (Jackson and Yariv, 2011; Easley and Kleinberg, 2010;
Shakarian et al., 2015). Building on the classical work of Granovetter (1978), DeGroot (1974), and
Lehrer and Wagner (1981), a number of models were recently introduced for the diffusion of com-
plex opinions, such as knowledge bases (Schwind et al., 2015, 2016), preferences over alternatives
(Ghosh and Velázquez-Quesada, 2015; Brill et al., 2016; Bredereck and Elkind, 2017), and binary
evaluations over multiple issues (Grandi et al., 2015, 2017; Christoff and Grossi, 2017a). Our pa-
per builds on the latter model, including an integrity constraint that logically correlates the issues
at stake. To the best of our knowledge, the only work in opinion diffusion under constraints is the
recent work of Friedkin et al. (2016), which however represents opinions as real-valued beliefs, as
well as the work of Christoff and Grossi (2017b). Let us also mention the literature on boolean
networks (Kaufmann, 1969), which is used for modeling biological regulatory networks (see, e.g.,
Shmulevich et al. (2002)), and focuses on updates on one single binary issue. To the best of our
knowledge, multiple issues and constraints have never been considered in this literature.

2 The General Framework
This section presents our diffusion model for binary opinions over multiple issues correlated by an
integrity constraint.

2.1 Individual Opinions
Let I = {p1, . . . , pm} be a finite set of m issues, where each issue represents a binary choice.
We call D = {0, 1}I the domain associated with this set of issues. For a finite set of agents
N = {1, . . . , n}, we say Bi ∈ D is the opinion of agent i ∈ N over all issues in I. A vector
B = (B1, . . . , Bn) of all opinions of agents in N is called a profile. An opinion B represents
an agent’s acceptance/rejection of each of the issues in I. For example, if I = {p, q, r}, then
B = (110) is the opinion accepting p and q and rejecting r. We denote with Bi(p) agent i’s
judgment on p ∈ I in the profile B. Thus if B = (110), then B(p) = B(q) = 1 and B(r) = 0.

An integrity constraint IC ⊆ D defines a domain of feasible opinions. We say that B is IC-
consistent when B ∈ IC, or equivalently that B is a model of IC. For each agent i, we assume
that Bi ∈ IC, meaning each individual opinion must satisfy the given integrity constraint. For
instance, if we have three issues, p, q and r, and each agent can only accept at most two of the three,
then IC = {(110), (011), (101), (100), (010), (001), (000)}. In further sections we will assume that
integrity constraints are represented compactly by means of a formula of propositional logic, such
as (¬p ∨ ¬q ∨ ¬r) for the previous example.
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2.2 The Social Influence Process
We assume that agents are connected by a social influence network G = (N , E) where (i, j) ∈ E
means agent i influences agent j and Inf(i)G = {j ∈ N | (j, i) ∈ E} is the set of influencers of
agent i in the network G.2

We model social influence as a transformation function, which takes as input a profile of IC-
consistent opinions B = (B1, . . . , Bn), and returns a set of profiles which are each the result of
some opinion update on B. If clear from the context, we omit reference to G and IC.

Let F = (F1, . . . Fn) be composed of aggregation procedures Fi : ICInf(i) → D, one for each
agent i. We assume that aggregation functions satisfy the minimal requirement of unanimity, i.e.,
whenever Bj = B∗ for all j ∈ Inf(i) then Fi(B) = B∗. In words, whenever all influencers
are unanimous, F updates according to the influencers (no negative influence is possible). Our
running example for an aggregator is the issue-by-issue majority rule, but we refer to the literature
on judgment aggregation for other well-studied examples of aggregation rules Endriss (2016); Grossi
and Pigozzi (2014).

Once an agent i and a subset of issues S ⊆ I is specified, aggregation functions F can be
combined with a network G to obtain an update function for agent i’s opinions on the issues in S. If
B and B′ are two opinions and S is a set of issues, let (B�I\S , B′�S) be the opinion obtained from
B with the opinions on the issues in S replaced by those in B′.

F -UPD(B, i, S) =

{
(Bi�I\S , Fi(BInf(i))�S) if IC-consistent
Bi otherwise.

That is, agent i looks at the aggregated opinion of its influencers Fi(BInf(i)), and copies this opinion
on all issues in S only if this results in a new opinion that is consistent with IC.

In this paper we are interested in varying degrees of communication among the agents, from
simply asking one-issue questions to their influencers, to more complex updates involving all the
issues at stake. Our opinion diffusion model is hence defined as follows.

Definition 1. Given network G, aggregation functions F , and 1 ≤ k ≤ |I|, we call k-
propositionwise opinion diffusion the following transformation function:

PWODk
F (B) ={B′ | ∃M ⊆ N , S : M → 2I with |S(i)| ≤ k,

s.t. B′
i = F -UPD(B, i, S(i)) for i ∈M

and B′
i = Bi otherwise.}

PWODk
F defines, for each consistent profile of opinions B, the set of possible updates obtained

by selecting a subset of agents M ⊆ N and a subset of issues S(i) ⊆ I for i ∈M on which agent i’s
opinion is updated. To obtain the more classical view of diffusion as a discrete time iterative process,
it is sufficient to combine PWODk

F with an agent-scheduler—i.e., a turn-taking function—and an
issue-scheduler deciding which issues are updated by each agent.

Example 2 (Pairwise preference diffusion). The framework of pairwise preference diffusion by Brill
et al. (2016) can be seen as an instance of PWOD1

F where F is the (strict) majority rule. To see
this, consider a set A of alternatives. A linear order � is an irreflexive, transitive and complete
binary relation over A, which can be represented as a binary evaluation over a set of issues IA =
{pab | (a, b) ∈ A × A and a 6= b}, such that B(pab) = 1 if and only if a � b.3 The integrity
constraint IC� therefore contains all opinions over IA corresponding to linear orders over A. To
overcome Condorcet cycles, i.e., individuals facing an aggregated majority which is not transitive,
Brill et al. (2016) propose to update on one pair of alternatives at the time, which corresponds to a
propositionwise update on the analogous issue.

2Observe that we do not make any assumption on whether i ∈ Inf(i), thereby defining the framework in full generality.
3Representing preferences with binary evaluations is an idea that can be traced back to the work of Wilson (1975).
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As a last definition, we introduce the following concept:

Definition 2. A profile B is a termination profile for PWODk
F and IC if PWODk

F (B) = {B}.

Termination profiles are fixed points of PWODk
F . We stress the role of IC in determining which

updates can be performed. To clarify our definitions, consider the following:

Example 3. Consider a scenario similar to Example 1. Three agents are voting on three proposals
for their city; a skyscraper, (S) an hospital (H), and a new road (R). Recall that the constraint in
this setting is (S ∧ H → R). The three agents are connected in the following network, where the
initial profile is B = (111, 011, 101).

1 : 111 2 : 011

3 : 101

Assume that Fi is the strict majority rule for each i, accepting an issue only if a strict majority of
their influencers accept it. If all agents update simultaneously under PWOD2

F , the resulting profile
at termination (where each agent updates first on {S,H}, then {H,R}) will be (011, 011, 011). If
the agents update simultaneously under PWOD1

F and we assume the same order on issues for all
agents —first on the first issue, then the second, and so on—we will reach the same termination
profile—(011, 011, 011), after four rounds.

3 Geodetic Integrity Constraints
In this section we build on notions from the theory of boolean functions (see, e.g., Crama and
Hammer (2011)) to identify a useful class of integrity constraints that we will later use to characterise
termination profiles of our diffusion model.

3.1 Basic Definitions
Recall that D = 2I and that IC ⊆ D. In this section we will call an opinion B ∈ IC a model of IC,
importing the terminology from propositional logic. Given two opinions B and B′ ∈ D, recall that
the Hamming distance between them is H(B,B′) = Σp∈I |B(p)−B′(p)|. Consider the following:

Definition 3. Let IC be an integrity constraint for issues I. The k-graph of IC is given by GkIC =
〈IC, Ek

IC〉, where:
(i) the set of nodes is the set of B ∈ IC,

(ii) the set of edges Ek
IC is defined as follows: (B1, B2) ∈ Ek

IC iff H(B1, B2) ≤ k, for any
B1, B2 ∈ IC.

Intuitively, the k-graph of IC connects two models if one can be reached from the other by swapping
at most k issues. As it is clear from Definition 3, GkIC ⊆ GkD for all IC. We say that a path of GkD
is also a path of GkIC if all nodes on the path are also nodes of GkIC. We are now ready to give the
following:

Definition 4. An integrity constraint IC is k-geodetic if and only if for all B1 and B2 in IC, at least
one of the shortest paths from B1 to B2 in GkD is also a path of GkIC.

For ease of notation, we denote 1-geodeticness with geodeticness tout court, borrowing the term
from the equivalent definition for boolean functions Ekin et al. (1999). To illustrate our definitions,
consider the following example.
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Example 4. Let there be three issues, and let IC = {(000), (001), (010), (100), (011), (111)}. The
graph below corresponds to G1IC, connecting only those models that satisfy IC with a continuous
edge. The graph consisting of all edges (continuous and dashed) corresponds to G1D.

000

001

010

011

100

101

110

111

We can now observe that IC is not geodetic: the shortest paths between (100) and (111) in G1D
pass through either (110) or (101), which however are not nodes of G1IC. As for 2-geodeticness (and
similarly for k-geodeticness for higher k), it is easy to see that IC satisfies it, since there is a direct
path from (100) to (111) in G2IC.

3.2 Recognising Geodetic Constraints
An important class of integrity constraints that are geodetic is the one commonly used to represent
preferences as linear orders over a set of alternatives (see Example 2). To see this, let ≺ and ≺′ be
two distinct linear orders over a set A of alternatives. Then, they also must differ on a pair which is
adjacent in one of them, i.e., there exists a pair ab such that B(pab) 6= B′(pab) and there is no c ∈ A
such that a �i c �i b or b �i c �i a.4 Knowing this, it becomes straightforward to show that IC� is
geodetic (for the particular encoding of preferences explained in Example 2). Similar encodings can
be used to show that partial and weak orders and equivalence relations can be modelled by geodetic
constraints.

Integrity constraints are typically represented compactly by means of propositional formulas. It
is easy to see that all conjunctions of literals are k-geodetic for any k, as well as simple clauses of
any length. However, the conjunction of two k-geodetic formulas is not necessarily k-geodetic, as
can be seen by considering an XOR formula such as (p ∨ q) ∧ (¬p ∨ ¬q), as shown in Example 5.

Example 5. Let there be two issues, and consider the following IC = {(01), (10)}, i.e., p XOR q.
The graphs G1IC (boldface nodes) and G1D (all nodes and edges) can be represented as follows:

00

01

10

11

Clearly, IC is not geodetic since the two nodes (01) and (10) are disconnected in G1IC but connected
in G1D.

Another interesting class is that of budget constraints, which specify the list of subsets of the
issues I that exceed a given budget. Such formulas can be shown to be negative formulas, i.e., there
is a DNF representation in which all propositional symbols only occur as negated. A number of
logical characterisation of 1-geodetical integrity constraints can be found in the work of Ekin et al.
(1999), including the fact that negative formulas are 1-geodetic. To the best of our knowledge, for

4This result is folklore, a formal proof can be found in in Elkind et al. (2009).

5



k-geodetic constraints no such characterisation is available. While similar results would be outside
the scope of this paper, we show the following simple facts:

Fact 1. If |I| = m, then for all k ≥ m any IC is k-geodetic.

This is straightforward, since all nodes of Gk
IC are directly connected if k ≥ m. Observe also

the following:

Fact 2. If IC is k-geodetic for a set of issues I, then it is also k-geodetic for any larger set of issues
I ′ ⊇ I.

We also obtain a more operational definition of k-geodeticness of a constraint, in the following:

Lemma 1. An integrity constraint IC is k-geodetic iff for all models B1, B2 ∈ IC, there is a path
in Gk

IC from B1 to B2 of lenght smaller than
⌈
H(B1,B2)

k

⌉
.

Proof sketch. Let B1 and B2 be two models of IC. The length of the shortest path from B1 to B2

in the hypercube GkD is exactly
⌈
H(B1,B2)

k

⌉
, since H(B1, B2) is the number of issues that has to be

changed to move from B1 to B2, and the edges in GkD change k symbols at most. As GkIC ⊆ GkD, if
there is a path of minimal length connecting B1 to B2 in GkIC, then it is one of the shortest paths of
GkD. By repeating for all B1 and B2 in IC we obtain the desired statement.

4 Termination Profiles
In this section we investigate how the structure of the integrity constraint influences the set of
PWODk

F termination profiles.

4.1 Influence-Closure of PWODk
F

As observed in the introduction, when limiting the influence updates to sets of k issues, the influence
process may be blocked by the structure of the integrity constraint at hand. We therefore give the
following definition:

Definition 5. PWODk
F is influence-closed wrt. an integrity constraint IC if for any termination

profile B, and any i ∈ N , we have that if F (BInf(i)) ∈ IC, then Bi = F (BInf(i)).

Influence closure of PWODk
F simply means that whenever possible, an agent will move towards,

and eventually adopt the aggregate opinion of her influencers. Clearly, if k = |I| then PWODk
F is

influence-closed, irrespective of the constraint, since agents update on all issues at the same time;
we now give exact bounds on the integrity constraints and the degree of issue-wise communication
for this to happen:

Theorem 1. PWODk
F is influence-closed with respect to IC if and only if IC is k-geodetic.

Proof. For the right to left direction, assume that IC is k-geodetic. Suppose PWODk
F terminates on

a profile B and, by contradiction, that there exists an agent i such that F (BInf(i)) ∈ IC and Bi 6=
Fi(BInf(i)). Since IC is k-geodetic, and both Bi and F (BInf(i)) are IC-consistent, by Definition 4
the shortest path in GkD between them is composed of IC-consistent opinions. Let B1 be the first
model on such path after Bi, and let p1, . . . , p` be the issues on which Bi and B1 differ. By the
definition of GkD we know that ` ≤ k. Moreover, since B1 is on the shortest path between Bi and
F (BInf(i)), we can infer that B1 = (Bi�I\S , Fi(BInf(i))�S), where S = {p1, . . . , p`}. If we now
consider profile B′, obtained by setting I = {i} and S as defined above in Definition 1, we obtain
that B′ ∈ PWODk

F (B), against the assumption that B is a termination profile.
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For the left to right direction, suppose IC is not k-geodetic. This implies the existence of two
IC-consistent opinions B1 and B2 that are not connected in GkD by any shortest path. We now
construct an instance of PWODk

F that is not influence-closed. Let there be two agents, and the
network G be such that E = {(1, 2)}. Let F be the strict majority rule. Profile B = (B1, B2) is a
termination profile of PWODk

F , in which however B2 6= B1 = F (BInf(2)), showing that PWODk
F

is not influence-closed wrt to IC.

Theorem 1 shows that if aggregating an agent’s influencers using F gives an opinion in the
k-geodetic set IC, PWODk

F will eventually reach a state where each agent’s opinion equals the
aggregated opinion of their respective influencers.

4.2 Update Order Independence
While the outcome of PWODk

F in most cases depends on the order in which agents update on
the network, we are also interested in the order in which each agent updates their opinion wrt. the
issues; when k < |I|, this order matters in determining possible termination profiles. Consider the
following example:

Example 6. Let a network and a profile of opinions be as described in the figure below, and let the
integrity constraint IC = D \ {(111)}.

1 : 101 2 : 011 3 : 110

4 : 000 5 : 000

Agents 4 and 5 have the same initial opinions and set of influencers. If agent 4 updates in the order
p, q, r, obtaining 110, and agent 5 in the order r, q, p, obtaining 011, these will be their – different –
opinions in the termination profile.

As the above example shows; when agents update towards an inconsistent opinion, they might do
so in radically different ways. This is however not possible when the aggregated opinion is IC-
consistent for a geodetic IC.

Definition 6. A pair (B0, G), where B0 is a profile and G a network, has the local IC-consistency
property if for all profiles B reachable from B0 and each i ∈ N we have that F (BInf(i)) is IC-
consistent.

We also say that a profile B is i-reachable from profile B0 if there exists a sequence of PWODk
F

updates from B0 to B with set of updating agents M = {i}. An i-termination profile is therefore
a fixed point of any i-update. PWODk

F is issue-order-independent if for all i ∈ N and profile B,
there is a unique i-termination profile i-reachable from B. We can now prove the following:

Theorem 2. If B0 and G have the local IC-consistency property wrt to a k-geodetic IC, then
PWODk

F is issue-order-independent.

Proof sketch. By the local IC-consistency property of B and G, every influence update of an agent
i is based on an IC-consistent opinion. If IC is k-geodetic, every influence update between two
models must be part of an IC-consistent shortest path connecting them. To see this, observe that a
k-geodetic IC either contains all models of a shortest path between two models, or does not contain
any. Therefore, no matter the update order, the i-termination profile i-reachable from B0 is unique,
and is such that Bi = F (BInf(i)).

In particular, Theorem 2 applies to trees, simple cycles, and any network in which the in-degree
of the nodes is at most one, showing that PWODk

F is issue-order-independent on these classes of
networks.
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4.3 Inconsistent Profiles
Propositionwise updates were introduced to get as close as possible to an inconsistent aggregated
opinion. We provide here a formal justification for this claim. As a measure of closeness between
opinions we use the Hamming distance (see Section 3 for a definition). We show the following:

Theorem 3. Let IC be k-geodetic, and let B be a termination profile of PWODk
F . Then, B is also

a termination profile for PWODK
F for any K ≥ k.

Proof. Let i ∈ N . If F (BInf(i)) ∈ IC, then by Theorem 1, since B is a termination profile,
we have that Bi = F (BInf(i)) and no further update of any size is possible. Assume then that
F (BInf(i)) 6∈ IC and, for the sake of contradiction, that there exists a possible update of PWODK

F

for a specific K ≥ k resulting in a different B′i 6= Bi. That is, there exists a set of issues S with
|S| > k such that F -UPD(B, i, S) = B′i. Since B′i ∈ IC, and IC is k-geodetic, there is a path
of updates of size k or smaller that reaches B′i from Bi. This implies that S can be partitioned
in smaller subsets of less than k issues reaching B′i from Bi, against the assumption that B is a
termination profile.

As a consequence of Theorems 1 and 3, we obtain that to identify the correct level of communi-
cation between agents it is sufficient to identify the minimal k such that the integrity constraint is
k-geodetic. Larger degrees of communication would be costly and useless, and smaller would not
allow to reach consistent opinions.

However, the following result shows that when faced with an outcome that does not satisfy the
constraint, it is possible to build examples in which individual opinions are as far as possible from
the aggregated opinion of their influencers:

Theorem 4. For any finite n and m > 3, there is a geodetic IC over m issues, a network G
over n agents, and a termination profile B for PWOD1

F , such that there is one agent i with
H(Bi, F (BInf(i))) ∈ O(m).

Proof sketch. Let there be m > 3 issues and n agents. First, let IC = (¬p1 ∧ ¬pm) →
(p2∧, . . . ,∧pm−1), i.e. IC allows all opinions except those which reject the first and last issue and
at least one other issue. Second, let the network G be the following simple directed acyclic graph
E = {(i, n) | 1 ≤ i ≤ n− 1}, i.e. the first n− 1 agents are the influencers of the n-th agent. Third,
let B be such that Bn = (0, 1, . . . , 1, 0), and Bi for i < n be such that Bi(i) = 1 and Bi(j) = 0
otherwise. If F is the strict majority rule, then it is easy to see that F (BInf(i)) = (0, . . . , 0), which
is not IC-consistent.

Clearly, H(Bn, F (BInf(n)))=m−2. Even worse, we can observe that
∑

j 6=n H(Bn, Bj)=(n−
1)×(m − 2). Profile B is also a termination profile. Agent n, which is the only influenced agent,
cannot move towards the aggregated opinion (0, . . . , 0) by any propositionwise update. It remains
to be shown that IC is geodetic. Let B,B′ be models of IC. If both B and B′ accept the first
(last) issue, since all opinions accepting the first (last) issue satisfy IC then we can move between
the two with one-issue updates. If both B and B′ reject both the first and the last issue, then
B = B′ = (0, 1, . . . , 1, 0) as this is the only IC-consistent opinion. A simple case study concludes
the proof, showing that IC is geodetic.

4.4 Computational Complexity
As a consequence of Theorems 1 and 3, if a mechanism designer faces a situation described by an
integrity constraint IC, it should allow communication on the network on up to k issues, where k is
the smallest number such that IC is k-geodetic. We now investigate the computational complexity
of this task.
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Theorem 5. Let IC be a constraint over m issues and k < m. Checking whether IC is k-geodetic
is co-NP-complete.

Proof sketch. To find a counterexample for k-geodeticness, it is sufficient to find two models B1

and B2 of IC that are not connected by any of the shortest paths of GkD. A co-NP algorithm guesses
two opinions B1 and B2, checks that B1 and B2 are IC-consistent, and that for all subsets S ∈ I
of |S| ≤ k we have that (B1�I\S , B2�S) 6|= IC, showing a counterexample to the k-geodeticness of
IC. Note that the number of subsets of size k is an exponential figure in k but not in m, which is the
input size.

As for hardness, we exploit a result by Hegedüs and Megiddo (1996), stating that the member-
ship problem for classes of boolean functions that satisfy the projection property is co-NP-hard.
To show that the class of k-geodetic IC has the projection property means (a) observing that the
constant function > is k-geodetic, (b) that for any k there is always a non-k-geodetic function, and
(c) that if IC is k-geodetic then both IC ∧ p and IC ∧ ¬p must also be k-geodetic for all p ∈ I. To
show (c), suppose that B1 and B2 are two models of IC ∧ p that are not connected by any shortest
path of GkD. Since B1 and B2 are also models of IC, and GkIC∧p ⊆ GkIC, this would imply that IC is
not k-geodetic, against the assumption.

The hardness result above is shown for 1-geodetic formulas by Ekin et al. (1999). By using the
algorithm of Theorem 5 as an oracle, with binary search we obtain the following:

Theorem 6. Let IC be an integrity constraint over m issues and let k < m. Checking whether k is
the minimal k < m such that IC is k-geodetic is in Θp

2.

Putting together the previous result with Theorems 1 and 3, we obtain the following operational
result for PWODk

F :

Corollary 1. Let IC be an integrity constraint over m issues and let k < m. Checking whether k is
the minimal k < m such that PWODk

F is influence-closed is in Θp
2.

5 Termination of the Iterative Process
In this section we analyse the termination of discrete-time iterative processes that are defined by
PWODk

F updates.

5.1 Basic Definitions
Recall our Definition 1, introducing propositionwise opinion diffusion as a transformation function
that associates a set of updated profiles with every IC-consistent profile. Thus, PWODk

F induces a
state transition system in which states are all profiles of IC-consistent opinions, and each transition
is induced by the choice of a set of updating individuals M and sets of issues S(i), one for each
updating individual. Termination states, as defined by our Definition 2, are the attractors of such a
transition system.

In line with the existing literature on propositional opinion diffusion Grandi et al. (2015); Brill
et al. (2016); Bredereck and Elkind (2017) and on boolean networks Kaufmann (1969), we define
asynchronous PWODk

F by restricting transitions to those involving only one single agent at a time,
and synchronous PWODk

F by restricting transitions to those involving all individuals. We call a
transition from B to B′ effective if B′ 6= B. We say that PWODk

F terminates universally if there
exists no infinite sequence of effective transitions, while it terminates asymptotically if from any
IC-consistent profile there is a sequence of transitions that reaches a termination profile. Finally,
a consensual termination profile is a termination profile B such that for all i, j ∈ N we have that
Bi = Bj .
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5.2 Simple Cycles
A simple cycle is a finite connected network E such that every agent has exactly one outgoing edge
and exactly one incoming edge.

Theorem 7. If G is a simple cycle and IC is k-geodetic, then asynchronous PWODk
F terminate

asymptotically to a consensual termination profile.

Proof sketch. Let B0 be a profile on G, and let i∗ ∈ N be such that B0
i∗ 6= B0

i∗+1. Since IC is k-

geodesic, by Lemma 1 there is a sequence of propositionwise updates of length k = dH(B0
i∗ ,B

0
i∗+1)

k e
that transforms the latter opinion into the former. By having agent i∗ + 1 updating at time t =
0, . . . , k, and S(i) according to the sequence of updates above, we obtain a resulting profile Bk

such that Bk
i∗+1 = B0

i∗ and Bk
j = B0

j for all j 6= i∗ + 1. Repeat the process for i∗ + 2, and
continue on the cycle until agent i∗, obtaining a consensual termination profile in which all opinions
are B0

i∗ .

Observe that the termination profiles reachable from the same initial profile on a cycle can de-
pend on the sequence of updates. A characterisation of such a set is an interesting open problem, as
already observed by Brill et al. (2016).

5.3 DAGs and Complete Graphs
A directed acyclic graph (DAG) is a directed graph that contains no cycle involving two or more
vertices. A simple argument of propagation allows us to prove the following:

Theorem 8. If G is a DAG, then both synchronous and asynchronous PWODk
F terminate univer-

sally.

Proof sketch. We define potential functions hi for each node i, as follows: hi(t) =
H(Bt

i , Fi(B
t
Inf(i)), measuring the distance between an individual’s opinion and the aggregated opin-

ion of its influencers in profile Bt. Each PWODk
F update decreases one or more such functions,

those of the updating agents, and possibly increases others, those of the agents influenced by the
one updating. By ordering such potential functions based on the distance from a node to a source,
which is possible given that G is a DAG, we obtain a lexicographic ordering of all functions hi

that decreases strictly with each effective transition. It is therefore impossible to build an infinite
sequence of PWODk

F effective transitions.

Let a complete graph be a graph G = (N , E) where E = N ×N . With a similar argument as
the one used in the previous proof (and generalising a result by Farnoud et al. (2013)) we show that:

Theorem 9. If G is the complete graph, then both synchronous and asynchronous PWODk
F con-

verge universally.

Proof sketch. On a complete graph the set of influencers Inf(i) = N for all i. Let therefore h(t) =∑
i H(Bi, F (B)) be a potential function measuring the overall distance of individual opinions from

the aggregated one. Every effective transition for both PWODk
F decreases the value of h.

A general result on the asymptotic convergence of PWODk
F is an interesting open problem. A

proof similar to the one used by Brill et al. (2016) could be adapted to show that PWODk
F asymptot-

ically converges on any graph, under the local IC-consistency property introduced in Definition 6,
for a k-geodetic IC. Universal convergence cannot be guaranteed even on simple cycles, at least
when more than two issues are present. To see this it is sufficient to consider a simple cycle with
only one agent having opinion 11 and all others 00, and devise a sequence of updates that make
the 11 opinion turn in the cycle whilst keeping all other opinions at 00. Termination results are well-
established for boolean networks, which however consider the diffusion of a single binary issue and
do not consider integrity constraints (see, for a survey, Cheng et al. (2010)).
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6 Conclusion and Future Work
In this paper we defined the first formal framework of opinion diffusion with binary issues under
constraints. We proposed a setting in which agents in a social influence network change their opin-
ions by asking about the opinions of their influencer on sets of issues of bounded size. We identified
the relation between the structure of the integrity constraint and the minimal size of communication
sets that allows the influence to lead to changing opinions, keeping the integrity constraint satisfied.
We also analysed the computational complexity of recognising k-geodetic integrity constraints and
identifying the minimal k for which a constraint is k-geodetic, and investigated the termination of
the associated diffusion process.

This paper raises a number of open questions, and suggests compelling directions for future re-
search. First, observe that our model easily generalises to cases in which agents might be uncertain
about, or abstain from giving an opinion on certain issues; it would be sufficient to change the aggre-
gation procedures to accommodate such input. Second, obtaining termination results for arbitrary
constraints, or characterising the set of constraints that guarantee termination on arbitrary networks,
would be a major advancement. Last, strategic issues are at play, motivating a deeper investigation
of the incentive structure behind influence updates, especially when a collective decision is expected
after the influence process.
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