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Abstract

We study the ability of a social media platform with a political agenda to influence
voting outcomes. Our benchmark is Condorcet’s jury theorem, which states that
the likelihood of a correct decision under majority voting increases with the number
of voters. We show how information manipulation by a social media platform can
overturn the jury theorem, thereby undermining democracy. We also show that
sometimes the platform can do so only by providing information that is biased in
the opposite direction of its preferred outcome. Finally, we compare manipulation
of voting outcomes by social media platforms to manipulation by traditional media
channels.

1 Introduction
Information influences voters. Traditionally, relevant information is provided publicly to the
electorate by mass media through political advertising and endorsements. Increasingly, it
is also delivered privately to individual voters by social media. Rather than being exposed
to the same, public information, users of social media face private persuasion through algo-
rithms that select and order the information they receive. For example, Facebook’s News
Feed algorithm determines personally for each user which posts are visible and the order in
which they appear [13]. Twitter also uses machine learning algorithms to select and order
tweets, and additionally adds warning labels and sometimes blocks information dissemina-
tion by locking accounts [36, 35]. Because of the vast reach and impact of social media,
the public discourse surrounding political biases in such machine learning algorithms has
intensified. These biases, as well as their effects on Facebook and Twitter users, have also
been identified empirically (see, e.g., [27, 21]).

In this paper, we study how and to what extent a social media platform can influence
voters through such private persuasion. Our beginning is Condorcet’s jury theorem [10], a
theorem that demonstrates the merit of democracy by showing that a group of imperfectly
informed voters is more likely to choose a socially preferred alternative by majority voting
than when one voter makes the decision.1 In our study, imperfectly informed voters obtain
additional information through messages from a social media platform. The platform has a
designer who commits to a messaging scheme, a commitment that mirrors the algorithms
used in practice to select and order the information that individuals obtain. On receiving
the additional information from the platform, voters use Bayes’ rule to update their beliefs
about the likelihood that a candidate or policy is preferable.

An important feature of our study is that the designer can credibly commit to how
messages are generated. If the designer commits to always revealing true information about
which alternative is better for society, voters can take the information at face value. However,
the designer may want a particular outcome for ideological reasons, without regard for which
alternative is better for society. The designer may thus benefit from committing to a biased

1More specifically, in the setting of the theorem, voters face a choice between two alternatives, one of
which is objectively better for all voters. Voters do not know a priori with certainty which is the better
alternative, and each voter’s limited information is expressed in probabilities about which alternative is
better. The theorem states that the socially preferred alternative is more likely to be chosen by majority
voting than when a single individual makes the decision, and, as the number of voters increases, the likelihood
of the correct decision under majority voting increases and approaches certainty.



scheme. Voters are aware that the scheme is biased, but are individually better off taking
the additional information into account when deciding how to vote.

Another feature of our study is that voters know that their single vote has a negligible
chance of being decisive, and vote sincerely in favor of the alternative they believe is more
likely to be better. This distinguishes our theory from a substantial literature in which voters
vote strategically in anticipation that their personal vote will be pivotal in determining the
voting outcome.2 Sincere voting, which is ostensibly expressive, allows us to characterize
the direct effects of persuasion on voting outcomes, and to identify the properties of optimal
ways for a designer using social media to influence voters.

Our first conclusion is that the designer can often design the scheme so that majority
voting results in the choice of the alternative preferred by the social media platform rather
than the one preferred by voters. This implies that Condorcet’s jury theorem is overturned—
elections decided by majority voting are less likely to result in the socially preferred outcome,
compared to a single voter making the decision alone. Furthermore, the designer can do
this with a very simple scheme—one that, for each voter, yields a conditionally independent
message from the same distribution. We next turn to study the properties of optimal
messaging schemes, with a focus on their biases. Perhaps surprisingly, we show that the
best way for the designer to tilt a majority outcome towards his ideologically preferred
alternative may be to commit to a scheme that is biased in the opposite direction of this
alternative.3

Section 2 below surveys the related literature and Section 3 describes the formal model.
These are followed by our results in Section 4 and extensions in Section 5. Finally, expository
examples are contained in the full version of this paper, as are all proofs [18].

2 Related Literature
The literature studying social media and transmission of information to voters through the
lens of Bayesian persuasion and information design has focused on studying the extent to
which a designer can manipulate others by selective disclosure of information [23]. In the
terminology of this literature, we study private Bayesian persuasion with multiple informed
receivers. We also restrict our designer to sending conditionally independent signals from
the same signal structure. Within the literature on Bayesian persuasion, the paper most-
closely related to ours is [25] (see also [26]). In this paper, the author studies a Bayesian
persuasion problem with a single, informed receiver. The model is different from ours, and
assumes that the state space is a full-support interval. However, [25] does present a school-
employer example that is similar to a single-voter voting game. Our paper may be viewed
as extending that example to a model with many receivers, and analyzing the effects on
voting. We show that, unlike the case of a single voter, when there are many voters the
designer can often completely overturn the outcome of the vote.

A main assumption in Bayesian persuasion is that the designer can commit to the in-
formation structure. [28] study the credibility of such commitment, and define a credible
information structure as one from which the designer has no incentive to deviate given
the receivers’ reactions and given that the frequency of messages must not change. Our
designer’s signal structure is credible in this sense: If the structure is optimal, then the de-
signer has no incentive to deviate because the designer is already getting the best outcome.
If the structure is not optimal, then no other signal structure can yield higher utility.

2We survey this literature in Section 2.
3[21] show that Twitter is biased towards the right, as it amplifies messages from the mainstream political

right more than the mainstream political left. In the context of our setting, this might be consistent with a
desire to tilt public opinion towards the left.



A number of papers study Bayesian persuasion with receivers who subsequently vote
in an election. The bulk of this research focuses on strategic voters—voters who condition
their behavior on being pivotal or decisive in the election—and the conclusions rely critically
on the designer’s ability to exploit this behavior (see next paragraph for details).4 By
contrast, we suppose voters vote according to their own information for the outcome that
they believe is better (“sincere” voting), and do not regard themselves as possibly decisive
or pivotal. Rather, we suppose that voters enjoy an expressive benefit from voting for the
correct alternative.5 This allows us to characterize the direct effects of persuasion on voting
outcomes, and to identify the properties of optimal persuasion.

[6] study strategic voting in the context of Condorcet’s jury theorem; they describe
strategic voters conditioning their behavior on being pivotal in an election, and show that it
may no longer be personally optimal to vote sincerely. [15] show that under general voting
rules, such strategic voting may lead to a failure of information aggregation, but [14] show
that, nonetheless, the jury theorem holds: the probability that the outcome of the vote un-
der majority voting is correct approaches certainty as the number of voters increases. [19]
start with the general strategic voting framework of [14], and add an information designer.
They show that, under strategic voting, the designer can provide additional information in
a way that leads to any preferred outcome with high probability. [34] studies a symmetric
two-voter game, and shows that, in such a setting, it is never optimal for the designer to
commit to a conditionally independent signal structure. More generally, [3] study a general
framework for private persuasion, and characterize optimal solutions under submodularity
assumptions on the designer’s utility. In our setting, the utility function is neither supermod-
ular nor submodular, and so [3]’s results do not apply. [24] focus on persuading uninformed
voters through correlated signal structures that induce sincere rather than strategic voting
in equilibrium. Finally, [9] study optimal manipulation of strategic costly voting and [7]
study optimal manipulation of a heterogeneous group of receivers, where the sender can
design the information presented to each group member.

Another branch of the literature on Bayesian persuasion has studied public persuasion,
where the designer commits to a signal structure and all voters observe the same realization,
as opposed to private persuasion through social media where each voter obtains a personally
distinct information realization. Public Bayesian persuasion is an appropriate model for
traditional media such as newspapers and television. Private persuasion is appropriate for
social media, which can use personal information garnered from individuals’ browsing history
and communications in order to design selective information directed at an individual. The
literature includes [2], who study public persuasion of heterogeneous voters. [37] compares
public signal structures to private, conditionally independent signal structures, and shows
that the former are more informative (and hence worse for the designer) than the latter. [17]
also study public persuasion, with a focus on the interplay between the bias of the signal
structure and voters’ polarization. While less related to our work in terms of focus and
results, the model of [17] is similar to ours in that there is a continuum of voters and each
voter votes sincerely.

A sizable literature has studied bias in traditional and social media, both theoretically
and empirically (see [16, 30, 32] for a variety of surveys). Much of this literature focuses on
the informational effects of media bias, as well as its welfare implications. To the best of
our knowledge, our insight that the information designer’s optimal signal structure is biased

4See, for example, [29] and [31] and the references therein for the empirical literature on strategic voting.
Although much of the literature detects some amount of strategic voting, in most instances the large majority
of voters are not strategic.

5A paradox of voting is present [12] if voters have a negligible probability of being pivotal; what reason
does the voter have to vote? A benefit imputed to voting is expressive utility [20]. The act of voting is used
to express an identity or sense of belonging. In this context, voting is rational.



away from the intended outcome is novel.6
Lastly, in other related literature, [11] study bias in a social media platform when those

it targets also have exogenous information, and share this information via a social network.
They study the effects of the network’s connectivity when voters suffer from correlation
neglect on the optimal bias of the social media platform. [33] study the effects of public
persuasion and cheap talk on turnout in a model with costly voting. Relatedly, [27] performs
a field experiment to study the effects of social media (specifically, Facebook) on user’s
political leanings, and [21] study biases in the amplification of political messages on Twitter.

3 Model
There are two policies (or candidates) denoted by A and B, and a continuum of voters who
must decide between them. There are two equally likely states of the world, Θ = {θA, θB},
such that the better policy is A in state θA and B in state θB . Each voter receives a
symmetric binary signal about the state of the world. Signal realizations are either a or b,
and a signal of accuracy q is one where

P [a|θA] = P [b|θB ] = q.

We allow heterogeneity in the levels of signal accuracy. Specifically, we assume that a λ-
share (where λ ∈ (0, 1)) of the population has low signal accuracy q` ∈ [0.5, 1), and the rest
have high signal accuracy qh ∈ [q`, 1]. We say that the population is homogeneous if q` = qh,
and that it is heterogeneous otherwise.7

In addition to the voters, there is an information designer. The designer can send the
voters additional informative signals that depend on the state of the world. Unlike the
voters, however, the designer wants to maximize the probability that policy A is chosen,
regardless of the state. In particular, the designer’s utility is 1 whenever A is chosen, and 0
otherwise. In order to influence the voters, the designer chooses a binary signal structure s—
a probabilistic function from the state to a pair {a, b}—and sends each voter a conditionally
independent realization of s.

We note that a more general signal structure of the designer could potentially make use
of correlated messages and different distributions for different voters.8 However, we restrict
ourselves to simple signal structures, in which messages are conditionally independent and
drawn from the same distribution of binary signals. We will show that even such simple
signal structures can suffice for the designer to overturn the outcome of majority voting.

We interpret this signal as having been sent through a social media platform that is
controlled by the information designer. As in the Bayesian persuasion framework [23], we
assume that the designer commits to s prior to learning the true state of the world. In
addition, and without loss of generality, we assume that the signal structure s is such that
P [θA|a] ≥ P [θA|b]. If this were not the case, one could simply switch the meanings of the
two signal realizations.

Remark 3.1. The assumption that the designer’s signal structure is binary is without loss
of generality, given that the set of actions per voter is binary. We prove this formally in the
full version of the paper [18].

6We are aware of only one Bayesian persuasion model with negatively biased signal structures, [8], in
which such signal structures are used by duopolistic sellers in order to soften price competition.

7In Section 5 we allow more general distributions over signal accuracy levels and extend some of our
results to this setup.

8Most of the previous literature on persuading voters does, in fact, utilize carefully correlated messages.
See Section 2 for details.



Define the bias of the designer’s signal structure as the weighted difference in the sizes
of the “lies” in the two directions, namely,

bias(s) = 2 · (P [s(θB) = a] · P [θB ]− P [s(θA) = b] · P [θA]) = P [s(θB) = a]− P [s(θA) = b] ,

where the expression after the first equality presents the definition of a general prior, and
the expression after the latter equality relies on having a uniform prior. Thus, under the
uniform prior, symmetric signal structures in which P [a|θA] = P [b|θB ] are unbiased—that
is, they have bias 0. Positive biases correspond to signal structures that are more likely
to yield the signal a, and negative biases to those that are more likely to yield the signal
b. Observe that for the canonical example of Bayesian persuasion, in which a prosecutor
seeks to convince a judge that a defendant is guilty (which corresponds to state θA), the
optimal signal structure is one with positive bias (22). We note that this definition of bias
is an instance of the definition of [16] for media bias, under the assumption that the fully
informative signal structure in which P [s(θA) = a] = P [s(θB) = b] = 1 has bias 0.

A strategy σi of voter i is a function from signals (both the original signal and the
designer’s signal) to a distribution over two actions—a vote for A or a vote for B. The
outcome of the vote is then determined by the majority, with ties decided in favor of A.9
We assume that voting is sincere: each voter votes according to her own information, which
includes the prior and the two signals. Sincere voting can either directly reflect the voters’
preferences (i.e., each voter obtains utility 1 if she votes for the better policy), or it can
correspond to voters who care for the selected outcome (i.e., each voter obtains utility 1 if
the better policy is chosen), yet when voting they do not take into account the strategic
effects of pivotality.10

Thus, each voter votes for A if her posterior on state θA is above 1/2 and votes for B if
her posterior is below 1/2. As is standard in the Bayesian persuasion literature, we assume
that voters vote for A, the outcome preferred by the designer, when their posterior is exactly
1/2; however, the exact tie-breaking rule is unimportant for our results.

Observe that if the designer sends an uninformative signal and either q` > 0.5 or λ <
0.5 < qh, then A is chosen in state θA and B in state θB . (In the complementary case where
either qh = 0.5 or q` = 0.5 < λ, outcome A is chosen in both states of the world, due to our
tie-breaking rule.) Furthermore, due to the population being a continuum and signals being
private and conditionally independent, the outcome of the vote is deterministic, conditional
on the state of the world. This means that it is either the case that the designer cannot
manipulate the outcome (in which case A is still chosen only in state θA, regardless of the
designer’s signal structure), or that she can perfectly manipulate the outcome (in which case
A is chosen in both states). In the latter case, we say that a designer’s signal structure s is
optimal if it induces the choice of policy A in both states. Note that there might be multiple
optimal signal structures.

4 Results

4.1 Preliminaries
Suppose that a voter’s belief that the state is θA is equal to 1/2. Then any additional
signal structure s : Θ 7→ {a, b} induces a pair of posteriors (α, β), where α = P [θA|a] and
β = P [θA|b]. The signal structure is uninformative if α = β = 0.5. If the signal structure is

9Tie-breaking in favor of A is assumed for simplicity only—the results are nearly identical for other
tie-breaking rules; see Remark 4.1.

10The probability of being pivotal is decreasing in the population size (for finite populations), and it is
equal to zero in our continuum-population model.



informative we can assume without loss of generality that 0 ≤ β < 1
2 < α ≤ 1, and in this

case there exists a (unique) signal structure that induces these posteriors. Thus, we can
identify any informative signal structure with the pair of posterior distributions it induces
when starting with prior11 1

2 . For any β < 1
2 < α, the exact mapping can be derived as

follows: First, since the expected prior is equal to the posterior, we have

αpa + β(1− pa) =
1

2
⇒ pa =

1
2 − β
α− β

, pb =
α− 1

2

α− β
,

where pa = P [a] and pb = P [b] = 1− pa. Next, we have that

P [s(θA) = a] = P [a|θA] =
P [θA|a] pa

P [θA]
=
αpa
1/2

=
α− 2αβ

α− β
⇒ P [b|θA] =

2αβ − β
α− β

.

Similarly,

P [s(θB) = a] = P [a|θB ] =
P [θB |a] pa

1/2
=

1− 2β − α+ 2αβ

α− β
⇒ P [b|θB ] =

2α+ β − 1− 2αβ

α− β
.

Furthermore, this analysis implies that the bias of the signal structure (α, β) is:

bias(α, β) = P [s(θB) = a]− P [s(θA) = b] =
1− β − α
α− β

. (1)

Next, we have the following lemma, which allows us to focus in our analysis on a small
set of 6 = 2 × 3 binary signal structures, such that, if the outcome of majority voting is
manipulable, one of these signal structures must be optimal (and any other optimal signal
structure has weakly higher values of α and β).

Lemma 1. Suppose that signal structure (α′, β′) is optimal. Then the signal structure (α, β)
is also optimal, where α = max

{
q ∈ {q`, qh} : q ≤ α′

}
and β = max

{
q ∈ {0, 1− qh, 1− q`} :

q ≤ β′
}
.

The intuition for Lemma 1 is that for any signal structure, slightly decreasing either α
or β increases the probability of the A-favorable realization a, and that if α /∈ {q`, qh} and
β /∈ {0, 1 − qh, 1 − q`}, then this slight decrease has no effect on the behavior of any voter
conditional on her signals. Table 1 summarizes the key properties of these 6 optimal binary
signal structures (which are derived from straightforward calculations). Note that the share
of voters who vote for policy A is always larger in state θA than in state θB , and, thus, a
signal structure is optimal if and only if it induces at least half of the voters to vote for
policy A in state θB .

Remark 4.1. The tie-breaking rule has no significant impact on our results. In particular,
if one assumes the opposite, namely, a B-favorable tie-breaking rule (i.e., each voter votes
for B when indifferent, and B is chosen if supported by exactly half of the voters), then the
only minor effect on our results will be that the optimal signal structures will be perturbed
by a small ε > 0. outcome of majority voting, then there will be an optimal signal structure
of the form ( 1

2 + ε, β + ε) or (α+ ε, β + ε), with α ∈ {q`, qh} and β ∈ {0, 1− qh, 1− q`}, for
a sufficiently small ε > 0.

11Representing signal structures as distributions over posteriors is standard in Bayesian persuasion [22].
Representing them as posteriors starting with a prior of 1

2
is common in the literature on social learning

(see, e.g.,[1, 4, 5]).



Table 1: Key Properties of the 6 Possibly Optimal Signal Structures of Lemma 1
(α, β) P [s(θB) = b] Bias How voters vote Share of B voters in θB

(q`, 0) 2− 1
q`

1−q`
q`

> 0 qh: Vote A iff a AND a

q`: Follow designer’s signal
1− (1−q`)(1−qh+λqh)

q`

(decreases in λ)

(qh, 0) 2− 1
qh

1−qh
qh

> 0 Follow designer’s signal 2qh−1
qh

(independent of λ)

(q`, 1− q`) q` 0 qh: Follow original signal
q`: Vote A iff a OR a

qh − λ
(
qh − q2`

)
(decreases in λ)

(q`, 1− qh) qh(2q`−1)
qh+q`−1

qh−q`
q`+qh−1 > 0 qh: Follow original signal

q`: Follow designer’s signal
λ qh(2q`−1)qh+q`−1 + (1− λ) qh

(decreases in λ)

(qh, 1− q`) q`(2qh−1)
qh+q`−1 − qh−q`

q`+qh−1 < 0 Vote A iff a OR a (λq` + (1− λ) qh) q`(2qh−1)qh+q`−1

(decreases in λ)

(qh, 1− qh) qh 0 qh: Vote A iff a OR a

q`: Follow designer’s signal
q2h + λqh (1− qh)

(increases in λ)

4.2 Partially Uninformed Populations (q` = 1
2
)

In this section, we focus on the case in which the low-accuracy signal is uninformative (i.e.,
q` = 1

2 ). That is, we assume that a share λ of the population is uninformed, and the
remaining voters each obtain a private signal with accuracy qh. An interesting special case,
discussed toward the end of this section, is that of homogeneous populations, in which all
voters have the same signal accuracy (formally, λ = 0).

Our first observation is that if the signal accuracy qh is below some threshold, denoted
by qNI(λ), then policy A is always chosen, even without any manipulation by the designer.12

Claim 1. Policy A is chosen in both states with an uninformative designer’s signal structure
iff

qh ≤ qNI(λ) ≡ 1

2(1− λ)
.

It is straightforward to verify that qNI(λ) is increasing in λ, that qNI(25%) = 2
3 , and

that qNI(50%) = 1. This is illustrated by the solid (red) curve in Figure 4.2. In what follows
we focus on the more interesting case in which qh is above this threshold—namely, the case
in which policy B is chosen in state θB unless the designer manipulates the outcome.

In order to state our result, we define q : [0, 1)⇒ [0.5, 1] as follows:

q(λ) =
−λ+

√
λ2 + 2− 2λ

2− 2λ
.

It is straightforward to verify the following, illustrated by the dashed (blue) line in Figure
4.2:

Fact 1. q(λ) is decreasing in λ, q(0) =
√
2
2 , and q(25%) = 2

3 = qNI(25%).

Our first result shows that the designer can manipulate the outcome of majority voting
iff qh ≤ q(λ), and that manipulation (when possible) can be implemented by an unbiased
signal structure. Moreover, for values of precision in the interval

(
2
3 , q(λ)

)
(values above the

horizontal dotted (black) line in Figure 4.2), all optimal signal structures have non-positive
biases.

12If one changes the tie-breaking rule to favor policy B, then under the same condition on λ, the designer
can perfectly manipulate the outcome by sending the signal structure ( 1

2
+ ε, 1 − qh) for a sufficiently

small 0 < ε � 1. This signal structure is almost uninformative in the sense that with an arbitrarily high
probability of 1−O(ε) the voters get the realization a, which only slightly increases the likelihood of state
θA, and which is sufficient to make the uninformed voters strictly prefer policy A.



Figure 1: Illustration of Proposition 1 (q` = 0.5)

Proposition 1. Suppose that q` = 1
2 and qh > qNI(λ).

1. If qh > q(λ) then the designer cannot manipulate the outcome of majority voting.

2. If qh ≤ q(λ) then the designer can manipulate the outcome of majority voting, and
she can do so by using the unbiased signal structure (qh, 1− qh).

3. If qh ∈ ( 2
3 , q(λ)] then all optimal signal structures have non-positive biases.

An interesting feature of the optimal signal structures is that they have non-positive bias
(bullets 2 and 3 of Proposition 1). Observe that this is the opposite direction of bias relative
to the standard application of Bayesian persuasion [23], in which the bias is positive (i.e.,
in favor of A, the designer-optimal outcome). The intuition for the contrast between the
standard application and our setup is as follows. A voter who is informed and obtains signal
a is prepared to vote for A, whereas a voter who is informed and obtains signal b is prepared
to vote for B. The designer would like to convince the latter to vote for A, while at the same
time not causing the former to switch. The way to do this is to choose a signal structure
for which realization a is stronger than realization b, so that voters with realizations (b, a)
switch to A but voters with realizations (a, b) do not switch to B. Of course, since a is
stronger than b, it must be the case that b is realized with higher probability, or, in other
words, that the signal structure has non-positive bias. We now prove Proposition 1. An
interesting special case is a homogeneous population in which all voters have the same signal
quality (i.e., λ = 0). Applying Proposition 1 yields the following characterization of vote
manipulation in homogeneous populations.

Corollary 1 (Homogeneous populations). Suppose that λ = 0.

1. If qh >
√
2
2 then the designer cannot manipulate the outcome of majority voting.

2. If qh ≤
√
2
2 then the designer can manipulate the outcome of majority voting, and she

can do so by using the unbiased signal structure (qh, 1− qh).



3. If qh ∈ ( 2
3 ,
√
2
2 ] then all optimal signal structures have non-positive biases.

4.3 General Binary Signals
(
1
2
< q` < qh, λ ∈ [0, 1]

)
In this section we return to the general binary model in which the low-accuracy signal
is informative (q` > 1/2). We prove two results: first, a characterization of conditions
under which the designer can manipulate the outcome of majority voting; and second, an
identification of conditions under which optimal signal structures have positive or negative
biases.

In order to state our first result we define λ : ( 1
2 ,
√
2
2 )] → [0, 1] as follows: λ(qh) =

0.5−q2h
qh(1−qh) . We will show in the proof of Proposition 2 below that λ(qh) is the highest share
of λ for which the signal structure (qh, 1 − qh) induces a majority of the voters to vote for
A in state θB for all values of q` ≤ qh. Observe that:

Fact 2. The function λ(qh) is decreasing, λ( 2
3 ) = 25%, and λ(

√
2
2 ) = 0.

Proposition 2.

1. If
√
2
2 < q`, then the designer cannot manipulate the outcome of majority voting.

2. If q` <
√
2
2 < qh, then the designer can manipulate the outcome of majority voting iff

λ is sufficiently high.

3. If 2
3 < qh ≤

√
2
2 , then the designer can manipulate the outcome of majority voting iff

either (I) λ ≤ λ(qh), or (II) λ is sufficiently large.

4. If qh ≤ 2
3 , then the designer can manipulate the outcome of majority voting for any

q` and λ.

Our results are illustrated in Figure 2. Part (3) of Proposition 2 implies an interesting
non-monotonicity in λ: when qh is in the interval

(
2
3 ,
√
2
2

)
, then the outcome of majority

voting is manipulable if either the share of voters with low accuracy is sufficiently low
(namely, λ ≤ λ) or if it is sufficiently high, but the outcome of majority voting cannot
be manipulated if this share is intermediate. The intuition for this non-monotonicity is
as follows. Our designer is constrained by the fact that she must choose the same signal
structure for all voters. When λ is either very low or very high, the designer can tune this
distribution to the large majority of voters by sending an unbiased signal with the “right”
level of accuracy (i.e., a level that induces most voters to vote for A if either of their signals
is in favor of A). By contrast, when λ is close to 50%, the designer has a trade-off, and
must send a “versatile” signal that can handle both groups of voters (and is not “tailored”
to either group), and this limits her ability to manipulate the outcome of majority voting.

Moreover, one can show that the ability to manipulate the outcome of majority voting is
also non-monotonic in q`. Specifically, for each qh, the interval of λ-s for which the outcome
of majority voting cannot be manipulated is non-monotone in q`: the interval is small (and
it might even disappear) when q` is either small (close to 50%) or large (close to qh), while
it is largest when q` is intermediate. The intuition for the non-monotonicity in q` is as
follows. When q` is low, it is easy to manipulate the low-accuracy voters. The designer can
send a positively biased signal structure that with high probability sends a “weak pro-A”
realization, which manipulates most low-accuracy voters (and a sufficient number of high-
accuracy voters). When q` is close to qh, the designer can exploit the relative homogeneity of
the population by sending the negatively biased signal structure (qh, 1− q`), which induces
both types of voters to vote for A if either of their signals is “pro-A.” By contrast, when



Figure 2: Outcome Manipulation for qh = 70% and Various Values of q` (values between
50% and 70% in steps of 1%) and λ (values between 0 and 100% in steps of 5%)

q` has an intermediate value the designer has neither of these two benefits, and thus her
ability to manipulate the outcome of majority voting is limited.

Recall that in the special case of q` = 0.5 (partially informed voters), manipulation,
when possible, could always be implemented by an unbiased signal structure (and in some
cases only by signal structures with non-positive biases). In what follows, we show that this
is no longer the case in the general setup (with q` > 0.5). Specifically, we characterize both
setups in which manipulation can only be implemented by positively biased signal structures
(in which the signal a is sent more often than b), and setups in which manipulation can only
be implemented by negatively biased signal structures. Specifically, Proposition 3 below
shows that the direction of the bias is uniquely determined (for an interior interval of λ-s)
in the following setups:

1. All optimal structures have a positive bias if qh > 2
3 and q` is sufficiently low.

2. All optimal structures have a negative bias if qh ∈ ( 2
3 ,
√
2
2 ) and q` is sufficiently high.

Observe that in the second case, the manipulation is implemented by signal structures with
the opposite direction of bias relative to the standard applications of Bayesian persuasion
(see, e.g., 22). The intuition for this is that the optimal negatively biased signal structure
(qh, 1− q`) exploits the (modest) heterogeneity of the population: the relatively infrequent
signal a is sufficiently informative to induce both types of voters to vote for A regardless
of their exogenous signal, while the more frequently used signal b is sufficiently weakly
informative, so that it does not change the vote of voters who get exogenous signal a.



Proposition 3.

1. For any qh >
2
3 , there is a q ∈ (0.5, qh) such that, if q` ∈ (0.5, q), then there is an

interior open interval of λ-s for which all optimal signal structures have positive biases.

2. For any qh ∈
(

2
3 ,
√
2
2

)
there is a q ∈ (0.5, qh), so that, if q` ∈ (q, qh), then there is an

interior open interval of λ-s where all optimal signal structures have negative biases.

5 Extensions

5.1 Continuous Signal Accuracy Levels
In this section we extend our model to a general distribution over signal accuracy levels.
Specifically, we consider here a variant of our model in which the exogenous signal’s accuracy
is continuous, and is distributed according to density f with a support supp(f) in [0.5, 1].
We note that the closely related extension of the model to a setup with a finite but large
number of signal accuracy levels is analogous (and therefore omitted for brevity).

Our result here is an extension of Proposition 2 to this general setup, showing that the
outcome of majority voting is manipulable if all voters have accuracy levels of at most 2

3 ,
and that it is non-manipulable if all voters have a signal accuracy at least

√
2
2 . Formally,

Claim 2.

1. If supp(f) ⊆
[√

2
2 , 1

]
, the designer cannot manipulate the outcome of majority voting.

2. If supp(f) ⊆
[
1
2 ,

2
3

]
, the designer can manipulate the outcome of majority voting.

5.2 Targeted Information
In our main analysis, we required the designer to design one signal structure for all voters,
and we showed that, even under this restriction, the designer can often manipulate the
outcome of majority voting. In this section we show that, if the designer can differentiate
between voters based on their signal accuracy levels, then the designer’s ability to manipulate
is even greater.

Suppose that the designer can distinguish between the two types of voters, q` and qh.
Furthermore, suppose that she can commit to two different signal structures, sh and s`,
where the former targets qh voters and the latter targets q` voters. Observe first that
Proposition 2 applies: if q` < qh ≤ 2/3 then the (qh, 0) signal structure is optimal regardless
of the type of voter, and so the designer can manipulate the outcome of majority voting,
whereas if qh > q` >

√
2/2 then the designer cannot manipulate the outcome of majority

voting. The proof is the same as that of the proposition.
However, targeted signal structures differ in the intermediate case. Note that for either

i ∈ {`, h}, the signal structure that leads the maximal fraction of qi voters to vote for A
is either (qi, 0) or (qi, 1 − qi), by (the proof of) Lemma 1. Both signal structures lead a
majority of voters for A in state θA. In state θB , however, (qi, 0) leads to P [A|θB ] = 1−qi

qi
,

whereas (qi, 1−qi) leads to P [A|θB ] = 1−q2i (see Table 1). For qi ∈ [1/2,
√
5−1
2 ), the fraction

1−qi
qi

is larger, whereas for qi ∈ (
√
5−1
2 , 1), the fraction 1− q2i is larger. Overall, the designer

can manipulate the outcome of majority voting if and only if

λ ·max

{
1− q`
q`

, 1− q2`
}

+ (1− λ) ·max

{
1− qh
qh

, 1− q2h
}
≥ 1

2
.



Observe that, in contrast to Proposition 2, there is no non-monotonicity here: the left-hand
side of the inequality decreases with q` and with λ.

This last necessary and sufficient condition on the designer’s ability to manipulate the
outcome of majority voting extends in a straightforward manner to the variant with a
continuous distribution of signal accuracy levels from Section 5.1 above. In this case, the
designer can manipulate the outcome of majority voting if and only if∫ 1

1/2

max

{
1− q
q

, 1− q2
}
· f(q)dq ≥ 1

2
.

5.3 Strongly Targeted Information
What if the designer has even more finely grained information about voters, such that she
knows not only each voter’s signal accuracy but also its realization? In this case, the designer
can provide a strongly targeted signal structure, where voters with different levels of signal
accuracy and different realizations get signals from different structures.

For a given signal accuracy q, a voter with realization a has interim belief q about the
probability that the state is A, whereas a voter with realization b has interim belief 1 − q
about this probability. If the designer knows these realizations, she faces a standard Bayesian
persuasion problem relative to each one of these groups of voters. In order to maximize the
probability that such voters vote for A, the designer should supply the former group of voters
with no additional signal, and the latter group of voters with an additional signal structure
(q, 0). This latter signal structure is the optimal signal structure from the standard Bayesian
persuasion setting [23], supplied to a voter who has belief 1− q and is willing to vote for A
once her belief is above 1/2. Given these signals, the former voter will always vote for A,
whereas the latter will vote for A with probability 1−q

q in state θB . In state θB , the total
share of voters with accuracy q who vote for A is thus (1− q) · 1 + q · 1−qq = 2(1− q).

For a homogeneous population in which all voters have accuracy q, the designer can
manipulate the outcome of majority voting iff 2(1 − q) ≥ 1

2 ⇔ q ≤ 3
4 . When there are

two levels of signal accuracy, q` and qh, the designer can then manipulate the outcome of
majority voting if and only if 2λ · (1− q`) + 2(1− λ) · (1− qh) ≥ 1

2 .
When there is a continuous distribution of signal accuracy levels13 the designer can

manipulate the outcome of majority voting if and only if 2
∫ 1

1/2
(1− q)f(q)dq ≥ 1

2 .

5.4 Social Media vs. Traditional Media
Our analysis and results lead to a straightforward comparison of the effects of social media
(through private persuasion) and traditional media (through public persuasion). For the
latter, suppose that instead of each voter obtaining a conditionally independent realization
of the designer’s signal structure, all voters obtain the same realization. Is such a public
signal structure better or worse for the designer?

Observe that with a public signal structure, the designer can never manipulate the
outcome of majority voting with probability one. However, she can always at least slightly
increase the probability that voters vote for A (with a positively biased signal structure as
in [23]). Thus, the answer to whether this is better than private persuasion depends on
whether or not the designer can manipulate the outcome of majority voting in the latter
case. If she can, then private persuasion by social media is better. If she cannot, then public
persuasion by traditional media is better.

13As in Section 5.1 above.
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