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Abstract

We provide a formal framework accounting for a very common intuition in the (com-
putational) social choice literature: analytically established incompatibilities should be
qualified by the plausibility of axioms’ violations. In consistency with the increasing use
of simulation models aiming at assessing the empirical performance of rules, we define
the degree to which a given rule satisfies an axiom based on a probability distribution
defined over the inputs that this rule takes. We then propose and characterise a criterion
to evaluate and compare rules given a set of axioms, and a criterion to measure axioms’
compatibility between each other for a given rule, building on an analogy with coopera-
tive game theory.

1 Introduction

Incompatibilities between axioms have given rise to numerous attempts to provide specific notions
of the degree to which an axiom is satisfied, as alternatives to the typical domain restriction
method. Such notions enable in turn to compare in a subtle way rules that where not comparable
when sticking to the binary constraint according to which a rule satisfies an axiom if it satisfies
its requirements on a whole parameter domain, or simply does not satisfy the axiom. Two
predominant interpretations support their use: one in which the parameters selected to measure
the departure from a desirable property represent the intensity of the violation of axioms, and
one in which they represent its plausibility. We adopt the latter approach in this paper as we
propose a criterion to compare rules based on the probability that they satisfy axioms and sets
of axioms.

Studies discussing the empirical frequency, or the theoretical likelihood, of a given rule satis-
fying a certain property consist in counting the instances for which the rule meets the considered
requirements —these instances can be composed of theoretical or stochastically generated prefer-
ence profiles, real elections various parameters, sets of alternatives etc. In that respect, simulation
models, focusing initially mostly on the occurrence of the Condorcet paradox in voting situa-
tions (see [11] and [12] for a review of this literature), are now commonly used, in increasingly
diverse settings (e.g in voting, fair division, market design problems), and under less restrictive
statistical assumptions ([9], [22]).

In consistency with these models, we consider an abstract set of instances, endowed with a
probability structure used to account for their relative frequency. The typical example of such a
set in our view is the set of preference profiles associated either to a fixed or to a varying group
of agents. We can then measure the mass of instances for which punctual and relational axioms,
in the words of William Thomson ([21]), are verified. This general framework may be applied in
any field in which an axiomatic approach is relevant and, in particular, covers a large spectrum
of social choice problems, be they Arrovian aggregation, voting problems, fair division selection -
or ranking - models, with divisible or indivisible goods, while, importantly, providing the degree
of satisfaction of both single axioms and of combinations of axioms.

Defining the degree of satisfaction as a probability guarantees, in contrast to definitions based
on intensity notions, its commensurability across (sets of) axioms. Concretely, the possibility to
compare by how much a given rule satisfies two different sets of axioms proves fundamental to
i) evaluate and compare rules and ii) decompose the logical performance of a given rule.
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As we already mentioned, for a given set of axioms and a given rule, we consider the probabil-
ity to satisfy all possible combinations of axioms. We then propose and characterise a criterion
to assess the performance of a rule on the basis of this collection of probabilities, taking into ac-
count the way in which the specific normative content of axioms should influence this evaluation.
More precisely, the normative desirability of axioms and their interaction are introduced through
the use of a capacity, and the way the probability to satisfy a given set of axioms influences the
measure of the performance depends on the specific structure of this set function.

Finally, these probability vectors can be analysed in order to determine the level of com-
patibility of axioms given a specific rule. We propose and characterise a criterion fulfilling this
purpose based on an analogy with cooperative game theory.

2 Related Literature

William Thomson, in a paper in which he seeks to characterise the essential features of the
axiomatic program [21] conceives this research as the attempt to draw as precise a frontier as
possible between families of problems for which given properties are compatible and families for
which they are not. This view has motivated the most standard way of dealing with impossibilities
in social choice theory: when some axioms are shown to be incompatible on a given parameter
domain, it seems natural to look for restricted domains in which these axioms actually can be
combined. Accordingly, the plausibility of these axioms’ compatibility becomes the plausibility
of the restricted domains, and it is left to the theory consumer ([21]) to assess how suitable the
domain restrictions are in the context at hand. Recently, this type of approach has saliently
been described in Hervé Moulin’s review of new developments of fair allocation theory, centered
around very structured problems such as ones with one-dimensional single-peaked preferences,
dichotomous preferences, or preferences with perfect substituability [17]. Restricted preference
domains have also proved fruitful in algorithmic social choice theory, for example as tools to
circumvent the NP-hardness of winner determination in famous voting rules ([10]).

Yet, this approach maintains the binary constraint according to which a given condition is
satisfied on a whole parameter domain or simply is not satisfied, whereas, in order to construct
a less partial order between rules, when a procedure fails to yield good outcomes, one would like
to know by how much it fails. For that matter, the use of parametrically weakened versions is
quite classical: one or several parameters indicate the intensity of departure from the original
studied property, see [16] and [3] for instance.1 However, a great number of principles guiding
the formulation of axioms are not satisfactorily parametrizable based on this interpretation in
terms of intensity.2

Another type of theoretical approach, closer to the way we proceed in this paper, was adopted
in the context of Arrovian social choice theory in [7], [6] and [8]. The point is to count the number
of pair, or triples, of alternatives for which studied axioms are satisfied in order to identify trade-
offs between them.

We already discussed in the introduction how this work relates to simulation models. Their
general principle is to derive, from (statistical) assumptions on the behaviour and the preferences

1In this classical paper, the authors of [16] propose such a parametric relaxation of a proportionality axiom
—where, informally, the parameter defines a portion of the endowment divided by the number of agents, and it
is required that for any preference profile, the considered rule selects an allocation for which each agent prefers
his or her bundle to this portion— and then actually show that the impossibility they established for the non
parametric version still holds for any value adopted in the parametric relaxation.

2If it is probably always possible to find parametric relaxations of that type, it is more complex to find ones
that cater to a non-equivocal, intuitive and convincing —with respect to the principle that motivates them—
sense in which the weaker conditions depart from the stronger one.
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of agents involved in a given aggregation problem, the probability of occurrence of certain types
of outcomes under different rules. A recent review of this vast literature can be found in [9].
Let us mention a few example of studies in computational social choice and market design con-
sisting in measuring the empirical frequency of the violation of a given property, different from
Condorcet consistency.3 In the former literature, [4] studied the number of solutions selected by
standard tournament solution concepts, using both real world preference data and simulations,
thus testing for their (lack of) decisiveness. Focusing on the occurrence of the agenda contrac-
tion paradox, [5] concluded, based on simulations used to extend theoretical results obtained
for problems involving four alternatives, that sensibility to such contraction is of higher prac-
tical relevance than the Condorcet loser paradox. After extending theoretical indices used for
single-valued social choice procedures, [1] study the level of manipulability of multi-valued rules,
using computer experiments on problems with four and five alternatives. In market design, [18]
conducted simulations on data from the National Resident Matching Program to account for the
manipulability of the matching mechanism, and observed that even if it is de jure manipulable,
the number of agents who would have an interest in returning a false report, when every other
agent is truthful, vanishes as the size of the market grows.

We believe that this work can help analyse and compare rules in a subtle way by providing
measures of performance that incorporate both the probability to satisfy a set of axioms, their
normative desirability and the way they interact. In particular, it provides a way to enrich the
use of models based on notions of degree interpreted in terms of frequency of violation, especially
of simulation models.4

3 A commensurable notion of degree of satisfaction

Let us give an illustration of the simple objects we briefly mentioned in the introduction around
which this work is structured. We aim first at selecting rules on the basis of arrays of the following
form:

a1 a2 a3 a1a2 a1a3 a2a3 A
1 0.8 0.4 0.8 0.4 0.35 0.35

which represents how often a (choice) rule satisfies combinations of axioms in A = {a1, a2, a3}
—precise definitions will be given subsequently.

3.1 Rules and axioms

Any notion of the frequency at which a given rule satisfies axioms requires considering instances
over which measuring its behaviour. As suggested above, making preference profiles vary and
studying the outcomes prescribed by a rule, which is often done in practice, is an evident way
to generate instances —and distributions over these instances. However, in order to be both as
general and as concise as possible, we directly introduce an abstract notion of instance, from
which classes of problems, rules and axioms are defined. Informally, the frequency of satisfaction
of an axiom will be defined as the measure of the set of instances for which the considered rule
meets the required properties.

The starting point for evaluating the performance of rules is to specify the relevant domain:
we define a class of problems as a pair of sets (I,O), and refer to elements i of I as instances,

3Once again, see [11] and [12] for a review of the literature specifically dedicated to the Condorcet paradox.
See also [13] and [14].

4[22] highlighted the importance of this issue for computer experiments.
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and to elements o of O as outcomes.5 These objects respectively represent the arguments and
the images of a rule: a rule f is a mapping

f : I → O.

As an illustration, in the classical microeconomic division problem, an instance is made of a
group of n ∈ N agents, a social endowment of l ∈ N infinitely divisible resources Ω ∈ Rl

+, and
a profile of continuous, monotonic and convex individual preferences over Rl

+.
6 A rule is then a

correspondence, mapping each such instance i to a set o of vectors in Rnl
+ .7

An axiom can then be described as defining a subset of admissible rules. Before proceeding to
definitions, an important distinction should be made between, in the words of William Thomson
[21], punctual and relational axioms. The former are requirements made on outcomes obtained
for each instance separately, while the latter formulate restrictions on outcomes obtained from
different instances related in a specific way. In the microeconomic division framework we just
mentioned as an illustration, ‘efficiency’ is a punctual axiom, and so is ‘envy-freeness’, while
‘population monotonicity’ and ‘ressource monotonicity’ are relational ones.8

A punctual axiom a is defined as a set of rules such that for a given family (Oa
i )i∈I , O

a
i ⊆ O,

f ∈ a if and only if
[
f(i) ∈ Oa

i for all i ∈ I
]
.

In words, a specifies for each instance a set of admissible outcomes, and the image of an instance
by rule f satisfies the requirement of a if and only if it belongs to an element of this family.

A relational axiom a is defined as a set of rules such that for a given K ∈ N and a family
(Oa

i1,...,iK
)(i1,...,iK)∈IK , Oa

i1,...,iK
⊆ OK ,

f ∈ a if and only if
[(
f(i1), ..., f(iK)

)
∈ Oa

i1,...,iK for all (i1, ..., iK) ∈ IK
]
.

This is a general definition, but most of relational axioms considered in different domains of social
choice theory involve the comparison of outcomes obtained from only two different instances.
Returning to the above example, ‘population monotonicity’ requires to consider, for a fixed
social endowment, the outcomes of a rule when computed for a profile of preferences of a group
of agents N and a profile of a group9 N∪{k} which coincides with the preceding profile for agents
in N . According to this definition, there typically are tuples of instances (i1, ..., iK) for which
Oa

i1,...,iK
= O, that is, for which a imposes no restriction whatsoever. In our example, ‘population

monotonicity’ is silent about pairs of preference profiles such that none is an extension of the
other to a superset of agents.

The reader can see that taking K = 1 yields the definition of a punctual axiom; we however
maintain this conceptually meaningful distinction for presentational purposes.

3.2 The probability to satisfy axioms

The vast majority of studies using stochastic preference models to generate instances have focused
on i) punctual axioms and ii) a single axiom at a time. It is, however, possible to define the
mass of instances for which a rule satisfies simultaneously several relational or punctual axioms.

5(I,O) is fixed throughout this paper. All the objects we consider depend on it but this dependence is omitted.
6Throughout this paper, given a set B and a natural number K, BK denotes the K−fold Cartesian product

of B. In addition, RK
+ (RK

++) denote the set of vectors in RK with only non-negative (positive) components.
7We stress that, as in this example, typically, singletons are only special cases of elements of O.
8Our purpose is not here to give an explicit definition of these conditions. See [17] (section 3.3) or [20] (sections

7.1 and 7.4).
9k /∈ N .
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Let A be a finite set of axioms and f : I → O a rule. Vectors (pfS)S⊆A ∈ [0, 1]
2J

such as the
one opening this section10 are obtained in the following manner.

Assume a ∈ A is punctual. Let Df (a) = {i ∈ I, f(i) ∈ Oa
i } denote the set of instances whose

image by f meets the requirements imposed in a. If there is a σ−algebra ξI defined on I such that
Df (a) is measurable, then the degree to which f satisfies a according to the probability measure
µ defined on (I, ξI) is simply µ

(
Df (a)

)
. More generally, for any a ∈ A, let Ka ∈ N denote the

number of instances associated to a in the definition of a relational axiom above —once again,
Ka = 1 when a is punctual. For all ∅ ≠ S ⊆ A, we let KS = maxa∈SK

a. Under the appropriate

measurability assumption11, letting µKS

denote the product measure on IK
S

obtained from
µ, and Df (a) =

{
(i1, ..., iKa) ∈ IK

a

,
(
f(i1), ..., f(iKa)

)
∈ Oa

i1,...,iKa

}
for a ∈ A, the degree to

which f satisfies S is given by:

pfS = µKS

({(
i1, ..., iKS

)
such that

(
i1, ..., iKa

)
∈ Df (a) for a ∈ S

})
To summarise, pfS is the proportion —computed from the probability measure µ— of profiles

of KS instances such that, for any axiom a ∈ S, the image by f of their restriction to the Ka

relevant instances satisfies the requirements of a.

4 How to measure the performance of rules ?

How can one assess the performance of a rule f and, importantly, compare it with other rules,
based on the probabilities to satisfy axioms in A, (pfS)S⊆A ?

We address this issue by constructing a performance criterion defined for any p in the set of

possible probability vectors, a subset of [0, 1]2
J

characterised by consistency conditions relat-
ing the probability to simultaneously satisfy all axioms in S and the probability to simultaneously
satisfy all axioms but one in S:

P =

{
(pS)S⊆A, p∅ = 1,max

{
0;maxa∈S

{
pS\a−(1−pa)

}}
≤ pS ≤ mina∈S

{
pS\a

}
for all S ̸= ∅

}
.

The right-hand side inequality states that for S ⊆ A, the probability to satisfy all the axioms
in S cannot be superior to any of the probabilities to satisfy all of them but one, that is to any
probability in (pS\a)a∈S .

The probability to satisfy all axioms in S is also constrained below by (pS\a)a∈S . Select a ∈ S;
taking pS\a and pa as given, the worst case in terms of probability to satisfy S \a and a happens
when the intersection of the sets of profile of instances for which they are respectively satisfied
has minimal measure, and the associated probability is 1− (1−pS\a)− (1−pa) = pS\a− (1−pa)
if it is positive, 0 otherwise.12 Hence the left-hand side inequality.

10For any rule, the value associated to the empty set is 1, that is why we omitted it in the opening example.
11For any a ∈ A, IK

a
is endowed with the product σ−algebra inherited from ξI , denoted ξI

Ka

, and Df (a),
defined in the main text, is measurable in (IK

a
, ξK

a
).

12In the example we presented at the beginning, given that the sets of profiles of instances for which a2 and
a3 are satisfied have measure 0.8 and 0.4 respectively, the set for which they are simultaneously satisfied has at
least measure 0.2.
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4.1 Normative desirability

As axioms most often reflect normative principles of (collective) decision that matter to different
extents, a key additional element for this evaluation needs to be introduced. More precisely, not
only can an axiom be more valuable to the eye of a researcher or a designer than another one, but
synergies are likely to emerge in the combination of axioms, if only through the fact that axioms
are particular formulations of general principles that may be deemed normatively independent
from one another. For instance, in the microeconomic allocation framework, the satisfaction of
‘efficiency’ may be more or less valued than the one of ‘envy-freeness’, and, furthermore, the
value of the satisfaction of another fairness criterion such as ‘egalitarian equivalence’, given the
satisfaction of ‘envy-freeness’, may be reduced, so that, equivalently, it may become more desir-
able to satisfy the efficiency condition. In this perspective, the example of a non-manipulability
axiom such as ‘strategy-proofness’ is also highly instructive. Indeed, the plausibility of truthful
revelation implied in this axiom is all the more important as other axioms involving requirements
on preferences are satisfied13, and, conversely, the satisfaction of these other axioms seems all
the more valuable that it is likely that they are applied to real preferences.

This observation leads us to allow the intrinsic valuation of a combination S ⊆ A of axioms
to differ from the sum of the intrinsic valuations of axioms in S. As a consequence, we define
the set of possible intrinsic valuations as the set of capacities u on A:

U =
{
(uS)S⊆A, u∅ = 0, uT ≤ uS if T ⊆ S, for all S

}
⊂ R2J .

The weak monotonicity assumption, as regard to inclusion, embedded in the use of capac-
ities, can be interpreted as relying on the assumption that all axioms under consideration are
normatively desirable. The set of super-additive capacities will play an important role in
the subsequent developments; it is given by

Û =
{
u ∈ U, uS ≥ uT + uT ′ if T, T ′ ⊆ S and T ∩ T ′ = ∅

}
.

A super-additive intrinsic valuation is interpreted as the result of complementarities between
all the considered axioms and is, for example, well suited to account for the interaction between
‘strategy-proofness’, ‘efficiency’ and ‘envy-freeness’ as we suggested above. From a general point
of view, we see the use of super-additive valuations as the one most adapted to the typical
theoretical problems in normative economics where each considered axiom is a particular formu-
lation of general and independent ethical principles, in other words, where no two axioms are
subtitutes.14 The set of strictly super-additive capacities is denoted Ûst.

4.2 Characterisation of the measure

4.2.1 A measure for the reference case of complementary axioms

Considering (u, p) ∈ U×P , as in example (1) below, the most intuitive measure m : U×P → R,
for the overall performance of a rule to which p is associated would consist in taking the standard
arithmetic mean m̄(u, p) =

∑
S⊆A uS .pS . However, the reader will see in this example that such

13The satisfaction of ‘strategy-proofness’ by itself may, of course, still be appreciated as, for example, it can
be interpreted as preventing agents with lower ability to compute optimal actions from being disadvantaged (this
interpretation has played an important role in the school choice literature (e.g[2])), but, clearly, the value of this
axiom mainly lies in its interaction with other properties.

14In the example we gave involving ‘envy-freeness’ and ‘egalitarian equivalence’, a super-additive valuation
would not capture the effect we described.
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a measure double counts the satisfaction of a1. Indeed, i) pa1 = pa1a2 while ii) u(a1a2) ≥
u(a1) + u(a2) —actually, u ∈ Û :15

∅ a1 a2 a3 a1a2 a1a3 a2a3 A
u 0 1 1 1 4 3 3 6
p 1 0.7 0.9 0.5 0.7 0.3 0.4 0.25

(1)

In words, i) the rule satisfies a1 with exactly the same probability as it satisfies a combination
of a1 and an other axiom while ii) the intrinsic valuation of the combination incorporates the
separate intrinsic valuations of a1 and of the other axiom. As a consequence, it is questionable
that a1 should influence the measure.

Based on this observation, restricting attention first to valuations in Û , for which the analogue
of ii) holds for any combination, we propose a measure that keeps this simple additive form
while taking into account the difference between the probability with which a rule satisfies a
given combination of axioms and the probability with which it satisfies a superset of it. For
any S ⊂ A, let p̂S = maxT :S⊂T {pT } and let p̂A = 0 —p̂S thus gives the maximal probability
associated to a superset of S. We define the following measure:

m̂ : Û × P → R

(u, p) 7→
∑
S⊆A

uS .(pS − p̂S).

The weight associated to a1 in example (1) according to m̂ is 0. This measure weights the
valuation of each combination by the difference between its probability of satisfaction and the
maximal probability of satisfaction among its supersets —informally, when u ∈ Û , the intrinsic
valuation of S is incorporated in the valuation of any superset T of S, so that the real impact of S
on the measure of performance of this rule should be determined by the differential in probability
of satisfaction between S and T (pS ≥ pT ). In the following example, a rule associated to p′

performs better than a rule associated to p according to m̂, while the initial weighted average m̄
yields the opposite conclusion.

∅ a1 a2 a3 a1a2 a1a3 a2a3 A
u 0 1 1 1 5 5 5 15
p 1 0.7 0.7 0.7 0.6 0.6 0.6 0.6
p′ 1 0.7 0.7 0.7 0.7 0.7 0.7 0.4

(2)

The measure m̄ weights each uS , of S ⊂ A with |S| = 2, by the associated probability pS ,
while, according to p, the satisfaction of A happens with exactly the same probability as the one
of S, and while, according to u, the intrinsic valuation of A incorporates that of S and of a /∈ S.
On the contrary, this fact is taken into account in measure m̂ according to which each such uS
is given weight 0, whereas is is given weight 0.3 when p′ is considered.

The measure m̂ can be simply characterised by the three following properties.
Additivity and Positive Homogeneity (APH): For all u, u′ ∈ Û , λ > 0, p ∈ P , we have

m(λu+ u′, p) = λm(u, p) +m(u′, p).
As we mentioned earlier, we look for a measure which keeps the simple form of the arithmetic

mean above; (APH) guarantees such a feature as it stipulates that for a fixed probability vector,
the performance measure associated to an affine combination of two intrinsic valuations is simply
the affine combination of the performance measures obtained for each of these valuations.

15Any set of axioms S = {a1, ..., aK} ⊆ A is denoted a1...aK in all the tables we use.
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Marginal Probability (MP): Let u ∈ Ûst, p, p
′ ∈ P and ∅ ̸= S ⊆ A such that pS − p̂S =

p′S − p̂′S . Let u
S ∈ Û such that uSS ̸= uS , uST = uT for all T ̸= S. Then,

m(uS , p)−m(u, p) = m(uS , p′)−m(u, p′).

The introduction of this property roots in the anomaly of double counting we identified. Valu-
ations u and uS only differ in their component associated to S. This principle states that the
impact of S on measure m under p and the impact of S under p′, measured by the difference
m(uS , p)−m(u, p) and m(uS , p′)−m(u, p′) respectively, are equal whenever the considered rule
presents the samemarginal probability for S under p and under p′, i.e, whenever pS−p̂S = p′S−p̂′S .
It implies in particular that whenever a rule presents a 0 marginal probability for a certain com-
bination of axioms S under p, such as a1 in example (1), then, for u and uS , S has the same
impact on m under p as under the vector (1,02J−1).

16 The assumption that u belongs to Ûst

ensures that we can always define such a valuation uS in Û .
Remark: We consider that, given this interpretation of (MP), it makes more sense to require

that the stated property hold for any u ∈ Ûst and any associated uS ; it would, however, be
sufficient to require that there exists such u ∈ Ûst and a corresponding uS ∈ Û , as inspection of
the proof shows.

Expectation for Perfect Superposition (EPS): For any λ ∈ [0, 1], ∅ ̸= S ⊆ A, let

pλ,S ∈ P defined by pλ,SS′ = λ if S′ ⊆ S and pλ,SS′ = 0 otherwise, S′ ̸= ∅, and pλ,S∅ = 1. For all

u ∈ Û , we have m(u, pλ,S) = λuS .
Here is a representation of p = p0.6,a1a3 :

∅ a1 a2 a3 a1a2 a1a3 a2a3 A
p 1 0.6 0 0.6 0 0.6 0 0

It is not difficult to see that such pλ,S indeed belongs to P . We use the expression perfect
superposition because pλ,S obtains when the sets of profiles of instances for which each axiom
in S is satisfied are identical —up to a 0-probability-measure-set— and the set of profiles of
instances for which each axiom outside S is satisfied has a 0 probability measure. As all the
subsets T of S are satisfied with the same probability, and as no other combination of axioms
present a strictly positive probability, the case we made above for the prevention of redundancy
implies that only S should impact measure m(·, pλ,S) on Û . In other words, only uS should be
taken into account under such probability vector, and, thus, the ‘expected valuation’ λuS is the
natural candidate for the measure’s value.

We obtain the following characterisation result, the proof of which, as that of subsequent
results, can be found in the appendix:

Theorem 1. A measure m : Û × P → R satisfies additivity and positive homogeneity, marginal
probability and expectation for perfect superposition if and only if it coincides with m̂.

The interpretation of how weights associated to p ∈ P are computed according to m̂ is akin
to that of a Choquet integral, except that inclusion is taken into account in m̂: uA is weighted
by pA, then we turn to any S with |S| = J − 1 and uS is weighted by pS − pA, then to any T
with |T | = J − 2 where uT is weighted by pT −maxS⊃T {pS}, etc.

When commenting on example (1), the identification of a redundancy in the measure was
not based on the fact that u was supper-additive, but simply on the fact that there existed a
combination of axioms a1a2 such that ua1a2 ≥ ua1 + ua2 and pa1 = pa1a2 . How should the
measure behave when such inequality is not verified, that is when a substitution effect between
axioms arises, such as the one we described between ‘envy-freeness’ and ‘egalitarian equivalence’
?

16For all b ∈ R, K ∈ N, bK denotes the element of RK whose components are all equal to b.
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4.2.2 A measure for the general case

Consider the computation of (u, p) ∈ U × P 7→
∑

S⊆A uS .pS ∈ R in example (3) below.

∅ a1 a2 a3 a1a2 a1a3 a2a3 A
u 0 3 2 3 6 6 4 9
p 1 0.7 0.9 0.5 0.7 0.3 0.4 0.25

(3)

The measure double counts the satisfaction of a2a3. Indeed, i) pa2a3 = 1−(1−pa2)−(1−pa3) >
0, while ii) u(a2a3) < u(a2) + u(a3). In words, i) the rule satisfies a2a3 with the minimum
possible probability considering the actual probabilities with which it satisfies respectively a2
and a3 while ii) this combination’s intrinsic valuation is incorporated in the sum of the separate
intrinsic valuations of a2 and of a3. Therefore, it is questionable that a2a3 should influence the
measure of the performance of this rule.

Let us use the shortcut ‘uS is super-additive’ to refer to the fact that uS ≥
∑

k∈K uTk
where

(Tk)k∈K is any partition of S.17 We now propose a measure m∗ : U × P → R that, once
again, keeps the same simple form of the arithmetic mean while taking into account i) when
uS is supper-additive, the difference between the probability with which a rule satisfies a given
combination of axioms S and the probability with which it satisfies supersets of it, and ii) when
it is not, the difference between the probability with which a rule satisfies S and the probability
with which it satisfies supersets of it, and subsets of it. More precisely, m∗ is defined based
on the requirement that the impact of a combination S on the performance measure of a given
rule associated to p ∈ P should only depend on whether uS is super-additive or not, so that in
particular the measure coincides with m̂ on Û × P .

For u ∈ U , S ⊆ A, let SupperS,u = {T = S ∪ S′, uT ≥ uS + uS′ , S′ ̸= ∅, S ∩ S′ = ∅}, and
SubS,u = {(Tk)k∈K ,

∑
k∈K uTk

> uS , (Tk)k∈K is a partition of S}. For any p ∈ P , we define

puS = max
T∈SupperS,u

{pT } if SupperS,u ̸= ∅

0 otherwise.

pu
S
= max

{
0; max

(Tk)k∈K∈SubS,u

{
1−

∑
k∈K

(1− pTk
)
}}

if SubS,u ̸= ∅

0 otherwise.

That is, puS denotes the maximal probability among the sets that are composed of S and of
axioms that are complementary to those in S, and pu

S
denotes the minimum possible probability

to satisfy S given the actual probabilities to satisfy disjoint sets of axioms that are substituable
and whose reunion is S.

The measure we define weights the intrinsic valuation of a combination S, uS , by the difference
between pS andmax

{
puS ; p

u
S

}
, the value of the latter depending crucially on whether uS is supper-

additive:

m∗ : U × P → R

(u, p) 7→
∑
S⊆A

uS .

(
pS −max

{
puS ; p

u
S

})
.

Note that whenever uS is super-additive, the associated weight pS −max
{
puS ; p

u
S

}
is equal to

pS − puS , which, in particular, equals pS − p̂S if u ∈ Û . Note also that ua = u∅ + ua, so that the

17‘uS is strictly super-additive’ refers to the case where this inequality is strict.

9



weigh associated to any axiom a is pa − pua . Finally, the weight associated to a2a3 in example
(3) according to m∗ is 0, as pa2a3

= max
{
pua2a3

; pu
a2a3

}
= pu

a2a3
= 0.4.

The interpretation of the weights when uS is super-additive is, of course, the same as for m̂
on Û . Simply note that to define m∗, we have to account for cases in which uS is super-additive
and SupperS,u is empty, i.e, in which there is no set of axioms that are complementary to those
in S. In that case, the weight associated to S is pS .

Consider now S such that uS <
∑

k∈K uTk
for a partition (Tk)k∈K of S. For the same reason

as above, it is still necessary to take into account the probability to satisfy supersets of S, that
is, to compare pS and puS . Furthermore, the intrinsic valuation of S is incorporated in the sum
of the separate valuations of each Tk, while, by definition of a capacity, uS ≥ uTk

, for all k ∈ K.
Therefore, the real impact of S on the measure of the performance of the rule should also depend
on the differential between the actual probability pS and the minimal possible probability for S
to be satisfied given the actual probabilities (pTk

)k∈K .
To summarise, pS − max

{
puS ; p

u
S
} appears as the relevant marginal probability to consider

sincemax
{
puS ; p

u
S
} corresponds to the maximal probability associated to an object whose intrinsic

valuation incorporates that of S.
The measure m∗ is characterised by four intuitive properties; three of them corresponding to

generalisations of the ones we introduced in the previous section.
We say that u, u′ ∈ U belong to the same interaction class if for all partition (Tk)k∈K such

that uS ≥
∑

k∈K uTk
, we have u′S ≥

∑
k∈K u′Tk

. That is, two intrinsic valuations belong to the
same interaction class if any disjoint sets of axioms who are (weakly)18 complementary under one
valuation are complementary under the other. The same correspondance holds for substitutes.

Additivity and Positive Homogeneity on Interaction classes (APHI): For all u, u′ ∈
U belonging to the same interaction class, λ > 0, p ∈ P , we have m(λu + u′, p) = λm(u, p) +
m(u′, p).

This simplicity requirement states that if u and u′ represent the same interaction between
axioms, in the sense given in the definition of an interaction class, then, for a fixed probability
vector, the measure value associated to an affine combination of u and u′ is simply the affine
combination of the measure values taken on u and u′.

Marginal Probability Generalised (MPG): Let u ∈ U such that, for all ∅ ̸= S ⊆ A, uS
is either strictly super-additive, or not super-additive. Let ∅ ≠ S ⊆ A and p, p′ ∈ P such that
pS −max

{
puS ; p

u
S

}
= p′S −max

{
p′

u
S ; p

′u
S

}
. Let uS ∈ U with uSS ̸= uS and uSS′ = uS′ for S′ ̸= S,

such that uS belongs to the same interaction class as u. Then,

m(uS , p)−m(u, p) = m(uS , p′)−m(u, p′).

The assumption on u simply guarantees that we can always find such uS ∈ U . This principle
states, as its counterpart in the previous subsection, that the impact that a set of axioms S
should have on the measure of the performance of a rule associated to p should only depend
on the relevant marginal probability, the value of the latter depending on whether uS is super-
additive.

Expectation for Perfect Superposition Generalised (EPSG): For all S ⊆ A, u ∈ U
such that uS is supper-additive, for λ ∈ [0, 1], we have m(u, pλ,S) = λuS .

Comparability (C): Let u, u′ ∈ U , for all ∅ ≠ S ⊆ A such that uS is strictly supper-additive

and u′S is not supper-additive. Let p ∈ P such that pS −max
{
puS ; p

u
S

}
= pS −max

{
pu

′

S ; pu
′

S

}
.

Then,

m(uϵ,S , p)−m(u, p) = m(u′ϵ,S , p)−m(u′, p),

18We use this term to refer to the case where the preceding inequality is an equality.
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where capacities uϵ,S and u′ϵ,S are defined by uϵ,SS = uS − ϵ and uϵ,SS′ = uS′ for S′ ̸= S, and

u′ϵ,SS = u′S − ϵ and u′ϵ,SS′ = u′S′ for S′ ̸= S, ϵ > 0 being such that uϵ,SS is super-additive and u′ϵ,SS

is not.
This principle guarantees that relevant marginal probabilities are treated symmetrically: p is

such that the relevant marginal probability under u is equal to the relevant marginal probability
under u′ and it is required that when we affect uS and u′S by the same ϵ−reduction, the measure
should be impacted to the same extent.

Remark: Given this interpretation, requiring this property to hold for all p ∈ P such that
the relevant marginal probabilities are identical seems legitimate; we could however restrict it
to hold only for pλ,S , λ ∈ [0, 1], S ⊆ A, without changing the characterisation result below (we
refer to this restricted version as comparability for perfect superposition and define it explicitly
in the appendix).

Theorem 2. A measure m : U × P → R satisfies additivity and positive homogeneity on inter-
action classes, marginal probability generalised , expectation for perfect superposition generalised
and comparability (or comparability for perfect superposition) if and only if it coincides with m∗.

5 How to explain the logical performance of rules ?

The logical performance of any rule f with respect to the set of axioms A is defined as the
probability for f to simultaneously satisfy all the axioms in A, pfA —we focus only on the

probabilities of satisfaction in this section. How to account for pfA using (pfS)S⊆A ? In other

words, given the overall degree of compatibility pfA, how can we analyse how axioms interact
with each other under f ? A first step towards the answer consists in building a measure of how
compatible an axiom a ∈ A is with the other axioms in A \ a under f , and this can be done by

determining how a contributes to pfA compared to axioms in A \ a. This question is akin to the
general purpose of cooperative game theory where one tries to determine ways to allocate the
benefits or costs of cooperation/interaction among a given set of agents.19

Define V = 1− P = {1− p, p ∈ P}, of generic element v. Note that v∅ = 1− p∅ = 0: v is a
cooperative game associated to the set of axioms A. vA = 1− pA represents the incompatibility
between axioms in A, and this magnitude must be distributed among them. An incompatibility
measure with respect to the set A of axioms20 is defined as a solution on (A, V ), that is a
mapping

ψ : V → RJ

v 7→
(
ψa(v)

)
a∈A

.

For a ∈ A,S ⊆ A \ a, given the definition of V , vS∪a − vS = pS − pS∪a interprets as the cost
in probability of satisfaction that a exerts on S. As a consequence, it is natural to require that
the incompatibility measure associated to an axiom a be a function of the cost exerted by a on
all S ⊆ A \ a:

Marginality (M): For any a ∈ A, v, v′ ∈ V , if vS∪a − vS = v′S∪a − v′S for all S ⊆ A \ a,
ψa(v) = ψa(v

′).
This principle corresponds to the essential property expressed in Young’s strong monotonicity

axiom in his classical characterisation of the Shapley value on the subspace of games associated
to a fixed group of players ([23]).

19Closely related to our approach is the literature focusing on the use of (modified versions of) the Shapley
value in feature attribution problems

(
[15]

)
.

20As a reminder, we fixed A = {a1, ..., aJ}.
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Two classical axioms introduced in cooperative game theory are necessary to interpret ψ as
a relevant measure in the problem we consider.

Incompatibility Allocation (IA): For any v ∈ V ,
∑

a∈A ψa(v) = v(A).
Of course, this principle corresponds to the standard efficiency principle. In our framework, it

is this requirement that makes it possible to interpret ψ as allocating the incompatibility 1− pA
among axioms in A.

Symmetry (S): For any v ∈ V any permutation π : A → A, let vπ the game defined by
vπS = v(π(a))a∈S

. Then, ψa(v) = ψπ(a)

(
vπ

)
.

This principle states that the evaluation should not be biased towards some axiom.
We define the Shapley incompatibility measure as the restriction to (A, V ) of the usual

Shapley value:

φa(v) =
∑

S⊆A\a

|S|!(J − |S| − 1)!

J !
(vS∪a − vS) for all v ∈ V, a ∈ A.

The reader will not be surprised that the Shapley incompatibility measure satisfies these
three properties; the fact that it is actually characterised by them is not direct however. Indeed,
P is defined by a very specific consistency condition, and it turns out that no usual basis of

the set of cooperative games G = {u ∈ R2J , u∅ = 0} —such as the family of unanimity games,
of conjugate unanimity games, of Yokote games, or of Walsh games— belongs to V = 1 − P .
Consider for example A = {a1, a2, a3} and the unanimity game ua1a3 defined by ua1a3

T = 1 if
a1a3 ⊆ T , ua1a3

T = 0 otherwise, then p = 1 − v is such that pa1
= pa3

= 1 but pa1a3
= 0, that

is p /∈ P , and thus ua1a3 /∈ V . Therefore, common techniques using standard bases can not be
directly applied here.

We use the extreme points of V to proceed to the following characterisation (see appendix):

Theorem 3. An incompatibility measure ψ : V → RJ satisfies marginality, incompatibility
allocation and symmetry if and only if it coincides with the Shapley incompatibility measure
φ : V → RJ .

Remark: The Shapley measure is also characterised by incompatibility allocation, symmetry,
and direct adaptations for a solution restricted to V of the null-player and additivity and positive
homogeneity axioms considered by Shapley in his original work ([19]) —the reader may find
their explicit definitions in the appendix. However, marginality, incompatibility allocation and
symmetry are in our view the very axioms that support the interpretation of ψ as an adapted
measure.

6 Conclusion

In consistency with increasingly used simulation methods, we defined a general notion for the
degree to which a rule satisfies a set of axioms. Armed with it, we proposed i) a criterion
to evaluate rules’ performance taking into account the normative desirability of axioms and of
synergies effects between them, and ii) a criterion to determine, for a given set of axioms, the
role of each axiom in the degree to which a certain rule simultaneously satisfies all of them.

In further stages of this work, priority will be given to applications of these two criteria in
problems characterised by analytically established incompatibilities between axioms.

As we mentioned, certain notions of degree are defined to express the intensity of the viola-
tion, rather than its plausibility. A problem of comparability across axioms obviously emerges
with such notions, and developing an analytical framework able to account for a certain partial
commensurability, inspired by the one we proposed here based on the complete commensurability
guaranteed by the use of probabilities, constitutes an important complementary research.
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Appendix

Theorem 1

Proof of Theorem 1

Theorem1. A measure m : Û × P → R satisfies additivity and positive homogeneity, marginal
probability and expectation for perfect superposition if and only if it coincides with m̂.

Proof. The if part is readily checked.
For any p ∈ P , we let mp : Û → R denote u 7→ m(u, p).

Let p ∈ P . Û is a pointed convex cone of R2J . Then, mp, which, by (AC), is additive and
positively homogeneous on this convex cone, can be uniquely extended to a linear form m̃p :

V ect(Û) → R, where V ect(Û) denotes the vectorial subspace of R2J spanned by Û . Therefore21,
there are unique real numbers αp

S , S ⊆ A, such that for all p ∈ P , u ∈ Û ,

m(u, p) =
∑
S⊆A

uS .α
p
S .

Now fix22 ∅ ≠ S ⊆ A and let αS : p ∈ P 7→ αp
S ∈ R. Let p, p′ ∈ P such that pS− p̂S = p′S− p̂′S .

Consider u ∈ Ûst and uS ∈ Û as introduced in (MP). Then (MP) implies that
∑

T⊆A u
S
T .α

p
T −∑

T⊆A uT .α
p
T =

∑
T⊆A u

S
T .α

p′

T −
∑

T⊆A uT .α
p′

T ⇔
(
uSS−uS

)
αS(p) =

(
uSS−uS

)
αS(p

′) ⇔ αS(p) =
αS(p

′).
In other words, the function αS can be written as a function of the difference23 pS− p̂S : more

precisely,
αS(p) = α̂S(pS − p̂S) for all p ∈ P

with α̂S : [0, 1] → R. Moreover, α̂S(0) = 0. Indeed, for these same u and uS , considering p0,S as
defined in (EPS) and applying this axiom yields

∑
S⊆A uT α̂T (0) = 0 =

∑
S⊆A u

S
T α̂T (0); which

implies α̂S(0) = 0.
Consider now any pλ,S ∈ P , λ ∈ [0, 1], as introduced in (EPS), and u ∈ Û such that uS ̸= 0.

The equality m(u, pλ,S) = λuS then writes∑
T⊆A

uT α̂S

(
pλ,ST − p̂λ,ST

)
= λuS

⇔ uSα̂S(λ) = λuS .

As pλ,S ∈ P can be defined for any λ ∈ [0, 1], the preceding equality implies that α̂S(λ) = λ
for all λ ∈ [0, 1]; which concludes.

Independence of the axioms

Adopting the following modification of the marginal probability principle, and requiring that a
null probability vector should give a null measure, readily yields a general class of measures,
those for which there is α : [0, 1] → R, α(0) = 0, such that m(u, p) =

∑
S⊆A uS .α(pS − p̂S).

21Because m̃p is a linear form on V ect(Û), there is a unique αp ∈ R2J such that m̃p(a) = a · αp for all

a ∈ V ect(Û)—( · ) is used to denote the usual scalar product on R2J .
22The linear expression of m and the fact that u∅ = 0 allow to restrict to sets different from ∅.
23With the previously mentioned convention p̂A = 0.
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Symmetric Marginal probability (SMP): Let u ∈ Ûst, p, p
′ ∈ P and ∅ ≠ S, S′ ⊆ A such

that pS − p̂S = p′S′ − p̂′S′ . Let ϵ > 0 such that for uS ∈ Û defined by uSS = uS + ϵ and uST = uT
for all T ̸= S and uS

′ ∈ Û such that uS
′

S = uS′ + ϵ and uS
′

T = uT for all T ̸= S. Then,

m(uS , p)−m(ū, p) = m(uS
′
, p′)−m(ū, p′).

Normalisation (N): For all u ∈ Û , m
(
u, (1,02J−1)

)
= 0.

The proof is a very simple adaptation of the preceding one and is omitted.
Any such measure which does not coincide with m̂ satisfies (APH) and (MP) but not (EPS).

The following measure satisfies (APH) and (EPS) but not (MP): (u, p) 7→
∑

S⊆A uS(pS − p̄S),

where p̄S =
∑

T=S∪a,a/∈S pT∑
T=S∪a,a/∈S 1 for all S ⊂ A, and p̄A = 0, that is p̄S is the average probability of

satisfaction among supersets of S of cardinal |S|+1. The measure (u, p) 7→ maxS⊆AuS(pS− p̃S),
satisfies (MP) and (EPS) but not (APH).

Theorem 2

Proof of Theorem 2

Comparability for Perfect Superposition (CPS): Let u, u′ ∈ U , ∅ ̸= S ⊆ A such that uS
is strictly supper-additive and u′S is not supper-additive. For all λ ∈ [0, 1] such that such that

pλ,SS −max
{
puλ,SS , puλ,S

S

}
= pλ,SS −max

{
pu

′λ,S
S , pu

′λ,S
S

}
,

m(uϵ,S , pλ,S)−m(u, pλ,S) = m(u′ϵ,S , pλ,S)−m(u′, pλ,S),

where capacities uϵ,S and u′ϵ,S are defined by uϵ,SS = uS − ϵ and uϵ,SS′ = uS′ for S′ ̸= S, and

u′ϵ,SS = u′S − ϵ and u′ϵ,SS′ = u′S′ for S′ ̸= S, ϵ > 0 being such that uϵ,SS is super-additive and u′ϵ,SS

is not.

Theorem2. A measure m : U × P → R satisfies additivity and positive homogeneity on inter-
action classes, marginal probability generalised, expectation for perfect superposition generalised
and comparability (or comparability for perfect superposition) if and only if it coincides with m∗.

Proof. The if part is readily checked.
For any p ∈ P , we let mp : U → R denote u 7→ m(u, p). For any u ∈ U , we let Cu ⊂ U denote

the interaction class to which u belongs.

Let p ∈ P . Cu is a convex cone of R2J . Then,mp, which, by (APHI), is additive and positively
homogeneous on this convex cone, can be uniquely extended to a linear form m̃p : V ect(Cu) → R.
Therefore, for all (u′, p) ∈ Cu × P , there are unique real numbers αp,Cu

S , S ⊆ A such that

m(u′, p) =
∑
S⊆A

u′S .α
p,Cu

S .

Now fix24 ∅ ≠ S ⊆ A and let, for all u ∈ U , αCu

S : p ∈ P 7→ αp,Cu

S ∈ R.
Consider p, p′ ∈ P, u, uS ∈ U as introduced in (MPG), with uS strictly super-additive, guar-

anteeing that we can find such uS belonging to Cu. Then, by the same simple computation as
the one used for (MP) in the preceding proof, and as puS = max

{
puS ; p

u
S

}
,

αCu

S (p) = α̂Cu

S (pS − puS) for all p ∈ P

24The linear expression of m and the fact that u∅ = 0 allow to restrict to sets different from ∅.
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with α̂Cu

S : [0, 1] → R. Moreover, α̂Cu

S (0) = 0, by the same argument as in the preceding proof,
using (EPSG).

Consider now any pλ,S ∈ P , λ ∈ [0, 1], as introduced in (EPSG), and u ∈ U such that uS ̸= 0
is strictly supper-additive. The equality m(u, pλ,S) = λuS then writes∑

T⊆A

uT α̂
Cu

S

(
pλ,ST − puλ,ST

)
= λuS

⇔ uSα̂
Cu

S (λ) = λuS .

As pλ,S ∈ P can be defined for any λ ∈ [0, 1], the preceding equality implies that α̂Cu

S (pS −
puS) = pS − puS . Finally, note that if uS =

∑
k∈K uTk

for some partition (Tk)k∈K of S (and
uS ≥

∑
k′∈K′ uTk′ for all partition (Tk′)k′∈K′ of S) there is u′ ∈ U belonging to Cu such that

u′S ̸= 0 is strictly supper-additive.
A symmetric argument to the one of the second to last paragraph concludes to the fact that

αu
S(p) = α̃Cu

S

(
pS −max

{
puS ; p

u
S

})
for all p ∈ P

with α̃Cu

S : [0, 1] → R, for all u ∈ U such that uS is not supper-additive.
Let u ∈ U such that uS is not supper-additive and let ū ∈ U such that ūS is strictly

supper-additive. Let 0 ≤ λ ≤ 0.5 and consider pλ,S ; we have pS − max
{
puλ,SS , puλ,S

S

}
= λ =

pλ,SS − max
{
pūλ,SS , pūλ,S

S

}
. By (C), or (CPS), α̃Cu

S

(
pS − max

{
puλ,SS , puλ,S

S

})
= α̂Cū

S

(
pλ,ST −

max
{
pūλ,SS , pūλ,S

S

})
= pλ,SS − pūλ,SS = pλ,SS −max

{
pūλ,SS , pūλ,S

S

}
; which implies α̃Cu

S (λ) = λ. Let

0.5 < λ ≤ 1; applying this same argument using p1−λ,S yields the desired conclusion.

Independence of the axioms

Direct adaptations of the examples we gave to show the independence of our axioms in the
previous section give, respectively, examples of axioms satisfying (APHI), (MPG), (C) but not
(EPSG); (APHI), (C), (EPSG) but not (MPG); (MPG), (C), (EPSG) but not (APHI). The
measure (u, p) 7→

∑
S⊆A uS .β

u,p
S with βu,p

S = pS − puS if uS is supper-additive and βu,p
S =

3
(
pS −max

{
puS ; p

u
S

})
otherwise satisfies (APHI), (MPG), (EPSG) but not (C).

Theorem 3

Proof of Theorem 3

Theorem3. An incompatibility measure ψ : V → RJ satisfies marginality, incompatibility
allocation and symmetry if and only if it coincides with the Shapley incompatibility measure
φ : V → RJ .

Proof. The if part is readily checked. Consider the family of games (v̂S)S⊆A where each game
vS is defined by v̂ST = 1 if T ̸⊆ S and v̂ST = 0 otherwise. Note that v̂S belongs to V for all S ⊆ A
as v̂S = 1− p1,S where p1,S , defined in the previous section, belongs to P . We provide the table
summarising v = va1a2 and p = p1,a1a2 where A = {a1, a2, a3}:

∅ a1 a2 a3 a1a2 a1a3 a2a3 A
v 0 0 0 1 0 1 1 1
p 1 1 1 0 1 0 0 0

Lemma 1. P is a non-empty compact convex subset of [0, 1]2
J

, and thus so is V .
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Proof. Convexity: Let p1, p2 ∈ P and consider 0 < α < 1 and p̃ = αp1 + (1 − α)p2. Obviously,
p̃∅ = 1 and p̃S ≥ 0 for all S ⊆ A. Moreover,

p̃S ≤ αmina∈S{p1S\a}+ (1− α)mina∈S{p2S\a}

≤ mina∈S{αp1S\a + (1− α)p2S\a}.

and

p̃S ≥ αmaxa∈S{p1S\a − (1− pa)}+ (1− α)maxa∈S{p2S\a − (1− pa)}

≥ maxa∈S{α(p1S\a − (1− pa)) + (1− α)(p2S\a − (1− pa)}.

As a consequence, p̃ ∈ P .

Compactness: P is bounded and closed in [0, 1]2
J

.

Lemma 2. The set of extreme points of V is the family (v̂S)S⊂A (note the strict inclusion here).

Proof. We already observed that this family lies in V , and it is obvious that each such v̂S is
extreme. These games —in addition to v̂A which is not extreme obviously, as it is the null
vector— are the only {0, 1}−valued games in V . Indeed, let v a {0, 1}−valued game which does
not coincide with any v̂S , S ⊆ A. Then, there must exist T, T ′ ⊆ A such that T ⊂ T ′ and
vT ′ = 0 and vT = 1, but then 1− vT ′ = 1 and 1− vT = 0, i.e, 1− v /∈ P .

Let v ∈ V such that there is T̃ ⊆ A such that 0 < vT̃ < 1. Define the games ṽ, v̄ by

ṽT = vT − ϵ if 0 < vT < 1

ṽT = 1 if vT = 1

ṽT = 0 if vT = 0

and

v̄T = vT + ϵ if 0 < vT < 1

v̄T = 1 if vT = 1

v̄T = 0 if vT = 0

where ϵ > 0 such that minT :vT>0{vT − ϵ} > 0 and maxT :vT<1{vT + ϵ} < 1. Both ṽ, v̄ are in V
and v = 1

2 ṽ +
1
2 v̄, that is, v is not extreme.

These two lemma imply the following intermediate important conclusion25:

Lemma 3. Let v ∈ V , there exists Iv ⊆ 2A and positive real numbers (αv
T )T∈Iv such that∑

T∈Iv αv
T = 1 and

v =
∑
T∈Iv

αv
T v̂

T .

In particular, the Shapley measure associated to a ∈ A is given by

φa(v) =
∑
T∈Iv

αv
Tφa(v̂

T ) =
∑

A ̸=T∈Iv:a/∈T

αv
T

1

|A \ T |

on V \ v̂A and φa(v̂
A) = 1.26

25In R2J any non-empty convex compact subset is the convex hull of its extreme points.
26If these equalities are not clear to the reader, he or she may refer to Lemma 4 below, where they are proved.
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Conclusion. For v ∈ V , let Kv denote the minimal number of non-zero terms in a convex
combination of extreme points of V to which v is equal.

If Kv = 0, then v = 02J and (S) and (IA) imply that ψa(v) = 0 = φa(v) for all a ∈ A.
If Kv = 1, then there is T ⊆ A such that v = v̂T . Suppose T = A, then, by (S) and (IA),
ψa(v) = 1 = φa(v). Suppose now ∅ ≠ T ⊂ A. For all a ∈ T , vS∪a − vS = 0 for all S ⊆ A \ a,
which yields ψa(v) = ψa(02J) = 0 by (M). All a, a′ /∈ T are symmetric for v and we conclude, by
(S) and (IA), that ψa(v) = ψa′(v) = 1

|A\T | = φa(v). We now proceed by induction on the value

of Kv.
Suppose ψa(v) =

∑
A̸=T∈Iv:a/∈T α

v
T

1
|A\T | for all v ∈ V \ v̂A such that Kv ≤ k ∈ N. Let

v =
∑

T∈Iv αv
T v̂

T ∈ V \ v̂A with Kv = k + 1. Consider T v =
⋃

T∈Iv T and a ∈ T v. Define the
game

ν =
∑

T∈Iv :a/∈T

αv
T v̂

T .

Because V \ v̂A is convex —v̂A is extreme in V— ν ∈ V \ v̂A. In addition, Kν ≤ k. Finally,
observe that νS∪a − νS = vS∪a − vS for any S ⊆ A \ a. Therefore,

ψa(v) = ψa(ν) =
∑

A̸=T∈Iv:a/∈T

αv
T

1

|A \ T |
= φa(v),

where the first equality follows from (M) and the second follows from the induction hypothesis.
Moreover, all axioms in A \ T v are symmetric for v. As ψa coincides with φa for a ∈ T v, (S)

and (IA) imply ψa(v) = φa(v) for a /∈ T v.

Independence of the axioms

These three axioms being independent when the set of admissible games is restricted to V is
shown in exactly the same way as when the set of admissible games is G.

Alternative characterisation of the Shapley incompatibility measure

While our main characterisation was based on Young’s axioms, we provide now a characterisation
based on Shapley’s axioms, building on the first steps of the preceding proof.

Null-Axiom (NA): For any v ∈ V , all a ∈ A, if vS∪a = va for any S ⊆ A\a, then ψa(v) = 0.
Such an axiom simply exerts no cost in terms of probability of satisfaction and should thus

be considered as maximally compatible with the others.
Conditional Additivity and Positive Homogeneity (CAPH): For any v, v′ ∈ V , λ ≥ 0

such that v + λv′ ∈ V , ψa(v + λv′) = ψa(v) + λψa(v
′).

As in the standard cooperative game theory framework, and as the axiom (APH) we consid-
ered in the previous section, this principle is best interpreted as a simplicity requirement. We
use the term conditional because, obviously, the affine combination of elements of V need not be
in V .

Theorem 4. The incompatibility measure ψ : V → RJ satisfies null-axiom, incompatibility allo-
cation, symmetry and conditional additivity and positive homogeneity if and only if it coincides
with the Shapley incompatibility measure φ : V → RJ .

Proof.

Lemma 4. For any S ⊆ A, ψa(v̂
S) = φa(v̂

S) for all a ∈ A.
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Proof. The case where S = A follows from Lemma 3 and (CAPH). Let S ⊂ A and consider v̂S .
If a ∈ S, then a is a null-axiom in v̂S so that, by (NA), ψa(v̂

S) = 0 = φa(v̂
S). In addition, all

a /∈ S are symmetric so that, by (S) and (IA),ψa(v̂
S) = φa(v̂

S) = 1
|A\S| .

Conclusion. In virtue of Lemma 3 and (CAPH), for all v ∈ V , there exists Iv ∈ 2A and
positive real numbers (αv

T )T∈Iv such that
∑

T∈Iv αv
T = 1 and

ψa(v) =
∑
T∈Iv

αv
Tψa(v̂

T ) for all a ∈ A.

Then, by Lemma 4,

ψa(v) =
∑
T∈Iv

αv
Tφa(v̂

T ) = φa(v) for all a ∈ A.

These four axioms being independent when the set of admissible games is restricted to V is
shown in exactly the same way as when the set of admissible games is G.
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