
Fairness in Temporal Slot Assignment

Edith Elkind, Sonja Kraiczy, and Nicholas Teh

Abstract

We investigate settings where projects need to be assigned to time slots based on
preferences of multiple agents. We consider a variety of objectives, including utilitar-
ian social welfare, egalitarian social welfare, Nash social welfare, Pareto optimality,
equitability, and proportionality. We introduce a general-purpose randomized algo-
rithm, which, for each of these objectives, can decide whether it is achievable for a
given instance; the running time of this algorithm is in the complexity class XP with
respect to the number of agents. We also provide complexity results for the case
where the number of agents is large, and identify special cases that admit efficient
algorithms.

1 Introduction

“Where there is an observatory and a telescope, we expect that any eyes will see
new worlds at once.”

—Henry David Thoreau (1817–1862)

Thoreau’s words were recorded over a century ago, and yet they continue to ring true today.
In July 2022, NASA’s James Webb Space Telescope recorded breathtaking images of the
distant cosmic cliffs and the glittering landscape of star birth in fine detail. The stunning
images were made possible by the advancement of space exploring technologies, prompting
widespread awe both within the scientific community and the world at large. Unsurprisingly,
it is clear that no regular institution, let alone individual, could afford such highly specialized
equipment for their own (research) endeavours. The new discoveries were funded by a 10
billion-dollar investment from NASA and the USA.

NASA, whose goal is to “expand knowledge for the benefit of humanity”, could choose
to loan its facilities (not just this telescope, but others as well) to (possibly independent)
research institutes to further the exploration of space, maybe with fresh perspectives. In
fact, on a smaller scale, in 2008, libraries in the US trialed the idea for loaning out telescopes,
pioneered by the New Hampshire Astronomical Society. The movement has proved to be
a great success, and currently, over 100 libraries across the country participates in this
program. The city of Westminster in the UK also has a similar program.

Now, each institution may have their preferred schedule of equipment rental—some of
them may want to see certain specific galaxies or phenomena, and due to natural conditions,
they can only view them during certain time periods [24]. Then, the goal of NASA is to
come up with a schedule for the loan of their observatories and telescopes. In doing so,
multiple goals may be considered. For instance, if maximal utilization is the primary goal,
then maximizing utilitarian welfare may be desirable, to fully utilize the telescope by filling
up its schedule as much as possible. However, NASA may wish to give different institutions
the opportunity to gain access to the facility and hopefully bring in new perspectives, and
thus, may wish to treat different institutions fairly. Thus, other welfare objectives, such as
maximizing egalitarian welfare, or fairness notions such as equitability and proportionality
may become more relevant instead.

Other scenarios where different agents’ preferences over schedules (i.e., assignments of
activities to time slots) need to be aggregated into a common schedule include scheduling

university lectures, conference talks or popular entertainment. Inspired by these applica-
tions, in this work, we study the problem faced by a central authority in creating a common
schedule in a fair and efficient manner. In particular, we consider the computational prob-
lems associated with achieving outcomes that satisfy various welfare and fairness desiderata.

1.1 Our Contributions

We introduce a model that enables us to study welfare and fairness properties that arise in
the assignment of projects to time slots when agents have approval preferences over pairs
of the form (project, time slot). Throughout the paper, we assume that each project is
assigned to exactly one time slot, and each time slot implements exactly one project.

To begin, we focus on the case of constant number of agents, and obtain randomized
polynomial-time algorithms for all the fairness and welfare notions discussed. Also, for two
agents, we show how to find an outcome that is proportional up to one slot. We then inves-
tigate the case of arbitrary number of agents. We present an efficient method for obtaining
outcomes that maximize utilitarian welfare, and NP-hardness results for maximizing egali-
tarian welfare and for finding outcomes that are equitable or proportional. For egalitarian
welfare, we obtain positive algorithmic results for an interesting special case of our problem.

1.2 Related Work

The concept of allocating projects to time slots is related to long-term (or perpetual) par-
ticipatory budgeting (PB) [20, 21]; however, the focus of PB is primarily on the budgetary
process, rather than on distributive fairness, affecting the definitions of fairness considered.

Some works in the social choice literature that consider the temporal element in distribu-
tive justice include [14, 15], but these works primarily focus on the dynamic setting (i.e.,
online reporting of preferences), and specifically on how one may obtain fair outcomes in an
online fashion. Other works that look into the off-line case (albeit in different settings and
considering different notions of fairness) include [4] and works in dynamic resource allocation
[23].

Other works in the scheduling [17, 18] and matching literature look into various appli-
cations such as house allocation [32], project matching [1], and job scheduling [33], amongst
others. However, these models are often more complex, taking into account contextual
variables, making the study of welfare and fairness notions we consider difficult.

The temporal slot assignment problem can also be re-interpreted in a spatial context, as
assigning projects to plots of land (see, e.g., the work of [10]).

2 Preliminaries

We first present our basic model, and then introduce the fairness notions that we will discuss.

2.1 Model

We are given a set N = {1, . . . , n} of n agents, a set P = {p1, . . . , pm} of m distinct projects,
and a set T = {t1, . . . , t`} of ` time slots, where ` ≤ m. For each time slot r ∈ [`], each
agent i ∈ N specifies a subset of projects si,r ⊆ P : these are the projects that i approves
to be implemented at time r. We write si = (si,1, si,2, . . . , si,`), and refer to the list si
as i’s approval set. For notational simplicity, if si,r is a singleton, we sometimes omit the
set notation. Equivalently, we can represent agents’ preferences as graphs: for each agent
i ∈ N her approval graph Gi is a bipartite graph with parts P and T that contains an edge

(pj , tr) ∈ P × T if and only if pj ∈ si,r. We let Gij,r = 1 if (pj , tr) ∈ Gi, and Gij,r = 0

otherwise. Let µi be the size of a maximum matching in Gi.
An outcome o = (o1, . . . , o`) is a list of ` projects such that for every r ∈ [`] the project

or ∈ P is chosen to be built at time slot tr. We require that for any r, r′ ∈ [`] with r 6= r′,
we have or 6= or′ ; that is, each project is built at most once. Let Π denote the space of all
possible outcomes.

The utility of an agent i ∈ N from an outcome o is the number of matches between the
agent’s preference and the outcome: ui(o) = |{r ∈ [`] : or ∈ si,r}|. Note that an outcome
maximizes agent i’s utility if and only if it corresponds to a maximum matching in Gi, i.e.,
provides her a utility of µi.

Preference restrictions In general, our framework allows for agents to approve of any
number of projects between 0 and m for each slot. From this, we can derive three natural
restricted cases of our model: (1) limiting the number of approved projects for each slot, (2)
limiting the total number of approved projects across all slots, and (3) limiting the number
of times a project can be approved overall. The special case where each agent approves
exactly one project for each slot and each project is approved exactly once by each agent
is called the full permutation (FP) setting. The setting where for each i ∈ N each project
appears in at most one set si,r and | ∪r∈[`] si,r| ≤ k for some γ ∈ [m] is called the γ-partial
permutation (γ-PP) setting.

2.2 Welfare and Fairness Concepts

The goal of this work is to study the algorithmic complexity of identifying good outcomes
in our model. There are several ways to define what it means for an outcome to be good.
In what follows, we formally define the notions of goodness that will be considered in the
remainder of the paper.

Perhaps the most straightforward approach is to focus on outcomes that optimize some
notion of welfare.

Definition 2.1 (Utilitarian Social Welfare). An outcome o maximizes utilitarian social
welfare (Max-UTIL) if for every outcome o′ ∈ Π it holds that

∑
i∈N ui(o) ≥

∑
i∈N ui(o

′).

Definition 2.2 (Egalitarian Social Welfare). An outcome o maximizes egalitarian so-
cial welfare (Max-EGAL) if for every outcome o′ ∈ Π it holds that mini∈N ui(o) ≥
mini∈N ui(o

′).

Definition 2.3 (Nash Social Welfare). An outcome o maximizes Nash social welfare (Max-
NASH) if for every outcome o′ ∈ Π it holds that

∏
i∈N ui(o) ≥

∏
i∈N ui(o

′).

Another relevant notion of welfare is Pareto optimality.

Definition 2.4 (Pareto Optimality). An outcome o is Pareto optimal (PAR) if for any
outcome o′ ∈ Π either ui(o) ≥ ui(o

′) for all i ∈ N , or there exists an agent i ∈ N with
ui(o) > ui(o

′).

Instead of maximizing the welfare, we may want to focus on equity: can we obtain an
outcome that guarantees each agent the same utility? To capture this idea, we define the
following notion of fairness.

Definition 2.5 (Equitability). An outcome o is equitable (EQ) if for all i, i′ ∈ N it holds
that ui(o) = ui′(o).

Note that an equitable outcome does not always exist (this is also the case for many
similar fairness properties in the social choice literature [6]). Consider the simple case of
two agents, with approval sets s1 = (p1, p2) and s2 = (p2, p1) respectively. Then, any
outcome o will give a utility of 2 to one agent, and 0 to the other—equal treatment of these
individuals is not achievable in our model.

We will also consider another fairness property that is commonly studied in the context
of fair division, namely, proportionality. Intuitively, this property demands that each agent’s
utility should be at least as high as her proportional fair share. In our setting, it is natural to
define an agent’s proportional fair share as her best-case utility maxo∈Π ui(o) = µi, divided
by the number of agents n. Thus, we define proportionality as follows.

Definition 2.6 (Proportionality). An outcome o is proportional (PROP) if for all i ∈ N it
holds that ui(o) ≥ µi

n .

However, the existence of PROP outcomes is not guaranteed, even in the FP setting.
Indeed, consider again the two-agent instance with s1 = (p1, p2) and s2 = (p2, p1). A PROP
outcome would have to provide each agent a utility of 1, but both possible outcomes give a
utility of 2 to one agent and 0 to the other. Thus, just like for equitability, we consider an
“up to k slots” relaxation.

Definition 2.7 (Proportionality up to k slots). An outcome o is proportional up to k slots
(PROPk) if, for all i ∈ N it holds that ui(o) ≥ Mi

n − k.

In the context of proportionality, we are particularly interested in the case k = 1 (i.e.,
PROP1).

3 Welfare and Fairness with Constant Number of
Agents

In this section we present positive algorithmic results for the case where the number of
agents is bounded by a constant. Notably, our results hold for the most general variant of
our model (i.e., arbitrary preferences).

3.1 A General-Purpose Randomized Algorithm

We present a general-purpose method that gives rise to randomized algorithms capable
of solving a variety of problems efficiently (in polynomial time) if the number of agents is
bounded by a constant. The problems we consider include deciding if there exists an outcome
providing a certain level of utilitarian/egalitarian/Nash social welfare, Pareto optimality,
equitability, proportionality, etc. Furthermore, our method can be extended to solve the
search variants of these problems efficiently. To simplify presentation, we assume that the
number of projects m is equal to the number of time slots `, i.e., outcomes are perfect
matchings between projects and time slots; for the case of ` < m, we can simply include
additional timeslots with empty approval sets for each agent to make m = `. The running
time of our algorithms is polynomial in mn, i.e., it is polynomial when n is bounded by a
constant.

The key idea of our approach is to summarize the agents’ preferences by means of a
matrix whose entries are monomials over variables y1, . . . , yn, yn+1 (encoding the agents)
and (xj,r)j,r∈[m] (encoding the project-time slot pairs); then, by evaluating the determinant
of this matrix, we can determine if our instance admits a ‘good’ schedule.

The starting point for our construction is the Edmonds matrix, which is used to reason
about matchings in bipartite graphs [26].

Definition 3.1 (Edmonds Matrix [26]). Let (xj,r)j,r∈[m] be indeterminates. Given a bal-
anced bipartite graph G = (P ∪ T,E) with parts P = {p1, . . . pm} and T = {t1, . . . tm}, the
Edmonds matrix is a matrix A ∈ Rm×m with entries Ajr defined as follows:

Ajr =

{
xj,r if (pj , tr) ∈ E
0 otherwise

The Edmonds matrix is useful for deciding if a balanced bipartite graph contains a
perfect matching [26]: it is not hard to check that its determinant is not identically zero (as
a polynomial) if and only if G admits a perfect matching.

However, we cannot use the Edmonds matrix directly: indeed, the input to our problem is
not a single bipartite graph, but a collection of n bipartite graphs G1, . . . , Gn. We therefore
generalize Edmonds’ idea as follows.

Definition 3.2 (Polynomial Schedule Matrix). Let (yi)i∈[n+1] and (xj,r)j,r∈[m] be indeter-
minates. The polynomial schedule matrix for G1, . . . , Gn is a matrix A ∈ Rm×m with entries
Ajr defined as follows:

Ajr =

{
yn+1 · xj,r if Gij,r = 0 for all i ∈ [n]∏n
i=1 y

Gi
j,r

i · xj,r otherwise

3.1.1 Using the polynomial schedule matrix

We will now describe how to use the polynomial schedule matrix to check for existence of
good outcomes. Set yN = (yi)i∈[n+1], xE = (xj,r)j,r∈[m], and denote the determinant of A
by det(A) = f(yN,xE). The function f is a polynomial in yN, xE. It will also be convenient
to think of det(A) as a polynomial in yN whose coefficients are polynomials over xE; when
using this interpretation, we will write det(A) = g(yN).

The function f(yN,xE) can be written as a sum of m! monomials. Each of these mono-
mials is of the form (−1)z ·yv11 . . . yvnn y

vn+1

n+1 ·xj1,r1 · · · · · ··xjm,rm , where z ∈ {0, 1}, v1, . . . , vn+1

are non-negative integers, and {j1, . . . , jm} = {r1, . . . , rm} = [m]; for each i ∈ [n] the value
vi is the utility that agent i derives from the schedule that assigns project pjs to time slot
trs for s ∈ [m].

We can rephrase the reasoning above in terms of g. Specifically, we can represent g(yN)
as a sum of at most (m+ 1)n+1 monomials over yN, with the coefficient of each monomial
being a polynomial over xE. Specifically, each monomial in g(yN) is an expression of the
form yv11 . . . yvnn y

vn+1

n+1 λ(xE), where 0 ≤ vi ≤ m for each i ∈ [n+1] and λ(xE) is a polynomial
over xE; if λ is not identically zero, there are one or more outcomes providing utility vi to
agent i for i ∈ [n] and containing vn+1 project-time slot pairs not approved by any of the
agents.

It follows that as long as we know which monomials occur in g, we can decide whether
our instance admits outcomes that satisfy each of the welfare and fairness desiderata defined
in Section 2. In more detail1:

• Egalitarian Social Welfare: Given v1, . . . , vn ≥ 0, we can determine whether there
exists an outcome o such that ui(o) ≥ vi for each i ∈ [n], by checking whether g

contains a monomial of the form
∏n+1
i=1 y

v′i
i λ(xE) such that v′i ≥ vi for all i ∈ [n].

• Nash Social Welfare: The value of a Nash welfare-maximizing outcome can be
computed efficiently by iterating through all monomials in g: given a monomial of the

1We omit a discussion of utilitarian social welfare, since an outcome maximizing this measure of welfare
can be computed in polynomial time for arbitrary n, m and ` (Theorem 4.1).

form
∏n+1
i=1 y

vi
i λ(xE), we compute

∏n
i=1 vi, and take the maximum of this quantity

over all monomials that appear in g.

• Pareto Optimality: For each i ∈ [n], let vi = ui(o). Then if g has a term∏n+1
i=1 y

v′i
i λ(xE) with v′i ≥ vi for all i ∈ [n] and v′i > vi for at least one i ∈ [n],

then o is not Pareto optimal, otherwise it is.

• Equitability: Given v ≥ 0, we can determine whether there exists an outcome o such
that ui(o) = v for each i ∈ [n], by checking whether there exists a term

∏n+1
i=1 y

v
i λ(xE)

such that v = vi for all i ∈ [n].

• Proportionality can be handled similarly to egalitarian social welfare by setting
vi = µi/n for each i ∈ [n].

More broadly, having access to g enables us to solve any problem where the answer
depends on whether there exists an outcome that provides certain utilities to each of the
agents. We will now discuss the complexity of deciding which monomials appear in g.

3.1.2 Evaluating g

We have argued that we can decide the existence of ‘good’ outcomes by evaluating det(A)
(more specifically, by determining which monomials appear in g). However, explicitly listing
all m! terms of f(yN,xE) is computationally expensive. Instead, we will now describe a
probabilistic polynomial-time algorithm that with high probability correctly identifies which
monomials appear in g. Formally, we will say that a polynomial ĝ over yN is an over-
approximation of g if for every choice of v1, . . . , vn+1 ∈ {0, . . . ,m} the following holds: if

g contains a monomial of the form
∏n+1
i=1 y

vi
i λ(xE) such that λ is not identically 0, then

ĝ contains a monomial of the form λ̂ ·
∏n+1
i=1 y

vi
i with λ̂ ∈ R \ {0}. Also, we say that ĝ is

an under-approximation of g if for every choice of v1, . . . , vn+1 ∈ {0, . . . ,m} the following

holds: if g does not contain a monomial of the form
∏n+1
i=1 y

vi
i λ(xE), then ĝ does not contain

a monomial of the form λ̂ ·
∏n+1
i=1 y

vi
i . Our algorithm will output a polynomial ĝ over

yN such that ĝ is an under-approximation of g, and, with probability at least 1/2, it is
an over-approximation of g. Note that if ĝ is both an under-approximation and an over-
approximation of g, it contains at most (m + 1)n+1 terms, and it can be used instead of g
to solve all fair scheduling problems considered in this section. Moreover, the probability
that ĝ is an over-approximation of g can be amplified using standard techniques.

To obtain ĝ given the matrix A, we sample values for the variables in xE from the set
ddme for d = 2 · (m+ 1)n+1, and substitute them into A, so as to obtain a matrix A′ whose
entries are polynomials in yN. We then set ĝ = det(A′).

Computing the determinant is easy for real-valued matrices: e.g., one can obtain the LU
decomposition [31, 7] of the input matrix in time O(m2.376) time using the Coppersmith-
–Winograd algorithm for matrix multiplication, and then compute the determinant of the
simpler matrices in the decomposition in linear-time. However, the entries of A′ are multi-
variate polynomials rather than reals. We will therefore use polynomial interpolation tech-
niques. That is, we select values y′1, . . . , y

′
n+1 ∈ R, substitute them into A′, and compute the

determinant of the resulting real-valued matrix using the LU decomposition approach. By
repeating this step multiple times (selecting fresh values of y′1, . . . , y

′
n+1 ∈ R at each iteration

and computing ĝ(y′1, . . . , y
′
n+1)), we obtain enough information to recover ĝ. Specifically,

Zippel’s deterministic method takes O(n2mn+1t2) time, where t is the true number of non-
zero terms in ĝ; whereas Zippel’s probabilistic method [35] provides an improved expected
running time of O(n2mt2). An overview of methods for polynomial interpolation and their
complexity can be found in [35, 16].

It is clear that ĝ is an under-approximation of g. To show that it is an over-approximation
of g with probability at least 1/2, we use the Schwartz–Zippel lemma [26]:

Proposition 3.3. Set d = 2·(m+1)n+1, and let S = ddme. Then picking x′j,r independently,
uniformly at random from S gives a polynomial in y1, . . . , yn+1 such that the coefficient of
every term

∏n+1
i=1 y

vi
i that appears in det(A) is non-zero with probability at least 1/2.

Proof. Fix some values v1, . . . , vn+1. The coefficient of
∏n+1
i=1 y

vi
i is a polynomial in xE of

degree at most m. By the Schwartz–Zippel lemma [26], the probability that this coefficient
is zero is at most m

|S| = 1
d . By the union bound, the probability that this happens for some

choice of v1, . . . , vn+1 is at most 1
d · (m+ 1)n+1 = 1/2.

The running time of our algorithm is polynomial in (m+1)n+1, i.e., it is polynomial in m
if n is bounded by a constant. Indeed, our algorithm proceeds by constructing A, sampling
values for xE, substituting them into A, and evaluating the determinant of the resulting
matrix using polynomial intepolation; this determinant is a multivariate polynomial that
contains at most (m + 1)n+1 monomials, and, given this polynomial, the fair scheduling
problems we are interested in can be solved in polynomial time.

3.1.3 Extension to search problems

We can extend our approach from decision problems to search problems. To illustrate this,
we consider the problem of finding an outcome that maximizes the utilitarian welfare.

Corollary 3.4. Suppose we are given a non-negative integer vi for each i ∈ [n]. Then we
can efficiently find an outcome o such that ui(o) ≥ vi for all i ∈ [n], or report that no such
outcome exists.

Sketch. Initialize the solution as S = ∅. Pick an edge e /∈ S from ∪ni=1G
i, remove it from

each approval graph, and run the randomized polynomial-time algorithm on this problem
instance. If a solution still exists, e was not essential, and we may continue removing edges.
If there is no solution, we know e must be part of every solution that includes the edges
placed in S so far; we reinstate it in the approval graphs, set S := S∪{e}, and continue.

3.2 PROP1 Outcomes Exist for Two Agents

In Section 2, we observed that some instances do not have PROP outcomes, and defined
a relaxation of PROP, namely, proportionality up to k items (PROPk). We show that for
two agents, PROP1 outcomes always exist and can be computed in polynomial time. Due
to space constraints, the proof is deferred to the appendix.

Proposition 3.5. Let G1 = (V,E1) and G2 = (V,E2) be graphs on the same set of vertices
V . Also, for each i = 1, 2, let µi be the size of a maximum matching in Gi. Then, we can
compute, in polynomial time, a matching M in (V,E1 ∪ E2) that contains at least µ1

2 − 1
edges from E1 and at least µ2

2 − 1 edges from E2.

Corollary 3.6. When n = 2, a PROP1 allocation exists and can be computed in polynomial
time.

Proof. Applying Proposition 3.5 to the approval graphs G1 and G2 (of agents 1 and 2
respectively) results in a PROP1 allocation.

The algorithm described in the proof of Proposition 3.5 runs in polynomial time. More
specifically, the most computationally expensive task is computing the maximum matchings
in G1 and G2, which takes O(

√
m · |E(Gi)|) time for i = 1, 2. Constructing the graph

G′, finding the connected components, and defining the valuations takes O(`) time. The
adjusted winner procedure is also linear in the number of items, which is at most the number
of vertices in G′, i.e., at most 2`, so it takes O(`) time. Furthermore, given the divisible
component C∗, we can decide if it is a cycle or an alternating path in linear time (by looking
at the number of vertices, and the number of 1- and 2- edges each) and hence decide which
of its edges to select.

4 Beyond a Constant Number of Agents

In this section, we analyze the complexity of finding good outcomes in scenarios where the
number of agents may be large. We obtain an easiness result for utiliarian social welfare,
and hardness results for several other solution concepts.

4.1 Utilitarian Social Welfare

The utilitarian social welfare is perhaps the most popular optimization target in multi-agent
allocation problems. We start by formalizing the problem of computing an outcome that
maximizes this measure of welfare.

Utilitarian Social Welfare Maximization (Util):
Input: A problem instance I = (P, T, (si)i∈N), and a parameter λ ∈ N.
Question: Is there an outcome o such that

∑
i∈N ui(o) ≥ λ?

We will now show that the problem we just defined admits an efficient algorithm; in fact,
we can even compute an outcome that maximizes the utilitarian social welfare in polynomial
time.

Theorem 4.1. Util is solvable in polynomial time.

Proof. Given an instance of Util, we construct a weighted complete bipartite graph with
parts P and T , where the weight of the edge (pj , tr) equals to the number of agents that
approve implementing pj at time tr: that is, we set w(pj , tr) = |{i ∈ N : pj ∈ si,r}|.
Then a maximum-weight matching in this graph corresponds to an outcome that maximizes
the utilitarian social welfare. It remains to observe that a maximum-weight matching in a
bipartite graph can be computed in polynomial time [30].

4.2 Egalitarian Social Welfare

Next, we consider the complexity of maximizing the egalitarian welfare. Again, we first
formulate the associated decision problem.

Egalitarian Social Welfare Maximization (Egal):
Input: A problem instance I = (P, T, (si)i∈N), and a parameter λ ∈ N.
Question: Is there an outcome o such that ui(o) ≥ λ for each i ∈ N?

It turns out that Egal is NP-complete. In fact, this hardness result holds even in the
FP setting.

Our proof proceeds by a reduction from the Binary Closest String Problem
(BCSP) [13, 22]. An instance of this problem consists of ν binary strings of length ρ
each, and an integer κ; it is a yes-instance if there exists a binary string y of length ρ
such that the Hamming distance (i.e., number of mismatches) between y and each of the ν
strings is at most κ (equivalently, the number of matches is at least ρ−κ), and a no-instance
otherwise. This problem is known to be NP-complete [13, 22].

We are now ready to establish the complexity of Egal.

Theorem 4.2. Egal is NP-complete. The hardness result holds even in the FP setting.

Proof. It is clear that Egal is in NP: given an outcome, we can evaluate each agent’s utility
and compare it to λ. To establish NP-hardness, we give a reduction from BCSP.

Consider an instance of BCSP given by ν binary strings X = {x1, . . . , xν} of length ρ
each, and an integer κ. For each i ∈ [ν], j ∈ [ρ], denote the j-th bit of the string xi by
xij . To create an instance of Egal, we introduce 2ρ projects p1, . . . , p2ρ and 2ρ time slots
t1, . . . , t2ρ. We will encode the bit strings as agents’ preferences: for each xij , if xij = 1, let
si,2j−1 = p2j−1 and si,2j = p2j ; if xij = 0, let si,2j−1 = p2j and si,2j = p2j−1.

Let λ = 2(ρ − κ). We will now prove that there exists an outcome o that gives each
agent a utility of at least λ if and only if there exists a binary string y of length ρ such that
its Hamming distance to each string in X is at most κ (i.e., the number of matches is at
least ρ− κ).

For the ‘if’ direction, let y = (y1, . . . , yρ) be a string with at most κ mismatches to each
of the strings in X. Construct an outcome o by setting o2j−1 = p2j−1, o2j = p2j if yj = 1,
and o2j−1 = p2j , o2j = p2j−1 if yj = 0. Consider an agent i. For each bit j such that
xij = yj we have si,2j−1 = o2j−1, si,2j = o2j . Thus, the utility of this agent is at least
2(ρ− κ) = λ, which is what we wanted to prove.

For the ‘only if’ direction, suppose there exists an outcome that gives each agent a utility
of λ. We will say that an outcome o is proper if for each j ∈ [ρ] we have {o2j−1, o2j} =
{p2j−1, p2j}. We claim that there exists a proper outcome that gives each agent a utility of
λ. Indeed, suppose that this is not the case. For each outcome o, let z(o) be the number
of time slots tq such that q ∈ {2j − 1, 2j} for some j ∈ [ρ], but oq 6∈ {p2j−1, p2j}. Among
all outcomes that give each agent a utility of λ, pick one with the minimal value of z(o); let
this outcome be o∗. By our assumption, o∗ is not proper, so z(o∗) > 0. Thus, there exists
a time slot tq such that q ∈ {2j − 1, 2j} for some j ∈ [ρ], but o∗q 6∈ {p2j−1, p2j}. Then in
o∗ there is a project p ∈ {p2j−1, p2j} that is scheduled at time slot t2j′−1 or t2j′ for some
j′ 6= j. Modify o∗ by swapping p with o∗q . Note that in o∗, no agent derives positive utility
from either of these two projects. Hence, this swap cannot decrease any agent’s utility, but
it decreases z(·) (because the project at time slot tq is now one of p2j−1, p2j), a contradiction
with our choice of o∗.

Now, fix a proper outcome o that gives each agent a utility of λ. Let

yj =

{
1 if o2j−1 = p2j−1 and o2j = p2j

0 if o2j−1 = p2j and o2j = p2j−1

Consider a string xi. We know that agent i’s utility from o is at least λ = 2(ρ−κ). Note
that for each j ∈ [ρ] we have either (1) o2j−1 = si,2j−1, o2j = si,2j or (2) o2j−1 6= si,2j−1,
o2j 6= si,2j . Hence, there can be at most κ indices j ∈ [ρ] for which condition (2) holds, and
therefore there are at most κ mismatches between xi and y.

Theorem 4.2 indicates that even for FP instances, it is hard to decide whether each agent
can be guaranteed a utility of at least λ. This motivates us to consider a less ambitious
goal: can Egal be solved efficiently if λ is bounded by a small constant?

Perhaps surprisingly, even for λ = 1 and FP instances this is unlikely to be the case:
we show that Egal is as hard as the Perfect Complete Bipartite Proper Rainbow
Matching (PCBP-RM) problem [27], one of the many variants of the Rainbow Matching
problem for which an NP-hardness result is conjectured, but has not been established [2].

An instance of PCBP-RM is given by a complete bipartite graph Kν,ν (i.e., there are ν
nodes on each side of the graph, and each node on one side is connected to every other node
on the opposite side), where edges are properly colored (i.e., if two edges share an endpoint,
they have different colors). The goal is to decide whether this instance admits a perfect
rainbow matching M , i.e., a matching of size ν in which every edge has a different color.

Theorem 4.3. Egal is at least as hard as PCBP-RM, even when restricted to FP in-
stances with λ = 1.

Proof. Consider an instance of PCBP-RM with two parts V1 and V2, |V1| = |V2| = ν,
where for all i, j ∈ [ν], the i-th vertex in V1 is connected to the j-th vertex in V2 via an edge
eij ; we denote the color of this edge by color(eij). There are a total of ν unique colors
C = {c1, . . . , cν}.

We construct an instance of Egal that contains ν agents, ν projects, and ν time slots.
For each agent i and time slot tr, we set si,r = pj , where j is the index of the color of the
edge eir, i.e., color(eir) = cj .

We will now prove that there exists an outcome o that gives each agent a utility of at
least 1 if and only if there exists a perfect rainbow matching M .

For the ‘if’ direction, let M be a perfect rainbow matching. We create an outcome o
as follows. To determine the time slot for project pj , we identify an edge of M that has
color cj ; if this edge connects agent i and time slot tr, we schedule pj at time tr (thereby
providing utility 1 to agent i). Since M is a rainbow matching, each project is scheduled
exactly once, and any two projects are assigned distinct time slots. Moreover, as M is a
matching, each agent’s utility is 1.

For the ‘only if’ direction, consider an outcome o that gives each agent a utility of at
least 1. Observe that for each r ∈ [ν] and every pair of agents i, i′, we have si,r 6= si′,r. This
means that for each r ∈ [ν], there is exactly one agent that receives a utility of 1 from or,
i.e., the utility of each agent is exactly 1. We construct the matching M as follows: if agent
i receives utility from the project scheduled at tr, we add an edge from the i-th vertex of
V1 to the r-th vertex of V2 to M . Note that M is a matching: each vertex in V1 is matched,
as each agent receives utiity 1 from some project, and each vertex in V2 is matched, as each
time slot provides positive utility to at most one agent. Moreover, M is a rainbow matching,
as each project is scheduled exactly once.

On a more positive note, for λ = 1 in the γ-PP setting we can characterize the complexity
of Egal with respect to the parameter γ. We do so by establishing a tight relationship
between this problem and the k-SAT problem. An instance of k-SAT consists of ν Boolean
variables and ρ clauses, where each clause has at most k literals; it is a yes-instance if there
exists an assignment of Boolean values to the variables such that at least one literal in each
clause evaluates to True, and a no-instance otherwise. This problem is NP-complete for
each k ≥ 3, but polynomial-time solvable for k = 2.

Theorem 4.4. Egal is NP-complete even when restricted to γ-PP instances with λ = 1,
for any fixed γ ≥ 3.2

Proof. We describe a reduction from γ-SAT to Egal restricted to γ-PP instances with
λ = 1.

2It is important to note that this does not mean that when λ = 1, Egal under FP is always NP-complete.
We cannot use the γ = m argument here, even if m ≥ 3.

Consider an instance of γ-SAT given by ν Boolean variables X = {x1, . . . , xν} and ρ
clauses C = {C1, . . . , Cρ}. In our instance of Egal, we have a set of ρ agents N = {1, . . . , ρ},
2ν projects P = {p1, . . . , p2ν}, and 2ν time slots T = {t1, . . . , t2ν}. Each agent encodes a
clause: for each i ∈ N , j ∈ [ν] we set

si,2j−1 =

{
pj if Ci contains the positive literal xj

∅ otherwise

and

si,2j =

{
pj if Ci contains the negative literal ¬xj
∅ otherwise

As we start with an instance of γ-SAT, we have | ∪r∈[2ν] si,r| ≤ γ for each i ∈ N , i.e., we
obtain a valid γ-PP instance.

We will now prove that there exists an outcome o that gives each agent a positive utility
if and only if our instance of γ-SAT admits a satisfying assignment.

For the ‘if’ direction, consider a satisfying assignment (ξj)j∈[ν]. For j ∈ [ν], if ξj is set
to True, let o2j−1 = pj , o2j = pν+j and if ξj is set to False, let o2j−1 = pν+j , o2j = pj .
Consider an agent i ∈ [ρ]. Since the assignment (ξj)j∈[ν] satisfies Ci, there is a literal ` ∈ Ci
that is satisfied by this assignment. If ` = xj is a positive literal then ξj is set to True, so
o2j−1 = pj , and we have si,2j−1 = pj . If ` = ¬xj is a negative literal then ξj is set to False,
so o2j = pj , and we have si,2j = pj . In either case, the utility of agent i is at least 1.

For the ‘only if’ direction, consider an outcome o that gives each agent a positive utility.
Arguing as in the proof of Theorem 4.2, we can assume that for each j ∈ [ν] it holds that pj
is scheduled at t2j−1 or at t2j : if this is not the case for some j ∈ [ν], we can move pj to one
of these slots without lowering the utility of any agent. We construct a truth assignment
(ξj)j∈[ν] by setting ξj to True if o2j−1 = pj and to False if o2j = pj . Now, consider a clause
Ci. Since the utility of agent i is at least 1, it follows that our assignment satisfies at least
one of the literals in Ci. As this holds for all clauses, the proof is complete.

Theorem 4.5. Egal is polynomial-time solvable when restricted to 2-PP instances with
λ = 1.

Proof. Consider an instance of Egal with λ = 1 given by n agents N = {1, . . . , n}, m
projects P = {p1, . . . , pm} and ` time slots T = {t1, . . . , t`}. For each project pj ∈ P and
time slot tr ∈ T , create a variable xjr; intuitively, we want this variable to evaluate to True
if project pj is scheduled at time slot tr and to False otherwise.

First, we encode the fact that each project can be scheduled at most once: for each
project pj ∈ P and each pair of time slots tr, tr′ ∈ T with r 6= r′ we add the clause
¬xjr ∨ ¬xjr′ . Let the conjunction of these clauses be C∗.

Next, we encode the fact that in each time slot we have at most one project: for each time
slot tr ∈ T and each pair of projects pj , pj′ ∈ P with j 6= j′ we add the clause ¬xjr ∨¬xj′r.
Let the conjunction of these clauses be C ′.

Finally, for each agent i ∈ [n], we create a clause that requires this agent to have positive
utility. Specifically, for each i ∈ [n] we create a clause Ci as follows. If there exists a single
time slot tr such that si,r 6= ∅, we set Ci = xjr if si,r = {pj} and Ci = xjr ∨ xj′r if
si,r = {pj , pj′}. If there exists two time slots tr, tr′ such that si,r, si,r′ 6= ∅, then it has to
be the case that si,r = pj , si,r′ = pj′ for some pj , pj′ ∈ P , so we set Ci = xjr ∨ xj′r′ .

It is now easy to see that there exists a truth assignment that satisfies C∗, C ′, and all
clauses in C1, . . . , Cn if and only if there exists an outcome that guarantees positive utility
to each agent. Moreover, each of the clauses in our construction is a disjunction of at most
two literals. It remains to observe that 2-SAT is solvable in O(n+m) time [3, 11, 19].

4.3 Equitability

In Section 2, we have seen that not all instances admit equitable outcomes. We will now
show that deciding the existence of equitable outcomes is computationally intractable. The
proof is deferred to the appendix.

Equitability (Eq):
Input: A problem instance I = (P, T, (si)i∈N), and a parameter λ ∈ N.
Question: Is there an outcome o such that ui(o) = λ for each i ∈ N?

Theorem 4.6. Eq is NP-complete. The hardness result holds even in the γ-PP setting, for
any γ.

4.4 Proportionality

Finally, we consider the complexity of finding proportional outcomes.

Proportionality (Prop):
Input: A problem instance I = (P, T, (si)i∈N).
Question: Is there an outcome o such that ui(o) ≥ µi/n for each i ∈ N?

It is easy to see that Prop does not necessarily imply Util or Egal. Indeed, consider
the case where n = m = `, and all agents have the same preference: si,j = pj for all i ∈ [n],
j ∈ [`]. Then, the only outcome that maximizes utilitarian or egalitarian social welfare is
(p1, . . . , pm). However, any outcome with just a single project scheduled at the “correct”
time slot would be a Prop outcome.

For proportionality, we obtain the following result. The proof can be found in the
appendix.

Theorem 4.7. Prop is at least as hard as PCBP-RM. The hardness result holds even in
the FP setting.

5 Conclusion and Future Work

We considered a variety of welfare and fairness objectives in the assignment of projects to
time slots based on preferences of multiple agents. In particular, we showed that when the
number of agents is bounded by a constant, most of the associated decision problems are
solvable in polynomial time by a randomized algorithm. When the number of agents can
be arbitrary, we obtain a polynomial-time algorithm for the utilitarian welfare, and hard-
ness results for the egalitarian welfare, equitability and proportionality; for the egalitarian
welfare, we also identify special cases where optimal outcomes can be computed efficiently.

Avenues for future research include the following: (1) relaxing the capacity constraints
on time slots, so that we can implement multiple (or zero) projects at each time slot; (2)
considering agents with different entitlements and the associated fairness notions [8, 12, 25,
34]; (3) exploring settings where agents belong to different groups and investigating group
fairness and proportionality in our setting [9, 28]; (4) designing strategyproof scheduling
mechanisms.

References

[1] Kolos Csaba Àgoston, Pèter Birò, and Richàrd Szàntò. Stable project allocation under
distributional constraints. Operations Research Perspectives, 5:59–68, 2018.

[2] Ron Aharoni, Eli Berger, Dani Kotlar, and Ran Ziv. On a conjecture of Stein. Ab-
handlungen aus dem Mathematischen Seminar der Universität Hamburg, 87:203–211,
2017.

[3] Bengt Aspvall, Michael Plass, and Robert Tarjan. A linear-time algorithm for testing
the truth of certain quantified boolean formulas. Information Processing Letters, 8:
121–123, 1979.

[4] Evripidis Bampis, Bruno Escoffier, and Sasa Mladenovic. Fair resource allocation over
time. In Proceedings of the 17th International Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS), pages 766–773, 2018.

[5] Steven Brams and Alan Taylor. Fair Division: From Cake-Cutting to Dispute Resolu-
tion. Cambridge University Press, 1996.

[6] Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, and Ariel Procaccia. Hand-
book of Computational Social Choice. Cambridge University Press, 2016.

[7] James R Bunch and John E Hopcroft. Triangular factorization and inversion by fast
matrix multiplication. Mathematics of Computation, 28(125):231–236, 1974.

[8] Mithun Chakraborty, Ayumi Igarashi, Warut Suksompong, and Yair Zick. Weighted
envy-freeness in indivisible item allocation. ACM Transactions on Economics and Com-
putation, 9(3):18:1–18:39, 2021.

[9] Vincent Conitzer, Rupert Freeman, Nisarg Shah, and Jennifer Wortman Vaughan.
Group fairness for the allocation of indivisible goods. In Proceedings of the 33rd AAAI
Conference on Artificial Intelligence (AAAI), pages 1853–1860, 2019.

[10] Edith Elkind, Neel Patel, Alan Tsang, and Yair Zick. Keeping your friends close: Land
allocation with friends. In Proceedings of the 29th International Joint Conference on
Artificial Intelligence (IJCAI), pages 318–324, 2020.

[11] Shimon Even, Alon Itai, and Adi Shamir. On the complexity of time table and multi-
commodity flow problems. In Proceedings of the 16th Symposium on Foundations of
Computer Science (FOCS), pages 184–193, 1975.

[12] Alireza Farhadi, Mohammad Ghodsi, MohammadTaghi HajiAghayi, Sébastien Lahaie,
David M. Pennock, Masoud Seddighin, Saeed Seddighin, and Hadi Yami. Fair allocation
of indivisible goods to asymmetric agents. Journal of Artificial Intelligence Research,
64:1–20, 2019.

[13] Moti Frances and Ami Litman. On covering problems of codes. Theory of Computing
Systems, 30:113–119, 2007.

[14] Rupert Freeman, Seyed Majid Zahedi, and Vincent Conitzer. Fair and efficient social
choice in dynamic settings. In Proceedings of the 26th International Joint Conference
on Artificial Intelligence (IJCAI), pages 4580–4587, 2017.

[15] Rupert Freeman, Seyed Majid Zahedi, Vincent Conitzer, and Benjamin C. Lee. Dy-
namic proportional sharing: A game-theoretic approach. Proceedings of the ACM on
Measurement and Analysis of Computing Systems, 2(1):1–36, 2018.

[16] Mariano Gasca and Thomas Sauer. Polynomial interpolation in several variables. Ad-
vances in Computational Mathematics, 12(4):377–410, 2000.

[17] David Karger, Cliff Stein, and Joel Wein. Scheduling Algorithms, page 20. Chapman
& Hall/CRC, 2 edition, 2010. ISBN 9781584888208.

[18] Judy Kay and Piers Lauder. A fair share scheduler. Communications of the ACM, 31
(1):44–55, jan 1988.

[19] Melven Krom. The decision problem for a class of first-order formulas in which all
disjunctions are binary. Mathematical Logic Quarterly, 13(1–2):15–20, 1967.

[20] Martin Lackner. Perpetual voting: Fairness in long-term decision making. In Proceed-
ings of the 34th AAAI Conference on Artificial Intelligence (AAAI), pages 2103–2110,
2020.

[21] Martin Lackner, Jan Maly, and Simon Rey. Fairness in long-term participatory budget-
ing. In Proceedings of the 30th International Joint Conference on Artificial Intelligence
(IJCAI), pages 299–305, 2021.

[22] Kevin Lanctot, Ming Li, Bin Ma, Shaojiu Wang, and Louxin Zhang. Distinguishing
string selection problems. Information and Computation, 185(1):41–55, 2003.

[23] Andrea Lodi, Philippe Olivier, Gilles Pesant, and Sriram Sankaranarayanan. Fairness
over time in dynamic resource allocation with an application in healthcare. arXiv
preprint arXiv:2101.03716, 2022.

[24] Michael R Merrifield and Donald G Saari. Telescope Time Without Tears: A Dis-
tributed Approach to Peer Review. Astronomy & Geophysics, 50(4):4.16–4.20, 2009.

[25] Luisa Montanari, Ulrike Schmidt-Kraepelin, Warut Suksompong, and Nicholas Teh.
Weighted envy-freeness for submodular valuations. arXiv preprint, arXiv:2209.06437,
2022.

[26] Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms. Cambridge uni-
versity press, 1995.

[27] Guillem Perarnau and Oriol Serra. Rainbow matchings: Existence and counting. arXiv
preprint arXiv:1104.2702, 2011.

[28] Jonathan Scarlett, Nicholas Teh, and Yair Zick. For one and all: Individual and group
fairness in the allocation of indivisible goods. In Proceedings of the 8th International
Workshop on Computational Social Choice (COMSOC), 2021.

[29] Thomas J. Schaefer. The complexity of satisfiability problems. In Proceedings of the
10th Annual ACM Symposium on Theory of Computing (STOC), pages 216–226, 1978.

[30] Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer,
2003.

[31] Alex Schwarzenberg-Czerny. On matrix factorization and efficient least squares solution.
Astronomy and Astrophysics Supplement Series, 110:405, 1995.

[32] Colin T.S. Sng and David F. Manlove. Popular matchings in the weighted capacitated
house allocation problem. Journal of Discrete Algorithms, 8(2):102–116, 2010.

[33] Philipp Ströhle, Enrico H. Gerding, Mathijs M. de Weerdt, Sebastian Stein, and
Valentin Robu. Online mechanism design for scheduling non-preemptive jobs under
uncertain supply and demand. In Proceedings of the 24th International Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS), pages 437–444, 2014.

[34] Warut Suksompong and Nicholas Teh. On maximum weighted Nash welfare for binary
valuations. Mathematical Social Sciences, 117:101–108, 2022.

[35] Richard Zippel. Interpolating polynomials from their values. Journal of Symbolic
Computation, 9(3):375–403, 1990.

Edith Elkind
University of Oxford
Oxford, United Kingdom
Email: elkind@cs.ox.ac.uk

Sonja Kraiczy
University of Oxford
Oxford, United Kingdom
Email: sonja.kraiczy@cs.ox.ac.uk

Nicholas Teh
University of Oxford
Oxford, United Kingdom
Email: nicholas.teh@cs.ox.ac.uk

6 Appendix

6.1 Proof of Proposition 3.5: PROP1 outcome exists for two
agents.

Proof. For i = 1, 2, let Mi ⊂ Ei be some maximum matching in Gi. We place each edge
e ∈M1 ∩M2 in M ; note that each such edge does not share endpoints with other edges in
M1 ∪M2. Let κ = |M1 ∩M2|, and for i = 1, 2, set µ′i = |Mi \M3−i| = µi − κ. Consider the
graph G′ = (V, (M1∪M2)\(M1∩M2)). We will say that an edge e of G′ is red if e ∈M1 and
blue if e ∈M2; note that each edge of G′ is either red or blue. Moreover, in G′ each vertex is
incident on at most one red edge and at most one blue edge, so each connected component
of G′ is an isolated vertex, an alternating red-blue path, or an alternating red-blue cycle
(which must be of even length).

Next, we construct an instance of the fair allocation problem with two agents N = {1, 2}
and divisible items. We create one item for each connected component of G′; let I be the
resulting set of items. For each C ∈ I we define the valuation of agent i ∈ {1, 2} to be
vi(C) = |E(C)∩Mi|. We extend the valuation function to bundles and fractional allocations
in a linear fashion: if agent i obtains a bundle that contains an αC-fraction of item C for
C ∈ I ′, then her valuation for this bundle is

∑
C∈I′ αC ·vi(C). Note that we have vi(I) = µ′i.

We then apply the adjusted winner procedure [5] to this instance. This procedure results
in a proportional allocation that splits at most one of the items in I. For i = 1, 2, let Ii be
the set of items that are allocated to agent i, and let C∗ be the item that is split, so that
agent i gets a wi-fraction of C∗, where w1 +w2 = 1. By proportionality, the value of agent
i for her bundle, given by

∑
C∈Ii vi(C) +wi ·vi(C∗), is at least µ′i/2. We will now transform

this allocation into a matching in G′.

To this end, for each i = 1, 2, if the connected component C is allocated to i, we place
edges Mi ∩ C into M . To select edges from C∗, we proceed as follows.

Suppose first that C∗ is a path of length 2s, with red edges e1, . . . , e2s−1 and blue edges
e2, . . . , e2s. Then v1(C∗) = v2(C∗) = s. Let t = bw1 · sc, and place edges e1, . . . , e2t−1 as
well as e2t+2, . . . , e2s into M : by construction, these edges form a matching, which contains
t ≥ w1 · s− 1 red edges and s− t ≥ s− w1 · s = w2 · s blue edges.

Next, suppose that C∗ is a path of length 2s− 1, with red edges e1, . . . , e2s−1 and blue
edges e2, . . . , e2s−2. Then v1(C∗) = s, v2(C∗) = s − 1. Again, let t = bw1 · sc, and place
edges e1, . . . , e2t−1 as well as e2t+2, . . . , e2s−2 into M : by construction, these edges form a
matching, which contains t ≥ w1 · s− 1 red edges and s− t− 1 ≥ s−w1 · s− 1 = w2 · s− 1
blue edges.

Finally, if C∗ is a cycle of length 2s, we discard one blue edge, transforming C∗ into an
odd-length path, and then proceed as described in the previous paragraph, i.e., select at
least w1 · s − 1 red edges and w2 · s − 1 blue edges and place them in M . This completes
the construction of M ; it is immediate that it can be carried out in polynomial time.

For each item C ∈ I1, we place |E(C) ∩ M1| = v1(C) red edges in M , and, when
splitting C∗, we place at least w1 · v1(C∗) − 1 red edges in M . By proportionality of
the fractional allocation, we have

∑
C∈I1 v1(C) + w1 · v1(C∗) ≥ µ′1/2; hence, we place at

least µ′1/2 − 1 red edges in M . By a similar argument, we place at least µ′2/2 − 1 blue
edges in M . In addition, M contains κ edges from M1 ∩M2. Hence, it contains at least
µ′i/2− 1 + κ = (µi − κ)/2− 1 + κ ≥ µi/2− 1 edges from Mi for each i = 1, 2.

6.2 Proof of Theorem 4.6: Eq is NP-complete. The hardness result
holds even in the γ-PP setting, for any γ.

Proof. It is clear that Eq is in NP. To show that this problem is NP-hard, we first formulate
an intermediate problem to be used in our proof. Namely, we introduce the Exact Partial
Binary Closest String Problem (Exact-P-BCSP). This problem is similar to the
BCSP, but with two differences: (1) the Hamming distance between the output string and
each of the input strings must be exactly κ, and (2) we allow an additional character, ∗, in
the solution string. Formally, an instance of Exact-P-BCSP consists of ν binary strings
of length ρ each, and an integer κ; it is a yes-instance if there exists a string y of length
ρ over the alphabet {0, 1, ∗} such that the Hamming distance between y and each of the
ν input strings is exactly κ (equivalently, the number of matches is exactly ρ − κ), and a
no-instance otherwise.

We begin with the following lemma, whose proof we include separately.

Lemma 6.1. Exact-P-BCSP is NP-hard.

We will now reduce Exact-P-BCSP to Eq. Consider an instance of Exact-P-BCSP
given by ν binary strings X = {x1, . . . , xν} of length ρ each and an integer κ. For each
i ∈ [ν], j ∈ [ρ], denote the j-th bit of the i-th string by xij . We introduce 2ρ projects
p1, . . . , p2ρ and 2ρ time slots t1, . . . , t2ρ. We encode the bit strings in X as the agents’
preferences: for each i ∈ [ν], j ∈ [ρ], if xij = 1, let si,2j−1 = pj , si,2j = ∅; and if xij = 0, let
si,2j−1 = ∅, si,2j = pj .

We will now prove that there exists an outcome o that gives each agent a utility of
exactly ρ− κ if and only if there exists a binary string y of length ρ such that the number
of mismatches is exactly κ.

For the ‘if’ direction, let y be a solution string with exactly ρ − κ matches to each of
the strings in X. We construct an outcome o as follows. For each j ∈ [ρ], if yj = 1 we let
o2j−1 = pj and if yj = 0 we let o2j = pj ; we assign the remaining projects to the remaining
slots arbitrarily, with the constraint that if yj = ∗, then pj is not assigned to either of the

time slots t2j−1, t2j (it is not difficult to verify that this can always be done efficiently; we
omit the details). Consider an agent i ∈ [ν] and a time slot j ∈ [ρ]. If xij = yj = 1 we
have o2j−1 = si,2j−1, si,2j = ∅, if xij = yj = 0 we have o2j = si,2j , si,2j−1 = ∅, and if
xij 6= yj then o2j−1 6∈ si,2j−1, o2j 6∈ si,2j . Hence, each pair of time slots (t2j−1, t2j) such
that xij = yj contributes exactly 1 to the utility of agent i, so ui(o) = ρ− κ.

For the ‘only if’ direction, consider any outcome o that gives each agent a utility of
exactly ρ− κ. To construct the string y, for each j ∈ [ρ] we set

yj =


1 if o2j−1 = pj

0 if o2j = pj

* otherwise

Consider an agent i. Observe that her utility from the pair of time slots (t2j−1, t2j) is at
most 1; moreover, it is 1 if and only if (1) si,2j−1 = o2j−1 = pj or (2) si,2j = o2j = pj .
Condition (1) holds if and only if xij = yj = 1, and condition (2) holds if and only if
xij = yj = 0. That is, agent i’s utility from (t2j−1, t2j) is 1 if and only if xij = yj . Since we
have ui(o) = ρ − κ for each i ∈ [ν], this means that y has κ mismatches with every input
string.

6.3 Proof of Lemma 6.1: Exact-P-Bcsp is NP-hard.

Proof. We prove the claim by reduction from Exact-2-3sat (X2-3sat). In an instance of
X2-3sat, we are given a 3-CNF formula with n Boolean variables x1, . . . , xn and m clauses
C1, . . . , Cm. In each clause, exactly two literals are evaluated to True. Note that X2-3sat is
equivalent to Exact-1-3SAT (where exactly one literal is evaluated to True), and the latter
is known to be NP-hard [29].

Consider an instance of X2-3sat, given by n variables and m clauses, each with at most
3 literals. We will encode the Boolean value assignment to variables in the bits of the strings.
Consider strings of length 2n + 1; for all i ∈ [n], if xi = 1, let si,2j−1 = 1 and si,2j = 0; if
xi = 0, let si,2j−1 = 0 and si,2j = 1.

Then, first create a string of the form (00)n1 and n strings of the form (00)i11(00)n−i−11,
for all i ∈ [n − 1]. We mandate that the distance from the solution string be of hamming
distance n from each of these strings. We derive the following claims.

Claim 1: Each consecutive pair of bits si,2j−1 and si,2j only admit bit combina-
tions of the form 10 or 01. Equation that arises from the first string is

(1− x2n+1) +
∑
j∈[2n]

xj = n (1)

Equation that arises from the i-th string (for i = 2, . . . , n+ 1) is,

(1− x2n+1) + (1− x2i−3) + (1− x2i−2) +
∑

j∈[2i]\{2i−3,2i−2}

xj = n (2)

Now, for each i = 2, . . . , n+ 1, subtract (1) from (2), we get

1− x2i−3 − x2i−3 + 1− x2i−2 − x2i−2 = 0. (3)

Dividing both sides of the equation by 2, we get

x2i−3 + x2i−2 = 1, (4)

indicating that the bits of each pair should be 01 or 10.

Claim 2: The last bit must be 1. Suppose, for a contradiction, that the last bit of
the solution is 0. This means that the first string has distance n − 1 for the first 2n bits,
and by the pigeonhole principle, at least one pair will be 00. Let such a pair be (s2i−1, s2i)
for some i ∈ [n]. However, if we consider the (i + 1)-th string, where the (2i − 1)-th and
(2i)-th bit is 11, the distance of any solution to this (by Claim 1) has to be n − 1 (for the
n− 1 remaining pairs of 00) + 2 (for the mismatch mentioned above) + 1 (for the last bit)
= n+ 2 > n, contradicting the fact that the distance has to be exactly n.

Next, for each of the m clauses, we create a string whose bits depends on what truth
assignment to the variable(s) in the clause would make the literal positive: i.e. if the literal
appears and is positive, we let the corresponding pair be 10, if it is negative, we let it be
01, and if it doesn’t appear in the clause, we let it be 00. Also, let the last bit be 0. We
mandate that the distance of the solution string to each of these strings be n.

Note that an implication of Claim 2 is that the null character cannot appear in the
solution string.

Claim 3: There must be exactly two pairs of matching consecutive bit pairs.
From Claim 2 above, the last bit must be 1, so we have a hamming distance of 1 from there.
For n−3 pairs corresponding to literals not in the clause, the distance to each must be 1 (by
Claim 1 above), thereby giving us a hamming distance of n− 3. Then, we have three pairs
remaining with total hamming distance of 2 (since the total distance must be n). Again by
Claim 1 above, it must be that exactly two pairs match and one pair does not.

We are left with proving that there exists a binary string y of length m such that the
number of mismatches is exactly m− n if and only if there exists an assignment of Boolean
values to variables such that exactly two literals in each clause evaluates to True.

By the three claims above, it is easy to see that the functions mapping the solutions
between the problem are the same (by looking at the first 2n time slots in Exact-P-Bcsp).

6.4 Proof of Theorem 4.7: Prop is at least as hard as PCBP-RM
in the FP setting.

Proof. We prove the claim by reduction from Egal with λ = 1. An instance of Egal with
λ = 1 consists of n agents, m projects, m time slots, and an integer λ; it is a yes-instance if
there exists an outcome o′ such that every agent gets a utility of at least 1; and a no-instance
otherwise.

Consider such an instance of Egal with λ = 1 given by n agents N = {1, . . . , n}, m
projects P = {p1, . . . , pm} and m time slots T = {t1, . . . , tm}. Now, make copies of all
agents and their approval sets. We make only one modification: if n < m, then duplicate
the number of agents until its equal to m. Let the number of agents in this new instance
be n′ Thus, we have that n′ ≥ m. Note that an outcome is a solution to the Egal problem
with the original n agents if and only if the same outcome is a solution to the Egal problem
with n′ agents (i.e., the only change to the problem duplicating agents does is changing the
number of agents).

Next, we will prove that there exists an outcome o that gives each agent at least a utility
of m

n′ if and only if there exists an outcome o′ that gives each agent at least a utility of 1.
For the ‘if’ direction, let o′ be an outcome that guarantees each agent at least a utility

of 1. Then, since n′ ≥ m, m
n′ ≤ 1 and hence, any outcome that guarantees each agent a

utility of 1 satisfies proportionality, i.e., let o = o′.
For the ‘only if’ direction, let o be an outcome that guarantees each agent at least a

utility of m
n′ . Then, since the utility of an agent is an integer, the outcome o guarantees

each agent at least a utility of 1, i.e. let o′ = o.

