
Dynamic Fairness-Aware Recommendation

through Multi-Agent Social Choice

Amanda Aird, Paresha Farastu, Joshua Sun,
Amy Voida, Nicholas Mattei, and Robin Burke

Abstract

Algorithmic fairness in the context of personalized recommendation presents signif-
icantly different challenges to those commonly encountered in classification tasks.
Researchers studying classification have generally considered fairness to be a matter
of achieving equality of outcomes between a protected and unprotected group, and
built algorithmic interventions on this basis. We argue that fairness in real-world
application settings in general, and especially in the context of personalized recom-
mendation, is much more complex and multi-faceted, requiring a more general ap-
proach. We propose a model to formalize multistakeholder fairness in recommender
systems as a two stage social choice problem. In particular, we express recommen-
dation fairness as a novel combination of an allocation and an aggregation problem,
which integrate both fairness concerns and personalized recommendation provisions,
and derive new recommendation techniques based on this formulation. Simulations
demonstrate the ability of the framework to integrate multiple fairness concerns in
a dynamic way.

1 Introduction
Recommender systems are personalized machine learning systems that support users’ access
to information in applications as disparate as rental housing, video streaming, job seeking,
social media feeds and online dating. The challenges of ensuring fair outcomes in such
systems have been addressed in a growing body of research literature surveyed by Ekstrand
et al [16]. Despite these research efforts, some key limitations have remained unaddressed,
limitations that render this work inadequate for the applications for which it is intended.

The first limitation we see in current work is that researchers have generally assumed
that the problem of group fairness can be reduced to the problem of ensuring equality of
outcomes between a protected and unprotected group, or in the case of individual fairness,
that there is a single type of fairness to be addressed for all individuals. Where fairness for
multiple groups has been considered (e.g., Sonboli et al. [35], Kearns et al. [21]), it is defined
in the same way for all groups.

We believe that this limitation is severe and not representative of realistic recommen-
dation tasks in which fairness is sought. US anti-discrimination law, for example, identifies
multiple protected categories relevant to settings such as housing, education and employ-
ment including gender, religion, race, age, and others [4]. But even in the absence of such
external criteria, it seems likely that any setting in which fairness is a consideration will
need to incorporate the viewpoints of multiple groups.

We also expect that fairness will mean different things for different groups. Consider,
for example, a system recommending news articles. Fairness might require that, over time,
readers see articles that are geographically representative of their region: rural and urban
or uptown vs downtown, for example. But fairness in presenting viewpoints might also
require that any given day’s set of headlines represent a range of perspectives. These are
two different views of what fairness means, entailing different measurements and potentially
different types of algorithmic interventions.

The second limitation that we see in current work is that fairness-aware interventions in
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recommender systems as well as many other machine learning contexts, have a static quality.
In many applications, a system is optimized for some criterion and when the optimization
is complete, it produces decisions or recommendations based on that learned state [29]. We
think of fairness as a dynamic state, especially when what is of primary concern are fair
outcomes. A recommender system’s ability to produce outcomes that meet some fairness
objective may be greatly influenced by context: what items are in inventory, what types of
users arrive, how fair the most recent set of recommendations has been, and many others.
A static policy runs the risk of failing to capitalize on opportunities to pursue fairness when
they arise and/or imposing fairness when its cost is high, by being insensitive the context.

Our contribution in this paper is the design of an architecture for implementing fairness
in recommender systems that addresses both of these limitations. (Note that portions of
this work appeared in workshop form in [10].) We start from the assumption that multiple
fairness concerns will be active at any one time, and that these fairness concerns can be
relatively unrestricted in form. Secondly, we build the framework to be dynamic in that
decisions are always made in the context of historical choices and results.

Our research in fairness examines concepts inspired by the application context of Kiva
Microloans, which offers a platform (Kiva.org) for crowd-sourcing the funding of microloans,
mostly in the developing world. Kiva’s users (lenders) choose among the loan opportuni-
ties offered on the platform; microloans from multiple lenders that are aggregated and
distributed through third party non-governmental organizations around the world. Kiva
Microloans’ mission specifically includes considerations of “global financial inclusion”; as
such, incorporating fairness in its recommendation of loans to potential users (lenders) is a
key goal. We will use Kiva’s platform as an example throughout this paper. However, the
analytic findings are not specific to this setting. This is part of ongoing work to understand
and create interventions for fairness for online recommendation platforms [33, 11]

Notes on Workshop Version: This paper is a shortened version of a longer journal paper
Aird et al. [1]. We have included an extensive discussion of design considerations, table of
notations, and a large set of experimental results in the Appendix. The main body of this
document serves as an overview and introduction to our modeling choices.

2 Related Work
There have been a number of efforts that explicitly consider the multisided nature of fairness
in recommendation and matching platforms. Patro et al. [31] investigate fairness in two-sided
matching platforms where there are both producers and consumers. They note, as we do,
that optimizing fairness for only one side of the market can lead to very unfair outcomes
to the other side of the market. Patro et al. [31] also appeal to the literature on the fair
allocation of indivisible goods from the social choice literature [37]. They devise an algorithm
that guarantees Max-min share fairness of exposure to the producer side of the market and
envy-free up to one item to the consumer side of the market. Their work is closest to the
allocation phase of our algorithm. However, in contrast to our work they only use exposure on
the producer side and relevance on the consumer side as fairness metrics, whereas our work
aims to capture additional definitions. Also, we note that envy-freeness is only applicable
when valuations are shared: a condition not guaranteed in a personalized system. It is
possible for a user with unique tastes to receive low utility recommendations and still not
prefer another user’s recommendation lists. Also, our fairness formulation extends beyond
the users receiving recommendations to providers of recommended items and envy-freeness
provides no way to compare users who are getting different types of benefits from a system.
In addition our fairness definitions are dynamic, a case not considered by [31].

Like Patro et al. [31], the work of Sühr et al. [36] investigates fairness in two-sided
platforms, specifically those like Uber or Lyft where income opportunities are allocated to
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drivers. However, unlike our work and the work of Patro et al. [31], Sühr et al. [36] take
proportionality as their definition of fairness, specifically proportionality with respect to
time in a dynamic setting, and ensure that there is a fair distribution of income to the
provider side of the platform.

Freeman et al. [18] investigate what they call dynamic social choice functions in settings
where a fixed set of agents select a single item to share over a series of time steps. The
work focuses on overall utility to the agents instead of considering the multiple sides of
the recommendation interaction. Their problem is fundamentally a voting problem since all
agents share the result, whereas we are focused on personalized recommendation. Their goal
is to optimize the Nash Social Welfare of the set of agents (that remains fixed at each time
step) and present four algorithms to find approximately optimal solutions. This work has a
similar flavor to classical online learning / weighting experts problems [12] in the sense that
the agent preferences remain fixed and the goal is to learn to satisfy them over a series of
time steps.

The architecture presented here advances and generalizes the approach found in [34].
Like that architecture, fairness concerns are represented as agents and interact through
social choice. However, in [34], the allocation mechanism selects only a single agent at each
time step and the choice mechanism has a fixed, additive, form. We allow for a wider variety
of allocation and choice mechanisms, and therefore present a more general solution.

Ge et al. [20] investigate the problem of long term dynamic fairness in recommendation
systems. They, like our work, highlight the need to ensure that fairness is ensured as a
temporal concept and not see recommendation as a static, one off, decision. To this end they
propose a framework to ensure fairness of exposure to the producers of items by casting the
problem as a constrained Markov Decision Process where the actions are recommendations
and the reward function takes into account both utility and exposure. Ge et al. [20] propose
a novel actor-critic deep reinforcement learning framework to accomplish this task at the
scale of large recommender systems with very large user and item sets. Again, this work fixes
definitions of fairness a priori, although their learning methodology may serve as inspiration
to our allocation stage problems in the future.

Morik et al. [25] investigate the problem of learning to rank over large item sets while
ensuring fairness of merit based guarantees to groups of item producers. Specifically, they
adapt existing methods to ensure that the exposure is unbiased, e.g., that it is not subject
to rich-get-richer dynamics, and fairness defined as exposure being proportional to merit.
Both of these goals are built into the regularization of the learner. In essence the goal is to
learn user preferences while ensuring the above two desiderata. In contrast, our work factors
out the recommendation methodology and we encapsulate the desired fairness definitions as
separate agents rather than embedded in the learning algorithm.

Finally, our recommendation allocation problem has some similarities with those found in
computational advertising, where specific messages are matched with users in a personalized
way [38, 39]. Because advertising is a paid service, these problems are typically addressed
through mechanisms of monetary exchange, such as auctions. There is no counterpart to
budgets or bids in our context, which means that solutions in this space do not readily
translate to supporting fair recommendation [41, 15, 40].

3 Example
In this section, we work through a detailed example demonstrating the function of the
architecture through several iterations of user arrivals. We formally describe the process
with notations in Section 5.2
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3.1 Agents

Consider the following set of fairness agents and their associated evaluations and preferences.
We assume in this example that in all cases the agents’ compatibility functions follow the
pattern described in [35] where the entropy of the user profile relative to the sensitive feature
is calculated and users with high entropy are determined to be good targets for fairness-
enhancing interventions:

fH : Health This agent is concerned with promoting loans to the health sector. Its evalu-
ation function compares the proportion of loans in the database in the health sector
against the proportion of health recommendations in the recommendation list history.
Its preference function is binary: if the loan is in the health sector, the score is 1;
otherwise, zero.

fA: Africa This agent is concerned with promoting loans to Africa. Its evaluation function,
however, is list-wise. It counts lists in the recommendation if they have a least one
loan recommendation to a country in Africa, and consider a fair outcome one in which
every list has at least one such loan. Its preference function will be similarly binary as
the fH agent.

fG: Gender Parity This agent is concerned with promoting gender parity within the
recommendation history. If, across the previously generated recommendation lists,
the number of men and women presented is proportional to their prevalence in the
database, its evaluation will return 1. However, it is preference function is more com-
plex than those above. If the women are underrepresented in the history, it will prefer
loans to female borrowers, and conversely for men. For the sake of argument, we can
also say that the agent has access to the gender breakdown of borrower groups and
therefore may return a preference score in proportion to the number of women (or
men) contained therein.1

fL: Large This agent is concerned with promoting loans with larger total amounts: over
$5,000. Internal Kiva research has shown that such loans are often very productive
because they go to cooperatives and have a larger local impact. However, the same
research has shown that Kiva users are less likely to support them because each con-
tribution has a smaller relative impact. This agent is similar to the fA agent above in
that it seeks to make sure each list has one larger loan.

3.2 Loans

Consider the contents of Table 1. For the sake of example, we will assume these loans, char-
acterized by the Region, Gender, Section and Amount, constitute the set of loans available
for recommendation.

ϕs
1 : Region ϕs

2 : Gender ϕs
3 : Sector ϕ4 : Amount

v1 Africa Male Agriculture $5,000-$10,000
v2 Africa Female Health $500-$1,000
v3 Middle-East Female Clothing $0-$500
v4 Central America Female Clothing $5,000-$10,000
v5 Central America Female Health $0-$500
v6 Middle-East Female Clothing $0-$500

Table 1: Set of Potential Loans.

1Note: Kiva’s borrower database currently recognizes only binary gender categories.
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3.3 Mechanisms

For the sake of exposition, we posit two very simple mechanisms for allocation and choice.
We will assume that our allocation mechanism is a single outcome lottery, e.g., a randomized
allocation mechanism [7]. One agent will be chosen to participate in the choice mechanism,
based on a random draw with probabilities based on the historic unfairness and user com-
patibility as measured by each agent.

We assume that the recommendation lists are of size 3 and the choice mechanism uses a
weighted voting / score-based mechanism [6] using a weighted sum of 0.75 on the personal-
ized results for the recommender system and 0.25 on the allocated fairness agent.

3.4 Users

At time t1, User u1 arrives at the system and the recommendation process is triggered.
The user has previously supported small loans only in Central America and Middle East,
but has lent to a wide variety of sectors and genders.

For the sake of example, we will assume that the agents measure their prior history
relative to their objectives as equally unfair at 0.5, except the Gender Parity agent, which
starts out at parity and therefore returns a value of 1. However, the compatibility functions
for fA and fL returns lower scores because of the user’s historical pattern of lending. This
yields a lottery in which fG has probability zero, fA has a low probability, and fH a higher
one. The allocation mechanism chooses randomly, and we will assume that fH , the health-
focused agent, is picked.

The recommender returns the following list of items and predicted ratings
[{v6, 0.6}, {v4, 0.5}, {v5, 0.3}, {v3, 0.3}, {v1, 0.0}, {v2, 0.0}]. The fH agent gives a score of
1 to the health-related loans v2 and v5 and 0 to all others. The choice mechanism
combines these scores as described above and returns the final recommendation list
[{v5, 0.475}, {v6, 0.45}, {v4, 0.375}]. Note that the Health agent has successfully promoted
its preferred item to the first position in the list.

For the sake of example, we assume that the agents’ evaluation functions are very sen-
sitive. Therefore, when User u2 arrives, the results of the previous recommendations have
caused the evaluations to shift such that the Health fH and Large fL agents are now satisfied
(note that v4 is included in u1’s list and it was a large loan), the Gender parity agent fG is
now at 0.9 (note that there is only one male loan in the database) but the Africa agent fA,
which got nothing in u1’s list is now at 0.25. We assume that u2 is similar to u1 in profile
and therefore compatibility, but fA has a much worse fairness score than fG, and therefore
a high allocation probability. We will assume fA is chosen.

Because this user has similar preferences to u1, they get the same recommendations:
[{v6, 0.6}, {v4, 0.5}, {v5, 0.3}, {v3, 0.3}], {v1, 0.0}, {v2, 0.0}]. The fA agents scores the two
loans from Africa (v1 and v2) at 1 and the others at 0. So, after randomly breaking the
tie between v1 and v2, the final recommendation list is [{v6, 0.45}, {v4, 0.375}, {v1, 0.25}].

When User u3 arrives, all four agents find themselves scoring fairness at 1 over the
evaluation window and so no agents are allocated. The results from the recommendation
algorithm pass through the choice mechanism unchanged and are delivered to the user.

4 Formalizing Fairness Concerns

A central tenet of our work is that fairness is a contested concept [27]. From an application
point of view, this means that ideas about fairness will be grounded in specific contexts
and specific stakeholders, and that these ideas will be multiple and possibly in tension with
each other. From a technical point of view, this means that any fairness-aware recommender
system should be capable of integrating multiple fairness concepts, arising as they may from
this contested terrain.
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A central concept in this work is the idea of a fairness concern. We define a fairness
concern as a specific type of fairness being sought, relative to a particular aspect of recom-
mendation outcomes, evaluated in a particular way. For example, a possible fairness concern
in the microlending context might be group fairness relative to different geographical regions
considered in light of the exposure of loans from these regions in recommendation lists.2 The
concern identifies a particular aspect of the recommendation outcomes (in this case, their ge-
ographical distribution), the particular fairness logic and approach (more about this below),
and the metric by which fair or unfair outcomes are determined.

The first consideration in building a fairness-aware recommender system is the question
of what fairness concerns surround the use of the recommender system, itself. Many such
concerns may arise and like any system-building enterprise, there are inevitably trade-offs
involved in the formulation of fairness concerns. An organization may decide to incorpo-
rate only the highest-priority concerns into its systems. An initial step in fairness-aware
recommendation is for an organization to consult its institutional mission and its internal
and external stakeholders with the goal of eliciting and prioritizing fairness concerns. An
example of this kind of consultation can be seen in the WeBuildAI project [22] and its
participatory design framework for AI.

In addition to addressing different aspects of system outcomes, different fairness concerns
may invoke different logics of fairness. Welfare economists have identified a number of such
logics and we follow Moulin [26] who identifies four:

Exogenous Right: A fairness concern is motivated by exogeneous right if it follows from
some external constraint on the system. For example, the need to comply with fair
lending regulations may mean that male and female borrowers should be presented
proportionately to their numbers in the overall loan inventory.

Compensation: A fairness concern that is a form of compensation arises in response to
observed harm or extra costs incurred by one group versus others. For example, loans
with longer repayment periods are often not favored by Kiva users because their money
is tied up for longer periods. To compensate for this tendency, these loans may need
to be recommended more often.

Reward: The logic of reward is operational when we consider that resources may be al-
located as a reward for performance. For example, if we know that loans to large
cooperative groups are highly effective in economic development, we may want to pro-
mote such loans as recommendations so that they are more likely to be funded and
realize their promise.

Fitness: Fairness as fitness is based on efficiency. A resource should go to those best able
to use it. In a recommendation context, it may mean matching items closely with user
preferences. For example, when loans have different degrees of repayment risk, it may
make sense to match the loan to the risk tolerance of the lender.

It is clear that fairness logics do not always pull in the same direction. The invocation
of different logics are often at the root of political disagreements: for example, controversies
over the criteria for college admissions sometimes pit ideas of reward for achievement against
ideas of compensation for disadvantage.

Recommender systems often operate as two-sided platforms, where one set of individuals
are receiving recommendations and possibly acting on those recommendations (consumers),
and another set of individuals is creating or providing items that may be recommended
(providers) [8]. Consumers and providers are considered, along with the platform operator,

2We are currently conducting research to characterize fairness concerns appropriate to Kiva’s recommen-
dation applications. At this stage, we can only speculate about the fairness concerns that might arise in that
work. None of the discussion here is intended to represent design decisions or commitments to particular
concerns and/or their formulation.
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to be the direct stakeholders in any discussion of recommender system objectives. Fairness
concerns may derive from any stakeholder, and may need to be balanced against each other.
The platform may be interested in enforcing fairness, even when other stakeholders are not.
For example, the average recommendation consumer might only be interested in the best
results for themselves, regardless of the impact on others. Fairness concerns can arise on
behalf of other, indirect, stakeholders who are impacted by recommendations but not a
party to them. An important example is representational fairness where we are concerned
about the way the outputs of a recommender system operate to represent the world and
classes of individuals within it: for example, the way the selection of news articles might
end up representing groups of people unfairly [28] (see [16] for additional discussion). As
a practical matter, representational fairness concerns can be handled in the same way as
provider-side fairness for our purposes here.

Finally, we have the consideration of group versus individual fairness. This dichotomy
is well understood as a key difference across types of fairness concerns, defining both the
target of measurement of fairness and the underlying principle being upheld. Group fairness
requires that we seek fairness across the outcomes relative to predefined protected groups.
Individual fairness asks whether each individual user has an appropriate outcome and as-
sumes that users with similar profiles should be treated the same. Just as there are tensions
between consumer and provider sides in fairness, there are fundamental incompatibilities
between group and individual fairness. Treating all of the outcomes for a group in aggre-
gate is inherently different than maintaining fair treatment across individuals considered
separately. Friedler et al. offer a thorough discussion of this topic [19].

Label Fairness type Logic Side Who is Impacted Evaluation

LowCountry Group Comp. Provider Borrowers from
countries with
lower funding
rates

Exposure of loans
in recommenda-
tion lists

LargeAmt Group Reward Provider Borrowers in
consortia seeking
larger loans

Exposure of loans
in recommenda-
tion lists

Repay Individual Reward Provider All borrowers Loan exposure
proportional to
repayment proba-
bility

LowSector Group Exo. right Provider Borrowers in sec-
tors with lower
funding rates

Exposure of loans
in recommenda-
tion lists

AllCountry Individual Exo. right Provider All borrowers Catalog coverage
by country

AccuracyLoss Group Exo. right Consumer All lenders Accuracy loss
due to fairness
objective is fairly
distributed across
protected groups
of users.

RiskTolerance Individual Fitness Consumer All lenders Riskier loans are
recommended to
users with greater
risk tolerance

Table 2: Potential fairness concerns and their logics.

Putting all of these dimensions together gives us a three-dimensional ontology of fair-
ness concerns in recommendation: fairness logic, consumer- vs provider-side, and group vs
individual target. Table 2 illustrates a range of different fairness concerns that are specu-
latively derived from the microlending context. This list illustrates a number of the points
relative to fairness concerns raised so far. We can see that all four of Moulin’s fairness log-
ics are represented. We also see that the fairness concerns can be group or individual: for
example, we are attentive to individual qualities in the RiskTolerance concern, but group
outcomes in LargeAmt. The AccuracyLoss concern is a consumer-side concern, relevant
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to lenders, but other concerns are on the provider side. We also see that it is possible for
a single objective, here the geographic diversity of loan recommendation, to be represented
by multiple fairness concerns: LowCountry and AllCountry. In spite of having the same
target, these concerns are distinguished because they approach the objective from different
logics and evaluate outcomes differently.

4.1 Fairness Agents

Our architecture SCRUF-D (Social Choice for Recommendation Under Fairness – Dynamic)
[10] builds on the SCRUF architecture introduced in [9, 34]. It is designed to allow multiple
fairness concerns to operate simultaneously in a recommendation context. Fairness concerns,
derived from stakeholder consultation, are instantiated in the form of fairness agents, each
having three capabilities:

Evaluation: A fairness agent can evaluate whether the current historical state is fair, rela-
tive to its particular concern. Without loss of generality, we assume that this capability
is represented by a function mi for each agent i that takes as input a history of the
system’s actions and returns an number in the range [0, 1] where 1 is maximally fair
and 0 is totally unfair, relative to the particular concern.

Compatibility: A fairness agent can evaluate whether a given recommendation context
represents a good opportunity for its associated items to be promoted. We assume
that each agent i is equipped with a function ci that can evaluate a user profile ω
and associated information and return a value in the range [0, 1] where 1 indicates the
most compatible user and context and 0, the least.

Preference: An agent can compute a preference for a given item whose presence on a
recommendation list would contribute (or not) to its particular fairness concern. Again,
without loss of generality, we assume this preference can be realized by a function that
accepts an item as input and returns a preference score in R+ where a larger value
indicates that an item is more preferred.3

4.2 Recommendation Process

We assume a recommendation generation process that happens over a number of time steps
t as individual users arrive and recommendations are generated on demand. Users arrive
at the system one at a time, receive recommendations, act on them (or not), and then
depart. When a user arrives, a recommendation process produces a recommendation list
ℓs that represents the system’s best representation of the items of interest to that user,
generated through whatever recommendation mechanism is available. We do not make any
assumptions about this process, except that it is focused on the user and represents their
preferences. A wide variety of recommendation techniques are well studied in the literature,
including matrix factorization, neural embeddings, graph-based techniques, and others.

The first step to incorporating fairness into the recommendation process is to determine
which fairness concerns / agents will be active in responding to a given recommendation
opportunity. This is the allocation phase of the process, the output of which is a set of
non-negative weights β, summing to one, over the set of fairness agents, indicating to what
extent each fairness agent is considered to be allocated to the current opportunity.

Once the set of fairness agents have been allocated, they have the opportunity to par-
ticipate in the next phase of the process, which is the choice phase. In this phase, all of the
active (non-zero weighted) agents and their weights participate in producing a final list of
recommendations for the user. We view the recommender system itself as being an agent
that participates in this phase.

3A more complex preference scenario is one in which agents have preferences over entire lists rather than
individual items. We plan to consider such preference functions in future work.
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Figure 1: SCRUF-D Framework / Allocation Phase: Recommendation opportunities are
allocated to fairness concerns based on the context.

5 The SCRUF-D Architecture
The two phases of the SCRUF-D architecture are detailed in Figures 1 and 2. The original
SCRUF framework [34] concentrated on the representation of user preferences, as computed
by the recommender system, and fairness concerns, as derived from stakeholder consultation
as discussed in Section 4.1, and their integration. SCRUF-D incorporates the history of
system decisions and the fairness achieved over time to control the allocation of fairness
concerns. We will first provide a high level overview of the system and describe each figure
in detail with formal notation: Table 3 provides a reference to this notation.

5.1 Overview

We can think of a recommender system as a two-sided market in which the recommendation
opportunities that arise from the arrival of a user u ∈ U to the system, and each are allocated
to a set of items v ∈ V from the system’s catalog. This market has some similarities to various
forms of online matching markets including food banks [2], kidney allocation [23, 3], and ride
sharing [14], in that users have preferences over the items; however, in our case this preference
is known only indirectly through either the prior interaction history or a recommendation
function. Additionally, the items are not consumable or rivalrous. For example, a loan can
be recommended to any number of users – it is not “used up” in the recommendation
interaction.4 Also, users are not bound to the recommendations provided; in most systems
including Kiva, there are multiple ways to find items of which the recommender system is
only one.

Once we have a collection of fairness agents we must solve two interrelated problems: (1)
what agent(s) are allocated to a particular recommendation opportunity and (2) how do we
balance between the allocated agents and the user’s individual preferences?

Figure 1 shows the first phase of this process, allocation [6], in which we decide which
fairness concerns / agents should be allocated to a particular fairness opportunity. This is
an online and dynamic allocation problem where we must consider many factors including
the history of agent allocations so far, the generated lists from past interactions with users,
and how fair the set of agents believes this history to be. As described in Section 4.1,
agents take these histories and information about the current user profile and calculate two
values: m, a measure of fairness relative to their agent-specific concern, and c, a measure of
compatibility between the current context and the agent’s fairness concern. The allocation

4Loans on Kiva’s platform may be exhausted eventually through being funded, but many other objects
of recommendation such as streaming media assets are effectively infinitely available.
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Figure 2: SCRUF-D Framework / Choice Phase: The preferences derived from the recom-
mender system and the fairness concerns are integrated by the choice mechanism.

mechanism takes these metrics into account producing a probability distribution over the
fairness agents that we call the agent allocation, which can be interpreted as weights in the
choice stage or to select a single agent via a lottery, e.g., a randomized allocation [7].

In the second phase, shown in Figure 2, the recommender system generates a list of
options that represents the user’s preferences. The fairness concerns generate their own
preferences as well. These preferences may be global in character, i.e., preferences over all
items, in which case they may be independent of what the recommender system produces;
we call this a recommendation function below. Or, as indicated by the dashed line, these
preferences may be scoped only over the items that the recommender system has generated;
named a scoring function. In either case, the preference function of the fairness agent, like
the one for the user, generates a list of items and scores. The choice mechanism combines
these preferences of both the user and fairness agents, along with the allocation weights of
the fairness agents, to arrive at a final recommendation list to be delivered to the user. The
list and interactions with it become a new addition to the choice history.

5.2 Formal Description

In our formalization of a recommendation system setting we have a set of users U =
{u1, . . . un} and a set of items V = {v1, . . . , vm}. For each item vi ∈ V we have a k-
dimensional feature vector ϕ = ⟨ϕ1, . . . ϕk⟩ over a set of categorical features ϕ, each with
finite domain. Some of these features may be sensitive, e.g., they are associated with one or
more fairness agent concerns, we denote this set as ϕs. Without loss of generality, we assume
that all elements in V share the same set of features ϕ. Finally, we assume that each user is
associated with a profile of attributes ω = ⟨ω1, . . . ωj⟩, of which some also may be sensitive
ωs ⊆ ω, e.g., they are associated with one or more fairness agents.

We make the standard assumption that we have (one or more) recommendation mech-
anisms that take a user profile ω and a (set of) items v and produces a predicted rating
r̂ ∈ R+. We will often refer to a recommendation list, ℓ = ⟨{v1, r̂1}, . . . {vi, r̂i}⟩, which is
generated for user ω by sorting according to r̂, i.e., sort(Ri(ω,V)) → ℓ. Note that this pro-
duces a permutation (ranking) over the set of items for that user, i.e. a recommendation. As
a practical matter, the recommendation results will almost always contain a subset of the
total set of items, typically the head (prefix) of the permutation up to some cutoff number
of items or score value.
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U(u) Users (user).

V(v) Items (item).

ϕ = ⟨ϕ1, . . . ϕk⟩ Item Features.

ω = ⟨ω1, . . . ωj⟩ User Profile.

ϕs ⊆ ϕ Sensitive Item Features as a subset of all item fea-
tures ϕ.

ωs ⊆ ω Sensitive Aspects of User Profile as a subset of all
user profile features ω.

Ri(ω, v) → {v, r̂} Recommendation mechanism that takes a user pro-
file ω and a (set of) items v and produces a pre-
dicted rating r̂ ∈ R+.

ℓ = ⟨{v1, r̂1}, . . . {vi, r̂i}⟩ Recommendation List as an ordered list of item,
predicted rating pairs.

sort(Ri(ω,V)) → ℓ Recommendation List for user ω sorted by r̂.

F
a
ir
n
es
s
A
g
en
ts

F = {f1, . . . , fi} Set of Fairness Agents.

fi = {mi, ci,Ri} Fairness agent i defined by a fairness metric mi, a
compatibility metric ci, and a ranking function Ri.

mi(L⃗, H⃗) → [0, 1] Fairness metric for agent i that takes a choice his-
tory L⃗ and allocation history H⃗ and produces a
value in [0, 1] according to the agent’s evaluation of
how fair recommendations so far have been.

ci(ω) → [0, 1] Compatibility metric for agent i that takes a par-
ticular user profile ω and produces a value in [0, 1]
for how compatible fairness agent i believes they
are for user ω. Note: The compatibility metric com-
bines preferences on the agent side and those on the
user side (inferred from the profile). If these prefer-
ences are symmetrical, we have a one-sided match-
ing problem, but two-sided cases are also possible.

Ri(ω, v) → {v, r̂} Fairness Agent Recommendation function.

Ri(ℓ, ω, v) → {v, r̂} Fairness Agent Scoring function.

ℓF = {R1(ω,V), . . . ,Ri(ω,V)} Set of Fairness Agent Recommendation Lists in-
dexed by fairness agent label i.

A
ll
o
ca
ti
o
n

A(F ,mF (L⃗, H⃗), cF (ω)) → β ∈ R|F|
+ Allocation mechanism A that takes a set of fair-

ness agents F , the agents’ fairness metric evalua-
tions mF (L⃗, H⃗), and the agents’ compatibility met-
ric evaluations cF (ω) and maps to an agent alloca-
tion β.

H⃗ = ⟨β1, . . . , βt⟩ Allocation History H⃗ that is an ordered list of agent
allocations A at time t.

C
h
o
ic
e

C(ℓ, β, ℓF ) → ℓC Choice Function is a function from a recommenda-
tion list ℓ, agent allocation β, and fairness agent
recommendation list(s) ℓF to a combined output
list ℓC .

L⃗ = ⟨ℓt, ℓtF , ℓtC⟩ Choice History that is an ordered list of user rec-
ommendation list ℓ, agent recommendation list(s)
ℓF , and choice function output lists ℓC , indexed by
time step t.

Table 3: Notations for our formal description of the SCRUF-D architecture.

In the SCRUF-D architecture, fairness concerns map directly onto agents F =
{f1, . . . , fi}. In order for the agents to be able to evaluate their particular concerns, they
take account of the current state of the system and voice their evaluation of how fairly
the overall system is currently operating, their compatibility for the current recommen-
dation opportunity, and their preference for how to make the outcomes more fair. Hence,
each fairness agent i is described as a set, fi = {mi, ci,Ri} consisting of a fairness metric,

mi(L⃗, H⃗) → [0, 1], that takes a choice history L⃗ and allocation history H⃗ and produces a
value in [0, 1] according to the agent’s evaluation of how fair recommendations so far have
been; a compatibility metric, ci(ω) → [0, 1], that takes a particular user profile ω and pro-
duces a value in [0, 1] for how compatible fairness agent i believes they are for user ω; and
a ranking function, Ri(ω, v) → {v, r̂}, that gives the fairness agent preferences.

In the allocation phase (Figure 1), we must allocate a set of fairness agents to a recom-

mendation opportunity. Formally, this is an allocation function, A(F ,mF (L⃗, H⃗), cF (ω)) →
β ∈ R|F|

+ that takes a set of fairness agents F , the agents’ fairness metric evaluations

mF (L⃗, H⃗), and the agents’ compatibility metric evaluations cF (ω) and maps to an agent
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allocation β, where β is a probability distribution over the agents F . The allocation function
itself is allocating fairness agents to recommendation opportunities by considering both the
fairness metric for each agent as well as each fairness agent’s estimation of compatibility.

The allocation function can take many forms, e.g., it could be a simple function of which
ever agent voices the most unfairness in the recent history [34], or a more complex function
from social choice theory such as the probabilistic serial mechanism [5] or other fair division
or allocation mechanisms. Note here that the allocation mechanisms is directly comparing
the agent valuations of both the current system fairness and compatibility. We implicitly
assume that the agent fairness evaluations are comparable. While this is a somewhat strong
assumption, it is less strong than assuming that fairness and other metrics, e.g., utility or
revenue, are comparable as is common in the literature [42]. So, although we are assuming
different voicings of fairness are comparable, we are only assuming that fairness is compa-
rable with fairness, and not other aspects of the system. We plan to explore options for the
allocation function in our empirical experiments. We track the outputs of this function as
the allocation history, H⃗ = ⟨β1, . . . , βt⟩, an ordered list of agent allocations β at time t.

In the second phase of the system (Figure 2), we take the set of allocated agents and
combine their preferences (and weights) with those of the current user ω. To do this we
define a choice function, C(ℓ, β, ℓF ) → ℓC , as a function from a recommendation list ℓ, agent
allocation β, and fairness agent recommendation list(s) ℓF to a combined list ℓC . Each of
the fairness agents is able to express their preferences over the set of items for a particular
user, Ri(ω, v) → {v, r̂}, and we take this set of lists,ℓF = {R1(ω,V), . . . ,Ri(ω,V)}, as input
to the choice function that generates a final recommendation that is shown to the user, ℓC .

We again leave this choice function unspecified as this formulation provides a large design
space: we could use a simple voting rule, a simple additive utility function or something much
more complicated like rankings over the set of all rankings [6]. Note that the choice function
can use the agent allocation β as either a lottery to, e.g., select one agent to voice their
fairness concerns, or as a weighting scheme. We will investigate a range of choice functions
in further research. In order for the fairness agents to be able to evaluate the status of
the system we also track the choice history, L⃗ = ⟨ℓt, ℓtF , ℓtC⟩, as an ordered list of user
recommendation list ℓ, agent recommendation list(s) ℓF , and choice function output lists
ℓC , indexed by time step t.

6 Conclusion and Future Work
We have introduced the SCRUF-D architecture for integrating multiple fairness concerns
into recommendation generation leveraging social choice. The design is general and allows for
many different types of fairness concerns—involving multiple fairness logics and encompass-
ing both provider and consumer aspects of the recommendation platform. Our experiments
with simple synthetic data show that the SCRUF-D architecture is capable of representing
and applying multiple fairness concerns in a modular and agent-based way and balancing
among them dynamically. Thorough empirical evaluation of the architecture with real data
and fairness concerns is a subject for future work, as is the incorporation and study of a full
range of allocation and choice mechanisms.

Future work will proceed in multiple research arcs. One arc of future work is to apply
the architecture in more realistic settings, particularly with Kiva. We are working with Kiva
stakeholders and beginning the process of identifying fairness concerns. In the meantime, we
also plan to conduct additional experiments with a variety of off-line data sets, exploring a
range of different fairness concern formalizations and social choice options. We have made
the mechanisms and the agents fairly simple by design. Further experimentation will show
how effective this structure is for maintaining fairness over time and allowing a wide variety
of fairness concerns to be expressed. However, there are some areas of exploration that we
can anticipate and are discussed in the appendix.
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A Design Considerations
Within this framework there are a number of important design considerations to take into
account for any particular instantiation of the SCRUF-D architecture. We have left many
of the particular design choices open for future investigation. We allow for any type of
recommendation algorithm; fairness agents may incorporate any type of compatibility func-
tion or fairness evaluation function. Similarly, we do not constrain the allocation or choice
mechanisms. With SCRUF-D, we are able to explore many definitions of fairness and rec-
ommendation together in a principled uniform way. In this section, we discuss a few of the
design parameters that may be explored in future work.

A.1 Agent Design

We can expect that an agent associated with a fairness concern will typically have pref-
erences that order items relative to a particular feature or features associated with that
concern. Items more closely related to the sphere of concern will be ranked more highly and
those unrelated, lower. However, this property means that agents associated with different
concerns might have quite different rankings – the gender parity concern will rank women’s
loans highly regardless of their geography, for example. Thus, we cannot assume consistency
or single-peakedness across the different agents.

As noted above, agents may have preferences over disjoint sets of items or they may be
constrained only to have preferences over the items produced by the recommender system
for the given user. This second option corresponds to a commonly-used re-ranking approach,
where the personalization aspect of the system controls what items can be considered for
recommendation and fairness considerations re-order the list [16]. If an agent can introduce
any item into its preferences, then we may have the challenge in the choice phase of inte-
grating items that are ranked by some agents but not others. Some practical work-arounds
might include a constraint on the recommender system to always return a minimum number
of items of interest to the allocated agents or a default score to assign to items not otherwise
ranked.

Despite our terminology, it is clear that our architecture as described is sufficiently
general that an agent could be designed that pushes the system to act in harmful and
unfair ways rather than beneficial and fairness-enhancing ones. Thus, the importance of the
initial step of stakeholder consultation and the careful crafting of fairness concerns. Because
fairness concerns are developed within a single organization and with beneficence in mind,
we assume that we do not need to protect against adversarial behavior, such as collusion
among agents or strategic manipulation of preferences. The fact that the agents are all
“on the same team” allows us to avoid constraints and complexities that otherwise arise in
multi-agent decision contexts.

A.2 Agent Efficacy

The ability of an agent to address its associated fairness concern in non-deterministic. It
is possible that the agent may be allocated to a particular user interaction, but its associ-
ated fairness metric may still fail to improve. One likely reason for this is the primacy of
the personalization objective. Generally, we expect that the user’s interests will have the
greatest weight in the final recommendations delivered. Otherwise, the system might have
unacceptably low accuracy, and fail in its primary information access objective.

One design decision therefore is whether (and how) to track agent efficacy as part of
the system history. If the agent’s efficacy is generally low, then opportunities to which it
is suited become particularly valuable; they are the rare situations in which this fairness
goal can be addressed. Another aspect of efficacy is that relationships among item charac-
teristics may mean that a given agent, while targeted to a specific fairness concern, might
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have the effect of enhancing multiple dimensions of fairness at once. Consider a situation
in which geographic concerns and sectoral concerns intersect. Promoting an under-served
region might also promote an under-served economic sector. Thus, the empirically-observed
multidimensional impact of a fairness concern will need to be tracked to represent its efficacy.

Efficacy may also be a function of internal parameters of the agent itself. A separate
learning mechanism could then be deployed to optimize these parameters on the basis of
allocation, choice and user interaction outcomes.

A.3 Mechanism Inputs

Different SCRUF implementations may differ in what aspects of the context are known to
the allocation and/or choice mechanisms. Our hope is that we can leverage social choice
functions in order to limit the complexity of the information that must be passed to the al-
location and/or choice mechanisms. However, if a sophisticated and dynamic representation
of agent efficacy is required, it may be necessary to implement a bandit-type mechanism to
explore the space of allocation probabilities and/or agent parameters as discussed above.
Recent research on multidimensional bandit learning suggests possible approaches here [24].

A.4 Agent Priority

As we have shown, agent priority in the allocation phase may be a function of user interests,
considering different users as different opportunities to pursue fairness goals. It may also be
a function of the history of prior allocations, or the state of the fairness concerns relative to
some fairness metric we are trying to optimize. As the efficacy consideration would indicate,
merely tracking allocation frequency is probably insufficient and it is necessary to tie agent
priority to the state of fairness. Allocation priority is also tied to efficacy as noted above.
It may be necessary to compute expected fairness impact across all dimensions in order to
optimize the allocation.

We plan to leverage aspects of social choice theory to help ameliorate some of these
issues. There is a significant body of research on allocation and fair division mechanisms
that provide a range of desirable normative properties including envy-freeness [13], e.g., the
guarantee that one agent will not desire another agent’s allocation, Pareto optimally, e.g.,
that agents receive an allocation that is highly desirable according to their compatibility
evaluations [5]. An important and exciting direction for research is understanding what
allocation properties can be guaranteed for the SCRUF-D architecture overall depending on
the allocation mechanism selected [6].

We note that in most practical settings the personalization goal of the system will be
most important and therefore the preference of this agent will have topmost priority. It
is always allocated and is not part of the allocation mechanism. Thus, we cannot assume
that the preference lists of the agents that are input to the choice system are anonymous, a
common assumption in the social choice literature on voting [6].

A.5 Bossiness

Depending on how the concept of agent / user compatibility is implemented, it may provide
benefits to bossy users, those with very narrow majoritarian interests that do not allow for
the support of the system’s fairness concerns. Those users get results that are maximally
personalized and do not share in any of the potential accuracy losses associated with satisfy-
ing the system’s fairness objectives. Other, more tolerant users, bear these costs. A system
may wish to ensure that all users contribute, at some minimal level, to the fairness goals. In
social choice theory, a mechanism is said to be non-bossy if an agent cannot change the allo-
cation without changing the allocation that they receive by modifying their preferences [30].
Some preliminary discussions of this problem specifically for fairness-aware recommendation
appear in [17].
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A.6 Fairness Types

We concentrate in this paper and our work with Kiva generally on provider-side group fair-
ness, that is characteristics of loans where protected groups can be distinguished. However,
it is also possible to use the framework for other fairness requirements. On the provider side,
an individual fairness concern is one that tracks individual item exposure as opposed to the
group as a whole. It would have a more complex means of assessing preference over items
and of assessing fairness state, but still fits within the framework.

Consumer-side fairness can also be implemented through use of the compatibility func-
tion associated with each agent. For example, the example of assigning risk appropriately
based on user risk tolerance becomes a matter of having a risk reduction agent that reports
higher compatibility for users with lower risk tolerance.

B Experimental Results: Methodology and Results
As an initial examination of the properties of the SCRUF-D architecture, we conducted a
series of experiments with simulated data and agents of generic design. The experiments
were run on a Python implementation of the SCRUF-D architecture. See associated GitHub
repository for the source code.5. Configuration files, data and Jupyter notebooks for pro-
ducing the experiments and visualizations below are found in a separate repository6.

B.1 Data generation

We generated 1000 users and 100 items with two associated sensitive features: ϕ1 and ϕ2.
The first 333 users of the dataset, the type 1 users, are compatible only with Agent 1, which
is concerned about feature ϕ1. The next 333 users, type 2, are only compatible with Agent 2
and ϕ2. And the last group of users, type 3, are not compatible with either agent. For these
experiments, we used binary compatibility values. Each item was assigned either ϕ1, ϕ2, or
neither. Items that were matched with neither are considered to be items without sensitive
features. ϕ1 and ϕ2 were each randomly assigned to items 25% of the time. For this set of
items, no items were assigned both sensitive features.

Recommendations are generated by scoring items randomly, sorting the scored items,
and adding noise to the scores after taking the top 50 items.

B.2 Agent design

The agents both evaluate fairness in the same way. The recommendation lists from the
previous algorithm iterations are combined. The fraction of this combined list that consists
of the item-specific associated items is computed. If the fraction is equal or greater than
a specified proportion, then the metric returns 1 (maximum fairness). If the list contains
a smaller fraction, the fairness is scaled smoothly from 1 to 0, which is the score when no
protected items appear. In our experiments, we set this proportion to 0.75 for Agent 1 and
0.5 for Agent 2. This makes Agent 1 more demanding in terms of its definition of fairness.

B.3 Mechanisms

We examine several different allocation mechanisms:

• Least misery: The fairness agent with the lowest fairness score mi is chosen.

• Most compatible: The fairness agent most compatible ci with the current user is
chosen.

5https://github.com/that-recsys-lab/scruf d
6https://github.com/that-recsys-lab/scruf tors 2023
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• Static lottery: A single fairness agent is chosen with a fixed probability at each time
step. In our experiments, the probabilities were 0.5 for Agent 1 and 0.3 for Agent 2.
(Note that this difference is in line with their different fairness requirements.)

• Dynamic lottery: A lottery is constructed with probabilities proportional to agent
unfairness and a single agent is chosen by drawing from this lottery.

• Weighted fairness allocation: All agents are allocated but their weight is deter-
mined by their current unfairness.

For reasons of space, we do not report on experiments with different choice mechanisms
as part of this study. We use a simple weighted voting mechanism, analogous to a weighted
Borda score. After the fairness agent is allocated, the scores from the recommender systems
are adjusted such that each item among the vp protected items has its score augmented
by the constant δ = 0.5. Where multiple agents are allocated, δ is scaled by the allocation
weight. Then the recommendations are sorted by score and the top ten items chosen as the
recommendation list. This choice of δ is designed to be fairly impactful in that allocating
an agent has a good chance of boosting its fairness to the maximum level.

B.4 Evaluation

With this synthetic data set, we do not have ground truth user preferences and so we do
not evaluate recommendation accuracy. We leave the exploration of the fairness / accuracy
tradeoff for future work. We concentrate in these experiments in examining the interaction
between the agents, the allocation mechanisms, and the fairness outcomes that result.

In the results below, we use three different plots to demonstrate the dynamics of the
simulation with varied allocation mechanisms. We plot fairness as evaluated by each agent
(mF ) at each point in time. We also plot the allocation vector H⃗ (in cumulative form) to
show at what time points different agents are being allocated.

We also plot cumulative fairness regret over the course of the experiment. At each time
step, we calculate 1−mi, that is the difference from perfect fairness as the agent defines it,
and then sum these values over the course of the simulation. This is similar to the notion of
regret in reinforcement learning but using fairness instead of utility. Fairness regret Gi for
agent i is defined as:

Gi(s) =

s∑
t=0

1−mi(L⃗t, H⃗t) (1)

C Results
As noted above, the results here do not include an accuracy measure and so we are not
reporting on how the interaction between fairness and accuracy is managed by different
allocation mechanisms. Our results here concentrate on the management of the dynamic
aspects of fairness. How does each mechanism handle the time-varying aspects of fairness
and the probabilistic nature of re-ranking to achieve fairness?

In Figure 3, we report the fairness metrics associated with each agent as different rec-
ommendation lists are generated. No agents are allocated and no re-ranking is performed
so this is showing the baseline characteristics of the input data.

As we can see in Figure 3a, the fairness measures range around 0.6 to 0.2, with Agent 1
having the lower fairness because it requires more protected group items to meet its target
proportion. In some sense this is an “easy” re-ranking problem because, even without doing
anything, the agents are getting some protected group items in each list. The cumulative
value of these metrics is shown in Figure 3b and we can see that over the course of the 1000
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(a) Agent fairness metrics (b) Cumulative fairness regret

Figure 3: Results for baseline data (no allocation)

users / time steps in the experiment, Agent 1 has a regret around 600 and Agent 2 around
450.

C.1 Allocation algorithms

In the results that follow, we show similar output for each allocation algorithm including a
plot of the cumulative agent allocations.

(a) Agent fairness metrics (b) Cumulative agent allocation

(c) Cumulative fairness regret

Figure 4: Results for Least Misery allocation

Figures 4 and 5 show the simulation results for the two simple deterministic allocation
mechanisms: Least Misery and Most Compatible. As might be expected, the Least
Misery algorithm causes the system to bounce around between the two agents. As soon
as one gets some benefit from being allocated, the other gets a chance. Although it is
not captured here, this is an inefficient strategy because it does not take into account the
compatibility between users and agents and would have lower utility than a mechanism
sensitive to that aspect.

Most Compatible is at the other extreme, looking only at compatibility values. The
system swings between items favorable to Agent 1 (compatible with the initial third of the
users) to those favorable to Agent 2. Since the last third of the users are not compatible
with either agent, neither of them is allocated and so no re-ranking occurs for these users.

An alternative to these deterministic mechanisms is to allocate a single agent by lottery.
Figure 5 shows the Static Lottery case where the agents are assigned a fixed probability
of selection: Agent 1, 0.5 and Agent 2, 0.3. Here the choice of agent does not depend on the
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(a) Agent fairness metrics (b) Cumulative agent allocation

(c) Cumulative fairness regret

Figure 5: Results for Most Compatible allocation

context and so the fairness scores move randomly but in a much broader band than seen
in the Least Misery case. The allocations are distributed uniformly as the lottery would
indicate and in the end, the two agents have similar regret because of their different fairness
proportions.

The dynamic aspects of the SCRUF-D architecture show up when we allow the lottery
to adapt to the current state of fairness. A dynamic lottery mechanism is shown in Figure
7. Because the system can respond to variations in the input, the fairness values stay in a
tighter range than with the static version. Agent 1 ends up with a higher regret, in spite of
being allocated more often, which is not surprising given it is “pickier”.

The last allocation mechanism is one where every agent are allocated at every time step
but with different weights. In our Borda choice mechanism, the weights are used to control
the weight of each agent’s vote in the choice phase. The weights in Dynamic Weighted
allocation are proportional to the agent’s fairness metric: mi. These results can be seen in
Figure 8 and are similar to the Dynamic Lottery although the gap between the agents is
smaller.

C.2 Comparison

These results are summed up in Figure 9. The Weighted Allocation and the Fairness
Lottery are very similar in keeping a relatively high average fairness for the two agents, with
the lottery having a narrower distribution. These two mechanisms also have the lowest regret.
The much simpler Least Misery allocation does quite well in this simulated setting. Most
Compatible does poorly but that is not surprising since it is not optimizing for fairness
and that is the only metric here. As noted above, the compatibility measure is meant to
ensure that agents are allocated to users with consonant preferences.

C.3 Efficacy

The issue of agent efficacy is illustrated in Figure 10. To examine this issue, we added a third
agent whose protected items are much more rare: 5% instead of 25% for the other agents. We
also made the δ for re-ranking 0.1, much lower than the other agents. The agents’ interactions
were managed using the Dynamic Lottery mechanism, which constantly adjusts its agent
allocation to favor the agents with low fairness.

The result is that allocating this agent has low efficacy: it doesn’t improve the fairness
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(a) Agent fairness metrics (b) Cumulative agent allocation

(c) Cumulative fairness regret

Figure 6: Results for Static Lottery allocation

outcomes as much as allocating the other agents. As Figure 10 shows, the system falls into
a pattern of allocating Agent 3 frequently, without any benefit, while Agents 1 and 2 also
suffer. So the overall fairness is worse than, for example, a static lottery. Note that a weighted
allocation would have the same problem as more and more weight would be placed on Agent
3’s preferences even though little is accomplished by doing so.

As discussed above, understanding agent efficacy requires looking at the impact of allo-
cation: how much does fairness for an agent improve if it is allocated? With this information,
the system can look forwards as well as backwards and reason about how quickly an agent’s
objective can be achieved. It also creates the possibility of adapting the re-ranking process
itself. For example, a system capable of adapting the δ value used in the choice mechanism
could escape the trap of fruitless allocation by making the allocation of Agent 3 more im-
pactful. A system could also try to improve its estimate of agent compatibility to find better
allocation opportunities, etc. These ideas will be explored in future work.

D Additional Future Work
A key feature of the recommendation context is that the decisions of the recommender
system only influence the exposure of protected items. There is no guarantee that a given
user will show any interest in an item just because it is presented. In some settings and
for some fairness concerns, exposure might be enough. But in cases where utility derives
from usage rather than exposure, there would be some value in having the system learn
about the relationship between exposure and utility. This setting has the attributes of a
multi-objective bandit learning problem [24], where the fairness concerns represent different
classes of rewards and the allocation of agents represents different choices.

Even when we consider exposure as our main outcome of interest, it is still the case
that the allocation of different agents may result in differential improvements in fairness,
the efficacy problem noted above. Perhaps the items associated with one agent are more
common in recommendation lists and can be easily promoted through re-ranking while
other agents’ items are not. The weight associated with the allocation of agents may need
to be adjusted to reflect the expected utility of allocation, and this expected utility would
need to be learned.

The current architecture does not make any assumptions about the distribution of user
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(a) Agent fairness metrics (b) Cumulative agent allocation

(c) Cumulative fairness regret

Figure 7: Results for Fairness Lottery allocation

characteristics. That is, suppose fairness concern fi is “difficult” to achieve in that users
with an interest in related items appear rarely. In that case, we should probably allocate
fi whenever a compatible user arrives, regardless of the state of the fairness metrics. This
example suggests that the allocation mechanism could be adapted to look forward (to the
distribution of future opportunities) as well as backwards (over fairness results achieved).
This would require a model of opportunities similar to [32], and others studied in computa-
tional advertising settings.

The current architecture envisions fairness primarily in the context of group fairness ex-
pressed over recommendation outcomes. We believe that the architecture will support other
types of fairness with additional enhancements. For example, a representational fairness
concern would be incompatible with the assumption that fairness can be aggregated over
multiple recommendation lists. Consider the examples in Noble’s Algorithms of Oppression:
it would not be acceptable for a recommender system to deliver results that reinforced racist
or sexist stereotypes at times, even if those results were balanced out at other times in some
overall average. Representational fairness imposes a stricter constraint than those considered
here, effectively requiring that the associated concern be allocated for every recommendation
opportunity.

As noted above, the model expressed here assumes that fairness agents have preferences
only over items. But it is also possible to represent agents as having preferences over recom-
mendation lists. This would allow agents to express preferences for combinations of items:
for example, a preference that there be at least two Agriculture loans in the top 5 items of
the list. This kind of preference cannot be expressed simply in terms of scores associated
with items. Agents would naturally have to become more complex in their ability to reason
about and generate such preferences, and the choice mechanism would become more like a
combinatorial optimization problem. It is possible that we can characterize useful subclasses
of the permutation space and avoid the full complexity of arbitrary preferences over subsets.

Another interesting direction for research is more theoretical in nature. Much of the
research in social choice focuses on providing guaranteed normative properties of various
mechanisms. However, the models used in traditional social choice theory do not take into
consideration the dynamics of recommender systems as most mechanisms are designed to
work in one-off scenarios without dynamic aspects. One direction would be to formulate the
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(a) Agent fairness metrics (b) Cumulative agent allocation

(c) Cumulative fairness regret

Figure 8: Results for Dynamic Weighted allocation

(a) Average agent fairness (b) Cumulative total regret

Figure 9: Comparative results

allocation phase of the architecture as an online matching problem, where fairness agents
represent one side of the matching and users arrive online on the other side, revealing their
compatibility metric. Similar to work in online ad allocation, each fairness agent might
have some budget or capacity that limits the number of users they are matched with, in
order to balance between various fairness concerns. It will be important to understand the
properties of existing social choice mechanisms for allocation and choice when deployed in
these dynamic contexts and to develop new methods with good properties.

25



(a) Agent fairness metrics
(b) Cumulative agent alloca-
tion (c) Cumulative fairness regret

Figure 10: Results for Dyamic Lottery allocation, 3 agent condition.
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