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Abstract

We design a mechanism, Majority voting with random checks, that fully implements
the majority rule for binary social decisions. After a simultaneous vote over the
two options, the winner must be confirmed by some agent from a random sample of
agents voting sequentially. The mechanism incentivizes agents to act truthfully as a
lottery is held if no agent confirms the outcome. We extend our results to incomplete
information and abstention and introduce additional implementation mechanisms
based on the concept of network formation.

1 Introduction

Majority voting is the most popular voting rule for binary decisions. It is often a synonym
for voting: in legislatures and committees, agents often express their opinion for one of
two available options, the most popular one being elected. Early axiomatized with simple
and intuitive axioms (see [19], and [15] for a recent contribution), it plays a central role in
analyzing democratic institutions.

Nevertheless, a non-negligible share of voters regret their choice (their vote or their
abstention) in different sorts of elections.2 While many narratives could justify these results,
we consider the theoretical insights by [21] and [24] as a reasonable justification: preventing
such bad outcomes is not easy since voting mechanisms are plagued with a multiplicity of
equilibria, and in some of them, the chosen option might be the minority preferred one.
The former shows that majority rule fails to satisfy Bayesian monotonicity (a necessary
condition for implementation via deterministic mechanisms in the presence of incomplete
information) while the latter proves that only dictatorships are implementable through
voting mechanisms.3 The logic behind these negative results is related to the following
observation. Whenever a voting profile contains too many votes for the same option, this
profile is an equilibrium irrespective of preferences since no agent is pivotal.

These inefficiencies make appealing the design of alternative voting rules.4 The primary
solution considered in the literature5 when a single election is at stake is as follows: shifting
from simultaneous voting to the sequential majority mechanism or roll-call voting, where
voters express their preference for one of the two options one after the other, and the most

1We thank Antonin Macé, Jeff Ely, Yukio Koriyama, Jean-François Laslier, Hervé Moulin, Tom Palfrey,
Marzena Rostek, Fedor Sandomirskiy and Siyan Xiong as well as three anonymous reviewers for their useful
remarks and comments as well as conference participants at the Asian School in Economic Theory (Singapore
2022) and Université Paris Dauphine. This research is supported by a grant of the French National Research
Agency (ANR), ”Investissements d’Avenir” (LabEx Ecodec/ANR-11-LABX-0047).

2See [6] and [8] for empirical evidence that regret matters in electoral settings. In particular, these
authors point out that an ”overwhelming majority of those who voted in an election feel, ex post, that they
made the right decision, while non-voters are less certain about the correctness of their choice to abstain”.
This justifies our emphasis on voting mechanisms where abstention is possible.

3A voting mechanism allows each agent to vote for each option and is monotonic in the usual sense: if
x wins at some profile and gets additional support from some agent, x remains the winner. For instance,
delegation mechanisms (such as [12] and [13]) belong to the category of voting mechanisms.

4An optional approach is to modify the voters’ rationality as for instance [21] who explore implementation
under weakly undominated strategies. While this approach is sound, it would imply that voters never abstain
in equilibrium since voting for one’s favorite option weakly dominates abstention.

5See [14] for a review of the literature adopting a different perspective: namely, addressing alternatives
to majority rule that take into account preference intensities such as voting rules with transfers ( quadratic
voting or markets for votes) or voting over several issues (storable votes).



popular option wins.6 Roll-call voting subgame perfect implements the majority-preferred
option as long as agents’ reasoning relies upon backward induction. Recent experimen-
tal findings (see [9]) suggest that while theoretically different, sequential and simultaneous
majority voting do not differ much; note that both systems co-exist in the U.S. state leg-
islatures.7 Moreover, as shown by [22], in the U.S. Senate, where roll-call voting is used,
early movers tend to drop the party line to free-ride on late movers; this, in turn, can lead
to failures in implementing the majority preferred option.

Do other mechanisms guarantee that the majority-preferred option is the only equilib-
rium winner with fewer steps? If one focuses on simultaneous mechanisms, the contribution
of [18] ensures their existence, as majority voting fulfills the sufficient conditions for being
Nash implementable. However, the main objection to such result is that the mechanism
(integer game) achieving the implementation is hard to apply in practice. This objection
is reinforced by the recent contribution of [24], as discussed above, since no known voting
mechanism implements the majority option.

We contribute to this literature by providing a positive result: we design a mechanism
that implements the majority option, the Majority voting with random checks. This mech-
anism relies on the use of lotteries off-equilibrium8 to incentivize agents to vote for their
preferred alternative. To deal with lotteries, we impose the mild restriction of stochastic
dominance, virtually satisfied by all preference extensions. The timing of Majority voting
with random checks is as follows. Initially, the 2p+ 1 agents vote simultaneously for one of
the two options. After the vote totals are revealed, a second stage takes place to determine
whether the winner of the first round should be the outcome. Each agent (out of the p+ 1
randomly selected ones) sequentially declares whether she agrees with the winner. If any
of these agents agrees, the winner of the first round is the outcome; otherwise, the winner
is determined by a lottery by randomly picking one of the initial votes. This lottery’s role
is to give proper incentives to agents to reveal their preferred alternative. The Majority
voting with random checks implements the majority rule under complete and incomplete
information.9 Observe that this mechanism requires at most p+ 2 stages (voting stage and
p+ 1 voters). We also extend the mechanism to a setting where agents can abstain in any
of the stages making the strategic problem richer.10

Our second set of contributions is the design of two alternative mechanisms achieving
the same implementation goal: the Bloc formation mechanism and the Verification one.
The Bloc formation mechanism is the first simultaneous voting-based mechanism, different
than an integer game, that Nash implements majority rule. The mechanism is not a pure
voting mechanism because agents do not have a strategy that consists exclusively of voting

6The introduction of supermajorities or qualified majority rules where one option needs more than half
of the votes to win is often considered. The rationale behind such a solution is clear: to avoid events where
both candidates get the same popular support and the winner is considered illegitimate, one should raise
the threshold required to be called the winner. This class of rules does not escape from the impossibility
described by [24] and thus also admits inefficient equilibria.

7In common value settings, roll-call voting has a main drawback: the dynamic structure might trigger
informational cascades (see [1] for a review of the experimental literature on cascades).

8Mechanisms with off-equilibrium lotteries are known to be more permissive than deterministic mecha-
nisms. See [4], [7] and [17] for recent contributions. [10] develop a similar idea to show that one can achieve
Pareto improvements over random dictatorship through simultaneous mechanisms. In the related framework
of the Condorcet jury theorem, [16] proposes the introduction of a ”slightly randomized majority rule” to
ensure that the unique equilibrium is informative. Our mechanism shares a similar spirit to this idea but
without randomization in equilibrium. Likewise, [20] and [2] describe similar ideas for large populations
of agents. See also [23] for a characterization of ordinal and onto choice rules that are subgame perfect
implementable.

9We focus on implementation in sequential equilibria (see [3]). Implementation in extensive form games
is also possible via other concepts such as Perfect bayesian (see [11]) or simply relying on belief restrictions
(see [5]).

10We thank Omer Tamuz for suggesting this extension.



for one of the two options. Instead, the Bloc formation mechanism requires each agent
to vote for one of the two options and to nominate p other agents.11 This mechanism’s
definition actually allows us to see a voting profile as a directed network where vertices
are the agents and the edges their nominations.12 The outcome of the vote depends on
the network structure generated by the voting profile. Finally, we design the Verification
mechanism, a voting mechanism in the sense that voters are just required to vote for one
of the options. More specifically, these mechanisms request agents to vote for an option in
the first stage and, in case some agent disagrees with the first stage majority outcome, to
confirm their choice to ensure no coordination problem exists. The mechanism also relies
on the bloc formation as its simultaneous counterpart and uses lotteries to increase agents’
pivotality. We show that this mechanism subgame perfect implements the majority option
under complete and incomplete information.

This work is organized as follows. After laying out the model in Section 2, Section 3
analyzes the Majority voting with Random checks. Section 4 considers the Bloc formation
and the Verification mechanisms. Section 5 concludes, and the Appendix contains some
proofs.

2 Model

We consider a finite set I = {1, . . . , n} of agents, with generic element i, who need to choose
one option out of the set A = {a, b}. Each agent has strict complete and reflexive preferences
over A where aRib denotes that a is strictly preferred to b. We denote by Θ = {θa, θb} the
type space for each agent. A vector θn ∈ Θn denotes the profile of all agents’ preferences.
An agent i is of type θa (resp. θb) if and only if aRib (resp. bRia). A social choice
correspondence (SCC) is a mapping f : Θn ⇒ A that selects a non-empty set of options for
each profile θn. The majority rule is the SCC that selects Maj(θn) the majority preferred
option(s) of the profile θn. With 2p+1 agents (p being a non-negative integer), the majority
rule is uniquely defined since Maj(θn) = x if and only if |{i ∈ I | xRiy}| ≥ p+ 1.13

We let ∆ denote the set of lotteries over A with ∆ = {β : A → [0, 1] |
∑

A β(a) = 1}. A
mechanism is a function g : M → ∆ that assigns to every m ∈ M a unique element of ∆,
where M =

∏
i∈I Mi, and Mi is the strategy space of agent i.

We assume that preferences over lotteries satisfy stochastic dominance (SD). A lottery
β stochastically dominates lottery η if and only if β yields at least as much expected utility
as η for any von-Neumann Morgenstern utility representation consistent with the ordinal
preferences.

Consider two lotteries β, η ∈ ∆ and let x be the most preferred option of agent i. SD
requires that the agent prefers β to η if and only if the probability with which β selects x
is greater or equal than the probability that η selects x. In formal terms, we can write for
any agent i that:

βR̃SD
i η ⇐⇒ β(x) ≥ η(x) and βRSD

i η ⇐⇒ β(x) > η(x),

where βR̃SD
i η means that agent i weakly prefers β to η and βRSD

i η implies that she
strictly prefers the former to the latter.

11For any positive integer p, if n denotes the number of agents with n = 2p + 1, an agent nominates p
agents. Note when an agent nominates p agents, a majority agent is always among the nominees since there
at most p minority agents.

12For completeness, we also provide an equivalent definition of the Majority voting with random checks
as a network formation game.

13The paper is written assuming an odd number of agents to ease notation. However, several of the results
extend to the case with an even number of them. If there are 2p agents, the majority preferred candidate
need not be unique since Maj(θn) = x if |i ∈ I | xRiy| ≥ p+ 1 and Maj(θn) = {x, y} if |i ∈ I | xRiy| = p.



A mechanism specifies a game-form: this means that, when the mechanism is coupled
with preferences over options for each of the agents, it defines a normal-form or extensive-
form game. For a mechanism g, let NEg(θn) and SPNEg(θn) respectively denote the set
of Nash equilibria and subgame perfect equilibria when the preference profile is θn. A
mechanism Nash (resp. subgame perfect) implements a social choice correspondence f if for
any θn, the outcome of any member of NEg(θn) (resp. SPEg(θn)) is an element of f(θn)
and any element of f(θn) is the outcome of some member of NEg(θn) (resp. SPEg(θn)).
A similar idea applies to the incomplete information setting where the equilibrium notion
upon which we rely is sequential equilibrium (a formal definition is skipped).

3 Majority voting with Random checks

This section introduces the main contribution of this work: Majority voting with Random
checks (χRC in the sequel). Its formal definition follows.

Timing.
Voting stage: Each agent i votes for an option vi ∈ A. The profile of votes v is publicly
announced and the option which gets most votes in v is denoted the winner of the Voting
stage.
Confirmation stage: An order of agents π = (π1, . . . , πn) is selected through a uniform draw.
At each stage t ∈ {1, . . . , p+ 1}, agent πt announces Y or N .

At each stage t, the mechanism ends if the nominating agent πt announces Y with the
outcome being the winner (most announced option) of the Voting stage. Otherwise, the
mechanism proceeds to stage t + 1 and the next agent announces Y or N . If all agents
in {π1, . . . , πp+1} announced N in the Confirmation stage the outcome is a lottery β(v)
determined by profile v. This lottery assigns to each option its share of first-stage votes,

so that βa(v) = |{i∈I|vi=a}|
n and βb(v) = 1 − βa(v). The purpose of this lottery is to give

incentives to agents to vote for their most preferred option.
Notice that the Confirmation stage announcements Y and N can be viewed as agreement

and disagreement with the Voting stage outcome respectively. That is, if at least one agent
in {π1, . . . , πp+1} agrees with the outcome being the majority winner of the Voting stage,
this option is the outcome. On the other hand, if no one agrees, the outcome is the previously
mentioned lottery.

We now establish the implementation under complete and incomplete information and
discuss the extension to abstention.

3.1 Complete information

Before starting the formal argument with complete information, we present an example that
illustrates the logic under this mechanism.

Example 1 : Preferences are given by aRib for i = 1, 2, 3 and bRia for i = 4, 5. Consider
any strategy profile in which vi = b for every agent i; the rules of the mechanism imply
that b is the outcome, independently of the Confirmation stage. This profile is not an
equilibrium since b is not majority preferred. More precisely, any agent with type θa has a
profitable deviation. Consider, for instance, that agent 1 deviates and votes v′1 = a rather
than v1 = b. The outcome after such deviation depends on the agents selected for the
Confirmation stage. If either 4 or 5 is selected, b is the outcome since both agents prefer b
to a and, thus, in any SPE of the Confirmation stage at least one of them announces Y . If
neither 4 or 5 is in {π1, . . . , πp+1}, the Confirmation stage involves only agents {1, 2, 3}. All
of them strictly prefer to announce N if Y was not announced before. Thus, in the unique



SPE of the Confirmation stage, N is announced by all three agents and the outcome of
the mechanism is a lottery that selects a with probability 1/5 (random dictatorship in the
profile (a, b, b, b, b)). Table 1 illustrates this example. The left part represents the Voting
stage profiles: unanimous in the first case, and after the deviation of agent 1 afterwards. The
right part illustrates a possible SPE of the Confirmation stage given Voting stage profiles.

Voting stage Confirmation stage Outcome
1 2 3 4 5 1 2 3 4 5

Unanimous vote for b, {π1, π2, π3} = {1, 2, 3}
b b b b b N N N - - b

Deviation to v′1 = a, {π1, π2, π3} = {1, 2, 5}
a b b b b N N - - Y b

Deviation to v′1 = a, {π1, π2, π3} = {1, 2, 3}
a b b b b N N N - - 1/5a+ 4/5b

Table 1: Majority voting with Random checks

Therefore, by deviating from v1 = b to v′1 = a, agent 1 induces a lottery that assigns a
a positive probability; by SD, agent 1 prefers to deviate showing that any strategy profile
in which vi = b for every agent i cannot be an equilibrium.

A similar logic to the one described in the example shows that at least p+1 agents who
prefer the majority option are sincere in the Voting stage of any equilibrium which leads to
the implementation result, stated formally as follows.

Proposition 1. The Majority voting with Random checks subgame perfect implements the
majority rule.

Proofs of all the results can be found in the Appendix.

3.2 Incomplete information

We now prove that the Majority voting with Random checks implements the majority rule
when we relax the assumption of complete information. For simplicity of the argument
we assume that each agent believes that the types of other agents are i.i.d. and assigns
probability qa (resp. 1 − qa) to each agent being θa (resp. θb). Later we show that the
i.i.d. assumption can be relaxed without affecting the result. A strategy for an agent i is a
mapping σi = (σ1

i , σ
2
i ) where σ

1
i : θ → A and σ2

i : θ×Hi−1 → {Y,N} stand for the strategies
in each of the stages and Hi−1 is the set of all possible histories before the Confirmation
stage announcement of agent i. A first-stage vote of agent i, v1i , is revealing given strategy
σ1
i if either (σ1

i )
−1(v1i ) = θa or (σ1

i )
−1(v1i ) = θb, in other words, if after observing v1i other

agents learn the type of agent i.

Proposition 2. Under incomplete information, Majority voting with Random checks im-
plements the majority rule in sequential equilibrium.

Notice that our initial assumption on prior beliefs being i.i.d. was unnecessarily demand-
ing. If the prior beliefs satisfy the following weaker conditions, the result remains valid:

- Each agent assigns a positive probability to the event Ta (the event where p agents
other than i have type θa and p agents have type θb);

- For any subset of agents I ′ ⊂ I and any agent j ∈ I \ I ′, for any x, y ∈ A, x ̸= y,
Pr(∀i ∈ I ′, i is of type θx | j is of type θy) > 0.



3.3 Abstention

We now discuss a second extension of the Majority voting with Random checks mechanism
where we allow the agents to abstain. The possibility of abstention makes the strategic
problem richer. Indeed, the abstention of many agents of the majority type can induce the
victory of the minority and make agents indifferent between abstaining or voting for any of
the options.14 In order to deal with abstention, we extend the definition of the mechanism
as follows.

Timing.
Voting stage: Each agent i votes for an option or abstains, that is vi ∈ A∪∅. The profile of
votes v is publicly announced. We call the option which gets most votes in v the winner of
the Voting stage. If no agent participates, i.e. vi = ∅ for all i ∈ I or there is a tie between
the two alternatives, the outcome is a lottery which assigns probability 1/2 to each of the
options.
Confirmation stage: An order of agents π = (π1, . . . , πn) is selected through an uniform
draw (from all the agents independent of whether they participated or abstained in the
Voting stage). At each stage t ∈ {1, . . . , p+ 1}, agent πt announces Y or N or abstains.

At each stage t, the mechanism ends if the confirming agent πt announces Y for some
t ∈ {1, . . . , p+1} with the outcome being the winner of the Voting stage. If the two options
are tied in the Voting stage the outcome is the lottery which assigns probability 1/2 to each
option. If all agents in {π1, . . . , πp+1} announced N or abstained in Confirmation stage the
outcome is a lottery β(v), which assigns to each option its share of first-stage votes, so that

βa(v) =
|{i∈I|vi=a}|

n and βb(v) = 1− βa(v).

Proposition 3. The Majority voting with Random checks subgame perfect implements the
majority rule in the presence of abstention.

The proof of the result can be found in the Appendix. As a final comment on this
mechanism, observe the existence of the following equilibrium. Consider a strategy profile
with only two votes for A (the rest being abstentions) in the Voting stage and all agents
announcing Y in the Confirmation stage. This is a subgame perfect equilibrium for any
preference profile where A is the majority preferred option. Indeed, no deviation is possible
in the Voting stage since the winner is not altered by adding or substracting one vote. In
the Confirmation stage, by definition, there is some agent preferring A among the p + 1.
Since this agent’s best response is to vote Y , the outcome is A independently of the rest
of the votes in the Confirmation stage. Thus, only two agents participating in the voting
stage suffice to guarantee that the majority option is elected.

4 Alternative implementing mechanisms

In this section, we introduce two mechanisms, beyond Majority voting with random checks,
that implement the majority rule. The first one, the Bloc formation mechanism, is the first
simultaneous mechanism (beyond integer games) that implements the majority rule. The
second one, the Verification mechanism, allows agents to verify their vote after an initial
vote. Note that both mechanisms are based on the idea of network formation.

14If one considers the simultaneous majority mechanism, any strategy profile in which all majority agents
abstain and two minority agents vote sincerely is a Nash equilibrium irrespective of preference.



4.1 Bloc formation mechanism

4.1.1 Simultaneous blocs

In the Bloc formation mechanism, the message mi of agent i consists of (1.) a vote for an
option vi and (2.) a nomination of p agents excluding herself (denoted ci). Formally, the
mechanism is denoted χBF : M → ∆ with, for all i ∈ I, Mi := A × 2−i

p where 2−i
p denotes

the sets of p agents different from i where |I| = 2p+ 1.

The central notion of this mechanism is the idea of a bloc of agents. A bloc in favor of
option x is a majority group of agents, denoted B, such that each agent votes for x while
only nominating agents in B. This can be defined as follows.

Definition 1. A set B of agents forms a bloc in favor of option x in the profile m if:

1. |B| ≥ p+ 1 (majority group),

2. vi = x for each i ∈ B (only votes for x),

3. ci ⊂ B for each i ∈ B (only nominations in B).

The outcome of the Bloc formation mechanism χBF depends on whether a bloc forms
in the message profile or not. Denote by Bm the set of blocs formed in profile m. By
definition, all blocs in a profile (if any) favor the same option since each bloc contains a
majority of agents. Therefore, for any profile m in which there is a bloc in favor of option
x, χBF (m) = x.

If the profile m does not contain a bloc, the outcome is a lottery over A that depends on
m. For each option x ∈ A, the weight of x associated to m, denoted ηx(m), equals:

ηx(m) =
∑
i∈I

ηi(m)1{vi = x} with ηi(m) =
|{j ∈ I \ {i} | i ∈ cj}|

np
.

To see the logic behind this formula, we let ηi(m) be the weight of agent i, that is the
share of nominations of i in the total nominations np. By construction,

∑
i∈I ηi(m) = 1 for

any m ∈ M . When all the other agents nominate i, agent i has the maximal possible weight
of ηi(m) = n−1

np whereas ηi(m) = 0 when none of the other agents nominate i.

We thus interpret ηx(m) as the sum of the weights of the agents who vote for x so that,
by construction, ηa(m) + ηb(m) = 1. Notice that the weight ηx(m) is strictly increasing
in the number of nominations for x-agents and, thus, in the number of x-agents among
nominated agents.

The previous rules of the mechanism can be summarized as follows. For each message
profile m, the outcome of the Bloc formation mechanism χBF coincides with:

χBF (m) =


a if m admits a bloc in favor of a,

b if m admits a bloc in favor of b,

η(m) otherwise.

A noteworthy comment on the Bloc formation mechanism deals with its strategic impli-
cations. Deciding for which option to vote should be easy. This is the case as we show next.
For any agent i with xRiy, any nomination ci ∈ 2−i

p and any message m−i of the agents
different from i, agent i weakly prefers to vote x, that is to vote for her most preferred
option since:



χBF (x, ci,m−i)R̃
SD
i χBF (y, ci,m−i).

To see why there is a preference of voting honestly, observe that for a given announcement
profile of the rest of the agents, the following cases arise. In the case that the outcome is a
lottery (i.e. no bloc), this is immediate since she strictly prefers to be sincere. In the case
that the agent is part of a bloc, it is always better for an agent to vote for her preferred
option (it can create a bloc, prevent its formation or have no impact). Finally, if the profile
admits a bloc independently of the agent’s behavior, agent i’s vote is irrelevant. Similarly,
there is a weak preference for nominating agents who voted for one’s preferred option.

Notice that for any message profile m = (v, c) the nomination profile c creates a di-
rected graph in which vertices are the agents and the edges - their nominations. In the
Appendix we provide an alternative formulation of the mechanism which regards blocs from
the perspective of graph theory.

4.1.2 Nash implementation

The main result of this section is as follows.

Proposition 4. The Bloc formation mechanism Nash implements the majority rule.

The formal proof of Proposition 4 is included in the Appendix, we give some intuition for
it in the next lines. Let a be the majority preferred option and b the minority one (assume
that the majority is uniquely defined for simplicity).

First, it is rather intuitive that an equilibrium selecting a exists. By definition, there are
at least p+ 1 such agents. If these agents vote in favor of a and nominate each other, this
constitutes a bloc in favor of it and hence an equilibrium. Indeed, no agent within the bloc
wants to deviate (she obtains her most preferred outcome) and no agent outside the bloc
can alter the outcome (by definition).

Second, suppose that the outcome is a lottery with full support. Since the weight with
which each option wins is strictly increasing in the votes it obtains from the agents with
positive weight, the agents find it optimal to behave sincerely and vote for their most
preferred option. This, in turn, leads to the formation of a bloc in favor of a.

Finally, we argue that no bloc can be formed in favor of b, the minority option. Assume,
by contradiction, that such bloc exists. Then, as shown in 7, an effective bloc exists and
includes some majority agent. Then, by Proposition 8 a majority agent - member of the
effective bloc can break all the blocs in favor of b in the profile leading to a lottery being
the outcome. Such deviation is profitable for a majority agent, contradicting the existence
of an equilibrium in which a bloc in favor of b is formed. The next example illustrates the
logic of the mechanism on this precise point.
Example 2: The preferences of the agents (N = {1, 2, 3, 4, 5}) are such that aRib for i =
1, 2, 3 and bRia for i = 4, 5 so that a is majority-preferred. Remark that no equilibrium
profile admits a bloc in favor of b. Indeed, let m = (c, v) be the profile where each agent
votes b (i.e. vi = b∀i) and nominations are as follows: c1 = 4, 5, c2 = 1, 3, c3 = 1, 2, c4 = 1, 5
and c5 = 1, 4. The profile m admits two blocs: {1, 4, 5} and {1, 2, 3, 4, 5}. The bloc {1, 4, 5}
is the effective one since one cannot find a smaller group that nominate each other while
voting b. If any agent i ∈ {1, 4, 5} deviates to m′

i = (a, ci), the profile (m′
i,m−i) admits no

bloc and the outcome is a lottery between a and b. Since agent 1 prefers a to b, she has a
profitable deviation and thus the profile m is not an equilibrium.

More generally, take any profile in which a bloc is formed in favor of b. Any bloc consists
of at least p+1 agents, thus, it includes at least one majority agent. Since the effective bloc
is included in the rest of the blocs, we can always find a majority agent with a profitable
deviation. Thus no bloc in favor of the minority preferred option is possible.



4.2 Verification mechanism

This final section presents the Verification mechanism. This mechanism, that we denote
χDV , incentivizes the formation of blocs in favor of the majority option and it leads to a
lottery in the absence of blocs. The main advantage is that agents are treated symmetrically
(all agents vote either once or twice) its main flaw is that other equilibria might involve more
than n stages.

In the first stage, agents vote simultaneously for one of the two options. The votes are
announced at the end of the stage. In the second stage, agents are asked to ratify the result.
If all ratify the result, the outcome is the majority winner of the first stage. If some agent
fails to ratify, a verification stage starts. The verification stage asks agents to vote again
for one of the two options, this time in a sequentially in an exogenous commonly known
order. If at least p+1 agents of the ones who voted for the majority winner of the first stage
confirm their votes, the outcome is the winner of the first stage. Otherwise (namely many
agents do not confirm their vote), the outcome is a lottery with endogenously determined
weights. As we show in the sequel, the χDV mechanism admits several equilibria, all of
which select the majority preferred option. Among its main advantages, it admits equilibria
without verification, that is two-stage equilibria.

A formal definition of the χDV mechanism follows. For each arbitrary order π of agents,
let χDV : M → ∆ be a mechanism with mi = (v1i , ωi, v

2
i ) ∈ Mi : A× {R, V } × A being the

message of agent i. While an order of agents is required in stage 3, the equilibrium outcome
is order-independent. The game stages are as follows.

Timing.
Voting stage: Each agent simultaneously announces v1i ∈ A. Profile v1 is publicly announced
at the end of the stage.
Ratification stage: Each agent i simultaneously announces ωi ∈ {R, V } to state whether
she ratifies the outcome (R) or wants a verification (V ). If all ratify, the outcome is the
majority winner in the profile v1. Profile ω is publicly announced at the end of the stage.
If some agent votes V , stage 3 starts.
Verification stage: Each agent i sequentially announces v2i ∈ A according to the order π
knowing announcements v2π1

, v2π2
, . . . , v2πi−1

of the predecessors.

The outcome of the Verification mechanism χDV for each message profile m is as follows.
A. If all agents ratify the voting outcome in stage 2, the outcome is the majority winner of
the voting profile v1.
B. If some agent asks for a verification in stage 2, the outcome depends on the votes in Stage
3.
B.1. If there is a bloc in favor of some option x, then x is selected. A bloc in favor of option
x is formed in m if there is a set J of at least p+ 1 agents with v1j = x and v2j = x ∀j ∈ J .
That is, a bloc in favor of x consists of a majority of agents voting twice for x.
B.2. In the absence of a bloc in the profile m, the outcome is a lottery β over A. For each
profile m, let sa(m) = |{j ∈ I | v1j = a}| be the votes for a in stage 1 and ϕa(m) = |{j ∈ I |
v2j = a}| be the votes for a in stage 3. In this case, the outcome of the profile m is:

1. a if sa(m) = n or ϕa(m) = n and sa(m) > 0,

2. b if sb(m) = n or ϕb(m) = n and sb(m) > 0,

3. otherwise is a lottery β(m) with probabilities:

βa(m) =
ϕa(m) sa(m)

sb(m)

ϕa(m) sa(m)
sb(m) + ϕb(m) sb(m)

sa(m)

and βb(m) = 1− βa(m). (1)



Remark that the probability βa(m) is strictly increasing in sa(m) and in ϕa(m) and
strictly decreasing in sb(m) and in ϕb(m). This probability being increasing plays a key role
in the sequel since, whenever the outcome is a lottery, an agent has a strict incentive to vote
sincerely.

Our results consider majority rule implementation through χDV under complete and
incomplete information.

Proposition 5. For any order of the agents in the verification stage, the Verification mech-
anism subgame perfect implements the majority rule and admits equilibria where no verifi-
cation is required.

We now extend the implementation result of the Verification mechanism to an incomplete
information setting. We assume that each agent believes that the types of other agents are
i.i.d. and assigns probability qa (resp. 1− qa) to each agent being θa (resp. θb). Notice that
the i.i.d. assumption can be relaxed for the same reasons as discussed in the analysis of the
Majority voting with Random checks. A strategy for an agent i is a mapping σi = (σ1

i , σ
2
i )

where σ1
i : θ → A and σ2

i : θ × Hi−1 → A stand for the strategies in each of the steps
and Hi−1 is defined as in the complete information case. We denote the message profile
by m = (v1, v2) ∈ M = A|I| × A|I|. A first-stage message of agent i, v1i , is revealing given
strategy σ1

i if either (σ1
i )

−1(v1i ) = θa or (σ1
i )

−1(v1i ) = θb, in other words, if after observing
v1i other agents learn the type of agent i.

Proposition 6. Under incomplete information, the Verification mechanism implements the
majority rule in sequential equilibria.

5 Conclusion

We have considered the implementation of the majority rule in a preference aggregation
setting through several mechanisms. The key idea of this work is that introducing lotteries
in the mechanisms removes the undesirable equilibria widespread in the voting literature
and helps design shorter mechanisms. Lotteries allow agents to be pivotal more often, while,
in all of the considered mechanisms, lotteries do not arise in equilibrium so that the socially
desirable option is always selected. We leave it to future empirical research to determine to
which extent the proposed mechanisms outperform the classic voting procedures. Finally,
some of our proposals consider voting as a network formation game; this deserves further
investigation in the context of implementation and coalition formation.
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A Proof of Proposition 1

We solve the game backwards starting from Confirmation stage. Notice first that in case
the profile v is unanimous, Confirmation stage does not affect the outcome. Assume that
v is not unanimous and denote by x the winning option of the Voting stage and by y the
remaining one.

Assume that no agent from {π1, . . . , πp} announced Y and consider agent πp+1. If
xRπp+1

y the unique best response is Y and it is N otherwise.
Consider now agent πp and assume no Y was announced before. Then the best response

of πp is:
- Y if xRπp

y and yRπp+1
x;

- N if yRπp
x and yRπp+1

x;
- {N,Y } otherwise.
This logic can be extended to earlier agents in π in the following way. For any agent πi

with i ≤ p+ 1 the best response at Stage 2 is:
- Y if xRπi

y and yRπj
x for all i < j ≤ p+ 1;

- N if yRπj
x for all i ≤ j ≤ p+ 1;

-{N,Y } otherwise.
Then the SPE outcome of Stage 2 is the following one.

Lemma 1. For any non-unanimous profile v of the Voting stage, the SPE outcome of the
Confirmation stage is:

- x (the winner of Voting stage) if xRiy for some i ∈ {π1, . . . , πp+1};
- the lottery β(v) otherwise.

Consider now the Voting stage where we let a denote the majority preferred option and
b the minority preferred one. Notice first, that if a is the winner of the Voting stage, the
equilibrium outcome is a. This follows from Lemma 1 and the fact that for any order π, the
subset {π1, . . . , πp+1} includes some majority agent.

We claim that there are at least p+1 votes in favor of a in the profile v in any equilibrium.
By contradiction, assume that this is not the case. Then there are only two possible cases
in which b is selected as an outcome with positive probability.
Case 1: v is unanimous in favor of b. Consider some agent i with type θa. If she deviates to
v′i = a, then if {π1, . . . , πp+1} contains only majority agents, the outcome is a lottery accord-
ing to Lemma 1 and it assigns positive probability to a. Thus, such deviation is profitable
for agent i. It follows that the unanimous profile v in favor of b is not an equilibrium.



Case 2: There are less than p+ 1 votes for a in the profile v. It follows that there is some
majority agent i with vi = b. Then, the deviation to v′i = a is profitable. Indeed, if after
such deviation a is the winner of the Voting stage, a is the equilibrium outcome. If this is not
the case, b is the winner of (v′ − i, v−i). Thus, if some minority agent is in {π1, . . . , πp+1},
b is the outcome by Lemma 1. However, if only majority agents are in {π1, . . . , πp+1}, the
outcome is the lottery β(v′i, v−i). Deviation by i to v′i = a increases the probability of a in
such lottery: assuming that the number of votes for a in v is na the probabilities are the
following:

βa(v) =
na

n
<

na + 1

n
= βa(v

′
i, v−i).

Thus, we have eliminated all profiles v in which less than p+1 agents vote a as potential
equilibria and this completes the proof.

B Proof of Proposition 2

Fix any strategy profile σ1, vote profile v and order π of agents. Denote by x the majority
winner of the Voting stage given v and by y the remaining option.

Consider agent πp+1 and assume that all Confirmation stage votes prior to her were N .
Then, the best response of πp+1 is to vote Y if xRπp+1

y and N otherwise.
Consider now some agent πt and assume that all Confirmation stage votes prior to her

were N . Her best response is the following:
- Y if xRπty and agent i assigns positive probability to the event that all agents in

{πt+1, . . . , πp+1} prefer y to x;
- N if yRπt

x and agent i assigns positive probability to the event that all agents in
{πt+1, . . . , πp+1} prefer y to x;

- {Y,N} otherwise.
Note that based on our assumption on prior beliefs, if some agent upon observing v

assigns probability 0 to the event that all agents in {πt+1, . . . , πp+1} prefer y to x then all
agents do so. More precisely, this happens only if some agent in {πt+1, . . . , πp+1} prefers x
to y and her Voting stage strategy was revealing. It follows, that in case of non-revealing
strategies for agents in {πt+1, . . . , πp+1} agent πt strictly prefers to be truthful, i.e. to
announce Y if the winner of v is her preferred option and N otherwise. Thus, we can
summarize the outcome of the Confirmation stage as follows.

Lemma 2. For any strategy profile σ1 and Voting stage profile v, the sequential equilibrium
outcome of the Confirmation stage is:

- x if vi = x for all i ∈ I,
- x if some agent in {π1, . . . , πp+1} prefers the winner at v,
-the lottery β(v) otherwise.

Consider the Voting stage of the mechanism, some agent i ∈ I and some profile σ1
−i of

strategies of other agents. We now show that i strictly prefers to vote for her most preferred
option.

Assume w.l.o.g. aRib. Notice first that there is no v−i for which i strictly prefers to
vote vi = b. However, voting vi = b may be a best response if i is indifferent between voting
a or voting b for all possible realizations of types θn−i and votes v−i of other agents given
strategies σ1

−i.
Consider some realization θn−i and v−i such that the majority preferred option (among

all agents including i) is not the one getting the most votes in v−i. In this case, i strictly
prefers to vote vi = a independently of whether a or b is the majority preferred option.



Indeed, when i’s vote is the p+ 1th in favor of a, by voting a rather than b, she induces the
outcome to be a rather than a lottery (if a is the majority preferred option) or a lottery
with a being selected with positive probability rather than b (if b is the majority preferred
option). Otherwise, the outcome is the lottery β(v) for any vote of i, so that she strictly
prefers to vote a.

If in some strategy profile σ1
−i, the probability of such event is 0, that is for all possible

realizations θn−i and v−i the majority preferred option gets the most votes in v−i, voting b
is a best response. We now show that no such strategy profile exists.

Consider some profile θn−i such that p−1 agents in I\{i} are of type θa and the remaining
p + 1 agents are of type θb. This event occurs with positive probability. By assumption,
given σ1

−i, any realization of v−i is such that the majority of agents in I \ i vote for b (since b
is the majority preferred option). Now consider a different profile θn

′

−i such that θnh = θn
′

h for

all h ∈ I \ {i, j} with agent j being θb in θn−i and θa in θn
′

−i. That is, the profile θn
′

−i is such
that a is the majority preferred option (since aRib) and the only difference with θn−i is the

preference of agent j. By assumption, in the profile θn
′

−i for any realization v−i the majority
of agents in I \ {i} vote a. Notice, however, that each agent can condition her strategy only
on her type since this is the information available to agents at the time of the vote. Thus,
for all agents in I \ {i, j} the probability to vote for a or b remains the same when moving
from θn−i to θn

′

−i. Thus, the only change in votes occurs for agent j. Assume that either
when j is of type θb (as in θ−i) or of type θa (as in θ′−i) agent j randomizes, i.e. votes for
a and for b with positive probabilities. In this case there is some profile v−i which occurs
with positive probability under θn−i and θn

′

−i. However, this contradicts the assumption that
for any realization of v−i the majority preferred option obtains the majority of the votes.
Thus, it must be that agent j votes a when she is of type θa and b when she is of type θb:
she votes sincerely. Notice that agent j was random so that the same logic applies to any
agent in I \ {i}. Thus, i is indifferent between voting a or b only if all other agents are
truthful.

Consider now profile θn−i such that exactly p agents are of type θa and p remaining agents
are of type θb. Since they are truthful there are p votes for a and p votes for b. In this case
if vi = a the outcome is a as prescribed by Lemma 2 whereas if vi = b, the outcome is a
lottery which assigns positive probability to b. Thus, i strictly prefers to be truthful. This
completes the proof.

C Proof of Proposition 3

First, notice that in the Confirmation stage all agents in {π1, . . . , πp+1} are indifferent
between announcing N or abstaining. Indeed, by construction the mechanism treats equally
these announcements and, in the Confirmation stage, the best response does not depend on
the previous announcements.

Assume then that the Voting stage admits a unique winner, i.e. the two options are not
tied in v. In this case, the Confirmation stage outcome coincides with the one presented in
Lemma 1.

Assume now that both a and b are tied in the profile v. Thus, independently of an-
nouncements of the Confirmation stage the outcome is a lottery which assigns probability
of 1/2 to each of the options being selected. Thus, all agents at the Confirmation stage are
indifferent between all 3 possible announcements. Them, the counterpart of Lemma 1 can
be formulated as follows.

Lemma 3. For any non-unanimous profile v of the Voting stage, the SPE outcome of the
Confirmation stage is:



- x if xRiy for some i ∈ {π1, . . . , πp+1},
- a lottery β(v) if there is a unique winner in v,
- a lottery which assigns equal probabilities to both options if v does not admit a unique

winner.

Consider now the Voting stage of the mechanism. We show that there is no equilibrium
which selects b (the minority preferred option) with positive probability. By contradiction,
assume that such equilibrium exists.

Case 1: The outcome is deterministic and selects b with probability 1 for all orders π.
In this case, given Lemma 3, one of the following statements holds:

- all participating majority agents vote b. If any of these agents deviates to v′i = a, this
is a profitable deviation since there is positive probability that only majority agents play at
the Confirmation stage and, by Lemma 3, the outcome in this case is a lottery;

- no majority agent participates. Then for any majority agent i with vi = ∅, deviating
to v′i = a is profitable since it leads to a lottery as an outcome with positive probability.

Case 2: The outcome is b with positive probability. Notice, that if a is the winner of
the Voting stage, a is the outcome for all possible orders π since some majority agent is
among the first p+ 1 agents at the Confirmation stage. Thus, if b is selected with positive
probability, it must be the winner of v, or that vj = ∅ for all j ∈ I. If b is the majority
winner of v then there is some majority agent who either abstains or votes for b in the
Voting stage.

- Assume vj = ∅ for all j ∈ I. In this case any agent has incentives to enter and vote for
her favorite option since this option will be the outcome with only one agent present at the
Voting stage.

- Assume b is the majority winner and there is some majority agent i ∈ I with vi = b.
Then the deviation to v′i = a is profitable. Indeed, if after this deviation a is the majority
winner of v, a is the outcome of the mechanism with probability 1. Otherwise, the outcome
is the lottery based on the Voting stage profile for any π. Deviation by v to v′i = a increases
the probability of a in such lottery.

- Assume b is the majority winner and there is some majority agent i ∈ I with vi = ∅.
Then the deviation to v′i = a is profitable. Indeed, if after such deviation a is the winner
of the Voting stage, a is the equilibrium outcome. If this is not the case, b is the winner of
(v′−i, v−i). Thus, if some minority agent is in {π1, . . . , πp+1}, b is the outcome by Lemma 3.
However, if only majority agents are in {π1, . . . , πp+1}, the outcome is the lottery β(v′i, v−i).
Deviation by v to v′i = a increases the probability of a in such lottery: assuming that the
number of votes for a in v is na and the total number of the Voting stage participants is n
the probabilities are the following:

βa(v) =
na

n
<

na + 1

n+ 1
= βa(v

′
i, v−i).

This concludes the proof.

D Proof of Proposition 4

W.l.o.g. assume that any agent i in {1, . . . , p + 1} is such that aRib so that a is the
majority-preferred option and b the minority-preferred one. Any agent i with aRib is a
majority agent. We need to prove that (A.) there is an equilibrium implementing a and
that (B.) any equilibrium selects a.

A. Existence of an equilibrium selecting a.



Consider the set J = {1, . . . , p + 1} that consists only of majority agents. Take the
strategy profile m where for each i ∈ J , vi = a and ci ⊂ J \ {i} so that coalition J forms
a bloc in favor of a. It follows that χBF (m) = a. To see why m is an equilibrium, remark
that each agent in J prefers a to b (and a to any lottery with both a and b in its support by
SD) and hence does not want to deviate. Each agent outside J cannot affect the outcome
since the bloc formed by J is formed independently of the deviation of any agent outside J .
This shows the existence of an equilibrium selecting a.

B. Any equilibrium implements a.

For the sake of clarity, we divide this part of the proof in two sections. In section B.1,
we show that there is no bloc in favor of b in equilibrium. In section B.2, we show that any
strategy profile that leads to a full-support lottery cannot be an equilibrium, concluding the
proof.

B.1. No bloc in favor of b in equilibrium.

Take any profile m with a bloc B in favor of b; hence χBF (m) = b. The definition of a
bloc means that at least p + 1 agents vote for b and nominate only agents in B. Consider
the effective bloc B∗ which exists and is unique according to Proposition 7. Since a is the
majority option, there is some agent i ∈ B∗ with vi = b in the profile m and aRib.

Assume that m is an equilibrium. Suppose that agent i deviates from mi = (b, ci) to
m′

i = (a, ci). This means that B∗ is not anymore an effective bloc in favor of b in the profile
(m′

i,m−i). Moreover, since B∗ = ∩B∈BmB, there is no other remaining bloc in the profile
(m′

i,m−i) as shown by Proposition 7; thus the outcome χBF (m
′
i,m−i) is a lottery with

support a and b with a being selected with positive probability since ηi(m) > 0 and thus
ηi(m

′
i,m−i) > 0 (i was nominated by some other agent in m, being part of B∗). Thus, by

SD, m′
i is a profitable deviation for i since it increases the probability of a being selected,

proving that m is not an equilibrium.

B.2. There is no equilibrium which selects b with positive probability.

Assume that there is some equilibrium m where the outcome is a full-support lottery.
Notice that the following two statements hold for any equilibrium profile m with the

outcome being a lottery:
(1) any agent i who is nominated (ηi(m) > 0) is sincere.
(2) any agent nominates the largest number of agents who announce her preferred option.

In other words, if aRib then |{j | vj = a and j ∈ ci}| = min{p, {h ∈ I | vh = a}}.
Indeed, (1) holds since with ηi(m) > 0 the vote of agent i affects the final outcome, thus,

voting sincerely increases the probability of i’s favorite option being selected. Statement
(2) holds since the weight ηx(·) is increasing in the sum of the weights of x-agents and each
agent’s weight strictly increases on the number of votes that she receives.

Given that (1) and (2) hold since m is an equilibrium and that Bm = ∅, there is some
majority agent which votes b and is not nominated. Indeed, assume this is not the case and
such agent does not exist. According to (1) all nominated agents vote sincerely. It follows
from (2) then that all majority agents nominate only other majority agents who are also
sincere. This means that a bloc in favor of a exists contradicting Bm = ∅. Consider then
some minority agent j, i.e. bRja. Since (1) holds, cj does not include any majority agent
who votes b, that is |{h ∈ cj | vh = b}| < p. Then since ηb(m) is increasing in the number of
nominations of b-agents, agent j has a profitable deviation: to nominate agent i in cj rather
than some a-agent. Formally, m′

j = (b, c′j) with c′j = (cj \{h})∪{i} for some h with vh = a.
This contradicts m being an equilibrium, and concludes the proof.



E Proof of Proposition 5

Lemma 4 shows that the unique SPE outcome of the Verification stage is the outcome of
truth-telling. We now consider the earlier stages of the mechanism to complete the proof of
the proposition.
A. Ratification stage

At this stage, an agent’s decision is rather simple. She strictly prefers verifying if she
anticipates that the outcome is better than at the Voting stage. Note that if the outcome
after verification remains unchanged, the agent is indifferent at the Ratification stage.
B. Voting stage

We now consider the first stage of the mechanism, letting a denote the majority preferred
option. There are 2 possible cases: either less than p+ 1 majority agents vote for a in the
first stage (B.1) or and at least p+ 1 majority agents do so (B.2).
Case B.1: If the profile v1 is unanimous in favor of b, the outcome is b. If the profile v1 is
not unanimous in favor of b, as established in A., the second-stage SPE outcome is equivalent
to the one under truth-telling. Thus the SPE outcome is a lottery with all majority agents
announcing a and all minority agents announcing b. Consider now a deviation v̂1i = a by a
majority agent who voted b in the first stage before (v1i = b). Given the SPE of the second
stage, after such deviation there is either a bloc in favor of a if this agent is the p + 1th

majority agent to vote a in the first stage, or a lottery where the probability of a strictly
increases according to equation (1). Thus, this deviation is strictly profitable. Therefore,
the first-stage profile in which less than p + 1 majority agents vote a can not be part of a
SPE equilibrium.
Case B.2: There are at least p + 1 majority agents who vote for a in the first stage.
Assume first that the profile v1 is unanimous in favor of a. If v1i = a for all i ∈ I, it is
an equilibrium. Indeed, by deviating to v̂1j = b any minority agent j is not changing the
outcome given that the outcome of the verification stage is equivalent to the one under
truth-telling and the remaining agents (n− 1) vote for a in the first stage. If the profile v1

is not unanimous, the second-stage SPE outcome is a with a bloc of majority agents being
formed in favor of a. Each of the majority agents has no profitable deviation since a is their
preferred option. No minority agent’s deviation can prevent the bloc in favor of a. Thus,
the described profile is an equilibrium and a is the only equilibrium outcome.

F Proof of Proposition 6

We now show that every agent strictly prefers to be sincere in the first stage.
W.l.o.g. take agent 1 with type θa and let σ−1 denote the strategy of her opponents.

Recall that agent 1 weakly prefers to be sincere in the first stage. It suffices to prove that
there is some event where agent 1 strictly prefers to be sincere and that this event arises
with positive probability. If this is the case, then SD implies that agent 1 strictly prefers
to be sincere in the first stage.

Let Ta be the event where p agents have type θa and p agents have type θb, all different
from agent 1. Agent 1 assigns to the event Ta probability πa > 0 where πa = Cn−1

p (qa)
p(1−

qa)
p.
Moreover, if the event Ta arises, no bloc can be formed without agent 1 being part of

it. Indeed, as shown by Lemma 5, the outcome of the verification stage is equivalent to the
one under truth-telling. Moreover, by definition, the formation of a bloc requires at least
p + 1 agents voting equally in the voting and in the verification stage. However, exactly p
of them have type θa and exactly p of them have type θb. W.l.o.g we can assume that the
former agents vote a in the verification stage while the latter ones vote b due to Lemma 5.



Therefore, we have two cases to describe the vote of agent 1: either agent 1 is part of a bloc
in favor of a or no bloc is formed.

In the first case, agent 1 strictly prefers to report her type ensuring that her best option
is implemented. In the second case, no bloc is formed so that the outcome is a lottery:
again, she strictly prefers to report her type since the weight of a is strictly increasing in
the number of votes obtained in the first stage.

G Voting profile as a directed graph

It is useful to consider blocs in terms of the graph theory. Notice that for any message
profile m = (v, c) the nomination profile c creates a directed graph in which the vertices are
the agents and the edges their nominations. Formally, for each message profile m = (v, c)
denote by Gm = (I, C) the directed graph formed by c where the set I of agents coincides
with the set of vertices, and C is the adjacency matrix such that Cij = 1 if j ∈ ci and
Cij = 0 otherwise.

We can formulate an option definition of bloc using the adjacency matrix.

Definition 2. A set B of agents forms a bloc in favor of option x in profile m if:
1. |B| ≥ p+ 1
2. vi = x ∀i ∈ B and
3. the restriction of C to set B of agents, denoted CB, is such that

∑|B|
h=1 Cih = p

∀i ∈ B.

It follows from Definition 2 that if a set B of agents forms a bloc in favor of x in m, then
there is no path from any agent i ∈ B to any agent j ∈ I \B in the associated graph Gm. It
is straightforward that Definition 2 is equivalent to Definition 1 in which all agents in B vote
for the same option and nominate other agents in J exclusively. Firstly, both definitions

require at least p + 1 agents to vote for the same option. To show that
∑|B|

h=1 Cih = p
∀i ∈ B is equivalent to agents in B voting for other agents in B exclusively, observe that
the row i of the adjacency matrix C gives the nominations of agent i. Thus,

∑n
h=1 Cih = p

by definition of the mechanism. Since, according to Definition 2,
∑|B|

h=1 Cih = p ∀i ∈ B,
Cih = 0 for all h ∈ I \ B, that is no agent i ∈ B is voting for any agent outside B which
proves the equivalence.

We need some additional definitions to formulate the main results regarding blocs.
We say that GJ is a subgraph of a graph G induced by the set J ⊆ I of vertices if it

includes all vertices in J and its adjacency matrix CJ is the restriction of C to J (i.e includes
only rows and columns corresponding to vertices in J).

Definition 3. A subgraph GJ for some J ⊆ I of a graph G is strongly connected if there
exists a path in each direction between any pair i, j of vertices with i, j ∈ J .

Definition 4. A bloc B ⊆ I in favor of x is effective iff it is strongly connected.

Figure 1 gives two examples of the directed graphs created by the Bloc formation mech-
anism. The vertices represent the agents, the letters their votes and the arrows show nom-
inations. Figure 1a presents a profile with no blocs. Indeed, the only possible bloc could
involve agents {1, 2, 3} since all vote for a and while the rest vote for b. However, agent 1
(resp. agent 3) nominates agent 5 (resp. agent 4), thus, violating the conditions to form a
bloc. In Figure 1b, the profile admits two blocs: {1, 4, 5} and {1, 2, 3, 4, 5}. Indeed, in any
of these subsets all agents vote for b and nominate only agents in the bloc. Moreover, only
the bloc {1, 4, 5} is strongly connected, thus, effective. Notice that there is no path from
agent 4 to agent 2, which prevents {1, 2, 3, 4, 5} to be an effective bloc.

The next proposition defines some important properties of an effective bloc.



(a) No blocs.
(b) Two blocs, {1, 4, 5} and {1, 2, 3, 4, 5}, in
favor of b.

Figure 1: Voting profiles formed by the Bloc formation mechanism.

Proposition 7. Any profile m of the Bloc formation mechanism admitting a bloc also admits
an effective bloc B∗. Moreover, the effective bloc B∗ is unique and satisfies B∗ = ∩B∈BmB.

Proof. Existence. Let m be some profile with Bm ̸= ∅ and consider w.l.o.g. that all blocs
are in favor of x. Assume by contradiction that there is no effective bloc B∗ in m. Therefore,
any bloc B ∈ Bm is not effective, thus, not strongly connected. It follows that there are 2
vertices i, j ∈ B such that there is no path in Gm either from i to j or from j to i, or both.
W.l.o.g. assume that there is no path from i to j. It follows that there is a group B′ ⊆ B
of agents with i ∈ B′ such that there is no path from any agent in B′ to agent j. Since B
is a bloc, it follows that ∀h ∈ B′, ch ⊂ B′. Thus, B′ is a bloc. It follows that if B is a bloc
which is not strongly connected, it contains another bloc of smaller size. Thus, since the
minimal size of a bloc is p + 1, for each bloc B which fails to be strongly connected, there
is a bloc contained in B which is strongly connected.

Uniqueness. Assume by contradiction that for some profile m there are two non-
identical effective blocs B∗ and B

′∗. Since each bloc consists of at least p + 1 agents,
B∗ ∩ B

′∗ ̸= ∅. Thus, there is some agent i such that i ∈ B∗ ∩ B
′∗. By definition of a bloc,

there is no path from i to any j ∈ B∗ \ (B∗ ∩B
′∗) since i ∈ B

′∗. Likewise, there is no path
from i to any h ∈ B

′∗ \ (B∗∩B
′∗). By assumption, blocs B∗ and B

′∗ are effective and, thus,
strongly connected. It follows that there is a path between any two vertices of an effective
bloc, reaching the desired contradiction.

B∗ = ∩B∈BmB. We have shown that each bloc which is not effective must include
an effective bloc. We have also shown that the effective bloc is unique. The claim follows
directly from the two observations.

The previous proposition shows that in any profile m with blocs, the intersection of the
blocs is non-empty and is a bloc itself. Moreover, this intersection is strongly connected
meaning that there is no agent which can be removed from it in such way that the profile
still admits a bloc. This property has an important implication on the strategic behavior, as
summarized by the next result: for any profile m admitting a bloc, any agent in the effective
bloc has a strategy m′

i that allows her to break all blocs in m (i.e. no bloc in (m′
i,m−i)).

Proposition 8. For any profile m admitting a bloc, any agent i in the effective bloc B∗ has
a strategy m′

i such that B(m′
i,m−i) = ∅.

Proof. Take some m with Bm ̸= ∅. W.l.o.g. assume that all blocs in Bm are in favor of x
and consider some agent i in the effective bloc B∗. Notice that since |B∗| ≥ p+1 and B∗ is



strictly connected, for any B ∈ Bm and any j ∈ B there is a path from j to i. Consider a
deviation m′

i = (y, ci), that is let agent i to switch and vote for y instead of x while keeping
her nominations unchanged. After such deviation, i cannot be a part of a bloc in favor of x
since she votes for y.

By definition of a bloc, for any bloc B there is no path from the members of the bloc to
the agents in I \ B. However, as stated before, since i ∈ B∗, there is a path to i from any
member of any bloc in Bm. Thus, there is no bloc in favor of x in profile (m′

i,m−i).
Notice also that since Bm ̸= ∅ and since ci includes only agents voting for x, there can

be no bloc in favor of y in (m′
i,m−i). Thus, B

(m′
i,m−i) = ∅, ending the proof.

H Verification mechanism

Lemma 4. For any profile v1 ∈ An of the Verification mechanism, the subgame-perfect
equilibrium outcome of the verification stage is unique and coincides with the one in which
agents report their true type.

Proof. We prove this result by induction. W.l.o.g. we assume that the order of play is
1,2,..,n. Given this order of play, we denote by Γ(hi−1) the subgame starting from agent
i given history hi−1. For any history hi, we denote by B(hi) the set of blocs formed, i.e.
B(hi) = {J ⊂ {1, ..., i} | |J | ≥ p + 1 and v1j = v2j ∀j ∈ J}. We denote by ṽ2k the profile of

votes (v2k, . . . , v
2
n) in which each of the agents from k to n vote truthfully for her preferred

option. Likewise, we denote by B(hi ∪ {ṽ2k}) the set of blocs formed by agents 1, . . . , i and
agents k, . . . , n for some k > i given that each agent starting from k votes truthfully for
her preferred option. BRi(hi−1) is the best response of agent i at verification stage after
history hi−1 was realized. Notice that we abuse slightly the notation and do not include the
preference of agent i in the notation.
Step 1: Agent n.

We consider the decision of agent n in the subgame Γ(hn−1). Let x be agent n’s preferred
option.

If hn−1 is such that B(hn−1) ̸= ∅, agent n cannot affect the outcome, and any v2n is a
best response, that is BRn(hn−1) = A.

If hn−1 is such that B(hn−1) = ∅, that is no bloc was formed by the first n− 1 agents,
truth-telling is the unique best response of agent n, i.e. BRn(hn−1) = x.

Notice that any SPE outcome of the subgame Γ(hn−1) is equivalent to the outcome if
she votes truthfully.
Step 2: Agent n− 1.

We now consider the decision of agent n− 1 in any subgame Γ(hn−2).
If hn−2 is such that B(hn−2) ̸= ∅, then a bloc is formed by the first n− 2 agents. Thus,

agent n− 1 cannot affect the outcome so her best response equals BRn−1(hn−2) = A.
If B(hn−2) = ∅, by Step 1, the equilibrium outcome of any subgame Γ(hn−1) coincides

with the one obtained if agent n votes truthfully. Thus, it is without loss of generality to
assume that agent n votes for her preferred option. There are two possible cases for agent
n− 1:

If B(hn−2 ∪ ṽ2n) ̸= ∅, then agent n − 1 is indifferent, since independently of her choice
agent n will complete the bloc. Thus BRn−1(hn−2) = A.

If B(hn−2 ∪ ṽ2n) = ∅, then no bloc is going to be formed without the vote of agent n− 1.
Then, agent n− 1 is strictly better off voting truthfully, so BRn−1(hn−2) = y with y being
her preferred option.

Notice that any SPE outcome of the subgame Γ(hn−2) is again equivalent to the outcome
if agents n− 1 and n vote truthfully.



We have shown that truth-telling is a SPE for all possible subgames Γ(hn−2),Γ(hn−1)
and preferences (Rn−1, Rn) and any SPE of these subgames is outcome-equivalent to the
truth-telling SPE. We now establish the induction argument.
Step 3: Induction argument.

Take some agent i. Assume that any SPE outcome of any subgame Γ(hi) is equivalent
to the outcome under truth-telling.

If B(hi−1 ∪ ṽ2i+1) ̸= ∅, then the bloc in favor of one of the options will be formed
independently of the vote of agent i. Thus, agent i is indifferent, so BRi(hi−1) = A.

If B(hi−1 ∪ ṽ2i+1) = ∅, then no bloc can be formed without agent i. In this case the
outcome is either a lottery, or agent i completes some bloc. In this case the best response of
agent i is strict and it is to vote truthfully. Thus, we obtain that in the verification-stage,
truth-telling is a SPE and, moreover, the outcomes of any other SPEs coincide with the
truth-telling one.

Lemma 5. Under incomplete information, for any profile v1, the unique sequential equilib-
rium outcome of the verification stage is the one associated to sincere behavior.

Proof. For each agent i, we denote the profile of sincere announcements following agent i
by ṽ2i+1 = (v2i+1, v

2
i+2 . . . , v

2
n) with v2j = x iff xRjy for all j ≥ i+ 1.

Assume first that the strategy v1 of the Voting stage is revealing for all agents, that is
the preference profile is revealed before the Stage 2. In this case, the logic of the complete
information case applies and the sincere voting outcome is the unique sequential equilibrium
outcome of the verification stage.

Assume now that there is some agent j for whom v1j is not revealing, so that (σ1
j )

−1(v1j ) ∈
int(∆(Θ)). It follows that the rest of agents upon observing v1j are uncertain about j’s true
preference.

The rest of the proof proceeds by induction.
Step 1. Consider agent n, i.e. the last agent to vote at the Verification stage.

- If B(hn−1) ̸= ∅ then agent n is indifferent, so BRn(hn−1) = A;
- If B(hn−1) = ∅ then agent n strictly prefers to vote sincerely.
Thus, the outcome given any history hn−1 is the same as in the case when agent n votes

sincerely in the second stage.
Step 2. Consider now agent n− 1.

- If B(hn−2) ̸= ∅ then agent n− 1 is indifferent, so BRn−1(hn−2) = ∆;
- If B(hn−2) = ∅ then there are several cases:
Step 2.1. v1n is revealing. Thus, preferences of agent n are known to agent n− 1. Thus,

agent n− 1’s reasoning is identical to the complete information case.
Step 2.2. v1n is not revealing, so agent n − 1 is not certain of the preferences of agent

n. By the definition of a bloc, we cannot have that exactly one agent is needed to complete
a bloc in favor of a and exactly one agent can complete a bloc in favor of b for any history
hn−2 (since n = 2p+1 and each bloc requires at least p+1 agents). Thus, there is a positive
probability assigned to the preference of agent n being such that B(hn−2

⋃
ṽ2n) = ∅. In this

case agent n − 1 is strictly better-off by voting truthfully since the outcome is a lottery.
Likewise, agent n−1 also assigns positive probability to the event B(hn−2∪ ṽ2n) ̸= ∅ and, in
this case, a bloc is formed independently of the vote of agent n− 1. Thus, she is indifferent
and thus BRn−1(hn−2) = A. Thus, by SD, agent n − 1 strictly prefers to vote for her
favorite option.

All in all, the outcome given any history hn−2 and any message v1n coincides with the
outcome in the case when agent n− 1 votes truthfully.
Step 3. Assume now that given any history hi the sequential equilibrium outcome in the
subgame Γ(hi) is equivalent to the one under sincere behavior. Consider some history hi−1

and agent i who best responds to such history.



- If B(hi−1) ̸= ∅ then agent i is indifferent, so BRi(hi−2) = ∆;
- If B(hi−1) = ∅ then denote by J the set of agents in {i + 1, . . . , n} whose first-stage

messages are revealing. That is, for each j ∈ J , (σ1
j )

−1(v1j ) /∈ int(∆(Θ)).

Step 3.1. If B(hi−1

⋃
(
⋃

j∈J ṽ1j )) ̸= ∅, then agent i is certain that a bloc is formed
independently of her vote, thus, she is indifferent and BRi(hi−1) = A.

Step 3.2. If B(hi−1

⋃
(
⋃

j∈J ṽ1j )) = ∅, then Pr(B(hi−1

⋃
(
⋃

k∈{i+1,...,I}(ṽ
1
k)) = ∅) > 0,

that is agent i assigns strictly positive probability to her verification stage vote being pivotal.
With the remaining probability agent i is not decisive, so the outcome is independent of her
vote. Thus, agent i strictly prefers to vote truthfully due to SD.

Thus, given that the outcome of a subgame starting from agent i + 1 is as if all the
agents vote truthfully, the outcome of the subgame starting from agent i is the same as in
the case of truthful voting as well, which completes the induction argument.


