
Forming a ranking from tied evaluations: a

case of an online, interactive student peer

assessment system

Lihi Dery

Abstract

In higher education courses, peer assessment activities are common for keeping stu-
dents engaged during presentations. Defining precisely how students assess the work
of others requires careful consideration. Asking the student for numeric grades is
the most common method. However, students tend to assign high grades to most
projects. Aggregating peer assessments, therefore, results in all projects receiving
the same grade. Moreover, students might strategically assign low grades to the
projects of others so that their projects will shine. Asking students to order all
projects from best to worst imposes a high cognitive load on them, as studies have
shown that people find it difficult to order more than a handful of items. To address
these issues, we propose a novel peer rating model, R2R, consisting of (a) an algo-
rithm that elicits student assessments and (b) a protocol for aggregating grades to
produce a single order. The algorithm asks students to evaluate projects and answer
pairwise comparison queries. These are then aggregated into a ranking over the
projects. R2R was deployed and tested in a university course and showed promising
results, including fewer ties between alternatives and a significant reduction in the
communication load on students.

1 Introduction

In the context of forming ranked lists over alternatives, two important problems are en-
countered: Preference elicitation and Preference aggregation [3, 4, 5, 14, 20]. For instance,
when creating a list of competitors ordered by their performance scores (e.g., athletes or
performers) [9, 12, 23], it is necessary first to elicit and then to aggregate preferences to form
a ranking. Similarly, when creating a list of students ordered by their perceived academic
performance, the preferences of peers or teachers must be elicited and aggregated.

In peer grading or peer assessment systems, where students are required to grade their
peers [32, 33], preference elicitation encounters an additional challenge: students tend to be
very generous in the grades they assign to their peers. This issue is illustrated in Figure 1,
which shows the grades that 34 students gave to 10 projects their peers presented in class
during a session in a university course. The median score for all projects in this session
was either “Excellent” or “Very good”. This is not an irregularity. We collected peer
grading data from six different class sessions. All exhibited similar performances. Other
studies observe the same trend [21]: students are laxer, and teachers are more strict in their
reviews. This does not mean that students think all the projects are excellent. As we show
later, when prompted, students can state which projects they prefer over others. However,
a simple preference elicitation grading system may fail to capture these preferences.

In peer assessment systems, preference aggregation is also problematic. Simply comput-
ing the average rating is not a good solution, as it is easily manipulable [30]. Although this
is true in many scenarios, in peer assessment systems, the voters are also the candidates
(or friends of the candidates), so the risk is higher. Consider, for example, three student
projects: c1, c2, and c3. If the average rating is used, a voter who favors c1 will assign it
the highest possible score, but to ensure that c1 ends up in the first place, the voter might



Figure 1: The distribution of grades of ten projects in a university course. The y-axis shows
the project numbers and the x-axis is the cumulative percentage of students who gave these
projects a particular grade, as specified in the legend. The vertical black line indicates the
median score: it is either “Excellent” or “Very good”.

also assign c2 and c3 the lowest possible score. Computing the median rating offers a less-
manipulable solution but may result in many ties between the alternatives. The Majority
judgment voting protocol [2] addresses the problem of tie-breaking the median, and recently
some more median tie-breaking methods have been suggested by Fabre [10]. Nevertheless,
these methods still result in ties when the input is student peer rating grades.

One potential approach to address the rating aggregation problem involves modifying the
preference elicitation protocol. Rather than permitting agents to assign ratings to alterna-
tives, an alternative strategy could involve requesting agents to provide a ranked preference
list that encompasses all alternatives or to assign distinct scores to each alternative (which
effectively translates into ranking the alternatives). Indeed, some peer review systems have
suggested collecting ordinal preferences [27]. However, experts and non-experts alike are
limited in the number of preferences they can meaningfully order — sometimes they simply
do not hold a rank over the alternatives (see chapter 15 in [2]), and oftentimes they find it
hard to rank more than seven items from best to worst [17]. Pairwise comparison queries
such as “do you prefer this alternative over that alternative?” may assist people in forming
a ranking [15, 8]. However, this can be perceived as a tiresome task for voters. For example,
the required number of comparison queries for ten alternatives is 45.

In summary, limiting voters’ task to rating alternatives conceals important information
about their preferences and results in a problem of preference aggregation. Limiting the
voters’ task to ranking alternatives requires a cognitive and communication effort that may
burden the voters.

In this paper, we wish to benefit from both cardinal preferences, expressed by ratings
(or grades), and ordinal preferences, as expressed with pairwise comparisons. We propose
a novel peer assessment model, R2R, consisting of (a) an algorithm that elicits student
assessments and (b) a protocol for aggregating grades into a single order. The algorithm
asks students to evaluate projects and answer pairwise comparison queries. These are then
aggregated into a ranking over the projects. Our contributions:

• Rate and then compare - The R2R algorithm elicits voter preferences while mini-
mizing the cognitive and communication overload. Voters are asked to rate alternatives



and respond to pairwise comparison queries only when necessary.

• Improved tie-breaking for the median - we present a protocol for aggregating
the voters’ preferences into a single ranking. Our protocol is based on the median and
Copeland’s voting rule. The protocol reduces the number of ties in the final aggregated
ranking.

• Personal ranking made easy - Our method always produces a personal ranking
of the alternatives for each voter, with no ties. This may be beneficial for a voter
trying to figure out her preferences. For example, an employee (or a researcher) views
candidates (or presentations) and would like to contact them in descending order and
offer them a job (or a research position).

Some research (e.g. [30]) focuses on strategic manipulation in conference and journal
peer reviews, however, this is not the focus of this paper. This study focuses on peer review
in an academic classroom. Peer review increases motivation, cultivates critical thinking,
and increases engagement in the classroom (see e.g. [34, 16, 28]). Many peer review systems
aggregate the grades using either the mean or the median (e.g. [24, 26, 35]). The reliabil-
ity and validity of classroom peer review have been extensively researched (e.g. [16, 18]).
Some systems attempt to address problems in these aggregation systems by assigning dif-
ferent weights to each reviewer according to their credibility (e.g., [31]). Others attempt to
statistically correct bias [29], control who reviews whom, or incorporate AI-based methods
[7].

In our R2R system, all reviewers are equal, and all reviewers rate all projects. Possible
bias in reviews is mitigated by employing a common grading language as done by Balinski
and Laraki [2] and by using ordinal as well as cardinal reviews. We did not find signs of
other possible bias (see Section 4).

2 Preliminaries

Let there be n voters and m candidates: V = {v1, v2, . . . , vn}, C = {c1, c2, . . . , cm}. Each
voter vi assigns a score s to each candidate. Let sji denote the score assigned by voter
vi to candidate cj . The score is assigned from a predefined domain of discrete values
D = {dmin . . . dmax} where dmin and dmax are the lowest and highest values respectively
(dmin ≤ sji ≤ dmax).

The ordered set of all scores assigned to candidate cj is Sj . The median is a candidate’s
middle-most score when n is odd, and the n/2 middle-most score when n is even. As
illustrated in Figure 1, the median score of most candidates is “Excellent” or “Very Good”
(these scores translate into the numerical scores of “5” and “4”). Therefore, candidates
cannot be ranked solely according to the median, and a tie-breaking mechanism is required.

Existing median-based voting rules are presented in section 2.1. As our rule is based on
the median and Copeland voting, Copeland voting is presented in section 2.2.

2.1 Median based voting rules

A few mechanisms exist for tie-breaking the median between candidates. They are all
based on the same idea: first, compute the candidate’s median. Then add a quantity based
on what Fabre [10] terms as proponents (p) and opponents(q). The mechanisms differ
in their use of p and q. The proponent p is the share of scores higher than the median α:
pj =

∑
i|sj

i
>α

sji . The opponent q is the share of scores lower than the median α: qj =
∑

i|sj
i
<α

sji .



The score of a candidate is the sum of its median grade α and a tie-breaking rule. Fabre
[10] defines three rules: Typical judgment, Central judgment, and Usual judgment.

Definition 2.1 (Typical judgement). Typical judgment is based on the difference between
non-median groups: c∆ = α+ p− q.

Definition 2.2 (Central judgement). Central judgment is based on the relative share of
proponents: cσ = α+ 0.5 · p−q

p+q .

Definition 2.3 (Usual judgement). Usual judgment is based on the normalized difference
between non-median groups: cv = α+ 0.5 · p−q

1−p−q .

Fabre [10] shows that majority judgment [2] can also be defined using just α, p and q :

Definition 2.4 (Majority judgement). cmj = α+1p>q−1p≤q.
1 If ties remain, the median

of the tied candidates is dropped, and then mj is recomputed for the tied candidates. This
procedure is repeated until all ties are resolved. Note that for ties Fabre [10] suggest an
alternative method that results in the same output.

Example 1. Assume the set of scores assigned to candidate cj by ten voters is:

Sj = {5, 5, 5, 4, 4, 4, 3, 3, 3, 2}

The median is, therefore: α = 4. Three voters assigned a score which is above the
median, and four voters assigned a score below the median. Therefore, the proponent and
opponent are, respectively: p = 3

10 , q =
4
10 .

The score of cj according to Typical, Central, Usual, and Majority judgments, is:

c∆j = 4 +
3

10
− q = 4

10
= 3.9

cσj = 4 + 0.5 · −0.1
0.7

≈ 3.92

cvj = 4 + 0.5 · −0.1
1.1

≈ 3.95

cmj
j = 4− 1 = 3

Candidate scores can be computed using the rules above. A ranking over the candidates
can be obtained by simply ordering them according to their scores.

2.2 Copeland voting

In section 2.1, only the scores given to the candidates are used. Herein, we also use the
voters’ preferences over the candidates. We write ci ≻ cj when ci is preferred over cj . Let
N(ci, cj) denote the number of voters who prefer ci ≻ cj .

Copeland [6] suggested a voting system that is based on pairwise comparisons. The
method finds a Condorcet winner when such a winner exists. Each candidate is compared
to every other candidate. The candidate obtains one point when it is preferred over another
candidate by the majority of the voters. If two candidate tie, they both receive half a point.
Adding up the points results is the Copeland score of each candidate.

1
1f(x) is an indicator function of f(x). For example, if p > q then 1p>q = 1



A family of Copeland methods, Copelandα, was suggested by Faliszewski et al. [11]. The
difference is in tie-breaking the alternatives. The fraction of points each candidate receives
in case of a tie can be set to any rational number: 0 ≤ α ≤ 1. The Copeland score of a
candidate is thus the number of points it obtained plus the number of ties times α.2

Formally:

Definition 2.5 (Copelandα voting rule). The score of a candidate is the sum of victories
in pairwise comparisons:

ccopeland
α

=
∑m

j=1,∀j ̸=i [N(ci, cj) > n/2] + α ·
∑m

j=1,∀j ̸=i [N(ci, cj) ≡ N(cj , ci)]

3 The model

Voters are usually asked to either rank or rate alternatives. However, we claim that re-
ducing their task to just this or the other conceals important information about their full
preferences. We propose a model consisting of two parts:

• R2R Elicitation - an algorithm that elicits voter preferences while minimizing the
cognitive and communication overload. Voters are asked to rate alternatives. Voters
are asked to respond to pairwise comparison queries when necessary.

• R2R Aggregation - a protocol for aggregating the voters’ preferences into a single
ranking.

We herein describe both parts.

3.1 R2R elicitation

We adopted a grading scale consisting of five grades (D = 1, 2 . . . 5), based on the research
of Miller [17] which suggested that people can distinguish between seven plus or minus two
levels of intensity. To minimize bias in the ratings, we utilized a standardized grading lan-
guage proposed by Balinski and Laraki [2] that maps to the following five grades: Excellent
(5), Very good (4), Good (3), Fair (2), and Poor (1). Voters were instructed to evalu-
ate each project holistically and in accordance with the specified project requirements. A
project graded as ”Excellent” was one that met the requirements in an exceptional manner.
These grades can be mapped to a Rating set.

Definition 3.1 (Rating Set). A rating set T is a tuple < c, s > containing candidates (c)
and their scores (s). The rating set of voter vi is denoted τi ∈ T .

When the voters assign a different score to each candidate, constructing the preference
profile is straightforward. For example, if s2i > s1i > s3i then the preference profile πi of
voter vi is: {(c2, 1), (c1, 2), (c3, 3)} meaning c2 ≻ c1 ≻ c3 .

Definition 3.2 (Preference profile). A preference profile π ∈ Π is a tuple< c, p > containing
candidates (c) and their ranked position (p). The set of all possible preference profiles (the
permutation space) is Π. We write ci ≻ cj when ci is preferred over cj . For k < l the
preference profile is thus: {. . . (ci, pk), (cj , pl) . . .}. The preference profile of voter vi is πi.

However, if vi assigns the same score to two or more of the candidates, we executed
pairwise comparison queries q ∈ Q to determine which of the two candidates vi prefers. We

2The Copeland α is not the same as the median α. To be consistent with previous research (and thus
make it easier for readers familiar with the literature), we denote them both as α, but mention in the text
which α we are referring to.



assume that a voter can always respond to a query so that a pairwise comparison query
q(vi, cj , ck) has only two possible responses: cj ≻ ck or ck ≻ cj .

Here, we deviate from the standard literature, where it is assumed that each voter holds
either a rating set or a preference profile, and define a ranked rating set. A ranked rating
set contains attributes of both a rating set and a preference profile, thus allowing us to save
more information about the voters’ preferences.

Definition 3.3 (Ranked Rating Set). A ranked rating set ψ ∈ Ψ is a tuple < c, d, p >
containing candidates (c), their scores (s) and their position (p). As in the ranking set, the
position is determined by the ranking. The rating set of voter vi is denoted ψi ∈ Ψ.

We present a method, Rating to Ranking, R2R which builds a ranked rating set while
eliciting the needed information from the voters. A pseudo-code is provided in Algorithm 1
followed by a detailed description and a running example.

Algorithm 1 Rating to Ranking (R2R) elicitation

1: Input:
a set of alternatives: c1, c2 . . . , cM
a set of voters: v1, v2 . . . , vN
a score domain D = {dmin . . . dmax}

2: for vi ∈ V do
3: ψi ∈ Ψ← []
4: for cj ∈ C do

5: voter declares sji ∈ D
6: count← count(ψi, s

j
i )

7: if count ≤ 1 then
8: insert(ψi, cj)
9: else

10: p← index(ψi, s
j
i )

11: while (count ≥ 1) do
12: cp ← candAtIndex(ψi, p)
13: execute query q(vi, cj , cp)
14: if cj ≻ cp then
15: p−−
16: count−−
17: else
18: exit while loop

19: insert(ψi, cj , p)

20: Output:
ψi - a ranked rating set for each voter vi

The algorithm receives as input a set of M alternatives, N voters, and a score domain
D. Each voter is sequentially asked to provide scores for all candidates (lines 2-5). Note
that this process can also be done the other way around: for each candidate, all voters are
requested to submit their scores. In either case, voter vi assigns a score sji to candidate cj
(line 5). Subsequently, the algorithm counts how many times this particular score (sji ) has
been previously submitted by the voter (line 6). If the voter has not submitted this score
before, the score is inserted to ψ (lines 7-8) while ensuring its ordered placement (lines 7-8),
utilizing the insert function. In case the score sji already exists within ψ, the algorithm
retrieves the index of the last position where it is found (line 10) and identifies the candidate
cp at that position (line 12). A pairwise query is then executed to determine the relative



ranking between the two candidates (line 13). If cj is ranked higher than cp (cj ≻ cp) the
algorithm proceeds to the next position and repeats the query process (lines 14-16, followed
by line 11). Otherwise, if cj is ranked lower than cp (cp ≻ cj), the algorithm proceeds to
insert cj at the identified position p (lines 19). Finally, the output is a ranked rating set
(line 20).

It is important to note that this pairwise comparison approach prevents the occurrence
of Condorcet cycles.

Example 2. Consider one voter v1 and four candidates: c1, c2, c3, c4. Scores are given in do-
mainD = 1, 2 . . . 5. Assume that the voter’s rating set is: τ1 = {(c1, 5), (c2, 4), (c3, 5), (c4, 5)}
and the voter’s preference profile is: π1 = {c3 ≻ c4 ≻ c1 ≻ c2}. The rating set and the
preference profile are initially unknown. The goal is to determine the ranked rating set.

At first, v1 declares her score for c1: s11 = 5. Since this is the first score declared,
the ranked rating set is updated to ψ1 = {(c1, 5, 0)}. Then, the next score is declared:
s21 = 4. Since ψ does not contain this score, ψ1 is updated without any queries: ψ1 =
{(c1, 5, 0), (c2, 4, 1)}. The next score declared is s31 = 5. Since this score is already in
ψ1, a query is issued: q(v1, c1, c3). The voter responds by stating: c3 ≻ c1. Thus c3 is
now added and ψ1 positions of candidates is updated: ψ1 = {(c3,5,0), (c1, 5,1), (c2, 4,2)}
(changes to ψ1 are marked in bold). Lastly, v1 declares her score for c4: s

4
1 = 5. This

causes a query to be issued: q(v1, c1, c4). The voter responds with: c4 ≻ c1, so yet another
query is issued: q(v1, c3, c4). The voter responds with: c3 ≻ c4 and ψ1 is finalized: ψ1 =
{(c3, 5, 0), (c4,5,1), (c1, 5,2), (c2, 4,3)} (again, changes to ψ1 are marked in bold).

3.2 R2R aggregation

The output of the R2R elicitation phase is a set of ranking sets Ψ. First, the median α
is computed from the scores (s) in Ψ. Then, alternatives are ordered according to their
median. When two or more alternatives have the same median, some pairwise comparison
method is used to determine their order. Herein, we use Copelandα. The output is an
aggregated preference profile. This is a collective preference profile of all of the voters. A
pseudo-code is provided in Algorithm 2.

Algorithm 2 Rating to Ranking (R2R) aggregation

1: Input:
a set of ranked rating profiles ψi ∈ Ψ

2: medians← []
3: for ci ∈ C do
4: medians← median(ci)

5: order alternatives by median
6: for c ∈ tied medians do
7: order by Copelandα score

8: Output:
An aggregated preference profile π (a collective preference profile)



4 User Study

In order to collect ranked rating sets, we implemented a peer-rating system according to
our R2R model.3

Figure 2: R2R system flow (the icons are by Pause08 from www.flaticon.com.)

The main steps of the system are described in Figure 2. To initialize the system, project
names and numbers were fed into the system beforehand by a system admin. A link to the
system was then distributed to the students, who logged in with a username and password
(step 1).

During the presentation sessions (step 2), we employed the R2R system to facilitate
project evaluation. After each presentation, students were asked to use the system to assess
the quality of the project. Thus, they were prompted to submit one of five evaluations:
Excellent, Very good, Good, Fair, and Poor. Although students had the option to provide
written comments, these comments were not used in the study. In the event that the same
grade was assigned by a student to more than one project, we executed pairwise comparison
queries following algorithm 1.

In step 3, the system outputs ranked rating sets, one set for each participating student.
Screenshots from the system, illustrating step 3, can be found in the Appendix.

The system was deployed as part of a peer grading process in a university course. Course
students presented their final projects in class. The other students present were instructed to
insert evaluations into the R2R system. Each student participated in one class presentation
session. In each session, 9-12 projects were evaluated. We held six different sessions (sessions
a − f). The study received ethical approval from the institutional review board of the
university. Session dates and project names are concealed to maintain the participants’
privacy.

In total, 222 students participated in the experiments. However, 28 students failed to
rate all the projects in their session. Another 31 students did not report their preferences
according to the order the projects were presented in class. This led us to suspect these
students did not pay attention and reported arbitrary preferences. These students were
removed from the analysis. We were thus left with a total of 163 students whose responses
were included in the data analysis.

3The code is readily available at https://github.com/Matan-Lange/ratings-to-rankings/tree/hub_

version. A link to the online system will be sent to interested parties upon request.

https://github.com/Matan-Lange/ratings-to-rankings/tree/hub_version
https://github.com/Matan-Lange/ratings-to-rankings/tree/hub_version


Figure 3: Unique rankings in sessions a to f (top to bottom, left to right).



Table 1: Data collection statistics: for each of the six sessions, we present the number of
participants, number of projects, number of projects with a median grade of excellent\very
good\good and the average number of pairwise comparison queries each participant received
(standard deviation is in the parentheses).

Session
Number of
participants

Projects
Number of median grades

(excellent, very good,
good, fair, poor)

Pairwise comparison
queries

a 27 10 6,4,0,0,0 13.9(5.7)
b 24 10 5,4,1,0,0 10.8(2.7)
c 29 10 4,6,0,0,0 13.2(54.9)
d 22 9 2,7,0,0,0 11.8(3.9)
e 27 10 3,5,2,0,0 10.6(2.5)
f 34 12 0,5,6,1,0 14.6(5.9)

Communication overload: A summary of the participation data is presented in Table
1. Most projects received a median grade of either “excellent” or “very good”. For example,
in session a (first row in Table 1), 34 students were asked to rate ten projects. Six projects
received the median grade of “excellent”, four received the median grade of “very good”
and no projects received the median grade of “good”.

For 9,10 and 12 projects, the maximum amount of pairwise queries is 36, 45 and 66,
respectively. In the six sessions, the average number of issued pairwise queries lay in the
range of 10.87-14.71 (last column in Table 1). Thus, R2R reduces the communication load
by 69%, 75%, 71%, 67%, 75%, 77% in sessions a, b, c, d, e, f respectively. In other words, on
average, students had to respond to less than 30% of the total number of possible pairwise
queries.

Ties in rankings: We compared the proposed R2R method to existing methods: Ma-
jority ranking [2], Typical ranking, Central ranking, and Usual ranking. The three latter are
the rankings retrieved from the Typical judgment, Central judgment, and Usual judgment
methods [10].

The unique number of rankings in each method was computed, which refers to the
number of projects that were not tied in their ranking. The experiment was conducted with
a varying number of voters (students in the user study), ranging from 2 to 20, which were
sampled without replacement. Each experiment ran 30 times. The α in Copelandα was set
to α = 1

3 , as it provided better results than α = {0, 12 , 1}. Setting α to values smaller than
1
3 did not yield an improvement.

The results show that as the number of voters increased, the methods exhibited better
performance with fewer ties and more unique rankings. Tie-breaking is easier when the
number of voters is odd. This explains why the increase is not smooth. In all sessions,
R2R outperformed the other methods when the number of voters is small. The other
methods, especially Usual Ranking, were more competitive when there are more voters.
This suggests that R2R is especially useful when the number of voters is relatively small.
Figure 3 illustrates these comparisons on a. Due to space constraints, results for all of the
sessions are provided in the appendix. All sessions display a similar trend.

Order bias: We examined whether the presentation order affected the users’ answers.
We hypothesized that perhaps students assign high scores to the first projects presented,
and then after they experience a few pairwise comparison prompts, they begin to distribute
their scores better (perhaps in order to avoid the prompts). However, Figure 4 assured us
this is not the case. The y-axis is the percentage of voters that assigned a score of “very
good” (left figure) and “excellent” (right figure). The x-axis is the vote order, from 1 to 12



Table 2: Primacy and recency bias proportions.

Evaluation
Descending

order
Acsending

order

Excellent 0.19 0.16
Very good 0.17 0.1

Good 0.19 0.3
Fair 0.32 0.42
Pair 0.14 0.43

Figure 4: Percentage of voters that assigned a score of “very good” (left) and “excellent”
(right).

(when there are 12 projects). We can see that there is no skewness to the left. Therefore,
we cannot detect a tendency to begin with high scores and decrease them.

We next examined whether users are prone to a primacy or recency bias – when prompted
with a pairwise query, do users tend to select the first or last projects they saw? We examined
all the projects in a session that received the same score and then computed the percentage
of cases projects were ordered in ascending or descending order. For example, consider a
case where the order of presentations was: c1, c2 . . . c10. A student gave an “excellent” to
projects: c2, c3, c8 and the preference profile is: c2 ≻ c3 ≻ c8. We then say that the student
exhibits a primacy bias. If a student assigned a “very good” to projects: c1, c5 and has
a preference profile: c5 ≻ c1 we say this is a recency bias. A student can have a recency
bias for some evaluations and a primacy for others. The results are reported in Table 2.
We did not detect a trend, but this is an initial result and a deeper analysis should be
performed here. We note that the primacy-recency bias has been studied in the context
of memory [19] and decisions such as what link to click on [13]. However, we did not find
research on primacy-recency effects in preference elicitation.



5 Discussion

We presented R2R, a peer assessment model that converts ratings to rankings. The model
is designed to elicit voter preferences by asking them to evaluate alternatives using cardinal
preferences, such as scores or grades. If necessary, voters are also asked to make pair-
wise comparisons between two alternatives to provide ordinal preferences. The model then
aggregates these preferences to output a ranked list of alternatives.

In our experiments, we found that R2R outperformed existing methods by reducing the
number of ties in the output, especially for small groups of voters (up to 10-15). Addition-
ally, R2R imposes a lower communication load on the user compared to pairwise comparison
methods, as voters only need to evaluate each alternative once, instead of repeatedly com-
paring pairs of alternatives. Moreover, the cognitive load is lower than in models that
require users to rank all alternatives, as they only need to assign a score or grade to each
alternative. Overall, R2R provides a simple and effective approach for ranking alternatives
in various settings, such as peer assessment in academic settings or performance evaluation
in workplaces.

The R2R system was implemented and utilized in our classroom, but the elicitation and
aggregation methods presented in this paper are applicable to other tasks as well. In the
workplace, for instance, group or team leaders often need to evaluate the performance of
their employees, as noted by [1]. This is a sensitive task since an employee’s position on the
final performance list usually determines the bonus they will receive. Managers can use our
model to establish their personal ranked list of employees.

At present, voters cannot express indifference between alternatives in our system. While
this guarantees that the output does not include ties, it also limits the decision-maker’s
preferences. It remains to be seen what effect removing this limitation would have.

One possible avenue for future research is to explore the incorporation of multiple pair-
wise comparison types, as suggested by [22]. Another potential direction is to integrate a
truth serum, as recommended by [25], which would incentivize voters to provide their honest
preferences, as they would be evaluated. These research directions could further enhance
the usefulness and applicability of the R2R system in various domains.

Acknowledgments

We would like to extend our special thanks to Matan Lange for his implementation of the
R2R system and his valuable assistance during the user study. We also appreciate the
assistance of Koby Karady in the data analysis of order bias.



Appendix

Figures 5-7 present screenshots from the R2R system as seen on a smartphone. The system
is in Hebrew; an English version is currently being developed. Figure 3 displays the per-
formance of R2R in comparison to other aggregation methods across all six sessions (a to
f).

Figure 5: The main screen a student views after logging on to the R2R system using a
smartphone. Title: “Projects presented today”. The blue and grey boxes contain the
project’s number with the text: “evaluation completed” (grey boxes) or “evaluation needed”
(blue boxes). More projects will appear when the student scrolls down her phone screen.



Figure 6: The screen a student sees when required to evaluate a specific project. Top line:
“Group 13 (name of project owners)”. Second line: “Comments”. Third line: “General
grade”. The fourth line contains five radio buttons: “Excellent”, “Very good”, “Good”,
“Fair”, “Poor”

Figure 7: R2R Pairwise comparison question displayed to the student when she assigns the
same evaluation to two projects. Translation to English: “The system has detected that
you gave two projects the same grade: project 14 (name of project owners) and project 13
(name of projects owners). Which project do you think is better?” The student has two
radion buttons to choose from, one for project 13 and one for project 14.

References

[1] Richard D Arvey and Kevin R Murphy. Performance evaluation in work settings.
Annual review of psychology, 49(1):141–168, 1998.



[2] Michel Balinski and Rida Laraki. Majority judgment: measuring, ranking, and electing.
MIT press, 2011.

[3] Dorothea Baumeister and Jörg Rothe. Preference aggregation by voting. Economics
and computation: An introduction to algorithmic game theory, computational social
choice, and fair division, pages 197–325, 2016.

[4] Gleb Beliakov, Ana Pradera, Tomasa Calvo, et al. Aggregation functions: A guide for
practitioners, volume 221. Springer, 2007.

[5] Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, and Ariel D Procaccia.
Handbook of computational social choice. Cambridge University Press, 2016.

[6] Arthur H Copeland. A reasonable social welfare function. In Mimeographed notes
from a Seminar on Applications of Mathematics to the Social Sciences, University of
Michigan, 1951.

[7] Ali Darvishi, Hassan Khosravi, Shazia Sadiq, and Dragan Gašević. Incorporating ai
and learning analytics to build trustworthy peer assessment systems. British Journal
of Educational Technology, 2022.

[8] Lihi Naamani Dery, Meir Kalech, Lior Rokach, and Bracha Shapira. Reaching a joint
decision with minimal elicitation of voter preferences. Information Sciences, 278:466–
487, 2014.

[9] M Pino Dı́az-Pereira, Ivan Gomez-Conde, Merly Escalona, and David N Olivieri. Au-
tomatic recognition and scoring of olympic rhythmic gymnastic movements. Human
movement science, 34:63–80, 2014.

[10] Adrien Fabre. Tie-breaking the highest median: alternatives to the majority judgment.
Social Choice and Welfare, 56(1):101–124, 2021.

[11] Piotr Faliszewski, Edith Hemaspaandra, Lane A Hemaspaandra, and Jörg Rothe. Llull
and copeland voting computationally resist bribery and constructive control. Journal
of Artificial Intelligence Research, 35:275–341, 2009.

[12] Victor Ginsburgh and Abdul G Noury. The eurovision song contest. is voting political
or cultural? European Journal of Political Economy, 24(1):41–52, 2008.

[13] Yukyung Lee and Carolyn A Lin. Exploring the serial position effects of online consumer
reviews on heuristic vs. systematic information processing and consumer decision-
making. Journal of Internet Commerce, 21(3):297–319, 2022.

[14] Ofrit Lesser, Lihi Naamani-Dery, Meir Kalech, and Yuval Elovici. Group decision
support for leisure activities using voting and social networks. Group Decision and
Negotiation, 26(3):473–494, 2017.

[15] Tyler Lu and Craig Boutilier. Learning mallows models with pairwise preferences. In
Lise Getoor and Tobias Scheffer, editors, Proceedings of the 28th International Con-
ference on Machine Learning (ICML-11), ICML ’11, pages 145–152, New York, NY,
USA, June 2011. ACM. ISBN 978-1-4503-0619-5.

[16] Heng Luo, Anthony Robinson, and Jae-Young Park. Peer grading in a mooc: Reliability,
validity, and perceived effects. Online Learning Journal, 18(2), 2014.

[17] George A Miller. The magical number seven, plus or minus two: Some limits on our
capacity for processing information. Psychological review, 63(2):81, 1956.



[18] Rafael Molina-Carmona, Rosana Satorre-Cuerda, Compañ-Rosique PATRICIA, and
Faraón Llorens-Largo. Metrics for estimating validity, reliability and bias in peer as-
sessment. International Journal of Engineering Education, 34(3), 2018.

[19] Jamie Murphy, Charles Hofacker, and Richard Mizerski. Primacy and recency effects on
clicking behavior. Journal of computer-mediated communication, 11(2):522–535, 2006.

[20] Lihi Naamani-Dery, Meir Kalech, Lior Rokach, and Bracha Shapira. Reducing pref-
erence elicitation in group decision making. Expert Systems with Applications, 61:
246–261, 2016.

[21] Ali Mansoori Nejad and Omer Hassan Ali Mahfoodh. Assessment of oral presenta-
tions: Effectiveness of self-, peer-, and teacher assessments. International Journal of
Instruction, 12(3):615–632, 2019.

[22] Mark EJ Newman. Ranking with multiple types of pairwise comparisons. Proceedings
of the Royal Society A, 2022.

[23] António Osório. Performance evaluation: subjectivity, bias and judgment style in sport.
Group Decision and Negotiation, 29:655–678, 2020.

[24] Dwayne E Paré and Steve Joordens. Peering into large lectures: examining peer and
expert mark agreement using peerscholar, an online peer assessment tool. Journal of
Computer Assisted Learning, 24(6):526–540, 2008.

[25] Drazen Prelec. A bayesian truth serum for subjective data. science, 306(5695):462–466,
2004.

[26] Helen Purchase and John Hamer. Peer-review in practice: eight years of aropä. As-
sessment & Evaluation in Higher Education, 43(7):1146–1165, 2018.

[27] Karthik Raman and Thorsten Joachims. Methods for ordinal peer grading. In Proceed-
ings of the 20th ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 1037–1046, 2014.

[28] Krishneel Reddy, Tony Harland, Rob Wass, and Nave Wald. Student peer review
as a process of knowledge creation through dialogue. Higher Education Research &
Development, 40(4):825–837, 2021.

[29] Juan Ramón Rico-Juan, Antonio-Javier Gallego, Jose J Valero-Mas, and Jorge Calvo-
Zaragoza. Statistical semi-supervised system for grading multiple peer-reviewed open-
ended works. Computers & Education, 126:264–282, 2018.

[30] Ivan Stelmakh, Nihar B Shah, and Aarti Singh. Catch me if i can: Detecting strategic
behaviour in peer assessment. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 4794–4802, 2021.

[31] Dapeng Tao, Jun Cheng, Zhengtao Yu, Kun Yue, and Lizhen Wang. Domain-weighted
majority voting for crowdsourcing. IEEE transactions on neural networks and learning
systems, 30(1):163–174, 2018.

[32] Keith Topping. Peer assessment between students in colleges and universities. Review
of educational Research, 68(3):249–276, 1998.

[33] Keith J Topping. Peer assessment. Theory into practice, 48(1):20–27, 2009.



[34] Thu Thuy Vu and Gloria Dall’Alba. Students’ experience of peer assessment in a
professional course. Assessment & Evaluation in Higher Education, 32(5):541–556,
2007.

[35] David Kofoed Wind, Rasmus Malthe Jørgensen, and Simon Lind Hansen. Peer feedback
with peergrade. In ICEL 2018 13th International Conference on e-Learning, page 184.
Academic Conferences and publishing limited, 2018.

Lihi Dery
Ariel University
Ariel, Israel
Email: lihid@ariel.ac.il

lihid@ariel.ac.il

	Introduction
	Preliminaries
	Median based voting rules
	Copeland voting

	The model
	R2R elicitation
	R2R aggregation

	User Study
	Discussion

