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Abstract

In many situations, several agents need to make a sequence of decisions. For ex-
ample, a group of workers that needs to decide where their weekly meeting should
take place. In such situations, a decision-making mechanism must consider fairness
notions. In this paper, we analyze the fairness of three known mechanisms: round-
robin, maximum Nash welfare, and leximin. We consider both offline and online
settings, and concentrate on the fairness notion of proportionality and its relax-
ations. Specifically, in the offline setting, we show that the three mechanisms fail to
find a proportional or approximate-proportional outcome, even if such an outcome
exists. We thus introduce a new fairness property that captures this requirement,
and show that a variant of the leximin mechanism satisfies the new fairness property.
In the online setting, we show that it is impossible to guarantee proportionality or
its relaxations. We thus consider a natural restriction on the agents’ preferences,
and show that the leximin mechanism guarantees the best possible additive approx-
imation to proportionality and satisfies all the relaxations of proportionality.

1 Introduction

Commonly, a group of agents needs to reach a collective decision, thus needing a collective
decision-making mechanism. For example, friends choosing a restaurant may utilize a voting
procedure for deciding where to go. Several voting procedures, as well as other collective
decision-making mechanisms, have been developed for reaching a one-time, single decision,
but there are many situations in which there is a sequence of decisions. For example, consider
a city council that needs to decide, each month, which activity to subside. It can choose
to organize a family activity in the public park, hold a concert in the community center,
or operate an overnight bus, but only one activity can be subsided each month. A senior
citizen may benefit the most from a concert, but she may also benefit, to a lesser extent,
from the overnight bus. A parent with young kids may benefit the most from an activity in
the park, but she may also benefit from a concert. In summary, every activity benefits all
the agents, but they may evaluate the activities differently. Clearly, the city council would
like to choose activities that satisfy all of the citizens, and it may take advantage of the fact
that the decision situation is repeated every month. As another example, consider friends
that study together for an exam, and they need to choose a restaurant every day. Clearly, if
most of them prefer a pizza, then it is reasonable that they will go together to a pizzeria on
many days, even though one of the friends, say Bob, prefers sushi. However, since there is
a sequence of decisions, it is also reasonable to consider fairness, i.e., an outcome in which
the group of friends goes to a pizzeria every day may not be fair for Bob.

Arguably, one of the most fundamental notions of fairness is proportionality (Prop).
That is, assume there is a sequence of decisions, and we call each decision situation a round.
There are n agents, and each agent evaluates the candidates in each round. We would like
that each one of the agents will get at least a 1/n fraction of the utility she would get if
she could solely decide on the outcome in each round. Unfortunately, there are instances
in which a proportional outcome does not exist, and thus it is reasonable to consider a
multiplicative approximation of proportionality, namely, α-Prop. Alternatively, Conitzer
et al. [7] have suggested two relaxations of proportionality, namely, Prop1 and RRS (see



Section 3 for the formal definitions).
When dealing with a sequence of decisions, it is important to distinguish between offline

and online settings. In the offline setting, the decision-making mechanism gets as input
all the valuations of the agents in all the rounds, and it needs to choose an outcome for
every round. In the online setting, at each round, the mechanism gets as an input only the
information up to this round, and it thus needs to choose one outcome (for this round).
Unfortunately, fairness considerations have been largely neglected in the online setting, and
only a few works have analyzed fairness in such a setting. Indeed, it is hard to guarantee
fairness in the online setting if the valuations of the agents are unrestricted. One possible
restriction to the agents’ valuations is based on the Borda scoring rule. Specifically, if there
are m candidates, it is assumed that, for each agent, the valuation of her most preferred
candidate is m − 1, the valuation of her second preferred candidate is m − 2, and so on;
the valuation of her least preferred candidate is 0. We denote such valuations as Borda
valuations. Indeed, the restriction to Borda valuations is also useful in the offline setting,
for translating ordinal preference orders to cardinal preferences [19, 3, 9, 8]. That is, there
are settings in which it is easier for the agents to express their preferences using ordinal
preference orders, in which each agent reports a total order over the set of candidates (i.e.,
a ranking) for every round. In these settings, it was suggested to translate any ordinal
preference order to numerical values according to the Borda scoring rule: the valuation of
the highest-ranked candidate is m−1, the valuation of the second-ranked candidate is m−2,
and so on.

In this paper, we study collective decision-making mechanisms for a sequence of decisions,
both in the offline and online setting, and we analyze three common mechanisms: round-
robin (RR), maximum Nash welfare (MNW ), and leximin (LMin). We first claim that
an outcome that satisfies the relaxations of proportionality that were previously suggested
(i.e., Prop1 and RRS) might be “far” from being proportional. Specifically, in the offline
setting, we show that even though the RR and MNW mechanisms satisfy Prop1 and the
LMin mechanism satisfies RRS (with an RRS-based normalization), the three mechanisms
might fail to find a proportional outcome, even if such an outcome exists. We thus introduce
a new natural fairness property, Max-Possible-Prop (MPP ). According to this property, a
mechanism should return an outcome that is as proportional as possible. For example, if
an instance admits an outcome that satisfies Prop, then the mechanism should return an
outcome that satisfies Prop. In addition, if an instance does not admit an outcome that
satisfies Prop but admits an outcome that satisfies 1/2-Prop, then the mechanism should
return an outcome that satisfies 1/2-Prop. Generally, a mechanism that satisfies MPP
returns an outcome that is α-proportional, with the maximum possible α for the given
instance.

We show that there is an unavoidable trade-off between MPP and Prop1, and between
MPP and RRS when there are at least 3 agents. That is, a mechanism that satisfies MPP
does not guarantee any constant factor approximation of RRS or Prop1. However, we show
that a leximin mechanism, in which the valuations are normalized with the proportional
value of each agent (i.e., a Prop-based normalization), satisfies MPP . Moreover, with two
agents, this mechanism satisfies MPP , RRS, and 1/2-Prop1.

We then analyze the restricted setting of Borda valuations. In this setting, an outcome
that satisfies Prop1 is “far” from being proportional by an additive factor of at most m−1,
and we thus consider an additive approximation of Prop. We show that, unfortunately,
both RR and MNW do not guarantee an additive constant-factor approximation of Prop.
On the other hand, the leximin mechanism satisfies MPP , RRS, Prop1, and it guarantees
a 1-additive approximation of Prop, which is the best possible constant factor additive
approximation of Prop. We note that Conitzer et al. [7] have raised an open question:
is there a mechanism that satisfies PO, Prop1 and RRS simultaneously? We partially



solve this question- if we restrict the valuations to Borda valuations, then LMin is such a
mechanism, since we show that it satisfies PO, Prop1, and RRS.

In the online setting, we show that it is impossible to achieve proportionality and even the
weaker fairness properties (i.e., Prop1, RRS, and MPP ). We thus consider the restriction
to Borda valuations, and show that the online leximin mechanism guarantees a 1-additive
approximation of Prop. Moreover, the online leximin mechanism satisfies Prop1 and RRS.
However, we show that there is no online mechanism that satisfies MPP , even with Borda
valuations.

The main contributions of this paper are threefold. We introduce a natural fairness
property, which is (arguably) a better relaxation of proportionality than RRS and Prop1,
and show that a variant of the offline leximin mechanism satisfies it. We also partially solve
an open question of Conitzer et al. [7], by using the restriction to Borda valuation. Finally,
in the online setting with Borda valuations, we show that the leximin mechanism guarantees
the best possible constant factor additive approximation of Prop.

Tables 1, and 2 summarize our results. Note that the full proofs of some of the theorems
are deferred to the appendix due to space constraints.

PO Prop Prop1 MPP RRS

LMinPropoff n = 2 ✓ ✗ 1/2 ✓ ✓

LMinPropoff n > 2 ✓ ✗ ✗ ✓ ✗

LMinRRSoff ✓ ✗ 1/2 ✗ ✓

RRoff ✗ ✗ ✓ ✗ ✓

MNWoff ✓ ✗ ✓ ✗ 1/n

Table 1: Summary of results for the offline setting, where there are no restrictions on the
valuation. The results in gray are due to [7].

PO Prop Prop1 MPP RRS

LMinoff ✓ 1-additive ✓ ✓ ✓

RRoff ✗ m-1-additive ✓ ✗ ✓

MNWoff ✓ x-additive
m-1 ≥ x

x ≥ m−3
2

✓ ✗ ✗

LMinon ✗ 1-additive ✓ ✗ ✓

RRon ✗ m-1-additive ✓ ✗ ✓

MNWon ✗ x-additive

x ≥ m−3
2

? ✗ ✗

Table 2: Summary of results with Borda valuations. The results in gray are due to [7].

2 Related Works

The analysis of collective decision-making mechanisms for a sequence of decisions has been
studied both in the domain of fair division, in which it is commonly called public decision-
making [7], and in the domain of voting, in which it is commonly called perpetual voting



[15]. Specifically, Conitzer et al. [7] introduce the problem of public decision-making in
the offline setting. They propose RRS and Prop1 as relaxations of proportionality, and
provide a comprehensive analysis of the RR, MNW , and LMin mechanisms. We note
that their analysis of the LMin mechanism uses an RRS-based normalization, while we
propose a Prop-based normalization. In addition, we provide an alternative relaxation of
proportionality, MPP , analyze the restricted setting of Borda valuations, and the online
setting. Freeman et al. [12] study the online version of public decision-making. They
concentrate on maximizing the Nash welfare, and present two greedy mechanisms. However,
they do not analyze their mechanisms with regard to proportionality or its relaxations.

In the domain of voting, Lackner [15] suggests several online voting rules when there
is a sequence of decisions, and analyzes them via three axiomatic properties, as well as
a quantitative evaluation by computer simulations. In a subsequent paper, Lackner and
Maly [16] define two classes of voting rules that are particularly easy to explain to voters, and
define specific proportionality axioms. Bulteau et al. [6] study the offline setting, and analyze
the fairness for subgroups of voters by adapting the well-established Justified Representation
(JR) and Proportional Justified Representation (PJR) axioms. Skowron and Górecki [22]
also study the offline setting, and propose a proportionality notion that ensures guarantees to
all groups of voters. All of these works assume that the voters express approval preferences,
while we study cardinal preferences (or ordinal preferences that are translated to cardinal
preferences with the Borda scoring rule).

Our model is closely related to other frameworks that have been studied in computa-
tional social choice. Specifically, the framework of multi-winner voting [11, 17] considers
fairness properties, and the outcome consists of several winning candidates, as in our set-
ting. However, in multi-winner voting, a candidate cannot be elected multiple times, as
in our setting. Notably, Bredereck et al. [5] study a sequence of multi-winner elections,
in which the difference between the winners in consecutive rounds is upper-bounded. The
framework of participatory budgeting [1, 21], which generalizes multi-winner voting, utilizes
voting systems for deciding on the funding of public projects. Lackner et al. [18] study a
sequence of participatory budgeting problems, and introduce a theory of fairness for this
setting. Our setting can also be applied for modeling a sequence of voting on the funding
of public projects, but there is no budget constraint. The model of fair allocation of indi-
visible public goods [10] generalizes participatory budgeting as well as our model of public
decision-making. In this model, there is a set of public goods and feasibility constraints
on what subsets of goods can be chosen. In the offline setting, Fain et al. [10] provide an
additive approximation to the core, which is a fairness notion for groups of agents. Garg
et al. [13] consider the simple constraint in which the number of public goods is bounded,
and analyze the maximum Nash welfare and leximin objectives with regard to the RRS and
Prop1 fairness properties. Banerjee et al. [2] study an online version of fair allocation of
public goods, and consider proportional fairness.

3 Definitions

Consider a set of agents N = {1, 2, . . . , n}, and a set of candidates C = {c1, c2, . . . , cm} 1.
For every round t = 1, . . . , T , every agent i reports her valuation vti(cj) ∈ R≥0 for every
candidate cj . We assume that every agent i has at least one positive valuation. For a given
round t, we can write the valuations of all the agents in a matrix, denoted by V t, where
V t = (vt

i(cj))ij . We denote by vt(cj) the vector of valuations that all the agents assign to

candidate cj . We investigate mechanisms that choose an outcome o = (o1, . . . , oT ), ot ∈ C,

1For the clarity of presentation, we assume that the set of candidates is static. All of our results are
easily adapted to the setting in which the set of candidates changes from round to round.



which is a choice of a candidate for every round. We assume that the agents have additive
utility functions. Therefore, we define the accumulated utility of an agent i from outcome o,
denoted by ui(o), as ui(o) =

∑T
t=1 v

t
i(o

t). The accumulated utility vector of all the agents,
denoted by u(o), is a vector in which the i-th entry is ui(o).

In the offline setting, the mechanism gets as input all of the agents’ valuations in all the
rounds, i.e., it gets the vector (V 1, . . . , V T ), and chooses the outcome o. In the online setting,
the mechanism determines the outcome o sequentially, i.e., the mechanism determines each
ot at round t, since the mechanism does not get the entire input upfront. Indeed, at each
round t, the mechanism gets as an input only the information up to this round, i.e., the
vector (V 1, . . . , V t), and the vector of chosen candidates ot−1 = (o1, . . . , ot−1). We slightly
abuse notation and define the accumulated utility of agent i up to round t from outcome
ot−1 as ui(o

t−1) =
∑t−1

k=1 v
k
i (o

k). Similarly, the accumulated utility vector of all the agents
up to round t is u(ot−1). Clearly, at the first round, the utility of every agent i is zero (i.e.,
ui(o

0) = 0).
There are settings in which it is easier for the agents to express their preferences using

ordinal preference orders. That is, each agent reports for every round a total order over C.
In these settings, we translate the ordinal preference orders to cardinal preferences with the
Borda scoring rule. That is, for each agent, the valuation of a candidate c is the number of
candidates ranked below c. We denote such valuations as Borda valuations.

4 Efficiency and Fairness

When analyzing offline or online mechanisms, we focus on popular notions of efficiency and
fairness. Specifically, for efficiency, we consider the notion of Pareto optimality, which is
defined as follows:

Definition 4.1. An outcome o is Pareto Optimal (PO) if there does not exist another
outcome o′ such that for every agent i, (1) ui(o

′) ≥ ui(o) and (2) there exists an agent j
such that uj(o

′) > uj(o).

A mechanism satisfies PO if it always chooses an outcome that is PO. Generally, we
say that a mechanism satisfies a given efficiency or fairness property if it always chooses an
outcome that satisfies this property.

For fairness, we concentrate on proportionality, which requires that each agent will
receive at least 1

n fraction of the utility she would receive had she chosen the outcome.

Given an agent i, let cMaxt
i be a candidate with the highest valuation at round t, i.e.,

cMaxt
i ∈ argmaxc∈C vti(c).

Definition 4.2. Let Propi =
1
n

∑T
t=1 v

t
i(cMaxt

i). For α ∈ (0, 1], we say that an outcome o
satisfies α-proportionality (α-Prop) if for every agent i, ui(o) ≥ α · Propi.

We denote 1-Prop by Prop. Unfortunately, there are instances in which there is no
outcome that satisfies α-Prop, for any constant α (i.e., an α that does not depend on the
given instance). Therefore, Conitzer et al. [7] propose a relaxation of α-Prop, which is
proportionality up to one round.

Definition 4.3. An outcome o satisfies α-Prop1 if for every agent i ∈ N there exists a
round t such that changing ot to cMaxt

i ensures that agent i receives a utility of at least
α-Propi, i.e., ∀i∈N∃t, ui(o)− vti(o

t) + vti(cMaxt
i) ≥ α · Propi.

We denote 1-Prop1 by Prop1. Indeed, a mechanism may satisfy α-Prop1, but it may
still choose an outcome that does not satisfy α-Prop, even though such an outcome exists.
We thus propose a new fairness property, Max-Possible-Prop (MPP ).



Definition 4.4. An outcome o satisfies Max-Possible-Prop (MPP ) if for each α with which
there is an outcome that satisfies α-Prop, o also satisfies α-Prop.

That is, an outcome that satisfies theMPP property satisfies α-Prop with the maximum
possible α for the given instance.

We also propose to consider an additive approximation of Prop. Formally, an outcome
o satisfies a β-additive approximation of Prop if for every agent i, ui(o) + β ≥ Propi, for
β > 0.

Another notion of fairness is round-robin share (RRS) [7]. For an agent i, let cMaxi

be a vector that contains all the values vti(cMaxt
i), 1 ≤ t ≤ T , when they are sorted in a

non-ascending order. We denote by cMaxi(t) the element in the t-th entry of cMaxi.

Definition 4.5. Let RRSi =
∑

1≤t≤⌊T/n⌋ cMaxi(t · n). For α ∈ (0, 1] we say that an

outcome o satisfy α-round-robin share (α-RRS) if for every agent i, ui(o) ≥ α ·RRSi.

We denote 1-RRS by RRS.

5 Mechanisms

We concentrate on three families of mechanisms, where each family consists of offline and
online mechanisms.

Round robin (RR) In this mechanism there is a given order over the agents, and they
take turns according to this order. In the offline RR, when an agent’s turn arrives she
chooses a round (that has not been chosen yet), and determines the winning outcome for
this round. It is assumed that the agent will choose a round that yields her the highest
utility [7]. The online RR chooses a single outcome at each round t, and the order over the
agent associates the rounds with the agents. Thus, when an agent’s turn arrives, she only
determines the winning outcome for the associated round t. Formally, let π be a permutation
over N . The offline RR, denoted by RRoff, chooses an outcome o = (o1, . . . , oT ) according
to Algorithm 1.

Algorithm 1 RR offline

1: rounds← {1, . . . , T}
2: k ← 1
3: while |rounds| > 0 do
4: i← π(1 + (k − 1) (mod n))
5: t← argmaxr∈rounds v

r
i (cMaxr

i )
6: ot ← cMaxt

i

7: rounds← rounds \ {t}
8: k ← k + 1
9: end while

Given a permutation π, let turnt(π) be a function that associates a round t with an
agent, according to the order π, turnt(π) = π(1 + (t − 1) (mod n)). The online RR is
defined as follows.

Definition 5.1. Given a permutation π over N , the online RR (RRon) chooses an outcome
ot for round t such that ot = cMaxt

turnt(π).



Maximum Nash welfare (MNW) The Nash welfare of an outcome is the product of the
utilities of all the agents. The offline MNW mechanism (MNWoff) chooses an outcome that
maximizes the Nash welfare. The online MNW mechanism (MNWon) chooses an outcome
ot for round t that maximizes the Nash welfare up to round t. Formally,

Definition 5.2. MNWoff chooses an outcome o such that o ∈ argmaxo′
∏

i∈N ui(o
′).

Definition 5.3. MNWon chooses an outcome ot for round t such that ot ∈
argmaxcj∈C

∏
i∈N (ui(o

t−1) + vti(cj)).

When all outcomes have a Nash welfare of 0, MNWoff and MNWon find the largest set of
agents that there is an outcome that gives them positive utilities, and choose an outcome that
maximizes the product of the agents’ utilities. Note that both RR and MNW mechanisms
are scale-free. That is, the units of measurement used by the agents for expressing their
valuations do not affect the outcome.

Leximin Generally, the motivation behind the mechanisms in this family is to maximize
the utility of the agent that has the minimum utility, i.e., the worst-off agent. However,
since there might be several such outcomes, a leximin mechanism chooses an outcome that
also maximizes the utility of the second worst-off agent, and then the third, and so forth.
This idea is formalized by the leximin ordering. Given a vector u, let ũ be the vector u
when the elements are ordered in a non-descending order.

Definition 5.4. The leximin ordering, ≻, is a total preorder, in which for any two vectors
with the same number of elements, x,y, x ≻ y if there exists an index i such that x̃i > ỹi

and x̃j = ỹj for all j < i.

The offline leximin mechanism chooses an outcome such that the vector of accumu-
lated utilities is maximal according to the leximin ordering. Formally, let argmax≻ be the
maximum elements under the leximin ordering.

Definition 5.5. The offline leximin, denoted by LMinoff, chooses an outcome such that
o ∈ argmax≻

o′ u(o′).

The leximin mechanisms are not scale-free, and thus a very high (or low) valuation
might bias the leximin mechanisms. Therefore, we consider two normalization methods,
using either the RRSi or Propi values. Let uRRS(o) be the vector of utilities u(o), in
which each ui(o) is divided by RRSi

2. Similarly, uProp(o) is the vector of utilities in
which each ui(o) is divided by Propi.

Definition 5.6. The offline leximin RRS, denoted by LMinRRSoff , chooses an outcome such
that o ∈ argmax≻

o′ uRRS(o′).

Definition 5.7. The offline leximin Prop, denoted by LMinPropoff , chooses an outcome such
that o ∈ argmax≻

o′ uProp(o′).

In the online setting, since the mechanism does not get the entire input upfront, nor-
malizing the input up to a specific round is meaningless. Moreover, since we show that it
is impossible to satisfy proportionality or its relaxations with unrestricted valuations (The-
orems 12 and 13), we study the online setting only with Borda valuations. Therefore, we
consider the online leximin mechanism without normalization.

Definition 5.8. The online leximin, denoted by LMinon, chooses an outcome ot for round
t such that ot ∈ argmax≻cj∈C (u(ot−1) + vt(cj)).

2If RRSi = 0, we replace it with an infinitesimal quantity ϵ [12].



Note that the outcome of RRoff can be computed efficiently. However, it is intractable
to compute the outcomes of MNWoff and LMinRRSoff , due to [7]. It is also intractable to

compute the outcomes of LMinPropoff , since LMinPropoff satisfies MPP (Theorem 5), and it can
thus decide whether a proportional outcome exists, which is a computationally hard problem
[4]. Clearly, the outcome of all of the online mechanisms can be computed efficiently.

6 Connections between Fairness Properties

Before analyzing the mechanisms, we show the connections between the various fairness
properties of a given outcome, as can be shown in Figure 1.

Prop

MPP

1-additive

RRSProp1

(m-1)-additive

(1/2)-Prop1

Figure 1: A graph depicting the connections between the fairness properties. x-additive
means x-additive approximation of Prop. The dashed edges are only valid with Borda
valuations. The blue edges are due to [7]. The red edges are shown in the appendix.

Specifically, Conitzer et al. [7] show that Prop entails RRS, and RRS entails 1/2-Prop1.
Clearly, an outcome that satisfies a fairness property satisfies all of its relaxations and
approximations. We show additional connections when the valuations are Borda valuations,
and we begin with MPP . Note that with Borda valuations, RRSi = ⌊Tn ⌋(m − 1) and

Propi =
T (m−1)

n , for every agent i.

Theorem 1. With Borda valuations, MPP entails 1-additive approximation of Prop.

Theorem 2. With Borda valuations, 1-additive approximation of Prop entails Prop1.

Theorem 3. With Borda valuations, Prop1 entails (m−1)-additive approximation of Prop.

7 Offline Setting

We begin by showing that RRoff, MNWoff, and LMinRRSoff might not find a proportional out-
come, even if such an outcome exists. Specifically, consider the following examples.

Example 1. Let m = 6, n = 2, T = 1, and V 1 =

(
5 4 3 2 1 0
2 1 3 0 4 5

)
. The only outcome

that satisfies Prop is o = (c3). However, MNWoff chooses (c1), and RRoff chooses either
(c1) or (c6).

Example 2. Let m = 3, n = 2, T = 2, and V 1 =

(
5000 2500 50
30 40 50

)
, V 2 =

(
0 1 0
0 1 0

)
.

The outcome o = (c2, c2) satisfies Prop. However, since RRS1 =RRS2 = 1, then LMinRRSoff

chooses the candidate c3 in the first round.



It is not a coincidence that RRoff, MNWoff, and LMinRRSoff might fail to find a proportional
outcome. We claim that, in general, these mechanisms might output an outcome that is
“far” from being proportional, as formally captured by the MPP property. Moreover, note
that RRoff and LMinRRSoff satisfy RRS, and MNWoff satisfies Prop1 [7]. We show unavoidable
tradeoffs between MPP and α-RRS, for any constant α, and between MPP and α-Prop1,
for any constant α.

The proof is based on the intuition that both Prop1 and RRS might fail to find a
proportional outcome when there is a round t in which an agent i assigns a relatively high
valuation to one of the candidates. In this case, Prop1 can be satisfied while ignoring the
valuations (of agent i) in the other rounds, which might result in an unproportional outcome.
RRSi, in this case, does not depend on the valuation of i in round t (since the rounds are
sorted in a non-ascending order), which might also result in an unproportional outcome.
However, the MPP fairness property must consider the valuations of all the agents, in all
of the rounds.

Theorem 4. If n > 2, a mechanism that satisfies MPP does not satisfy α-RRS, for any
constant α, and it does not satisfy α-Prop1, for any constant α.

Proof sketch. We build a scenario with n agents, and three distinct agents, i ,j, and k. In
the first round, agents j and k assign very high valuations to different candidates, while
in all other rounds they assign very low valuations to all the candidates. Note that it is
impossible to satisfy both j and k in the first round, and assume that the candidate favored
by j is selected in the first round. A mechanism that satisfies MPP must compensate k
in the other rounds. As a result, the utility of agent i is reduced, but still in a way that
guarantees her some minimal utility, and overall, all three agents receive this minimal utility.
In contrast, a mechanism that satisfies Prop1 or RRS ignores the first round due to the
nature of these fairness properties and, as a result, agent i ends up with a utility that is not
very low, while agent k ends up with a much lower utility.

Since we show that RRoff, MNWoff, and LMinRRSoff do not satisfy MPP even with 2 agents,

we introduce LMinPropoff , which satisfies MPP .

Theorem 5. LMinPropoff satisfies MPP .

Clearly, LMinPropoff also satisfies Pareto optimality. However, since LMinPropoff satisfiesMPP ,
it does not satisfy α-RRS or α-Prop1, for any constant α. Indeed, the proof of Theorem 4
assumes that the number of agents, n, is at least 3. If there are only two agents, LMinPropoff

satisfies RRS and 1/2-Prop1.

Theorem 6. LMinPropoff with 2 agents satisfies RRS and 1/2-Prop1.

That is, when there are only two agents, LMinPropoff is (arguably) the “fairest” mechanism
among the mechanisms that we study, since it is the only one that satisfies PO, 1/2-Prop1,
MPP , and RRS, simultaneously.

7.1 Borda Valuations

Recall that with Borda valuations, RRSi is the same for all i. Similarly, Propi is the same
for all i. Thus, in this setting, LMinPropoff and LMinRRSoff are equivalent to LMinoff. That is,
there is effectively a single leximin mechanism, LMinoff, with Borda valuations.

Clearly, every mechanism that satisfies an efficiency or fairness property without any
restriction on the valuation, satisfies the property with Borda valuations. We thus analyze
the properties that are not satisfied in the general case, and we begin with Prop.



Since LMinoff satisfiesMPP (Theorem 5), then with Borda valuations, LMinoff guarantees
a 1-additive approximation of Prop (Theorem 1). Moreover, we show that LMinoff guarantees
the best possible constant-factor approximation of Prop.

Theorem 7. Even with Borda valuations, there is no mechanism that guarantees an additive
constant-factor approximation of Prop better than 1.

We now show that both RRoff and MNWoff do not guarantee an additive constant-factor
approximation of Prop. Specifically, RRoff does not guarantee an additive approximation
that is better than m− 1.

Theorem 8. With Borda valuations, RRoff does not guarantee an additive approximation
of Prop that is better than m− 1.

Indeed, RRoff satisfies Prop1 [7], and this entails that RRoff guarantees an (m−1)-additive
approximation of Prop, as we show in Theorem 2. Similarly, since MNWoff satisfies Prop1,
MNWoff also guarantees an (m − 1)-additive approximation of Prop. On the other hand,
MNWoff does not guarantee an additive approximation that is better than (m− 3)/2.

Theorem 9. Even with Borda valuations, MNWoff does not guarantee an additive approxi-
mation of Prop that is better than m−3

2 .

We now analyze Prop1. With Borda valuations, LMinoff guarantees a 1-additive approx-
imation of Prop, and this entails that LMinoff satisfies Prop1, as we show in Theorem 2.

We note that Conitzer et al. [7] have raised an open question: is there a mechanism
that satisfies PO, Prop1, and RRS simultaneously? We partially solve this question- if we
restrict the valuations to Borda valuations, then LMinoff is such a mechanism, since we show
that it satisfies PO, Prop1, and RRS.

Next, we considerMPP , and the negative results forMNWoff and RRoff still hold. Indeed,
Example 1 uses Borda valuations, and it shows that MNWoff and RRoff do not satisfy MPP .
In addition, MNWoff still does not satisfy RRS.

Theorem 10. Even With Borda valuations, MNWoff does not satisfy RRS.

Finally, we note that RRoff still does not satisfy PO.

Theorem 11. With Borda valuations, RRoff does not satisfy PO.

Overall, LMinoff with Borda valuations is the “fairest” mechanism among the mechanisms
we study, since it is the only one that satisfies PO, Prop1, RRS, MPP , and guarantees a
1-additive approximation of Prop.

8 Online Setting

Clearly, all the mechanisms we study do not satisfy the PO efficiency property in the online
setting. Moreover, we show that it is impossible to satisfy Prop1 or α-RRS for any constant
α.

Theorem 12. There is no online mechanism that satisfies α-RRS, for any constant α.

Next, we show that it is impossible to satisfy Prop1. Let Propti be the Prop

value of agent i up to round t, i.e., Propti =
∑k=t

k=1
vk
i (cMaxk

i )
n . Let vProp1ti =

argmaxk∈{1,...,t}(v
k
i (cMaxk

i ) − vki (o
k)). It is thus possible to rephrase the definition of

Prop1: an outcome o satisfies Prop1 if for every agent i, ui(o) + vProp1Ti ≥ PropTi . Now,
let dProp1ti = ui(o

t) + vProp1ti −Propti. That is, if dProp1ti ≥ 0 for any i, then ot satisfies
Prop1 up to round t, and if dProp1ti < 0 for an agent i, then Prop1 is not satisfied up to
round t. Therefore, intuitively, dProp1ti represents the degree in which ot satisfies Prop1.



Theorem 13. There is no online mechanism that satisfies Prop1.

Proof sketch. Assume by contradiction that there is an online mechanism that satisfies
Prop1. We build a scenario with two agents, in which for each even round t, the mechanism
must choose an outcome such that dPropt of one of the agents is the same as her dPropt−2,
but dPropt of the other agent is smaller than her dPropt−2 by a constant factor. Therefore,
after a constant number of rounds, one of the agents has a negative dPropt, which entails
that the mechanism does not satisfy Prop1.

Note that the proofs of Theorems 12 and 13 essentially use the setting of indivisible
private goods. Therefore, they strengthen previous results on online fair division [14].
Overall, with no restriction on the valuations, there is no online mechanism that satisfies
even the relaxed fairness properties (i.e., RRS or Prop1).

8.1 Borda Valuations

We begin with analyzing Prop. Our main result here is that LMinon guarantees a 1-additive
approximation of Prop. To prove this, we first show a unique characteristic of Borda
valuations.

Lemma 1. With Borda valuations, given a round t, and given any vector of n elements, x,
such that (1) every element of x is a non-negative integer, and (2) the sum of the elements
is m− 1, there exists a candidate c ∈ C such that vti(c) ≥ xi for every agent i.

Intuitively, Lemma 1 shows that any mechanism can choose an outcome such that the
sum of all the agents’ valuations is at least T (m − 1). Moreover, a mechanism is able to
distribute the valuations arbitrarily, and thus it can choose an outcome that guarantees

a utility of ⌊T (m−1)
n ⌋ for each agent. Therefore, LMinoff must also guarantee a utility of

⌊T (m−1)
n ⌋ for each agent, which means that is satisfies 1-additive approximation of Prop.

The 1-additive approximation for the online setting is also based on Lemma 1. Intuitively,
the lemma shows that for each round, the vector of elements x can be chosen without
knowing the valuations of each agent. Therefore, the vector x for each round can be chosen
greedily, and it thus determines each ot in round t such that the utility of o is at least

⌊T (m−1)
n ⌋ for each agent.
Next, we show an important property of proportionality in the online setting, i.e., when

the candidates of the chosen outcome are determined sequentially. The proof is essentially
an extension of Lemma 1 to the online setting. Recall that with Borda valuations, Propi =
T (m−1)

n for every agent i. Let Propt = t(m−1)
n , qPropt = ⌊Propt⌋, and rPropt = (t(m −

1)) mod n.

Lemma 2. With Borda valuations, given a round t, if (1) for every agent i, ui(o
t−1) ≥

qPropt−1 and (2) there are at least rPropt−1 agents with a utility that is strictly
greater than qPropt−1, then there exists a candidate c such that (3) for every agent i,
ui((o

1, . . . , ot−1, c)) ≥ qPropt and (4) there are at least rPropt agents with a utility that is
strictly greater than qPropt.

We are now ready to prove the approximation result.

Theorem 14. LMinon guarantees a 1-additive approximation of Prop.

Proof. Let ot−1 be the vector of chosen candidates by LMinon up to round t. If ot−1 satisfies
conditions (1) and (2) of Lemma 2, then there exists a candidate c such that conditions
(3) and (4) of Lemma 2 hold. By definition, LMinon chooses a candidate ot such that
u(ot) ⪰ u((o1, . . . , ot−1, c)). That is, ot that is chosen by LMinon satisfies conditions (3) and



(4). In addition, in the first round t = 1 and thus, obviously, rPropt−1 = qPropt−1 = 0.
That is, conditions (1) and (2) of Lemma 2 hold when t = 1. Therefore, for any round t
and agent i, ui(o

t) ≥ qPropt. Specifically, when t = T , ui(o
T ) ≥ qPropT = ⌊Propi⌋. By

definition, ⌊Propi⌋ > Propi − 1, and o = oT . That is, ui(o) + 1 > Propi, for any agent
i.

Similar to the offline setting, the other mechanisms do not guarantee an additive
constant-factor approximation of Prop. Indeed, RRon is essentially equivalent to RRoff when
the valuations are restricted to Borda valuations, since for every agent i and in every round
t, cMaxt

i are the same (i.e., m−1). That is, RRon does not guarantee an additive approxima-
tion that is better than m− 1. As for MNWon, since the example in the proof of Theorem 9
hold for any t ≤ T , MNWon chooses the same outcome as MNWoff in this instance. That is,
MNWon does not guarantee an additive approximation of Prop that is better than m−3

2 .
We now analyze MPP . Unfortunately, MPP cannot be satisfied in the online setting,

even with Borda valuations.

Theorem 15. Even with Borda valuations, there is no online mechanism that satisfies
MPP .

Next, we analyze RRS.

Theorem 16. With borda valuations, LMinon satisfies RRS.

As for MNWon, since the example in the proof of Theorem 10 hold for t ≤ T , MNWon

chooses the same outcome as MNWoff in this instance. That is, MNWon does not satisfy
RRS.

Finally, we consider PO. Recall that LMinoff and MNWoff satisfy PO. In the online
setting, even with Borda valuations, they do not satisfy PO anymore.

Theorem 17. Even with Borda valuations, LMinon and MNWon do not satisfy PO.

9 Conclusions and Future Work

In this paper, we study collective decision-making mechanisms for a sequence of decisions,
when the preferences of the agents are cardinal. However, since we also concentrate on the
restriction to Borda valuations, our results are also applicable when the preferences of the
agents are ordinal. Overall, we claim that the leximin mechanism, in which the valuations
are normalized with the proportional value of each agent, has a significant advantage over
the other known mechanisms: in the offline setting, it satisfies PO and MPP , and when
there are only two agents it also satisfies 1/2-Prop1 and RRS. With Borda valuations, the
leximin mechanism satisfies Prop1 and RRS, and guarantees the best possible constant-
factor approximation of Prop. Moreover, these results hold both for the offline and online
settings.

For future work, we would like to consider other restrictions on the agents’ valuations,
e.g., valuations that are based on a (given) general scoring rule. We would also like to study
what happens when there are many rounds. Specifically, we conjecture that given any n and
m, there is a t such that the leximin mechanism with Borda valuations satisfies Prop for
any T ≥ t. Finally, since it is impossible to achieve proportionality or its relaxations in the
online setting, we would like to extend our framework and analyze probabilistic mechanisms.
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Appendix

A Proofs for Section 6 (Connections between Fairness
Properties)

Theorem 1. With Borda valuations, MPP entails 1-additive approximation of Prop.

Proof. Suppose that o satisfies MPP . Clearly, if Propi ≤ 1, then o satisfies a 1-additive
approximation of Prop. If Propi > 1, let o′ be an outcome that satisfies a 1-additive
approximation of Prop. Note that such an outcome always exists due to Theorem 14. By
definition, ui(o

′) + 1 ≥ Propi for any agent i. That is, ui(o
′) ≥ Propi−1

Propi
· Propi. Since

Propi > 1, Propi−1
Propi

> 0. In addition, Propi =
T (m−1)

n for any agent i, and we can thus write

that o′ satisfies Propi−1
Propi

-Prop. Now, since o satisfies MPP , it must also satisfy Propi−1
Propi

-

Prop. Therefore, ui(o) ≥ Propi−1
Propi

· Propi, which implies that ui(o) + 1 ≥ Propi. That is,
o satisfies a 1-additive approximation of Prop.

Theorem 18. With Borda valuations, MPP entails RRS.

Proof. Suppose that o satisfies MPP . Clearly, if T < n, then RRSi = 0 for any agent
i, thus o satisfies RRS. If T ≥ n, let o′ be an outcome that satisfies RRS. Note that
such an outcome always exists due to [7]. By definition, ui(o

′) ≥ RRSi = ⌊Tn ⌋(m − 1)

for any agent i. That is, ui(o
′) ≥ ⌊Tn ⌋

(m−1)
Propi

Propi. Since T ≥ n, ⌊Tn ⌋ > 0. That is,

⌊Tn ⌋
(m−1)
Propi

> 0. In addition, Propi =
T (m−1)

n for any agent i, and we can thus write that

o′ satisfies ⌊Tn ⌋
(m−1)
Propi

-Prop. Since o satisfies MPP , it must also satisfy ⌊Tn ⌋
(m−1)
Propi

-Prop.

Therefore, ui(o) ≥ ⌊Tn ⌋
(m−1)
Propi

Propi, which implies that ui(o) ≥ ⌊Tn ⌋(m− 1) = RRSi. That
is, o satisfies RRS.

Next, we consider RRS.

Theorem 19. With Borda valuations, RRS entails (m−1)-additive approximation of Prop.

Proof. Suppose that o satisfies RRS. That is, ui(o) ≥ ⌊Tn ⌋(m− 1) for any agent i. We can

add (m−1) to both sides of the inequality to get ui(o)+(m−1) ≥ ⌊Tn ⌋(m−1)+(m−1). It

is clear that ⌊Tn ⌋(m− 1) + (m− 1) ≥ T
n (m− 1) = Propi. That is, ui(o) + (m− 1) ≥ Propi,

which means that o satisfies (m− 1)-additive approximation of Prop.

Theorem 2. With Borda valuations, 1-additive approximation of Prop entails Prop1.

Proof. Suppose that o satisfies a 1-additive approximation of Prop. Clearly, if o satisfies
Prop, it also satisfies Prop1. If o does not satisfy Prop, then for any agent i in which
ui(o) < Propi there exist a round t such that vti(o

t) < vti(cMaxt
i). Since we use Borda

valuations, vti(cMaxt
i)−vti(o

t) ≥ 1. In addition, since o satisfies a 1-additive approximation
of Prop, then ui(o) + 1 ≥ Propi. Combining the two inequalities, we get that (ui(o) + 1)+
(vti(cMaxt

i)− vti(o
t)) ≥ Propi + 1. That is, o satisfies Prop1.

Theorem 3. With Borda valuations, Prop1 entails (m−1)-additive approximation of Prop.

Proof. Suppose that o satisfies Prop1. That is, for each agent i ∈ N , there exists a round t
such that ui(o)− vti(o

t) + vti(cMaxt
i) ≥ Propi. With Borda valuations, for any agent i and

round t, vti(cMaxt
i) = m− 1 and vti(o

t) ≥ 0. Therefore, ui(o) + (m− 1) ≥ Propi. That is,
o satisfies (m− 1)-additive approximation of Prop.



Theorem 20. With Borda valuations, (m−1)-additive approximation of Prop entails 1/2-
Prop1.

Proof. Suppose that o satisfies (m − 1)-additive approximation of Prop. If T ≤ 2n, then
1
2
T
n ≤ 1. That is, (m − 1) ≥ 1

2
T (m−1)

n = 1
2Propi. In addition, with Borda valuations,

by definition, vti(cMaxt
i) = (m − 1), and vti(o

t) ≥ 0 for any agent i and round t. That is,
−vti(ot)+vti(cMaxt

i) ≥ (m−1) for any agent i and round t. We thus get that, ui(o)−vti(ot)+
vti(cMaxt

i) ≥ 1
2Propi for any agent i and round t. That is, o satisfies 1/2-Prop1. If T > 2n,

then, by definition, ui(o)+(m−1) ≥ Propi for any agent i. In addition, Propi =
T (m−1)

n for

any agent i. That is, ui(o)+(m−1) ≥ T (m−1)
n . Therefore, ui(o) ≥ (T−n)(m−1)

n . In addition,

since T ≥ 2n, then 2(T − n) ≥ T . We thus get that, ui(o) ≥ (T−n)(m−1)
n = 2(T−n)(m−1)

2n ≥
T (m−1)

2n = 1
2Propi. Therefore, o satisfies 1/2-Prop, and thus satisfies 1/2-Prop1.

B Proofs for Section 7 (Offline Setting)

Theorem 4. If n > 2, a mechanism that satisfies MPP does not satisfy α-RRS, for any
constant α, and it does not satisfy α-Prop1, for any constant α.

Proof. Let ϵ ∈ R such that 1
T (T−1) > ϵ > 0. That is, −ϵ+ 1

(T−1) > ϵ(T − 1). Let m,n > 2,

T ≥ 2n, and

vt1(cj) =


ϵ(T − 1), if t = T ∧ j = 1

−ϵ+ 1
(T−1) , if t ̸= T ∧ j = 1

0, otherwise

vt2(cj) =

{
1, if t = 1 ∧ j = 2

0, otherwise
vti ̸∈{1,2,3}(cj) =

1

T

vt3(cj) =


1− ϵ(T − 1), if t = 1 ∧ j = 3

2ϵ, if t = 2 ∧ j = 3

ϵ, if t ̸∈ {1, 2, T} ∧ j = 3

0, otherwise

.

That is, the valuations in matrix form are as follows:

V 1 =


−ϵ+ 1

(T−1) 0 0 0 . . .

0 1 0 0 . . .
0 0 1− ϵ(T − 1) 0 . . .
1
T

1
T

1
T

1
T . . .

...
...

...
. . .



V 2 =


−ϵ+ 1

(T−1) 0 0 0 . . .

0 0 0 0 . . .
0 0 2ϵ 0 . . .
1
T

1
T

1
T

1
T . . .

...
...

...
. . .





V t =


−ϵ+ 1

(T−1) 0 0 0 . . .

0 0 0 0 . . .
0 0 ϵ 0 . . .
1
T

1
T

1
T

1
T . . .

...
...

...
. . .



V T =


ϵ(T − 1) 0 0 0 . . .

0 0 0 0 . . .
0 0 0 0 . . .
1
T

1
T

1
T

1
T . . .

...
...

...
. . .

 .

We first show that for any agent i, Propi =
1
n . By definition, for any agent i, Propi =

1
n

∑T
t=1 v

t
i(cMaxt

i). That is, Prop1 = 1
n (ϵ(T − 1) + (−ϵ+ 1

(T−1) )(T − 1)) = 1
n , Prop2 = 1

n ,

and Prop3 = 1
n ((1 − ϵ(T − 1) + 2ϵ + ϵ(T − 3)) = 1

n . For any other agent i ̸∈ {1, 2, 3},
Propi =

1
n (T

1
T ) =

1
n .

Let o be the outcome that is chosen by a mechanism that satisfies MPP . Let

ô =


c1, if t = T

c2, if t = 1

c3, otherwise

.

That is,

ui(ô) =

{
ϵ(T − 1), if i ∈ {1, 3}
1, otherwise

.

Note that 1 > 1
2 > n(T−1)

T (T−1) > nϵ(T − 1) > ϵ(T − 1) > 0, and recall that for any agent i,

Propi =
1
n . Therefore, for any agent i, ui(ô) ≥ ϵ(T − 1) = ϵ(T−1)n

n = (nϵ(T − 1))Propi.
That is ô satisfies nϵ(T − 1)-Prop. Since o satisfies MPP , o also satisfies nϵ(T − 1)-Prop.
That is, for any agent i, ui(o) ≥ (nϵ(T − 1))Propi > 0.

Let’s examine the choice of the candidates in o. Since u2(o) > 0, and agent 2 assigns
a positive valuation only for candidate c2 and only in round 1, then o1 = c2. Now, since
u3(o) ≥ ϵ(T − 1) and we showed that o1 = c2, it must be that ot = c3 for every round t,
1 < t < T . Finally, since u1(o) ≥ ϵ(T − 1), it must be that oT = c1. Overall, o = ô.

We now show that a mechanism that satisfies MPP does not satisfy α-RRS, for any
constant α < 1. Assume by contradiction that there is a constant 0 < α < 1 such that
o satisfy α-RRS. Therefore, ϵ(T − 1) = u1(o) ≥ α · RRS1. Since T ≥ 2n, then RRS1 ≥
cMax1(n) = (−ϵ + 1

(T−1) ). Therefore, ϵ(T − 1) ≥ α · (−ϵ + 1
(T−1) ). Let ϵ = α

T (T−1) , and

note that since 0 < α < 1 then 0 < ϵ < 1
T (T−1) . We thus get that α

T (T−1) (T − 1) ≥
α · (− α

T (T−1) +
1

(T−1) ). That is, (T − 1) ≥ (−α+ T ), and thus α ≥ 1, a contradiction.

Next, we show that a mechanism that satisfies MPP does not satisfy α-Prop1, for any
constant α < 1. Assume by contradiction that there is a constant 0 < α < 1 such that o
satisfy α-Prop1. Therefore, there exists t such that u1(o)−vt1(o

t)+vt1(cMaxt
1) ≥ α ·Prop1.

Since Propi =
1
n , u1(o)−vt1(ot)+vt1(cMaxt

1) ≥ α· 1n . Moreover, u1(o)−vt1(ot)+vt1(cMaxt
1) ≤

u1(o)+ vt1(cMaxt
1) ≤ ϵ(T − 1)− ϵ+ 1

(T−1) , since −ϵ+
1

(T−1) > ϵ(T − 1). That is, ϵ(T − 2)+
1

(T−1) ≥ α · 1n . Let ϵ = α( α(T−1)−n
nT (T−1)(T−2) ), and T ≥ 2n

α + 1. Note that since 0 < α < 1, and

T ≥ 2n
α + 1 ≥ 2n, then T ≥ α(T − 1) − n ≥ α( 2nα + 1 − 1) − n = n > 0. We thus get that

( 1
T (T−1) ) ≥ ( 1

3(T−1)(T−2) ) > α( 1
n(T−1)(T−2) ) > αα(T−1)−n

T ( 1
n(T−1)(T−2) ) = ϵ. In addition,



ϵ = α( α(T−1)−n
nT (T−1)(T−2) ) ≥ α( n

nT (T−1)(T−2) ) > 0. Overall, 1
T (T−1) > ϵ > 0. We thus get that

α( α(T−1)−n
nT (T−1)(T−2) )(T − 2) + 1

(T−1) ≥ α · 1
n . That is, α(α(T − 1)− n) + nT ≥ α · T (T − 1),

and thus n(T − α) ≥ α(T − 1)(T − α). That is, n ≥ α(T − 1) ≥ α( 2nα + 1 − 1) = 2n, a
contradiction.

Finally, note that a mechanism that satisfies RRS also satisfies α-RRS for any α < 1,
and a mechanism that satisfies Prop1 also satisfies α-Prop1 for any α < 1. Therefore, a
mechanism that satisfies MPP does not satisfy α-RRS, for any constant α, and it does not
satisfy α-Prop1, for any constant α.

Theorem 5. LMinPropoff satisfies MPP .

Proof. Suppose that there exists an α with which there is an outcome o′ that satisfies α-
Prop. That is, the minimal utility value in uProp(o′) is at least α. By definition, the

outcome o that is returned by LMinPropoff satisfies uProp(o) ⪰ uProp(o′). Therefore, the
minimal utility value in uProp(o) is at least α. That is, o satisfies α-Prop. Therefore,

LMinPropoff satisfies MPP .

Theorem 6. LMinPropoff with 2 agents satisfies RRS and 1/2-Prop1.

Proof. Clearly, in RRoff, the first agent according to the turn’s order, π, receives a utility
that is at least his Prop value. That is, if agent 1 is the first agent according to π, then
RRoff returns an outcome that guarantees a utility of at least Prop1 to agent 1, and a utility
of at least RRS2 to agent 2. Similarly, if agent 2 is the first agent according to π, then RRoff

returns an outcome that guarantees a utility of at least Prop2 to agent 2, and a utility of
at least RRS1 to agent 1. Therefore, the outcome o that is returned by LMinPropoff satisfies
uProp(o) ⪰ (1, RRS2

Prop2
) and uProp(o) ⪰ (RRS1

Prop1
, 1). Now, since Propi ≥ RRSi [7], and there

are exactly two agents, then uProp(o) ⪰ (max(RRS2

Prop2
, RRS1

Prop1
),max(RRS2

Prop2
, RRS1

Prop1
)) Hence,

uPropi(o) ≥ max(RRS2

Prop2
, RRS1

Prop1
) ≥ RRSi

Propi
and thus ui(o) ≥ RRSi. That is, LMinPropoff with

two agents satisfies RRS. Finally, due to [7], RRS entails 1/2-Prop1.

Theorem 7. Even with Borda valuations, there is no mechanism that guarantees an additive
constant-factor approximation of Prop better than 1.

Proof. Assume by contradiction that there is a mechanism that guarantees an α-additive
approximation of Prop, with α < 1. Since α < 1, we can choose n such that n−1

n > α.
Let T = 1 and m = n. In addition, assume that the agents use Borda valuations, and let
v1i (ci) = 0, for any agent i. Given any outcome o, there must be an agent j that receives a
utility of 0 from o. On the hand, Propj =

n−1
n . That is, the difference between Propj and

uj(o) is strictly greater than α. A contradiction.

Theorem 8. With Borda valuations, RRoff does not guarantee an additive approximation
of Prop that is better than m− 1.

Proof. Assume by contradiction that RRoff guarantees an (m−1−α)-additive approximation

of Prop, with α > 0. Since α > 0, we can choose n such that (n−1)(m−1)
n > m− 1− α. Let

T = n− 1 and for every round t, and let

V t =


m− 1 m− 2 . . . 0

...
m− 1 m− 2 . . . 0

0 1 . . . m− 1

 .



Assume that RRoff uses the identity permutation as the order over the agents. Clearly,

o = (c1, . . . , c1), and thus un(o) = 0. On the other hand, Propn = (n−1)(m−1)
n . That is, the

difference between Propn and un(o) is strictly greater than m−1−α. A contradiction.

Theorem 9. Even with Borda valuations, MNWoff does not guarantee an additive approxi-
mation of Prop that is better than m−3

2 .

Proof. To prove the theorem, we need the following lemma, which helps to determine the
outcome chosen by MNW .

Lemma 3. For any k, T, n ∈ N, let fk be a function with a domain [k(n+1), (k+1)(n+1)] ∈
R, such that fk(x) = (k + T (n + 1) − x)xn−1. let f be a picewise function with a domain
[0, T (n+1)] ∈ N, such that f(x) = fk(x) if x ∈ [k(n+1), (k+1)(n+1)) (see Figure 2 for a

plot of f). Let fmax = argmaxx f(x). If n > 2 and 0 < T ≤ n(n−1)
2 then fmax = {T (n+1)}.
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Figure 2: A plot of the function f when n = 3 and T = n(n−1)
2 . The red dashed line

shows the function fT , but since the domain of f is [0, 12], fT (12) is the only point in which
f = fT .

Proof. Let fmax
k = argmaxx∈[k(n+1),(k+1)(n+1)] fk(x), and let Sk be the set of corresponding

stationary points, i.e., Sk = {x | f ′(x) = 0}. Assume that T ≤ n(n−1)
2 and m = n + 2.

Since for any k ∈ N, fk is a differentiable function, and the domain of fk is closed, then
fmax
k ⊆ Sk ∪{k(n+1), (k+1)(n+1)}. Now, f ′

k(x) = xn−2((n−1)(k+T (n+1))−nx), and
f ′′
k (x) = (n− 1)xn−3((n− 2)(k + T (n+ 1))− nx). If x ∈ Sk, f

′
k(x) = 0 be definition. That

is, x = (n−1)(k+T (n+1))
n , and f ′′(x) < 0. Therefore, x is a maximum point for fk. However,

Sk may be empty. Indeed, we show that Sk is not empty only when k = T − 1.
Consider x ∈ Sk. Since fk is a function with a domain [k(n + 1), (k + 1)(n + 1)], then

k(n+1) ≤ x ≤ (k+1)(n+1). That is, k(n+1) ≤ x and thus k(n+1) ≤ (n−1)(k+T (n+1))
n . Thus,

k ≤ T (n2−1)
n2+1 . Since k ∈ N it holds that k ≤ ⌊T (n2−1)

n2+1 ⌋. On the other hand, x ≤ (k+1)(n+1)

and thus (n−1)(k+T (n+1))
n ≤ (k + 1)(n + 1). That is, k ≥ (n+1)(T (n−1)−n)

n2+1 , and since k ∈ N
it holds that k ≥ ⌈ (n+1)(T (n−1)−n)

n2+1 ⌉. Overall, ⌊T (n2−1)
n2+1 ⌋ ≥ ⌈

(n+1)(T (n−1)−n)
n2+1 ⌉. That is,

⌊T − 2T
n2+1⌋ ≥ ⌈T − 1 − 2T+(n−1)

n2+1 ⌉. Since 0 < T ≤ n(n−1)
2 , then ⌊T − 2T

n2+1⌋ = T − 1 and

⌈T − 1− 2T+(n−1)
n2+1 ⌉ = T − 1. That is, k = T − 1.



Since we show that Sk is not empty only when k = T − 1, then for any other k, fmax
k

is either k(n + 1) or (k + 1)(n + 1). If k < T − 1 then f ′
k(x) > 0, and if k > T − 1 then

f ′
k(x) < 0. That is,

fmax
k =


(k + 1)(n+ 1), k < T − 1
(n−1)(k+T (n+1))

n , k = T − 1

k(n+ 1), k > T − 1

.

We now concentrate on the points fmax
k , where 0 ≤ k ≤ T . Let k = T , and

let k̂ = T − 1. We show that fk(f
max
k ) > fk̂(f

max
k̂

). Assume by contradiction

that fk(f
max
k ) ≤ fk̂(f

max
k̂

). That is, (k + T (n + 1) − k(n + 1))(k(n+ 1))
n−1 ≤ (k̂ +

T (n + 1) − (n−1)(k̂+T (n+1))
n )( (n−1)(k̂+T (n+1))

n )
n−1

. Since k = T and k̂ = T − 1, we

get that Tn(n+ 1)
n−1 ≤ ( (T (n+2)−1)

n )( (n−1)(T (n+2)−1)
n )

n−1
. Thus, Tnnn(n+ 1)

n−1 ≤
(n− 1)

n−1
(T (n+ 2)− 1)

n
. That is, nn(n+ 1)

n−1 ≤ (n− 1)
n−1

((n+ 2)− 1
T )

n
. Since

0 < T ≤ n(n−1)
2 then (n− 1)

n−1
((n+ 2)− 1

T )
n ≤ (n− 1)

n−1
((n+ 2)− 2

n(n−1) )
n
. We

thus get that nn(n+ 1)
n−1 ≤ (n− 1)

n−1
((n+ 2)− 2

n(n−1) )
n
. That is, nn(n+ 1)

n−1 ≤

(n− 1)
n−1

( (n+1)(n2−2)
n(n−1) )

n
. We thus get that (n − 1) ≤ (n + 1)(1− 2

n2 )
n
. That is,

(1 + 2
n2−2 )

n ≤ (n+1)
(n−1) . Recall that the binomial series (1 + x)α =

∑α
i=0

(
α
i

)
xi, for any x ∈

R,α ∈ N. Note that n > 2 and thus ( 2
n2−2 )

i
> 0, for any i. Therefore,

∑2
i=0

(
n
i

)
( 2
n2−2 )

i
=

1+n( 2
n2−2 )+

n(n−1)
2 ( 2

n2−2 )
2 ≤ (1 + 2

n2−2 )
n
. That is, 1+n( 2

n2−2 )+
n(n−1)

2 ( 2
n2−2 )

2 ≤ (n+1)
(n−1) .

On the other hand, 1 + n( 2
n2−2 ) +

n(n−1)
2 ( 2

n2−2 )
2
= (n+1)

(n−1) +
6n−8

(n−1)(n2−2)2
, and since n > 2,

(n+1)
(n−1) +

6n−8
(n−1)(n2−2)2

> (n+1)
(n−1) , a contradiction. Therefore, fk(fk

max) > fk̂(f
max
k̂

).

By definition, for any k ∈ N, fk(k(n + 1)) = (k + T (n + 1) − k(n + 1))(k(n+ 1))
n−1

.

Clearly, (k+T (n+1)−(k)(n+1))(k(n+ 1))
n−1

> (k−1+T (n+1)−k(n+1))(k(n+ 1))
n−1

=
fk−1(k(n+1)). Therefore, fk(k(n+1)) > fk−1(k(n+1)). We show that if 0 ≤ k ≤ T−1 and

k̂ = k− 1, then fk(f
max
k ) > fk̂(f

max
k̂

). Indeed, fk(f
max
k ) > fk(k(n+1)) > fk−1(k(n+1)) =

fk̂(f
max
k̂

). Overall, we get that if k = T and k̂ < k then fk(f
max
k ) > fk̂(f

max
k̂

). Moreover,

since f(fmax
k ) = fk(f

max
k ) then fmax = fmax

k = T (n+ 1).

We are now ready to prove the theorem. Let n > 2,m = n + 2, and T ≤ n(n−1)
2 . For

any t ≤ T , let

V t =


m− 1 m− 2 . . . 2 0 1

0 1 . . . m− 3 m− 2 m− 1
...
0 1 . . . m− 3 m− 2 m− 1

 .

Clearly, for any outcome o, for any i, j > 1, ui(o) = uj(o). We thus concentrate on u1(o) and
u2(o). Note that for any candidate cj , v

t
1(cj) = m− j+1j=m−1j=m−1, and vt2(cj) = j−1.

That is, vt1(cj)+ vt2(cj) = (m− 1)+1j=m−1j=m−1. Now, let countcm(o) = |{t | ot = cm}|,
and countcm−1

(o) = |{t | ot = cm−1}|. That is, u1(o)+u2(o) =
∑T

t=1 v
t
1(o

t)+
∑T

t=1 v
t
2(o

t) =∑T
t=1((m− 1) + 1ot=cm − 1ot=cm−1

) = T (m− 1) + countcm(o)− countcm−1
(o).

Let o be the outcome that MNWoff chooses. Since MNWoff satisfies PO, and for every

agent i and round t, vti(cm) > vti(cm−1), then countcm−1(o) = 0. Let q(o) = ⌊u2(o)
m−1 ⌋, and

r(o) = u2(o) (mod (m−1)). Clearly, countcm(o) ≤ q(o). We show that countcm(o) = q(o).
Indeed, assume by contradiction that countcm(o) < q(o),



let o be an outcome, such that

ot =


cm, t < 1 + q(o)

c(1+r(o)+1r(o)=m−2), t = 1 + q(o)

c1, t > 1 + q(o)

.

That is, countcm(o) = q(o)+1r(o)=m−2, and countcm−1
(o) = 0 (since 1+r(o)+1r(o)=m−2 ̸=

m−1). Note that u2(o) =
∑T

t=1 v
t
2(o

t) = vt2(cm)∗q(o)+vt2(c(r(o)+1+1r(o)=m−2))+vt2(c1)(T−
q(o) − 1) = q(o) ∗ (m − 1) + r(o) + 1r(o)=m−2 = u2(o) + 1r(o)=m−2 ≥ u2(o). Moreover,
since u1(o) + u2(o) = T (m− 1) + countcm(o) and u1(o) + u2(o) = T (m− 1) + countcm(o)
it follows that u1(o) = T (m− 1) + countcm(o)− u2(o) = T (m− 1) + countcm(o)− u2(o)−
1r(o)=m−2 = T (m − 1) + q(o) − u2(o) = T (m − 1) + q(o) − (T (m − 1) + countcm(o) −
u1(o)) = q(o)− countcm(o)+u1(o). Since we assume that q(o) > countcm(o) it follow that
u1(o) > u1(o), which is a contradiction to the fact that MNWoff satisfies PO. Overall, we
get that countcm(o) = q(o), and thus u1(o) = q(o) + T (m− 1)− u2(o).

We now show that MNWoff chooses the outcome o = (cm, . . . , cm). Clearly,

u2((cm, . . . , cm)) = T (n+1) and
∏

i∈N ui((cm, . . . , cm)) = Tn(n+ 1)
n−1

. Let f be a function

as defined in Lemma 3. Sincem = n+2, ⌊u2(o))
n+1 ⌋(n+1) ≤ u2(o) < (⌊u2(o))

n+1 ⌋+1)(n+1). That

is, f(u2(o)) = (⌊u2(o))
n+1 ⌋ + T (n + 1) − u2(o))(u2(o))

n−1
= u1(o)(u2(o))

n−1
=

∏
i∈N ui(o).

In addition, f(u2((cm, . . . , cm))) = f(T (n + 1)) = Tn(n+ 1)
n−1

. Recall that MNWoff

chooses an outcome o such that o ∈ argmaxo′
∏

i∈N ui(o
′). That is,

∏
i∈N ui(o) ≥∏

i∈N ui((cm, . . . , cm)). Therefore, f(u2(o)) =
∏

i∈N ui(o) ≥
∏

i∈N ui((cm, . . . , cm)) =
f(u2((cm, . . . , cm))) = f(T (n + 1)). Since according to Lemma 3, fmax = {T (n + 1)},
u2(o) = T (n+ 1). That is, MNWoff chooses o = (cm, . . . , cm).

Finally, if T = n(n−1)
2 then u1(o) = T , and Prop1 = T (m−1)

n . Since m = n + 2,

Prop1 − u1(o) = T
n = n(n−1)

2n = (n−1)
2 = (m−3)

2 . That is, MNWoff does not guarantee an
additive approximation of Prop that is better than m−3

2 .

Theorem 10. Even With Borda valuations, MNWoff does not satisfy RRS.

Proof. With Borda valuations, for any agent i, RRSi =
∑

1≤t≤⌊T/n⌋ cMaxi(t · n) =∑
1≤t≤⌊T/n⌋ m−1 = ⌊Tn ⌋(m−1). In addition, Propi =

1
n

∑T
t=1 v

t
i(cMaxt

i) =
1
n

∑T
t=1 m−1 =

T
n (m − 1). Therefore, if T (mod n) = 0, RRSi = Propi. Recall the setting in the proof of
Theorem 9. The theorem shows that MNWoff chooses an outcome, o, that does not satisfy
Prop, for any n > 2. If T = n, RRSi = Propi, and thus o does not satisfy RRS.

Theorem 11. With Borda valuations, RRoff does not satisfy PO.

Proof. Let m = 4, n = 2, T = 2 and

V 1 = V 2 =

(
3 2 1 0
0 2 1 3

)
.

RRoff chooses o = (c1, c4) or o = (c4, c1). That is, u(o) = (3, 3). However, there is an
outcome o′ = (c2, c2) with u(o′) = (4, 4).

C Proofs for Section 8 (Online Setting)

Theorem 12. There is no online mechanism that satisfies α-RRS, for any constant α.



Proof. Assume by contradiction that there is an online mechanism that satisfies α-RRS.
Let m = 2, n = 2, T = 3, and

V 1 =

(
1 0
0 1

)
, X2 =

(
2
α 0
0 α

2

)
, Y 2 =

(
α
2 0
0 2

α

)

X3 =

(
4
α2 0
0 4

α2

)
, Y 3 =

(
0 0
0 0

)
.

We set V 2 and V 3 according to the decisions of the online mechanism. Specifically, if
o1 = c1 we set V 2 = X2. Otherwise, V 2 = Y 2. Next, if o1 ̸= o2 we set V 3 = X3.
Otherwise, V 3 = Y 3.

Note that for any agent i, RRSi ≥ α
2 and thus α · RRSi > 0. Since o satisfy α-RRS it

must be the case that o1 ̸= o2. Otherwise, V 3 = Y 3 and thus either u1(o) = 0 or u2(o) = 0,
which is a contradiction. Therefore, o1 ̸= o2 and V 3 = X3. In addition, since 0 < α ≤ 1,
then α

2 < 1 < 2
α < 4

α2 , and thus cMaxi equals (1, 2
α ,

4
α2 ) or (α2 , 1,

4
α2 ), for any agent i.

That is, RRSi ∈ { 2α , 1}, and thus α-RRSi ∈ {2, α}, for any agent i.
Now, since o1 ̸= o2, there are only 4 possible outcomes:

1. If o = (c1, c2, c1), V 2 = X2. Thus, α · RRS1 = 2 and α · RRS2 = α. However,
u(o) = (1 + 4

α2 ,
α
2 ). That is, u2(o) < α ·RRS2.

2. If o = (c2, c1, c2), V 2 = Y 2. Thus, α · RRS1 = α and α · RRS2 = 2. However,
u(o) = (α2 , 1 +

4
α2 ). That is, u1(o) < α ·RRS1.

3. If o = (c1, c2, c2), V 2 = X2. Thus, α · RRS1 = 2 and α · RRS2 = α. However,
u(o) = (1, α

2 + 4
α2 ). That is, u1(o) < α ·RRS1.

4. if o = (c2, c1, c1), V 2 = Y 2. Thus, α · RRS1 = α and α · RRS2 = 2. However,
u(o) = (α2 + 4

α2 , 1). That is, u2(o) < α ·RRS2.

Therefore, there is no online mechanism that satisfies α-RRS.

Theorem 13. There is no online mechanism that satisfies Prop1.

Proof. We first show that an online mechanism that satisfies Prop1 for a given T , must also
satisfy Prop1 for any t < T .

Lemma 4. If an online mechanism satisfies Prop1, then for any agent i and round t,
ui(o

t) + vProp1ti ≥ Propti.

Proof. Assume by contradiction there is an online mechanism that satisfies Prop1, and there
are an agent i and a round t in which ui(o

t)+ vProp1ti < Propti. Consider an instance with

the same m,n, T , and the same valuations up to round t. For any round t > t, let vti(c) = 0,
for any candidate c. Given the new instance, let o be the mechanism’s outcome, and vProp1ti
and Propti are now defined for the new instance. Clearly, ui(o

t) + vProp1ti < Propti, and

since vti(c) = 0 for any candidate c, ui(o
T )+ vProp1Ti < PropTi . That is, o does not satisfy

Prop1, which is a contradiction.

We show that, for two agents, the relation between dProp1ti and vProp1ti does not
depend on t.

Lemma 5. Consider an outcome of an online mechanism o that satisfies Prop1, and let
n = 2. For any agent i, and for any round t such that t ≤ T − 3, 8 · dProp1ti ≥ vProp1ti.



Proof. Let n = 2. Assume by contradiction that there is an online mechanism that satisfies
Prop1, and there is a round t, t ≤ T − 3, and an agent i, such that 8 · dProp1ti < vProp1ti.
Since the mechanism satisfies Prop1, then dProp1ti ≥ 0. If dProp1ti > 0, there is an ϵ > 1,
dProp1ti > ϵ − 1, such that 8ϵ3dProp1ti < vProp1ti. If dProp1ti = 0, there is an ϵ > 1 such
that 8ϵ3(ϵ− 1) < vProp1ti. Overall, there is an ϵ > 1 such that 8ϵ3 max{dProp1ti, ϵ− 1} <
vProp1ti.

Now, consider an instance with the same m, n, T , and the same valuations up to round

t. For the agent i and a round t > t, let vti(c1) = 2ϵ(ϵ+ 1)
t−t−1

max{dProp1ti, ϵ − 1},
and vti(c) = 0 for any c ̸= c1. For the other agent j ̸= i and a round t > t, let vtj(c2) =

4(Proptj + 1), and vtj(c) = 0, for any c ̸= c2. Given the new instance, vProp1ti, Propti, and
dPropti are now defined for the new instance(for all the agents). Clearly, it is still holds that
8ϵ3 max{dProp1ti, ϵ− 1} < vProp1ti.

We first show that vProp1ti = vProp1ti, for any round t such that t + 3 ≥ t ≥ t. Since

vti(c1) > 0, but vti(c) = 0 for any c ̸= c1, then cMaxt
i = c1. Therefore, vProp1t+1

i =
max{vProp1ti, v

t+1
i (c1)}, vProp1t+2

i = max{vProp1ti, v
t+1
i (c1), v

t+2
i (c1)}, and vProp1t+3

i =
max{vProp1ti, v

t+1
i (c1), v

t+2
i (c1), v

t+3
i (c1)}. In addition, for t ∈ {t+ 1, t+ 2, t+ 3},

vti(c1) = 2ϵ(ϵ+ 1)
t−t−1

max{dProp1ti, ϵ− 1}

≤ 2ϵ(ϵ+ 1)
2
max{dProp1ti, ϵ− 1}

≤ 2ϵ(ϵ+ ϵ)
2
max{dProp1ti, ϵ− 1}

= 8ϵ3max{dProp1ti, ϵ− 1}
< vProp1ti

That is, vProp1ti = vProp1t+1
i = vProp1t+2

i = vProp1t+3
i .

We now show that ot = c1, for t ∈ {t + 1, t + 2, t + 3}. Note that Propti =
1
2

∑k=t
k=1 v

k
j (cMaxk

i ) = 1
2

∑k=t−1
k=1 vki (cMaxk

i ) +
1
2v

t
i(cMaxt

i) = Propt−1
i + 1

2v
t
i(cMaxt

i) =

Propt−1
i + 1

2v
t
i(c1). In addition, dProp1ti = ui(o

t) + vProp1ti −Propti = vti(o
t) + ui(o

t−1) +

vProp1t−1
i − Propt−1

i − 1
2v

t
i(c1) = vti(o

t) + dProp1t−1
i − 1

2v
t
i(c1).

Clearly when t = t, then dProp1ti ≤ max{dProp1ti, ϵ− 1} =

(ϵ+ 1)
t−t

max{dProp1ti, ϵ− 1}. We show that if dProp1ti ≤ (ϵ+ 1)
t−t

max{dProp1ti, ϵ− 1}
then also dProp1t+1

i ≤ (ϵ+ 1)
t+1−t

max{dProp1ti, ϵ− 1} for some t + 3 > t ≥ t. Assume

that dProp1ti ≤ (ϵ+ 1)
t−t

max{dProp1ti, ϵ− 1} for some t+ 3 > t ≥ t.

Assume by contradiction that ot+1 ̸= c1. Since ot+1 ̸= c1, then vt+1
i (ot+1) = 0.

That is,

dProp1t+1
i = dProp1ti −

1

2
vt+1
i (c1)

≤ (ϵ+ 1)
t−t

max{dProp1ti, ϵ− 1} − 1

2
vt+1
i (c1)

= (ϵ+ 1)
t−t

max{dProp1ti, ϵ− 1}

− 1

2
2ϵ(ϵ+ 1)

t−t
max{dProp1ti, ϵ− 1}

= (ϵ+ 1)
t−t

max{dProp1ti, ϵ− 1}(1− ϵ)

However, since ϵ > 1, then (1 − ϵ) < 0 and (ϵ+ 1)
t−t

max{dProp1ti, ϵ− 1} > 0. That is,

dProp1t+1
i < 0, and thus ui(o

t+1) + vProp1t+1
i < Propt+1

i , which is a contradiction to the



fact that the mechanism satisfies Prop1 (according to Lemma 4). Hence, ot+1 = c1. We

now can now find an upper bound on dProp1t+1
i :

dProp1t+1
i = vt+1

i (ot+1) + dProp1ti −
1

2
vt+1
i (c1)

=
1

2
vt+1
i (c1) + dProp1ti

=
1

2
2ϵ(ϵ+ 1)

t−t
max{dProp1ti, ϵ− 1}+ dProp1ti

= (ϵ+ 1)
t−t

max{dProp1ti, ϵ− 1}ϵ+ dProp1ti

≤ (ϵ+ 1)
t−t

max{dProp1ti, ϵ− 1}(ϵ+ 1)

That is, dProp1t+1
i ≤ (ϵ+ 1)

t+1−t
max{dProp1ti, ϵ− 1}. Therefore, dProp1ti ≤

(ϵ+ 1)
t−t

max{dProp1ti, ϵ− 1}, and ot = c1 for any t+ 3 ≥ t > t.
We will now show that Prop1 is not satisfied for agent j such that j ̸= i. We will do

that by showing that dProp1t+3
j < 0. We thus need to find bounds for uj(o

t+3), vProp1t+3
j

and Propt+3
j .

We will start with uj(o
t+3). Since ot = c1 for any t + 3 ≥ t > t, then vtj(o

t) = 0. In

addition, by definition, uj(o
t+3) =

∑k=t+3
k=1 vkj (o

k). Therfore, uj(o
t+3) =

∑k=t
k=1 v

k
j (o

k) +∑k=t+3
k=t+1 v

k
j (o

k) = uj(o
t). In addition,recall that vkj (o

k) ≤ vkj (cMaxk
j ). We thus get that,

uj(o
t) =

∑k=t
k=1 v

k
j (o

k) ≤ 2 1
2

∑k=t
k=1 v

k
j (cMaxk

j ) ≤ 2 · Proptj . That is, uj(o
t) ≤ 2 · Proptj .

Therfore, uj(o
t+3) ≤ 2 · Proptj

By definition, vProp1t+3
j = argmaxk∈{1,...,t+3}(v

k
j (cMaxk

j ) − vkj (o
k)). That

is, vProp1t+3
j = max{vProp1tj , v

t+1
j (cMaxt+1

j ) − vt+1
j (ot+1), vt+2

j (cMaxt+2
j ) −

vt+2
j (ot+2), vt+3

j (cMaxt+3
j ) − vt+3

j (ot+3)}. Recall that vtj(c2) = 4(Proptj + 1), and

vtj(c) = 0, for any other c ̸= c2. In addition, ot = c1 for any t + 3 ≥ t > t.

We thus get that, vProp1t+3
j = max{vProp1tj , 4(Proptj + 1)}. Clearly, vProp1tj =

argmaxk∈{1,...,t+3}(v
k
j (cMaxk

j ) − vkj (o
k)) ≤

∑k=t
k=1 v

k
j (cMaxk

j ) = 21
2

∑k=t
k=1 v

k
j (cMaxk

j ) =

2Proptj < 4(Proptj + 1). That is, vProp1tj < 4(Proptj + 1). We thus get that

vProp1t+3
j = 4(Proptj + 1).

By definition, Propt+3
j = 1

2

∑k=t+3
k=1 vkj (cMaxk

j ) = Proptj+( 32 )v
t+1
j (cMaxt+1

j ) = Proptj+

( 32 )4(Proptj + 1) = Proptj + 6Proptj + 6. That is, Propt+3
j = 7Proptj + 6.

Overall, dProp1t+3
j = uj(o

t+3) + vProp1t+3
j − Propt+3

j = uj(o
t+3) + 4(Proptj + 1) −

7Proptj − 6 = uj(o
t+3)− 3Proptj − 2 ≤ 2 · Proptj − 3 · Proptj − 2 = −Proptj − 2 < 0. That

is, dProp1t+3
j < 0, a contradiction according to Lemma 4.

Hence, for any agent i, and for any round t, such that t ≤ T − 3, 8dProp1ti ≥ vProp1ti.

We are now ready to prove that no online mechanism satisfies Prop1.
Assume by contradiction that there is an online mechanism that satisfies Prop1. Let

ϵ = 1
8 . Let T = 2k + 3, where k ∈ N and k > 4

ϵ . In addition, let m = 2, n = 2, and

V 1 =

(
1 0
0 1

)
, X =

(
1 0
0 1− ϵ

)
, Y =

(
1− ϵ 0
0 1

)
.



For every t ≤ T , let

V t =


V 1, if t ∈ {2x+ 1 | x ∈ N}
X, if t ∈ {2x | x ∈ N} ∧ ot−1 = c1

Y, if t ∈ {2x | x ∈ N} ∧ ot−1 = c2

.

We first show that if v2ti (o2t) = 1 − ϵ, then v2t−1
i (o2t−1) = 0, for any round 2t and

agent i. Assume that v2t1 (o2t) = 1 − ϵ. Therefore, V 2t = Y , and o2t−1 = c2. That is,
v2t−1
1 (o2t−1) = 0. Similarly, assume that v2t2 (o2t) = 1 − ϵ. Therefore, V 2t = X, and
o2t−1 = c1. That is, v

2t−1
2 (o2t−1) = 0.

We now show that if v2ti (o2t) = 1, then v2t−1
i (o2t−1) = 1, for any round 2t and agent i.

Assume that v2t1 (o2t) = 1. Therefore, V 2t ̸= Y , and o2t−1 = c1. That is, v2t−1
1 (o2t−1) = 1.

Similarly, assume that v2t2 (o2t) = 1 − ϵ. Therefore, V 2t ̸= X, and o2t−1 = c2. That is,
v2t−1
2 (o2t−1) = 1. Overall, there are only 4 possible valuations for any agent i, and pairs of
round 2t− 1 and 2t:

1. v2t−1
i (o2t−1) = 0 and v2ti (o2t) = 1− ϵ.

2. v2t−1
i (o2t−1) = 1 and v2ti (o2t) = 1.

3. v2t−1
i (o2t−1) = 0 and v2ti (o2t) = 0.

4. v2t−1
i (o2t−1) = 1 and v2ti (o2t) = 0.

Let CountPairsti(a, b) be the number of times agent i received in pairs a and b in pairs of
rounds 2r−1 ≤ t and 2r ≤ t. That is, CountPairsti(a, b) = |{r ∈ [1, t

2 ]∩N | v
2r−1
i (o2r−1) =

a ∧ v2ri (o2r) = b}|. We thus defines (1) ϵCountti = CountPairsti(0, 1 − ϵ). (2) Count11ti =
CountPairsti(1, 1). (3) Count00ti = CountPairsti(0, 0). (4) Count10ti = CountPairsti(1, 0).

We can now compute ui(o
2t), for any round 2t. Clearly, each instance of case (1) increases

ui(o
2t) by 1− ϵ. (2) increases ui(o

2t) by 2. (3) does not effect ui(o
2t). (4) increases ui(o

2t)
by 1. Overall,

ui(o
2t) = ϵCount2ti (1− ϵ) + 2 · Count112ti + Count10ti.

We now compute Prop2ti , for any round 2t. Clearly, v2t−1
i (cMax2t−1) = 1. In cases (1)

and (3) v2ti (cMax2t) = 1 − ϵ, and in cases (2) and (4) v2ti (cMax2t) = 1. We thus get that
Prop2ti = 1

2 ((ϵCountti +Count11ti +Count00ti +Count10ti)+ (1− ϵ)(ϵCountti +Count00ti)+

(Count11ti +Count10ti)). That is, Prop2ti = (ϵCount2ti +Count002ti )(1− ϵ
2 ) +Count112ti +

Count102ti .
As for dProp12ti , by definition, dProp12ti = ui(o

2t) + vProp12ti − Prop2ti . That is,
dProp12ti = ϵCount2ti (1 − ϵ) + 2 · Count112ti + Count102ti + vProp12ti − ((ϵCount2ti +
Count002ti )(1− ϵ

2 )+Count112ti +Count102ti ). That is, dProp12ti = vProp12ti − ϵCount2ti
ϵ
2 −

Count002ti (1− ϵ
2 ) + Count112ti .

We claim that o2t−1 ̸= o2t, for any 2t ≤ T − 3. Assume that o2r−1 ̸= o2r, for any
r ∈ {1, . . . , t}, for some 2t ≤ T − 5. Clearly, the claim holds if t = 0 and T ≥ 5. Assume by
contradiction that o2t+1 = o2t+2. Let i be the agent such that o2t+1 ̸= ci. Since o2t+1 ̸= ci,
then v2t+1

i (o2t+1) = v2t+2
i (o2t+2) = 0. Therefore, vProp12t+2

i = 1. Since o2r−1 ̸= o2r, for
any r ∈ {1, . . . , t}, for some 2t ≤ T − 5, then Count112t+2

i = 0 and Count002t+2
i = 1.

That is, dProp12t+2
i = vProp12t+2

i − ϵCount2t+2
i

ϵ
2 − Count002t+2

i (1− ϵ
2 ) + Count112t+2

i =

(1 − ϵCount2t+2
i ) ϵ2 . Now, according to Lemma 5 and the fact that the online mechanism

satisfy Prop1,
8 · dProp12t+2

i ≥ vProp12t+2
i .



Since ϵ = 1
8 , vProp12t+2

i = 1, and dProp12t+2
i = (1 − ϵCount2t+2

i ) ϵ2 , we get that (1 −
ϵCount2t+2

i ) 12 ≥ 1. Clearly, (1 − ϵCount2t+2
i ) ≤ 1. That is 1

2 ≥ (1 − ϵCount2t+2
i ) 12 ≥ 1, a

contradiction. Therefore, o2t+1 ̸= o2t+2.
Overall, since o2t−1 ̸= o2t, for any 2t ≤ T − 3, Count002ti = Count112ti = 0, for any

agent i and for any round 2t ≤ T − 3. Moreover, ϵCount2t1 + ϵCount2t2 = t, since in any
pairs of round 2t ≤ T − 3 and 2t − 1 ≤ T − 3, one of the agents recives a utility of 1 − ϵ,
and there are exactly t such pairs.

Recall that T = 2k + 3, and consider dProp12ki . By definition, 2k ≤ T − 3, and
thus dProp12ki = vProp12ki − ϵCount2ki

ϵ
2 − Count002ki (1 − ϵ

2 ) + Count112ki = vProp12ki −
ϵCount2ki

ϵ
2 .

Finally, consider a lower bound on dProp12k1 + dProp12k2 . dProp12k1 + dProp12k2 =
(vProp12k1 −ϵCount2k1

ϵ
2 )+(vProp12k2 −ϵCount2k2

ϵ
2 ) = (vProp12k1 +vProp12k2 )− ϵ

2 (ϵCount2k1 +

ϵCount2k2 ). Since ϵCount2k1 + ϵCount2k2 = k, then dProp12k1 + dProp12k2 = (vProp12k1 +
vProp12k2 ) − k ϵ

2 . Clearly, (vProp12k1 + vProp12k2 ) ≤ 2, and thus dProp12k1 + dProp12k2 ≤
2− k ϵ

2 . Since k > 4
ϵ , then 2− k ϵ

2 < 0. That is, dProp12k1 + dProp12k2 < 0. Therefore, either

dProp12k1 < 0 or dProp12k2 < 0, which is a contradiction to the fact that the mechanism
satisfies Prop1 (according to Lemma 4). Therefore, there is no online mechanism that
satisfies Prop1.

Lemma 1. With Borda valuations, given a round t, and given any vector of n elements, x,
such that (1) every element of x is a non-negative integer, and (2) the sum of the elements
is m− 1, there exists a candidate c ∈ C such that vti(c) ≥ xi for every agent i.

Proof. Let x be a vector of n elements, such that (1) every element of x is a non-negative
integer, and (2) the sum of the elements is m − 1. For each agent i, let Bi be the set of
candidates whose valuations are less than xi, i.e., Bi = {c ∈ C | vti(c) < xi}. Let G be a
(possibly empty) set of candidates, G = C\(B1

⋃
. . .

⋃
Bn). Clearly, |G| ≥ m−

∑
|Bi|. Since

the agents use Borda valuations, then |Bi| = xi, and thus |G| ≥ m−
∑

xi = m−(m−1) = 1.
That is, a candidate c ∈ G exists such that vti(c) ≥ xi for every agent i.

Lemma 2. With Borda valuations, given a round t, if (1) for every agent i, ui(o
t−1) ≥

qPropt−1 and (2) there are at least rPropt−1 agents with a utility that is strictly
greater than qPropt−1, then there exists a candidate c such that (3) for every agent i,
ui((o

1, . . . , ot−1, c)) ≥ qPropt and (4) there are at least rPropt agents with a utility that is
strictly greater than qPropt.

Proof. To prove this lemma we need the next lemma, which shows a simple number theoretic
property.

Lemma 6. Let a, b, n be positive integers, and let x be a real number. Then, the following
statements are equivalent: (1) ⌊ an⌋ + ⌊

b
n⌋ + x = ⌊a+b

n ⌋. (2) (a mod n) + (b mod n) =
xn+ ((a+ b) mod n). Furthermore, there exist such a, b, n if and only if x ∈ {0, 1}.

Proof. Clearly, for any positive integer z, ⌊ zn⌋ · n + (z mod n) = z. Therefore, ⌊ zn⌋ =
z−(z mod n)

n . We can thus show that statements (1) and (2) are equivalent: ⌊ an⌋+ ⌊
b
n⌋+x =

⌊a+b
n ⌋ ⇐⇒

a−(a mod n)
n + b−(b mod n)

n +x = (a+b)−((a+b) mod n)
n ⇐⇒ (a mod n)+ (b mod n) =

xn+ ((a+ b) mod n). Now, consider the possible values of x:

1. Assume that x ≥ 2. Then, xn ≥ 2n, and thus xn + ((a + b) mod n) ≥ 2n. That is,
(a mod n) + (b mod n) ≥ 2n. However, since (a mod n) < n and (b mod n) < n, it
follows that (a mod n) + (b mod n) < 2n, which is a contradiction. Therefore, x < 2.



2. Assume that x ≤ −1. Then, xn < −n, and thus 0 > xn+n > xn+((a+ b) mod n) =
(a mod n) + (b mod n). However, since (a mod n) ≥ 0 and (b mod n) ≥ 0, it follows
that (a mod n) + (b mod n) ≥ 0, which is a contradiction. Therefore, x > −1.

In addition, since ⌊a+b
n ⌋, ⌊

a
n⌋ and ⌊

b
n⌋ are integers, and x = ⌊a+b

n ⌋− ⌊
a
n⌋− ⌊

b
n⌋, x must also

be an integer. That is, x ∈ {0, 1}.

We now prove Lemma 2. Given an outcome ot, let Qt = {i | ui(o
t) ≥ qPropt},

Qt
> = {i | ui(o

t) ≥ qPropt + 1}, and Qt
> = N \Qt

>. Let sQt
> be some arbitrary subset of

Qt
> such that |sQt

>| = min (|Qt
>|, rProp1), and let sN t be some arbitrary subset of N such

that |sN t| = rProp1− |sQt
>|. Let xt be a vector such that xt

i = qProp1+1i∈sNt +1
i∈sQt

>
.

Note that
∑

i x
t−1
i =

∑
i qProp1 + 1i∈sNt−1 + 1

i∈sQt−1
>

= n · qProp1 + |sN t−1|+ |sQt−1
> | =

n · qProp1 + rProp1 = m− 1.
For a given round t, assume that conditions (1) and (2) hold. That is, Qt−1 = C, and

|Qt−1
> | ≥ rPropt−1. Then, according to Lemma 1 there exists a candidate c such that

v(c)
t
i ≥ xt−1

i , for every agent i. We will now show that if ot = c, then Qt = C and
|Qt

>| ≥ rPropt.
Indeed, if ot = c then ui(o

t) ≥ ui(o
t−1)+xt−1

i ≥ ui(o
t−1)+qProp1+1i∈sNt−1+1

i∈sQt−1
>

.

However, since for any agent i, ui(o
t−1) ≥ qPropt−1 + 1i∈Qt−1

>
(conditions (1) and (2)), we

get that ui(o
t) ≥ qPropt−1 + qProp1 + 1i∈Qt−1

>
+ 1i∈sNt−1 + 1

i∈sQt−1
>

.

First, let us find a lower bound for |Qt−1
> ∪ sQt−1

> |. Since sQt−1
> ⊆ Qt−1

> then

Qt−1
> ∩ sQt−1

> = ∅. We thus get that |Qt−1
> ∪ sQt−1

> | = |Qt−1
> | + |sQt−1

> | = |Qt−1
> | +

min (|Qt−1
> |, rProp1) = |Qt−1

> |+min (n− |Qt−1
> |, rProp1) = min (n, rProp1 + |Qt−1

> |). Since
condition (2) holds, min (n, rProp1 + |Qt−1

> |) ≥ min (n, rProp1 + rPropt−1). Overall,

|Qt−1
> ∪ sQt−1

> | ≥ min (n, rProp1 + rPropt−1).
Let a = (t− 1) · (m− 1) and b = (m− 1). Then, a+ b = t · (m− 1). Since

qPropt−1 = ⌊a
n
⌋, qProp1 = ⌊ b

n
⌋, qPropt = ⌊a+ b

n
⌋, (C.1)

and
rPropt−1 = a (mod n), rProp1 = b (mod n),

rPropt = (a+ b) (mod n),
(C.2)

then according to Lemma 6,

qPropt−1 + qProp1 = qPropt and

rPropt−1 + rProp1 = rPropt,
(C.3)

or
qPropt−1 + qProp1 + 1 = qPropt and

rPropt−1 + rProp1 = n+ rPropt.
(C.4)

If Equation C.3 holds, then ui(o
t) ≥ qPropt−1+qProp1+1i∈Qt−1

>
+1i∈sNt−1+1

i∈sQt−1
>

=

qPropt+1i∈Qt−1
>

+1
i∈sQt−1

>

+1i∈sNt−1 . That is, Qt = C and {Qt−1
> ∪ sQt−1

> } ⊆ Qt
>. Thus,

|Qt
>| ≥ |Qt−1

> ∪sQt−1
> | ≥ min (n, rProp1 + rPropt−1) = min (n, rPropt) = rPropt. Overall,

claims (3) and (4) hold.
On the other hand, if Equation C.4 holds, then ui(o

t) ≥ qPropt−1+ qProp1+1i∈Qt−1
>

+

1i∈sNt−1 + 1
i∈sQt−1

>

= qPropt − 1 + 1i∈Qt−1
>

+ 1
i∈sQt−1

>

+ 1i∈sNt−1 . Note that for every



agent i such that i ∈ Qt−1
> or i ∈ sQt−1

> , ui(o
t) ≥ qPropt + 1i∈sNt−1 . That is, for any

agent i such that i ∈ Qt−1
> or i ∈ sQt−1

> , i ∈ Qt. We thus get that {Qt−1
> ∪ sQt−1

> } ⊆ Qt.

That is, |Qt| ≥ |Qt−1
> ∪ sQt−1

> | ≥ min (n, rProp1 + rPropt−1) = min (n, n+ rPropt) = n.
Therefore, Qt = C. That is, claim (3) holds. Moreover, we can now state that for any agent
i, ui(o

t) ≥ qPropt + 1i∈sNt−1 , and thus sN t−1 ⊆ Qt
>.

We now find |Qt
>|. Since sN t−1 ⊆ Qt

>, then |Qt
>| ≥ |sN

t−1|. By definition, |sN t−1| =
rProp1 − |sQt−1

> | = rProp1 − min (|Qt−1
> |, rProp1). That is, min (|Qt−1

> |, rProp1) +

|Qt
>| ≥ rProp1. Since |Qt−1

> | = n − |Qt−1
> | and |Qt−1

> | ≥ rPropt−1 then |Qt−1
> | ≤

n − rPropt−1. Therefore, min (n− rPropt−1, rProp1) + |Qt
>| ≥ min (|Qt−1

> |, rProp1) +
|Qt

>| ≥ rProp1. According to Equation C.4, rPropt−1 + rProp1 = n + rPropt, and thus
min (rProp1 − rPropt, rProp1) + |Qt

>| ≥ rProp1. That is, rProp1 − rPropt + |Qt
>| ≥

rProp1. We thus get that −rPropt + |Qt
>| ≥ 0. That is, |Qt

>| ≥ rPropt. That is, claim (4)
holds.

Overall, we get that if conditions (1) and (2) hold, then there exists a candidate c such
that claims (3) and (4) hold.

Theorem 15. Even with Borda valuations, there is no online mechanism that satisfies
MPP .

Proof. Assume by contradiction that there is an online mechanism that satisfies MPP . Let
m = 2, n = 4, T = 2, and

V 1 =


1 0
1 0
0 1
0 1

 , X =


1 0
0 1
0 1
0 1

 , Y =


1 0
1 0
1 0
0 1

 .

If V 2 = X, the only outcome that satisfies Prop is (c1, c2). Therefore, the mechanism must
choose the candidate c1 in the first round. On the other hand, if V 2 = Y , the only outcome
that satisfies Prop is (c2, c1), and thus the mechanism must choose c2 in the first round,
which is a contradiction.

Theorem 16. With borda valuations, LMinon satisfies RRS.

Proof. Let o be the outcome chosen by LMinon. Recall that for any agent i, RRSi =
⌊Tn ⌋ · (m− 1) with Borda valuations. According to the proof of Theorem 14, for any agent

i, ui(o) ≥ qPropT = ⌊T ·(m−1)
n ⌋. Clearly, ⌊Tn (m− 1)⌋ ≥ ⌊Tn ⌋ · (m− 1). We thus get that for

any agent i, ui(o) ≥ RRSi. That is, LMinon satisfies RRS.

Theorem 17. Even with Borda valuations, LMinon and MNWon do not satisfy PO.

Proof. Let m = 9, n = 2, T = 2, and

V 1 = V 2 =

(
8 7 6 5 4 3 2 0 1
1 0 2 3 4 5 6 7 8

)
.

LMinon and MNWon choose o = (c5, c5), while the PO outcomes are (c1, c9) or (c9, c1).

D Efficiency and Fairness for Online Setting

Recall that with no restriction on the valuations, all the mechanisms that we study do not
satisfy the PO efficiency property in the online setting. In addition, in Section 8 we showed



Local PO IAT Approval Homogeneity

LMinon ✓ ✓ ✓ ✓

RRon ✗ ✓ ✗ ✗

MNWon ✓ ✗ ✓ ✓

Table 3: Summary of the results for the online setting, where there are no restrictions on
the valuations.

that it is impossible to satisfy Prop1 or α-RRS for any constant α. We thus propose weaker
notions of efficiency and fairness. Specifically, for efficiency, we propose the notion of local
Pareto optimality, which is defined as follows:

Definition D.1. An outcome o is local Pareto Optimal (local PO) if for every round t,
there does not exist a candidate c such that for every agent i, (1) vti(c) ≥ vti(o

t) and (2)
there exists an agent j such that vtj(c) > vtj(o

t).

Clearly, LMinon and MNWon satisfy local PO, but RRon does not satisfy local PO.
For fairness, we propose the Invariant to Affine Transformations (IAT ) axiom, which is

adapted from bargaining games [20].

Definition D.2. Given any α ∈ R+ and β ∈ R such that all the valuations vti(cj) =
vti(cj) · α+ β are non-negative, let o be the outcome of the mechanism when the valuations

are vti(cj). A mechanism satisfies Invariant to Affine Transformations (IAT) if u(o) = u(o).

Clearly, RRon satisfy IAT , since cMaxt
i remains the same candidate even after an affine

transformation of the valuations. LMinon also satisfy IAT since if x ≻ y then α ·x+β ·1n ≻
α · y + β · 1n. However, MNWon does not satisfy IAT .

Theorem 21. MNWon does not satisfy IAT .

Proof. Let m = 2, n = 2, T = 1, and

V 1 =

(
5 1
0 1

)
.

MNWon chooses o = (c2). However, if vti(cj) = vti(cj)+1, then MNWon chooses o = (c1).

Next, we propose approval, which is a stronger variant of the Plurality axiom that
was proposed by [12]. Intuitively, a mechanism satisfies approval if whenever all agents’
valuations are dichotomous- they assign either 1 or 0 to each candidate, and they all have
the same accumulated utilities, then the candidate with the highest number of 1’s is chosen.
Formally,

Definition D.3. A mechanism satisfies approval if for a given t, for every agents i, j ∈ N ,
ui(o

t−1) = uj(o
t−1), and for every agent i ∈ N and candidate c ∈ C, vti(c) ∈ {0, 1}, then

ot ∈ argmaxc∈C

∑
i∈N vti(c).

Clearly, RRon does not satisfy approval. However, by definition, LMinon and MNWon

satisfy approval.
Finally, we consider the axiom of homogeneity, which requires that if every agent’s ballot

is replicated the same number of times, the outcome remains the same (or it is replaced
with an outcome with the same utility). Formally,



Definition D.4. Given a round t, let x be a positive integer. For any k ∈ N, 1 ≤ k ≤ t,

let V ′k be a block matrix that consists of x copies of V k. That is, V ′k =

V
k

...
V k

. Let o′
t
be

the outcome of the mechanism at round t, when the input is (V ′1, . . . , V ′t) and the vector
of chosen candidates is ot−1. A mechanism satisfies homogeneity if u(ot) = u(o′

t
).

Clearly, RRon does not satisfy homogeneity for all the orders π. However, LMinon satisfies
homogeneity since if x ≻ y then (x, . . . , x) ≻ (y, . . . , y). In addition, MNWon satisfies
homogeneity since argmaxcj∈C

∏
i∈N (ui(o

t−1) + vti(cj)) = argmaxcj∈C

∏
i∈N (ui(o

t−1) +

vti(cj))
x.
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