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Abstract

Charity is typically done either by individual donors, who donate money to the
charities that they support, or by centralized organizations such as governments or
municipalities, which collect the individual contributions and distribute them among
a set of charities. On the one hand, individual charity respects the will of the donors
but may be inefficient due to a lack of coordination. On the other hand, centralized
charity is potentially more efficient but may ignore the will of individual donors. We
present a mechanism that combines the advantages of both methods by distributing
the contribution of each donor in an efficient way such that no subset of donors has an
incentive to redistribute their donations. Assuming Leontief utilities (i.e., each donor
is interested in maximizing an individually weighted minimum of all contributions
across the charities), our mechanism is group-strategyproof, preference-monotonic,
contribution-monotonic, maximizes Nash welfare, and can be computed using convex
programming.

The full version of this paper is available at https://arxiv.org/abs/2305.10286

1 Introduction

Private charity, given by individual donors to underprivileged people in their vicinity, has
existed long before institutionalized charity via municipal or governmental organizations. Its
main advantage is transparency—the donors know exactly where their money goes to, which
may increase their willingness to donate. A major disadvantage of private charity is the lack
of coordination: donors may donate to certain people or charities without knowing that these
recipients have already received ample money from other donors. Centralized charity via
governments or municipalities is potentially more efficient but, if not done carefully, may
disrespect the will of the donors.

As an example, consider the following scenario involving two donors and four charities.
The first donor is willing to contribute $900 and supports charities A, B, and C, whereas
the second donor is willing to contribute $100 and supports charities C and D.

A central organization may collect the contributions of the donors and divide them
equally among the four charities, so that each charity receives $250. While this outcome is
the most balanced possible for the charities, it goes against the will of the first donor, since
$150 of her contribution is used to support charity D.

By contrast, without any coordination, each donor may split her individual contribution
equally between the charities that she approves. As a result, charities A and B receive $300
each, charity C receives $350, and charity D receives $50. However, if the second donor
knew that charity C would already receive $300 from the first donor, she would probably
prefer to donate more to charity D, for which she is the only contributor.

Our suggested mechanism would give $300 to each of charities A, B, and C, and $100 to
charity D. This distribution can be implemented in such a way that the contribution of each
donor only goes to charities that the donor approves, and subject to that, the donations are
divided as equally as possible. The distribution can also be understood as recommendations
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to the individual donors: the first donor should distribute her contribution uniformly over
charities A, B, and C whereas the second donor should transfer all contribution to charity D.

Evaluating and comparing donor coordination mechanisms requires some assumptions
on the utility functions of the donors. In this paper, we assume that each donor’s utility
is given by the smallest amount of money allocated to one of the donor’s approved char-
ities. For example, for the distribution (300, 300, 300, 100), the first agent’s utility is 300
and the second agent’s utility is 100. More generally, our model allows donors to attribute
different values than merely 1 and 0 (which indicate approval and disapproval, respectively)
to different charities. If a donor i values a project x at vi,x, then i’s utility from a distri-
bution δ equals minx δ(x)/vi,x, where the minimum is taken over all projects x for which
vi,x > 0. Such utilities are known as Leontief utilities and are often studied in resource
allocation problems [e.g., 4, 10, 14, 15, 17, 20, 23]. Whenever vi,x ∈ {0, 1} for all agents i
and projects x, we refer to this as (Leontief) utility functions with binary weights.

Given the contribution and utility function of each donor, our goal is to distribute the
money among the charities in a way that respects the individual donors’ preferences. The
idea of “respecting the donors’ preferences” is captured by the notion of an equilibrium
distribution. We say that a distribution is in equilibrium if it can be implemented by telling
each donor how to distribute her contribution among the charities, such that the prescribed
distribution maximizes the donor’s utility given that the distributions of the other donors
remain fixed. One can check that, in the above example, the unique equilibrium distribution
is (300, 300, 300, 100).

A priori, it is not clear that an equilibrium distribution (in pure strategies) always exists.
Our first main result is that each profile admits a unique equilibrium distribution. Moreover,
we prove that the unique equilibrium distribution coincides with the unique distribution that
maximizes the product of individual utilities weighted by their contributions (Nash welfare),
which implies that it is Pareto efficient, and can be computed via convex programming.

In our example, the equilibrium distribution (300, 300, 300, 100) also maximizes the min-
imum utility of all agents (egalitarian welfare) subject to each donor only contributing to
her approved charities. We show that this is true in general when weights are binary, and
extends to an infinite class of welfare measures “in between” Nash welfare and egalitarian
welfare. Moreover, for the case of binary weights, we show that the equilibrium distribution
coincides with the distribution that allocates individual contributions to approved projects
such that the minimum contribution to projects is maximized lexicographically. This allows
for simpler computation via linear programming. Further, we propose a simple dynamics
for binary weights, based on best responses, that converges to the equilibrium distribution.

Based on existence and uniqueness, we can define the equilibrium distribution rule
(EDR)—the mechanism that returns the unique equilibrium distribution of a given pro-
file. Our second main result is that EDR exhibits remarkable axiomatic properties:

• Group-strategyproofness: agents and coalitions thereof are never better off by misrep-
resenting their preferences, and are strictly better off by contributing more money,

• Preference-monotonicity : the amount donated to a project can only increase when
agents increase their valuation for the project, and

• Contribution-monotonicity : the amount donated to a project can only increase when
agents increase their contributions.

Our results can be applied not only to private charity, but also to donation programs—
prominent examples include AmazonSmile4 and cinque per mille 5 by the Italian Revenue

4The program generated over $15 million in donations before being discontinued in 2023.
5https://www.agenziaentrate.gov.it/portale/web/guest/contributo-del-5-per-mille-2022



Agency. In these programs, participants can redirect a portion of their payments (purchase
price and income tax, respectively) to charitable organizations of their choice.6 Note that,
in contrast to private charity, participants of donation programs do not have the option of
taking their money out of the system, which means that the important issue lies in finding
a desirable distribution of the contributions rather than in incentivizing the participants to
take part in the donation exercise in the first place.

Another example of a potential application is the transmission of signals in a network.
Consider a directed graph and a set of agents where each agent intends to transmit a signal
along an individual path in the graph. Agents are able to invest in the “transmission quality”
of each edge. Their utilities are given by the quality of the signal at the last vertex on their
path, which equals the minimal transmission quality of an edge along that path.

The remainder of this paper is structured as follows. After discussing related work in
Section 2, we formally introduce our model in Section 3. Section 4 lays the foundation for the
proposed distribution rule by showing existence and uniqueness of equilibrium distributions
as well as characterizing Pareto efficient distributions in our setting. Subsequently, we define
the equilibrium distribution rule as the rule that always returns the equilibrium distribution
and examine it axiomatically in Section 5. The special case of Leontief utilities with binary
weights is covered in Section 6. Binary weights allow for alternative characterizations of
EDR that enable its computation via linear programming. Furthermore, we justify EDR
from a welfare point of view and present a simple best response dynamics that converges
to the equilibrium distribution. Finally, we conclude in Section 7 and point out further
directions for future research.

All proofs appear in the full version of our paper.

2 Related work

The work most closely related to ours is that of Brandl et al. [8, 9] who initiated the axiomatic
study of donor coordination mechanisms. In their model, the utility of each donor is defined
as the weighted sum of contributions to projects, where the weights correspond to the
agent’s inherent utilities for a unit of contribution to each project. Under this assumption,
the only efficient distribution in the introductory example is to allocate the entire donation
of $1000 to charity C, since this distribution gives the highest possible utility, 1000, to all
donors. However, this distribution leaves charities A, B, and D with no money at all, which
may not be what the donors intended. With sum-based utilities, as studied by Brandl
et al., charities are perfect substitutes: when a donor assigns the same utility to several
charities, she is completely indifferent to how money is distributed among these charities.
By contrast, in our model of minimum-based utilities, charities are perfect complements:
donors want their money to be evenly distributed among charities they like equally much.
Preferences over charities can be expressed by setting weights for Leontief utility functions.
It can be argued that this assumption better reflects the spirit of charity by not leaving
anyone behind. The modified definition of utility functions critically affects the nature of
elementary concepts such as efficiency or strategyproofness and fundamentally changes the
landscape of attractive mechanisms.

The main result by Brandl et al. [9] shows that, in their model of sum-based utilities,
the Nash product rule incentivizes agents to contribute their entire budget, even when
attractive outside options are available. On the other hand, the Nash product rule fails to
be strategyproof [3] and violates simple monotonicity conditions [8]. In fact, a sweeping

6For AmazonSmile and cinque per mille, each participant can choose only one charitable organization.
However, as Brandl et al. [9] argued, permitting them to indicate support for multiple organizations can
increase efficiency of the process.



impossibility by Brandl et al. [8] shows that, even in the simple case of binary valuations,
no distribution rule that spends money to at least one approved project of each agent
can simultaneously satisfy efficiency and strategyproofness. This confirms a conjecture by
Bogomolnaia et al. [7] and demonstrates the severe limitations of donor coordination with
sum-based utilities. Interestingly, as we show in this paper, Leontief utilities allow for much
more positive results.

Originating from the Nash bargaining solution [16], the Nash product rule can be in-
terpreted as a tradeoff between maximizing utilitarian and egalitarian welfare, a recurring
idea when it comes to finding efficient and fair solutions. When allocating divisible pri-
vate goods to agents with additive valuations, the Nash product rule returns the set of all
competitive equilibria from equal incomes [12]; thus, it results in an efficient and envy-free
allocation [13]. For the case of indivisible private goods, Caragiannis et al. [11] showed that
maximizing Nash welfare returns an allocation that is not only efficient but also satisfies
envy-freeness up to one good, and Suksompong [22] and Yuen and Suksompong [24] obtained
characterizations of the Nash product rule using the latter axiom. The Nash product rule
is also a sensible mechanism in our context and, as shown in Section 4, its outcome is com-
pletely characterized by another concept due to Nash [16]: when defining a game in which
the players’ strategies are redistributions of their individual contributions, there is a unique
Nash equilibrium which coincides with the distribution maximizing Nash welfare.

A natural special case of our model is that of Leontief utilities with binary weights,
where agents only approve or disapprove projects and the utility of each agent is given by
the minimal amount transferred to any of her approved projects. Under the assumption
that agents only contribute to projects they approve and that all individual contributions
are equal, this can be interpreted as a (many-to-many) matching problem on a bipartite
graph where agents (and their contributions) need to be assigned to projects with unlimited
capacity. Bogomolnaia and Moulin [6] proposed a solution to such matching problems that
maximizes egalitarian welfare of the projects (rather than the agents). The reasons for the
intriguing connection between these two types of egalitarianism are addressed in Section 6.
These authors also showed that their solution constitutes a competitive equilibrium from
equal incomes (from the project holders’ point of view).

A problem remotely related to the setting we study in this paper is that of private
provision of public goods [e.g., 5, 21]. In this stream of research, each agent decides on how
much money she wants to contribute to funding a public good. Typically, this leads to
under-provision of the public good in equilibrium, resulting in inefficient outcomes. In our
model, we assume that agents have already set aside a budget to support public projects,
either voluntarily or compulsorily (as part of their taxes or payments to a company). The
inefficiency that we are worried about is an inefficient allocation among different public
goods. As a result, our problem has the flavor of both social choice and fair division.

Finally, in participatory budgeting [e.g., 2], it is typically assumed that project funding
is discrete, that is, each project has a fixed cost (e.g., constructing a new bridge), and it can
be either fully funded or not at all. Moreover, most participatory budgeting papers assume
that money is owned by a central authority rather than by the agents. Aziz and Ganguly
[1] studied a donor coordination version where the budget belongs to the agents, but still
considered discrete project funding. This is in contrast to our setting, in which each charity
can receive any amount of money, and there are no pre-specified costs.

3 The model

Let N be a set of n agents. Each agent i contributes an amount Ci ≥ 0. For every subset
of agents N ′ ⊆ N , we denote CN ′ :=

∑
i∈N ′ Ci. The sum of all contributions, CN , is called



the endowment.
Further, consider a set A of m potential recipients of the contributions, which we call

projects. A distribution is a function δ assigning a nonnegative real number to each project,
such that

∑
x∈A δ(x) = CN . The support {x : δ(x) > 0} of δ is denoted by supp(δ), and the

space of all possible distributions is denoted by ∆(CN ). For a subset of projects A′ ⊆ A,
we define δ(A′) :=

∑
x∈A′ δ(x) as the total amount allocated to projects in A′.

For every i ∈ N and x ∈ A, there is a real number vi,x ≥ 0 that represents the value
of project x to agent i. We assume that each agent i has at least one project x for which
vi,x > 0. For every agent i ∈ N , we define Ai := {x : vi,x > 0} as the set of projects to
which i attributes a positive value.

The utility that agent i derives from distribution δ is denoted by ui(δ) and is given by
the Leontief utility function7

ui(δ) = min
x∈Ai

δ(x)

vi,x
.

Note that, for every project x ∈ A and every agent i ∈ N , δ(x) ≥ vi,x · ui(δ).
If all vi,x are in {0, 1}, we refer to Leontief utilities with binary weights. A profile P

consists of {Ci}i∈N and {vi,x}i∈N,x∈A. Throughout this paper, agents with contribution
zero do not have any influence on the outcome and can thus be treated as agents who
choose not to participate in the mechanism. A distribution rule f maps every profile to a
distribution ∆(CN ) of the total endowment CN .

4 Equilibrium distributions

Donor coordination differs from other participatory budgeting problems in that the budget
is initially owned by the agents. This makes it all the more important that agents are able to
observe the distribution of their individual contribution. We formalize this intuition using
the notion of a decomposition.

Definition 4.1 (Decomposition). A decomposition of a distribution δ is a vector of distri-
butions (δi)i∈N with∑

i∈N

δi(x) = δ(x) for all x ∈ A; (1)∑
x∈A

δi(x) = Ci for all i ∈ N. (2)

Note that each distribution admits at least one decomposition. We aim for a decom-
position in which no agent can increase her utility by changing δi, given Ci and the δj for
j ̸= i. In other words, we look for a pure strategy Nash equilibrium of the game in which
the strategy space of each agent i is the set of δi satisfying (2).

Definition 4.2 (Equilibrium distribution). A distribution δ is in equilibrium if it admits a
decomposition (δi)i∈N such that, for every agent i and for every alternative distribution δ′i
satisfying

∑
x∈A δ′i(x) = Ci,

ui(δ) ≥ ui(δ − δi + δ′i).

A priori, it is not clear whether an equilibrium distribution always exists. The present
section is devoted to proving the following theorem.

7The case of sum-based, rather than min-based, utility functions ui(δ) =
∑

x∈A vi,x · δ(x) is discussed in
Section 2.



Theorem 4.3. Every profile admits a unique equilibrium distribution. This distribution is
Pareto efficient and can be computed via convex programming.

As a consequence, we can define the equilibrium distribution rule as the distribution rule
that selects for each profile its unique equilibrium distribution. In Section 5, we prove that
this rule satisfies desirable strategic and monotonicity properties.

4.1 Critical projects

We start by characterizing equilibrium distributions based on critical projects.
Given a distribution δ, we define the set of agent i’s critical projects

Tδ,i := arg min
x∈Ai

δ(x)

vi,x
.

Each project x ∈ Tδ,i is critical for agent i in the sense that the utility of i would
decrease if the amount allocated to x were to decrease. Every agent has at least one critical
project. For every agent i and project x such that either vi,x > 0 or δ(x) > 0, the following
implications hold:

x ∈ Tδ,i ⇔ δ(x) = vi,x · ui(δ);

x ̸∈ Tδ,i ⇔ δ(x) > vi,x · ui(δ).
(3)

We establish that a distribution is in equilibrium if and only if each agent contributes
only to her critical projects.

Lemma 4.4. [Characterization of equilibrium distributions] A distribution δ is in equi-
librium if and only if it has a decomposition (δi)i∈N such that δi(x) = 0 for every project
x ̸∈ Tδ,i. Equivalently, it has a decomposition satisfying the following, instead of (2):∑

x∈Tδ,i

δi(x) = Ci for all i ∈ N. (4)

Corollary 4.5. In an equilibrium distribution, every project that receives a positive amount
of contribution is critical for at least one agent.

Remark 4.6. Lemma 4.4 implies that an equilibrium distribution satisfies an even stronger
equilibrium property: no group of agents can deviate without making at least one of its
members worse off. This is because any deviation decreases the contribution to a critical
project of at least one group member.

4.2 Efficiency

One of the main objectives of a centralized distribution rule is economic efficiency.

Definition 4.7 (Efficiency). Given a profile P , a distribution δ ∈ ∆(CN ) is (Pareto) ef-
ficient if there does not exist another distribution δ′ ∈ ∆(CN ) that (Pareto) dominates δ,
i.e., ui(δ

′) ≥ ui(δ) for all i ∈ N and ui(δ
′) > ui(δ) for at least one i ∈ N . A distribution

rule is efficient if it returns an efficient distribution for every profile P .

The following lemma characterizes efficient distributions of an arbitrary profile.

Lemma 4.8. [Characterization of efficient distributions] A distribution δ is efficient if and
only if every project x ∈ supp(δ) is critical for some agent.



Combining Corollary 4.5 with Lemma 4.8 gives the following implication.

Corollary 4.9. Every equilibrium distribution is efficient.

The following lemma shows that every efficient utility vector is generated by at most one
distribution.

Lemma 4.10. Let δ and δ′ be efficient distributions inducing the same utility vector, that
is, ui(δ) = ui(δ

′) for all i ∈ N . Then, δ = δ′.

Consequently, an efficient distribution rule can be defined as mapping a profile to a
utility vector.

4.3 Existence, uniqueness, and computation

One common way to obtain an efficient distribution is to maximize a welfare function.
Formally, for any strictly-increasing function g on R≥0, we say that a distribution δ is
g-welfare-maximizing if it maximizes the weighted sum

∑
i∈N Ci · g(ui(δ)). Clearly, any

such distribution is efficient. Whenever g is strictly concave, there is a unique g-welfare-
maximizing distribution; the proof is straightforward and is given in the full version of our
paper.

We focus on the special case in which g is the log function. The Nash welfare of a
distribution δ is defined as the sum of logarithms of the agents’ utilities, weighted by their
contributions:

Nash(δ) :=
∑
i∈N

Ci · log ui(δ).

The Nash rule selects a distribution δ that maximizes Nash(·) or, equivalently, the weighted
product of the agents’ utilities

∏
i∈N uCi

i (with the convention 0 log 0 = 0 and 00 = 1). The
Nash rule has strong fairness guarantees in various settings (see Section 2). As we will see,
this is also the case in our model.

The following two lemmas show that a distribution is in equilibrium if and only if it
maximizes Nash welfare.

Lemma 4.11. Every distribution that maximizes Nash welfare is in equilibrium.

Lemma 4.12. Every equilibrium distribution maximizes Nash welfare.

Since the log function is strictly concave, there is a unique distribution that maximizes
Nash welfare. Therefore, Lemmas 4.11 and 4.12 imply that there is a unique equilibrium
distribution, and it is efficient, as claimed in Theorem 4.3.

Since the equilibrium distribution maximizes a weighted sum of logarithms, it can be
approximated arbitrarily well by considering the corresponding convex optimization prob-
lem. With sum-based utilities, Brandl et al. [9] show that it is impossible to compute the
Nash-optimal distribution exactly even for binary valuations, since it may involve irrational
numbers. Interestingly, for Leontief utilities the Nash-optimal distribution is rational when-
ever the agents’ valuations and contributions are rational; see the full version of our paper
for a proof.

In the case of binary weights, the equilibrium distribution can be computed exactly using
a polynomial number of linear programs; see Section 6. We do not know whether the same
is true for non-binary weights.



5 The Equilibrium Distribution Rule

Based on Theorem 4.3, we define the equilibrium distribution rule (EDR) as the distribution
rule that, for each profile, returns the unique equilibrium distribution for this profile. In
this section, we investigate the axiomatic properties of EDR.

5.1 Strategyproofness

A distribution rule is group-strategyproof if no coalition of agents can gain utility by misre-
porting their valuations or contributing less. This incentivizes truthful reports and allows
for a correct estimation of agents’ utilities under different distributions. Furthermore, a
group-strategyproof rule ensures that every agent donates the maximal possible contribu-
tion, thereby guaranteeing maximal gains from coordination.

Definition 5.1 (Group-strategyproofness). (a) Given a distribution rule f , a profile P ,
and a group G ⊆ N , a profile P ′ is called a manipulation of P by G if C ′

G ≤ CG (the
contribution of G may decrease), and the valuations of agents in G may change, while the
contributions and valuations of all agents in N \G remain the same. Such a manipulation
is called successful if uj(f(P ′)) ≥ uj(f(P )) for all j ∈ G and ui(f(P ′)) > ui(f(P )) for at
least one i ∈ G, where u refers to the utilities in P .

(b) A distribution rule f is group-strategyproof if in any profile, no group of agents has
a successful manipulation.

Theorem 5.2. EDR is group-strategyproof.

In fact, the proof of Theorem 5.2 shows that if the total contribution CG decreases, then
the utility of at least one agent in G has to strictly decrease under EDR. In particular, an
agent receives strictly more utility when she increases her contribution.

Theorem 5.3. Under EDR, agents are strictly better off by increasing their contribution.

Remark 5.4. In the context of sum-based utilities, Brandl et al. [8] have proposed an
even stronger participation axiom called contribution incentive-compatibility. This axiom
allows agents who do not participate in the mechanism to receive additional utility by
spending her saved contribution independently. Unfortunately, in our setting, this property
is incompatible with efficiency and also with strategyproofness, even for binary weights. For
more details, we refer to the full version of our paper.

5.2 Preference-monotonicity

An important property for project holders is preference-monotonicity, which requires that
for every agent i and project x ∈ A, δ(x) weakly increases when vi,x increases. In other
words, a project can only receive more donations when becoming more popular, which, for
example, incentivizes advertising projects.

Definition 5.5 (Preference-monotonicity). A distribution rule f satisfies preference-
monotonicity if for every two profiles P and P ′ which are identical except that v′i,x > vi,x
for one agent i and one project x, we have f(P ′)(x) ≥ f(P )(x).

Theorem 5.6. EDR satisfies preference-monotonicity.



5.3 Contribution-monotonicity

For some applications, it would be desirable if increased contributions do not result in the
redistribution of funds that have already been allocated. For example, if agents arrive over
time or increase their contributions over time, ideally the mechanism only needs to take
care of the additional contributions. This would allow a deployment of the mechanism as
an ongoing process in which donations arrive over time and projects can make immediate
use of the donations they receive. We formalize this property in the following definition.

Definition 5.7 (Contribution-monotonicity). A distribution rule f satisfies contribution-
monotonicity if for every two profiles P and P ′ where P ′ can be obtained from P by
increasing the contribution of one agent (possibly from 0), f(P ′)(x) ≥ f(P )(x) for all
projects x ∈ A.

Theorem 5.8. EDR satisfies contribution-monotonicity.

6 Leontief utilities with binary weights

In this section, we consider the special case of having binary weights, i.e., vi,x ∈ {0, 1} for
all agents i ∈ N and projects x ∈ A. Equivalently, each agent i has a non-empty set of
approved projects Ai ⊆ A and her utility from a distribution δ is

ui(δ) = min
x∈Ai

δ(x).

For each project x ∈ A, we denote by Nx ⊆ N the set of agents who approve project x.
Note that, for every project x ∈ A and every agent i ∈ Nx,

δ(x) ≥ ui(δ). (5)

Binary weights allow for further insights into the structure of the equilibrium distribution,
which in turn yield new interpretations and additional properties of EDR.

For sum-based utilities with binary weights, a distribution is in equilibrium if and only
if each agent contributes only to projects she approves. Brandl et al. [8] refer to this axiom
as decomposability.

Definition 6.1 (Decomposable distribution). Given a profile with binary weights (vi,x ∈
{0, 1}), a distribution δ is decomposable if it has a decomposition (δi)i∈N such that δi(x) = 0
for every project x ̸∈ Ai. Equivalently, it has a decomposition satisfying the following,
instead of (2): ∑

x∈Ai

δi(x) = Ci for all i ∈ N.

The equivalence of decomposable distributions and equilibrium distributions no longer
holds with Leontief utilities: there are decomposable distributions that are not in equilibrium
even when there is only one agent.

Example 6.2. There is a single agent with C1 = 2, A = {a, b}, with valuations v1,a = 1
and v1,b = 1. The distribution δ = (2, 0) is decomposable, but it is not in equilibrium, since
the single agent is better off by the equilibrium distribution δ′ = (1, 1).

Nevertheless, decomposability can be used to establish two alternative interpretations of
EDR for binary weights.



6.1 Egalitarianism for projects

Motivated by the example from the introduction, we aim at a rule which distributes money
on the projects as equally as possible while still respecting the preferences of the donors. One
rule that comes to mind selects a distribution that, among all decomposable distributions,
maximizes the smallest amount allocated to a project. Subject to this, it maximizes the
second-smallest allocation to a project, and so on. We define it formally below.

Definition 6.3. Given two vectors x,y of the same size, we say that x is leximin-higher
than y (denoted x ≻lex y) if the smallest value in x is larger than the smallest value in
y; or the smallest values are equal, and the second-smallest value in x is larger than the
second-smallest value in y; and so on. x ⪰lex y means that either x ≻lex y or the multiset
of values in x is the same as that in y.

Definition 6.4. The project egalitarian rule selects a distribution δ∗ that, among all de-
composable distributions, maximizes the distribution vector by the leximin order, that is:
δ∗ ⪰lex δ for every decomposable distribution δ.

The leximin order on the closed and convex set of decomposable distributions is con-
nected, every two vectors are comparable, and there exists a unique maximal element (oth-
erwise, any convex combination of two different maximal elements would be leximin-higher
than the maximal elements). Therefore, the project egalitarian rule selects a unique distri-
bution and is well-defined. The following theorem states that the returned distribution is
the equilibrium distribution, resulting in an alternative characterization of EDR for binary
weights.

Theorem 6.5. With binary weights, the project egalitarian rule and EDR are equivalent.

Remarkably, this new interpretation of EDR ignores the Leontief utilities of the agents
and does not directly take into account the different contributions. Instead, they enter
indirectly through the constraints induced by decomposability.

Theorem 6.5 implies that EDR can be computed by solving the following program, with
variables δx for all x ∈ A and δi,x for all i ∈ N, x ∈ A:

lex max min{δx}x∈A subject to

δx =
∑
i∈N

δi,x ∀x ∈ A∑
x∈Ai

δi,x = Ci ∀i ∈ N

δi,x ≥ 0, δx ≥ 0 ∀i ∈ N, ∀x ∈ Ai

where “lex max min” refers to finding a solution vector that is maximal in the leximin order
subject to the constraints, and the second constraint represents decomposability. It is well-
known that such leximin optimization with k objectives and linear constraints can be solved
by a sequence of poly(k) linear programs.8

Corollary 6.6. With binary weights, the equilibrium distribution can be computed by solving
at most |A| linear programs.

8Ogryczak et al. [19] showed that every leximin optimization problem with k objectives has an equivalent
lexicographic optimization problem, denoted (32) in their paper, with k2 + k additional variables and k2

additional constraints. In a lexicographic optimization problem, the objectives have a fixed priority order.
The goal is to maximize the most important objective, then subject to this, maximize the second most
important objective, and so on. A lexicographic optimization problem can be solved by a simple sequential
algorithm using at most k linear programs (Algorithm 1 in their work). For the special case of a convex
optimization problem, Ogryczak et al. [19] presented Algorithm 4, which solves the problem using at most
k linear programs without additional variables and constraints.



6.2 Egalitarianism for agents

While EDR is egalitarian from the point of view of the projects, one could also consider
a rule that is egalitarian from the point of view of the agents. The conditional egalitarian
rule (CEG) aims to balance the agents’ utilities without disregarding their approvals. It
selects a decomposable distribution that, among all decomposable distributions, maximizes
the utility vector by the leximin order, that is: u(δCEG) ⪰lex u(δ) for every decomposable
distribution δ.

Theorem 6.7. With binary weights, the CEG rule and EDR are equivalent.

Theorem 6.7 implies that the equilibrium distribution can be computed by solving the
following program, with variables ui for all i ∈ N and δi,x for all i ∈ N, x ∈ Ai.

lex max min{ui}i∈N subject to

ui ≤ δi,x ∀i ∈ N, ∀x ∈ Ai∑
x∈Ai

δi,x = Ci ∀i ∈ N

δi,x ≥ 0, ui ≥ 0 ∀i ∈ N, ∀x ∈ Ai

Using the algorithms in the works by Ogryczak et al. [19] and Ogryczak and Śliwiński [18],
this program can be solved using at most |N | linear programs.

Thus, we have three algorithms for computing the equilibrium distribution in the case
of binary weights: one requires at most |A| linear programs; one requires at most |N | linear
programs; and one requires a single convex (non-linear) program. It would be interesting to
check which of these algorithms is most efficient in practice.

6.3 Welfare functions maximized by EDR

Based on the observation that EDR coincides with both the Nash product rule and the
conditional egalitarian rule for binary weights, a natural question to ask is which other
welfare notions are maximized by EDR subject to decomposability.

For this, we take a closer look at g-welfare (see Section 4.3), but this time subject to
decomposability. Clearly, every g-welfare-maximizing distribution is efficient. We prove
that efficiency remains even if we maximize among the decomposable distributions.

Lemma 6.8. Let g be any strictly-increasing function, and let δ be a distribution that max-
imizes the g-welfare among all decomposable distributions. Then δ is unique and efficient.

The Nash product rule is often considered a compromise between maximizing utilitarian
welfare (

∑
i∈N Ci ·ui) and egalitarian welfare (maximize the utility of the agent with smallest

utility; notice that the conditional egalitarian rule is a refinement). This can be seen when
considering the family of g-welfare functions

∑
i∈N Ci · sgn(p) · up for p ̸= 0 where the limit

p → 0 corresponds to
∑

i∈N Ci · log(ui) and p → −∞ approaches egalitarian welfare.
It is interesting to check whether the equivalence between conditional egalitarian welfare

and Nash welfare extends to a larger class of g-welfare functions. This is indeed the case,
as the following theorem shows.

Theorem 6.9. Assume g : R≥0 → R ∪ {−∞}

1. is strictly increasing on R≥0 and differentiable on R>0, and

2. xg′(x) is non-increasing on R>0.



Then the equilibrium distribution maximizes g-welfare among all decomposable distributions.

Property (1) ensures that the social welfare is indeed increasing when an individual’s
utility increases and small changes in individual utilities only cause small changes in the
total social welfare. Property (2) implies that increasing utilities are discounted “at least
logarithmically” when being translated to welfare.

In particular, Theorem 6.9 holds for all g-welfare functions
∑

i∈N Ci · sgn(p) · up with
p < 0. However, it ceases to hold when p > 0, as the following proposition shows.

Proposition 6.10. For each p > 0, maximizing the g-welfare with respect to g(u) = up

subject to decomposability does not always return the equilibrium distribution.

Theorem 6.9 stresses the fact that EDR can be motivated not only from a game-theoretic
and axiomatic point of view, but also from a welfarist perspective.

6.4 Convergence to equilibrium

In this section, we propose a simple best-response-based spending dynamics for binary
weights that converges to the equilibrium distribution δ∗. This enables a decentralized
implementation in which agents do not have to reveal their preferences explicitly.

Denote by δt the distribution at time step t (along with its associated decomposition),
e.g., δ0 equals the null vector as no agent i ∈ N has yet distributed her contribution Ci. At
each time step t, allow one agent it to contribute or redistribute her entire contribution in
such a way that her utility is maximized for the new distribution δt+1, i.e.,

δbestit := arg max
δit∈∆(Cit )

uit

δit +
∑
j ̸=it

δtj

 ;

δt+1 = δbestit +
∑
j ̸=it

δtj .

Lemma 6.11. For every time step t and agent it, there exists a unique best response δbestit
.

Theorem 6.12. Let S = (i0, i1, i2, . . . ) be an infinite sequence of agents updating their
individual distributions by best responses. If each agent i ∈ N appears infinitely often in S,
the dynamics converges to the equilibrium distribution, that is, limt→∞ δt = δ∗.

Just like the question of whether the equilibrium distribution can be computed by a
linear program for general Leontief utilities, it is open whether the best response dynamics
converges to the equilibrium distribution in the case of general Leontief utilities.

7 Conclusion and further directions

All in all, EDR turns out to be an exceptionally attractive rule for donor coordination with
Leontief utilities. It satisfies virtually all desirable properties one could hope for and can
be computed via convex programming. In the case of binary weights, EDR maximizes a
wide range of possible welfare functions and can be computed via linear programming or a
simple spending dynamics. These results stand in sharp contrast to the previously studied
case of sum-based utilities, where a far-reaching impossibility has shown the incompatibility
of efficiency, strategyproofness, and a very weak form of fairness [8].

An interesting question for future work is to find more general types of utility functions
for which maximizing Nash welfare results in equilibrium distributions.
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