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Abstract

In many situations when people are assigned to coalitions the assignment must be social aware,
i.e, the utility of each person depends on the friends in her coalition. Additionally, in many
situations the size of each coalition should be bounded. This paper initiates the study of such
coalition formation scenarios in both weighted and unweighted settings. We show that finding
a partition that maximizes the utilitarian social welfare is computationally hard, and provide
a polynomial-time approximation algorithm. We also investigate the existence and the com-
plexity of finding stable partitions. Namely, we show that the Contractual Strict Core (CSC) is
never empty, but the Strict Core (SC) of some games is empty. Finding partitions that are in
the CSC is computationally easy, but finding partitions that are in the SC is hard. The analysis
of the core is more involved. For the weighted setting, the core may be empty. We thus con-
centrate on the unweighted setting. We show that when the coalition size is bounded by 3 the
core is never empty, and we present a polynomial time algorithm for finding a member of the
core. When the coalition size is greater, we provide additive and multiplicative approximations
of the core. In addition, we show in simulation over 100 million games that a simple heuristic
always finds a partition that is in the core.

1 Introduction
Suppose that a group of travelers who are located at some origin, would like to reach the same
destination, and later return. Each of the travelers has her own vehicle; but each traveler has a
preference related to whom will be with her in the vehicle. Namely, each traveler would rather
share a vehicle with as many as possible of her friends during the ride, and thus the utility of each
traveler is the number of friends traveling with her. However, the vehicles have a limited capacity;
this capacity can either be a physical constraint of the vehicles, or the maximal number of travelers
willing to travel together. How should the travelers be assigned to vehicles in order to maximize
the social welfare (the sum of all travelers’ utilities)? Can the travelers be organized such that no
subgroup of travelers will want to leave their current group and join together? Similar questions raise
when assigning students to dormitories, colleagues to office-rooms and workers to project teams. In
these settings, it might be that the utility of each person does not depend only on the number of
friends, but also on the intensity of friendship.

This set of problems falls within hedonic games [13], in which a set of agents are partitioned
into coalitions, and the utility for each agent depends only on the coalition that she is a member of.
Additively Separable Hedonic Games (ASHGs) [9] are a special type of hedonic games, in which
each agent has a value for any other agent, and the utility she assigns to a coalition is the sum of the
values she assigns to its members. In ASHGs there is usually no restriction on the number of agents
that are allowed to belong to a coalition. However, in our group of travelers example, the vehicles
have physical capacity, and thus, there is an upper bound on the size of each coalition. Despite this
restriction being natural, it is scarcely studied in the domain of hedonic games.

In this paper, we initiate the study of hedonic games with bounded coalition size. Specifically,
we concentrate on symmetric ASHGs, in which the value an agent assigns to another agent is non-
negative and it is equal to the value that the other agent assigns to her; we refer to these settings as
the weighted settings. We also study simple symmetric ASHGs, in which the value an agent assigns
to other agents is either 0 or 1; we refer to these settings as the unweighted settings. These models
capture many situations, such as social and friendship relations. We begin by studying the problem
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of finding a partition that maximizes the utilitarian social welfare. We show that this problem is
computationally hard for any coalition size bound k > 2, even in the unweighted setting. Therefore,
we provide a polynomial-time approximation algorithm. We prove that in the unweighted setting,
the algorithm has an approximation ratio of 1

k−1 , and in the weighted setting it has an approximation
ratio of 1

k .
We then study stability aspects of the problem. That is, we investigate the existence and the

complexity of finding stable partitions. Namely, we show that the Contractual Strict Core (CSC) is
never empty, but the Strict Core (SC) of some games is empty. Finding partitions that are in the CSC
is computationally easy, but finding partitions that are in the SC is hard. The analysis of the core is
more involved. For the weighted setting, the core may be empty; we provide an example for k = 3.
We thus concentrate on the unweighted setting. We show that for k=3 the core is never empty, and
we present a polynomial time algorithm for finding a member of the core. For k > 3 it is unclear
whether the core can be empty, and how to find a partition in the core. Therefore, we investigate
additive and multiplicative approximations of the core. In addition, we show in simulation over 100
million games that a simple heuristic always finds a partition that is in the core.

To summarize, the contribution of this work is being the first systematic study of additively sep-
arable hedonic games with bounded coalition size. Namely, we provide an approximation algorithm
for maximizing the utilitarian social welfare and study the computational aspects of several stability
concepts.

2 Related Work
Dreze and Greenberg [1980] initiated the study of hedonic games, in which the utility for each agent
depends only on the coalition that she is a member of. Stability concepts of hedonic games were
further analyzed in [6] and [10]. For more details, see the survey of Aziz et al. [2016]. A special case
is Additively Separable Hedonic Games (ASHGs) [9], in which each agent has a value for any other
agent, and the utility she assigns to a coalition is the sum of the values she assigns to its members.
The computational aspects of ASHGs are analyzed in [12, 5, 21, 24, 1, 4, 7]. None of these works
imposed any restriction on the size of the coalitions.

Indeed, there are few papers that impose a restriction on the size of the coalitions. Wright and
Vorobeychik [2015] study a model of ASHG where there is an upper bound on the size of each
coalition. Within their model, they propose a strategyproof mechanism that achieves good and fair
experimental performance, despite not having a theoretical guarantee. Flammini et al. [2021] study
the online partition problem. Similar to our work, they also consider the scenario that the coalitions
are bounded by some number. They consider two cases for the value of a coalition, the sum of the
weights of its edges, which is similar to our work, and the sum of the weights of its edges divided
by its size. However, in both cases they only consider the online version, i.e., the agents arrive
sequentially and must be assigned to a coalition as they arrive. This assignment cannot be adapted
later on, and must remain. They show that a simple greedy algorithm achieves an approximation
ratio of 1

k when the value of the coalition is the sum of the weights. Cseh et al. [2019] require the
partition to be composed of exactly k coalitions, and also assume a predefined set of size constraints.
Each coalition is required to exactly match its predefined size. They study the complexity of finding
a Pareto optimal partition, as well as the complexity of deciding whether a given partition is Pareto
optimal. Bilò et al. [2022] consider the same settings as Cseh et al. Since classical stability notions
are infeasible in their setting, they study three different types of swap stability, and analyze the
existence, complexity, and efficiency of stable outcomes. Note that almost all other works analyzing
ASHGs assume that an agent may assign a negative value to another agent. Otherwise, since they
do not impose any restrictions on the coalition size, the game becomes trivial, as the grand coalition
is always an optimal solution. We found two exceptions who restrict the value each agent assigns
to other agents to be either 0 or 1. Namely, Sless et al. [2018] study the setting in which the agents
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must be partitioned into exactly k coalitions, without any restriction on each coalition’s size. Li et
al. [2023] study the setting in which the agents must be partitioned into exactly k coalitions that are
almost equal in their size.

In our study of the core, we consider additive and multiplicative approximations for the core. We
note that similar approximations were discussed in other settings [22, 20, 15]. Recent work by Li et
al. [2023] has considered both additive and multiplicative approximations of the core in ASHGs.

3 Preliminaries
Let V = {v1, ..., vn} be a set of agents, and let G(V,E) be a weighted undirected graph representing
the social relations between the agents. For every edge e ∈ E, the weight of the edge, w(e), is
positive. In the unweighted setting, all weights are set to 1. A k-bounded coalition is a coalition
of size at most k. A k-bounded partition P is a partition of the agents into disjoint k-bounded
coalitions. Given a coalition S ∈ P , and v ∈ S, let N(v, S) be the set of immediate neighbors of
v ∈ V in S, i.e., N(v, S) = {u ∈ S : (v, u) ∈ E}. Let W (v, S) be the sum of weights of immediate
neighbors of v ∈ V in S, i.e., W (v, S) =

∑
u∈N(v,S) w((v, u)). Note that in the unweighted setting,

W (v, S) = |N(v, S)|. An additively separable hedonic game with bounded coalition size is a tuple
(G, k), where for every k-bounded partition P , coalition S ∈ P , and v ∈ S, the agent v gets utility
W (v, S). We denote the utility of v given a k-bounded partition P , by u(v, P ). Given a tuple (G, k),
the goal is to find a k-bounded partition P that satisfies efficiency or stability properties.

We consider the following efficiency or stability concepts:

• The utilitarian social welfare of a partition P , denoted u(P ), is the sum of the utilities of the
agents. That is, u(P ) =

∑
v∈V

u(v, P ). A MaxUtil k-bounded partition P is a partition with

maximum u(P ).

• A k-bounded coalition S is said to strongly block a k-bounded partition P if for every v ∈ S,
W (v, S) > u(v, P ). A k-bounded partition P is in the Core if it does not have any strongly
blocking k-bounded coalitions.

• A k-bounded coalition S is said to weakly block a k-bounded partition P if for every v ∈ S,
W (v, S) ≥ u(v, P ), and there exists some v ∈ S such that W (v, S) > u(v, P ). A k-bounded
partition P is in the Strict Core (SC) if it does not have any weakly blocking k-bounded
coalitions.

• Given a partition P and a set S, let P−S be the partition when S breaks off. That is, P−S =
{S} ∪

⋃
C∈P

{C \ S}. A k-bounded partition P is in the Contractual Strict Core (CSC) if

for any weakly blocking k-bounded coalition S, there exists at least one agent v such that
u(v, P−S) < u(v, P ).

Due to space constraints, some proofs are deferred to the appendix.

4 Efficiency
We begin with the elementary concept of efficiency, which is to maximize the utilitarian social
welfare.

Definition 4.1 (MaxUtil problem). Given a coalition size limit k and a graph G, find a MaxUtil
k-bounded partition.
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Figure 1: An example for the MaxUtil problem where k = 3.

For example, given the unweighted graph in Figure 1a and a coalition size limit k = 3, let
P = {{v1, v3, v6}, {v2, v4, v7}, {v5, v8}}, shown in Figure 1b. The utilitarian social welfare of this
partition, u(P ) equals 14. Indeed, this is an optimal 3-bounded partition, since there is no other
3-bounded partition with higher social welfare. Clearly, the decision variant of the MaxUtil problem
is to decide whether there exists a k-bounded partition with a utilitarian social welfare of at least υ.

4.1 The Hardness of the MaxUtil Problem
The MaxUtil problem when k = 2 is equivalent to the maximum (weight) matching problem, and
thus it can be computed in polynomial time [14]. However, our problem becomes intractable when
k ≥ 3 even in the unweighted setting. For the hardness proof, we define for each k ∈ N the
Cliquesk problem, which is as follows.

Definition 4.2 (Cliquesk). Given an undirected and unweighted graph G(V,E), decide whether V
can be partitioned into disjoint cliques, such that each clique is composed of exactly k vertices.

Clearly, Cliques2 can be decided in polynomial time by computing a maximum matching of the
graph G, M , and testing whether |M | = |V |

2 . However, Cliquesk becomes hard when k ≥ 3.

Lemma 1. Cliquesk is NP -Complete for every k ≥ 3.

Theorem 2. The decision variant of the MaxUtil problem is NP -Complete, in the unweighted and
weighted settings.

4.2 Approximation of the MaxUtil Problem
Since we showed that the MaxUtil problem is NP -Complete, we now provide the Match and Merge
(MnM) algorithm (Algorithm 1), which is a polynomial-time approximation algorithm for any k ≥
3. The algorithm consists of k − 1 rounds. Each round is composed of a matching phase followed
by a merging phase. Specifically, in round l MnM computes a maximum (weight) matching, Ml ⊆
El, for Gl (where G1 = G). In the merging phase, MnM creates a graph Gl+1 that includes a
unified node for each pair of matched nodes. Gl+1 also includes all unmatched nodes, along with
their edges to the unified nodes (lines 10-13). Clearly, each node in Vl is composed of up-to l
nodes from V1. Finally, MnM returns the k-bounded partition, P , of all the matched sets. For
example, given the graph G1 in Figure 2a and k = 4, the algorithm finds a maximum matching
M1 = {(v1, v2), (v3, v4)} shown in Figure 2b. It then creates the graph G2, as shown in Figure
2c, and finds a maximum matching for it, M2 = {(v3,4, v5)} shown in Figure 2d. It then creates
the graph G3, as shown in Figure 2e, and finds a maximum matching for it, M3 = {(v3,4,5, v6)}.
Finally, MnM created the graph G4, as shown in Figure 2f, and returns the 4-bounded partition
P = {v1, v2}, {v3, v4, v5, v6}. We note that by the algorithm construction, a unified node vi1,...,il ,
is created by merging nodes vi1 and vi2 , and then by merging vi1,i2 and vi3 , and so on.
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Algorithm 1: Match and Merge (MnM)

1 Input: A graph G(V,E) and a limit k
Result: A k-bounded partition P of V .

2 G1(V1, E1)← G(V,E)
3 for l← 1 to k − 1 do
4 Ml ← maximum (weight) matching in Gl

5 Gl+1 = (Vl+1, El+1)← an empty graph
6 Vl+1 ← Vl

7 for every (vi1,...,il , vj) ∈Ml do
8 add vertex vi1,...,il,j to Vl+1

9 remove vi1,...,il , vj from Vl+1

10 for every vi1,...,il+1
∈ Vl+1 do

11 for every vq ∈ Vl+1 do
12 if (vi1,...,il , vq) ∈ El or (vil+1

, vq) ∈ El then
13 add (vi1,...,il+1

, vq) to El+1

14 P ← an empty partition
15 for every vi1,...,ij ∈ Gk do
16 add the set {vi1 , ..., vij} to P
17 return P

4.3 Approximation Ratio for Unweighted Setting
We first show that MnM provides an approximation ratio of 1

k−1 for the MaxUtil problem in the
unweighted setting. For that end, we first prove the following lemma related to the possible edges
in every Gl, l > 1.

Lemma 3. Given v̂ = vi1,...,il ∈ Vl, if there exist vi, vj ∈ Vl, vi ̸= vj such that (vi, vin), (vj , vim) ∈
E for some 1 ≤ n ≤ m ≤ l, then n = m.

Proof. Observe that for every vi, vj ∈ Vl where l > 1, (vi, vj) /∈ E, since M1 is a maximum
matching in G1. Assume by contradiction and without loss of generality that n < m. If n = 1 and
m = 2, then the path vi → vin → vim → vj is an M1-augmenting path in G1 ([14]), contrary to
the fact that M1 is a maximum matching in G1. Therefore, m ≥ 3. Consider the graph G2, since
vim , vj ∈ V2, there exists an edge (vj , vim) ∈ E, contrary to our observation.

We now present a hypothetical procedure (Procedure 2) that is provided with a solution to the
MaxUtil problem, which is a k-bounded partition (of G) Opt, a graph Gl (as defined in Algorithm
1), and a corresponding round index l. Without loss of generality, we assume that every set S ∈ Opt
is a connected component. Let O = {vo|{vo} ∈ Opt and vo ∈ V2}. That is, |O| is the number of
singletons in the partition Opt that are also not matched in M1. We show that Procedure 2 finds a
matching, and we provide a lower bound on the size of this matching (the number of edges in it).
We further show that MnM is guaranteed to perform at least as well as this procedure, which, as we
show, results in an approximation ratio of 1

k−1 for every k ≥ 3.

Lemma 4. Procedure 2 finds a matching, Rl, in the graph Gl, such that |Rl| ≥ (|V | − 2|M1| −
l−1∑
i=2

|Mi| − |O|)/(k − 1), where l > 1.

Proof. We first show that Procedure 2 finds a matching, Rl, in the graph Gl. At each iteration of the
loop in line 8, we add an edge between a single node, vq , and a unified node, vi1,...,il . We consider
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Figure 2: An example for Algorithm 1 where k = 4.

Procedure 2: Find matching

1 Input:
2 A k-bounded partition (of G) Opt
3 A graph Gl = (Vl, El)
4 Result:
5 A matching in Gl Rl ← an empty matching
6 for each vi ∈ Vl such that {vi} ∈ Opt do
7 remove vi from Vl

8 for each vq ∈ Vl do
9 let v̂ be a vertex vi1,...,il such that (vq, v̂) ∈ El and for some 1 ≤ j ≤ l, vq and vij

belong to the same set in Opt
10 for each vn ̸= vq do
11 if (vn, v̂) ∈ El and exists 1 ≤ m ≤ l, s.t. vim and vn belong to the same set in Opt

then
12 remove vn from Vl

13 add (vq, v̂) to Rl

14 return Rl

each single node only once. Therefore, it is not possible to add a single node twice to Rl. Similarly,
each time a unified node is added to Rl, every single node vn ̸= vq such that vim and vn belong
to the same set in Opt, for some 1 ≤ m ≤ l, is removed from Vl. Therefore, a unified node is not
added more than once. That is, Rl is a matching in Gl.

We now show a lower bound on the size of |Rl|. Let V ′
l = {vi|vi ∈ Vl}, i.e., the set of all

the single nodes in Gl. In line 12 we remove nodes only when m = j (according to Lemma 3).
Given v̂ = vi1,...,il , there are at most k − 1 different nodes, vj1 , ..., vjk−1

that are in the same
set with v̂ in Opt. Therefore, in each iteration of the loop in line 8, we remove at most k − 2
single nodes in line 12 while adding one edge to Rl in line 13. Thus, at least 1

k−1 of the single

nodes in Vl (who are not in O) are matched to a unified node. Therefore, |Rl| ≥ |V ′
l |−|O|
k−1 . Now,

|V ′
2 | = |V1| − 2|M1|. In addition, at each iteration l > i > 1, |Mi| single nodes are each added

to a unified node. Therefore, |V ′
l | = |V1| − 2|M1| −

l−1∑
i=2

|Mi|. In addition, V = V1. Overall,

|Rl| ≥ (|V | − 2|M1| −
l−1∑
i=2

|Mi| − |O|)/(k − 1).
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Theorem 5. Algorithm 1 provides a solution for the MaxUtil problem with an approximation ratio
of 1

k−1 for every k ≥ 3, in the unweighted setting.

Proof. Let P be the k-bounded partition returned by Algorithm 1. Clearly, u(P ) ≥ 2 ·
k−1∑
i=1

|Mi|. For

every l ≥ 1, Ml is a maximum matching and thus |Ml| ≥ |Rl|. In addition, according to Lemma 4,

|Rl| ≥
|V |−2|M1|−

l−1∑
i=2

|Mi|−|O|

k−1 .
Therefore,

u(P ) ≥ 2 ·
k−1∑
i=1

|Mi| = 2|M1|+ 2 ·
k−1∑
i=2

|Mi|.

k−1∑
i=2

|Mi| = |M2|+ |M3|+ ...+ |Mk−1| ≥

|M2|+|M3|+...+|Mk−2|+|Rk−1| ≥ |M2|+|M3|+...+|Mk−2|+
|V | − |O| − 2|M1| − |M2| − ...− |Mk−2|

k − 1
=

|V | − |O| − 2|M1|
k − 1

+
k − 2

k − 1

k−2∑
i=2

|Mi| ≥ (1+
k − 2

k − 1
)· |V | − |O| − 2|M1|

k − 1
+(

k − 2

k − 1
)2

k−3∑
i=2

|Mi| ≥ ... ≥

(1 +
k − 2

k − 1
+ (

k − 2

k − 1
)2 + ...+ (

k − 2

k − 1
)k−3) · |V | − |O| − 2|M1|

k − 1
+ (

k − 2

k − 1
)k−2

k−1−(k−2)∑
i=2

|Mi| =

k−3∑
i=0

(
(
k − 2

k − 1
)i · |V | − |O| − 2|M1|

k − 1

)
.

That is,

u(P ) ≥ 2|M1|+ 2 ·
k−3∑
i=0

(
(
k − 2

k − 1
)i · |V | − |O| − 2|M1|

k − 1

)
=

2|M1|+ 2 · |V | − |O| − 2|M1|
k − 1

·
(k−2
k−1 )

(k−2) − 1
k−2
k−1 − 1

=

2|M1|+ 2(|V | − |O| − 2|M1|) ·
(k−2
k−1 )

(k−2) − 1

(k − 1)(k−2
k−1 − 1)

=

2|M1| − 2(|V | − |O| − 2|M1|)((
k − 2

k − 1
)(k−2) − 1) =

2(|V | − |O|)(1− (
k − 2

k − 1
)(k−2))− 2|M1|(1− 2 · (k − 2

k − 1
)(k−2)).

Next, we show that

(1− 2 · (k − 2

k − 1
)(k−2)) ≥ 0.

Let
f(k) = (

k − 2

k − 1
)k−2, for k ≥ 3.

Thus

f ′(k) =
(k − 2)k−2

(
ln(k−2

k−1 )(k − 1) + 1
)

(k − 1)k−1
.
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Now, (k−2)k−2

(k−1)k−1 > 0. In addition, it is known that ln(x) ≤ x− 1 [19],
and thus

ln(
k − 2

k − 1
)(k − 1) + 1 ≤ − 1

k − 1
(k − 1) + 1 = 0

Therefore, for all k ≥ 3, f ′(k) ≤ 0 and f(k) ≤ f(3) = 1
2 .

Overall, since |M1| ≤ |V |−|O|
2 ,

u(P ) ≥ 2(|V | − |O|)(1− (
k − 2

k − 1
)(k−2))− 2 · |V | − |O|

2
(1− 2 · (k − 2

k − 1
)(k−2)) = |V | − |O|.

Now, since in Opt there are at least |O| singletons, then u(Opt) is at most (|V | − |O|) · (k − 1),
which occurs when all nodes are partitioned into cliques of size k (except those in O). That is,

u(P ) ≥ u(Opt)

k − 1
.

Since finding a maximum matching in a graph can be computed in O(|E|
√
|V |), Algorithm 1

runs in O(kn2.5) time.

4.4 Approximation Ratio for Weighted Setting
We now show that MnM provides an approximation ratio of 1

k for the MaxUtil problem in the
weighted setting. Specifically, we show that the first step of the algorithm, which finds a maximum
weight matching, provides an approximation ratio of 1

k .

Theorem 6. Algorithm 1 provides a solution for the MaxUtil problem with an approximation ratio
of 1

k for every k ≥ 3, in the weighted setting.

5 Stability
When considering a stability concept c, we analyze the following two problems:

• Existence: determine whether for any (G, k) there exists a partition that satisfies c.

• Finding: given (G, k), decide if there exists a partition that satisfies c and if so, find such a
partition.

5.1 Core
We begin by showing that the core in the weighted setting may be empty. Specifically, Figure 3
provides an example of such a graph for k = 3. We use a computer program that iterates over
all possible 3-bounded partitions, for verifying that each such 3-bounded partition has a strongly
blocking 3-bounded coalition.

We thus concentrate on the unweighted setting. First, we show that for k = 3 the core is never
empty. We present Algorithm 3, a polynomial time algorithm that finds a 3-bounded partition P
in the core. The algorithm begins with all agents in singletons and iteratively considers for each
3-bounded coalition whether it strongly blocks the current partition.

Theorem 7. In the unweighted setting, there always exists a 3-bounded partition in the core, and it
can be found in polynomial time.
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Figure 3: An example of a weighted graph in which the core is empty, for k = 3.

Algorithm 3: Finding a 3-bounded partition in the core

1 Input: A graph G(V,E)
Result: A 3-bounded partition P of V in the core.

2 P ← {{v} for every v ∈ V }
3 V ′ ← V
4 outerLoop:
5 for S ⊂ V ′, such that |S| = 2 OR |S| = 3 do
6 if ∀v ∈ S,W (v, S) > u(v, P ) then
7 P ← P−S

8 if S is clique of size 3 then
9 V ′ ← V ′ \ S

10 goto outerLoop
11 return P

Proof. Consider Algorithm 3. Note that for every 3-bounded partition P , if S ∈ P is a clique of
size 3 then every v ∈ S cannot belong to any strongly blocking coalition. Therefore, Algorithm 3
removes such vertices from V ′ (in line 9). Clearly, if Algorithm 3 terminates, the 3-bounded partition
P is in the core. We now show that Algorithm 3 must always terminate, and it runs in polynomial
time. The algorithm initiates a new iteration (line 4) whenever the if statement in line 6 is true,
which can happen when the blocking coalition S, is one of the following:

• Only singletons (i.e., two or three singletons). Then, u(P ) increases by at least 2.

• One agent from a coalition in which she has one neighbor, and two singleton agents. Then,
u(P ) increases by at least 2.

• Two agents, each from a coalition with a single neighbor, and one singleton agent. Then, S
must be a clique of size 3, which increases u(P ) by 2.

• Three agents, each from a coalition with a single neighbor. Then, S must also be a clique of
size 3; however, u(P ) remains the same.

Overall, either u(P ) has increased by at least 2 or S is a clique of size 3 and thus its vertices are
removed from further consideration (in line 9). Since u(P ) is bounded by 2|E| and the number of
vertices is finite, the algorithm must terminate after at most |E|+ |V |/3 iterations.
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For k > 3 it is unclear whether the core can be empty, and how to find a partition in the core.
Therefore, we now investigate additive and multiplicative approximations of the core, which are
defined as follows.

Definition 5.1 (Additive approximation). A k-bounded coalition S is said to ϵa-strongly block a
k-bounded partition P if it improves the utility of each of its members by more than an additive
factor of ϵa. That is, for every v ∈ S, W (v, S) > u(v, P ) + ϵa. A k-bounded partition P is in the
ϵa-core if it does not have any ϵa-strongly blocking k-bounded coalitions.

The ϵm-core, which is the multiplicative approximation of the core is defined similarly. That is,
a k-bounded coalition S is said to ϵm-strongly block a k-bounded partition P if for every v ∈ S,
W (v, S) > ϵm · u(v, P ).

We now show that for k > 3 the ϵa-core, for ϵa = ⌊k2 ⌋ − 1, is never empty. We present
Algorithm 4, a polynomial time algorithm that finds a k-bounded partition P in the ϵa-core. The
algorithm begins with all agents in singletons and iteratively considers for each k-bounded coalition
whether it ϵa-strongly blocks the current partition.

Algorithm 4: Finding a k-bounded partition in the ϵa-core

1 Input: A graph G(V,E)
2 A limit k
3 An additive factor ϵa

Result: A k-bounded partition P of V in the ϵa-core.
4 P ← {{v} for every v ∈ V }
5 V ′ ← V
6 outerLoop:
7 for S ⊂ V ′, such that 1 < |S| ≤ k do
8 if ∀v ∈ S,W (v, S) > u(v, P ) + ϵa then
9 P ← P−S

10 if ∀v ∈ S,W (v, S) ≥ k − 1− ϵa then
11 V ′ ← V ′ \ S
12 goto outerLoop
13 return P

Theorem 8. For ϵa = ⌊k2 ⌋ − 1, there always exists a k-bounded partition in the ϵa-core, and it can
be found in polynomial time.

Proof. Consider Algorithm 4. Note that for every k-bounded partition P , and S ∈ P , if for every
v ∈ S, W (v, S) ≥ k−1−ϵa then every v ∈ S cannot belong to any ϵa-strongly blocking k-bounded
coalition. Therefore, Algorithm 4 removes such vertices from V ′ (in line 11). Clearly, if Algorithm
4 terminates, the k-bounded partition P is in the ϵa-core. We now show that for ϵa = ⌊k2 ⌋ − 1,
Algorithm 4 must always terminate, and it runs in polynomial time.

First, we show that u(P ) never decreases. The algorithm initiates a new iteration (line 6) when-
ever the if statement in line 8 is true. This can happen only if for every v in the blocking coalition
S, u(v, P ) is less than k − 1 − ⌊k2 ⌋ + 1 (since W (v, S) is at most k − 1). Therefore, u(v, P ) <

k − k
2 + 1

2 = k
2 + 1

2 . Since u(v, P ) is a natural number, u(v, P ) ≤ k
2 −

1
2 . When S breaks off, the

social welfare decreases by at most 2 ·
∑
v∈S

u(v, P ), and increases by at least
∑
v∈S

(u(v, P ) + ⌊k2 ⌋).

Since
∑
v∈S

(u(v, P ) + ⌊k2 ⌋) ≥
∑
v∈S

(u(v, P ) + k
2 −

1
2 ) ≥

∑
v∈S

(u(v, P ) + u(v, P )) = 2 ·
∑
v∈S

u(v, P ),

then u(P ) never decreases.
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Next, we show that if u(P ) remains the same, then vertices are removed from further con-
sideration (in line 11). Observe that u(P ) remaining the same entails that 2 ·

∑
v∈S

u(v, P ) =∑
v∈S

(u(v, P ) + ⌊k2 ⌋). That is,
∑
v∈S

u(v, P ) =
∑
v∈S

⌊k2 ⌋. Recall that for every v ∈ S, u(v, P ) ≤ k
2 −

1
2

and note that k
2 −

1
2 ≤ ⌊

k
2 ⌋. Therefore, if u(P ) remains the same, then for every v ∈ S,

u(v, P ) = k
2 −

1
2 . Now, since for every v ∈ S, W (v, S) > u(v, P ) + ⌊k2 ⌋ − 1 and ϵa ≥ 1,

then W (v, S) > k
2 −

1
2 +

k
2 −

1
2 − 1 = k− 2 ≥ k− 1− ϵa. Therefore, all v ∈ S are removed from

further consideration.
Overall, either u(P ) has increased by at least 2 or vertices are removed from further consid-

eration. Since u(P ) is bounded by 2|E| and the number of vertices is finite, the algorithm must
terminate after at most |E|+ |V |

k iterations.

Next, we show that for k > 3 the ϵm-core, for ϵm = 2, is never empty. We use Algorithm 4,
with the following changes:

• The input of the algorithm is ϵm instead of ϵa (in line 3).

• In line 8, we check if for every v in S, W (v, S) > u(v,P )
ϵm

.

• In line 10, we check if for every v in S, W (v, S) ≥ k−1
ϵm

.

We show that this algorithm finds a k-bounded partition P in the ϵm-core in polynomial time.

Theorem 9. For ϵm = 2, there always exists a k-bounded partition in the ϵm-core, and it can be
found in polynomial time.

Finally, we show in simulation that a simple heuristic always finds a partition that is in the core.
Our heuristic function works as follows:

1. Start with a k-bounded partition P , where all the agents are singletons.

2. Iterate randomly over all the k-bounded coalitions until a coalition S is found, which strongly
blocks the partition P .

3. Update P to be P−S , and return to step (2).

The heuristic terminates when either there is no strongly blocking coalition for the partition P (i.e.,
P is in the core), or when in 100 consecutive iterations all of the partitions have already been seen.
In the later case, we restart the heuristic.

We test our heuristic function for k = 5 over more than 100 million random graphs of different
types:

• Random graphs of size 30 with probability of 0.5 for rewiring each edge.

• Random trees of size 30.

• Random connected Watts–Strogatz small-world graphs of size 30, where each node is joined
with its 5 nearest neighbors in a ring topology and with a probability of 0.5 for rewiring each
edge.

Our heuristic always found a k-bounded partition that is in the core. Moreover, we had to restart the
heuristic in only 33 instances, and then a k-bounded partition in the core was found.

11



5.2 Strict Core (SC)
We first show that for every size limit, k, there is at least one graph where there is no k-bounded
partition in the strict core. Indeed, given a size limit k, we build the graph G(V,E), which is a clique
of size k + 1. For every partition P of V , let S be a coalition in P such that |S| < k. Now, any set
of agents of size k that also contains some v ∈ S is a weakly blocking k-bounded coalition for P .
Furthermore, even verifying the existence of the strict core is a hard problem.

Definition 5.2 (SC existence problem). Given a coalition size limit k and a graph G, decide whether
a k-bounded partition exists that is in the strict core.

Theorem 10. The SC existence problem is NP -hard.

5.3 Contractual Strict Core (CSC)
We show that the CSC is never empty. Indeed, given any (G, k), the following algorithm finds a
k-bounded partition in the CSC:

1. Start with a k-bounded partition P , where all the agents are singletons.

2. Iterate over all the coalitions in P until two coalitions, S1, S2, are found, such that |S1| +
|S2| ≤ k and u(P ) < u(P−S1∪S2).

3. Update P to be P−S1∪S2 , and return to step (2).

The algorithm terminates when step 2 does not find two coalitions that meet the required conditions.

Theorem 11. There always exists a k-bounded partition in the CSC, and it can be found in polyno-
mial time.

Proof. At each iteration, the number of the coalitions in P decreases and thus the algorithm must
terminate after at most k − 1 iterations. Consider the k-bounded partition P when the algorithm
terminates. Clearly, there are no two coalitions in P that can benefit from breaking off and joining
together. In addition, observe that every coalition S ∈ P is a connected component. Thus, no
coalition S′ ⊊ S can break off without decreasing the utility of at least one agent from S \ S′.
Therefore, P is in the CSC.

6 Conclusions and Future Work
In this paper, we initiate the study of ASHGs with a bounded coalition size. We provide MnM, an
approximation algorithm for maximizing the utilitarian social welfare and study the computational
aspects of the core, the SC, and the CSC. We note that MnM can be improved such that it finds a
partition that is in the CSC while maintaining its approximation ratio. This is done by running MnM
and iteratively joining together any two coalitions that improve the social welfare (without violating
the size constraint).

There are several interesting directions for future work. Since we show that the MaxUtil problem
cannot be computed in polynomial time (unless P = NP ), it will be interesting to investigate
some variants. For example, the problem of finding a k-bounded partition such that each agent
will be matched with at least one friend in its coalition. Another interesting research direction is to
incorporate skills in our model, motivated by coalitional skill games [3]. That is, each agent has a
set of skills, and each coalition is required to have at least one agent that acquires each of the skills.
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A Deferred Proofs

A.1 Proof of Lemma 1
Proof. Clearly, Cliquesk is NP for every k. We use induction to show that any Cliquesk is NP -
Hard for every k ≥ 3. Cliques3 is known as the ‘partition into triangles’ problem, which was shown
to be NP -Complete [17]. Given that Cliquesk is NP -Hard we show that Cliquesk+1 is also NP -
Hard. Given an instance of the Cliquesk on a graph G(V,E), we construct the following instance.
We build a graph G′(V ′, E′), in which we add a set of nodes V̂ = v̂1, ..., v̂ |V |

k
, i.e., V ′ = V ∪ V̂ . If

e ∈ E then e ∈ E′, and for every v ∈ V, v̂ ∈ V̂ we add (v, v̂) to E′. Clearly, V can be partitioned
into disjoint cliques with exactly k vertices if and only if V ′ can be partitioned into disjoint cliques
with exactly k + 1 vertices.

A.2 Proof of Theorem 2
Proof. Clearly the problem is NP , since if we are given a partition P , a limit k, and the value
υ, we can easily check that ∀S ∈ P , |S| ≤ k and that u(P ) ≥ υ in polynomial time. For the
hardness proof, we use the Cliquesk problem. Given an instance of Cliquesk on an unweighted
graph G(V,E), we use the same graph with the same k and υ = |V |(k − 1) as an instance to the
MaxUtil problem. Clearly, V can be partitioned into disjoint cliques with exactly k vertices if and
only if there exist a k-bounded partition P such that u(P ) = υ.

A.3 Proof of Theorem 6
In order to prove Theorem 6, we must first prove a number of lemmas. Specifically, in Lemma 12
we characterize all the parallel lines in regular polygons with an odd number of sides, and in Lemma
13 we characterize all the parallel lines in regular polygons with an even number of sides.

Lemma 12. Let P = (v1, ..., vn) be a regular polygon, n is odd and n > 3, such that v1, ..., vn are
its vertices. For each side of P there are n−1

2 parallel lines that connect two vertices.

Proof. Let (v1, v2), (v2, v3), ..., (vn, v1) be the sides of the polygon P , and let vivj be the line that
connects vi to vj . We denote by d(p, p′) the Euclidean distance between the points p and p′. We first
show that v1vn is parallel to v2vn−1. Since the sides (v1, v2) and (vn−1, vn) are not parallel, there
exists a point, denoted by x, in which their corresponding lines intersect. Let α1 = ∢v1v2vn−1,
α2 = ∢vnvn−1v2, α3 = ∢vnv1v2, α4 = ∢v1vnvn−1, α5 = ∢xv1vn, α6 = ∢xvnv1, α7 = ∢v1xvn
(Figure 4a demonstrates our notation of the angles for a polygon with 7 vertices). P is a regular
polygon, and thus α3 = α4. Next, α5 = α6 = 180◦ − α3. Thus, d(v1, x) = d(vn, x) and
α5 = 180◦−α7

2 . Now, since d(v2, v1)= d(vn−1, vn), it holds that d(v2, x) = d(vn−1, x). Therefore,
α1 = α2 = 180◦−α7

2 = α5. Finally, since α1 and α5 are corresponding angles and α1 = α5, the
lines v1vn and v2vn−1 are parallel.

Note that since α1 = α2, also ∢v3v2vn−1 = ∢vn−2vn−1v2. Now, if n ≥ 9, a similar argument
can show that v3vn−2 is parallel to v2vn−1. More generally, depending on n, this argument repeats
t times, t = ⌊n4 ⌋. Namely, for any i ∈ 1, 2, ..., t we show that the lines vivn−i+1, vi+1vn−i are
parallel.

We now show that if n ≥ 7, the lines vt+1vn−t, vt+2vn−t−1 are parallel. Since the sides
(vt+1, vt+2) and (vn−t, vn−t−1) are not parallel, there exists a point, denoted by x′, in which
their corresponding lines intersect. Let α′

1 = ∢vt+2vt+1vn−t, α′
2 = ∢vt+1vn−tvn−t−1, α′

3 =
∢vt+1vt+2vn−t−1, α′

4 = ∢vn−tvn−t−1vt+2, α′
5 = ∢x′vt+2vn−t−1, α′

6 = ∢x′vn−t−1vt+2,
α′
7 = ∢vt+2x

′vn−t−1 (Figure 4b demonstrates our notation of the angles for a polygon with 7
vertices. Note that for n = 7, t equals 1.). Since P is a regular polygon and α1 = α2, then α′

1 = α′
2.

Next, since α′
1 = α′

2, then d(vt+1, x
′) = d(vn−t, x

′) and α′
1 =

180◦−α′
7

2 . Now, since d(vt+1, vt+2)=
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Figure 4: An example for a polygon with 7 vertices
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d(vn−t, vn−t−1), it holds that d(vt+2, x
′) = d(vn−t−1, x

′). Therefore, α′
5 = α′

6 =
180◦−α′

7

2 = α′
1.

Finally, since α′
1 and α′

5 are corresponding angles and α′
1 = α′

5, the lines vt+1vn−t and vt+2vn−t−1

are parallel.
Now, if n ≥ 11, a similar argument can show that vt+2vn−t−1 is parallel to vt+3vn−t−2. More

generally, depending on n, this argument repeats t′ times, t′ = ⌊n+1
4 ⌋ − 1. Namely, for any i′ ∈

1, 2, ..., t′ we show that the lines vt+i′vn−t−i′+1, vt+i′+1vn−t−i′ are parallel.
Finally, using the same arguments for all sides, we obtain that for each side of P there are n−1

2
parallel lines that connect two vertices.

Lemma 13. Let P = (v1, ..., vn) be a regular polygon, n is even and n > 3, such that v1, ..., vn are
its vertices. For each side of P there are n

2 − 1 parallel lines that connect two vertices. In addition,
for each line viv((i+2) mod n) there are n

2 − 2 parallel lines that connect two vertices.

Proof. Obviously, every side of the polygon is parallel to another side. Now, using a similar argu-
ment to the one used in Lemma 12 we can show that (v1, vn) is parallel to v2vn−1. This argument
can be repeated ⌊n−2

4 ⌋ times. In addition, the same argument shows that vn
2
vn

2 +1 is parallel to
vn

2 −1vn
2 +2, and can be repeated ⌊n4 ⌋ − 1 times. Since (v1, vn) is parallel to vn

2
vn

2 +1, all said lines
are parallel. Clearly, the same arguments can be used for all sides. Overall, for each side there are
n
2 − 1 parallel lines that connect two vertices. Similar arguments can be used to show that for each
line viv((i+2) mod n) there are n

2 − 2 parallel lines that connect two vertices.

v1

v2

v3

v4

v5

v6

v7

Figure 5: Division of all the edges in a graph with 7 vertices into 7 disjoint groups, using parallel lines.

We can deduce from Lemmas 12 and 13, that given a complete graph, the set of edges can be
partitioned into n subsets, such that each subset is a matching.

Lemma 14. Let G(V,E) be a complete graph with n vertices, n ≥ 3. E can be partition into n
matchings.

Proof. Note that G can be represented as a regular polygon P = (v1, ..., vn). We first consider the
case in which n is odd. The set {(v1, vn), (v2, vn−1), ..., (vn−1

2
, vn−1

2 +2)} is a valid matching, since
all the edges are parallel to each other by Lemma 12. Therefore, for each side of P , we obtain a
matching of size n−1

2 . Since n is odd, there are no two parallel sides in P . Therefore, we obtain n

disjoint matchings of size n−1
2 each, which totals at n(n−1)

2 = |E|. An example for this partition for
n = 7 is shown in Figure 5.
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Next, we consider the case in which n is even. The set {(v1, vn), (v2, vn−1), ..., (vn
2
, vn

2 +1)}
is a valid matching, since all the edges are parallel to each other by Lemma 13. Therefore, for
each side of P we obtain a matching of size n

2 . Now, since n is even, for every side of P there is
exactly one other parallel side. Thus, we obtain n

2 disjoint matchings of size n
2 . In addition, the

set {(vn−1, v1), (vn−2, v2), ..., (vn
2 +1, vn

2 −1)} is a valid matching since all the edges are parallel to
each other (by Lemma 13). Note that this matching does not include an edge in which vn or vn

2
is an

endpoint. Thus, we obtain n
2 disjoint matchings of size n−2

2 . Overall, we obtain n
2 ·

n
2 + n

2 ·
n−2
2 =

n
2 · (

n
2 + n−2

2 ) = n(n−1)
2 = |E|. An example for this partition for n = 8 is shown in Figure 6.

v1

v2

v3

v4

v5

v6

v7

v8

Figure 6: A partition of all the edges in a graph with 8 vertices into 8 disjoint groups, using parallel lines.

We are now ready to prove Theorem 6.

Proof. let Opt = {S1, S2, ...} be an optimal k-bounded partition, and let Mi be a maximum weight
matching for coalition Si. Lemma 14 shows that each coalition Si can be partitioned into |Si|
disjoint matchings. In addition, for each i, |Si| ≤ k. Therefore, for each i,

∑
e∈Mi

w(e) ≥∑
v∈Si

W (v,Si)

k . Let M be the maximum weight matching for G found by Algorithm 1 in its first
step. Clearly,

∑
e∈M w(e) ≥

∑
i

∑
e∈Mi

w(e). In addition, for the k-bounded partition P that
MnM returns, u(P ) ≥

∑
e∈M w(e). Therefore, Algorithm 1 provides a solution for the MaxUtil

problem with an approximation ratio of 1
k for every k ≥ 3, in the weighted setting.

A.4 Proof of Theorem 9
Proof. Clearly, if the algorithm terminates, the k-bounded partition P is in the ϵm-core. We show
that u(P ) always increases. The algorithm initiates a new iteration whenever ∀v ∈ S,W (v, S) >
u(v,P )
ϵm

, which can happen only if S breaks off. When S breaks off, the social welfare decreases by
at most 2 ·

∑
v∈S

u(v, P ), and increases by at least
∑
v∈S

(2 · u(v, P ) + 1). Since
∑
v∈S

(2 · u(v, P ) + 1) >

2 ·
∑
v∈S

u(v, P ), then u(P ) always increases.

A.5 Proof of Theorem 10
Proof. We use a reduction from Cliquesk for the hardness proof. Given an instance of the Cliquesk
on a graph G(V,E), we construct the following instance. We build a graph G′(V ′, E′) such that V ′
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contains all the nodes from V . In addition, for every vx ∈ V we add the nodes v̂x and v1x, . . . , v
k−1
x

to V ′. Now, E′ contains all the edges of E, and for every vx ∈ V and 1 ≤ i ≤ k − 1 we add
(vx, v

i
x), (v

i
x, v̂x) to E′. Finally, for every vx ∈ V and 1 ≤ i, j ≤ k − 1, i ̸= j we add (vix, v

j
x) to

E′. Figure 7 shows this construction for a specific vx when k = 4. We first show that if G cannot be
partitioned into disjoint cliques of size k, then the strict core is empty. Indeed, assume that G cannot
be partitioned into disjoint cliques of size k, and let P be a k-bounded partition of V ′. Then, there
is at least one vertex vx ∈ V that belongs to a coalition S ∈ P , such that either:

1. W (vx, S) < k − 1, or

2. vix ∈ S for some i between 1 and k − 1.

In case 1, the coalition {vx, v1x, . . . , vk−1
x } is a weakly blocking k-bounded coalition. In case 2, the

coalition {v̂x, v1x, . . . , vk−1
x } is a weakly blocking k-bounded coalition. Therefore, if the strict core

is not empty, then G can be partitioned into disjoint cliques of size k.
We now show that if G can be partitioned into disjoint cliques of size k, then the strict core is

not empty. Clearly, in this case G′ can be partitioned into disjoint cliques of size k, and this partition
is in the strict core. Therefore, if the strict core is empty, then G cannot be partitioned into disjoint
cliques of size k.

v1x v2x v3x

v̂x

vx

Figure 7: The reduction construction for a specific vx, when k = 4.

B Additional Results

B.1 Tightness of the Approximation Ratio of the MnM Algorithm in the Un-
weighted Setting

We show that our approximation ratio in the unweighted setting is tight.

Theorem 15. The approximation ratio of MnM for the MaxUtil problem in the unweighted setting
is tight.

Proof. Given k > 2, consider a complete graph of size 2k. In this case, MnM finds a perfect
matching in M1, and thus the partition P returned by MnM contains k groups of 2 nodes. That is,
u(P ) = 2k. On the other hand, an optimal k-bounded partition Opt consists of 2 Cliques of size k,
and thus u(Opt) = 2k(k − 1). That is, MnM provides an approximation of exactly 1

k−1 .

Figure 8 presents a case where k = 5, and G is a complete graph with 10 nodes. Here, P =
{{v1, v2}, {v3, v4}, {v5, v6}, {v7, v8}, {v9, v10}}, as shown in the dotted lines, and thus u(P ) =
10 . However, Opt = {{v1, v2, v3, v4, v5}, {v6, v7, v8, v9, v10}}, as shown in the blue lines, and
u(Opt) = 40.
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Figure 8: An example of a graph in which k = 5, and MnM achieves an approximation ratio of exactly 1
4

.

B.2 MaxUtil with Distributed Partition in Unweighted Setting
We analyze a procedure that attempts to model the behavior of the agents when there is no cen-
tral mechanism that determines the partition. Assume that the agents are split up arbitrarily but
maximally, i.e., in a way that no two coalitions can joint together such that the social welfare will
be higher. We call this procedure Arbmax. Without loss of generality, we assume that every set
S ∈ Arbmax is a connected component. We show that 1

k is an upper bound on the approximation
ratio that Arbmax may guarantee.

Theorem 16. For any k, Arbmax cannot guarantee an approximation ratio better than 1
k

Proof. Given k, consider the following graph G. There are k distinguished nodes, v1, . . . , vk, with
the edges (vi, vi+1) ∈ E for i = 1, . . . , k − 1. Each distinguished node vi has k − 1 additional
neighbors that are connected only to vi, i.e., vi is the internal node of a star graph with k − 1
leaves. Clearly, Opt consists of k coalitions, where each coalition consists of a star graph. Thus,
u(Opt) = 2k(k−1). On the other hand, Arbmax may partition the graph such that the distinguished
nodes v1, . . . , vk are in the same coalition. Since there are no edges between two undistinguished
nodes, the social welfare of this partition is 2(k − 1). Therefore, Arbmax cannot guarantee an
approximation ratio better than 1

k .

Figure 9 presents a case where k = 5, and Arbmax may provide only a 1
5 of the

social welfare provided by an optimal solution. Here, Arbmax may return the partition
P ′ = {{v1, v2, v3, v4, v5}, {v6}, {v7}, {v8}, {v9}, {v10}, {v11}, {v12}, {v13}, {v14}, {v15}, {v16},
{v17}, {v18}, {v19}, {v20}, {v21}, {v22}, {v23}, {v24}, {v25}} and thus u(P ′) =
8, while Opt = {{v1, v6, v7, v8, v9}, {v2, v10, v11, v12, v13}, {v3, v14, v15,
v16, v17}, {v4, v18, v19, v20, v21}, {v5, v22, v23, v24, v25}} and therefore u(Opt) = 40.

B.3 Worst Case Example for the MnM Algorithm in the Weighted Setting
We show that in the weighted setting, MnM cannot guarantee a better approximation ratio. Indeed,
Figure 10 shows an example where k = 3 and MnM = {{v1, v2}, {v3, v4}, {v5, v6}}. In this case,
the outcome of MnM provides only a 2+ϵ

6 of the social welfare provided by the optimal solution
{{v1, v2, v3}, {v4, v5, v6}}. Therefore, for any ϵ > 0, when k = 3, MnM cannot provide an approx-
imation that is better than 1

k + ϵ.
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Figure 9: A case where k = 5, and Arbmax may provide only a 1
5

of the social welfare provided by an optimal
solution.
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Figure 10: A case where k = 3, and MnM provides only a 2+ϵ
6

of the social welfare provided by an optimal
solution.
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B.4 Nash Stablity
Due to [9], for any (G, k) a Nash stable k-bounded partition exists. In this section, we present
Algorithm 5, a polynomial time algorithm that finds such a partition in the unweighted setting. The
algorithm begins with all agents in singletons and iteratively considers for each agent whether it may
benefit from leaving her coalition and joining a coalition of size of at most k − 1.

Algorithm 5: Finding a Nash stable k-bounded partition

1 Input: A graph G(V,E) and a limit k
Result: A k-bounded Nash Stable partition P of V .

2 P ← {{v} for every v ∈ V }
3 outerLoop:
4 for v ∈ V do
5 for S ∈ P do
6 if W (v, S ∪ {v}) > u(v, P ) AND |S| ≤ k − 1 then
7 P ← P−S∪{v}

8 goto outerLoop
9 return P

Theorem 17. There always exists a k-bounded Nash stable partition, and it can be found in poly-
nomial time.

Proof. Consider Algorithm 5. Clearly, when Algorithm 5 terminates, the partition P is a k-bounded
Nash Stable partition. We now show that Algorithm 5 must always terminate, and it runs in poly-
nomial time. Returning to line 3 occurs only when the if statement in line 6 is true, which entails
that u(P ) has increased. Since any increase in u(P ) must be by multiples of 2, and since u(P ) is
bounded by 2|E|, the algorithm must terminate after at most |E| iterations.
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