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Abstract

We study the complexity of deciding whether there is a tie in a given approval-based multiwin-
ner election, as well as the complexity of counting tied winning committees. We consider a
family of Thiele rules, their greedy variants, Phragmén’s sequential rule, and Method of Equal
Shares. For most cases, our problems are computationally hard, but for sequential rules we
find an FPT algorithm for discovering ties (parameterized by the committee size). We also
show experimentally that in elections of moderate size ties are quite frequent.

1 Introduction

In an approval-based multiwinner election, a group of voters expresses their preferences about a set
of candidates—i.e., each voter indicates which of them he or she approves—and then, using some
prespecified rule, the organizer selects a winning committee (a fixed-size subset of the candidates).
Multiwinner elections can be used to resolve very serious matters—such as choosing a country’s
parliament—or rather frivolous ones—such as choosing the tourist attractions that a group of friends
would visit—or those positioned anywhere in between these two extremes—such as choosing a de-
partment’s representation for the university senate. In large elections, one typically does not expect
ties to occur (although surprisingly many such cases are known'), but for small and moderately
sized ones the issue is unclear. While perhaps a group of friends may manage to not spoil their
holidays upon discovery that they were as willing to visit one monument as another, a person not
selected for a university senate due to a tie may be quite upset, especially if this tie is discovered
after announcing the results. To address such possibilities, we study the following three issues:

1. We consider the complexity of detecting if two or more committees tie under a given voting
rule. While for most rules this problem turns out to be intractable, for many settings we find
practical solutions (in most cases it is either possible to use a natural integer linear program-
ming trick or an FPT algorithm that we provide).

2. We consider the complexity of counting the number of winning committees. We do so, be-
cause being able to count winning committees would be helpful in sampling them uniformly.
Unfortunately, in this case we mostly find hardness and hardness of approximation results.

3. We generate a number of elections, both synthetic and based on real-life data, and evaluate
the frequency of ties. It turns out to be surprisingly high.

We consider a subfamily of Thiele rules [28, 1, 15] that includes the multiwinner approval rule
(AV), the approval-based Chamberlin—-Courant rule (CCAV), and the proportional approval voting
rule (PAV), as well as their greedy variants. We also study satisfaction approval voting (SAV), the
Phragmén rule, and Method of Equal Shares (MEqS). This set includes rules appropriate for se-
lecting committees of individually excellent candidates (e.g., AV or SAV), diverse committees (e.g.,
CCAV or GreedyCCAYV), or proportional ones (e.g., PAV, GreedyPAV, Phragmén, or MEQS); see the
works of Elkind et al. [6] and Faliszewski et al. [9] for more details on classifying multiwinner rules
with respect to their application. See also the textbook of Lackner and Skowron [16]. We summarize
our results in Table 1.

'https://en.wikipedia.org/wiki/List_of.close. election_results



Rule UNIQUE-COMMITTEE #WINNING-COMMITTEES

AV P P

SAV P P

CCAV coNP-hard, coW([1]-h. (k)  #P-hard, #W/[1]-hard (k)
PAV coNP-hard, coW([1]-h. (k)  #P-hard, #W/[1]-hard (k)
GreedyCCAV coNP-com., FPT (k) #P-hard, #W/[1]-hard (k)
GreedyPAV coNP-com., FPT (k) #P-hard, #W/|1]-hard (k)
Phragmén coNP-com., FPT (k) #P-hard, #W/|1]-hard (k)
ME(qS (Phase 1) coNP-com., FPT (k) #P-hard

Table 1: Summary of our complexity results.

The issue of ties and tie-breaking has already received quite some attention in the literature,
although typically in the context of single-winner voting. For example, Obraztsova and Elkind [18]
and Obraztsova et al. [19] consider how various tie-breaking mechanisms affect the complexity of
manipulating elections, and recently Xia [30] has made a breakthrough in studying the probability
that ties occur in large, randomly-generated single-winner elections. Xia [31] also developed a
novel tie-breaking mechanism, which can be used for some multiwinner rules, but he did not deal
with such approval rules as we study here. Finally, Conitzer et al. [4] have shown that deciding if a
candidate is a tied winner in an STV election is NP-hard. While STV is not an approval-based rule
and they focused on the single-winner setting, many of our results are in similar spirit. All omitted
proofs are available in the appendix.

2 Preliminaries

By R, we denote the set of nonnegative real numbers. For each integer ¢, we write [t] to mean
{1,...,t}. We use the Iverson bracket notation, i.e., for a logical expression F', we interpret [F]
as 1 if F'is true and as O if it is false. Given a graph G, we write V' (G) to denote its set of vertices
and E(G) to denote its set of edges. For a vertex v, by d(v) we mean its degree (i.e., the number of
edges that are incident to it).

An election E = (C, V) consists of a set of candidates C' = {cy, ..., ¢y} and a collection of
voters V' = (v1,...,v,), where each voter v; has a set A(v;) C C of candidates that he or she
approves. We refer to this set as v;’s approval set or v;’s vote, interchangeably. Similarly, we denote
the set of voters approving candidate ¢; as A(c;). A multiwinner voting rule f is a function that
given an election E = (C, V') and committee size k € [|C|] outputs a family of size-k subsets of C,
i.e., a family of winning committees. Below we describe the rules that we focus on.

Let E = (C, V) be an election and let k be the committee size. Under the multiwinner approval
rule (AV), each voter assigns a single point to each candidate that he or she approves and winning
committees consist of subsets of k£ candidates with the highest scores. Satisfaction approval voting
(SAV) proceeds analogously, except that each voter v € V' assigns 1/|A(v)| points to each candidate
he or she approves. In other words, under AV each voter can give a single point to each approved
candidate, but under SAV he or she needs to split a single point equally among them.

Next we consider the class of Thiele rules, defined originally by Thiele [28] and discussed, e.g.,
by Lackner and Skowron [15] and Aziz et al. [1]. Given a nondecreasing weight function w: N —
R such that w(0) = 0, we define the w-Thiele score (w-score) of a committee S = {s1,..., sk}
in election E to be:

w-scorep(S) = D oy w(|A(v) N S|).

The w-Thiele rule outputs all committees with the highest w-score. We require that for each of our
weight functions w, it is possible to compute each value w() in polynomial time with respect to .
Additionally, we focus on functions such that w(1) = 1 and for each positive integer ¢ it holds that



w(i) —w(i — 1) > w( + 1) — w(i). We refer to such functions, and the Thiele rules that they
define, as 1-concave. Three best-known 1-concave Thiele rules include the already defined AV rule,
which uses function way (t) = ¢, the approval-based Chamberlin—Courant rule (CCAV), which uses
function wecay (t) = [t > 1], and the proportional approval voting rule (PAV), which uses function
weav (1) = iy Vi

While it is easy to compute some winning committee under the AV rule in polynomial time (out
of possibly exponentially many), for the other Thiele rules, including CCAV and PAV, even deciding
if a committee with at least a given score exists is NP-hard (see the works of Procaccia et al. [22]
and Betzler et al. [2] for the case of CCAYV, and the works of Aziz et al. [1] and Skowron et al. [24]
for the general case). Hence, sometimes the following greedy variants of Thiele rules are used (£ is
the input election and k is the desired committee size):

Let f be a w-Thiele rule. Its greedy variant, denoted Greedy-f, first sets Wy := () and
then executes k iterations, where for each ¢ € [k], in the i-th iteration it computes W; :=
W,;_1 U{c} such that c is a candidate in C'\ W;_; that maximizes the w-score of ;. Finally,
it outputs Wy In case of internal ties, i.e., if at some iteration there is more than one candidate
that the algorithm may choose, the algorithm outputs all committees that can be obtained for
some way of resolving each of these ties. In other words, we use the parallel-universes tie-
breaking model [4].

When we discuss the operation of some Greedy- f rule on election E and we discuss the situation
after its ¢-th iteration, where, so far, subcommittee WW; was selected, then by the score of a (not-yet-
selected) candidate ¢ we mean the value w-scoreg(W; U {c}) — w-scoreg(W;), i.e., the marginal
increase of the w-score that would result from selecting c. We refer to the greedy variants of CCAV
and PAV as GreedyCCAV and GreedyPAV (in the literature, these rules are also sometimes called
sequential variants of CCAV and PAV, see, e.g., the book of Lackner and Skowron [16]). Given a
greedy variant of a 1-concave Thiele rule, it is always possible to compute at least one of its winning
committees in polynomial time by breaking internal ties arbitrarily. Further, it is well-known that
the w-score of this committee is at least a 1 — 1/e =~ 0.63 fraction of the highest possible w-score;
this follows from the classic result of Nemhauser et al. [17] and the fact that w-score is monotone
and submodular.

The Phragmén (sequential) rule proceeds as follows (see, e.g., the work of Sdnchez-Fernandez
et al. [23]):

Let E = (C, V) be an election and let k be the committee size. Each candidate costs a unit of
currency. The voters start with no money, but they receive it continuously at a constant rate.
As soon as there is a group of voters who approve a certain not-yet-selected candidate and
who together have a unit of currency, these voters “buy” this candidate (i.e., they give away
all their money and the candidate is included in the committee). The process stops as soon as
k candidates are selected. For internal ties, we use the parallel-universes tie-breaking.

Method of Equal Shares (MEQqS), introduced by Peters and Skowron [20] and Peters et al. [21], is
similar in spirit, but gives the voters their “money” up front (we use the same notation as above):

Initially, each voter has budget equal to #/|v|. The rule starts with an empty committee and
executes up to k iterations as follows (for each voter v, let b(v) denote v’s budget in the current
iteration): For each not-yet-selected candidate ¢ we check if the voters that approve ¢ have at
least a unit of currency (i.e., D, . e b(v) > 1). If so, then we compute value p. such that
> wea(e) min(b(v), pc) = 1, which we call the per-voter cost of c. We extend the committee
with this candidate ¢/, whose per-voter cost p,s is lowest; the voters approving ¢’ “pay” for
him or her (i.e., each voter v € A(c’) gives away min(b(v), p.-) of his or her budget). In case
of internal ties, we use the parallel-universes tie-breaking. The process stops as soon as no
candidate can be selected.



The above process, referred to as Phase 1 of MEQS, often selects fewer than k candidates. To
deal with this, we extend the committee with candidates selected by Phragmén (started off with the
budgets that the voters had at the end of Phase 1). We jointly refer to the greedy rules, Phragmén,
MEqS, and Phase 1 of MEqS as sequential rules.

We assume that the reader is familiar with basic classes of computational complexity such as
P, NP, and coNP. #P is the class of functions that can be expressed as counting accepting paths
of nondeterministic polynomial-time Turing machines. Additionally, we consider pararameterized
complexity classes such as FPT and W([1]. #W|[1] is a parameterized counting class which relates to
W/1] in the same way as #P relates to NP [11]. When discussing counting problems, it is standard
to use Turing reductions: A counting problem # A reduces to a counting problem #B if there is a
polynomial time algorithm that solves # A in polynomial time, provided it has oracle access to #B
(i.e., it can solve # B in constant time).>

3 Unique Winning Committee

In this section we consider the problem of deciding if a given multiwinner rule outputs a unique
committee in a given election. Formally, we are interested in the following problem.

Definition 3.1. Let f be a multiwinner voting rule. In the f-UNIQUE-COMMITTEE problem we are
given an election E and a committee size k, and we ask if | f(E, k)| = 1.

It is a folk result that for AV and SAV this problem is in P (see beginning of Section 4 for an
argument). For Thiele rules other than AV, the situation is more intriguing. In particular, already the
problem of deciding if a given committee is winning under the CCAV rule is coNP-complete [25].
We show that for 1-concave Thiele rules other than AV the UNIQUE-COMMITTEE problem is coNP-
hard (and we conjecture that the problem is not in coNP).

Proposition 3.1. Let f be a 1-concave w-Thiele rule other than AV. Then f-UNIQUE-COMMITTEE
is coNP-hard.

Proof. Let x = w(2) — w(l) and assume, for now, that + < 1. We give a reduc-
tion from INDEPENDENT-SET to the complement of f-UNIQUE-COMMITTEE. An instance of
INDEPENDENT-SET consists of a graph G and integer k, and we ask if there are k vertices nei-
ther of which is connected with the others. Let G’ be a graph obtained from G by adding k vertices
such that each of the new vertices is connected to each of the old ones (but the new vertices are not
connected to each other). If G does not have a size-k independent set, then G’ has a unique one, and
if G has at least one size-k independent set, then G’ has at least two. Let us denote the vertices of
G' as V(@) = {v1,...,v,} and its edges as E(G’) = {e1,...,em}. Let 0 be the highest degree
of a vertex in V(G”). We fix the committee size to be k and we form an election £ with candidate
set V(G’) and with the following voters:

1. For each edge e, = {v;, v, } there is a single voter who approves v; and v;.
2. For each vertex v; there are 6 — d(v;) voters approving v;.

Consider a set of k vertices from V(G’). If this set is an independent set, then interpreted as a
committee in election F, it has w-score equal to dk. On the other hand, if S is not an independent
set, then its score is at most (0k — 1) +x < dk. We know that G’ has an independent set of size k. If
G also has one, then our election has at least two winning committees and, otherwise, the winning
committee is unique.

Let us now consider the case that z = 1. Since f is not AV, there certainly is an integer ¢ such
that w(t) —w(t —1) = 1 and w(t + 1) —w(t) < 1. In this case, we modify the reduction by adding
t — 1 candidates approved by every voter and changing the committee size to be ¢t + k — 1. O

2For #WT[1], the running time can even be larger, but our #W/1]-hardness proofs use polynomial-time reductions.



For greedy variants of Thiele rules (with the natural exception of AV) and for the Phragmén rule,
deciding if the winning committee is unique is coNP-complete. Our proof for the greedy variants of
Thiele rules is inspired by a complexity-of-robustness proof for GreedyPAV, provided by Faliszewski
et al. [10]. For Phragmén, somewhat surprisingly, their robustness proof directly implies our desired
result. We also get analogous results for Method of Equal Shares and its Phase 1.

Theorem 3.2. Let f be a I-concave w-Thiele rule, f # AV. Greedy-f-UNIQUE-COMMITTEE is
coNP-complete.

Corollary 3.3. UNIQUE-COMMITTEE is coNP-complete for GreedyCCAV, GreedyPAV, and
PHRAGMEN.

Theorem 3.4. UNIQUE-COMMITTEE is coNP-complete for Phase 1 of MEgS.

Proof. The following nondeterministic algorithm shows membership in coNP: First, we determin-
istically compute the output of Phase 1, breaking internal ties in some arbitrary way. This way we
obtain some committee 1. Next we rerun Phase 1, at each internal tie nondeterministically trying
all possibilities. We accept on computation paths that output W and we reject on those outputting
some other committee. This algorithm accepts on all computation paths if and only if the rule has a
unique winning committee.

Next, we give a reduction from the complement of the classic NP-complete problem, X3C. An
instance of X3C consists of a universe set U = {u1,...,us,} and a family S = {S1,...,Ss3,} of
size-3 subsets of U. We ask if there are n sets from S whose union is U (we refer to such a family as
an exact cover of U; note that the sets in such a cover must be disjoint). Without loss of generality,
we assume that each member of U belongs to exactly three sets from S [14] and that n is even.

Now we describe our election. Ideally, we would like to distribute different amounts of budget
between different voters, but as MEqS splits the budget evenly, we design the election in such a
way that in the initial iterations the respective voters spend appropriate amounts of money on the
candidates that otherwise are not crucial for the construction. We form the following groups of voters
(we reassure the reader that the analysis is more pleasant than the following two enumerations may
suggest):

1. Group B, which contains 144n® — 12n voters.
2. Group By, which contains 54n® + 9n? voters.

3. Group U’, which models the elements of the universe set U. For each u; € U, there is a single
corresponding voter in U’. We have |U’| = 3n.

4. Group U”, which serves a similar purpose as U’, but contains more voters. Specifically, for
each u; € U, there are 6n corresponding voters in U”; |[U”| = 18n2.

5. Group V4, which contains 12n voters.
6. Group Vg, which contains 9n voters.
7. Two voters, dy and ds.

In total, there are 198n3 + 27n% + 12n + 2 voters. Further, we have the following groups of
candidates:

1. Group Cp of 144n3 — 12n? candidates approved by the 144n? voters from B U V.

2. Group Cys of 54n? + 24n? + 57/2 candidates approved by the 54n® + 27n? + 3n voters from
By uuU' uu”.

3. Candidate p approved by the 12n voters from V.



Candidate d approved by the 15n voters from V,,q U U".
Candidates c¢; and co, both approved by d; and ds.
Group D of 15n2 + 457” + 5 candidates approved by d.

N » A

For each set Sy € S such that Sy = {u;,u;,u;} we have a corresponding candidate s,
approved by: (a) three unique voters from Vg, (b) the voters from U’ and U”’ that correspond
to the elements u;, u;, u¢. We write S to denote this group of candidates and we refer to its
members as the S-candidates. Each S-candidate is approved by 3 +3 4+ 3 -6n = 18n + 6
voters.

We have 198n2 + 27n2 + 28n + 9 candidates in total. We set the committee size k to be equal
to the number of voters, i.e., k = 198n% + 27n2 + 12n + 2. Let us consider the following two
committees (note that each of them contains fewer than k candidates; indeed, Phase 1 of MEQS
sometimes chooses committees smaller than requested):

W4 =0Cpg UCUUSU{617CQ}U{CZ}7
Wp =Cp UCUUSU{Cl,Cg}U{p}.

We claim that Phase 1 of MEqS always outputs committee W, and if (U, S) is a yes-instance then
it also outputs Wp,.

Let us analyze how Phase 1 of MEqS proceeds on our election. Since the committee size is equal
to the number of voters, initially each voter receives budget equal to 1.

At first, we will select all candidates from C'z. Indeed, there are 144n3 — 12n? candidates in this
group, each approved by 144n? voters (from B U V},4). Each of these voters pays 1/144n® for each of
the candidates (this is the lowest per-voter candidate cost at this point). After these purchases, each
voter from B U V,,q will be left with budget equal to 1 — (144n3 — 12n?) - (1/144n®) = 1/12n.

Next, we will select all candidates from Cy. Indeed, this set contains 54n® + 24n? + 5n/o
candidates approved by 54n3 + 27n2 + 3n voters (from By U U’ U U"") who have not spent any
part of their budget yet. All candidates in Cy; will be purchased at the same pre-voter cost of
1/(54n3+27n%+3n) (the lowest one at this point). Each voter in By U U’ U U"” will be left with

2
— 3 2415 L1 3 2 — 3n”+n/2 _ 6n+1 _
budgzt ecllual to 1 — (54n® + 24n® + 51/2) - 1/(54n+27n+3n) = ST 3 = T08n?5inTE —
n+

T aenTe) = 1/(18n+6).

Next, we consider the S-candidates who, at this point, have the highest approval score among
the yet unselected candidates. As each S-candidate is approved by exactly 18n + 6 voters and each
voter still has budget higher or equal to 1/(18n+6), we keep selecting the S-candidates at the per-voter
cost of 1/(18n+6) as long as there is at least one such candidate whose all voters still have budget of
at least 1/(18n+6).

Upon selecting a given S-candidate, corresponding to set .Sy, all the voters who approve him
or her pay 1/(18n+6). This includes the three unique voters from Vg and the voters from U’ and
U" who correspond to the members of Sy. Prior to this payment, the voters from U’ and U” have
budget equal to 1/(18n+6), so they end up with 0 afterward (and we say that they are covered by
this S-candidate). Consequently, the S-candidates that we buy at the per-voter cost of 1/(18n+6)
correspond to disjoint sets.

Now let us consider what happens when there is no S-candidate left who can be purchased at the
per-voter cost of 1/(18n+6). This means that for each unselected S candidate, at least 6n + 1 voters
approving him have already been covered and have no budget left. Hence, for a given S-candidate
there are at least 6n + 1 voters (from U’ and U") whose budget is 0, at most 12n + 2 voters (from
U’ and U"") who each have budget of 1/(isn+6), and three voters (from Vg) who each have budget
equal to 1. To buy this S candidate, the voters from U’ and U” would have to use up their whole
budget, and the voters from Vs would have to pay at least:

1 1\ _ 18n+46—(12n+2) _  6ni4
(1 -(12n+2) 5775) = n3-(18n+g) = Bintis



each. However, at this point there are two candidates that can be purchased at lower per-voter cost.

Indeed, candidate p could be purchased by the 12n voters from V4 at the per-voter cost of 1/12n
(after buying the candidates from Cp, they still have exactly this amount of budget left). Since
candidate d also is approved by all the voters from V,,4, and also by the voters from U’, candidate d
would either have the same per-voter cost as p (in case all the members of U’ were already covered)
or would have an even lower per-voter cost. The only other remaining candidates are c1, cs, and the
candidates from D, but their per-voter costs are greater or equal to 1/2. Hence, at this point, MEqS
either selects p or d. The former is possible exactly if the already selected S-candidates form an
exact cover of U’ (and, hence, correspond to an exact cover for our input instance of X3C).

If we select p, then the 12n voters from V),4 use up all their budget. The remaining voters who
approve d, those in U’, have total budget equal to at most 37 - ﬁ < 1, so d cannot be selected in
any of the following iterations (within Phase 1). On the other hand, if we select d, then all the voters

1

from U’ would have to pay all they had left (that is, either 0 or Tsngg- each) and voters from V;,q

would split the remaining cost. That is, each voter from V,,q would have to pay at least:

1-3n' 15776 _ 18n46-3n __ _ 15046
12n ~ 12n-(18n+6) ~— 12n-(18n+6)"

Consequently, each voter from V),; would be left with at most:

1 15046 _ 18n+6—(15n+6) 1

12n 12n-(18n+6) 12n-(18n+6) T T2n424¢

This would not suffice to purchase p, as 12n - m < 1. Thus either we select d (and not p) or we

select p (and not d; where this is possible only if we previously purchased S-candidates that cover
all members of U").

In the following iterations, we purchase all remaining S-candidates (because each of them is
approved by three unique voters from Vg), as well as candidates ¢; and co (voters di and dy buy
them with per-voter cost of 1/2 for each). This uses up the budget of d; and, so, no candidate from
D is selected. All in all, if there is no exact cover for the input X3C instance, then Wy is the unique
winning committee, but otherwise Wy and W), tie. This finishes the proof. O

UNIQUE-COMMITTEE is also coNP-complete for the full version of MEqS. To see this, it suf-
fices to note that after adding enough voters with empty votes (for example, m?n? when m is the
number of candidates and n is the current number of voters), MEqS becomes equivalent to Phragmén
(because per-voter budget is so low that Phase 1 becomes vacuous) and inherits its hardness.

On the positive side, for sequential rules we can solve UNIQUE-COMMITTEE in FPT time with
respect to the committee size: In essence, we first compute some winning committee and then we
try all ways of breaking internal ties to find a different one. For small values of k, such as, e.g.,
k < 10, the algorithm is fast enough to be practical.

Theorem 3.5. Let f be MEqS, Phase 1 of MEqS, Phragmén, or a greedy variant of a 1-concave
Thiele rule. There is an FP'T algorithm for f-UNIQUE-COMMITTEE parameterized by the commit-
tee size.

Proof. Let E be the input election and let k be the committee size. First, we compute some commit-
tee Win f(FE, k), by running the algorithm for f and breaking the internal ties arbitrarily. Next, we
rerun the algorithm, but whenever it is about to add a candidate into the constructed committee, we
do as follows (let 1" be the set of candidates that the algorithm can insert into the committee): If T’
contains some candidate c that does not belong to W, then we halt and indicate that there are at least
two winning committees (W and those that include ¢). If T is a subset of W, then we recursively
try each way of breaking the tie. If the algorithm completes without halting, we report that there
is a unique winning committee. The correctness is immediate. The running time is equal to O(k!)
times the running time of the rule’s algorithm (for the case where each tie is broken in a given way).
Indeed, at the first internal tie we may need to recurse over at most k different candidates, then over
at most k£ — 1, and so on. O



For 1-concave Thiele rules other than AV, UNIQUE-COMMITTEE is coW[1]-hard when parame-
terized by the committee size (this follows from the proof of Proposition 3.1 as INDEPENDENT-SET
is W[1]-hard for parameter k). To solve the problem in practice, we note that for each 1-concave
Thiele rule there is an integer linear program (ILP) whose solution corresponds to the winning com-
mittee. We can either use the ability of some ILP solvers to output several solutions (which only
succeeds in case of a tie), or we can use the following strategy: First, we compute some winning
committee using the basic ILP formulation. Then, we extend the formulation with a constraint
that requires the committee to be different from the previous one and compute a new one. If both
committees have the same score, then there is a tie.

4 Counting Winning Committees

Let us now consider the problem of counting the winning committees. Formally, our problem is as
follows.

Definition 4.1. Let f be a multiwinner voting rule. In the f-#WINNING-COMMITTEES problem we
are given an election and a committee size k; we ask for |f(E, k)|.

There are polynomial-time algorithms for computing the number of winning committees for AV
and SAV. For an election E with committee size k, we first sort the candidates with respect to their
scores in a non-increasing order and we let = be the score of the k-th candidate. Then, we let S be
the number of candidates whose score is greater than x, and we let T' be the number of candidates
with score equal to . There are ( }:S) winning committees.

Proposition 4.1. {AV, SAV}-#WINNING-COMMITTEES €P

On the other hand, whenever f-UNIQUE-COMMITTEE is intractable, so is f-#WINNING-
COMMITTEES. Indeed, it immediately follows that there is no polynomial-time (2 — &)-
approximation algorithm for f-#WINNING-COMMITTEES for any € > 0 (if such an algorithm
existed then it could solve f-UNIQUE-COMMITTEE in polynomial time as for an election with a
single winning committee it would have to output 1, and for an election with 2 winning committees
or more, it would have to output an integer greater or equal at least % > 1, so we could distinguish

these cases®). However, for all our rules a much stronger result holds.

Proposition 4.2. Let f be a 1-concave Thiele rule (different from AV), its greedy variant, Phragmén,
MEqS or Phase I of MEqS. Unless P = NP, there is no polynomial-time approximation algorithm
Sfor f-#WINNING-COMMITTEES with polynomially-bounded approximation ratio.

Proof. For Phase 1 of MEqS, it suffices to use the proof of Theorem 3.4 with candidate p replaced
by polynomially many copies, each approved by the same voters. Either we get a unique winning
committee or polynomially many tied ones. The same trick works with the greedy variants of 1-
concave Thiele rules and Theorem 3.2, and Phragmén and Corollary 3.3.

For the case of 1-concave Thiele rules, we use the following strategy. Let p be some positive
integer and let (G, k) be an instance of INDEPENDENT-SET, where G is a graph and % is an integer.
We form a graph GP whose vertex set is: V(GP) = {v' | v € V(G),i € [p]} and where two
vertices, u' and v/, are connected by an edge either if i # j or if i = j and u and v are connected
by an edge in G. Consequently, if G has x independent sets of size k, then GP has pz such sets
(each independent set of GP is a copy of an independent set of G, using only vertices with the
same superscript). Hence, if in the proof of Propostion 3.1 we replace graph G with graph GP,

3We assume here that if a solution for a counting problem is = € N, then an c--approximation algorithm, with o« > 1, has
to output an integer between =/« and auz. If we allowed rational values on output, the inapproximability bound would drop

tox/i—s.



where p is some polynomial function of the input size, then we obtain an election that either has a
unique winning committee (if the input graph did not have an independent set of a required size)
or an election that has polynomially many winning committees (if the graph had at least one such
independent set). O

We note that the construction given in the proof of Proposition 3.1 also shows that for each
1-concave Thiele rule f # AV, f-#WINNING-COMMITTEES is both #P-hard and #W|1]-hard
for parameterization by the committee size (because this reduction produces elections that have one
more winning committee than the number of size-k independent sets in the input graph, and counting
independent sets is both #P-complete and #W|1]-complete for parameterization by & [29, 11]). For
greedy variants of 1-concave Thiele rules and Phragmén, the situation is more interesting because
UNIQUE-COMMITTEE is in FPT (for the parameterization by the committee size). Yet, #WINNING-
COMMITTEES is also hard.

Theorem 4.3. Let f be Phragmén or a greedy variant of a 1-concave Thiele rule (different from
AV). f-#WINNING-COMMITTEES is #P-hard and #W{1]-hard (for the parameterization by the
committee size).

Proof. We first consider greedy variants of 1-concave Thiele rules. Let w be the weight function
used by f. Let z = w(2) — w(1). We have w(1) = 1 and we assume that x < 1 (we will consider
the other case later). We show a reduction from the #M ATCHING problem, where we are given a
graph G, an integer k, and we ask for the number of size-k matchings (i.e., the number of size-k
sets of edges such that no two edges in the set share a vertex). #MATCHING is #W/[1]-hard for
parameterization by k [5].

Let G and k be our input. We form an election E where the edges of G are the candidates and
the vertices are the voters. For each edge e = {u, v}, the corresponding edge candidate is approved
by the vertex voters corresponding to u and v. We also form an election E),, equal to I except that
it has two extra voters who both approve a single new candidate, p.

We note that every candidate in both £ and E,, is approved by exactly two voters. Hence, the
greedy procedure first keeps on choosing candidates whose score is 2 (i.e., edges that jointly form a
matching, or candidate p in F,). It selects the candidates with lower scores (i.e., edges that break a
matching) only when score-2 candidates disappear.

Let W be some size-k f-winning committee for election £,. We consider two cases:

1. If p does not belong to W, then the edge candidates in W form a matching. If it were not the
case, then before including an edge candidate with score lower than 2, the greedy algorithm
would have included p in the committee.

2. If p belongs to W then W \ {p} is an f-winning committee of size k& — 1 for election E.
Indeed, if we take the run of the greedy algorithm that computes W and remove the iteration
where p is selected, we get a correct run of the algorithm for election E and committee size
k — 1. Further, for every size-(k — 1) committee winning in F, S U {p} is a size-k winning
committee in £, (because we can always select p in the first iteration).

So, to compute the number of size-k matchings in G, it suffices to count the number of winning
size-k committees in F,, and subtract from it the number of winning size-(k — 1) committees in E.
If 2 = 1, then we find the smallest value ¢ such that w(t) —w(t — 1) = land w(t + 1) —w(t) < 1
and use the same construction as above, except that there are ¢ — 1 dummy candidates approved by
every voter.

Regarding Phragmén, it turns out that the same construction as for the greedy variants of 1-
concave Thiele rules still works. In time ¢ = 1/2, each voter has /2 budget and each candidate
(including p) can be purchased (because each candidate is approved by exactly two voters and their
total budget is 1). Hence, if W is a winning committee for £, but W does not include p, then all its



members were purchased at time 1/2. It means that these candidates were approved by disjoints sets
of voters, whose corresponding edges edges form a size-k matching. On the other hand, if p belongs
to W then W \ p is a winning size-(k — 1) committee for E, as in the above proof. O

Corollary 4.4. #WINNING-COMMITTEES is #P-hard and #W|1]-hard (for the parameterization
by the commiittee size) for GreedyCCAV, GreedyPAV, Phragmén, and MEqS.

The above result holds for MEQS because of its relation to Phragmén. For Phase 1 of MEqS, we
have #P-hardness, but #W/[1]-hardness so far remains elusive.

Theorem 4.5. #WINNING-COMMITTEES is #P-hard for Phase 1 of MEgS.

Proof. We give a reduction from #X3C, i.e., a counting version of the problem used in the proof
of Theorem 3.4. Let I,; be the same election as constructed in that proof, except for the following
change: Group By contains 9n voters fewer and the 9n voters from Vg additionally approve the
candidates from Cy;. Consequently, the committee size decreases by 9n (because we maintain that
the committee size is equal to the number of voters). Because of this change, when selecting the
candidates from Cy;, the budget of the voters from Vg drops to 1/(18n+6). Then, after the iterations
where S-candidates are selected at per-voter cost of 1/(18n+6), no further S-candidates are selected
(because the voters approving them have total budget lower than 1). As a consequence, Phase 1 of
MEqS applied to election E,,; chooses all committees of the following forms:

1. Committees consisting of all candidates from Cp U Cyy U {¢1,c2} U {d} and a subset of S-
candidates such that all other S-candidates include at least one covered voter from U’ U U” .

2. Committees consisting of all candidates from Cz U Cy U {¢1,¢2} U {p} and a subset of
S-candidates that correspond to an exact cover of U.

Next, we form election E; identical to E,, except that it does not include candidate p. For Eg,
Phase 1 of MEqS selects all the committees of the first type above. Hence, to compute the number
of solutions for our instance of #X3C, it suffices to subtract the number of committees selected by
Phase 1 of MEqS for E/; from the number of committees selected by Phase 1 of MEqQS for E,4. This
completes the proof. [

S Experiments

A’priori, it is not clear how frequent are ties in multiwinner elections. In this section we present
experiments that show that they, indeed, are quite common, at least if one considers elections of
moderate size.

5.1 Statistical Cultures and the Basic Experiment

Below we describe the statistical cultures that we use to generate elections (namely, the resampling
model, the interval model, and PabuLib data) and how we perform our basic experiments.

Resampling Model [27]. We have two parameters, p and ¢, both between 0 and 1. To generate
an election with candidate set C' = {cy, ..., ¢, } and with n voters, we first choose uniformly at
random a central vote u approving exactly |pm| candidates. Then, we generate the votes, for each
considering the candidates independently, one by one. For a vote v and candidate ¢, with probability
1 — ¢ we copy c¢’s approval status from u to v (i.e., if u approves ¢, then so does v; if u does not
approve c then neither does v), and with probability ¢ we “resample” the approval status of ¢, i.e.,
we let v approve ¢ with probability p (and disapprove it with probability 1 — p). On average, each
voter approves about pm candidates.



Interval Model. In the Interval model, each voter and each candidate is a point on a [0, 1] interval,
chosen uniformly at random. Additionally, each candidate ¢ has radius r. and a voter v approves
canidate c if the distance between their points is at most r.. Intuitively, the larger the radius, the
more appealing is a given candidate. We generate the radii of the candidates by taking a base radius
r as input and, then, choosing each candidates’ radius from the normal distribution with mean r and
standard deviation /2. Such spatial models are discussed in detail, e.g., by Enelow and Hinich [7, 8].
In the approval setting, they were recently considered, e.g., by Bredereck et al. [3] and Godziszewski
etal. [13].

PabuLib Data. PabuLib is a library of real-life participatory budgeting (PB) instances, mostly
from Polish cities [26]. A PB instance is a multiwinner election where the candidates (referred
to as projects) have costs and the goal is to choose a “committee” of at most a given total cost.
We restrict our attention to instances from Warsaw, which use approval voting, and we disregard
the cost information (while this makes our data less realistic, we are not aware of other sources
of real-life data for approval elections that would include sufficiently large candidate and voter
sets). To generate an election with m candidates and n voters, we randomly select a Warsaw PB
instance, remove all but m candidates with the highest approval score, and randomly draw n voters
(with repetition, restricting our attention only to voters who approve at least one of the remaining
candidates). We consider 120 PB instances from Warsaw that include at least 30 candidates (each
of them includes at least one thousand votes, usually a few thousand).

Basic Experiment. In abasic experiment we fix the number of candidates m, the committee size k,
and a statistical culture. Then, for each number n of voters between 20 and 100 (with a step of 1) we
generate 1000 elections with m candidates and n voters, and for each of them compute whether our
rules have a unique winning committee (we omit GreedyCCAV). Then we present a figure that on
the x axis has the number of voters and on the y axis has the fraction of elections that had a unique
winning committee for a given rule. For AV and SAV, we use the algorithm from the beginning of
Section 4, for sequential rules we use the FPT algorithm from Theorem 3.5, and for CCAV and PAV
we use the ILP-based approach, with a solver that provides multiple solutions.

5.2 Results

All our experiments regard 30 candidates and committee size 5 (in the appendix we also consider
50 and 100 candidates, and committee size 10; general results are analogous). First, we performed
three basic experiments for the resampling model with the parameter p (approval probability) set so
that, on average, each voter approved either k/2, k, or 2k candidates. We used ¢ = 0.75 (according
to the results of Szufa et al. [27], this value gives elections that resemble the real-life ones). We
present the results in the top row of Figure 1. Next, we also performed two basic experiments for
the Interval model (with the base radius selected so that, on average, each voter approved either k/2
or k candidates), and with the PabuLib data (see the second row of Figure 1). These experiments
support the following general conclusions.

First, for most scenarios and for most of our rules, there is a nonnegligible probability of having
a tie (where, depending on the rule and the number of voters, this probability may be as low as 5%
or as high as nearly 100%). This justifies why one needs to be ready to detect and handle ties in
moderately sized multiwinner elections.

Second, we see that SAV generally leads to fewest ties, CCAV leads to most, and AV often holds
a strong second position in this category (in the sense that it also leads to a high probability of having
a tie in many settings). The other rules are in between. Phase 1 of MEQS often has significantly
fewer ties than the other rules, but full version of MEqS does not stand out. PAV occasionally leads
to fewer ties (in particular, on PabuLib data and on the resampling model with 2k approvals per
vote).
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Figure 1: Results of our experiments. By “k/2 approvals/vote” we mean that on average a single vote contains
approximately & /2 approvals (the meaning of k and 2k is analogous).

6 Summary

We have shown that, in general, detecting ties in multiwinner elections is intractable, but doing so
for moderately-sized ones is perfectly possible. Our experiments show that ties in such elections are
a realistic possibility and one should be ready to handle them. Intractability of counting winning
committees suggests that tie-breaking by sampling committees may not be feasible. Looking for
fair tie-breaking mechanisms is a natural follow-up research direction.
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A The Proof of Theorem 3.2

Membership in coNP is clear: Given an election and committee size, we run the greedy algorithm
breaking the ties arbitrarily, and we compute some winning committee W. Then, we rerun the
same algorithm nondeterministically, at each internal tie trying each possible choice; if a given
computation completes with a committee different than W then it rejects (and the whole computation
rejects; indeed, we found two different winning committees) and otherwise it accepts (if all paths
accept, then the whole computation accepts; indeed, all ways of handling the internal ties lead to the
same final committee). In the following, we focus on showing coNP-hardness.

Let 61 = w(1) — w(0), 02 = w(2) — w(1), and d5 = w(3) — w(2). For example, for wpay we
would have §; = 1, §p = % and d3 = % By our assumptions on weight functions, we know that
(a) these numbers are rational, (b) 6; = 1 (but we will not use this), and that (¢) §; > do > d3. We
additionally assume that §; — d5 > do — d3, but later we will show how to relax this assumption.

We give a reduction from INDEPENDENT SET to the complement of Greedy-f-
UNIQUE-COMMITTEE. Our input consists of a graph G, where V(G) = {vi,...,v,} and
E(G) = {e1,...,em}, and an integer k. The question is if there are k vertices in V(G) that
are not connected by an edge. Without loss of generality, we assume that G is 3-regular, i.e., each
vertex touches exactly three edges [12]. Let « be a positive integer such that «d; and a% are
integers and a(§; — 82) > ;. We fix values t = a(nmk)3, T = 10a(nmk)®, and D = BT'Y,
where f is the smallest positive integer greater than 51‘%52; while we could choose smaller ones,
these suffice.

We form an election where the candidate set is V(G) U {p, d} and we have the following three
groups of voters:

1. For each edge e, = {v;,v;}, we have ¢ voters with approval set {v;, v;, d}.

2. For each candidate v; we have D + T3 + ((m — 1)n + 1)T — 3t voters with approval set {v; },
and for each pair of distinct candidates v; and v; we have T voters with approval set {v;, v, }.

3. Wehave D + T3 +nmT + 1 — %kT — mt voters with approval set {p, d}, %ﬁ”kt
voters who approve d, and mt voters who approve p.

We let the committee size be n + 1. We claim that if G contains an independent set of size & then
there are two Greedy- f winning committees, V (G) U {d} and V(G) U {p}, and otherwise there is
only one, V(G) U {d}. The proof follows.

Let X = 6;D + 6,72 + §ynmT. Prior to the first iteration of Greedy-f, each candidate v; has
score X, candidate d has score: X — (01 — 02)kT + 3(d1 — d2)kt + 01, and candidate p has score:
X — (81 — 02)kT + 61 . During the first & iterations, Greedy- f selects some k candidates from V(G).
This is so, because whenever some candidate v; is selected, the scores of the remaining members
of V(G) decrease by (6; — d2)T due to the voters in the second group, and by at most (§; — d2)¢,
due to the voters in the first group. Hence, after the first k — 1 iterations each remaining candidate
from V(G) has score at least X — (61 — d2)(k — 1)T — (61 — d2)(k — 1)¢, which—by our choices of
«, t, and T—is larger than the scores that both p and d had even prior to the first iteration (note that
the scores of the candidates cannot increase between iterations). On the other hand, after the k-th
iteration, each remaining member of V(G) has score at most X — (d; — d2)kT, which is less than
p has (since p is only approved by voters who do not approve members of V(G), at this point his
or her score is the same as prior to the first iteration). As a consequence, in the (k + 1)-st iteration
Greedy- f either chooses p or d. Let us now analyze which one of them.

Let S be the set of candidates from V(G) selected in the first k iterations. If S forms an inde-
pendent set, then prior to the (k + 1)-st iteration, the score of d is X — (6; — d2)kT + 61. This
is so, because for each candidate v; in S, d loses exactly 3(d; — d2)t points due to the voters in
the first group that correspond to the three edges that include v; (since .S is an independent set, for



each member of S these are different three edges). In this case, Greedy-f is free to choose either
among p and d. However, if S is not an independent set, then the score of d drops by at most
(3k — 1)(61 — d2)t + (d2 — d3)t. This is so, because .S contains at least two candidates v; and v;
that are connected by an edge; when the second one of them is included in the committee, then the
score of d drops by at most 2(d; — d2) + (d2 — d3). In this case Greedy-f is forced to select d in
the (k + 1)-st iteration. In the following n — k iterations, f selects the remaining members of V' (G)
(after either p or d is selected in the (k + 1)-st iteration, the score of the other one drops so much
that he or she cannot be selected,; this is due to the D voters who approve {p, d}).

It remains to observe that if G contains an independent set of size k, then Greedy- f can choose
its members in the first k iterations. This is the case, because whenever Greedy- f chooses a member
of the independent set, then the score of its other members never drops more than the score of the
other remaining vertex candidates. Hence, if G has a size-k independent set, then, due to the parallel-
universes tie-breaking, Greedy- f outputs two winning committees, V(G) U {p} and V(G) U {d}.
Otherwise we have a unique winning committee V' (G) U {d}. This completes the proof for the case
that 51 — do > Jo — Js.

Let us now consider the case where §; —da < 02 —d3. Let 04 = w(4) —w(3), 5 = w(5) —w(4),
and so on. If there is some positive integer ¢ such that §;11 — dr12 > d¢42 — d¢4-3 then it suffices to
use the same reduction as above, extended so that we have candidates d;, . .., d; that are approved
by every voter and the committee size is increased by ¢. Greedy- f will choose these ¢ candidates in
the first ¢ iterations and then it will continue as described in the reduction, with 0441, d;42, and 6;43
taking the roles of 41, 62, and d3. In fact, such a ¢ must exist. Otherwise, if §;41 —6s12 < dppo—0it3
for every t then either f is AV (which we assumed not to be the case) or w is not nondecreasing,
which is forbidden by definition.

B Explanation for Corollary 3.3

The results for GreedyCCAV and GreedyPAV follow directly from the preceding theorem. For
Phragmén, Faliszewski et al. [10] have shown that the following problem, known as Phragmén-
ADD-ROBUSTNESS-RADIUS, is NP-complete: Given an election F, committee size k, and num-
ber B, is it possible to add at most B approvals to the votes so that the winning committee under
the resolute variant of the Phragmén rule (where all internal ties are resolved according to a given
tie-breaking order) changes. Their proof works in such a way that adding approvals only affects how
ties are broken. Hence, effectively, it also shows that UNIQUE-COMMITTEE is coNP-complete for
the (non-resolute) variant of Phragmén.

C Additional Figures

In this section we show several additional sets of basic experiments for the resampling model, the
disjoint model, and the interval model.



a w "
s 10 210 210
£ = b=]
£ £ £
g 0.8 g 0.8 g 0.8
=2 o # =3
2 2 / 2
£06 0.6 —o sAV £06
£ c _— 5
; 4+ GreedyPAV Z 04 —— GreedyPAV ; 0.4 4+ GreedyPAV
S04 e MEGS 30 e MEGS S - MEgS
£ PN, —=— MEqS-Phase-l | T . —=- MEqS-Phase-l | & —~ MEqS-Phase-I
5 ¥ R Phragmen 3o . a- Phragmen 302 a-- Phragmen
;0.2 S — A g . A ; TN
= e e CCAY 5 . o CCAV Z00] s oAV
o o 0.0 [= Sy
20 30 40 50 60 70 80 90 100 20 30 40 50 60 70 80 90 100 20 30 40 50 60 70 80 90 100

n - number of voters

(@m =30,k =5,
k /2 approvals/vote,
resampling model, ¢ = 0.75

n - number of voters

(b)ym =30,k =5,
k approvals/vote
resampling model, ¢ = 0.75

n - number of voters

(c)m =30,k =25,
2k approvals/vote
resampling model, ¢ = 0.75

0 » n
4 1.0 210 ¢ 10
£ E £
£08 E08 £0.8
s s s
8 S 8
g 2 2
£o06 . So6| / — sav £ 06 frid
c A £ o o PAV £ i o PAV
z e —e— GreedyPAV 2 —+ GreedyPav 204 —e GreedyPAV
204 P - MEQS 204 . 4 MEQS 3 ) -+ MEQS
k= ‘ .~ 0, 8 MEgS-Phase-l ' . —m— MEgS-Phase-I = —=— MEgS-Phase-|
2 Nrggd T ~a-- Phragmen 2 ~ - Phragmen 202 L. =ac phragmen
5021, O 502 ” T 5 ) o
B PP ccav = i ccav B 0.0 woem ccav
& & 20
20 30 40 50 60 70 80 90 100 20 30 40 50 60 70 80 90 100 20 30 40 50 60 70 80 90 100

n - number of voters

(dm =50,k=5,
k/2 approvals/vote,
resampling model, ¢ = 0.75

n - number of voters

(e)m =50,k =5,
k approvals/vote
resampling model, ¢ = 0.75

n - number of voters

(fym =50, k = 5,
2k approvals/vote
resampling model, ¢ = 0.75

“ w a
b4 10 210 210
£ =] =]
£ £ 15

0.8 .
£ E o8 £08
8 8 8
= o ) il =YW
£06 So06 £06 ey A —e— SAV
£ £ g e N
s esyens | s | £, 23 ooy
304 e MEQS 204 . 4 MEQS 2 S MEQS
£ . —=— MEGS-Phase-l = - —s— MEqS-Phase-l £ e —s— MEQS-Phase-|
2 02 /sl phragmen 2 —4- Phragmen 202 # 4 Phragmen
S s 202 ared ¥ AV S e - A
2 L ceav = F e ccav B ” o cony
=2 =2 200

20 30 40 50 60 70 80 90 100 20 30 40 50 60 70 80 90 100 20 30 40 50 60 70 80 90 100

n - number of voters

() m =100, k = 5,
k /2 approvals/vote,
resampling model, ¢ = 0.75

n - number of voters

(h)m =100, k = 5,
k approvals/vote
resampling model, ¢ = 0.75

n - number of voters

(i) m =100, k = 5,
2k approvals/vote
resampling model, ¢ = 0.75

Figure 2: Results for the resampling model with committee size k = 5 and different numbers of candidates.
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Figure 3: Results for the resampling model with committee size kK = 10 and different numbers of candidates.
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Figure 4: Results for PabuLib data with committee sizes k = 5 (top row) and £ = 10 (bottom row), and
different numbers of candidates.
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Figure 5: Results for the Interval model with committee size £ = 5 and different numbers of candidates.
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Figure 6: Results for the Interval model with committee size kK = 10 and different numbers of candidates.
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