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Abstract

We initiate the work towards a comprehensive picture of the smoothed satisfaction of
voting axioms to provide a finer and more realistic foundation for comparing voting
rules. We adopt the smoothed social choice framework [51], where an adversary
chooses arbitrarily correlated “ground truth” preferences for the agents, and then
independent random noises are added. We focus on characterizing the smoothed
satisfaction of two well-studied voting axioms: Condorcet criterion and participation.
We prove that for any fixed number of alternatives, when the number of voters n is
sufficiently large, the smoothed satisfaction of the Condorcet criterion under a wide
range of voting rules is 1, 1 − exp(−Θ(n)), Θ(n−0.5), exp(−Θ(n)), or being Θ(1)
and 1 − Θ(1) at the same time; and the smoothed satisfaction of participation is
1 − Θ(n−0.5). Our results not only address long-standing open questions by Berg
and Lepelley [3] in 1994, but also confirm the following high-level message: the
Condorcet criterion is a bigger concern than participation under realistic models.

1 Introduction

The “widespread presence of impossibility results” [45] is one of the most important and
fundamental challenges in social choice theory. Such results assert that no “perfect” voting
rule exists for three or more alternatives [1, 25, 42]. Despite the mathematical impossibilities,
an (imperfect) voting rule must be designed and used in practice for agents to make a
collective decision. In the social choice literature, the dominant paradigm of doing so has
been the axiomatic approach, i.e., voting rules are designed, evaluated, and compared to each
other w.r.t. their satisfaction of desirable normative properties, known as (voting) axioms.

Most definitions of dissatisfaction of voting axioms are based on worst-case analysis.
For example, a voting rule r does not satisfy Condorcet Criterion (CC for short), if
there exists a collection of votes, called a profile, where the Condorcet winner exists but is
not chosen by r as a winner. The Condorcet winner is the alternative who beats all other
alternatives in their head-to-head competitions. As another example, a voting rule r does
not satisfy Participation (Par for short), if there exist a profile and a voter who has
incentive to abstain from voting. An instance of dissatisfaction of Par is also known as the
no-show paradox [16]. Unfortunately, when the number of alternatives m is at least four, no
irresolute voting rule satisfies CC and Par simultaneously [36].

While the classical worst-case analysis of (dis)satisfaction of axioms can be desirable in
high-stakes applications such as political elections, it is often too coarse to serve as practical
criteria for comparing different voting rules inmore frequent, low-stakes applications, such as
business decision-making [5], crowdsourcing [31], informational retrieval [30], meta-search
engines [12], recommender systems [48], etc. A decision maker who desires both axioms
would find it hard to choose between a voting rule that satisfies CC but not Par, such as
Copeland, and a voting rule that satisfies Par but not CC, such as plurality. A finer and
more quantitative measure of satisfaction of axioms is therefore called for.

One natural and classical approach is to measure the likelihood of satisfaction of axioms
under a probabilistic model of agents’ preferences, in particular the independent and identi-
cally distributed (i.i.d.) uniform distribution over all rankings, known as Impartial Culture
(IC) in social choice. This line of research was initiated and established by Gehrlein and
Fishburn in a series of work in the 1970’s [21, 23, 22], and has become a “new sub-domain of
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the theory of social choice” [11]. Some classical results were summarized in the 2011 book
by Gehrlein and Lepelley [24], and recent progresses can be found in the 2021 book edited
by Diss and Merlin [11].

While this line of work is highly significant and interesting from a theoretical point of
view, its practical implications may not be as strong, because most previous work focused
on a few specific distributions, especially IC, which has been widely criticized to be unre-
alistic (see, e.g., [39, p. 30], [20, p. 104], and [27]). Indeed, conclusions drawn under any
specific distribution may not hold in practice, as “all models are wrong” [7]. Technically,
characterizing the likelihood of satisfaction of CC and of Par are already highly challenging
w.r.t. IC, and despite that Berg and Lepelley [3] explicitly posed them as open questions
in 1994, not much is known beyond a few voting rules. Therefore, the following question
largely remains open.

How likely are voting axioms satisfied under realistic models?

The importance of successfully answering this question is two-fold. First, it tells us
whether the worst-case violation of an axiom is a significant concern in practice. Second, it
provides a finer and more quantitative foundation for comparing voting rules.

We believe that the smoothed analysis proposed by Spielman and Teng [46] provides a
promising framework for addressing the question. In this paper, we adopt the smoothed
social choice framework [51], which models the satisfaction of a per-profile voting axiom X
by a function X(r, P ) ∈ {0, 1}, where r is a voting rule and P is a profile, such that r satisfies
X if minP X(r, P ) = 1. Let Π denote a set of distributions over all rankings over the m
alternatives (denoted by L(A)), which represents the “ground truth” preferences for a single
agent that the adversary can choose from. Let n denote the number of agents. Because
a higher value of X(r, P ) is more desirable, the adversary aims at minimizing expected
X(r, P ) by choosing ~π ∈ Πn, and then P is generated from ~π. The smoothed satisfaction of

X under r with n agents, denoted by X̃min
Π (r, n), is defined as follows [51]:

X̃min
Π (r, n) = inf~π∈Πn PrP∼~πX(r, P ) (1)

Notice that agents’ ground truth preferences can be arbitrarily correlated, while the noises
are independent, which is a standard assumption in the literature and in practice [51].

Example 1 (Smoothed CC under plurality). Let X = CC and r = Plu denote the
irresolute plurality rule, which chooses all alternatives that are ranked at the top most often
as the (co-)winners. Suppose there are three alternatives, denoted by A = {1, 2, 3}, and
suppose Π = {π1, π2}, where π1 and π2 are distributions shown in Table 1.

Table 1: Two distributions over three alternatives. “123” represents the ranking 1 � 2 � 3.

123 132 231 321 213 312

π1 1/4 1/4 1/8 1/8 1/8 1/8
π2 1/8 1/8 3/8 1/8 1/8 1/8

Then, we have C̃C
min

Π (Plu, n) = inf~π∈{π1,π2}n PrP∼~π CC(Plu, P ). When n = 2, the
adversary has four choices of ~π, i.e., {(π1, π1), (π1, π2), (π2, π1), (π2, π2)}. Each ~π leads to

a distribution over the set of all profiles of two agents, i.e., L(A)2. We have C̃C
min

Π (Plu, 2) =
1, because CC is satisfied at all profiles of two agents. As we will see later in Example 3,

for all sufficiently large n, C̃C
min

Π (Plu, n) = exp(−Θ(n)).
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1.1 Our Contributions

We initiate the work towards a comprehensive picture of smoothed satisfaction of voting
axioms under commonly-studied voting rules, by focusing on characterizing the smoothed
satisfaction of CC and Par in this paper, due to their importance, popularity, and incom-
patibility [36]. Let m denote the number of alternatives and let n denote the number of
agents. Our technical contributions are two-fold.

First, smoothed satisfaction of CC (Theorem 1 and 2, Lemma 2). We prove
that, under mild assumptions, for any fixed m ≥ 3 and any n that is sufficiently large,
the smoothed satisfaction of CC under a wide range of voting rules is 1, 1 − exp(−Θ(n)),
Θ(n−0.5), exp(−Θ(n)), or being Θ(1) and 1 − Θ(1) at the same time (denoted by Θ(1) ∧
(1−Θ(1))). The 1 case and the 1− exp(−Θ(n)) case are positive news, because they state
that CC is satisfied almost surely when n is large, regardless of the adversary’s choice. The
remaining three cases are negative news, because they state the adversary can make CC to
be violated with non-negligible probability, no matter how large n is.

Second, smoothed satisfaction of Par (Theorem 3–6, Lemma 3). We prove that,
under mild assumptions, for any fixed m ≥ 3 and any n that is sufficiently large, the
smoothed satisfaction of Par under a wide range of voting rules is 1−Θ(n−0.5). These are
positive news, because they state that Par is satisfied almost surely for large n, regardless
of the adversary’s choice. While this message may not be surprising at a high level, as
the probability for a single agent to change the winner vanishes as n → ∞, the theorems
characterize asymptotically tight rates for Par to be satisfied.

In particular, straightforward corollaries of these theorems to IC address the open ques-
tions posed by Berg and Lepelley [3] in 1994, and also provides a mathematical justification
of two common beliefs related to Par: first, IC exaggerates the likelihood for paradoxes to
happen, and second, the dissatisfaction of Par is not a significant concern in practice [28],
especially when it is compared to our results on smoothed CC. Table 2 summarizes corol-
laries of our results under some commonly-studied voting rules w.r.t. IC as well as the
satisfaction of CC and Par on Preflib data [32].

Table 2: Satisfaction of CC and Par w.r.t. IC and w.r.t. 315 Preflib profiles of linear orders under
elections category. Experimental results are presented in Appendix G.

Axiom Plu. Borda Veto STV Black MM Sch. RP Copeland0.5

Theory
CC Θ(1) ∧ (1−Θ(1)) always satisfied
Par always satisfied 1−Θ

(
n−0.5

)
Preflib

CC 96.8% 92.4% 74.2% 99.7% 100% 100% 100% 100% 100%
Par 100% 100% 100% 99.7% 99.4% 100% 100% 100% 99.7%

Smoothed satisfaction of axioms in general. Theorems 1–6 and Lemma 2 and 3 are
proved by (non-trivial) applications of a categorization lemma (Lemma 1), which charac-
terizes smoothed satisfaction of large class of axioms that can be represented by unions of
polyhedra, including CC and Par. While we focus on presenting the results on CC and
Par in this paper, the categorization lemma appears to be promising tool for analyzing
other axioms in future work.

1.2 Related Work and Discussions

The Condorcet criterion (CC) was proposed by Condorcet in 1785 [9], has been one
of the most classical and well-studied axioms, and has “nearly universal acceptance” [41,
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p. 46]. CC is satisfied by many commonly-studied voting rules, with the exceptions of posi-
tional scoring rules [15] and multi-round-score-based elimination rules, such as STV. Most
previous work focused on characterizing the Condorcet efficiency, which is the probability
for the Condorcet winner to win conditioned on its existence. The study can be dated
back to Fishburn’s computer simulations [14, 13]. Analytical work was pioneered by Paris
[40], and Gehrlein and Fishburn [22] proved that when there are three alternatives (m = 3),
Borda maximizes the asymptotic Condorcet efficiency under IC among all positional scoring
rules. This result was generalized to arbitrary m by Newenhizen [37]. Beyond positional
scoring rules, the study was mostly based on computer simulations, see, e.g., [17, 18, 34, 38].

The participation axiom (Par) was motivated by the no-show paradox [16] and was
proved to be incompatible with CC for every m ≥ 4 [36]. The likelihood of Par under
commonly studied voting rules w.r.t. IC was explicitly suggested by Berg and Lepelley [3] in
1994 as an open question and has been investigated in a series of works including [29, 28, 49],
see [24, Chapter 4.2.2]. In particular, Lepelley and Merlin [28] analyzed the likelihood of
different kinds of no-show paradoxes for three alternatives under scoring runoff rules, which
includes STV, w.r.t. IC and other distributions, and “strongly believe that the no-show
paradox is not an important flaw of the scoring run-off voting systems”.

Our work vs. previous work on CC and Par. Our results address open questions
by Berg and Lepelley [3] about the likelihood of satisfaction of CC and Par in two dimen-
sions: first, we conduct smoothed analysis, which extends i.i.d. models and is believed to
be significantly more general and realistic. Second, our results cover a wide range of voting
rules whose likelihood of satisfaction under CC or Par even w.r.t. IC were not mathemat-
ically characterized before, including CC under STV and Par under maximin, Copeland,
ranked pairs, Schulze, and Black’s rule. While all results in this paper assume that the
number of alternatives m is fixed, they are already more general than many previous work
that focused on m = 3.

Smoothed analysis. There is a large body of literature on the applications of smoothed
analysis to various computational problems [47]. Its main idea, i.e., the worst average-case
analysis, has been proposed and investigated in other disciplines as well, for example, it is the
central idea in frequentist statistics (as in the frequentist expected loss and minimax decision
rules [4]) and is also closely related to the min of means criteria in decision theory [26].

Recently, Baumeister et al. [2] and Xia [51] independently proposed to conduct smoothed
analysis in social choice. We adopt the framework in the latter work, though our motivation
and goal are quite different. We aim at providing a comprehensive picture of smoothed
satisfaction of voting axioms. [51] focused on analyzing smoothed likelihood of Condorcet’s
voting paradox and the ANR impossibility on anonymity and neutrality. [52] focused on
characterizing the smoothed likelihood of ties. On the technical level, while Lemma 1 is a
straightforward corollary of [52, Theorem 2], applications of it can be highly non-trivial and
problem dependent as commented in [52], which is the case of this paper. We believe that
Lemma 1’s main merit is conceptual, as it provides a general categorization of smoothed
satisfaction of a large class of per-profile axioms for future work.

2 Preliminaries

For any q ∈ N, we let [q] = {1, . . . , q}. Let A = [m] denote the set of m ≥ 3 alternatives.
Let L(A) denote the set of all linear orders over A. Let n ∈ N denote the number of agents
(voters). Each agent uses a linear order R ∈ L(A) to represent his or her preferences, called
a vote, where a �R b means that the agent prefers alternative a to alternative b. The
vector of n agents’ votes, denoted by P , is called a (preference) profile, sometimes called
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an n-profile. The set of n-profiles for all n ∈ N is denoted by L(A)∗ =
⋃∞
n=1 L(A)n. A

fractional profile is a profile P coupled with a possibly non-integer and/or negative weight
vector ~ωP = (ωR : R ∈ P ) ∈ Rn for the votes in P . It follows that a non-fractional profile
is a fractional profile with uniform weight, namely ~ωP = ~1. Sometimes the weight vector is
omitted when it is clear from the context or when ~ωP = ~1.

For any (fractional) profile P , let Hist(P ) ∈ Rm!
≥0 denote the anonymized profile of P ,

also called the histogram of P , which contains the total weight of every linear order in L(A)
according to P . An irresolute voting rule r : L(A)∗ → (2A \ {∅}) maps a profile to a non-
empty set of winners in A. A resolute voting rule r is a special irresolute voting rule that
always chooses a single alternative as the (unique) winner. We say that a voting rule r is a
refinement of another voting rule r, if for every profile P , r(P ) ⊆ r(P ).

(Un)weighted majority graphs and (weak) Condorcet winners. For any (fractional)
profile P and any pair of alternatives a, b, let P [a � b] denote the total weight of votes in
P where a is preferred to b. Let WMG(P ) denote the weighted majority graph of P , whose
vertices are A and whose weight on edge a → b is wP (a, b) = P [a � b] − P [b � a]. Let
UMG(P ) denote the unweighted majority graph, which is the unweighted directed graph that
is obtained from WMG(P ) by keeping the edges with strictly positive weights. Sometimes
a distribution π over L(A) is viewed as a fractional profile, where for each R ∈ L(A) the
weight on R is π(R). In such cases, we let WMG(π) denote the weighted majority graph of
the fractional profile represented by π.

The Condorcet winner of a profile P is the alternative that only has outgoing edges in
UMG(P ). A weak Condorcet winner is an alternative that does not have incoming edges
in UMG(P ). Let CW(P ) and WCW(P ) denote the set of Condorcet winners and weak
Condorcet winners in P , respectively. Notice that CW(P ) ⊆ WCW(P ) and |CW(P )| ≤ 1.
The domain of CW(·) and WCW(·) can be naturally extended to all weighted or unweighted
directed graphs.

For example, a distribution π̂, WMG(π̂), and UMG(π̂) for m = 3 are illustrated in
Figure 1. We have CW(π̂) = ∅ and WCW(π̂) = {1, 2}.

π̂ =

 1 � 2 � 3 w.p. 1/4
2 � 1 � 3 w.p. 1/4
other ranking w.p. 1/8

=⇒WMG(π̂) =

1

3

2

!
"

!
" =⇒ UMG(π̂) =

1

3

2

Figure 1: π̂, WMG(π̂) (only positive edges are shown), and UMG(π̂).

As another example, let πuni denote the uniform distribution over L(A). Then, the
weight on every edge in WMG(πuni) is 0 and UMG(πuni) does not contain any edge.

Due to the space constraint, we focus on presenting smoothed CC on positional scoring
rules and MRSE rules in the main text, whose irresolute versions are defined below. Their
resolute versions can be obtained by applying a tie-breaking mechanism on the co-winners.
See Section A for definitions of other rules studied in Section 4.

Integer positional scoring rules. An (integer) positional scoring rule r~s is characterized
by an integer scoring vector ~s = (s1, . . . , sm) ∈ Zm with s1 ≥ s2 ≥ · · · ≥ sm and s1 > sm.
For any alternative a and any linear order R ∈ L(A), we let ~s(R, a) = si, where i is the
rank of a in R. Given a profile P with weights ~ωP , the positional scoring rule r~s chooses
all alternatives a with maximum

∑
R∈P ωR ·~s(R, a). For example, plurality uses the scoring

vector (1, 0, . . . , 0), Borda uses the scoring vector (m − 1,m − 2, . . . , 0), and veto uses the
scoring vector (1, . . . , 1, 0).

Multi-round score-based elimination (MRSE) rules. An irresolute MRSE rule r for
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m alternatives is defined by a vector of m− 1 rules (r2, . . . , rm), where for every 2 ≤ i ≤ m,
ri is a positional scoring rule over i alternatives that outputs a total preorder over them in
the decreasing order of their scores. Given a profile P , r(P ) is selected in m−1 rounds. For
each 1 ≤ i ≤ m− 1, in round i a loser (an alternative with the lowest score) under rm+1−i
is eliminated. We use the parallel-universes tie-breaking (PUT) [10] to select winners—an
alternative a is a winner if there is a way to break ties among the losers in each round, so
that a is the remaining alternative after m− 1 rounds. If an MRSE rule r only uses integer
position scoring rules, then it is called an int-MRSE rule. Commonly studied int-MRSE
rules include STV, which uses plurality in each round, Coombs, which uses veto in each
round, and Baldwin’s rule, which uses Borda in each round.

Example 2 (Irresolute STV). Figure 2 illustrates the execution of irresolute STV,
denoted by STV, un-
der πuni (the uniform
distribution) and π̂
be the distribution in
Figure 1, where each
node represents the
(tied) losers of the
corresponding round,
and each edge repre-
sents the loser to be
eliminated. We have
STV(πuni) = {1, 2, 3}
and STV(π̂) = {1, 2}.

{2, 3}

Winner {3}

{1, 2, 3}
1 2

2

{2}

3

{1, 3}

{3}

1

{1}

3

{1, 2}

{2}

1

{1}

2

3

{3}
3

{1, 2}

{2}

1

{1}

2

πuni !𝜋Profile

Round 1 (#𝑟%)

Round 2 (#𝑟&)

Figure 2: STV under πuni and π̂ (defined in Figure 1).

Axioms of voting. We focus on per-profile axioms [51] in this paper. A per-profile axiom
is defined as a function X that maps a voting rule r and a profile P to {0, 1}, where 0
(respectively 1) means that r violates (respectively, satisfies) the axiom at P . Then, the
classical (worst-case) satisfaction of the axiom under r is defined to be minP∈L(A)∗ X(r, P ).

For example, a (resolute or irresolute) rule r satisfies CC, if minP∈L(A)∗ CC(r, P ) = 1,
where CC(r, P ) = 1 if and only if either (1) there is no Condorcet winner under P , or
(2) the Condorcet winner is a co-winner of P under r. A resolute rule r satisfies Par, if
minP∈L(A)∗ Par(r, P ) = 1, where Par(r, P ) = 1 if and only if no voter has incentive to
abstain from voting. Formally, let P = (R1, . . . , Rn), then

[Par(r, P ) = 1]⇐⇒
[
∀j ≤ n, r(P ) �Rj r(P −Rj)

]
,

where P −Rj is the (n− 1)-profile that is obtained from P by removing the j-th vote. For
any pair of alternatives a and b, we write {a} �Rj {b} if and only if a �Rj b.

Many commonly-studied axioms are per-profile axioms. See Appendix B for a list of 13
well-studied per-profile axioms and one non-per-profile axiom.

Smoothed satisfaction of axioms. Given a per-profile axiom X, a set Π of distributions
over L(A), a voting rule r, and n ∈ N, the smoothed satisfaction of X under r with n agents,

denoted by X̃min
Π (r, n), is defined in Equation (1) in the Introduction. We note that the

“min” in the superscript means that the adversary aims at minimizing the satisfaction of
X. Formally, Π is part of the single-agent preference model defined as follows.

Definition 1 (Single-Agent Preference Model [51]). A single-agent preference model
is denoted by M = (Θ,L(A),Π), where Θ is the parameter space, L(A) is the sample space,
and Π consists of distributions indexed by Θ. M is strictly positive if there exists ε > 0
such that the probability of any linear order under any distribution in Π is at least ε. M is
closed if Π (which is a subset of the probability simplex in Rm!) is a closed set in Rm!.
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Example 1 illustrates a simple single-agent preference model for m = 3, where Π =
{π1, π2}. Other examples can be found in [51, Example 2 in the appendix].

3 The Smoothed Satisfaction of Condorcet Criterion

Smoothed CC under Integer Positional Scoring Rules. We first define almost Con-
dorcet winners (ACW) of a profile P , which are the two alternatives that are tied in the
UMG and beat all other alternatives in head-to-head competitions.

Definition 2 (Almost Condorcet Winners). For any unweighted directed graph G over
A, a pair of alternatives a, b are almost Condorcet winners, denoted by ACW(G), if (1) a
and b are tied in G, and (2) for any other alternative c /∈ {a, b}, G has a → c and b → c.
For any profile P , let ACW(P ) = ACW(UMG(P )).

For example, 1 and 2 are ACWs of π̂ (as a fractional profile) in Figure 1. By definition,
|ACW(G)| is either 0 or 2, and when it is 2, WCW(G) = ACW(G).

We are now ready to present the theorem that characterizes smoothed CC under integer
positional scoring rules, where the condition for each case is characterized by first viewing
distributions π in the convex hull of Π as fractional profiles, then verifying properties of
r~s(π), CW(π), ACW(π), and WCW(π).

Theorem 1 (Smoothed CC: Integer Positional Scoring Rules). For any fixed m ≥ 3,
let M = (Θ,L(A),Π) be a strictly positive and closed single-agent preference model, let r~s
be an irresolute integer positional scoring rule, and let r~s be a refinement of r~s. For any
n ∈ N with 2 | n,

C̃C
min

Π (r~s, n) =



1− exp(−Θ(n)) if ∀π ∈ CH(Π), |WCW(π)| × |r~s(π) ∪WCW(π)| ≤ 1

Θ(n−0.5) if

{
(1) ∀π ∈ CH(Π),CW(π) ∩ (A \ r~s(π)) = ∅ and

(2) ∃π ∈ CH(Π) s.t. |ACW(π) ∩ (A \ r~s(π))| = 2

exp(−Θ(n)) if ∃π ∈ CH(Π) s.t. CW(π) ∩ (A \ r~s(π)) 6= ∅
Θ(1) ∧ (1−Θ(1)) otherwise

For any n ∈ N with 2 - n,

C̃C
min

Π (r~s, n) =


1− exp(−Θ(n)) same as the 2 | n case

exp(−Θ(n)) if ∃π ∈ CH(Π) s.t.

{
(1) CW(π) ∩ (A \ r~s(π)) 6= ∅ or

(2) |ACW(π) ∩ (A \ r~s(π))| = 2

Θ(1) ∧ (1−Θ(1)) otherwise

Generality. We believe that Theorem 1 is quite general, as it can be applied to any re-
finement of any irresolute integer positional scoring rule (i.e., using any tie-breaking mecha-
nism) w.r.t. any Π that satisfies mild conditions. The power of Theorem 1 is that it converts
complicated probabilistic arguments about smoothed CC to deterministic arguments about
properties of (fractional) profiles in CH(Π), which are much easier to check. In particular,
it can be easily applied to i.i.d. distributions (including IC) as shown in Example 3 below.

Intuitive explanations of the conditions. While the conditions for the cases in The-
orem 1 may appear technical, they have intuitive explanations. Take the 2 | n case for
example. The 1− exp(−Θ(n)) case happens if every π ∈ CH(Π) is a “robust” instance
of CC satisfaction, in the sense that after any small perturbation is introduced to π, it
is still an instance of CC satisfaction. For the Θ(n−0.5) case, condition (1) states that
every π ∈ CH(Π) is an instance of CC satisfaction, and condition (2) requires that some
π ∈ CH(Π) corresponds to a “non-robust” instance of CC satisfaction, in the sense that
after a small perturbation ~η is added to π, CC is violated at π + ~η. The exp(−Θ(n))
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case happens if there exists a “robust” instance of CC dissatisfaction π ∈ CH(Π), in the
sense that after any small perturbation is introduced to π, it is still an instance of CC
dissatisfaction. The Θ(1) ∧ (1−Θ(1)) case holds if none of the other cases hold.

Odd vs. even n. The 2 - n case has similar explanations. The main difference is that when
2 - n, the UMG of any n-profile must be a complete graph. Therefore, when ACW(π) 6= ∅,
with high probability one of the almost Condorcet winners is the Condorcet winner in
the randomly-generated n-profile. Then, the Θ(n−0.5) case in 2 | n becomes part of the
exp(−Θ(n)) case in 2 - n.

Example 3 (Applications of Theorem 1 to plurality). In the setting of Example 1,
we apply Theorem 1 to any sufficiently large n with 2 | n and any refinement of irresolute
plurality, denoted by Plu, for the following sets of distributions.

• Π = {π1, π2}. We have C̃C
min

Π (Plu, n) = exp(−Θ(n)), because let π′ = 3π1+π2

4 , we

have CW(π′) = WCW(π′) = {2}, ACW(π′) = ∅, and Plu(π′) = {1}.

• Π1 = {π1}. We have C̃C
min

Π1
(Plu, n) = Θ(n−0.5), because CW(π1) = ∅, WCW(π1) =

ACW(π1) = {2, 3}, and Plu(π1) = {1}.

• Π2 = {π2}. We have C̃C
min

Π2
(Plu, n) = 1 − exp(−Θ(n)), because CW(π2) =

WCW(π2) = {2},ACW(π2) = ∅, and Plu(π2) = {2}.

• ΠIC = {πuni}, that is, the smoothed CC degenerates to the likelihood of CC w.r.t. IC.

We have C̃C
min

ΠIC
(Plu, n) = Θ(1) ∧ (1 − Θ(1)), because CW(πuni) = ∅, WCW(πuni) =

{1, 2, 3}, and ACW(πuni) = ∅.

Smoothed CC under int-MRSE Rules. Smoothed CC under an MRSE rule r depends
on whether the positional scoring rules it uses satisfy the Condorcet loser (CL) criterion,
which requires that the Condorcet loser, whenever it exists, never wins. The Condorcet loser
is the alternative that loses to all head-to-head competitions. For any voting rule r, we write
CL(r) = 1 if and only if r satisfies Condorcet loser.

To present the result, we first define parallel universes under an MRSE rule r at ~x ∈ Rm!,
denoted by PUr(~x), to be the set of all elimination orders in the execution of r at ~x. Then,
for any alternative a, let the possible losing rounds, denoted by LRr(~x, a) ⊆ [m− 1], be the
set of all rounds in the parallel universes where a drops out. The formal definitions can be
found in Definition 26 in Appendix E.3.

Example 4 (Parallel universes and possible losing rounds under irresolute STV).
In the setting of Example 2, we let r = STV. PUSTV(πuni) consists of linear orders that
correspond to all paths from the root to leaves in Figure 2. Therefore, PUSTV(πuni) = L(A).
For every a ∈ A, LRSTV(πuni, a) corresponds to the rounds where a is in a node of that round
in Figure 2. Therefore, for every a ∈ A, we have LRSTV(πuni, a) = {1, 2}.

For π̂ in Figure 1, we have: PUSTV(π̂) = {[3 � 1 � 2], [3 � 2 � 1]}1,LRSTV(π̂, 1) =
LRSTV(π̂, 2) = {2}, and LRSTV(π̂, 3) = {1}.

We are now ready to present the 2 | n case of our characterization of smoothed CC
under MRSE rules. The full version can be found in Appendix E.3.

Theorem 2 (Smoothed CC: int-MRSE rules, 2 | n). For any fixed m ≥ 3, let
M = (Θ,L(A),Π) be a strictly positive and closed single-agent preference model, let r =

1We use � to indicate the elimination order to avoid confusion with �.
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(r2, . . . , rm) be an int-MRSE rule and let r be a refinement of r. For any n ∈ N with 2 | n,
we have

C̃C
min

Π (r, n) =



1 if ∀2 ≤ i ≤ m,CL(ri) = 1

1− exp(−Θ(n)) if


(1) ∃2 ≤ i ≤ m s.t. CL(ri) = 0 and

(2) ∀π ∈ CH(Π),∀a ∈WCW(π),∀i∗ ∈ LRr(π, a),

we have CL(rm+1−i∗) = 1

Θ(n−0.5) if

{
(1) ∀π ∈ CH(Π),CW(π) ∩ (A \ r(π)) = ∅ and

(2) ∃π ∈ CH(Π) s.t. |ACW(π) ∩ (A \ r(π))| = 2

exp(−Θ(n)) if ∃π ∈ CH(Π) s.t. CW(π) ∩ (A \ r(π)) 6= ∅
Θ(1) ∧ (1−Θ(1)) otherwise

The most interesting cases are the 1 case and the 1 − exp(−Θ(n)) case. The 1 case
happens when all positional scoring rules used in r satisfy Condorcet loser. In this case,
if the Condorcet winner exists, then it cannot be a loser in any round, which means that it
is the unique winner under r. The 1− exp(−Θ(n)) case happens when (1) the 1 case does
not happen, and (2) for every distribution π ∈ CH(Π), every weak Condorcet winner a,
and every round i∗ where a is eliminated in a parallel universe, the positional scoring rule
used in round i∗, i.e. rm+1−i∗ , must satisfy Condorcet loser. (2) guarantees that when
a small permutation is added to π, if a weak Condorcet winner a becomes the Condorcet
winner, then it will be the unique winner under r.

Example 5 (Applications of Theorem 2 to STV). In the setting of Example 4, let
STV denote an arbitrary refinement of STV = (r2, r3). The 1 case does not hold for any
sufficiently large n, because r3 (plurality) does not satisfy Condorcet loser.

When ΠIC = {πuni}, Theorem 2 implies that for any sufficiently large n with 2 | n,
the Θ(1) ∧ (1 − Θ(1)) case holds. The 1 − exp(−Θ(n)) case does not hold, because its
condition (2) fails: 1 ∈ WCW(πuni) and round 1 is a losing round for alternative 1 (i.e.,
1 ∈ LRSTV(πuni, 1)), yet r3 does not satisfy Condorcet loser. The Θ(n−0.5) case does
not hold, because its condition (2) fails: ACW(πuni) = ∅. The exp(−Θ(n)) case does not
hold because CW(πuni) = ∅.

Like Theorem 1, Theorem 2 can also be easily applied to i.i.d. distributions. Like Ex-
ample 5, we have the following corollary w.r.t. IC, which corresponds to Π = {πuni}.

Corrollary 1 (Likelihood of CC under int-MRSE rules w.r.t. IC). For any fixed
m ≥ 3, any refinement r of any int-MRSE rule r, and any n ∈ N,

PrP∼(πuni)n(CC(r, P ) = 1) =

{
1 if ∀2 ≤ i ≤ m,CL(ri) = 1
Θ(1) ∧ (1−Θ(1)) otherwise

Proof sketches for Theorem 1 and 2. In light of various multivariate central limit
theorems (CLTs), the histogram of the profile generated from ~π = (π1, . . . , πn) is concen-
trated in a Θ(n−0.5) neighborhood of

∑n
j=1 πj . Therefore, when n is large, the profile is

approximately n · π∗ for some π∗ ∈ CH(Π) with high probability. Despite this high-level
intuition, the conditions of the cases are quite differently from smoothed CC by definition.
To see this, note that (i) the adversary may not be able to set any agent’s ground truth
preferences to be π∗ ∈ CH(Π), because π∗ may not be in Π as shown in Example 3, and
(ii) in the definition of smoothed CC, agent j’s vote is a random variable distributed as
πj , instead of the fractional vote πj . Standard CLTs can probably be applied to prove the
1− exp(−Θ(n)) case and the Θ(1)∧ (1−Θ(1)) case, but they are too coarse for other cases.

To address this challenge, we model the satisfaction of CC by a union of multiple polyhe-
dra C as exemplified in Section 5. This converts the smoothed CC problem to a PMV-in-C
problem [52] (Definition 3). Then, we refine [52, Theorem 2] to prove a categorization
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lemma (Lemma 1), and apply it to obtain Lemma 2 that characterizes smoothed CC for a
large class of voting rules called generalized irresolute scoring rules (GISRs) [19, 50] (Def-
inition 7 in Appendix D.1). Finally, we apply Lemma 2 to integer positional scoring rules
and int-MRSE rules to obtain Theorem 1 and Theorem 2. The full proof can be found in
Appendix E.2 and E.3, respectively. 2

4 The Smoothed Satisfaction of Participation

In this section, we characterize smoothed Par under some commonly-studied voting rules
defined in Appendix A to be 1 − Θ(n−0.5), assuming πuni ∈ CH(Π). These rules belong
to a large class of voting rules called generalized scoring rules (GSRs) [53] (Definition 7 in
Appendix D.1). In fact, if πuni 6∈ CH(Π), then smoothed Par converges to 1 at a faster
rate, which is more positive news, as shown in Lemma 3.

Theorem 3 (Smoothed Par: maximin, ranked pairs, Schulze). For any fixed m ≥ 4,
any GSR r that is a refinement of maximin, STV, Schulze, or ranked pairs, and any strictly
positive and closed Π over L(A) with πuni ∈ CH(Π), there exists N ∈ N such that for every

n ≥ N , P̃ar
min

Π (r, n) = 1−Θ( 1√
n

).

Theorem 4 (Smoothed Par: Copelandα). For any fixed m ≥ 4, any GSR Cdα that is
a refinement of Cdα, and any strictly positive and closed Π over L(A) with πuni ∈ CH(Π),

there exists N ∈ N such that for every n ≥ N , P̃ar
min

Π (Cdα, n) = 1−Θ( 1√
n

).

Theorem 5 (Smoothed Par: int-MRSE). For any fixed m ≥ 4, any int-MRSE r, any
GSR r that is a refinement of r, and any strictly positive and closed Π over L(A) with

πuni ∈ CH(Π), there exists N ∈ N such that for every n ≥ N , P̃ar
min

Π (r, n) = 1−Θ( 1√
n

).

Theorem 6 (Smoothed Par: Condorcetified Integer Positional Scoring Rules).
For any fixed m ≥ 4, any scoring vector ~s, any Condocetified positional scoring rule Cond~s
that is a refinement of Cond~s, and any strictly positive and closed Π over L(A) with πuni ∈
CH(Π), there exists N ∈ N such that for every n ≥ N , P̃ar

min

Π (Cond~s, n) = 1−Θ( 1√
n

).

Proof sketches for Theorem 3 through 6. At a high level, the proof of Theorem 3 is
similar to the proof sketch for Theorem 1 and 2 presented in the last section. We will apply
the categorization lemma (Lemma 1) to prove a general result (Lemma 3) on smoothed Par
under GSRs, then apply it to maximin, ranked pairs, and Schulze. The proofs of Theorem 4
through 6 are done by representing the satisfaction of Par as unions of polyhedra, then
apply [52, Theorem 2]. The full proofs can be found in Appendix F.2, F.3, F.4, and F.5. 2

5 General Result: The Categorization Lemma

In this section, we present a general lemma that characterizes smoothed satisfaction of per-
profile axioms that can be represented by unions of polyhedra, including CC and Par. To
develop intuition, we start with an example of modeling CC under irresolute plurality as
the union of finitely many polyhedron. We define the following two types of polyhedra in
Rm!.

• CNCW, which represents that there is no Condorcet winner. CNCW is the union of
polyhedra HG, where G is an unweighted graph over A that does not have a Condorcet
winner, as exemplified in Example 6.
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• CCWW, which represents that the Condorcet winner exists and also wins the plurality
election. CCWW is the union of polyhedra Ha for every a ∈ A, that represents a being
the Condorcet winner as well as a Plu co-winner, as exemplified in Example 7.

Example 6 (HG). Let m = 3 and let xabc denote the number of [a � b � c] votes in a
profile. G is shown in the left figure. HG is the polyhedron represented by the system of four
linear inequalities in the right.

G =

1

2 3

⇐⇒
(x213 + x231 + x321)− (x123 + x132 + x312) ≤ −1 (2)

(x123 + x132 + x213)− (x231 + x321 + x312) ≤ −1 (3)

(x132 + x312 + x321)− (x123 + x213 + x231) ≤ 0 (4)

(x123 + x213 + x231)− (x132 + x312 + x321) ≤ 0 (5)
Among the four inequalities, (2) represents the 1→ 2 edge in G, (3) represents the 3→ 1

edge in G, and (4) and (5) represent the tie between 2 and 3 in G.

Example 7 (Ha). Let m = 3. H1 is the polyhedron represented by the following four
inequalities:

(x213 + x231 + x321)− (x123 + x132 + x312) ≤ −1

(x231 + x321 + x312)− (x123 + x132 + x213) ≤ −1

}
1 is the Condorcet winner

(x213 + x231)− (x123 + x132) ≤ 0

(x321 + x312)− (x123 + x132) ≤ 0

}
1 is a Plu co-winner

It is not hard to see that Plu satisfies CC at a profile P if and only if Hist(P ) is in
C = CNCW ∪ CCWW, where CNCW =

⋃
G:CW(G)=∅HG and CCWW =

⋃
a∈AHa. An example

of Par under Copeland can be found in Appendix C.1.

The general problem. In general, the satisfaction of a wide range of axioms can be
represented by unions of finitely many polyhedra. Formally, given q ∈ N, L ∈ N, an L × q
integer matrix A, a q-dimensional row vector ~b, we define

H ,

{
~x ∈ Rq : A · (~x)

> ≤
(
~b
)>}

, H≤0 ,

{
~x ∈ Rq : A · (~x)

> ≤
(
~0
)>}

That is, H is the polyhedron represented by A and ~b and H≤0 is the characteristic cone
of H. The smoothed satisfaction problem then reduces to the lower bound of the PMV-in-C
problem defined as follows.

Definition 3 (The PMV-in-C problem [52]). Given q, I ∈ N, C =
⋃
i≤I Hi, where

∀i ≤ I, Hi ⊆ Rq is a polyhedron, and a set Π of distributions over [q], we are interested in

the upper bound sup~π∈Πn Pr( ~X~π ∈ C), and the lower bound inf~π∈Πn Pr( ~X~π ∈ C),

where ~X~π is the (n, q)-Poisson multinomial variable (PMV) that corresponds to the histogram
of n independent random variables distributed as ~π.

Example 8 ( ~X~π). In the setting of Example 1, we have q = m! = 6. Let n = 2 and ~π =

(π2, π1). ~X~π is the histogram of two random variables Y1, Y2 over [q], where Y1 (respectively,
Y2) is distributed as π2 (respectively, π1).

For example, let ~x ∈ {0, 1, 2}L(A) denote the vector whose 123 and 231 components are

1 and all other components are 0. We have Pr( ~X~π = ~x) = 1
4 ×

3
8 + 1

8 ×
1
8 = 7

64 .

It was proved in [52, Theorem 2] that the upper and lower bounds are 0, exponential,
or polynomial (including Θ(1)) under mild conditions. The next lemma further refines the
Θ(1) case into three subcases: 1, 1− exp(n), and being Θ(1) and 1−Θ(1) simultaneously,
denoted by Θ(1) ∧ (1−Θ(1)).
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Lemma 1 (Categorization Lemma, Simplified). For any PMV-in-C problem, there

exist α∗n, βn ∈ [q − 1] for every n ∈ N, such that inf~π∈Πn Pr( ~X~π ∈ C) is 0, exp(−Θ(n)),

Θ
(
n
βn−q

2

)
, Θ(1) ∧ (1−Θ(1)), 1−Θ

(
n
α∗n−q

2

)
, 1− exp(−Θ(n)), or 1.

The full version of Lemma 1 in Appendix C also characterizes α∗n, βn, the condition for

each case, and sup~π∈Πn Pr( ~X~π ∈ C). While the proof is done by straightforward applications
of [52, Theorem 2], its main merit is conceptual, as it categorizes the smoothed likelihood
into seven cases summarized in the table below, which are referred to as 0 (never satisfied),
very unlikely (VU), unlikely (U), medium (M), likely (L), very likely (VL), and 1 (always
satisfied) in the increasing order.

Name 0 VU U M L VL 1

Lem. 1 0 exp(−Θ(n)) poly−1(n) Θ(1) ∧ (1−Θ(1)) 1− poly−1(n) 1− exp(−Θ(n)) 1

The seven cases in the table provides a quantitative comparison: the last three cases
(L, VL, and 1) are positive news, because they imply that in large elections (n → ∞), the
axiom is satisfied almost surely regardless of the adversary’s choice. The first three cases
(0, VU, U) are negative news, because they imply that the adversary can set the ground
truth so that in large elections, the axiom is almost surely dissatisfied. The M case can be
interpreted positively or negatively, depending on the context.

Applications to smoothed satisfaction of axioms. We conclude the paper by present-
ing applications of Lemma 1 to CC (Lemma 2) and Par (Lemma 3) under large classes of
voting rules, which are the used to prove Theorems 1–3. Their formal statements (with the
condition for each case) and proofs can be found in Appendix E.1 and F.1, respectively.

Lemma 2 (Smoothed CC, Informal). For any fixed m ≥ 3, let M = (Θ,L(A),Π) be
a strictly positive and closed single-agent preference model. For any resolute voting rule r
from a large class and any n ∈ N, we have:

• if 2 | n, then C̃C
min

Π (r, n) is 1, 1−exp(−Θ(n)), Θ(n−0.5), exp(−Θ(n)), or Θ(1)∧(1−Θ(1));

• if 2 - n, then C̃C
min

Π (r, n) is 1, 1− exp(−Θ(n)), exp(−Θ(n)), or Θ(1) ∧ (1−Θ(1)).

Lemma 3 (Smoothed Par, Informal). For any fixed m ≥ 3, let M = (Θ,L(A),Π) be a
strictly positive and closed single-agent preference model and let r be a resolute voting rule

from a large class. For any n ∈ N, P̃ar
min

Π (r, n) is either 1, 1−exp(−Θ(n)) or 1−Θ(n−`n/2)
for some integer 1 ≤ `n ≤ m!.

6 Future work

There are many open questions. What are the smoothed CC and smoothed Par for voting
rules not sutdied in this paper, such as Bucklin? What is the smoothed satisfaction of Par
when a group of agents can simultaneously abstain from voting [28]? More generally, we be-
lieve that drawing a comprehensive picture of smoothed satisfactions of other voting axioms
and/or paradoxes, such as those described in Appendix B, is an important, promising, and
challenging mission, and our categorization lemma (Lemma 1) can be a useful conceptual
and technical tool to start with.
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rendues à la pluralité des voix. Paris: L’Imprimerie Royale, 1785.

[10] Vincent Conitzer, Matthew Rognlie, and Lirong Xia. Preference functions that score
rankings and maximum likelihood estimation. In Proceedings of the Twenty-First Inter-
national Joint Conference on Artificial Intelligence (IJCAI), pages 109–115, Pasadena,
CA, USA, 2009.

[11] Mostapha Diss and Vincent Merlin, editors. Evaluating Voting Systems with Probability
Models. Studies in Choice and Welfare. Springer International Publishing, 2021.

[12] Cynthia Dwork, Ravi Kumar, Moni Naor, and D. Sivakumar. Rank aggregation meth-
ods for the web. In Proceedings of the 10th World Wide Web Conference, pages 613–622,
2001.

[13] Peter C. Fishburn. Aspects of One-Stage Voting Rules. Management Science, 21(4):
422–427, 1974.

[14] Peter C. Fishburn. Simple voting systems and majority rule. Behavioral Science, 19
(3):166–176, 1974.

[15] Peter C. Fishburn. Paradoxes of voting. The American Political Science Review, 68
(2):537–546, 1974.

[16] Peter C. Fishburn and Steven J. Brams. Paradoxes of Preferential Voting. Mathematics
Magazine, 56(4):207–214, 1983.

13



[17] Peter C. Fishburn and William V. Gehrlein. An analysis of simple two-stage voting
systems. Behavioral Science, 21(1):1–12, 1976.

[18] Peter C. Fishburn and William V. Gehrlein. An analysis of voting procedures with
nonranked voting. Behavioral Science, 22(3):178–185, 1977.

[19] Rupert Freeman, Markus Brill, and Vincent Conitzer. General Tiebreaking Schemes
for Computational Social Choice. In Proceedings of the 2015 International Conference
on Autonomous Agents and Multiagent Systems, pages 1401–1409, 2015.

[20] William V. Gehrlein. Condorcet’s Paradox. Springer, 2006.

[21] William V. Gehrlein and Peter C. Fishburn. The probability of the paradox of voting:
A computable solution. Journal of Economic Theory, 13(1):14–25, 1976.

[22] William V. Gehrlein and Peter C. Fishburn. Coincidence probabilities for simple ma-
jority and positional voting rules. Social Science Research, 7(3):272–283, 1978.

[23] William V. Gehrlein and Peter C. Fishburn. Probabilities of election outcomes for large
electorates. Journal of Economic Theory, 19(1):38–49, 1978.

[24] William V. Gehrlein and Dominique Lepelley. Voting Paradoxes and Group Coherence:
The Condorcet Efficiency of Voting Rules. Springer, 2011.

[25] Allan Gibbard. Manipulation of voting schemes: A general result. Econometrica, 41:
587–601, 1973.

[26] Itzhak Gilboa and David Schmeidler. Maxmin expected utility with non-unique prior.
Journal of Mathematical Economics, 18(2):141–153, 1989.

[27] Aki Lehtinen and Jaakko Kuorikoski. Unrealistic Assumptions in Rational Choice
Theory. Philosophy of the Social Sciences, 37(2):115–138, 2007.

[28] Dominique Lepelley and Vincent Merlin. Scoring run-off paradoxes for variable elec-
torates. Economic Theory, 17:53–80, 2001.

[29] Dominique Lepelley, Frederic Chantreuil, and Sven Berg. The likelihood of monotonic-
ity paradoxes in run-off elections. Mathematica Slocial Science, 31:133–146, 1996.

[30] Tie-Yan Liu. Learning to Rank for Information Retrieval. Springer, 2011.

[31] Andrew Mao, Ariel D. Procaccia, and Yiling Chen. Better human computation through
principled voting. In Proceedings of the National Conference on Artificial Intelligence
(AAAI), Bellevue, WA, USA, 2013.

[32] Nicholas Mattei and Toby Walsh. PrefLib: A Library of Preference Data. In Proceedings
of Third International Conference on Algorithmic Decision Theory, Lecture Notes in
Artificial Intelligence, 2013.

[33] David C. McGarvey. A theorem on the construction of voting paradoxes. Econometrica,
21(4):608–610, 1953.

[34] Samuel Merrill. A statistical model for Condorcet efficiency based on simulation under
spatial model assumptions. Public Choice, 47(2):389–403, 1985.

[35] Elchanan Mossel, Ariel D. Procaccia, and Miklos Z. Racz. A Smooth Transition From
Powerlessness to Absolute Power. Journal of Artificial Intelligence Research, 48(1):
923–951, 2013.

14
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A Definitions of More Voting Rules

WMG-based rules. A voting rule is said to be weighted-majority-graph-based (WMG-
based) if its winners only depend on the WMG of the input profile. In this paper we consider
the following commonly-studied WMG-based irresolute rules.

• Copeland. The Copeland rule is parameterized by a number 0 ≤ α ≤ 1, and is
therefore denoted by Cdα. For any profile P , an alternative a gets 1 point for each
other alternative it beats in head-to-head competitions, and gets α points for each tie.
Cdα chooses all alternatives with the highest total score as winners.

• Maximin. For each alternative a, its min-score is defined to be MSP (a) =
minb∈A wP (a, b). Maximin, denoted by MM, chooses all alternatives with the max
min-score as winners.

• Ranked pairs. Given a profile P , an alternative a is a winner under ranked pairs
(denoted by RP) if there exists a way to fix edges in WMG(P ) one by one in a non-
increasing order w.r.t. their weights (and sometimes break ties), unless it creates a
cycle with previously fixed edges, so that after all edges are considered, a has no
incoming edge. This is known as the parallel-universes tie-breaking (PUT) [10].

• Schulze. The strength of any directed path in the WMG is defined to be the minimum
weight on single edges along the path. For any pair of alternatives a, b, let s[a, b] denote
the highest weight among all paths from a to b. Then, we write a � b if and only if
s[a, b] ≥ s[b, a], and Schulze [44] proved that the strict version of this binary relation,
denoted by �, is transitive. The Schulze rule, denoted by Sch, chooses all alternatives
a such that for all other alternatives b, we have a � b.

Condorcetified (integer) positional scoring rules. The rule is defined by an integer
scoring vector ~s ∈ Zm and is denoted by Cond~s, which selects the Condorcet winner when
it exits, and otherwise uses r~s to select the (co)-winners. For example, Black’s rule [6] is
the Condorcetified Borda rule.

B Per-Profile and Non-Per-Profile Axioms

In this section, we provide an (incomplete) list of 14 commonly-studied per-profile axioms
and one commonly-studied non-per-profile axiom that we do not see a clear per-profile
representation.

Per-Profile Axioms. We present the definitions of the per-profile axioms in the alphabet-
ical order. Their equivalent X definition is often straightforward unless explicitly discussed
below.

1. Anonymity states that the winner is insensitive to the identities of the voters. It is
a per-profile axiom as shown in [51].

2. Condorcet criterion is a per-profile axiom as discussed in the Introduction.

3. Condorcet loser requires that a Condorcet loser, which is the alternative who loses
to every head-to-head competition with other alternatives, should not be selected as
the winner. It is a per-profile axiom in the same sense as CC.
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4. Consistency requires that for any profile P and any sub-profile P ′ of P , if r(P ′) =
r(P \ P ′), then r(P ) = r(P ′). Therefore, for any profile P , we can define

[Consistency(r, P ) = 1]⇐⇒ [∀P ′ ⊂ P, [r(P ′) = r(P \ P ′)]⇒ [r(P ) = r(P ′)]]

5. Group-Non-Manipulable is defined similarly to Non-Manipulable below, except
that multiple voters are allowed to simultaneously change their votes, and after doing
so, at least one of them strictly prefers the old winner.

6. Independent of clones requires that the winner does not change when clones of
an alternative is introduced. The clones and the original alternative must be ranked
consecutively in each vote. Let IoC denote Independent of clones. For any profile
P , we let IoC(r, P ) = 1 if and only if for every alternative a and every profile P ′ obtain
from P by introducing clones of a, we have r(P ) = r(P ′).

7. Majority criterion requires that any alternative that is ranked at the top place
in more than 50% of the votes must be selected as the winner. Majority criterion is
stronger than Condorcet criterion.

8. Majority loser requires that any alternative who is ranked at the bottom place in
more than 50% of the votes should not be selected as the winner. Majority loser
is weaker than Condorcet loser.

9. Monotonicity requires raising up the position of the current winner in any vote
will not cause it to lose. Let Mono denote Monotonicity. One way to define
Mono is the following.Let Mono1(r, P ) = 1 if and only if for every profile P ′ that is
obtained from P by raising the position of r(P ) in one vote, we have r(P ′) = r(P ).
Another definition is: Mono2(r, P ) = 1 if and only if for every profile P ′ that is
obtained from P by raising the position of r(P ) in arbitrarily many votes, we have
r(P ′) = r(P ). Notice that the classical (worst-case) Monotonicity is satisfied if and
only if minP Mono1(r, P ) = 1 or equivalently, minP Mono2(r, P ) = 1. The smoothed
satisfaction of minP Mono1 might be different from minP Mono2, which is beyond the
scope of this paper.

10. Neutrality states that the winner is insensitive to the identities of the alternatives.
It is a per-profile axiom as shown in [51].

11. Non-Manipulable requires that no agent has incentive to unilaterally change his/her
vote to improve the winner w.r.t. his/her true preferences. More precisely, for any
profile P = (R1, . . . , Rn), we have

[Non−Manipulable(r, P ) = 1]⇔
[
∀j ≤ n, ∀R′j ∈ L(A), r(P ) �Rj r(P ∪ {R′j} \ {Rj})

]
12. Participation is a per-profile axiom as discussed in the Introduction.

13. Reversal symmetry requires that the winner of any profile should not be the winner
when all voters’ rankings are inverted.

Non-Per-Profile Axiom(s). We were not able to model Non-Dictatorship (ND) as
a per-profile axiom studied in this paper. A voting rule is not a dictator if for each j ≤ n,
there exists a profile P whose winner is not ranked at the top of agent j’s preferences.
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C Materials for Section 5: The Categorization Lemma

While the categorization lemma (Lemma 1) was presented after Theorems 1 through 6 in
the main text, the proofs of the theorems depend on the lemma. Therefore, we present
materials for the categorization letter before the proofs for the theorems in the appendix.

C.1 Modeling Satisfaction of Par as A Union of Polyhedra

1

2 3

1

2 3

− [2 ≻ 3 ≻ 1]

G1 G2

Figure 3: G1, G2, and R.

Par under Copelandα. We now show how to approx-
imately model the satisfaction of Par under Copelandα.
For every pair of unweighted directed graphs G1, G2 over
A and every R ∈ L(A), we define a polyhedron HG1,R,G2

to represent the histograms of profile P that contains an
R-vote, G1 = UMG(P ), and G2 = UMG(P \ {R}). The
linear inequalities used to specify the UMGs of P and
(P \ {R}) are similar to HG defined above, as illustrated
in the following example.

Example 9. Let m = 3, R = [2 � 3 � 1], and let G1, G2 denote the graphs in Figure 3.
HG1,R,G2 is represented by the following inequalities.

−x231 ≤ −1 (6)

(x213 + x231 + x321)− (x123 + x132 + x312) ≤ −1

(x123 + x132 + x213)− (x231 + x321 + x312) ≤ −1

(x132 + x312 + x321)− (x123 + x213 + x231) ≤ −1

 (7)

(x213 + x231 − 1 + x321)− (x123 + x132 + x312) ≤ −1

(x123 + x132 + x213)− (x231 − 1 + x321 + x312) ≤ −1

(x132 + x312 + x321)− (x123 + x213 + x231 − 1) ≤ 0

(x123 + x213 + x231 − 1)− (x132 + x312 + x321) ≤ 0

 (8)

(6) guarantees that P contains an R-vote. The three inequalities in (7) represent
UMG(P ) = G1, and the four inequalities in (8) represent UMG(P ) = G2.

We do not require xR’s to be non-negative, which does not affect the results of the paper,
because the histograms of randomly-generated profiles are always non-negative.

By enumerating G1, R, and G2 that correspond to a violation of Par, the polyhedra
that represent satisfaction of Par under Copelandα are:

C =
⋃

G1,R,G2:Copelandα(G1)�RCopelandα(G2)
HG1,R,G2

C.2 Formal Statement of the Categorization Lemma and Proof

Definition 4 (Almost complement). Let C denote a union of finitely many polyhedra.
We say that a union of finitely many polyhedra C∗ is an almost complement of C, if (1)
C ∩ C∗ = ∅ and (2) Zq ⊆ C ∪ C∗.

C∗ is called an “almost complement” (instead of “complement”) of C because C∗ ∪ C 6=
Rq. Effectively, C∗≤0 can be viewed as the complement of C when only integer vectors are
concerned. It it not hard to see that C is an almost complement of C∗. The following result
states that the characteristic cones of C and C∗, which may overlap, cover Rq.
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Proposition 1. For any union of finitely many polyhedra C and any almost complement
C∗ of C, we have C≤0 ∪ C∗≤0 = Rq.

Proof. Suppose for the sake of contradiction that C≤0 ∪ C∗≤0 6= Rq. Let ~x ∈ Rq \ (C≤0 ∪
C∗≤0) with |~x|1 = 1. Because C≤0 and C∗≤0 are unions of polyhedra, there exists an δ > 0
neighborhood Bδ = {~x′ ∈ Rq : |~x′ − ~x|∞ ≤ δ} of ~x in Rq that is η > 0 away from C≤0 ∪ C∗≤0.

Therefore, there exists n ∈ N with n > 1
δ such that nBδ = {n~x′ : ~x′ ∈ Bδ} do not overlap

C ∪ C∗. Because the radius of nBδ is larger than 1, there exists an integer vector in nBδ,
which contradicts the assumption that Zq ⊆ C ∪ C∗.

W.l.o.g., in this paper we assume that all polyhedra are represented by integer matrices
A where the entries of each row are coprimes, which means that the greatest common divisor
of all entries in the row is 1. For any C =

⋃
i≤I Hi where Hi is the polyhedron characterized

by integer matrices Ai with coprime entries and ~bi, its almost complement always exists
and is not unique. Let us define an specific almost complement of C that will be commonly
used in this paper.

Definition 5 (Standard almost complement). Let C = ∪i≤IHi denote a union of I

rational polyhedra characterized by Ai and ~bi, we define its standard almost complement,
denoted by Ĉ, as follows.

Ĉ =
⋃

~ai∈Ai:∀i≤I

⋂
i≤I
{~x ∈ Rq : −~ai · ~x ≤ −b′i − 1} ,

where ~ai is a row in Ai and b′i is the corresponding component in ~bi. We write Ĉ =⋃
i∗≤Î Ĥi∗ , where Î ∈ N and each Ĥi∗ is a rational polyhedron.

It is not hard to verify that Ĉ is indeed an almost complement of C. Let us take a look
at a simple example for q = 2.

Example 10. Let C = H1 ∪ H2, where H1 =

{
~x ∈ R2 :

[
−1 0

2 −1

]
· (~x)

> ≤
[

0
−2

]}
and H2 =

{
~x ∈ R2 :

[
−1 2

1 −2

]
· (~x)

> ≤
[

8
8

]}
. It follows that Ĉ = Ĥ1 ∪ Ĥ2 ∪ Ĥ3 ∪ Ĥ4,

where

Ĥ1 =

{
~x ∈ R2 :

[
1 0
1 −2

]
· (~x)

> ≤
[
−1
−9

]}
,Ĥ2 =

{
~x ∈ R2 :

[
1 0
−1 2

]
· (~x)

> ≤
[
−1
−9

]}
Ĥ3 =

{
~x ∈ R2 :

[
−2 1

1 −2

]
· (~x)

> ≤
[

1
−9

]}
,Ĥ4 =

{
~x ∈ R2 :

[
−2 1
−1 2

]
· (~x)

> ≤
[

1
−9

]}

Figure 4 (a) shows C and Ĉ. Figure 4 (b) shows C≤0 and Ĉ≤0, where H2 is a one-

dimensional polyhedron, i.e., a straight line. Note that C ∪ Ĉ 6= Rq and C≤0 ∪ Ĉ≤0 = Rq.

To present the categorization lemma, we recall the definitions of αn, βn, and Theorem 2
in [52]. We first define the activation graph.

Definition 6 (Activation graph [52]). For each Π, Hi, and n ∈ N, the activation graph,
denoted by GΠ,C,n, is defined to be the complete bipartite graph with two sets of vertices
CH(Π) and {Hi : i ≤ I}, and the weight on the edge (π,Hi) is defined as follows.

wn(π,Hi) ,


−∞ if HZ

i,n = ∅
− n

logn otherwise, if π /∈ Hi,≤0

dim(Hi,≤0) otherwise

,

where HZ
i,n is the set of non-negative integer vectors in Hi whose L1 norm is n.
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H"

#H"
#H$

#H!
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$H%,⩽
$H&,⩽

$H!,⩽

$H',⩽ H%,⩽

x1

x2

(a) C and Ĉ. (b) C≤0 and Ĉ≤0.

Figure 4: In (a), C = H1 ∪ H2, where H1 is the green area and H2 is a shaded area, and Ĉ =
Ĥ1 ∪ Ĥ2 ∪ Ĥ3 ∪ Ĥ4, where Ĥ2 is a shaded area, and Ĥ1, Ĥ3, and Ĥ4 are the yellow, red, and blue
areas, respectively. In (b), C≤0 ∪ Ĉ≤0 = Rq, where Ĥ2 is a straight line.

Definition 6 slightly abuses notation, because its vertices {Hi : i ≤ I} are not explicitly
indicated in the subscript of GΠ,C,n. This does not cause confusion when they are clear from
the context.

When HZ
i,n = ∅ we say that Hi is inactive (at n), and when HZ

i,n 6= ∅ we say that Hi is
active (at n). In addition, if the weight on any edge (π,Hi) is positive, then we say that π
is active and is activated by Hi (which must be active at n).

Roughly speaking, for any sufficiently large n and ~π = (π1, . . . , πn) ∈ Πn, let π =
1
n

∑n
j=1 πj , then [52, Theorem 1] implies

Pr( ~X~π ∈ Hi) ≈ nwn(π,Hi)−q

It follows that Pr( ~X~π ∈ C) is mostly determined by the heaviest weight on edges connected
to π, denoted by dimmax

C,n (π), which is formally defined as follows:

dimmax
C,n (π) , maxi≤I wn(π,Hi)

Then, a max-(respectively, min-) adversary aims to choose ~π = (π1, . . . , πn) ∈ Πn to max-
imize (respectively, minimize) dimmax

C,n ( 1
n

∑n
j=1 πj), which are characterized by αn (respec-

tively, βn) defined as follows.

αn , maxπ∈CH(Π) dimmax
C,n (π)

βn , minπ∈CH(Π) dimmax
C,n (π)

We further define the following notation that will be frequently used in the proofs of this
paper. Let CZn denote the set of all non-negative integer vectors in C whose L1 norm is n.
That is,

CZn =
⋃

i≤I
HZ
i,n

By definition, CZn = ∅ if and only if all Hi’s are inactive at n. Therefore, we have

(αn = −∞)⇐⇒ (βn = −∞)⇐⇒ (CZn = ∅)

For completeness, we recall [52, Theorem 2] below.

22



Theorem 2 in [52] (Smoothed likelihood of PMV-in-C). Given any q, I ∈ N, any
closed and strictly positive Π over [q], and any set C =

⋃
i≤I Hi that is the union of finitely

many polyhedra with integer matrices, for any n ∈ N,

sup
~π∈Πn

Pr
(
~X~π ∈ C

)
=


0 if αn = −∞
exp(−Θ(n)) if −∞ < αn < 0

Θ
(
n
αn−q

2

)
otherwise (i.e. αn ≥ 0)

,

inf
~π∈Πn

Pr
(
~X~π ∈ C

)
=


0 if βn = −∞
exp(−Θ(n)) if −∞ < βn < 0

Θ
(
n
βn−q

2

)
otherwise (i.e. βn ≥ 0)

.

For any almost complement C∗ of C, let α∗n and β∗n denote the counterparts of αn and βn
for C∗, respectively. We note that α∗n and β∗n depend on the polyhedra used to representation
C∗. We are now ready to present the full version of the categorization lemma as follows.

Lemma 1. (Categorization Lemma, Full Version). Given any q, I ∈ N, any
closed and strictly positive Π over [q], any C =

⋃
i≤I Hi and its almost complement

C∗ =
⋃
i∗≤I∗ H∗i∗ , for any n ∈ N,

inf
~π∈Πn

Pr
(
~X~π ∈ C

)
=



0 if βn = −∞
exp(−Θ(n)) if −∞ < βn < 0

Θ
(
n
βn−q

2

)
if 0 ≤ βn < q

Θ(1) ∧ (1−Θ(1)) if α∗n = βn = q

1−Θ
(
n
α∗n−q

2

)
if 0 ≤ α∗n < q

1− exp(−Θ(n)) if −∞ < α∗n < 0
1 if α∗n =∞

sup
~π∈Πn

Pr
(
~X~π ∈ C

)
=



0 if αn = −∞
exp(−Θ(n)) if −∞ < αn < 0

Θ
(
n
αn−q

2

)
if 0 ≤ αn < q

Θ(1) ∧ (1−Θ(1)) if αn = β∗n = q

1−Θ
(
n
β∗n−q

2

)
if 0 ≤ β∗n < q

1− exp(−Θ(n)) if −∞ < β∗n < 0
1 if β∗n = −∞

Proof. We present the proof for the inf part of Lemma 1 and the proof for the sup part is
similar. Notice that Zq ⊆ C ∪ C∗, we have:

inf~π∈Πn Pr
(
~X~π ∈ C

)
= 1− sup~π∈Πn Pr

(
~X~π ∈ C∗

)
The proof is done by combining the inf part of [52, Theorem 2] (applied to C) and one minus
the sup part of [52, Theorem 2] (applied to C∗).

• The 0, exp(−Θ(n)) and Θ
(
n
βn−q

2

)
cases follow after the corresponding inf part

of [52, Theorem 2] applied to C.

23



• The Θ(1)∧ (1−Θ(1)) case. The condition of this case implies that the polynomial
bounds in the inf part of [52, Theorem 2] (applied to C) hold, which means that

inf~π∈Πn Pr
(
~X~π ∈ C

)
= Θ(1), and the polynomial bounds in the sup part of [52,

Theorem 2] (applied to C∗) hold, which means that

inf~π∈Πn Pr
(
~X~π ∈ C

)
= 1− sup~π∈Πn Pr

(
~X~π ∈ C∗

)
= 1−Θ(1)

• The 1 − Θ
(
n
α∗
n−q
2

)
, 1 − exp(−Θ(n)), and 1 cases follow after one minus the

sup part of [52, Theorem 2] (applied to C∗).

H!,⩽

$H%,⩽

$H&,⩽ H',⩽(VL
(M

(VU
(U

x1

x2

Figure 5: An Illustration of πVU, πU, πM,
and πVL for the inf part of Lemma 1.

Remarks. The conditions for all, except 0 and
1, cases are different between sup and inf parts
of the lemma. Moreover, the degrees of poly-
nomial in the L and U cases may be different
between sup and inf parts. Let us use the set-
ting in Example 10 and Figure 5 to illustrate the
conditions for the inf case. For the purpose of
illustration, we assume that all polyhedra in C
and C∗ are active at n.
• The 0 (respectively, 1) case holds when

no non-negative integer with L1 norm n is in C
(respectively, in C∗).
• The VU case. Given that the 0 and

1 cases do not hold, the VU case holds when
CH(Π) contains a distribution πVU that is not
in C≤0. Notice that C≤0 is a closed set and
C≤0 ∪ C∗≤0 = Rq. This means that πVU is an
interior point of C∗≤0. For example, in Figure 5, πVU is not in C≤0 and is an interior point

of Ĥ3,≤0.
• The U case holds when CH(Π) ⊆ C≤0, and CH(Π) contains a distribution πU that lies

on a (low-dimensional) boundary of C≤0. For example, in Figure 5, πU lies in a 1-dimensional
polyhedron H2,≤0 ⊆ C≤0, and is not in any 2-dimensional polyhedron in C≤0.
• The M case holds when the U case does not hold, and CH(Π) contains a distribution

πM that lies in the intersection of a q-dimensional subspace of C≤0 and a q-dimensional

subspace of C∗≤0. For example, in Figure 5, πU lies in H1,≤0 and Ĥ3,≤0, both of which are
2-dimensional.
• The L case holds when every distribution in CH(Π) is in a q-dimensional subspace

of C≤0, and there exists πL ∈ CH(Π) that lies in a (low-dimensional) boundary of C∗≤0. No
such πL exists in Figure 5’s example, but if we apply Lemma 1 to C∗, then πU in Figure 5
is an example of πL for C∗.
• The VL case holds when every distribution in CH(Π) is an inner point of C≤0. For

example, in Figure 5, πVL is an inner point of H1,≤0 ⊆ C.
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D GISRs and Their Algebraic Properties

D.1 Definition of GISRs

All irresolute voting rules studied in this paper are generalized irresolute scoring rules
(GISR) [19, 50], whose resolute versions are known as generalized scoring rules (GSRs) [53].
We recall the definition of GISRs based on separating hyperplanes [54, 35].

For any real number x, let Sign(x) ∈ {+,−, 0} denote the sign of x. Given a set of K

hyperplanes in the q-dimensional Euclidean space, denoted by ~H = (~h1, . . . ,~hK), for any

~x ∈ Rq, we let Sign ~H(~x) = (Sign(~x · ~h1), . . . ,Sign(~x · ~hK)). In other words, for any k ≤ K,

the k-th component of Sign ~H(~x) equals to 0, if ~p lies in hyperplane ~hk; and it equals to +

(respectively, −) if ~p lies in the positive (respectively, negative) side of ~hk. Each element in
{+,−, 0}K is called a signature.

Definition 7 (Generalized irresolute scoring rule (GISR)). A generalized irresolute

scoring rule (GISR) r is defined by (1) a set of K ≥ 1 hyperplanes ~H = (~h1, . . . ,~hK) ∈
(Rm!)K and (2) a function g : {+,−, 0}K → (2A \ ∅). For any profile P , we let r(P ) =

g(Sign ~H(Hist(P ))). r is called an integer GISR (int-GISR) if ~H ∈ (Zm!)K . If for all profiles
P , we have |r(P )| = 1, then r is called a generalized scoring rule (GSR). Int-GSRs are
defined similarly to int-GISRs.

Definition 8 (Feasible and atomic signatures). Given integer ~H with K = | ~H|, let
SK = {+,−, 0}K . A signature ~t ∈ SK is feasible, if there exists ~x ∈ Rd such that Sign ~H(~x) =
~t. Let S ~H ⊆ SK denote the set of all feasible signatures.

A signature ~t is called an atomic signature if and only if ~t ∈ {+,−}K . Let S◦~H denote
the set of all feasible atomic signatures.

The domain of any GISR r can be naturally extended to Rm! and to S ~H . Specifically,

for any ~t ∈ S ~H we let r(~t) = g(~t). It suffices to define g on the feasible signatures, i.e., S ~H .

Notice that the same voting rule can be represented by different combinations of ( ~H, g).
In the following section we recall int-GISR representations of the voting rules studied in this
paper.

D.2 Commonly-Studied Voting Rules as GISRs

As discussed in [52], the irresolute versions of Maximin, Copelandα, Ranked Pairs, and
Schulze belong to the class of edge-order-based (EO-based) rules, which are defined over the
weak order on edges in WMG(P ). We recall its formal definition below.

Definition 9 (Edge-order-based rules). A (resolute or irresolute) voting rule r is
edge-order-based (EO-based), if for any pair of profiles P1 and P2 such that for ev-
ery combination of four different alternatives {a, b, c, d} ⊂ A, [wP1

(a, b) ≥ wP1
(c, d)] ⇔

[wP2
(a, b) ≥ wP2

(c, d)], we have r(P1) = r(P2).

All EO-based rules can be represented by a GISR using a set of hyperplanes that repre-
sents the orders over WMG edges. We first recall pairwise difference vectors as follows.

Definition 10 (Pairwise difference vectors [51]). For any pair of different alternatives
a, b, let Paira,b denote the m!-dimensional vector indexed by rankings in L(A): for any
R ∈ L(A), the R-component of Paira,b is 1 if a �R b; otherwise it is −1.

We now define the hyperplanes for edge-order-based rules.

25



Definition 11 ( ~HEO). ~HEO consists of
(
m(m−1)

2

)
hyperplanes indexed by ~he1,e2 , where

e1 = (a1, a2) and e2 = (a2, b2) are two different pairs of alternatives, such that

~he1,e2 = Paira1,b1 − Paira2,b2

That is, for any (fractional) profile P , ~he1,e2 ·Hist(P ) ≤ 0 if and only if the weight on e1

in WMG(P ) is no more than the weight on e2 in WMG(P ). Therefore, given Sign ~HEO
(P ),

we can compare the weights on pairs of edges, which leads to the weak order on edges in
WMG(P ) w.r.t. their weights. Consequently, for any profile P , Sign ~H(P ) contains enough
information to determine the (co-)winners under any edge-order-based rules. Formally, the

GISR representations of these rules used in this paper are defined by ~HEO and the following
g functions that mimic the procedures of choosing the winner(s).

Definition 12. Let MM, Cdα, RP, Sch denote the int-GISRs defined by ~HEO and the
following g functions. Given a feasible signature ~t ∈ S ~HEO

,

• gMM first picks a representative edge ea whose weight is no more than all other out-
going edges of a, then compare the weights of ea’s for all alternatives and choose
alternatives a whose ea has the highest weight as the winners.

• gCdα compares weights on pairs of edges a → b and b → a, and then calculate
the Copelandα scores accordingly. The winners are the alternatives with the highest
Copelandα score.

• gRP mimics the execution of PUT-Ranked Pairs, which only requires information
about the weak order over edges w.r.t. their weights in WMG.

• gSch first computes an edge ep with the minimum weight on any given directed path
p, then for each pair of alternatives a and b, computes an edge e(a,b) that represents
the strongest edge among all paths from a to b. gSch then mimics Schulze to select the
winner(s).

While Copeland can be represented by ~HEO and gCdα as in the definition above, in this

paper we use another set of hyperplanes, denoted by ~HCdα , that represents the UMG of the
profile. The reason is that in this way any refinement of Cdα would break ties according to
the UMG of the profile, which is needed in the proof of Theorem 4.

Definition 13 (Cdα as a GISR). Cdα is represented by ~HCdα and gCdα defined as follows.

For every pair of different alternatives (a, b), ~HCdα contains a hyperplane ~h(a,b) = Paira,b−
Pairb,a. For any profile P , gCdα first computes the outcome of each head-to-head elections

between alternatives a and b by checking ~h(a,b) ·Hist(P ), then calculate the Copelandα score,
and finally choose all alternatives with the maximum score as the winners.

The GISR representation of MRSE rules is based on the fact that the winner(s) can
be computed from comparing the scores between any pair of alternatives (a, b) after a set
of alternatives B is removed. This idea is formalized in the following definition. For any
R ∈ L(A) and any B ⊂ A, let R|A\B denote the linear order over (A \B) that is obtained
from R by removing alternatives in B.

Definition 14 (MRSE rules as GISRs). Any MRSE r = (r2, . . . , rm) is represented by
~H and gr defined as follows. Given an int-MRSE rule r = (r2, . . . , rm), for any pair of
alternatives a, b and any subset of alternatives B ⊆ (A \ {a, b}), we let Score∆

B,a,b denote

the vector, where for every R ∈ L(A), the R-th component of PairB,a,b is s
m−|B|
i − sm−|B|j ,

where i and j are the ranks of a and b in R|A\B, respectively.
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For any pair of different alternatives {a, b} ⊆ (A\B), ~H contains a hyperplane Score∆
B,a,b.

For any profile P , gr mimics r to compute the PUT winners based on whether ~h(B,a,b) ·
Hist(P ) is < 0, = 0, or > 0.

In fact, the GISR representation of r in Definiton 14 corresponds to the PUT struc-
ture [52], which we do not discuss in this paper for simplicity of presentation. Any GSR

refinement of r, denoted by r, uses the same ~H in Definiton 14 and a different g function
that always chooses a single loser to be eliminated in each round. The constraint is, for any
profile P , the break-tie mechanisms used in g only depends on Sign ~H(P ) (but not any other
information contained in P ). For example, lexicographic tie-breaking w.r.t. a fixed order
over alternatives is allowed but using the first agent’s vote to break ties is not allowed.

D.3 Minimally Continuous GISRs

Next, we define (minimally) continuous GISR in a similar way as Freeman et al. [19], except
that in this paper the domain of GISR is Rm! (in contrast to Rm!

≥0 in [19]).

Definition 15 ((Minimally) continuous GISR). A GISR r is continuous, if for any
~x ∈ Rm!, any alternative a, and any sequence of vectors (~x1, ~x2 . . .) that converges to ~x,

[∀j ∈ N, a ∈ r(~xj)] =⇒ [a ∈ r(~x)]

A GISR r is called minimally continuous, if it is continuous and there does not exist a
continuous GISR r∗ such that (1) for all ~x ∈ Rm!, r∗(~x) ⊆ r(~x), and (2) the inclusion is
strict for some ~x.

Equivalently, a continuous GISR r is minimally continuous if and only if the (fractional)
profiles with unique winners is a dense subset of Rm!. That is, for any vector in Rm!,
there exists a sequence of profiles with unique winners that converge to it. As commented
by Freeman et al. [19], many commonly-studied irresolute voting rules are continuous GISRs.
It is not hard to verify that positional scoring rules and MRSE rules are minimally continuous
GISRs, which is formally proved in the following proposition.

Proposition 2. Positional scoring rules and MRSE rules are minimally continuous.

Proof. Let ~s = (s1, . . . , sm) denote the scoring vector. We first prove that r~s is continuous.
For any ~x ∈ Rm!, any a ∈ A, and any sequence (~x1, ~x2, . . .) that converges to ~x such
that for all j ≥ 1, a ∈ r(~xj), we have that for every b ∈ A, ~s(~xj , a) ≥ ~s(~xj , b). Notice
that ~s(~xj , a) (respectively, ~s(~xj , b)) converges to ~s(~x, a) (respectively, ~s(~x, b)). Therefore,
~s(~x, a) ≥ ~s(~x, b), which means that a ∈ r~s(~x), i.e., r~s is continuous.

To prove that r~s is minimally continuous, it suffices to prove that for any ~x ∈ Rm! and
any a ∈ r~s(~x), there exists a sequence (~x1, ~x2, . . .) that converges to ~x such that for all j ≥ 1,
r(~xj) = {a}. Let σ denote an arbitrary cyclic permutation among A \ {a} and P denote
the following (m− 1)-profile.

P =
{
σi(a � others) : 1 ≤ i ≤ m− 1

}
Then, for every j ∈ N, we let ~xj = ~x+ 1

jHist(P ). It is easy to check that r(~xj) = {a}, which
proves the minimal continuity of r~s.

Let r = (r2, . . . , rm) denote the MRSE rule. We will use notation in Section E.3 to
prove the proposition for r. We first prove that r is continuous. Let ~x ∈ Rm!, a ∈ A, and
(~x1, ~x2, . . .) be a sequence that converges to ~x such that for all j ≥ 1, a ∈ r(~xj). Because the
number of different parallel universes is finite (more precisely, m!), there exists a subsequence
of (~x1, ~x2, . . .), denoted by (~x′1, ~x

′
2, . . .), and a parallel universe O ∈ L(A) where a is ranked
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in the last position (i.e., a is the winner), such that for all j ∈ N, O is a parallel universe
when executing r on ~x′j . Therefore, for all 1 ≤ i ≤ m − 1, in round i, O[i] has the lowest
rm+1−i score in ~x′j |O[i,m] among alternatives in O[i,m]. It follows that O[i] has the lowest
rm+1−i score in ~x|O[i,m] among alternatives in O[i,m], which means that O is also a parallel
universe when executing r on ~x. This proves that r is continuous.

The proof of minimal continuity of r is similar to the proof for positional scoring rules
presented above. For any ~x ∈ Rm! and any a ∈ r~s(~x), let O denote a parallel universe where a
is ranked in the last position. Let P denote the following profile of (m−1)!+(m−2)!+· · ·+2!
votes, where O is the unique parallel universe.

P =
⋃m−1

i=1
{O[1] � · · · � O[i] � Ri : ∀Ri ∈ L(O[i+ 1,m])}

For any j ∈ N, let ~xj = ~x− 1
jHist(P ). It is not hard to verify that (~x1, ~x2, . . .) converges

to ~x, and for every 1 ≤ i ≤ m − 1 and every j ∈ N, alternative O[i] is the unique loser
in round i, where − 1

jHist(P ) is used as the tie-breaker. This means that for all j ∈ N,

r(~xj) = {a}, which proves the minimal continuity of r.

D.4 Algebraic Properties of GISRs

We first define the refinement relationship among (feasible or infeasible) signatures.

Definition 16 (Refinement relationship �). For any pair of signatures ~t1,~t2 ∈ SK , we
say that ~t1 refines ~t2, denoted by ~t1 � ~t2, if for every k ≤ K, if [~t2]k 6= 0 then [~t1]k = [~t2]k.
If ~t1 � ~t2 and ~t1 6= ~t2, then we say that ~t1 strictly refines ~t2, denoted by ~t1 � ~t2.

In words, ~t1 refines ~t2 if ~t1 differs from ~t2 only on the 0 components in ~t2. By definition,
~t1 refines itself. Next, given ~H and a feasible signature ~t, we define a polyhedron H ~H,~t to
represent profiles whose signatures are ~t.

Definition 17 (H ~H,~t (H~t in short)). For any ~H = (~h1, . . . ,~hK) ∈ (Rd)K and any ~t ∈ S ~H ,

we let A~t =

 A~t
+

A~t
−

A~t
0

, where

• A~t
+ consists of a row −~hi for each i ≤ K with ti = +.

• A~t
− consists of a row ~hi for each i ≤ K with ti = −.

• A~t
0 consists of two rows −~hi and ~hi for each i ≤ K with ti = 0.

Let ~b~t = [ −~1︸︷︷︸
for A~t+

, −~1︸︷︷︸
for A~t−

, ~0︸︷︷︸
for A~t0

]. The corresponding polyhedron is denoted by H ~H,~t, or H~t in

short when ~H is clear from the context.

The following proposition follows immediately after the definition.

Proposition 3. Given ~H, for any pair of feasible signatures ~t1,~t2 ∈ S ~H , ~t1 �~t2 if and only

if H~t1≤0 ⊇ H
~t2
≤0.

Proposition 4 (Algebraic characterization of (minimal) continuity). A GISR r is
continuous, if and only if

∀~t ∈ S ~H , we have r(~t) ⊇
⋃

~t′∈S~H :~t′�~t
r(~t′)

28



r is minimally continuous, if and only if

∀~t ∈ S ~H , we have r(~t) =
⋃

~t′∈S◦
~H

:~t′�~t
r(~t′), and (2) ∀~t ∈ S◦~H , we have |r(~t)| = 1

The “continuity” part of Proposition 4 states that for any feasible signature ~t and its
refinement ~t′, we must have r(~t′) ⊆ r(~t). The “minimal continuity” part states that any
minimally continuous GISR is uniquely determined by its winners under atomic signatures
(where a single winner is chosen for any atomic signature).

Proof. The “if” part for continuity. Suppose for the sake of contradiction that there
exists ~t ∈ S ~H such that r(~t) ⊇

⋃
~t′∈S◦

~H
:~t′�~t r(~t

′) but r is not continuous. This means that

there exists ~x ∈ Rm! with Sign ~H(~x) = ~t, an infinite sequence (~x1, ~x2, . . .) that converge to
~x, and an alternative a /∈ r(~x), such that for every j ∈ N, a ∈ r(~xj). Because the total
number of (feasible) signatures is finite, there exists an infinite subsequence of (~x1, ~x2, . . .),
denoted by (~x′1, ~x

′
2, . . .), and ~t′ ∈ S ~H such that for all j ∈ N we have Sign ~H(~x′j) = ~t′. Note

that (~x′1, ~x
′
2, . . .) also converges to ~x. Therefore, the following holds for every k ≤ K.

• If t′k = 0, then for every j ∈ N we have ~hk · ~xj = 0, which means that ~hk · ~x = 0,
i.e. tk = 0.

• If t′k = +, then for every j ∈ N we have ~hk · ~xj > 0, which means that ~hk · ~x ≥ 0,
i.e. tk ∈ {0,+}.

• Similarly, if t′k = −, then for every j ∈ N we have ~hk · ~xj < 0, which means that
~hk · ~x ≤ 0, i.e. tk ∈ {0,−}.

This means that ~t′ � ~t. Recall that we have assumed r(~t) ⊇
⋃
~t′∈S~H :~t′�~t r(~t

′), which means

that a ∈ r(~t′) ⊆ r(~t) = r(~x). This contradicts the assumption that a /∈ r(~x).
The “only if” part for continuity. Suppose for the sake of contradiction that r is

continuous but there exists ~t ∈ S ~H such that
⋃
~t′∈S~H :~t′�~t r(~t

′) 6⊆ r(~t). This means that there

exist ~t′ � ~t and an alternative a such that a ∈ r(~t′) but a /∈ r(~t). Because both ~t and ~t′ are
feasible, there exists ~x, ~x′ ∈ Rm! such that Sign ~H(~x) = ~t and Sign ~H(~x′) = ~t′. It is not hard
to verify that the infinite sequence (~x+~x′, ~x+ 1

2~x
′, ~x+ 1

3~x
′, . . .) converge to ~x, and for every

j ∈ N, Sign ~H(~x + 1
j ~x
′) = ~t′, which means that a ∈ r(~x + 1

j ~x
′). By continuity of r we have

a ∈ r(~x) = r(~t), which contradicts the assumption that a /∈ r(~t).
The “if” part for minimal continuity. To simplify the presentation, we formally

define refinements of GISRs as follows.

Definition 18 (Refinements of GISRs). Let r∗ and r be a pair of GISR such that for
every ~x ∈ Rm!, r∗(~x) ⊆ r(~x). r∗ is called a refinement of r. If additionally there exists
~x ∈ Rm! such that r∗(~x) ⊂ r(~x), then r∗ is called a strict refinement of r.

Suppose for every ~t ∈ S ~H we have r(~t) =
⋃
~t′∈S◦

~H
:~t′�~t r(~t

′), and for every ~t ∈ S◦~H we

have |r(~t)| = 1. By the “continuity” part proved above, r is continuous. To prove that r is
minimally continuous, suppose for the sake of contradiction that r has a strict refinement,
denoted by r∗. Clearly for every atomic feasible signature ~t ∈ S◦~H we have r∗(~t) = r(~t).

Therefore, by the “continuity” part proved above, for every feasible signature ~t ∈ S ~H , we
have

r∗(~t) ⊇
⋃

~t′∈S~H :~t′�~t

r∗(~t′) ⊇
⋃

~t′∈S◦
~H

:~t′�~t

r∗(~t′) =
⋃

~t′∈S◦
~H

:~t′�~t

r(~t′) = r(~t),

which contradicts the assumption that r∗ is a strict refinement of r.
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The “only if” part for minimal continuity. Suppose r is a minimally continuous
GISR. We define another GISR r∗ as follows.

• For every ~t ∈ S◦~H we let r∗(~t) ⊆ r(~t) and |r∗(~t)| = 1.

• For every ~t ∈ S ~H , we let r∗(~t) =
⋃
~t′∈S◦

~H
:~t′�~t r

∗(~t′).

By the continuity part proved above, r∗ is continuous. It is not hard to verify that r∗ refines
r. Therefore, if either condition for minimal continuity does not hold, then r∗ is a strict
refinement of r, which contradicts the minimality of r.

This proves Proposition 4.

Next, we prove some properties aboutH~t that will be frequently used in the proofs of this
paper. The proposition has three parts. Part (i) characterizes profiles P whose histogram

is in H~t; part (ii) characterizes vectors in H~t≤0; and part (iii) states that for every atomic

signature ~t, H~t≤0 is a full dimensional cone in Rm!.

Claim 1 (Properties of H~t). Given integer ~H, any ~t ∈ S ~H ,

(i) for any integral profile P , Hist(P ) ∈ H~t if and only if Sign ~H(Hist(P )) = ~t;

(ii) for any ~x ∈ Rm!, Hist(~x) ∈ H~t≤0 if and only if ~t� Sign ~H(~x);

(iii) if ~t ∈ S◦~H then dim(H~t≤0) = m!.

Proof. Part (i) follows after the definition. More precisely, Sign ~H(Hist(P )) = ~t if and only

if for every k ≤ K, (1) tk = + if and only if ~hk · Hist(P ) > 0, which is equivalent to

−~hk ·Hist(P ) ≤ −1 because ~hk ∈ Zm!; (2) likewise, tk = − if and only if ~hk ·Hist(P ) ≤ −1,

and (3) if tk = 0 if and only if ~hk ·Hist(P ) ≤ 0 and −~hk ·Hist(P ) ≤ 0. This proves Part (i).

Part (ii) also follows after the definition. More precisely, ~x ∈ H~t≤0 if and only if for every

k ≤ K, (1) tk = + if and only if −~hk ·~x ≤ 0, which is equivalent to [Sign ~H(~x)]k ∈ {0,+}; (2)

likewise, tk = − if and only if ~hk · ~x ≤ 0, which is equivalent to [Sign ~H(~x)]k ∈ {0,−}, and

(3) if tk = 0 if and only if ~hk ·~x ≤ 0 and −~hk ·~x ≤ 0, which is equivalent to [Sign ~H(~x)]k = 0.

This is equivalent to ~t� Sign ~H(~x).

We now prove Part (iii). Suppose ~t ∈ S◦~H . Let ~x ∈ H~t ∩ Rm!
≥0 denote an arbitrary non-

negative vector whose existence is guaranteed by the assumption that ~t ∈ S◦~H . Therefore,

for every k ≤ K, either ~hk · ~x ≤ −1 or −~hk · ~x ≤ −1, which means that there exists δ > 0
such that any ~x′ with |~x′ − ~x|∞ < δ, we have ~hk · ~x < 0 or −~hk · ~x < 0. This means that ~x

is an interior point of H~t≤0 in Rm!, which implies that dim(H~t≤0) = m!.

E Materials for Section 3: Smoothed Condorcet Cri-

terion

E.1 Lemma 2 and Its Proof

For any GISR r, we first define RrCWW (respectively, RrCWL) that corresponds to fractional
profiles where a Condorcet winner exists and is a co-winner (respectively, not a co-winner)
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under r. CWW (respectively, CWL) stands for “Condorcet winner wins” (respectively,
“Condorcet winner loses”).

RrCWW = {~x ∈ Rm! : CW(~x) ∩ r(~x) 6= ∅}
RrCWL = {~x ∈ Rm! : CW(~x) ∩ (A \ r(~x)) 6= ∅}

For any set R ⊆ Rm!, let Closure(R) denote the closure of R in Rm!, that is, all points in
R and their limiting points. Next, we introduce four conditions to present Lemma 2 below.

Definition 19. Given a GISR r and n ∈ N, we define the following conditions, where
~x ∈ Rm!.

• Always satisfaction: CAS(r, n) holds if and only if for all P ∈ L(A)n, CC(r, P ) =
1.

• Robust satisfaction: CRS(r, ~x) holds if and only if ~x /∈ Closure(RrCWL).

• Robust dissatisfaction: CRD(r, ~x) holds if and only if CW(~x) ∩ (A \ r(~x)) 6= ∅.

• Non-Robust satisfaction: CNRS(r, ~x) holds if and only if ACW(~x) 6= ∅ and ~x /∈
Closure(RrCWW).

In words, CAS(r, n) means that r always satisfies CC for n agents. Robust satisfaction
CRS(r, ~x) states that ~x is away from the dissatisfaction instances (i.e., RrCWL) by a constant
margin. Robust dissatisfaction CRD(r, ~x) states that the Condorcet winner exists under
~x and is not a co-winner under r. Robust satisfaction and robust dissatisfaction are not
“symmetric”, because there are two sources of satisfaction: (1) no Condorcet winner exists
and (2) the Condorcet winner exists and is also a winner, while there is only one source of
dissatisfaction: the Condorcet winner exists but is not a winner.

The intuition behind Non-Robust satisfaction CNRS(r, ~x) may not be immediately clear
by definition. It is called “satisfaction”, because ACW(~x) 6= ∅ implies that CW(~x) = ∅,
which means that r satisfies CC at ~x. The reason behind “non-robust” is that when a small
perturbation ~x′ is introduced, UMG(~x+ ~x′) often contains a Condorcet winner that is not
a co-winner under ~x, because ~x is constantly far away from RrCWW.

Example 11 (The four conditions in Definition 19). Let m = 3 and n = 14. Ta-
ble 3 illustrates four distributions, their UMG, the irresolute plurality winners, and their
(dis)satisfaction of the four conditions introduced defined in Definition 19. π1, π2, and π′

are the same as in Example 1 and 3. Notice that π′ is a linear combination of π1 and π2.
Let P14 denote the 14-profile {6 × [1 � 2 � 3], 4 × [2 � 3 � 1], 4 × [2 � 1 � 3]}. It is

not hard to verify that alternative 2 is the Condorcet winner under P14 and Plu(P14) = {1}.
Therefore, CAS(Plu, 14) = N .

• π1. CRS(Plu, π1) = N . To see this, let ~x′ denote the vector that corresponds to the

single-vote profile {2 � 3 � 1}. For any sufficiently small δ > 0, π1 + δ~x′ ∈ RPlu
CWL,

because 2 is the Condorcet winner and 1 is the unique plurality winner. CRD(Plu, π1) =
N because CW(π1) = ∅. CNRS(Plu, π1) = Y because ACW(π1) = {2, 3}, and for
any ~x′ ∈ R6 and any δ > 0 that is sufficiently small, in π1 + δ~x′ we have that 2
or 3 is Condorcet winner and 1 is the unique plurality winner, which means that
π1 + δ~x′ 6∈ RrCWW.

• π2. CRS(Plu, π2) = Y because the plurality score of 2 is strictly higher than the
plurality score of any other alternative, which means that for any ~x′ ∈ Rm!, for any
δ > 0 that is sufficiently small, 2 is the Condorcet winner as well as the unique plurality
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123 132 231 321 213 312 UMG Plu winner(s) CAS CRS CRD CNRS

π1 1
4

1
4

1
8

1
8

1
8

1
8

1

2 3
{1} N N N Y

π2 1
8

1
8

3
8

1
8

1
8

1
8

1

2 3
{2} N Y N N

πuni
1
6

1
6

1
6

1
6

1
6

1
6

1

2 3
{1, 2, 3} N N N N

3π1+π2

4
7
32

7
32

3
16

1
8

1
8

1
8

1

2 3
{1} N N Y N

Table 3: Distributions and their (dis)satisfaction of conditions in Definition 19.

winner in π2 + δ~x′. This means that π2 is not in the closure of vectors where CC is
violated. CRD(Plu, π2) = N because CW(π2) ∩ (A \ Plu(π2)) = {2} ∩ {1, 3} = ∅.
CNRS(Plu, π2) = N because ACW(π2) = ∅.

• πuni. CRS(Plu, πuni) = N . To see this, let ~x′ denote the vector that corresponds to
the 14-profile P14 defined earlier in this example to prove CAS(Plu, 14) = N . For

any δ > 0 that is sufficiently small, we have πuni + δ~x′ ∈ RPlu
CWL, because 2 is the

Condorcet winner and 1 is the unique plurality winner. CRD(Plu, πuni) = N because
CW(πuni) = ∅. CNRS(Plu, πuni) = N because ACW(πuni) = ∅.

• 3π1+π2

4
. Let π′ = 3π1+π2

4 . CRS(Plu, π′) = N because π′ ∈ RPlu
CWL. CRD(Plu, π′) = Y

because CW(π′) ∩ (A \ Plu(π′)) = {2} ∩ {2, 3} 6= ∅. CNRS(Plu, π′) = N because
ACW(π′) = ∅.

For any condition Y , we use ¬Y to indicate that Y does not hold. For exam-
ple, ¬CAS(r, n) means that CAS(r, n) does not hold, i.e., there exists P ∈ L(A)n with
CC(r, P ) = 0. A GISR rule r1 is a refinement of another voting rule r2, if for all ~x ∈ Rm!,
we have r1(~x) ⊆ r2(~x). We note that while the four conditions in Definition 19 are not
mutually exclusive by definition, they provide a complete characterization of smoothed CC
under any refinement of any minimally continuous int-GISR as shown in the lemma below.

Lemma 2. (Smoothed CC: Minimally Continuous Int-GISRs). For any fixed
m ≥ 3, let M = (Θ,L(A),Π) be a strictly positive and closed single-agent preference model,
let r be a minimally continuous int-GISR and let r be a refinement of r. For any n ∈ N
with 2 | n, we have

C̃C
min

Π (r, n) =



1 if CAS(r, n)
1− exp(−Θ(n)) if ¬CAS(r, n) and ∀π ∈ CH(Π),CRS(r, π)

Θ(n−0.5) if

{
(1) ∀π ∈ CH(Π),¬CRD(r, π) and
(2) ∃π ∈ CH(Π) s.t. CNRS(r, π)

exp(−Θ(n)) if ∃π ∈ CH(Π) s.t. CRD(r, π)
Θ(1) ∧ (1−Θ(1)) otherwise
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For any n ∈ N with 2 - n, we have

C̃C
min

Π (r, n) =


1 same as the 2 | n case
1− exp(−Θ(n)) same as the 2 | n case
exp(−Θ(n)) if ∃π ∈ CH(Π) s.t. CRD(r, π) or CNRS(r, π)
Θ(1) ∧ (1−Θ(1)) otherwise

Lemma 2 can be applied to a wide range of resolute voting rules because it works for any
refinement r (i.e., using any tie-breaking mechanism) of any minimally continuous GISR
(which include all voting rules discussed in this paper). Notice that r is not required to be
a GISR, the L case and the 0 case never happen, and the conditions of all cases depend on
r but not r.

Example 12 (Applications of Lemma 2 to plurality). Continuing the setting of Ex-
ample 11, we let Plu denote any refinement of Plu. We first apply the 2 | n part of Lemma 2
to the following four cases of Π for sufficiently large n using Table 3. The first three cases
correspond to i.i.d. distributions, i.e., |Π| = 1. In particular, Π = {πuni} corresponds to IC.

• Π = {π1, π2}. We have C̃C
min

Π (Plu, n) = exp(−Θ(n)), that is, the VU case holds.

This is because let π′ = 3π1+π2

4 , we have π′ ∈ CH(Π) and CRS(Plu, π′) = N according
to Table 3.

• Π1 = {π1}. We have C̃C
min

Π1
(Plu, n) = Θ(n−0.5), that is, the U case holds.

• Π2 = {π2}. We have C̃C
min

Π2
(Plu, n) = 1− exp(−Θ(n)), that is, the VL case holds.

• ΠIC = {πuni}. We have C̃C
min

ΠIC
(Plu, n) = Θ(1)∧ (1−Θ(1)), that is, the M case holds.

When 2 - n and Π1 = {π1}, we have C̃C
min

Π1
(Plu, n) = exp(−Θ(n)), that is, the VU case

holds.

Intuitive explanations. The conditions in Lemma 2 can be explained as follows. Take
the 2 | n case for example. In light of various multivariate central limit theorems, the
histogram of the randomly-generated profile when the adversary chooses ~π = (π1, . . . , πn)
is concentrated in a Θ(n−0.5) neighborhood of

∑n
j=1 πj , denoted by B~π. Let avg(~π) =

1
n

∑n
j=1 πj , which means that avg(~π) ∈ CH(Π). The condition for the 1 case is straightfor-

ward. Suppose the 1 case does not happen, then the VL case happens if all distributions in
CH(Π), which includes avg(~π), are far from instances of dissatisfaction, so that no instance
of dissatisfaction is in B~π. Suppose the VL case does not happen. The U case happens if
the min-adversary can find a non-robust satisfaction instance (CNRS(r, π)) but cannot find
a robust dissatisfaction instance (¬CRD(r, π)). And if the min-adversary can find a robust
dissatisfaction instance (CRD(r, π)), then B~π does not contain any instance of satisfaction,
which means that the VU case happens. All remaining cases are M cases.

Odd vs. even n. The 2 - n case also admits a similar explanation. The main difference is
that when 2 - n, the UMG of any n-profile must be a complete graph, i.e., no alternatives are
tied in the UMG. Therefore, when CNRS(r, π) is satisfied, a Condorcet winner (who is one
of the two ACWs in π) must exist and constitutes an instance of robust dissatisfaction when
2 - n. On the other hand, it is possible that the two ACWs in π are tied in an n-profile when
2 | n, which constitutes a case where CC is satisfied because the Condorcet winner does not
exist. This happens with probability Θ(n−0.5). This difference leads to the Θ(n−0.5) case
when 2 | n, and it becomes part of the exp(−Θ(n)) case when 2 - n .
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Proof sketch. Before presenting the formal proof in the following subsection, we present
a proof sketch here.

We first prove the special case r = r, which is done by applying Lemma 1 in the following
three steps. Step 1. Define C that characterizes the satisfaction of CC under r, and an
almost complement C∗ of C. In fact, we will let C = CNCW ∪ CCWW as in Section 5 and
Section C.1, and prove that one choice of C∗ is the union of polyhedra that represent profiles
where the Condorcet winner exists but is not an r co-winner. Step 2. Characterize α∗n and
βn, which is technically the most involved part due to the generality of the theorem. Step
3. Formally apply Lemma 1.

Then, let r denote an arbitrary refinement of r. We define a slightly different version
of CC, denoted by CC∗, whose satisfaction under r will be used as a lower bound on the
satisfaction of CC under r. For any GISR r and any profile P , we define

CC∗(r, P ) =

{
1 if CW(P ) = ∅ or CW(P ) = r(P )
0 otherwise

Compared to CC, CC∗ rules out profiles P where a Condorcet winner exists and is not the
unique winner under r. Therefore, for any ~π ∈ Πn, we have

PrP∼~π(CC∗(r, P ) = 1) ≤ PrP∼~π(CC(r, P ) = 1) ≤ PrP∼~π(CC(r, P ) = 1)

Then, we prove that smoothed CC∗, i.e., C̃C∗
min

Π (r, n), asymptotically matches C̃C
min

Π (r, n),
which concludes the proof of Lemma 2.

E.1.1 Proof of Lemma 2

Proof. The 1 cases of the theorem is trivial. In the rest of the proof, we assume that
the 1 case does not hold. That is, there exists an n-profile P such that CW(P ) exists
but is not in r(P ). We will prove that the theorem holds for any n > Nr, where Nr ∈ N is a
constant that only depends on r that will be defined later (in Definition 24). This is without
loss of generality, because when n is bounded above by a constant, the 1 case belongs to the
U case (i.e., Θ(n−0.5)) and the VU case (i.e., exp(−Θ(n))).

Let r be defined by ~H and g. We first prove the theorem for the special case where
r = r, and then show how to modify the proof for general r. For any irresolute voting rule
r, we recall that CC(r, P ) = 1 if and only if either P does not have a Condorcet winner, or
the Condorcet winner is a co-winner under r.

Proof for the special case r = r. Recall that in this case r is a minimally continuous
GISR. In light of Lemma 1, the proof proceeds in the following three steps. Step 1.
Define C that characterizes the satisfaction of Condorcet Criterion of r and an almost
complement C∗ of C. Step 2. Characterize ΠC,n, ΠC∗,n, βn, and α∗n. Step 3. Apply
Lemma 1.

Step 1: Define C and C∗. The definition is similar to the ones presented in Section 5
for plurality. We will define C = CNCW ∪ CCWW, where CNCW represents the histograms of
profiles that do not have a Condorcet winner, and CCWW represents histograms of profiles
where a Condorcet winner exists and is a co-winner under r. CNCW is similar to the set
defined in [51, Proposition 5 in the Appendix]. For completeness we recall its definition
using the notation of this paper.

Recall that Paira,b is the pairwise difference vector defined in Definition 10. It follows
that for any profile P and any pair of alternatives a, b, Paira,b · Hist(P ) > 0 if and only if
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there is an edge a → b in UMG(P ); Paira,b · Hist(P ) = 0 if and only if a and b are tied in
UMG(P ). Then, we use Paira,b’s to define polyhedra that characterize histograms of profiles
whose UMGs equal to a given graph G.

Definition 20 (HG). Given an unweighted directed graph G over A, let AG =

[
AG

edge

AG
tie

]
,

where AG
edge consists of rows Pairb,a for all edges a→ b ∈ G, and AG

edge consists of two rows

Pairb,a and Paira,b for each tie {a, b} in G. Let ~bG = [ −~1︸︷︷︸
for AG

edge

, ~0︸︷︷︸
for AG

tie

] and

HG =

{
~x ∈ Rm! : AG · (~x)

> ≤
(
~bG
)>}

Next, we define polyhedra indexed by an alternative a and a feasible signature ~t ∈
S ~H that characterize the histograms of profiles P where a is the Condorcet winner and

Sign ~H(P ) = ~t.

Definition 21 (Ha,~t). Given ~H = (~h1, . . . ,~hK) ∈ (Rd)K , a ∈ A, and ~t ∈ S ~H , we let

Aa,~t =

[
ACW=a

A~t

]
, where ACW=a consists of pairwise difference vectors Pairb,a for each

alternative b 6= a, and A~t is the matrix used to define H~t in Definition 17. Let ~ba,~t =

[ −~1︸︷︷︸
for ACW=a

, ~b
~t︸︷︷︸

for A~t

] and

Ha,~t = {~x ∈ Rm! : Aa,~t · (~x)
> ≤

(
~ba,

~t
)>
}

Next, we use HG and Ha,~t as building blocks to define C = CNCW∪CCWW and an almost
complement of C, denoted by CCWL. At a high level, CNCW corresponds to the profiles where
no Condorcet winner exists (NCW represents “no Condorcet winner”), CCWW corresponds
to profiles where the Condorcet winner exists and is also an r co-winner (CWW represents
“Condorcet winner wins”), and CCWL corresponds to profiles where the Condorcet winner
exists and is not an r co-winner (CWL represents “Condorcet winner loses”).

Definition 22 (C and CCWL). Given an int-GISR characterized by ~H and g, we define

C = CNCW ∪ CCWW, where CNCW =
⋃

G:CW(G)=∅
HG and CCWW =

⋃
a∈A,~t∈S~H :a∈r(~t)

Ha,~t

CCWL =
⋃

a∈A,~t∈S~H :a/∈r(~t)
Ha,~t

We note that some Ha,~t can be empty. To see that CCWL is indeed an almost complement
of C = CNCW ∪ CCWW, we note that C ∩ CCWL = ∅, and for any integer vector ~x,

• if ~x does not have a Condorcet winner then ~x ∈ CNCW ⊆ C;

• if ~x has a Condorcet winner a, which is also an r co-winner, then ~x ∈ Ha,Sign~H(~x) ⊆
CCWW ⊆ C;

• otherwise ~x has a Condorcet winner a, which is not an r co-winner. Then ~x ∈
Ha,Sign~H(~x) ⊆ CCWL.

Therefore, Zq ⊆ C ∪ CCWL.
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Step 2: Characterize ΠC,n, ΠCCWL,n, βn, and α∗n. Recall that βn and α∗n are defined
by dimmax

C,n (π) and dimmax
CCWL,n(π) for π ∈ CH(Π) as follows:

βn = minπ∈CH(Π) dimmax
C,n (π) = minπ∈CH(Π) max

(
dimmax

CNCW,n(π),dimmax
CCWW,n(π)

)
α∗n = maxπ∈CH(Π) dimmax

CCWL,n(π)

For convenience, we let ΠC,n denote the distributions in CH(Π), each of which is connected
to an edge with positive weight in the activation graph (Definition 6). Formally, we have
the following definition.

Definition 23 (ΠC,n). Given a set of distributions Π over q, C =
⋃
i≤I Hi, and n ∈ N, let

ΠC,n = {π ∈ CH(Π) : ∃i ≤ I s.t. HZ
i,n 6= ∅ and π ∈ Hi,≤0}

Table 4 gives an overview of the rest of the proof in Step 2, which characterizes dimmax
C,n (π)

and dimmax
CCWL,n(π) by the membership of π ∈ CH(Π) in ΠCNCW,n,ΠCCWW,n, and ΠCCWL,n,

respectively, where n ≥ Nr for a constant Nr that will be defined momentarily (in Defini-
tion 24).

π ∈ ΠCNCW,n ∗ ∗ N Y Y N
π ∈ ΠCCWW,n Y Y N N N N
π ∈ ΠCCWL,n Y N Y Y N N
dimmax

CNCW,n(π) (Claim 3) ∗ ∗ − n
logn m! or m!− 1 m!

N/Adimmax
CCWW,n(π) (Claim 6) m! m! ≤ − n

logn < 0 < 0

dimmax
C,n (π) =

max
(
dimmax

CNCW,n(π),dimmax
CCWW,n(π)

) m! m! − n
logn dimmax

CNCW,n(π) m!

dimmax
CCWL,n(π) (Claim 6) m! − n

logn m! m! − n
logn

Table 4: dimmax
C,n (π) and dimmax

CCWL,n(π) for CC for π ∈ CH(Π) and sufficiently large n.

We will first specify Nr in Step 2.1. Then in Step 2.2, we will characterize ΠCNCW,n

and dimmax
CNCW,n(π) in Claim 3, and characterize ΠCCWW,n, dimmax

CCWW,n(π), ΠCCWL,n, and
dimmax

CCWL,n(π) in Claim 6. Finally, in Step 2.3 we will verify dimmax
C,n (π) and dimmax

CCWL,n(π)
in Table 4.

Step 2.1. Specify Nr. We first prove the following claim, which provides a sufficient
condition for a polyhedron to be active for sufficiently large N .

Claim 2. For any polyhedron H characterized by integer matrix A and ~b ≤ ~0, if
dim(H≤0) = m! and H ∩ Rm!

>0 6= ∅, then there exists N ∈ N such that for all n ≥ N ,
H is active at n.

Proof. By Minkowski-Weyl theorem (see e.g., [43, p. 100]), H = V + H≤0, where V is a
finitely generated polyhedron. Therefore, any affine space containing H can be shifted to
contain H≤0, which means that dim(H) ≥ dim(H≤0) = m!. Because H ∩ Rm!

>0 6= ∅, it
contains an interior point (inner point with an full dimensional neighborhood), denoted by
~x, whose δ neighborhood (for some 0 < δ < 1) in L∞ is contained in H∩Rm!

>0. Let B denote

the δ neighborhood of ~x. Let N = m!|~x|1
δ . Then, because ~b ≤ ~0 and N

|~x|1 ≥ 1, for every

n > N and every ~x′ ∈ B we have

A ·
(

n

|~x|1
~x′
)>

<
n

|~x|1

(
~b
)>
≤
(
~b
)>
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This means that n
|~x|1B ⊆ H ∩ Rm!

>0. Moreover, it is not hard to verify that n
|~x|1B contains

the following non-negative integer n vector(⌊
n

|~x|1
x1

⌋
, . . . ,

⌊
n

|~x|1
xm!−1

⌋
, n−

m!−1∑
i=1

⌊
n

|~x|1
xi

⌋)

This proves Claim 2.

We now define the constant Nr used throughout the proof.

Definition 24 (Nr). Let Nr denote a number that is larger than m4 and the maximum
N obtain from applying Claim 2 to all polyhedra H in CNCW, CCWW, or CCWL where
dim(H≤0) = m! and H ∩ Rm!

>0 6= ∅.

Step 2.2. Characterize ΠCNCW,n, ΠCCWW,n, and ΠCCWL,n.

Claim 3 (Characterizations of ΠCNCW,n and dimmax
CNCW,n

(π)). For any n ≥ m4 such
that ¬CAS(r, n) and any distribution π over A, we have

• if 2 | n, then π ∈ ΠCNCW,n if and only if CW(π) = ∅, and

dimmax
CNCW,n(π) =


− n

logn if CW(π) 6= ∅
m!− 1 if ACW(π) 6= ∅
m! otherwise (i.e. CW(π) ∪ACW(π) = ∅)

• if 2 - n, then π ∈ ΠCNCW,n if and only if CW(π) ∪ACW(π) = ∅, and

dimmax
CNCW,n(π) =

{
− n

logn if CW(π) ∪ACW(π) 6= ∅
m! otherwise (i.e. CW(π) ∪ACW(π) = ∅)

Proof. In the proof we assume that n ≥ m4. We first recall the following characterization
of HG, where part (i)-(iii) are due to [51, Claim 3 in the Appendix] and part (iv) follows
after [51, Claim 6 in the Appendix].

Claim 4 (Properties of HG [51]). For any UMG G,

(i) for any integral profile P , Hist(P ) ∈ HG if and only if G = UMG(P );

(ii) for any ~x ∈ Rm!, ~x ∈ HG≤0 if and only if UMG(~x) is a subgraph of G.

(iii) dim(HG≤0) = m!− Ties(G).

(iv) For any n ≥ m4, HG is active at n if (1) n is even, or (2) n is odd and G is a complete
graph.

The 2 | n case. By Claim 4 (iv), when n ≥ m4 and 2 | n, every HG is active. This
means that π ∈ ΠCNCW,n if and only if π ∈ HG≤0 for some graph G that does not have
a Condorcet winner. According to Claim 4 (ii), this holds if and only if there exists a
supergraph of UMG(π) (which can be UMG(π) itself) that not have a Condorcet winner,
which is equivalent to UMG(π) does not have a Condorcet winner, i.e. CW(π) = ∅. It
follows that dimmax

CNCW,n(π) = − n
logn if and only if CW(π) 6= ∅.

To characterize the m! − 1 case and the m! case for dimmax
CNCW,n(π), we first prove the

following claim to characterize graphs whose complete supergraphs all have Condorcet win-
ners.
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Claim 5. For any unweighted directed graph G over A, the following conditions are equiva-
lent. (1) Every complete supergraph of G has a Condorcet winner. (2) CW(G)∪ACW(G) 6=
∅.

Proof. We first prove (1)⇒(2) in the following three cases.

• Case 1: |WCW(G)| = 1. In this case we must have CW(G) = WCW(G), otherwise
there exists an alternative b that is different from the weak Condorcet winner, denoted
by a, such that a and b are tied in G. Notice that b is not a weak Condorcet winner.
Therefore, we can complete G by adding b → a and breaking other ties arbitrarily,
and it is not hard to see that the resulting graph does not have a Condorcet winner,
which is a contradiction.

• Case 2: |WCW(G)| = 2. Let WCW(G) = {a, b}. We note that a and b are not
tied with any other alternative. Otherwise for the sake of contradiction suppose a is
tied with c 6= b. Then, we can extend G to a complete graph by assigning c→ a and
a → b. The resulting complete graph does not have a Condorcet winner, which is a
contradiction. This means that a and b are the almost Condorcet winners, and hence
(2) holds.

• Case 3: |WCW(G)| ≥ 3. In this case, we can assign directions of edges between
WCW(G) to form a cycle, and then assign arbitrary direction to other missing edges
in G to form a complete graph, which does not have a Condorcet winner and is thus
a contradiction.

(2)⇒(1) is straightforward. If CW(G) 6= ∅, then any supergraph of G has the same Con-
dorcet winner. If ACW(G) = {a, b} 6= ∅, then any complete supergraph of G either has a
as the Condorcet winner or has b as the Condorcet winner. This proves Claim 5.

The dimmax
CNCW,n

(π) = m! − 1 case when 2 | n. Suppose ACW(π) = {a, b}. Let G∗

denote a supergraph of UMG(π) where ties in UMG(π) except {a, b} are broken arbitrarily.
By Claim 4 (ii), π ∈ HG∗≤0 and by Claim 4 (iii), HG∗≤0 = m!−1. Recall from Claim 4 (iv) that

HG∗ is active at n because we assumed that n > m4. Therefore, dimmax
CNCW,n(π) ≥ m! − 1.

To see that dimmax
CNCW,n(π) ≤ m! − 1, we note that for every graph G that does not have a

Condorcet winner such that π ∈ HG≤0. By Claim 4 (ii), G is a supergraph of UMG(π). This
means that G is not a complete graph, because by Claim 5, any complete supergraph of
UMG(π) must have a Condorcet winner. It follows that Ties(G) ≥ 1 and by Claim 4 (iii),
HG≤0 ≤ m!− 1. Therefore, dimmax

CNCW,n(π) = m!− 1.
The dimmax

CNCW,n
(π) = m! case when 2 | n. Suppose CW(π)∪ACW(π) = ∅. By Claim 5

there exists a complete supergraph G of UMG(π) that does not have a Condorcet winner,
which means that HG ⊆ CNCW ⊆ C. We have π ∈ HG≤0 (Claim 4 (ii)), dim(HG≤0) = m!

(Claim 4 (iii)), and HG is active at n (Claim 4 (iv)). Therefore, dimmax
CNCW,n(π) = m!.

The 2 - n case. By Claim 4 (iv), when n ≥ m4 and 2 - n, HG is active if and only
if G is a complete graph. It follows from Claim 4 (ii) that π ∈ ΠCNCW,n if and only if
π ∈ HG≤0, where G is complete supergraph of UMG(π) that does not have a Condorcet

winner. By Claim 4 (iii), dim(HG≤0) = m!. Therefore, by Claim 5, π ∈ ΠCNCW,n if and only
if CW(π) ∪ACW(π) = ∅. Moreover, whenever π ∈ ΠCNCW,n we have dimmax

CNCW,n(π) = m!.
This proves Claim 3.

Recall that we have assumed the 1 case of the theorem does not hold, that is, ¬CAS(r, n).
The following claim characterizes ΠCCWW,n, dimmax

CCWW,n(π), ΠCCWL,n, and dimmax
CCWL,n(π),

when ¬CAS(r, n).

38



Claim 6 (Characterizations of ΠCCWW,n, dimmax
CCWW,n

(π), ΠCCWL,n, and

dimmax
CCWL,n

(π)). Given any strictly positive Π and any minimally continuous int-GISR
r, for any n ≥ Nr (see Definition 24) such that ¬CAS(r, n) and any π ∈ CH(Π),

[π ∈ ΠCCWW,n]⇔
[
π ∈ Closure(RrCWW)

]
⇔
[
dimmax

CCWW,n(π) = m!
]
, and

[π ∈ ΠCCWL,n]⇔
[
π ∈ Closure(RrCWL)

]
⇔
[
dimmax

CCWL,n(π) = m!
]

Proof. We first prove properties of Ha,~t in the following claim, which has three parts. Part
(i) states that Ha,~t characterizes histograms of the profiles whose signature is ~t and where

alternative a is the Condorcet winner. Part (ii) characterizes the characteristic cone of Ha,~t.
Part (iii) characterizes the dimension of the characteristic cone for some cases.

Claim 7 (Properties of Ha,~t). Given ~H, for any a ∈ A and any ~t ∈ S ~H ,

(i) for any integral profile P , Hist(P ) ∈ Ha,~t if and only if a is the Condorcet winner
under P and Sign ~H(P ) = ~t;

(ii) for any ~x ∈ Rm!, ~x ∈ Ha,~t≤0 if and only if a is a weak Condorcet winner under ~x and
~t� Sign ~H(~x);

(iii) if ~t ∈ S◦~H and Ha,~t 6= ∅, then dim(Ha,~t≤0) = m!.

Proof. Part (i) follows after the definition. More precisely, ACW=a · (Hist(P ))
> ≤

(
−~1
)>

if

and only if a is the Condorcet winner under P , and by Claim 1 (i), A~t · (Hist(P ))
> ≤

(
~b~t
)>

if and only if Sign ~H(Hist(P )) = ~t.

Part (ii) also follows after the definition. ACW=a · (~x)
> ≤

(
~0
)>

if and only if a is a weak

Condorcet winner under P , and by Claim 1 (ii), A~t ·(~x)
> ≤

(
~0
)>

if and only if ~t�Sign ~H(~x).

To prove Part (iii), suppose ~x ∈ Ha,~t. Because ~t ∈ S◦~H , we have ~ba,~t = −~1 (Definition 21).

Therefore, there exists δ > 0 such that for all vector ~x′ such that |~x′−~x|1 < δ, Aa,~t · (~x′)> <(
~0
)>

, which means that ~x′ ∈ Ha,~t≤0. Therefore, Ha,~t≤0 contains the δ neighborhood of ~x, whose

dimension is m!. This means that dim(Ha,~t≤0) = m!.

[π ∈ ΠCCWW,n] ⇐
[
π ∈ Closure(RrCWW)

]
. Suppose π ∈ Closure(RrCWW) and let

(~x1, ~x2, . . .) denote an infinite sequence in RrCWW that converges to π. Because the number
of alternatives and the number of feasible signatures are finite, there exists an infinite subse-
quence (~x′1, ~x

′
2, . . .) such that (1) there exists a ∈ A such that for all j ∈ N, CW(~x′j) = {a},

and (2) there exists ~t ∈ S ~H such that a ∈ r(~t) and for all j ∈ N, Sign ~H(~x′j) = ~t. Because
r is minimally continuous, by Proposition 4, there exists a feasible atomic refinement of
~t, denoted by ~ta ∈ S◦~H , such that r(~ta) = {a}. Therefore, to prove that π ∈ ΠCCWW,n, it

suffices to prove that (i) for every n > Nr, Ha,~ta is active, and (ii) π ∈ Ha,~ta≤0 , which will be
done as follows.

(i) Ha,~ta is active. By Claim 2, it suffices to prove that Ha,~ta∩Rm!
>0 6= ∅. This is proved

by explicitly constructing a vector in Ha,~ta ∩ Rm!
≥0 as follows. Because ~ta is feasible, there

exists ~xa ∈ Rm! such that Sign ~H(~xa) = ~ta. Recall that π is strictly positive and (~x′1, ~x
′
2, . . .)

converges to π, there exists j ∈ N such that ~x′j > ~0. For any δ > 0, let ~xδ = ~x′j + δ~xa. We
let δ > 0 denote a sufficiently small number such that the following two conditions hold.
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• ~xδ > ~0. The existence of such δ follows after noticing that ~x′j > ~0.

• CW(~xδ) = {a}. The existence of such δ is due to the assumption that CW(~x′j) = {a},

which means that ACW=a ·
(
~x′j
)>

<
(
~0
)>

, where ACW=a is defined in Definition 21.

Therefore, for any sufficiently small δ > 0 we have ACW=a · (~xδ)> <
(
~0
)>

, which

means that a is the Condorcet winner under ~xδ.

Because ~ta is a refinement of ~t, we have Sign ~H(~xδ) = ~ta. Therefore, ~xδ ∈ Ha,~ta ∩ Rm!
>0.

Following Claim 2 and the definition of Nr (Definition 24), we have that Ha,~ta is active for
all n > Nr.

(ii) π ∈ Ha,~ta≤0 . Because for all j ∈ N, ACW=a ·
(
~x′j
)>

<
(
~0
)>

and (~x′1, ~x
′
2, . . .) converge

to π, we have ACW=a · (π)
> ≤

(
~0
)>

, which means that a is a weak Condorcet winner under

π. It is not hard to verify that for every k ≤ K, if tk = + (respectively, − and 0), then we
have [Sign ~H(π)]k ∈ {0,+} (respectively, {0,−} and {0}). Therefore, ~t � Sign ~H(π), which

means that ~ta � Sign ~H(π) because ~ta � ~t. By Claim 7 (ii), we have π ∈ Ha,~ta≤0 .

[π ∈ ΠCCWW,n] ⇒
[
π ∈ Closure(RrCWW)

]
. Suppose π ∈ ΠCCWW,n, which means that

there exists a ∈ A and ~t ∈ S ~H such that π ∈ Ha,~t≤0, a ∈ r(~t), CW(~t) = {a}, and Ha,~t contains
a non-negative integer n-vector, denoted by ~x′. By Proposition 4, because r is minimally
continuous, there exists ~ta ∈ S◦~H such that ~ta � ~t and r(~ta) = {a}. Let ~x∗ ∈ H~ta denote an

arbitrary vector, which is guaranteed to exist because ~ta ∈ S◦~H . Because ~x′ ∈ Ha,~t, we have

ACW=a ·(~x′)> ≤
(
−~1
)>

. Therefore, there exists δa such that ACW=a ·(~x′ + δa~x
∗)
>
<
(
~0
)>

.

Let ~x = ~x′+δa~x
∗. Recall that π ∈ Ha,~t≤0, which means that ACW=a ·(π)

> ≤
(
~0
)>

. Therefore,

for all δ > 0 we have

ACW=a · (π + δ~x)
>

= ACW=a · (π)
>

+ δACW=a · (~x)
>
<
(
~0
)>

,

which means that CW(π + δ~x) = {a}. It is not hard to verify that Sign ~H(π + δ~x) = ~ta,
which means that r(π+ δ~x) = {a}. Consequently, for every δ > 0 we have π+ δ~x ∈ RrCWW.
Notice that the sequence (π+~x, π+ 1

2~x, . . .) converges to π. Therefore, π ∈ Closure(RrCWW).

[
π ∈ Closure(RrCWW)

]
⇒

[
dimmax

CCWW,n
(π) = m!

]
. Continuing the proof of the

[π ∈ ΠCCWW,n] ⇒
[
π ∈ Closure(RrCWW)

]
part, because π is strictly positive and (π +

~x, π + 1
2~x, . . .) converges to π, there exists j ∈ N such that π + 1

j ~x > ~0. Recall that

CW(π + 1
j ~x) = {a}, Sign ~H(π + 1

j ~x) = ~ta, and ~ta is atomic, we have

ACW=a ·
(
π +

1

j
~x

)>
<
(
~0
)>

and A
~ta ·
(
π +

1

j
~x

)>
<
(
~0
)>

Therefore, there exists ` > 0 such that

ACW=a ·
(
`(π +

1

j
~x)

)>
≤
(
−~1
)>

and A
~ta ·
(
`(π +

1

j
~x)

)>
≤
(
−~1
)>

,

which means that `(π+ 1
j ~x) ∈ Ha,~ta∩Rm!

>0 6= ∅. by Claim 7 (iii), we have dimmax
CCWW,n(π) = m!.
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[
dimmax

CCWW,n
(π) = m!

]
⇒ [π ∈ ΠCCWW,n] follows after the definition of ΠCCWW,n.

More concretely, dimmax
CCWW,n(π) = m! means that there exists a polyhedron H ⊆ CCWW

such that the weight on the edge (π,H) in the activation graph is m!, which implies that
π ∈ ΠCCWW,n.

The proofs for ΠCCWL,n and dimmax
CCWL,n(π) are similar to the proofs for ΠCCWW,n and

dimmax
CCWW,n(π). For completeness, we include the full proofs below.

[π ∈ ΠCCWL,n] ⇐
[
π ∈ Closure(RrCWL)

]
. Suppose π ∈ Closure(RrCWL) and let

(~x1, ~x2, . . .) denote an infinite sequence in RrCWL that converges to π. Because the number
of alternatives and the number of feasible signatures are finite, there exists an infinite subse-
quence (~x′1, ~x

′
2, . . .) such that (1) there exists a ∈ A such that for all j ∈ N, CW(~x′j) = {a},

and (2) there exists ~t ∈ S ~H such that a /∈ r(~t) and for all j ∈ N, Sign ~H(~x′j) = ~t. Let b ∈ r(~t)
denote an arbitrary winner. Because r is minimally continuous, by Proposition 4, there
exists a feasible atomic refinement of ~t, denoted by ~tb, such that r(~tb) = {b}. Therefore, to

prove that π ∈ ΠCCWL,n, it suffices to show that (i) for every n > N , Ha,~tb is active, and (ii)

π ∈ Ha,~tb≤0 .

(i) Ha,~tb is active. We will apply Claim 2 to prove that Ha,~tb is active at every

n > N . In fact, it suffices to prove that Ha,~tb ∩ Rm!
>0 6= ∅. This will be proved by explicitly

constructing a vector in Ha,~tb ∩Rm!
>0 as follows. Because ~tb is feasible, there exists ~xb ∈ Rm!

such that Sign ~H(~xb) = ~tb. Recall that π is strictly positive and (~x′1, ~x
′
2, . . .) converges to π,

there exists j ∈ N such that ~x′j > ~0. For any δ > 0, let ~xδ = ~x′j + δ~xb. We let δ > 0 denote
a sufficiently small number such that the following two conditions hold.

• ~xδ > ~0. The existence of such δ follows after noticing that ~x′j > ~0.

• CW(~xδ) = {a}. The existence of such δ is due to the assumption that CW(~x′j) = {a},

which means that ACW=a ·
(
~x′j
)>

<
(
~0
)>

, where ACW=a is defined in Definition 21.

Therefore, for any sufficiently small δ > 0 we have ACW=a · (~xδ)> <
(
~0
)>

, which

means that a is the Condorcet winner under ~xδ.

Because ~tb is a refinement of ~t, we have Sign ~H(~xδ) = ~tb. Therefore, ~xδ ∈ Ha,~tb ∩ Rm!
>0.

Following Claim 2 and the definition of Nr (Definition 24), we have that Ha,~ta is active for
all n > Nr.

(ii) π ∈ Ha,~tb≤0 . Because for all j ∈ N, ACW=a ·
(
~x′j
)>

<
(
~0
)>

and (~x′1, ~x
′
2, . . .) converge

to π, we have ACW=a · (π)
> ≤

(
~0
)>

, which means that π is a weak Condorcet winner. It

is not hard to verify that for every k ≤ K, if tk = + (respectively, − and 0), then we have
[Sign ~H(π)]k ∈ {0,+} (respectively, {0,−} and {0}). Therefore, ~t� Sign ~H(π), which means

that ~tb � Sign ~H(π) because ~tb � ~t. It follows that A~tb · (π)
> ≤

(
~0
)>

. This means that

π ∈ Ha,~tb≤0 .

[π ∈ ΠCCWL,n] ⇒
[
π ∈ Closure(RrCWL)

]
. Suppose π ∈ ΠCCWL,n, which means that

there exists a ∈ A and ~t ∈ S ~H such that π ∈ Ha,~t≤0 ⊆ CCWL, a /∈ r(~t), CW(π) = {a}, and Ha,~t

contains a non-negative integer n-vector, denoted by ~x′. Let b ∈ r(~t) denote an arbitrary co-
winner. By Proposition 4, because r is minimally continuous, there exists ~tb ∈ S◦~H such that

~tb�~t and r(~tb) = {b}. Let ~x∗ ∈ H~tb denote an arbitrary vector whose existence is guaranteed
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by the assumption that ~tb ∈ S◦~H . Because ~x′ ∈ Ha,~t, we have ACW=a · (~x′)> ≤
(
−~1
)>

.

Therefore, there exists δa such that ACW=a ·(~x′ + δa~x
∗)
>
<
(
~0
)>

. Let ~x = ~x′+δa~x
∗. Recall

that π ∈ Ha,~t≤0, which means that ACW=a · (π)
> ≤

(
~0
)>

. Therefore, for all δ > 0 we have

ACW=a · (π + δ~x)
>
<
(
~0
)>

, which means that CW(π + δ~x) = {a}. It is not hard to verify

that Sign ~H(π + δ~x) = ~tb, which means that r(π + δ~x) = {b}. This means that for every
δ > 0 we have π+δ~x ∈ RrCWL. Notice that π is the limit of the sequence (π+~x, π+ 1

2~x, . . .).
Therefore, π ∈ Closure(RrCWL).

[
π ∈ Closure(RrCWL)

]
⇒

[
dimmax

CCWL,n
(π) = m!

]
. Continuing the proof of the

[π ∈ ΠCCWL,n] ⇒
[
π ∈ Closure(RrCWL)

]
part, because π is strictly positive and (π + ~x, π +

1
2~x, . . .) converges to π, there exists j ∈ N such that π+ 1

j ~x >
~0. Recall that CW(π+ 1

j ~x) =

{a}, Sign ~H(π + 1
j ~x) = ~tb, and ~tb is atomic, which means that ACW=a ·

(
π + 1

j ~x
)>

<
(
~0
)>

and A~tb ·
(
π + 1

j ~x
)>

<
(
~0
)>

. Therefore, there exists ` > 0 such that

ACW=a ·
(
`(π +

1

j
~x)

)>
≤
(
−~1
)>

and A
~tb ·
(
`(π +

1

j
~x)

)>
≤
(
−~1
)>

,

which means that `(π+ 1
j ~x) ∈ Ha,~tb∩Rm!

>0 6= ∅. by Claim 7 (iii), we have dimmax
CCWL,n(π) = m!.

[
dimmax

CCWL,n
(π) = m!

]
⇒ [π ∈ ΠCCWL,n] follows after the definition.

This proves Claim 6.

We are now ready to verify Table 4 column by column as follows.

• ∗YY: dimmax
C,n (π) = max(dimmax

CNCW,n(π),dimmax
CCWW,n(π)), and by Claim 6 we have

dimmax
CCWW,n(π) = m!. The dimmax

CCWL,n(π) part also follows after Claim 6.

• ∗YN: The dimmax
C,n (π) part follows after Claim 6. Recall that we have assumed

¬CAS(r, n). This means that there exists an n-profile P such that CW(P ) 6= ∅
and CW(P ) 6⊆ r(P ). Let {a} = CW(P ) and ~t = Sign ~H(P ). It follows that

Hist(P ) ∈ Ha,~t,Zn 6= ∅ and Ha,~t ⊆ CCWL. Because π 6∈ ΠCCWL,n, according to the

definition of the activation graph (Definition 6), the weight on the edge (π,Ha,~t)
is − n

logn , and the weight on any edge connected to π is not positive. Therefore,

dimmax
CCWL,n(π) = − n

logn .

• NNY: The dimmax
C,n (π) part follows after the definition. The dimmax

CCWL,n(π) part follows
after Claim 6.

• YNY: Recall that the “N” means that π /∈ ΠCCWW,n, which implies that
dimmax

CCWW,n(π) < 0. Therefore, dimmax
C,n (π) = max(dimmax

CNCW,n(π),dimmax
CCWW,n(π)),

which means that dimmax
C,n (π) = dimmax

CNCW,n(π). The dimmax
CCWL,n(π) part follows after

Claim 6.

• YNN: We first prove the dimmax
C,n (π) part. Because in this case π ∈ ΠCNCW,n and

π /∈ ΠCCWW,n, by the definition of ΠCNCW,n and ΠCCWW,n, we have dimmax
CNCW,n(π) ≥ 0
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and dimmax
CCWW,n(π) ≤ − n

logn . Therefore, dimmax
C,n (π) = dimmax

CNCW,n(π). It suffices to

prove that dimmax
CNCW,n(π) = m!. Recall from Proposition 1 that

CNCW,≤0 ∪ CCWW,≤0 ∪ CCWL,≤0 = Rm!

Therefore, there exists a polyhedron H in CNCW, CCWW, or CCWL such that π ∈ H≤0

and dim(H≤0) = m!. We now prove that H is indeed active. Because π is strictly
positive and H≤0 is convex, H≤0 contains an interior point in Rm!

>0, denoted by ~x.
Formally, let ~x′ denote an arbitrary interior point of H≤0. It is not hard to verify that

for some sufficiently small δ > 0, ~x =
π + δ~x′

1 + δ
∈ Rm!

>0 is an interior point of H≤0.

Suppose H is characterized by A and ~b. Then, we have A · (~x)
>
<
(
~0
)>

. Therefore,

there exists ` > 0 such that A · (`~x)
> ≤

(
~b
)>

, which means that `~x ∈ H ∩ Rm!
>0 6= ∅.

By Claim 2 and the definition of Nr (Definition 24), H is active at every n > Nr.

Recall that in the YNN case we have π /∈ ΠCCWW,n and π /∈ ΠCCWL,n. Therefore,
H ⊆ CNCW, which means that dimmax

CNCW,n(π) = m! = dimmax
C,n (π). Following a similar

reasoning as in the “∗YN” case, we have dimmax
CCWL,n(π) = − logn

n .

• NNN: This case is impossible because as proved in the “YNN” case, for all n > Nr,
π /∈ ΠCCWW,n and π /∈ ΠCCWL,n implies that π ∈ ΠCNCW,n.

Step 3: Apply Lemma 1. In this step, we apply the inf part of Lemma 1 by combining
and simplifying conditions in Table 4.

• The 0 case never holds when n ≥ m4, because any complete graph is the UMG of
some n-profile [51, Claim 6 in the Appendix]. In particular, any complete graph where
there is no Condorcet winner is the UMG of an n-profile.

• The 1 case holds if and only if r satisfies CC for all n profile P , i.e. CAS(r, n).

• The VU case. According to the inf part of Lemma 1, the VU case holds if and
only if βn = − n

logn . Note that we do not need to assume CAS(r, n) in the VU case.

According to Table 4, βn = − n
logn if and only if there exists π ∈ CH(Π) such that the

“NNY” column holds. Recall that the “NNN” column is impossible for any n > Nr.
Therefore, the “NNY” column holds for π ∈ CH(Π) if and only if π /∈ ΠCNCW,n and
π /∈ ΠCCWW,n, which is equivalent to the following condition by Claim 6

π /∈ ΠCNCW,n and π /∈ Closure(RrCWW) (9)

Next, we simplify (9) for 2 | n and 2 - n, respectively.

– 2 | n. By the 2 | n part of Claim 3, π /∈ ΠCNCW,n if and only if π has a Condorcet
winner. We prove that in this case (9) is equivalent to:

CW(π) ∩ (A \ r(π)) 6= ∅ (10)

(9)⇒(10). Suppose π has a Condorcet winner, denoted by a, and (9) holds.
For the sake of contradiction suppose that (10) does not hold, which means that
a ∈ r(π). Then, following a similar construction as in the proof of Claim 6, the
minimal continuity of r implies that there exist ~ta ∈ S◦~H with ~ta � Sign ~H(π) and

r(~ta) = {a}, and ~x ∈ H~ta such that for every δ > 0 we have π + δ~x ∈ RrCWW.
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Then (π + ~x, π + 1
2~x, . . .) converges to π, which contradicts the assumption that

π /∈ Closure(RrCWW).

(10)⇒(9). Let a ∈ CW(π) ∩ (A \ r(π)), which means that {a} = CW(π) and
a /∈ r(π). Suppose for the sake of contradiction that (9) does not hold. Due to
Claim 3, we have π /∈ ΠCNCW,n. Therefore, π ∈ Closure(RrCWW). This means
that there exists a sequence (~x1, ~x2, . . .) in RrCWW that converge to π. It follows
that there exists j∗ ∈ N such that for all j > j∗, a is the Condorcet winner
under ~xj , which means that a ∈ r(~xj) because ~xj ∈ RrCWW. Therefore, by the
continuity of r, we have a ∈ r(π), which means that CW(π) ∩ (A \ r(π)) = ∅.
This is a contradiction to (10).

Therefore, when 2 | n, the VU case holds if and only if there exists π ∈ CH(Π)
such that (10) holds, which is as described in the statement of the theorem, i.e.

∃π ∈ CH(Π) s.t. CRD(r, π)

– 2 - n. By the 2 - n part of Claim 3, π /∈ ΠCNCW,n is equivalent to CW(π) ∪
ACW(π) 6= ∅, i.e. either CW(π) 6= ∅ or ACW(π) 6= ∅. When CW(π) 6= ∅, as in the
2 | n case, (9) becomes (10). When ACW(π) 6= ∅, (9) becomes CNRS(r, π) = 1.
Therefore, when 2 - n the VU case holds if and only if the condition in the
statement of the theorem holds, i.e.

∃π ∈ CH(Π) s.t. CRD(r, π) or CNRS(r, π)

• The U case. According to the inf part of Lemma 1, the U case holds if and only if
0 ≤ βn < m!. According to Table 4, 0 ≤ βn < m! if and only if

(i) for every π ∈ CH(Π) the NNY column of Table 4 does not hold, and

(ii) there exists π ∈ CH(Π) such that the YNY column of Table 4 holds and
dimmax

CNCW,n(π) < m!.

Part (ii) can be simplified as follows. By Claim 3, dimmax
CNCW,n(π) < m! if and only if

2 | n and ACW(π) 6= ∅, and in this case dimmax
CNCW,n(π) = m! − 1. We show that it

suffices to additionally require that π /∈ ΠCCWW,n (i.e. the “N”), or in other words,
given dimmax

CNCW,n(π) = m!−1, π /∈ ΠCCWW,n implies π ∈ ΠCCWL,n (i.e. the second “Y”).
Suppose for the sake of contradiction that dimmax

CNCW,n(π) = m!− 1, π /∈ ΠCCWW,n, and
π /∈ ΠCCWL,n. Notice that this corresponds to the “YNN” column in Table 4, which
means that dimmax

CNCW,n(π) = m!, which is a contradiction. By Claim 6, π /∈ ΠCCWW,n

if and only if π /∈ Closure(RrCWW). Therefore, part (ii) is equivalent to

∃π ∈ CH(Π) s.t. CNRS(r, π)

Summing up, the U case holds if and only if the condition in the statement of the
theorem holds, i.e.

2 | n, and (1) ∀π ∈ CH(Π),¬CRD(r, π), and (2) ∃π ∈ CH(Π) s.t. CNRS(r, π)

• The L case never holds when n ≥ m4, because according to Table 4, α∗n =
maxπ∈CH(Π) dimmax

CCWL,n(π) is either − n
logn or m!, which means that it is never in [0,m!).

• The VL case. According to the inf part of Lemma 1, the VL case holds if and only
if the 1 case does not hold and α∗n = − n

logn . According to Table 4, this happens in the
“∗YN” column or the “YNN” column, which is equivalent to only requiring that the
last “N” holds (because “NNN” is impossible), i.e. for all π ∈ CH(Π), π /∈ ΠCCWL,n. By
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Claim 6, the VL case holds if and only if if and only if the condition in the statement
of the theorem holds, i.e.

¬CAS(r, n) and ∀π ∈ CH(Π),CRS(r, π)

• The M case corresponds to the remaining cases.

Proof for general refinement r of r. We now turn to the proof of the theorem for an
arbitrary refinement of r, denoted by r. We first define a slightly different version of CC,
denoted by CC∗, which will be used as the lower bound on the (smoothed) satisfaction of
the regular CC. For any GISR r and any profile P , we define

CC∗(r, P ) =

{
1 if CW(P ) = ∅ or CW(P ) = r(P )
0 otherwise

In words, CC∗(r, P ) = if and only if (1) the Condorcet winner does not exist, or (2) the
Condorcet winner exists and is the unique winner under P according to r. Compared to
the standard Condorcet criterion CC, CC∗ rules out profiles P where a Condorcet winner
exists and is not the unique winner. CC∗ and CC coincide with each other when r is a
resolute rule. Because for any profile P we have r(P ) ⊆ r(P ), for any ~π ∈ Πn we have

PrP∼~π(CC∗(r, P ) = 1) ≤ PrP∼~π(CC(r, P ) = 1) ≤ PrP∼~π(CC(r, P ) = 1)

Therefore,

C̃C∗
min

Π (r, n) ≤ C̃C
min

Π (r, n) ≤ C̃C
min

Π (r, n) (11)

n order to prove the theorem, it suffices to prove that the lower bound in (11), i.e.,

C̃C∗
min

Π (r, n), has the same dichotomous characterization as C̃C
min

Π (r, n). To this end,
we first define a union of polyhedra, denoted by C′, and its almost complement C′CWL that
are similar to Definition 22 as follows.

Definition 25 (C′ and C′CWL). Given an int-GISR characterized by ~H and g, we define

C′ = CNCW ∪ C′CWW, where C′CWW =
⋃

a∈A,~t∈S~H :r(~t)={a}
Ha,~t

C′CWL =
⋃

a∈A,~t∈S~H :r(~t)6={a}
Ha,~t

Notice that CNCW used in Definition 25 was define in Definition 22. Just like CCWL is
an almost complement of C, C′CWL is an almost complement of C′. Formally, we first note
that C′ ∩ C′CWL = ∅, and for any integer vector ~x,

• if ~x does not have a Condorcet winner then ~x ∈ CNCW ⊆ C′;

• if ~x has a Condorcet winner a, which is the unique r winner, then ~x ∈ Ha,Sign~H(~x) ⊆
C′CWW ⊆ C;

• otherwise ~x has a Condorcet winner a, which is either not a r co-winner or |r(~x)| ≥ 2.
In both cases ~x ∈ Ha,Sign~H(~x) ⊆ C′CWL.

Therefore, Zq ⊆ C′∪C′CWL. The proof for C̃C∗
min

Π (r, n) is similar to the proof for C̃C
min

Π (r, n)
presented earlier. The main difference is that C, CCWW, and CCWL are replaced by C′, C′CWW,
and C′CWL, respectively. The key part is to prove a counterpart to Table 4, which follows
after proving ΠC′CWW,n

= ΠCCWW,n and ΠC′CWL,n
= ΠCCWL,n for every n > Nr, as formally

shown in the following claim.
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Claim 8. For any n > Nr, we have ΠC′CWW,n
= ΠCCWW,n and ΠC′CWL,n

= ΠCCWL,n.

Proof. The main difference between C′CWW (respectively, C′CWL) and CCWW (respectively,

CCWL) is the memberships of polyhedra Ha,~t, where a ∈ r(~t) and r(~t) ≥ 2. Therefore, to

prove the claim, it suffices to show that the membership of Ha,~t does not affect ΠC′CWW,n

(respectively, ΠC′CWL,n
) compared to ΠCCWW,n (respectively, ΠCCWL,n).

It suffices to show that for any polyhedron Ha,~t, where a ∈ r(~t) and r(~t) ≥ 2, for any

π ∈ CH(Π) and any n > Nr, if Ha,~t is active and π ∈ Ha,~t≤0, then there exist Ha,~ta≤0 ⊆
CCWW ∩ C′CWW and Ha,~tb≤0 ⊆ CCWL ∩ C′CWL such that (1) Ha,~ta≤0 and Ha,~tb≤0 are active at n,

and (2) π ∈ Ha,~ta≤0 ∩ H
a,~tb
≤0 . In other words, if a distribution π ∈ CH(Π) is in C′CWW, C′CWL,

CCWW, or CCWL due to Ha,~t, then it is also in the same set without considering its edge
to Ha,~t in the activation graph. As we will see soon, (1) follows after the assumption that
n > Nr and (2) follows after the minimal continuity of r. Formally, the proof proceeds in
the following three steps.

(i) Define ~ta and ~tb. Let b 6= a denote a co-winner under π, i.e., {a, b} ⊆ r(π). Because
r is minimally continuous, by Proposition 4, there exists a feasible atomic signature
~ta ∈ S◦~H (respectively, ~tb ∈ S◦~H) such that ~ta � ~t (respectively, ~tb � ~t) and r(~ta) = {a}
(respectively, r(~tb) = {b}).

(ii) Prove that Ha,~ta≤0 and Ha,~tb≤0 are active at any n > Nr. Because ~ta is feasible,

there exists ~x ∈ Rm! such that Sign ~H(~x) = ~ta. Therefore, recall that π is strictly
positive (by ε), for some sufficiently small δ > 0, we have π+δ~x ∈ Rm!

>0, CW(π+δ~x) =

{a}, and Sign ~H(π+δ~x) = ~ta. This means that π+δ~x is an interior point ofHa,~ta (which

also means that dim(Ha,~ta) = m!). Recall that the ~b part of Ha,~ta (Definition 17

and 21) is non-positive, we have Ha,~ta ⊆ Ha,~ta≤0 , which means that dim(Ha,~ta≤0 ) = m! as

well. Therefore, according to Claim 2 and the definition of Nr (Definition 24), Ha,~ta
is active at any n > Nr. Similarly, we have that Ha,~tb is active at any n > Nr.

(iii) Prove that π ∈ Ha,~ta≤0 ∩ H
a,~tb
≤0 . Recall that π ∈ Ha,~t≤0. Therefore, according to

Claim 7 (ii), we have ~t � Sign ~H(π), which means that ~ta � Sign ~H(π), because ~ta � ~t.

By Claim 7 (ii) again, we have π ∈ Ha,~ta≤0 . Similarly, we can prove that π ∈ Ha,~tb≤0 .

This completes the proof of Claim 8.

Therefore, C̃C∗
min

Π (r, n) has the same characterization as C̃C
min

Π (r, n), which concludes
the proof of Lemma 2 due to (11).

E.2 Proof of Theorem 1

Theorem 1. (Smoothed CC: Integer Positional Scoring Rules). Let M =
(Θ,L(A),Π) be a strictly positive and closed single-agent preference model, let r~s be a min-
imally continuous int-GISR and let r~s be a refinement of r~s. There exists N ∈ N such that
for any n ≥ N with 2 | n, we have

C̃C
min

Π (r~s, n) =


1− exp(−Θ(n)) if ∀π ∈ CH(Π), |WCW(π)| × |r(π) ∪WCW(π)| ≤ 1

Θ(n−0.5) if

{
(1) ∀π ∈ CH(Π),CW(π) ∩ (A \ r~s(π)) = ∅ and
(2) ∃π ∈ CH(Π) s.t. |ACW(π) ∩ (A \ r~s(π))| = 2

exp(−Θ(n)) if ∃π ∈ CH(Π) s.t. CW(π) ∩ (A \ r~s(π)) 6= ∅
Θ(1) and 1−Θ(1) otherwise
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For any n ≥ N with 2 - n, we have

C̃C
min

Π (r~s, n) =


1− exp(−Θ(n)) same as the 2 | n case

exp(−Θ(n)) if ∃π ∈ CH(Π) s.t.

{
(1) CW(π) ∩ (A \ r~s(π)) 6= ∅ or
(2) |ACW(π) ∩ (A \ r~s(π))| = 2

Θ(1) and 1−Θ(1) otherwise

Proof. We apply Lemma 2 to prove the theorem. For any integer irresolute positional scoring
rule r~s, we prove the following claim to simplify Closure(Rr~sCWW) and Closure(Rr~sCWL).

Claim 9. For any π ∈ CH(Π),[
π ∈ Closure(Rr~sCWW)

]
⇔ [WCW(π) ∩ r~s(π) 6= ∅][

π ∈ Closure(Rr~sCWL)
]
⇔ [∃a 6= b s.t. a ∈WCW(π) and b ∈ r~s(π)]

Proof. The proof is done in the following steps.[
π ∈ Closure(Rr~sCWW)

]
⇒ [WCW(π) ∩ r~s(π) 6= ∅]. Suppose π ∈ Closure(Rr~sCWW),

which means that there exists a sequence (~x1, ~x2, . . .) in Rr~sCWW that converges to π. It
follows that there exists an alternative a ∈ A and a subsequence of (~x1, ~x2, . . .), denoted by
(~x′1, ~x

′
2, . . .) such that for every j ∈ N, CW(~x′j) = {a} and a ∈ r~s(~x′j). This means that the

following holds.

• a is a weak Condorcet winner under π. Notice that for any b 6= a and any j ∈ N, we
have Pairb,a · ~x′j < 0, which means that Pairb,a · π ≤ 0.

• a ∈ r~s(π). Notice that for any b 6= a and any j ∈ N, the total score of a is higher than
or equal to the total score of b in ~x′j . Therefore, the same holds for π, which means
that a ∈ r~s(π).

Therefore, a is a weak Condorcet winner as well as a r~s co-winner, which implies WCW(π)∩
r~s(π) 6= ∅.[
π ∈ Closure(Rr~sCWW)

]
⇐ [WCW(π) ∩ r~s(π) 6= ∅]. Suppose WCW(π) ∩ r~s(π) 6= ∅

and let a ∈WCW(π) ∩ r~s(π). We will explicitly construct a sequence of vectors in Rr~sCWW

that converges to π. Let σ denote a cyclic permutation among A\{a} and let P denote the
following (m− 1)-profile

P = {σi(a � others) : 1 ≤ i ≤ m− 1} (12)

It is not hard to verify that CW(P ) = r~s(P ) = {a}. Therefore, for any δ > 0 we have

CW(π + δ ·Hist(P )) = r~s(π + δ ·Hist(P )) = {a},

which means that π+δ ·Hist(P ) ∈ Closure(Rr~sCWW). It follows that (π+ 1
jHist(P ) : j ∈ N) is

a sequence in Closure(Rr~sCWW) that converges to π, which means that π ∈ Closure(Rr~sCWW).

47



[
π ∈ Closure(Rr~sCWL)

]
⇒ [∃a 6= b s.t. a ∈WCW(π) and b ∈ r~s(π)]. Suppose

π ∈ Closure(Rr~sCWL), which means that there exists a sequence (~x1, ~x2, . . .) in Rr~sCWL that
converges to π. It follows that there exists a pair of different alternatives a, b ∈ A and a sub-
sequence of (~x1, ~x2, . . .), denoted by (~x′1, ~x

′
2, . . .) such that for every j ∈ N, CW(~x′j) = {a}

and b ∈ r~s(~x′j). Following a similar proof as in the Rr~sCWL part, we have that a is a weak
Condorcet winner under π and b ∈ r~s(π).[
π ∈ Closure(Rr~sCWL)

]
⇐ [∃a 6= b s.t. a ∈WCW(π) and b ∈ r~s(π)]. Let a 6= b

be two alternatives such that a ∈ WCW(π) and b ∈ r~s(π). We define a profile P where
CW(P ) = {a} and r~s(P ) = {b}, whose existence is guaranteed by the following claim,
which is slightly different from [15, Theorem 6] for scoring vectors ~s = (s1, . . . , sm) with
s1 > s2 > · · · > sm.

Claim 10. For any m ≥ 3, any positional scoring rule with scoring vector ~s = (s1, . . . , sm)
where s1 > sm, any n ≥ 8m + 49, and any pair of different alternatives a 6= b, there exists
an n-profile P such that CW(P ) = {a} and r~s(P ) = {b}.

Proof. We explicitly construct an n-profile P where the Condorcet winner exists and is
different from the unique r~s winner. Then, we apply a permutation over A to P to make a
the Condorcet and b the unique r~s winner. The construction is done in two cases: s2 = sm
and s2 > sm.

• Case 1: s2 = sm. In this case r~s corresponds to the plurality rule. We let

P =

⌊
n− 1

2

⌋
× [2 � 1 � 3 � others] +

⌊
n− 3

2

⌋
× [3 � 1 � 2 � others]

+

(
n+ 1− 2

⌊
n− 1

2

⌋)
× [1 � 2 � 3 � others]

It is not hard to verify that the alternative 1 is the Condorcet winner and 2 is the
unique plurality winner.

• Case 2: s2 > sm. Let 2 ≤ k ≤ m − 1 denote the smallest number such that
sk > sk+1. Let A1 = [4 � · · · � k + 1] and A2 = [k + 2 � · · · � m], and let P ∗ denote
the following 7-profile.

P ∗ = {3× [1 � 2 � A1 � 3 � A2] + 2× [2 � 3 � A1 � 1 � A2]

+[3 � 1 � A1 � 2 � A2] + [2 � 1 � A1 � 3 � A2]}

It is not hard to verify that 1 is the Condorcet winner under P ∗, and the total score
of 1 is 3s1 + 2s2 + 2sk+1 < 3s1 + 3s2 + sk+1, which is the total score of 2. Note that
the total score of any alternative in A1 is 7sk, which might be larger than the score
of 2. If 3s1 + 3s2 + sk+1 ≥ 7sk, then we let b = 2; otherwise we let b = 4. Let Pb
denote the following (m − 1)-profile that will be used as a tie-breaker. Let σ denote
an arbitrary cyclic permutation among A \ {b}.

Pb = {σi([b � others]) : 1 ≤ i ≤ m− 1}

Let

P =

⌊
n−m+ 1

7

⌋
× P ∗ + Pb +

(
n−m+ 1− 7

⌊
n−m+ 1

7

⌋)
× [b � others]

It is not hard to verify that when n ≥ 8m + 49, CW(P ) = {1}, r~s(P ) = {b}, and
b 6= 1.
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This proves Claim 10.

Let P denote the profile guaranteed by Claim 10. For any δ > 0 we have

CW(π + δ ·Hist(P )) = {a} and r(π + δ ·Hist(P )) = {b},

which means that π + δ ·Hist(P ) ∈ Closure(Rr~sCWL). It follows that (π + 1
jHist(P ) : j ∈ N)

is a sequence in Rr~sCWL that converges to π, which means that π ∈ Closure(Rr~sCWL). This
proves Claim 9.

Claim 9 implies that the 1 case doe not hold, i.e., CAS(r~s, n) = 0 for all n that is
sufficiently large. We now apply Claim 9 to simplify the conditions in Lemma 2.

• CRS(r~s, π). By definition, this holds if and only if π /∈ Closure(Rr~sCWL), which is equiv-
alent to @a 6= b s.t. a ∈WCW(π) and b ∈ r~s(π). In other words, either WCW(π) = ∅
or (WCW(π) = r~s(π) and |WCW(π)| = 1). Notice that r~s(π) 6= ∅. Therefore,
CRS(r~s, π) is equivalent to |WCW(π)| × |r~s(π) ∪WCW(π)| ≤ 1.

• CNRS(r~s, π). By definition, this holds if and only if ACW(π) 6= ∅ and π /∈
Closure(Rr~sCWW), which is equivalent to ACW(π) 6= ∅ and WCW(π) ∩ r~s(π) = ∅.
The latter is equivalent to WCW(π) ∩ (A \ r~s(π)) = WCW(π). We note that when
ACW(π) 6= ∅, we have WCW(π) = ACW(π). Therefore, CNRS(r~s, π) is equivalent to
|ACW(π) ∩ (A \ r~s(π))| = 2.

Theorem 1 follows after Lemma 2 with the simplified conditions discussed above.

E.3 Definitions, Full Statement, and Proof for Theorem 2

For any O ∈ L(A), any 1 ≤ i < i′ ≤ m, and any a ∈ A, let O[i] denote the alternative
ranked at the i-th place in O, let O[i, i′] denote the set of alternatives ranked from the i-th
place to the i′-th place in O, and let O−1[a] denote the rank of a in O. For any A ⊆ A and
any ~x ∈ Rm! that represents the histogram of a profile, let ~x|A ∈ R|A|! denote the histogram
of the profile restricted to alternatives in A.

Example 13. Let O = [3 � 1 � 2].2 We have O[2] = 1, O−1(2) = 3, and O[2, 3] = {1, 2}.
Let π̂ denote the (fractional) profile in Figure 1. We have π̂|O[2,3] = ( 0.5︸︷︷︸

1�2

, 0.5︸︷︷︸
2�1

).

Definition 26 (Parallel universes and possible losing rounds under MRSE). For
any MRSE r = (r2, . . . , rm) and any ~x ∈ Rm!, the set of parallel universes under r at ~x,
denoted by PUr(~x) ⊆ L(A), is the set of all elimination orders under PUT. Formally,

PUr(~x) = {O ∈ L(A) : ∀1 ≤ i ≤ m− 1, O[i] ∈ arg mina Scorerm+1−i(~x|O[i,m], a)},

where Scorerm+1−i(~x|O[i,m], a) is the total score of a under the positional scoring rule rm+1−i,
where the profile is ~x|O[i,m].

For any alternative a, let the possible losing rounds, denoted by LRr(~x, a) ⊆ [m− 1], be
the set of all rounds in the parallel universes where a drops out. Formally,

LRr(~x, a) = {O−1[a] : O ∈ PUr(~x)}
2Again, we use � in contrast to � to indicate that O is a parallel universe instead of an agent’s preferences.
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See Example 4 for examples of parallel universes and possible losing rounds under STV.

Theorem 2. (Smoothed CC: int-MRSE). Let M = (Θ,L(A),Π) be a strictly positive
and closed single-agent preference model, let r = (r2, . . . , rm) be an int-MRSE and let r be
a refinement of r. For any n ∈ N with 2 | n, we have

C̃C
min

Π (r, n) =



1 if ∀2 ≤ i ≤ m,CL(ri) = 1

1− exp(−Θ(n)) if

 (1) ∃2 ≤ i ≤ m s.t. CL(ri) = 0 and
(2) ∀π ∈ CH(Π),∀a ∈WCW(π) and ∀i∗ ∈ LRr(π, a),

we have CL(rm+1−i∗) = 1

Θ(n−0.5) if

{
(1) ∀π ∈ CH(Π),CW(π) ∩ (A \ r(π)) = ∅ and
(2) ∃π ∈ CH(Π) s.t. |ACW(π) ∩ (A \ r(π))| = 2

exp(−Θ(n)) if ∃π ∈ CH(Π) s.t. CW(π) ∩ (A \ r(π)) 6= ∅
Θ(1) and 1−Θ(1) otherwise

For any n ∈ N with 2 - n, we have

C̃C
min

Π (r, n) =


1 same as the 2 | n case
1− exp(−Θ(n)) same as the 2 | n case

exp(−Θ(n)) if ∃π ∈ CH(Π) s.t.

{
(1) CW(π) ∩ (A \ r(π)) 6= ∅ or
(2) |ACW(π) ∩ (A \ r(π))| = 2

Θ(1) and 1−Θ(1) otherwise

Intuitive explanations. The conditions for U, VU, and M cases are the same as their
counterparts in Theorem 1. The most interesting cases are the 1 case and the VL case. The
1 case happens when all positional scoring rule used in r satisfy Condorcet loser. This is
true because for any positional scoring rule that satisfies Condorcet loser, the Condorcet
winner, when it exists, cannot have the lowest score among all alternatives. Therefore, like
in Baldwin’s rule, the Condorcet winner never loses in any round, which means that it must
be the unique winner under r.

The VL case happens when (1) the 1 case does not happen, and (2) for every distribution
π ∈ CH(Π), every weak Condorcet winner a, and every round i∗ where a is eliminated in
a parallel universe, the positional scoring rule used in round i∗, i.e. rm+1−i∗ for m + 1 −
i∗ alternatives, must satisfy Condorcet loser. (2) makes sense because it guarantees
that when a small permutation is added to π, if a weak Condorcet winner a becomes the
Condorcet winner, then it will be the unique winner under r, because in every round i∗ where
a can possibly be eliminated before the perturbation (i.e. i∗ is a possible losing round), the
voting rule used in that round, i.e. rm+1−i∗ , will not eliminate a after a has become a
Condorcet winner. The following example shows the VL case under STV.

Proof. We apply Lemma 2 to prove the theorem. We first prove the following claim, which
states that when n is sufficiently large, CAS(r, n) = 1 if and only if all scoring rules used in
r satisfy the Condorcet loser criterion.

Claim 11. For int-MRSE r, there exists N ∈ n such that for every n > N , CAS(r, n) holds
if and only if for all 2 ≤ i ≤ m, CL(ri) = 1.

Proof. The ⇐ direction. Suppose for all 2 ≤ i ≤ m, CL(ri) = 1 and for the sake of
contradiction, suppose CAS(r, n) = 0, which means that there exists an n-profile P such
that CW(P ) = {a} and a /∈ r(P ). This means that LRr(π, a) 6= ∅. Let O ∈ LRr(π, a)
denote an arbitrary possible losing round of a and let i∗ = O−1[a], which means that a has
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the lowest total score in the restriction of P on the remaining alternatives (i.e. O[i∗,m]),
when rm+1−i∗ is used. In other words,

a ∈ arg minb Scorerm+1−i∗ (P |O[i∗,m], b)

Notice that a is the Condorcet winner under P , which means that a is also the Condorcet
winner under P |O[i∗,m]. We now obtain a profile Pi∗ over O[i∗,m] from P |O[i∗,m], which
constitutes a violation of Condorcet loser for rm+1−i∗ . Let n′ = |P |.

Pi∗ = (n′ + 1)× L(O[i∗,m])− P

That is, Pi∗ is obtained from (n′+1) copies of all linear orders over O[i∗,m]) by subtracting
linear orders in P . It is not hard to verify that a is the Condorcet loser as well as an rm+1−i∗

co-winner in Pi∗ , because all alternatives are tied in the WMG of (n′+ 1)×L(O[i∗,m]) and
are tied w.r.t. their total rm+1−i∗ scores under (n′ + 1)L(O[i∗,m]). This is a contradiction
to the assumption that all ri’s satisfies the Condorcet loser criterion.

The ⇒ direction. For the sake of contradiction, suppose CL(ri∗) = 1 for some 2 ≤
i∗ ≤ m, which means that there exist a profile P1 over m+ 1− i∗ alternatives {i∗, . . . ,m},
such that alternative i∗ is the Condorcet loser and a co-winner of rm+1−i∗ under P1. We
will construct a profile P over A to show that CAS(r, n) = 0 for every sufficiently large
n. We will show that alternatives in O[1, i∗ − 1] are eliminated in the first i∗ − 1 round of
executing r on P . Then i∗ will be eliminated in the next round.

First, we define a profile P ′ over O[i∗,m] where i∗ is the Condorcet winner as well as
the unique rm+1−i∗ loser. Let σ denote an arbitrary cyclic permutation among O[i∗+ 1,m],
and let

P2 = {σi(a � O[i∗ + 1,m]) : 1 ≤ i ≤ m− i∗},

where alternatives in O[i∗ + 1,m] are ranked alphabetically. Let n1 = |P1| and

P ′ = m(n1 + 1)× L(O[i∗,m])−m× P1 − P2

It is not hard to verify that P ′ is indeed a profile, i.e., the weight on each ranking is a
non-negative integer. i∗ is the Condorcet winner under P ′ because i∗ is the Condorcet loser
in P1, and |P2| < m. i∗ is the unique loser under P ′ because for any other alternative
a ∈ O[i∗,m], we have

Scorerm+1−i∗ (m(n′ + 1)× L(O[i∗,m]), i∗) = Scorerm+1−i∗ (m(n′ + 1)× L(O[i∗,m]), a),

Scorerm+1−i∗ (P1, i
∗) ≥ Scorerm+1−i∗ (P1, a), and

Scorerm+1−i∗ (P2, i
∗) > Scorerm+1−i∗ (P2, a).

Next, we let P ∗ denote the profile obtained from P ′ by appending O[1] � O[2] � · · · �
O[i∗ − 1] in the bottom. More precisely, we let

P ∗ = {R � O[1] � O[2] � · · · � O[i∗ − 1] : R ∈ P ′}

Finally, we are ready to define P . Let σ1 denote an arbitrary cyclic permutation among
alternatives in O[1, i∗ − 1]. Let n′ = |P ′| and P = P 1 ∪ P 2 ∪ P 3, defined as follows.

• P 1 consists of n′ copies of {σi1(P ∗) : 1 ≤ i ≤ i∗ − 1}. This part has (n′)2(i∗ − 1)
rankings and is mainly used to guarantee that O[1, i∗ − 1] are removed in the first
i∗ − 1 rounds.

• P 2 consists of
⌊
n−(n′)2(i∗−1)

n′

⌋
copies of P ∗. This part guarantees that i∗ is the Con-

dorcet winner. We require n to be sufficiently large so that bn−(n′)2(i∗−1)
n′ c > n′.
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• P 3 consists of n−|P1|−|P2| copies of [O[m] � O[m−1] � · · · � O[1]], which guarantees
that |P | = n. Note that the number of rankings in this part is no more than n′.

Let N = (n′)2. For any n > N , notice that the second part has at least n′ copies of P ∗,
where i∗ is the Condorcet winner. Therefore, i∗ is the Condorcet winner under P . It is
not hard to verify that O[1, i∗ − 1] are removed in the first i∗ − 1 rounds under r, and in
the i∗-th round alternative i∗ is unique rm+1−i∗ loser, which means that i∗ /∈ r(P ). This
concludes the proof of Claim 11.

We prove the following claim to simplify Closure(RrCWW) and Closure(RrCWL).

Claim 12. For any int-MRSE r and any π ∈ CH(Π),[
π ∈ Closure(RrCWW)

]
⇔ [WCW(π) ∩ r(π) 6= ∅][

π ∈ Closure(RrCWL)
]
⇔ [∃a ∈WCW(π) and i∗ ∈ LRr(π, a) s.t. CL(rm+1−i∗) = 0]

Proof. The proof for the RrCWW part is similar to the proof of Claim 9. We present the
formal proof below for completeness.[
π ∈ Closure(RrCWW)

]
⇒ [WCW(π) ∩ r(π) 6= ∅]. Suppose π ∈ Closure(RrCWW),

which means that exists a sequence (~x1, x2, . . .) inRrCWW that converges to π. It follows that
there exists an alternative a ∈ A and a subsequence of (~x1, ~x2, . . .), denoted by (~x′1, x

′
2, . . .),

and O ∈ L(A) where O[m] = a, such that for every j ∈ N, CW(~x′j) = {a} and O ∈ PUr(~x
′
j).

This means that the following holds.

• a is a weak Condorcet winner under π.

• a ∈ r(π). More precisely, O ∈ PUr(π). To see this, recall that O ∈ PUr(~x
′
j) is

equivalent to
∀2 ≤ i ≤ m,O[i] ∈ arg minb Scoreri(~x

′
j |O[i,m], b)

Therefore, the same relationship holds for π, namely

∀2 ≤ i ≤ m,O[i] ∈ arg minb Scoreri(π|O[i,m], b),

which means that O ∈ PUr(π).

Therefore, a is a weak Condorcet winner as well as a r co-winner, which implies that
WCW(π) ∩ r(π) 6= ∅.[
π ∈ Closure(RrCWW)

]
⇐ [WCW(π) ∩ r(π) 6= ∅]. Suppose WCW(π)∩r(π) 6= ∅ and

let a ∈ WCW(π) ∩ r(π). We will explicitly construct a sequence of vectors in RrCWW that
converges to π. Because a ∈ r(π), there exists a parallel universe O ∈ PUr(π) such that
O[m] = a. Let ~x = −Hist({O}), i.e. we will use “negative” O to break ties, so that for every
1 ≤ i ≤ m − 1, O[i] is eliminated in round i. For any δ > 0, it is not hard to verify that
O ∈ PUr(π + δ~x). In fact, PUr(π + δ~x) = {O}, i.e.

∀2 ≤ i ≤ m, {O[i]} = arg minb Scoreri((π + δ~x)|O[i,m], b),

which means that {a} = r(π + δ~x). Notice that a is the Condorcet winner under π + δ~x
for any sufficiently small δ > 0. Therefore, for any sufficiently small δ > 0 we have π +
δ~x ∈ RrCWW. Because the sequence (π + ~x, π + 1

2~x, . . .) in RrCWW converges to π, we have
π ∈ Closure(RrCWW).
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[
π ∈ Closure(RrCWL)

]
⇒ [∃a ∈WCW(π) and i∗ ∈ LRr(π, a) s.t. CL(rm+1−i∗) = 0].

Suppose π ∈ Closure(RrCWL), which means that there exists a sequence (~x1, ~x2, . . .) in
RrCWL that converges to π. It follows that there exists a ∈ A, O ∈ L(A) with O[m] 6= a,
and a subsequence of (~x1, ~x2, . . .), denoted by (~x′1, ~x

′
2, . . .) such that for every j ∈ N,

CW(~x′j) = {a} and O ∈ PUr(~x
′
j). Let i∗ = O−1[a], i.e. i∗ is the round where a loses in the

parallel universe O, which means that for every j ∈ N,

a ∈ arg minb Scorerm+1−i∗ (~x′j |O[i∗,m], b).

Notice that a is the Condorcet winner among O[i∗,m]. This means that rm+1−i∗ does
not satisfy the Condorcet loser criterion, because for any sufficiently large ψ > 0, a is the
Condorcet loser as well as a co-winner in ψ ·Hist(O[i∗,m])−~x′j |O[i∗,m]. Because (~x′1, ~x

′
2, . . .)

converges to π, it is not hard to verify that a ∈ WCW(π) and O ∈ PUr(π). Therefore, we
have a ∈WCW(π), i∗ ∈ LRr(π, a), and CL(rm+1−i∗) = 0.[
π ∈ Closure(RrCWL)

]
⇐ [∃a ∈WCW(π) and i∗ ∈ LRr(π, a) s.t. CL(rm+1−i∗) = 0].

Let a ∈ WCW(π) and i∗ ∈ LRr(π, a) such that CL(r) = 0. Furthermore, we let
O∗ ∈ PUr(π) denote the parallel universe such that O[i∗] = a. Because rm+1−i∗ does not
satisfy the Condorcet loser criterion, there exists profile Pa over O[i∗,m] where a is the
Condorcet loser but a ∈ rm+1−i∗(Pa). In fact, there exists a profile P ∗a where a is the
Condorcet loser but {a} = rm+1−i∗(P

∗), i.e. a is the unique winner under P ∗a . To see this,
let σ denote an arbitrary cyclic permutation among O[i∗ + 1,m], and let

P = {σi(a � O[i∗ + 1,m]) : 1 ≤ i ≤ m− i∗}

It is not hard to verify that the score of a is strictly larger than the score of any other
alternative under P . Therefore, when δ > 0 is sufficiently small, a is the Condorcet loser as
well as the unique winner under P ∗a = Pa + δ · P . Now, we define a profile P ′ over A by
stacking O[1, i∗ − 1] on top of each (fractional) ranking in P ∗a . In other words, a ranking
[O[1] � · · · � O[i∗− 1] � R∗] is in P ′ if and only if R∗ ∈ P ∗a , and the two rankings have the
same weights (in P ′ and P ∗a , respectively).

Let ~x = −Hist(P ′). It is not hard to verify that for any δ > 0, a is the Condorcet
winner under π + δ~x and in the first i∗ rounds of the execution of r, O[1], O[2], . . . , O[i∗]
are eliminated in order. In particular, O[i∗] = a is eliminated in the i∗-th round, which
means that a /∈ r(π+ δ~x). Consequently, π+ δ~x ∈ RrCWL. Notice that (π+ 1

j ~x : j ∈ N) is a

sequence in RrCWL that converges to π, which means that π ∈ Closure(RrCWL). This proves
Claim 12.

We now apply Claim 12 to simplify the conditions in Lemma 2.

• CRS(r, π). By definition, this holds if and only if π /∈ Closure(RrCWL), which is
equivalent to @a ∈ WCW(π) and i∗ ∈ LRr(π, a) s.t. CL(rm+1−i∗) = 0. In other
words, for all a ∈ WCW(π) and all i∗ ∈ LRr(π, a), rm+1−i∗ satisfies Condorcet
loser, or equivalently, ∀a ∈WCW(π) and ∀i∗ ∈ LRr(π, a),CL(rm+1−i∗) = 1.

• CNRS(r, π). By definition, this holds if and only if ACW(π) 6= ∅ and π /∈
Closure(RrCWW), which is equivalent to ACW(π) 6= ∅ and WCW(π) ∩ r(π) = ∅.
The latter is equivalent to WCW(π) ∩ (A \ r(π)) = WCW(π). We note that when
ACW(π) 6= ∅, we have WCW(π) = ACW(π). Therefore, CNRS(r, π) is equivalent to
|ACW(π) ∩ (A \ r(π))| = 2.

Theorem 2 follows after Lemma 2 with the simplified conditions discussed above.
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F Materials for Section 4: Smoothed Participation

F.1 Lemma 3 and Its Proof

We first introduce some notation to present the theorem.

Definition 27 (⊕ operator). For any pair of signatures ~t1,~t2 ∈ SK , we define ~t1 ⊕ ~t2 to
be the following signature:

∀k ≤ K, [~t1 ⊕ ~t2]k =

{
[~t1]k if [~t1]k = [~t2]k
0 otherwise

For example, when K = 3, ~t1 = (+,−, 0), and ~t2 = (+, 0, 0), we have ~t1 ⊕ ~t2 = (+, 0, 0).
By definition, we have ~t1 � ~t1 ⊕ ~t2 and ~t2 � ~t1 ⊕ ~t2.

Definition 28 (ViorPar(n) and `n). For any GSR r and any n ∈ N, we define

ViorPar(n) =
{

Sign ~H(P )⊕ Sign ~H(P \ {R}) : P ∈ L(A)n, R ∈ L(A), r(P \ {R}) �R r(P )
}

`n = m!−max~t∈ViorPar(n):∃π∈CH(Π), s.t. ~t�Sign~H(π) dim(H~t≤0)

In words, ViorPar(n) consists of all signatures ~t that is obtained by combining two feasible
signatures, i.e., Sign ~H(P ) and Sign ~H(P \{R}), by the ⊕ operator, where P and R constitutes
an violation of Par. Notice that r(P \ {R}) �R r(P ) implicitly assumes that P contains

an R vote. Then, `n is defined to be m! minus the maximum dimension of polyhedron H~t,
among all ~t in ViorPar(n) that refines Sign ~H(π) for some π ∈ CH(Π).

Lemma 3. (Smoothed Par: Int-GSR). Let M = (Θ,L(A),Π) be a strictly positive
and closed single-agent preference model, let r be an int-GSR. For any n ∈ N,

P̃ar
min

Π (r, n) =


1 if ViorPar(n) = ∅
1− exp(−Θ(n)) otherwise if ∀π ∈ CH(Π) and ~t ∈ ViorPar(n),~t 5 Sign ~H(π)

1−Θ(n−`n/2) otherwise, i.e. ∃π ∈ CH(Π) and ~t ∈ ViorPar(n) s.t. ~t� Sign ~H(π)

Applying Lemma 3 to a voting rule r often involves the following steps. First, we choose
an GSR representation of r by specifying the ~H and g, though according to Lemma 3 the
asymptotic bound does not depend on such choice. Second, we characterize ViorPar(n) and
verify whether it is empty. If ViorPar(n) is empty then the 1 case holds. Third, if ViorPar(n)
is non-empty but none of ~t ∈ ViorPar(n) refines Sign ~H(π) for any π ∈ CH(Π), then the VL
case holds. Finally, if neither 1 nor VL case holds, then the L case holds, where the degree
of polynomial depends on `n. Characterizing ViorPar(n) and `n can be highly challenging,

as it aims at summarizing all violations of Par for n-profiles (using signatures under ~H).

Proof. The high-level idea of the proof is similar to the proof of Lemma 2. In light of
Lemma 1, the proof proceeds in the following three steps. Step 1. Define C that charac-
terizes the satisfaction of Participation of r, and an almost complement C∗ of C. Step 2.
Characterize possible values of α∗n and their conditions, and then notice that α∗n is at most
m!− 1, which means that only the 1, VL, or L case in Lemma 1 hold. This means that the
value of βn does not matter. Step 3. Apply Lemma 1.
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Step 1. Given two feasible signatures ~t1,~t2 ∈ S ~H and a ranking R ∈ L(A), we first

formally define a polyhedron H~t1,R,~t2 to characterize the profiles whose signature is ~t1 and
after removing a voter whose preferences are R, the signature of the new profile becomes ~t2.

Definition 29 (H~t1,R,~t2). Given ~H = (~h1, . . . ,~hK) ∈ (Zd)K , ~t1,~t2 ∈ S ~H , and R ∈ L(A),

we let A~t1,R,~t2 =

 −Hist(R)

A~t1

A~t2

, ~b~t1,R,~t2 = [−1, ~b
~t1︸︷︷︸

for A~t1

, ~b
~t2 + Hist(R) ·A~t2︸ ︷︷ ︸

for A~t2

] and

H~t1,R,~t2 = {~x ∈ Rm! : A
~t1,R,~t2 · (~x)

> ≤
(
~b
~t1,R,~t2

)>
}

Notice that Hist(R) ∈ {0, 1}m! is the vector whose R-component is 1 and all other

components are 0’s. The A~t2 part in Definition 29 is equivalent to A~t2 · (~x−Hist(R))
> ≤(

~b~t2
)>

. We prove properties of H~t1,R,~t2 in the following claim.

Claim 13 (Properties ofH~t1,R,~t2). Given integer ~H. For any ~t1,~t2 ∈ S ~H , any R ∈ L(A),

(i) for any integral profile P , Hist(P ) ∈ H~t1,R,~t2 if and only if Sign ~H(P ) = ~t1 and

Sign ~H(P \ {R}) = ~t2;

(ii) for any ~x ∈ Rm!
≥0, ~x ∈ H~t1,R,~t2≤0 if and only if ~t1 ⊕ ~t2 � Sign ~H(~x);

(iii) If there exists ~x ∈ H~t1,R,~t2≤0 such that [~x]R > 0, then dim(H~t1,R,~t2≤0 ) = dim(H~t1⊕~t2≤0 ).

Moreover, if ~t1 6= ~t2 and H~t1,R,~t2≤0 6= ∅, then dim(H~t1,R,~t2≤0 ) ≤ m!− 1.

Proof. Part (i) follows after the definition. Part (ii) also follows after the definition. Recall

that ~x ∈ H~t1,R,~t2≤0 if and only if A~t1 · (~x)
> ≤

(
~0
)>

, A~t2 · (~x)
> ≤

(
~0
)>

, and the R component

of ~x is non-negative, which is automatically satisfied for every ~x ∈ Rm!
≥0. The first sets of

inequalities holds if and only if A~t1⊕~t2 · (~x)
> ≤

(
~0
)>

.

To prove the first part of Part (iii), let A+
1 and A+

2 denote the essential equalities of

A~t1,R,~t2 and A~t1⊕~t2 , respectively. We show that A+
1 and A+

2 contains the same set of row
vectors (while some rows may appear different number of times in A+

1 and A+
2 ). As noted

in the proof of Part (ii), the set of row vectors in A~t1,R,~t2 is the same as the set of row

vectors in A~t1⊕~t2 , except that the former contains −Hist(R). Recall that we have assumed

that there exists ~x ∈ H~t1,R,~t2≤0 such that [~x]R > 0, which means that −Hist(R) · (~x)
>

does

not hold for every vector in H~t1,R,~t2≤0 . Therefore, −Hist(R) is not a row in A+
1 , which means

that A+
1 and A+

2 contains the same set of row vectors. Then, we have

dim(H~t1,R,~t2≤0 ) = m!− Rank(A+
1 ) = m!− Rank(A+

2 ) = dim(H~t1⊕~t2≤0 )

The second part of Part (iii) is proved by noticing that when ~t1 6= ~t2, ~t1 ⊕~t2 contains at

least one 0. Suppose [~t1⊕~t2]k = 0. This means that for all ~x ∈ H~t1,R,~t2≤0 , we have ~hk · ~x = 0,

which means that dim(H~t1,R,~t2≤0 ) ≤ m!− 1.

We now use H~t1,R,~t2 to define C and C∗.
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Definition 30 (C and C∗ for Participation). Given an int-GSR r characterized by ~H
and g, we define

C =
⋃

~t1,~t2∈S~H ,R∈L(A):r(~t1)�Rr(~t2)
H~t1,R,~t2

C∗ =
⋃

~t1,~t2∈S~H ,R∈L(A):r(~t1)≺Rr(~t2)
H~t1,R,~t2

In words, C consists of polyhedra H~t1,R,~t2 that characterize the histograms of profiles
such that after any R-vote is removed, the winner under r is not improved w.r.t. R. C∗
consists of polyhedra H~t1,R,~t2 that characterize the histograms of profiles such that after
removing an R-vote, the winner under r is strictly improved w.r.t. R. It is not hard to see
that C∗ is an almost complement of C.

It follows from Claim 13 (i) that for any n-profile P , Par is satisfied (respectively,
dissatisfied) at P if and only if Hist(P ) ∈ C (respectively, Hist(P ) ∈ C∗).

Step 2: Characterize α∗n. In this step we discuss the values and conditions for α∗n (for
C∗) in the following three cases.

α∗n = −∞. This case holds if and only if Par holds for all n-profiles, which is equivalent
to ViorPar(n) = ∅.

α∗n = − n
logn

. This case holds if and only if (1) Par is not satisfied at all n-profiles, which

is equivalent to ViorPar(n) 6= ∅, and (2) the activation graph GΠ,C∗,n does not contain any

non-negative edges, which is equivalent to ∀π ∈ CH(Π) and ∀H~t1,R,~t2 ⊆ C∗ that is active at

n, we have π /∈ H~t1,R,~t2≤0 . We will prove that part (2) is equivalent to the following:

(2)⇐⇒
[
∀π ∈ CH(Π) and ~t ∈ ViorPar(n),~t 5 Sign ~H(π)

]
(13)

We first prove the “⇒” direction of (13). Suppose for the sake of contradiction that
this is not true. That is, GΠ,C∗,n does not contain any non-negative edges and there exist
π ∈ CH(Π) and ~t ∈ ViorPar(n) such that ~t 5 Sign ~H(π). Let P denote the n-profile such

that Sign ~H(P ) = ~t1, Sign ~H(P \ {R}) = ~t2, r(P \ {R}) �R r(P ), and ~t = ~t1 ⊕ ~t2. By

Claim 13 (i), Hist(P ) ∈ H~t1,R,~t2 , which means that H~t1,R,~t2 is active at n. By Claim 13

(ii), Hist(P ) ∈ H~t1,R,~t2≤0 . These imply that the weight on the edge (π,H~t1,R,~t2) in GΠ,C∗,n

is non-negative (whose weight is dim(H~t1,R,~t2≤0 )), which contradicts the assumption that (2)
holds.

Next, we prove the “⇐” direction of (13). Suppose for the sake of contradiction that (2)

does not hold, which means that there exists an edge (π,H~t1,R,~t2) in GΠ,C∗,n whose weight

is non-negative. Equivalently, H~t1,R,~t2 is active at n and π ∈ H~t1,R,~t2≤0 . By Claim 13 (ii),
~t1 ⊕ ~t2 ∈ ViorPar(n). Recall that π is strictly positive, and then by Claim 13 (ii), we have
t1 ⊕ ~t2 � Sign ~H(π). However, this contradict the assumption.

These prove (13).

α∗n > 0. For this case, we prove

α∗n = max~t∈ViorPar(n):∃π∈CH(Π), s.t. ~t�Sign~H(π) dim(H~t≤0), (14)

We first prove the “≤” direction in (14). For any edge (π,H~t1,R,~t2) in GΠ,C∗,n whose weight

is non-negative, H~t1,R,~t2 is active at n. Therefore, there exists an n-profile P such that
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Hist(P ) ∈ H~t1,R,~t2 . Let ~t = ~t1 ⊕ ~t2. We have ~t ∈ ViorPar(n). By Claim 13 (ii), we have

~t � Sign ~H(π). By Claim 13 (iii), we have dim(H~t1,R,~t2≤0 ) = dim(H~t≤0). Therefore, the “≤”
direction in (14) holds.

Next, we prove the ≥ direction of (14). For any ~t ∈ ViorPar(n) and π ∈ CH(Π) such
that ~t � Sign ~H(π), let P denote an n-profile and let R denote a ranking that justify ~t’s

membership in ViorPar(n), and let ~t1 = Sign ~H(P ) and ~t2 = Sign ~H(P \ {R}), which means

that ~t = ~t1 ⊕ ~t2. By Claim 13 (i), Hist(P ) ∈ H~t1,R,~t2 ⊆ C∗, which means that H~t1,R,~t2 is

active at n. By Claim 13 (ii), π ∈ H~t1,R,~t2≤0 . By Claim 13 (iii), dim(H~t1,R,~t2≤0 ) = dim(H~t≤0).

This means that the weight on the edge (π,H~t1,R,~t2) in GΠ,C∗,n is dim(H~t≤0), which implies
the “≥” direction in (14) holds.

Therefore, (14) holds. Notice that by Claim 13 (iii), α∗n ≤ m!− 1.

Step 3: Applying Lemma 1. Lemma 3 follows after a straightforward application of
Lemma 1 and Step 2. Notice that ΠC,n and βn are irrelevant in this proof because only the
1, 1− exp(n), and 1−H(n) cases will happen. This completes the proof of Lemma 3.

F.2 Proof of Theorem 3

Recall from Definition 9 that an EO-based rule is determined by the total preorder over edges
in WMG w.r.t. their weights. Theorem 3 characterizes smoothed Par for any EO-based
int-GSR refinements of maximin, Ranked Pairs, and Schulze.

Theorem 3. (Smoothed Par: maximin, Ranked Pairs, Schulze). For any m ≥ 4,
any EO-based int-GSR r that is a refinement of maximin, STV, Schulze, or ranked Pairs,
and any strictly positive and closed Π over L(A) with πuni ∈ CH(Π), there exists N ∈ N
such that for every n ≥ N ,

P̃ar
min

Π (r, n) = 1−Θ(
1√
n

)

Proof. Because r is EO-based, w.l.o.g., we assume that its int-GSR representation uses ~HEO

(Definition 11).

Overview. The proof is done by applying Lemma 3 to show that for any sufficiently
large n, the 1 case and the VL case do not happen, and `n = 1 in the L case. This is
done by explicitly constructing an n-profile P , under which Par is violated when an R-
vote is removed (which means that ~t = Sign ~HEO

(P ) ⊕ Sign ~HEO
(P \ {R}) ∈ ViorPar(n) and

therefore the 1 case does not hold), then show that ~t�πuni, or more generally, any signature
refines Sign ~HEO

(πuni) (which means that the VL case does not hold), and finally prove that

dim(H~t≤0) = m!− 1, which means that `n = 1.

Maximin: r refines MM. We first prove the proposition for 2 - n, then show how to
modify the proof for 2 | n. As mentioned in the overview, the proof proceeds in the following
steps.

Constructing PMM and RMM that violates Par. Let GMM denote the following
weighted directed graph with weights wMM, where the weights on all edges are odd and
different, except on 4→ 1 and 3→ 2.

• wMM(4, 1) = wMM(3, 2) = 5, wMM(1, 2) = 1, wMM(1, 3) = 9, wMM(2, 4) = 13, and
wMM(3, 4) = 17;
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• for every 5 ≤ i ≤ m, wMM(1, i) ≥ 21, wMM(2, i) ≥ 21, wMM(3, i) ≥ 21, and
wMM(4, i) ≥ 21;

• the weights on other edges are assigned arbitrarily. Moreover, the difference between
any pair of edges is at least 4, except that the weights on 4 → 1 and 3 → 2 are the
same.

See the middle graph in Figure 6 for an example of m = 5.
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Figure 6: WMGs for minimax. MM (co)-winners are circled.

It follows from McGarvey’s theorem [33] that for any n > m4 and 2 - n, there exists an
n-profile PMM whose WMG is GMM. Therefore, for any n > m4 + 2 and 2 - n, there exists
an n-profile PMM whose WMG is GMM, and PMM includes the following two rankings:

[3 � 2 � 1 � 4 � others],Rev (3 � 2 � 1 � 4 � others),

where for any ranking R, Rev (R) denotes its reverse ranking. We now show that
Par(r, PMM) = 0, which implies that the 1 case does not happen. Notice that the min-
score of alternatives 1 and 2 are the highest, which means that r(PMM) ⊆ {1, 2}.

• If r(PMM) = {1}, then we let RMM = [3 � 2 � 1 � 4 � others]. It follows that
in PMM − RMM, the min-score of 2 is strictly higher than the min-score of any other
alternative, which means that r(PMM \ {RMM}) = {2}. Notice that 2 �RMM

1, which
means that Par(r, PMM) = 0. See the left graph in Figure 6 for an illustration.

• If r(PMM) = {2}, then we let RMM = Rev (3 � 2 � 1 � 4 � others). It follows that
in PMM − RMM, the min-score of 1 is strictly higher than any the min-score of other
alternatives, which mean that r(PMM \ {RMM}) = {1}. Notice that 1 �RMM 2, which
again means that Par(r, PMM) = 0. See the right graph in Figure 6 for an illustration.

Let ~t1 = Sign ~HEO
(PMM), R = RMM and ~t2 = Sign ~HEO

(PMM \ {RMM}) . We have

~t1 ⊕ ~t2 ∈ ViorPar(n) 6= ∅, which means that the 1 case of Lemma 3 does not hold. The VL
case of Lemma 3 does not hold because ~t1 ⊕ ~t2 � Sign ~HEO

(πuni) and πuni ∈ CH(Π).

Prove dim(H~tMM

≤0 ) = m! − 1. Let e1 = (4, 1) and e2 = (3, 2). Notice [~t1](e1,e2) =

[~t1](e2,e1) = 0, where [~t1](e1,e2) is the (e1, e2) component of ~t1, and all other components of
~t1 are non-zero. Also notice that ~t2 is a refinement of ~t1. This means that ~t1 ⊕ ~t2 = ~t1.

Notice that Hist(PMM) is an inner point of H~t1≤0, such that all inequalities are strict except

the two inequalities about e1 and e2. This means that the essential equalities of A~t1⊕~t2 are
equivalent to

(Pair4,1 − Pair3,2) · ~x = ~0
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Therefore, dim(H~t1⊕~t2≤0 ) = m!− 1.
The maximin part of the proposition when 2 - n then follows after Lemma 3. When

2 | n, we only need to modify GMM in Figure 6 by increasing all positive weights by 1.

Ranked Pairs: r refines RP. The proof is similar to the proof of the maximin part,
except that a different graph GRP (with weight wRP) is used, as shown in the middle graph
in Figure 7. Formally, when 2 - n, let GRP denote the following weighted directed graph,
where the weights on all edges are odd and different, except on 4→ 1 and 3→ 4.

• wRP(4, 1) = wRP(3, 4) = 9, wRP(1, 2) = 5, wRP(1, 3) = 13, wRP(2, 4) = 17, and
wRP(2, 3) = 21;

• for any 5 ≤ i ≤ m, wRP(1, i) ≥ 25, wRP(2, i) ≥ 25, wRP(3, i) ≥ 25, and wRP(4, i) ≥ 25;

• the weights on other edges are assigned arbitrarily. Moreover, the difference between
any pair of edges is at least 4, except that the weights on 4 → 1 and 3 → 4 are the
same.

See the middle graph in Figure 7 for an example of m = 5.
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Figure 7: WMGs for ranked pairs. RP (co)-winners are circled.

Again, according to McGarvey’s theorem [33] that for any n > m4 and 2 - n, there exists
an n-profile PRP whose WMG is GRP. Therefore, for any n > m4 + 2 and 2 - n, there exists
an n-profile PRP whose WMG is GRP, and PRP includes the following two rankings:

[2 � 3 � 1 � 4 � others],Rev (3 � 2 � 1 � 4 � others)

We now show that Par(r, PRP) = 0, which implies that the 1 case does not happen. Notice
that depending on how the tie between 3→ 4 and 4→ 1 are broken, the RP winner can be
1 or 2, which means that RP(PRP) = {1, 2}.

• If r(PRP) = {1}, then we let RRP = [2 � 3 � 1 � 4 � others]. It follows that in
WMG(PRP −RRP), 4→ 1 has higher weight than 3→ 4, which means that 4→ 1 is
fixed before 3→ 4, and therefore r(PRP \ {RRP}) = {2}. Notice that 2 �RRP

1, which
means that Par(r, PRP) = 0. See the left graph in Figure 7 for an illustration.

• If r(PRP) = {2}, then we let RRP = Rev (2 � 3 � 1 � 4 � others). It follows that in
WMG(PRP \ {RRP}), 3 → 4 has higher weight than 4 → 1, which means r(PRP −
RRP) = {1}. Notice that 1 �RRP

2, which means that Par(r, PRP) = 0. See the right
graph in Figure 7 for an illustration.

The proof for `n = 1 is similar to the proof for the maximin part. The only difference is
that now let e1 = (4, 1), e2 = (3, 4), ~t1 = Sign ~HEO

(PRP), and ~t2 = Sign ~HEO
(PRP \ {RRP}).

When 2 | n, we only need to modify G in Figure 6 (b) such that all positive weights are
increased by 1.
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Schulze: r refines Sch. The proof is similar to the proof of the maximin part, except
that a different graph GSch is used, as shown in the middle graph in Figure 8. Formally,
when 2 - n, let GSch denote the following weighted directed graph, where the weights on all
edges are odd and different, except on 4→ 1 and 2→ 3.

• wSch(4, 1) = wSch(2, 3) = 9, wSch(1, 2) = 13, wSch(1, 3) = 5, wSch(2, 4) = 1, and
wSch(3, 4) = 17;

• for any 5 ≤ i ≤ m, wSch(1, i) ≥ 21, wSch(2, i) ≥ 21, wSch(3, i) ≥ 21, and wSch(4, i) ≥
21;

• the weights on other edges are assigned arbitrarily. Moreover, the difference between
any pair of edges is at least 4, except that the weights on 4 → 1 and 3 → 4 are the
same.

See the middle graph in Figure 8 for an example of m = 5.

if r(GSch)={1}, then
- [2 ≻ 3 ≻ 1 ≻ 4 ≻ others]

if r(GSch)={3}, then
- Rev(2 ≻ 3 ≻ 1 ≻ 4 ≻ others) GSch
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Figure 8: WMGs for Schulze. Sch (co)-winners are circled.

Again, according to McGarvey’s theorem [33] that for any n > m4 and 2 - n, there exists
an n-profile PSch whose WMG is GSch. Therefore, for any n > m4 + 2 and 2 - n, there exists
an n-profile PSch whose WMG is GSch and PSch includes the following two rankings:

[2 � 3 � 1 � 4 � others],Rev (3 � 2 � 1 � 4 � others)

We now show that Par(r, PSch) = 0, which implies that the 1 case does not happen. Notice
that s[1, 3] = s[3, 1] = 9, and for any alternative a ∈ A \ {1, 3} we have s[1, a] > s[a, 1].
Therefore, Sch(PSch) = {1, 3}.

• If r(PSch) = {1}, then we let RSch = [2 � 3 � 1 � 4 � others]. It follows that in
PSch−RSch we have s[1, 3] = 8 < 10 = s[3, 1], which means that r(PSch\{RSch}) = {3}.
Notice that 3 �RSch

1, which means that Par(r, PSch) = 0. See the left graph in
Figure 8 for an illustration.

• If r(PSch) = {3}, then we let RSch = Rev (2 � 3 � 1 � 4 � others). It follows that in
PSch \ {RSch}, we have s[1, 3] = 10 > 9 = s[3, 1], which means that r(PSch − RSch) =
{1}. Notice that 1 �RSch

3, which means that Par(r, PSch) = 0. See the right graph
in Figure 8 for an illustration.

The proof for `n = 1 is similar to the proof for the maximin part. The only difference is
that now let e1 = (4, 1), e2 = (2, 3), ~t1 = Sign ~HEO

(PSch), and ~t2 = Sign ~HEO
(PSch \ {RSch}).

When 2 | n, we only need to modify GSch in Figure 8 such that all positive weights are
increased by 1.

This completes the proof of Theorem 3.
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F.3 Proof of Theorem 4

A voting rule r is said to be UMG-based, if the winner only depends on UMG of the profile.
Formally, r is UMG-based if for all pairs of profiles P1 and P2 such that UMG(P1) =
UMG(P2), we have r(P1) = r(P2).

Theorem 4. (Smoothed Par: Copelandα). For any m ≥ 4, any UMG-based int-GSR
refinement of Cdα, denoted by Cdα, and any strictly positive and closed Π over L(A) with
πuni ∈ CH(Π), there exists N ∈ N such that for every n ≥ N ,

P̃ar
min

Π (Cdα, n) = 1−Θ(
1√
n

)

Proof. Because Cdα is UMG-based, we can represent Cdα as a GSR with the ~HCdα defined
in Definition 13, which consists of

(
m
2

)
hyperplanes that represents the UMG of the profile.

The high-level idea behind the proof is similar to the proof of Theorem 3: we first explicitly
construct a violation of Par under Cdα, then show that the dimension of the characteristic
cone of the corresponding polyhedron is m!− 1.

Let G∗ denote the complete unweighted directed graph over A that consists of the
following edges.

• 1→ 2, 2→ 3, 3→ 1.

• For any i ∈ {4, . . . ,m}, there are three edges 1→ i, 2→ i, 3→ i.

• The edges among alternatives in i ∈ {4, . . . ,m} are assigned arbitrarily.

For example, Figure 9 (a) illustrates G∗ for m = 4. Let P denote any profile whose UMG

1 2

4 3

Figure 9: G∗ for Copeland with m = 4.

is G∗. It is not hard to verify that Cdα(P ) = {1, 2, 3}. W.l.o.g. let Cdα(P ) = {1}.

2 - n case. The proof is done for the following two sub-cases: α > 0 and α = 0.

2 - n and α > 0. Let GCdα (with weights wCdα) denote the following weighted directed
graph over A whose UMG is G∗, the weight on 2→ 3 is 1, and the weights on other edges
are 3 or −3.

• wCdα(2, 3) = 1 and wCdα(3, 1) = wCdα(1, 2) = 3.

• For any 4 ≤ i ≤ m, wCdα(1, i) = wCdα(2, i) = wCdα(3, i) = 3.

• The weights on other edges are 3 or −3.
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(a) GCdα = WMG(PCdα). (b) WMG(PCdα \ {RCdα}).

Figure 10: GCdα and WMG(PCdα \ {PCdα}) for 2 - n and α > 0.

See Figure 10 (a) for an example of GCdα . According to McGarvey’s theorem [33] that
for any n > m4 and 2 - n, there exists an n-profile PCdα whose WMG is GCdα . Therefore,
for any n > m4 +2 and 2 - n, there exists an n-profile PCdα whose WMG is GCdα , and PCdα

includes the following two rankings.

[4 � 2 � 3 � 1 � others],Rev (4 � 2 � 3 � 1 � others)

We now show that Par(r, PCdα) = 0, which implies that the 1 case Lemma 3 does not hold.
Let RCdα = [4 � 2 � 3 � 1 � others]. Notice that in the profile PCdα−RCdα , the Copelandα
score of alternative 3 is m − 2 + α, which is strictly higher than the Copelandα score of
alternative 1, which is m− 2. Therefore, Cdα(PCdα \ {RCdα}) = {3}. See Figure 10 (b) for
WMG(PCdα \ {RCdα}). Notice that 3 �RCdα

1, which means that the Par(r, PCdα) = 0.

Therefore, the 1 case of Lemma 3 does not hold. Let ~t1 = Sign ~HCdα
(PCdα) and ~t2 =

Sign ~HCdα
(PCdα \ {RCdα}). The VL case of Lemma 3 does not hold because ~t1 ⊕ ~t2 �

Sign ~HCdα
(πuni) and πuni ∈ CH(Π).

Next, we prove that dim(H~t1⊕~t2≤0 ) = m! − 1. Notice that [~t1](2,3) = + and [~t2](2,3) = 0,

and all other components of ~t1 and ~t2 are the same and are non-zero. Therefore, ~t1 is a
refinement of ~t2, which means that ~t1 ⊕ ~t2 = ~t2. Notice that Hist(PCdα) is an inner point

of H~t2≤0, in the sense that all inequalities are strict except the inequalities about (2, 3). This

means that the essential equalities of A~t1⊕~t2 are equivalent to Pair2,3 · ~x = ~0. Therefore,

dim(H~t2≤0) = dim(H~t1⊕~t2≤0 ) = m! − 1. This proves the proposition when 2 - n, α > 0, and
Cdα(P ) = {1}.

If Cdα(P ) = {2} (respectively, Cdα(P ) = {3}), then we simply switch the weights on
2→ 3 and 3→ 1 (respectively, 2→ 3 and 1→ 2) in Figure 9 (b), and the rest of the proof
is similar to the Cdα(P ) = {1} case. This proves Theorem 4 for 2 - n and α > 0.

2 - n and α = 0. Let GCdα (with weights wCdα) denote the following weighted directed
graph over A whose UMG is G∗ as illustrated in Figure 9 (a).

• wCdα(2, 3) = wCdα(3, 1) = wCdα(1, 2) = 3.

• For any 4 ≤ i ≤ m, wCdα(1, i) = wCdα(2, i) = wCdα(3, i) = 3, except wCdα(4, 1) = 1.

• The weights on edge between {4, . . . ,m} are 3 or −3.

See Figure 11 (a) for an example of GCdα . According to McGarvey’s theorem [33] that
for any n > m4 and 2 - n, there exists an n-profile PCdα whose WMG is GCdα . Therefore,
for any n > m4 + 2 and 2 - n, there exists an n-profile PCdα whose WMG is GCdα and PCdα

includes the following two rankings.

[3 � 2 � 1 � 4 � others],Rev (3 � 2 � 1 � 4 � others)

62



1 2

4 3

3

3

3

1

3

3

−[3≻2≻1≻4≻others] 

1 2

4 3

4

2

4

2

2

(a) GCdα = WMG(PCdα). (b) WMG(PCdα \ {RCdα}).

Figure 11: GCdα and WMG(PCdα \ {PCdα}) for 2 - n and α = 0.

We now show that Par(Cdα, PCdα) = 0, which implies that the 1 case Lemma 3 does not
hold. Let RCdα = [3 � 2 � 1 � 4 � others]. Notice that in the profile PCdα \ {RCdα},
the Copelandα score of alternative 1 is m − 3 + α = m − 3, which is strictly higher than
the Copelandα score of alternative 2 and 3, which means that Cdα(PCdα −RCdα) ⊆ {2, 3}.
See Figure 11 (b) for an example of WMG(PCdα \ {RCdα}). Notice that 2 �RCdα

1 and
3 �RCdα

1, which means that Par(Cdα, PCdα) = 0.
The proofs for `n = 1, the Cdα(P ) = {2} case, and the Cdα(P ) = {3} case are similar

to their counterparts for the “2 - n and α = 0” case above.

2 | n. The proof for the 2 | n case is similar to the proof of the 2 - n case with the following
modifications. The n-profile PCdα where Par is violated is obtained from the profile in the
2 - n plus Rev (RCdα). Below we present the full proof for the case of 2 | n and α > 0 for
example. The other cases can be proved similarly.

2 | n and α > 0. W.l.o.g. suppose Cdα(G∗) = {1}. Let GCdα (with weights wCdα)
denote the weighted directed graph in Figure 10 (a). According to McGarvey’s theorem [33]
that for any n > m4 and 2 | n, there exists an (n − 1)-profile P ′Cdα

whose WMG is GCdα .
Let

PCdα = P ′Cdα + Rev (4 � 2 � 3 � 1 � others)

It is not hard to verify that in PCdα , the Copelandα score of alternative 3 is m − 2 + α,
which is strictly higher than the Copelandα score of alternative 1, which is m − 2.
Therefore, Cdα(PCdα) = {3}. Let RCdα = Rev (4 � 2 � 3 � 1 � others). Notice that
Cdα(PCdα\{RCdα}) = Cdα(G∗) = {1} and 1 �RCdα

3, which means that Par(Cdα, PCdα) =

0. Therefore, the 1 case in Lemma 3 does not hold. Let ~t1 = Sign ~HCdα
(PCdα) and

~t2 = Sign ~HCdα
(PCdα \ {RCdα}). Like in other cases, the VL case of Lemma 3 does not

holds because ~t1 ⊕ ~t2 � Sign ~HCdα
(πuni).

Next, we prove that dim(H~t1⊕~t2≤0 ) = m! − 1. Notice that [~t1](2,3) = 0 and [~t2](2,3) = +,

and all other components of ~t1 and ~t2 are the same and are non-zero. Therefore, ~t1 is a
refinement of ~t2, which means that ~t1 ⊕ ~t2 = ~t1. Notice that Hist(PCdα) is an inner point

of H~t1≤0, in the sense that all inequalities are strict except the inequalities about (2, 3). This

means that the essential equalities of A~t1⊕~t2 are equivalent to

Pair2,3 · ~x = ~0 and − Pair2,3 · ~x = ~0

Therefore, dim(H~t1⊕~t2≤0 ) = m! − 1, which means that `n = −(m! − (m! − 1)) = 1. The
2 | n and α > 0 case follows after Lemma 3.

The proof for other subcases of 2 | n are similar to the proof of 2 | n and α > 0 case
above. This completes the proof of Theorem 4.
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F.4 Proof of Theorem 5

Theorem 5. (Smoothed Par: int-MRSE). Given m ≥ 4, any int-MRSE r, any int-
GSR r that is a refinement of r = (r2, . . . , rm), and any strictly positive and closed Π over
L(A) with πuni ∈ CH(Π), there exists N ∈ N such that for every n ≥ N ,

P̃ar
min

Π (r, n) = 1−Θ(
1√
n

)

Proof. The intuition behind the proof is similar to the proof of Theorem 3. Indeed, Lemma 3
can be applied to r, but it is unclear how to characterize `n. Therefore, in this proof we do not
directly characterize dim(H~t≤0) as in the proof of Theorem 3, but will instead define another
polyhedron Hr to characterize a set of sufficient conditions for Par to be violated—and the
dimension of the new polyhedron is easy to analyze. Let us start with defining sufficient
conditions on a profile P for Par to be violated under any refinement of r.

Condition 1 (Sufficient conditions: violation of Par under an MRSE rule). Given
an MRSE r, a profile P satisfies the following conditions during the execution of r.

(1) For every 1 ≤ i ≤ m− 4, in the i-th round, alternative i+ 4 drops out.

(2) In round m − 3, 1 has the highest score, 2 has the second highest score, and 3 and 4
are tied for the last place.

(3) If 3 is eliminated in round m − 3, then 2 and 4 are eliminated in round m − 2 and
m− 1, respectively, which means that the winner is 1.

(4) If 4 is eliminated in round m − 3, then 1 and 3 are eliminated in round m − 2 and
m− 1, respectively, which means that the winner is 2.

(5) P contains at least one vote [4 � 2 � 1 � 3 � others] and at least one vote [3 � 1 �
2 � 4 � others], where “others” represents 5 � · · · � m.

(6) All losers described above, except in (2), are “robust” , in the sense that after removing
any vote from P , they are still the unique losers.

Let us verify that for any profile P that satisfies Condition 1, Par(r, P ) = 0. It is not
hard to see that r(P ) = {1, 2}. If r(P ) = {1}, then let Rr = [4 � 2 � 1 � 3 � others].
This means that when any voter whose preferences are Rr abstain from voting, alternative
4 drops out in round m− 3 of (P \ {Rr}), and consequently 2 becomes the winner. Notice
that 2 �Rr 1, which means that Par(r, P ) = 0. Similarly, if r(P ) = {2}, then let Rr = [3 �
1 � 2 � 4 � others], which means that 3 drops out in round m − 3 of (P \ {Rr}), and 1
becomes the winner. Notice that 1 �Rr 2. Again, we have Par(r, P ) = 0. The procedures
of executing r under P and (P \ {Rr}) are represented in Figure 12.

The rest of the proof proceeds as follows. In Step 1 below, We will prove by construction
that for every sufficiently large n, there exists an n-profile Pr that satisfies Condition 1. Then
in Step 2, we formally define Hr to represent profiles that satisfy Condition 1. Finally, in
Step 3, we show that dim(Hr≤0) = m!− 1 because there is essentially only one equality (in
Condition 1 (2)). Theorem 5 then follows after 1 minus the polynomial case of the inf part
of [52, Theorem 2].
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Figure 12: Executing r for a profile that satisfies Condition 1.

Step 1: define Pr. Before defining Pr, we first define a profile P ∗ that consists of a
constant and odd number of votes in Steps 1.1–1.3. We then prove that Par is violated at
P ∗ in Step 1.4 and 1.5, where in Step 1.4 we show that r(P ) = {1, 2} and in Step 1.5 we
point out a violation of Par depending on r(P ∗). Then in Step 1.6, we show how to expand
P ∗ to an n-profile Pr for any sufficiently large n.

Let P ∗ = P1 + P2 + P3, where P1 consists of even number of votes and is designed to
guarantee Condition 1 (1), i.e., 5, . . . ,m are eliminated in the first m−4 rounds, respectively.
This means that in the beginning of round m− 3, the remaining alternatives are {1, 2, 3, 4}.
P2 consists of an odd number of votes and is designed to guarantee Condition 1 (2), i.e., in
round m − 3, r4 outputs the weak order [1 � 2 � 3 = 4]. P3 consists of an even number
of votes and is designed to guarantee Condition 1 (3) and (4), i.e., if 3 (respectively, 4) is
eliminated then 1 (respectively, 2) wins.

Step 1.1: define P1. Let P 1
1 denote the following profile of (24m(m−4)!+ (m+5)(m−4)

2 (m−
1)!) votes.

P 1
1 = m×{[R1 � R2 : ∀R1 ∈ L({1, 2, 3, 4}), R2 ∈ L({5, . . . ,m})}∪

m⋃
i=5

i×{[i � R2] : ∀R2 ∈ L(A\{i})}

For every 2 ≤ i ≤ m, let the scoring vector of ri be (si1, . . . , s
i
i). For example, the scoring

vector of r4 is (s4
1, s

4
2, s

4
3, s

4
4). We let P1 = (s4

1 − s4
4 + 1)|P2| × P 1

1 , where |P2| is the number
of votes in P2, which is a constant and will become clear after Step 1.2.

Step 1.2: define P2. The main challenge in this step is to use an odd number of votes
to define P2 such that in round m − 3, the score of 1 is strictly higher than the score of 2,
which is strictly higher than the score of 3 and 4. We first define the following 8-profile,
denoted by P 1

2 .

P 1
2 = {[1 � others � 3 � 4 � 2], [1 � others � 4 � 3 � 2],

3× [1 � others � 2 � 4 � 3], 3× [2 � others � 1 � 3 � 4]}

The numbers of times alternatives {1, 2, 3, 4} are ranked in each position in P 1
2 |{1,2,3,4} are

indicated in Table 5.
Next, we define a profile P 2

2 that consists of an odd number of votes where the scores
of 3 and 4 are equal. Let d1 = s4

1 − s4
2 and d2 = s4

2 − s4
3. The construction is done in the

following three cases.
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Alternative 1st 2nd 3rd 4th
1 5 3 0 0
2 3 3 0 2
3 0 1 4 3
4 0 1 4 3

Table 5: Number of times each alternative is ranked in each position in P 1
2 |{1,2,3,4}.

• If d1 = 0, then we let P 2
2 consist of a single vote [3 � 4 � 1 � 2 � others].

• If d1 6= 0 and d2 = 0, then we let P 2
2 consist of a single vote [1 � 3 � 4 � 2 � others].

• If d1 6= 0 and d2 6= 0, then we let d′1 = d1/ gcd(d1, d2) and d′2 = d2/ gcd(d1, d2), where
gcd(d1, d2) is the greatest common divisor of d1 and d2. It follows that at least one of
d′1 and d′2 is an odd number.

– If d′1 is odd, then we let

P 2
2 = (d′1 + d′2)× [1 � 3 � 4 � 2 � others] + d′2 × [4 � 1 � 3 � 2 � others]

– Otherwise, we must have d′1 is even and d′2 is odd. Then, we let

P 2
2 = (d′1 + d′2)× [3 � 4 � 1 � 2 � others] + d′1 × [4 � 1 � 3 � 2 � others]

It is not hard to verify that in either case P 2
2 consists of an odd number of votes, and the

score of 3 and 4 are equal under P 2
2 . To guarantee that 3 and 4 have the lowest r4 scores in

P2|{1,2,3,4}, we include sufficiently many copies of P 1
2 in P2. Formally, let

P2 = (|P 2
2 |+ 1)× P 1

2 + P 2
2

Step 1.3: define P3. We let P3 = ((s1 − s3)|P2|+ 1)×P ∗3 , where P ∗3 = P ∗13 +P ∗23 is the
36-profile defined as follows. P ∗13 consists of 12 votes, where each alternative in {1, 2, 3, 4}
is ranked in the top in three votes, followed by the remaining three alternatives in a cyclic
order.

P ∗13 = {[1 � 2 � 3 � 4 � others], [1 � 3 � 4 � 2 � others], [1 � 4 � 2 � 3 � others],

[2 � 1 � 4 � 3 � others], [2 � 4 � 3 � 1 � others], [2 � 3 � 1 � 4 � others],

[3 � 1 � 4 � 2 � others], [3 � 4 � 2 � 1 � others], [3 � 2 � 1 � 4 � others],

[4 � 1 � 2 � 3 � others], [4 � 2 � 3 � 1 � others], [4 � 3 � 1 � 2 � others]}

P ∗23 consists of 24 votes that are defined in the following three steps. First, we start with
L({1, 2, 3, 4}), which consists of 24 votes. Second, we replace [3 � 2 � 4 � 1] and [4 � 1 �
3 � 2] by [3 � 1 � 4 � 2] and [4 � 2 � 3 � 1], respectively. That is, the locations of 1 and
2 are exchanged in the two votes. This is designed to guarantee that the r4 scores of all
alternative are the same in P ∗23 |{1,2,3,4}, and after 3 is removed, 1’s r3 score is higher than
2’s r3 score; and after 4 is removed, 2’s r3 score is higher than 1’s r3score. Third, we append
the lexicographic order of {5, . . . ,m} to the end of each of the 24 rankings. Formally, we
define

P ∗23 = {R4 � 5 � · · · � m : R4 ∈ L({1, 2, 3, 4})} − [3 � 2 � 4 � 1 � others]

− [4 � 1 � 3 � 2 � others] + [3 � 1 � 4 � 2 � others] + [4 � 2 � 3 � 1 � others]
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Step 1.4: Prove r(P ∗) = {1, 2}. Recall that P ∗ = P1 + P2 + P3. Notice that the P1

part guarantees that {5, . . . ,m} are dropped out in the first m−4 rounds, and the scores of
all alternatives in {1, 2, 3, 4} are the same under P1 no matter what alternatives are dropped
out. Therefore, it suffices to calculate the results of the last three rounds based on P2 +P3,
which is done as follows.

In round m−3, it is not hard to check that every alternative in {1, 2, 3, 4} gets the same
total score under P3, where each of them is ranked at each position for 9 times. Therefore,
due to P2, alternative 3 and 4 are tied for the last place in round m− 3.

If 3 is eliminated in round m− 3, then P ∗3 |{1,2,4} = P ∗13 |{1,2,4} + P ∗23 |{1,2,4} becomes
the following.

P ∗13 |{1,2,4} ={2× [1 � 4 � 2], [1 � 2 � 4], 2× [2 � 1 � 4], [2 � 4 � 1],

[1 � 4 � 2], [4 � 2 � 1], [2 � 1 � 4], 2× [4 � 1 � 2], [4 � 2 � 1]}
P ∗23 |{1,2,4} =4× L({1, 2, 4})− [2 � 4 � 1]− [4 � 1 � 2] + [1 � 4 � 2] + [4 � 2 � 1]

It is not hard to verify that the numbers of times alternatives {1, 2, 4} are ranked in each
position in P ∗3 |{1,2,4} are as indicated in Table 6 (a).

Alternative 1st 2nd 3rd
1 13 12 11
2 11 12 13
4 12 12 12

Alternative 1st 2nd 3rd
1 11 12 13
2 13 12 11
3 12 12 12

(a) 3 is removed. (b) 4 is removed.

Table 6: Number of times each alternative is ranked in each position in round m− 2.

This means that the score of alternative 2 is strictly lower than the score of 1 or 3,
because s3

1 − s3
3 ≥ 1, where the score vector for r3 is (s3

1, s
3
2, s

3
3). Recall that P3 consists of

sufficiently large number of copies of P ∗3 . Therefore, even considering the score difference
between alternatives in P2, the score of 2 is still the strictly lowest among {1, 2, 4} in P ∗ in
round m − 2. This means that alternative 2 drops in round m − 2, and it is easy to check
that 1 � 4 in 20 votes in P ∗3 , which is strictly more than half (= 16). This means that 1 is
the r winner if 3 is eliminated in round m− 3.

If 4 is eliminated in round m− 3, then P ∗3 |{1,2,3} = P ∗13 |{1,2,3} + P ∗23 |{1,2,3} becomes
the following.

P ∗13 |{1,2,3} ={2× [1 � 2 � 3], [1 � 3 � 2], 2× [2 � 3 � 1], [2 � 1 � 3],

2× [3 � 2 � 1], [3 � 1 � 2], [1 � 2 � 3], [2 � 3 � 1], [3 � 1 � 2]}
P ∗23 |{1,2,3} =4× L({1, 2, 3})− [3 � 2 � 1]− [1 � 3 � 2] + [3 � 1 � 2] + [2 � 3 � 1]

The numbers of times alternatives {1, 2, 3} are ranked in each position in P ∗3 |{1,2,3} are as
indicated in Table 6 (b). Again, it is not hard to verify that alternative 1 drops in round
m− 2, and 2 beats 3 in the last round to become the r winner in this case.

Step 1.5: Prove that Par is violated at P ∗. At a high-level the proof is similar to
Step 1.4, and the absent vote is effectively used as a tie breaker between alternatives 3 and
4. Recall that r is a refinement of r and it was shown in Step 1.4 that r(P ∗) = {1, 2}.
Therefore, either r(P ∗) = {1} or r(P ∗) = {2}. The proof is done in the follow two cases.
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• If r(P ∗) = {1}, then we let

Rr = [4 � 2 � 1 � 3 � others],

which is a vote in P 2
3 . Then in (P ∗ \{Rr}), alternative 4 is eliminated in round m−3,

and following a similar reasoning as in Step 1.4, we have r(P ∗ \ {Rr}) = {2}. Notice
that 2 �Rr 1, which means that Par is violated at P ∗.

• If r(P ∗) = {2}, then we let

Rr = [3 � 1 � 2 � 4 � others],

which is a vote in P 2
3 . Then in (P ∗ \{Rr}), alternative 3 is eliminated in round m−3,

and following a similar reasoning as in Step 1.4, we have r(P ∗ \ {Rr}) = {1}. Notice
that 1 �Rr 2, which means that Par is violated at P ∗.

Step 1.6: Construct an n-profile Pr. The intuition behind the construction is the
following. Pr consists of three parts: P 1

r , P 2
r , and P 3

r . P 1
r consists of multiple copies of P ∗

defined in Steps 1.1-1.3 above, which is used to guarantee that Par is violated at Pr and
the score difference between any pair of alternatives is sufficiently large so that votes in P 3

r

does not affect the execution of r. P 2
r consists of multiple copies of L(A). P 3

r consists of no
more than m!− 1 votes, and |P 3

r | is an even number.

Define P 1
r . To guarantee that |P 3

r | is even, the definition of P 1
r depends on the parity of

n. Recall that P ∗ consists of an odd number of votes. When 2 | n, we let

P 1
r = m!

(
s3

1 − s3
3

)
× P ∗

When 2 - n, we let
P 1
r =

(
m!
(
s3

1 − s3
3

)
+ 1
)
× P ∗

Define P 2
r . Let n1 = |P 1

r |. P 2
r consists of as many copies of L(A) as possible, i.e.

P 2
r =

⌊
n− n1

m!

⌋
× L(A)

Define P 3
r . P 3

r consists of multiple copies of pairs of rankings defined as follows.

P 3
r =

(
n− n1 − |P 2

r |
2

)
× {[1 � 2 � 3 � 4 � others], [2 � 1 � 4 � 3 � others]}

It is not hard to verify that Pr = P 1
r + P 2

r + P 3
r share the same properties as P ∗: r(Pr) =

{1, 2}; if [4 � 2 � 1 � 3 � others] is removed, then 2 is the unique winner; and if [3 � 1 �
2 � 4 � others] is removed, then 1 is the unique winner. This means that Par is violated
at Pr.

Step 2: define a polyhedron Hr to represent profiles that satisfy Condition 1.
To define Hr, we recall from Definition 14 that for any a, b, any B ⊆ A \ {a, b}, and any
profile P , Score∆

B,a,b ·Hist(P ) is the difference between the rm−|B| score of a and the rm−|B|
score of b in P |A\B . We are now ready to define Hr whose A matrix has five parts that

correspond to Condition 1 (1)–(5). Condition 1 (6) will be incorporated in the ~b vector of
Hr.
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Definition 31 (Hr). Given r = (r2, . . . , rm), we let Ar =


A(1)

A(2)

A(3)

A(4)

A(5)

, where

• A(1): for every 1 ≤ i ≤ m − 4 and every j ∈ A \ {i + 4}, A(1) has a row
Score∆

{5,...,i+3},i+4,j.

• A(2), A(3), and A(4) are defined as follows.

A(2) =


Score∆

{5,...,m},2,1
Score∆

{5,...,m},3,2
Score∆

{5,...,m},4,3
Score∆

{5,...,m},3,4

 ,A(3) =

 Score∆
{3,5,...,m},4,1

Score∆
{3,5,...,m},2,4

Score∆
{2,3,5,...,m},4,1

 ,A(4) =

 Score∆
{4,5,...,m},3,2

Score∆
{4,5,...,m},1,3

Score∆
{1,4,5,...,m},3,2



• A(5) consists of two rows defined as follows.

A(5) =

[
−Hist(4 � 2 � 1 � 3 � others)
−Hist(3 � 1 � 2 � 4 � others)

]

Let ~br = [ ~b(1)︸︷︷︸
for A(1)

, (s4
4 − s4

1 − 1, s4
4 − s4

1 − 1, 0, 0)︸ ︷︷ ︸
for A(2)

, (s3
3 − s3

1 − 1, s3
3 − s3

1 − 1, s2
2 − s2

1 − 1)︸ ︷︷ ︸
for A(3)

,

(s3
3 − s3

1 − 1, s3
3 − s3

1 − 1, s2
2 − s2

1 − 1)︸ ︷︷ ︸
for A(4)

, (−1,−1)︸ ︷︷ ︸
for A(5)

],

where for every 1 ≤ i ≤ m − 4 and every j ∈ A \ {i + 4}, ~b(1) contains a row sm+1−i
m+1−i −

sm+1−i
1 − 1. Let

Hr =

{
~x ∈ Rm! : Ar · (~x)

> ≤
(
~br
)>}

.

Step 3: Apply Lemma 3 and [52, Theorem 2]. We first prove the following properties
of Hr.

Claim 14 (Properties of Hr). Given any integer MRSE rule r,

(i) for any integral profile P , if Hist(P ) ∈ Hr then Par(r, P ) = 0;

(ii) πuni ∈ Hr≤0;

(iii) dim(Hr≤0) = m!− 1.

Proof. Part (i) follows after a similar reasoning as in Step 1 of the proof of Theorem 5. To
prove Part (ii), notice that for any B ⊆ A and a, b ∈ (A\B), we have Score∆

B,a,b ·~1 = 0. Also

notice that for any R ∈ L(A) we have −Hist(R) ·~1 = −1 < 0. Therefore, Ar ·
(
~1
)>
≤
(
~0
)>

,

which means that πuni ∈ Hr≤0. To prove Part (iii), notice that Ar · (~x)
> ≤

(
~0
)>

contains

one equality in A(2), i.e.
Score∆

{5,...,m},3,4 · (~x)
>

= 0 (15)
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This means that dim(Hr≤0) ≤ m! − 1. Recall that Pr is the n-profile defined in Step 1

that satisfies Condition 1. Notice that Hist(Pr) is an inner point of Hr≤0 in the sense that

all inequalities in Ar · (~x)
> ≤

(
~0
)>

except Equation (15) are strict, which means that

dim(Hr≤0) ≥ m!− 1. This proves Claim 14.

Because of the existence of Pr defined in Step 1, and Claim 14 (i) and (ii), the 1 case
and the VL case of Lemma 3 do not hold for any sufficiently large n. Therefore, it follows

from the L case of Lemma 3 that P̃ar
min

Π (r, n) is at least 1− O(n−0.5), because `n ≥ 1. It

remains to show that P̃ar
min

Π (r, n) is upper-bounded by 1−Ω(n−0.5). We have the following
calculations.

1− P̃ar
min

Π (r, n) = sup
~π∈Πn

PrP∼~π(Par(r, P ) = 0)

≥ sup
~π∈Πn

PrP∼~π(Hist(P ) ∈ Hr) Claim 14 (i)

=Θ(n−0.5) Claim 14 (ii), (iii), and [52, Theorem 2]

The last equation follows after applying the sup part of [52, Theorem 2] to Hr. More
concretely, recall that in Step 1 above we have constructed an n-profile Pr for any sufficiently
large n and it is not hard to verify that Hist(Pr) ∈ Hr, which means that Hr is active at
any sufficiently large n. Claim 14 (ii) implies that the polynomial case of [52, Theorem 2]
holds, and Claim 14 (iii) implies that αn = m!− 1 for Hr.

This proves Theorem 5.

F.5 Proof of Theorem 6

Theorem 6. (Smoothed Par: Condorcetified Integer Positional Scoring Rules).
Given m ≥ 4, an integer positional irresolute scoring rule r~s, any Condocetified positional
scoring rule Cond~s that is a refinement of Cond~s, and any strictly positive and closed Π
over L(A) with πuni ∈ CH(Π), there exists N ∈ N such that for every n ≥ N ,

P̃ar
min

Π (Cond~s, n) = 1−Θ(
1√
n

)

Proof. The proof follows the same logic in the proof of Theorem 5. We first prove the
theorem for even n then show how to extend the proof to odd n’s.

Intuition for 2 | n. Let ~s = (s1, . . . , sm). We first identify a set of sufficient conditions
for Par to be violated.

Condition 2 (Sufficient conditions for the violation of Par). Given a Condorcetified
irresolute integer positional scoring rule Cond~s, P satisfies the following conditions.

(1) Cond~s(P ) = {2}, and the score of 2 is higher than the score of any other alternative
by at least s1 − sm + 1.

(2) Alternative 1 is a weak Condorcet winner, wP (1, 3) = 0, and for every i ∈ A \ {1, 3},
wP (1, i) ≥ 2.

(3) P contains at least one vote of [3 � 1 � 2 � others].
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Recall that Cond~s is a refinement of Cond~s and due to Condition 2 (2), P does not
contain a Condorcet winner. Therefore, according to Condition 2 (1), we have Cond~s = {2}.
Any voter whose preferences are [3 � 1 � 2 � others] has incentive to abstain from voting,
because the voter prefers 1 to 2, and {1} is the Condorcet winner in P−[3 � 1 � 2 � others],
which means that

Cond~s(P − [3 � 1 � 2 � others]) = {1}

This means that Par(Cond~s, P ) = 0 for any profile P that satisfies Condition 2. The rest
of the proof proceeds as follows. In Step 1, for any n that is sufficiently large, we construct

an n-profile P~s that satisfies Condition 2. Then in Step 2, we formally define HCond~s to
represent profile that satisfy Condition 2. Finally, in Step 3 we formally prove properties

about HCond~s and apply Lemma 3 and [52, Theorem 2] to prove Theorem 5.

Step 1 for 2 | n: define P~s. The construction is similar to the construction in the proof
of Claim 10, which is done for the following two cases: r~s is the plurality rule and r~s is not
the plurality rule.

• When r~s is the plurality rule, i.e. s2 = sm, we let

P~s =
(n

2
− 6
)
× [2 � 1 � 3 � others] + 4× [2 � 3 � 1 � others]

+
(n

2
− 6
)
× [3 � 1 � 2 � others] + 6× [1 � 2 � 3 � others]

It is not hard to verify that P~s satisfies Condition 2 for any even number n ≥ 28.

• When r~s is not the plurality rule, i.e., s2 > sm, like Step 1 in the proof of
Theorem 5, we first construct a profile P ∗ that consists of a constant number of votes
and satisfies Condition 2, then extend it to arbitrary odd number n. Let 2 ≤ k ≤ m−1
denote the smallest number such that sk > sk+1. Let A1 = [4 � · · · � k + 1] and
A2 = [k + 2 � · · · � m], and let P ∗ = P ∗1 + P ∗2 , where P ∗1 is the following 10-profile
that is used to guarantee Condition 2 (2) and (3).

P ∗1 = {4× [1 � 2 � A1 � 3 � A2] + 3× [2 � 3 � A1 � 1 � A2]

+2× [3 � 1 � A1 � 2 � A2] + [2 � 1 � A1 � 3 � A2]}

And let P ∗2 denote the following 36(m− 3)!-profile, which is used to guarantee that 2
is the unique winner under P ∗, i.e., Condition 2 (1).

P ∗2 = 6× {[R1 � R2] : ∀R1 ∈ L({1, 2, 3}), R2 ∈ L({4, . . . ,m}), }

It is not hard to verify that the following observations hold for P ∗1 .

– 1 is the Condorcet winner, wP∗1 (1, 3) = 0, and for any i ∈ A \ {1, 3}, we have
wP∗1 (1, i) ≥ 2.

– The total score of 1 under P ∗1 is 4s1 + 3s2 + 3sk+1, the total score of 2 under
P ∗1 is 4s1 + 4s2 + 2sk+1, and the total score of 3 under P ∗1 is 2s1 + 3s2 + 5sk+1.
Recall that we have assumed that s2 > sk+1. Therefore,

4s1 + 4s2 + 2sk+1 > 4s1 + 3s2 + 3sk+1 > 2s1 + 3s2 + 5sk+1,

which means that the score of 2 is strictly higher than the scores of 1 and 3 in
P ∗1 .
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Given these observations, it is not hard to verify that P ∗ = P ∗1 + P ∗2 satisfies Con-
dition 2. Let P~s denote as many copies of P ∗ as possible, plus pairs of rankings
{[2 � 1 � 3 � others], [2 � 3 � 1 � others]}. More precisely, let

P~s =

⌊
n

|P ∗|

⌋
×P ∗+

(
n− |P ∗| · b n

|P∗|c
2

)
×{[2 � 1 � 3 � others], [2 � 3 � 1 � others]}

It is not hard to verify that P~s satisfies Condition 2, which concludes Step 1 for the 2 | n
case.

Step 2 for 2 | n: define a polyhedron HCond~s to represent profiles that satisfy
Condition 2.

Definition 32 (HCond~s). Given an irresolute integer positional scoring rule r~s =

(s1, . . . , sm), we let A~s =

 A(1)

A(2)

A(3)

, where

• A(1): for every i ∈ A \ {2}, A(1) contains a row Scorei,2.

• A(2) contains two rows Pair1,3 and Pair3,1, and for every i ∈ A\{1, 3}, A(1) contains
a row Pairi,1.

• A(3) consists of a single row −Hist(3 � 1 � 2 � others).

Let ~b~s =

(sm − s1 − 1) ·~1︸ ︷︷ ︸
for A(1)

, (0, 0,−2, . . . ,−2)︸ ︷︷ ︸
for A(2)

, −1︸︷︷︸
for A(3)


and H~s =

{
~x ∈ Rm! : A~s · (~x)

> ≤
(
~b~s
)>}

.

Step 3 for 2 | n: Apply Lemma 3 and [52, Theorem 2]. We first prove the following

properties of HCond~s .

Claim 15 (Properties of HCond~s). Given any integer positional scoring rule ~s,

(i) for any integral profile P , if Hist(P ) ∈ HCond~s then Par(Cond~s, P ) = 0;

(ii) πuni ∈ HCond~s
≤0 ;

(iii) dim(HCond~s
≤0 ) = m!− 1.

Proof. The proof for Part (i) and (ii) are similar to the proof of Claim 14. To prove Part

(iii), notice that A~s · (~x)
> ≤

(
~0
)>

contains one equality in A(2), i.e.

Pair1,3 · (~x)
>

= (0)
>

(16)

This means that dim(HCond~s
≤0 ) ≤ m! − 1. Notice that Hist(P~s) is an inner point of HCond~s

≤0

in the sense that all other inequalities except Equation (16) are strict, which means that

dim(HCond~s
≤0 ) ≥ m!− 1. This proves Claim 15.
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Therefore, we have the following bound.

1− P̃ar
min

Π (Cond~s, n)

= sup
~π∈Πn

PrP∼~π(Par(Cond~s, P ) = 0)

≥ sup
~π∈Πn

PrP∼~π(Hist(P ) ∈ HCond~s) Claim 15 (i)

=Θ(n−0.5) Claim 15 (ii), (iii), and [52, Theorem 2]

Consequently, P̃ar
min

Π (Cond~s, n) = 1 − Ω(n−0.5). Notice that the 1 case and VL case
Lemma 3 do not hold because of the existence of P~s and Claim 15 (ii). Therefore, Theorem 6
for the 2 | n case follows after the 1−O(n−0.5) upper bound proved in Lemma 3.

Proof for the 2 - n case. When 2 - n, we modify the proof as follows.

• First, Condition 2 (2) is replaced by the following condition:

(2′): Alternative 1 is the Condorcet winner under P , wP (1, 3) = 1, and for every
i ∈ A \ {1, 3}, wP (1, i) ≥ 3.

• Second, in Step 1, P~s has an additional vote [2 � 1 � 3 � others].

• Third, in Step 2 Definition 32, the ~b~s components corresponding to A2 is
(1,−1,−3, . . . ,−3).

A similar claim as Claim 15 can be proved for the 2 - n case. This proves Theorem 6.

G Experimental Results

We report satisfaction of CC and Par using simulated data and Preflib linear-order data [32]
under four classes of commonly-used voting rules studied in this paper, namely positional
scoring rules (plurality, Borda, and veto), voting rules that satisfy Condorcet Criterion
(maximin, ranked pairs, Schulze, and Copeland0.5), MRSE (STV), and Condorcetified posi-
tional scoring rule (Black’s rule). All experiments were implemented in Python 3 and were
run on a MacOS laptop with 3.1 GHz Intel Core i7 CPU and 16 GB memory.

(a) CC. (b) Par.

Figure 13: Satisfaction of CC and Par under IC for m = 4, n = 40 to 800, 200000 trials.
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Synthetic data. We generate profiles of m = 4 alternatives under IC.3 The number
of alternatives n ranges from 40 to 800. In each setting we generate 200000 profiles. The
satisfaction of CC under plurality, Borda, veto, and STV are presented in Figure 13 (a), and
the satisfaction of Par under STV, maximin, ranked pairs, Schulze, Black, and Copeland0.5

are presented in Figure 13 (b). Notice that voting rules not in Figure 13 (a) always satisfy
CC and voting rules not in Figure 13 (b) always satisfy Par.

The results provide a sanity check for the theoretical results proved in this paper. In
particular, Figure 13 (a) confirms that the satisfaction of CC is Θ(1) and 1 − Θ(1) under
positional scoring rules (Theorem 1) and STV (Corollary 1) w.r.t. IC. Figure 13 (b) confirms
that the satisfaction of Par is 1 − Θ(n−0.5) under maximin, ranked pairs, Schulze (The-
orem 3), Copelandα (Theorem 4), STV (Theorem 5), and Black (Theorem 6). Figure 14
in Appendix G summarizes results with large n (1000 to 10000) that further confirm the
asymptotic observations described above.

(a) CC. (b) Par

Figure 14: Satisfaction of CC and Par under IC for m = 4, n = 1000 to 10000, 200000 trials.

Preflib data. We also calculate the satisfaction of CC and Par under all voting rules
studied in this paper with lexicographic tie-breaking for all 315 Strict Order-Complete Lists
(SOC) under election data category from Preflib [32]. The results are summarized in Table 7,
which is the bottom part of Table 2.

Table 7: Satisfaction of CC and Par in 315 Preflib SOC profiles. Some statistics of the data are
shown in Figure 15.

Plurality Borda Veto STV Black Maximin Schulze Ranked pairs Copeland0.5

CC 96.8% 92.4% 74.2% 99.7% 100% 100% 100% 100% 100%
Par 100% 100% 100% 99.7% 99.4% 100% 100% 100% 99.7%

Table 7 delivers the following message, that Par is less of a concern than CC in Preflib
data—all voting rules have close to 100% satisfaction of Par, while the satisfaction of CC
is much lower for plurality, Borda, and Veto. The most interesting observations are: first,
maximin, Schulze, and ranked pairs achieve 100% satisfaction of CC and Par in Preflib
data, which is consistent with the belief that Schulze and ranked pairs are superior in
satisfying voting axioms, and maximin is doing well in Par (and indeed, maximin satisfies
Par when m = 3). Second, STV does well in CC and Par, though it does not satisfy either
in the worst case. Third, veto has poor satisfaction of CC (74.2%), which is mainly due

3See [8] for theoretical results and extensive simulation studies of Par under the IAC model.
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Figure 15: Histograms of number of candidates and number of voters in the 315 Preflib SOC data
studied in this paper.

to the profiles where the number of alternatives is more than the number of voters, so that
a Condorcet winner exists and is also a veto co-winner, but loses due to the tie-breaking
mechanism.
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