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Abstract

We consider approval-based committee elections, in which a size-k subset of avail-
able candidates must be selected given approval sets for each voter, indicating the
candidates approved by the voter. A number of axioms capturing ideas of fairness
and proportionality have been proposed for this framework. We argue that even the
strongest of them, such as priceability and the core, only rule out certain undesirable
committees, but fail to ensure that the selected committee is fair in all cases. We
propose two new solution concepts, stable priceability and balanced stable priceability,
and show that they select arguably fair committees. Our solution concepts come
with a non-trivial-to-construct but easy-to-understand market-based explanation for
why the chosen committee is fair. We show that stable priceability is closely related
to the notion of Lindahl equilibrium from economics.

1 Introduction

A committee election is a scenario where a group of individuals–called voters—collectively
selects a size-k subset of available candidates, for a given k. The model of committee
elections describes real-life situations such as selecting political representatives for a group
of voters, selecting finalists or laureates in a contest (where voters correspond to judges
or experts who collectively select a subset of contestants), deciding on locations of public
facilities [Farahani and Hekmatfar, 2009, Skowron et al., 2016], and selecting validators in
the blockchain protocol [Amoussou-Guenou et al., 2020a,b].

A committee election rule is a function specifying how voters’ preferences map to the
collective decision on which candidates should be selected. We focus on the model of approval
preferences, in which each voter approves a subset of the candidates. A number of different
committee election rules have been proposed for this model [Faliszewski et al., 2017, Lackner
and Skowron, 2020]. In order to choose the right rule for a given scenario, one needs to be
able to reason about these rules in a principled way. Various approaches have been proposed
for this purpose. A compelling one is the axiomatic approach, in which one formulates
desirable mathematical properties and asks which voting rules satisfy them.

For approval-based committee elections, axioms that capture how well minorities of
voters with common interests are represented have received considerable attention in recent
years [Aziz et al., 2017, Brill et al., 2017, Sánchez-Fernández et al., 2017, Lackner and
Skowron, 2018, Peters and Skowron, 2020]. The starting point of our discussion is that even
the strongest of these axioms fail to ensure that the selected committee is intuitively fair
or proportionally representative on all instances. We explain this via the example of the
core [Aziz et al., 2017, Fain et al., 2018, Cheng et al., 2019, Jiang et al., 2019, Peters and
Skowron, 2020].

Outcomes in the Core do not Have to be Fair

Assume that there are n voters. Each voter i specified a subset of candidates Ai that she
approves, and the goal is to select a committee of exactly k candidates. The high-level idea
behind the core is that a group of voters S should be able to decide on at least b|S|/n · kc



candidates in the elected committee. Formally, we say that a committee W is in the core if
there exists no group of voters S and no subset of candidates T such that |T | 6 |S|/n · k and
each voter from S prefers T over W (i.e. approves more candidates in T than in W ). The core
is a very strong concept. It implies a number of weaker properties, such as extended justified
representation (EJR) [Aziz et al., 2017], proportional justified representation (PJR) [Sánchez-
Fernández et al., 2017], and justified representation (JR) [Aziz et al., 2017]. In fact, the core
is so strong that, for the time being, it is not known whether there always exists a committee
in the core for approval-based elections. However, even this strong property can sometimes
allow dramatically unfair committees, as the example below illustrates.

Example 1. Fix an integer L. Consider the following instance with n = kL voters. Voters
1, . . . L approve candidates c1, . . . , ck. For each i ∈ {1, 2, . . . , k−1} voters iL+1, . . . , iL+L−1
approve candidate ck+i. The remaining k − 1 voters approve candidates c2k, . . . , c3k−2, each
voter approving a different candidate.

For this instance, the committee W1 = {c1, . . . , ck} is in the core. In fact this committee
would be uniquely selected by the following natural rule: “among all committees in the core
(assuming it is non-empty), select the one that maximizes the total number of approvals”.
This committee gives zero satisfaction to a majority of the voters. One can argue that a
committee that consists of at most one candidate per group, e.g., W2 = {c1, ck+1, . . . , c2k−1},
is a much fairer choice.

Similar observations have been made by Bredereck et al. [2019] for the axiom of extended
justified representation (EJR). They observe that in practice many very different committees
satisfy EJR, and concluded that EJR on its own does not guarantee a sensible selection of
committees.

Priceability and Evidence of Fairness

The problem illustrated in Example 1 is that properties like the core (and also EJR, PJR
and JR) prevent specific pathological situations, but beyond their definitions, do not provide
intuitive justifications for why a committee they allow should be selected. In this paper, we
take a different approach and aim for solution concepts that provide explicit and intuitive
explanations for why the chosen committee is fair.

In their recent paper, Peters and Skowron [2020] introduced the concept of priceability.
Intuitively, it decides on a fixed price that it will cost to add a candidate, endows each
voter with a fixed amount of virtual money, and allows voters to spend money on buying
candidates they like. Candidates are added to the committee when voters collectively pay
the price. Priceability seeks committees which can be explained via this process, and under
which no group of voters have so much money left over so that they could collectively buy
one more candidate. The latter condition ensures that voters were able to spend a large
chunk of their money, and may thus already have derived sufficient satisfaction from the
candidates they purchased.

This is a step in the right direction: the individual payments that voters make towards
buying approved candidates constitute an intuitive explanation and serve as evidence that
the chosen committee is fair. However, this explanation is weak: it only requires that voters
have limited leftover money, but not that their money is spent wisely. We add a stability
condition: informally, voters should not want to change how their money is spent. We borrow
the idea of making payments stable from the classic economic concept of Lindahl equilibrium
for public economies [Foley, 1970], which ensures fair outcomes in a model with divisible
goods [Fain et al., 2016]. In fact, we show that one of the two notions we propose is closely
related to (a discrete version of) Lindahl equilibrium.



Our Contribution

We introduce two solution concepts: stable priceability (SP) and balanced stable priceability
(BSP).

SP strengthens the concept of priceability by Peters and Skowron [2020]. We show that
it is a strong fairness notion. It logically implies both the core and priceability, and also
guarantees a higher proportionality degree [Skowron, 2018] than both. In contrast to the
core, whether a committee satisfies SP can be checked in polynomial time. We also present
a compact integer linear program for finding SP committees.

We show that, unfortunately, SP committees do not always exist. However, through a
series of extensive experiments, we argue that “almost SP” committees often do (specifically
ones whose size is very close to k); see Appendix D for details. Finally, we adapt the notion
of Lindahl equilibrium to the committee election context, and show that SP is closely related
to it.

One potential source of unfairness under stable priceability is that two voters may be
paying different amounts of virtual money for the same candidate that they both approve.
Our notion of balanced stable priceability (BSP) addresses this by requiring that any two
voters paying for a candidate must pay the same amount. We uniquely characterize BSP
committees as those returned by a variant of the recently introduced Rule X [Peters and
Skowron, 2020]. Similarly to SP, we show that BSP committees do not always exist, but
“almost BSP” committees often do.

Due to space constraints, we must defer almost all proofs to the supplementary material.

2 Preliminaries

For t ∈ N, let [t] = {1, 2, . . . , t}. An election is a tuple (C,N, {Ai}i∈N , k), where:

1. C = {c1, . . . , cm} and N = [n] are sets of m candidates and n voters, respectively;

2. For each voter i ∈ N , Ai ⊆ C denotes the set of candidates approved by i. Conversely,
for a candidate c ∈ C, we denote by N(c) the set of voters who approve c: N(c) = {i ∈
N : c ∈ Ai}. For clarity of presentation, we define the utility function of each voter
i ∈ N as ui(T ) = |Ai ∩ T | for all subsets of candidates (also referred to as committees)
T ⊆ C. For simplicity, for each c ∈ C, we write ui(c) ∈ {0, 1} instead of ui({c});

3. k ∈ [m] is the number of candidates to be selected. We say that committee W ⊆ C is
feasible if |W | = k.

2.1 Proportionality of Election Rules

An election rule, or in short a rule, is a function that for each election returns a nonempty
set of feasible committees, called winning committees.1 This paper studies group-fairness of
election rules in the approval-based model. One such concept of fairness is the core.

Definition 1 (The Core). Given an election, we say that a committee W ⊆ C is in the core,
if for each S ⊆ N and T ⊆ C with |T |/k 6 |S|/n, there exists i ∈ S such that ui(W ) > ui(T ).
We say that an election rule R satisfies the core property if for every election E, each winning
committee W ∈ R(E) is in the core.

Two other well-established properties in the literature—the proportionality de-
gree [Sánchez-Fernández et al., 2017, Aziz et al., 2018, Skowron, 2018] and extended justified

1Typically, a rule selects a single winning committee; however, we allow the possibility of ties.



representation (EJR) [Aziz et al., 2017, 2018]—provide guarantees for cohesive groups of
voters. A group S ⊆ N is `-cohesive if it is large enough (|S| > ` · n/k) and if its members
approve at least ` common candidates (|

⋂
i∈S Ai| > `).

Definition 2 (Extended Justified Representation). A rule R satisfies extended justified
representation (EJR) if for every election E, each winning committee W ∈ R(E), and each
`-cohesive group of voters S, there exists a voter i ∈ S who approves at least ` members of
W .

Definition 3 (Proportionality Degree). Let f : N → R. We say that a rule R has the
proportionality degree of f , if for every election E, each winning committee W ∈ R(E), and
each `-cohesive group of voters S, the average number of committee members a voter from
S approves is at least f(`), that is., (1/|S|) ·

∑
i∈S ui(W ) > f(`).

It is known that EJR implies a proportionality degree of at least f(`) = `−1
2 , and that a

proportionality degree of more than f(`) = `− 1 implies EJR [Aziz et al., 2018].

2.2 Priceability

Peters and Skowron [2020] define the concept of price systems and the related property
of priceablity. A price system is a pair ps = (p, {pi}i∈N ), where p ∈ R+ is the price of
electing one candidate, and for each voter i ∈ N , pi : C → [0, p] is a payment function that
specifies the amount of money a particular voter pays for the elected candidates. Formally, a
committee W is supported by a price system ps = (p, {pi}i∈N ) if the following conditions
hold:

(C1). A voter only pays for candidates she approves, so that pi(c) = 0 for each i ∈ N and
c /∈ Ai.

(C2). Each voter has the same initial budget of 1 unit of a virtual currency:
∑

c∈C pi(c) 6 1
for each i ∈ N .

(C3). Each elected candidate gathers a total payment of p:
∑

i∈N pi(c) = p for each c ∈W .

(C4). Voters do not pay for non-elected candidates:
∑

i∈N pi(c) = 0 for each c /∈W .

(C5). For each unelected candidate, her supporters have an unspent budget of at most p:
formally,

∑
i∈N(c) ri 6 p for each c /∈W , where for each i ∈ N :

ri = 1−
∑

c′∈W pi(c
′). (1)

Given a payment function pi, it will be useful to write pi(W ) =
∑

c∈W pi(c) for sets W ⊆ C.
A committee W is said to be priceable if there exists a price system ps = (p, {pi}i∈N ) that

supports W (i.e., that satisfies conditions (C1)–(C5)). For each k ∈ N, a feasible priceable
committee always exists; for example, Phragmén’s sequential rule always returns one [Peters
and Skowron, 2020].

Note that two voters might pay different amounts of money for the same candidate. In
Section 4, we consider price systems where this is not allowed.

3 Stable Price Systems

While priceability is an intuitively appealing property, on its own it does not imply other
desired fairness-related properties (except for the rather weak PJR property, see Peters



and Skowron, 2020). For example, consider what we will call the Utilitarian Priceable Rule
(UPR) which picks, among priceable committees, those that maximize the utilitarian social
welfare, i.e., total number of approvals from voters. UPR fails EJR. In fact, as we show in
Proposition 1, the proportionality degree of UPR is at most 2, which means that UPR does
not even approximate EJR up to a sublinear factor.2 Intuitively, this means priceability
provides a very weak proportionality guarantee for cohesive groups of voters. Because the
core implies EJR, UPR also violates the core.

Proposition 1. The proportionality degree of Utilitarian Priceable Rule is at most 2.

Corollary 1. The Utilitarian Priceable Rule violates EJR; in fact, it does not approximate
EJR by a factor better than /̀4.

The price system constructed in the priceability definition serves as some evidence that
the committee selected is fair to groups: no group of voters can use their leftover money to
buy a new candidate, and hence that group must already have used most of their money to
buy approved candidates. However, this is weak evidence because the definition does not
require that the money already spent by the voters is spent wisely. This is why priceability,
on its own, does not imply strong fairness guarantees.

In this paper, we enhance the definition of priceability by replacing (C5) with a stronger
condition which requires that voters’ money be spent wisely. Later, we show that this is
strong enough to imply a high proportionality degree and the core (and therefore EJR too).

Let � be a linear order over N× R+ defined as follows:

(x, p) � (y, q) ⇐⇒ x > y or (x = y and p < q). (2)

We will use (x, p) � (y, q) to model a voter who “prefers” to pay p dollars for a committee
where she approves x candidates than pay q dollars for a committee with y approved members.
Thus, under this linear order, the voter “prefers” to maximize her utility for the committee,
and only in case of a tie, prefers to pay less. We note that these are not the true preferences
of the voters, but rather an artificial relation that helps us formulate our definition of stable
priceability.

We say that a price system ps = (p, {pi}i∈N ) is stable if it satisfies (C1)–(C4), and:

(S5). Condition for Stability: There exists no coalition of voters S ⊆ N , no subset
W ′ ⊆ C \W , and no collections {p′i}i∈S (p′i : W ′ → [0, 1]) and {Ri}i∈S (with Ri ⊆W
for all i ∈ S) such that all the following conditions hold:

1. For each c ∈W ′:
∑

i∈S p
′
i(S) > p.

2. For each i ∈ S: pi(W \Ri) + p′i(W
′) 6 1.

3. For each i ∈ S: (
ui(W \Ri ∪W ′),pi(W \Ri) + p′i(W

′)
)
�(

ui(W ),pi(W )
)
.

A committee W is said to be stable priceable if there exists a stable price system
ps = (p, {pi}i∈N ) that supports W (i.e., that satisfies conditions (C1)–(C4) and (S5)).

In order to better understand the condition, assume (S5) is not satisfied. Then, each voter
i ∈ S can find a set Ri of currently approved candidates such that she would “prefer” to stop
paying for Ri and to pay for W ′ instead (i.e. she would be at least as “happy”, according
to �, with (W \Ri) ∪W ′ and the new payments than with W and the old payments). In

2See the work of Skowron [2018] for more on EJR approximation.



addition, the total amount paid by the voters from S to each candidate in W ′ would exceed
the price p of a candidate.

Let us explain why we require a strict inequality in the first condition of (S5). This way,
our definition is consistent with the standard definition of priceability; this also allows us
to deal with tie-breaking issues that lead to nonexistence of stable priceable committees in
very small symmetric instances (see Theorem 2). We note that we can use other possible
linear orders � in the definition of stable priceability; we discuss one such alternative in
Appendix B.

3.1 A Simpler Formulation of SP

Condition (S5) can be formulated in a simpler and rather more concise form. Consider the
following inequality:

∀c /∈W
∑

i∈N(c)

max

(
max
a∈W

(pi(a)) , ri

)
6 p. (3)

Here, ri is as defined in (1). Condition (3) is similar to (S5), but only prevents a group
of voters from paying for a single new candidate. For example, we can easily observe
that (S5) for |W ′| = 1 implies (3). Indeed, assume (S5), take c /∈ W , let W ′ = {c}, and
consider i ∈ N(c). If ri > maxa∈W (pi(a)), then set Ri = ∅ and p′i(c) = ri; otherwise, let
c′ = argmaxa∈W (pi(a)), set Ri = {c′} and p′i(c) = pi(c

′). In both cases, voter i weakly
prefers to replace Ri with W ′, and i can exchange Ri for W ′ within her budget. Thus, by
(S5) we to have that p >

∑
i∈S p

′
i(c):

p >
∑
i∈S

p′i(c) >
∑

i∈N(c)

max

(
max
a∈W

(pi(a)) , ri

)
.

We show the other implication in the proof of Theorem 1.
At first, it might seem that restricting to |W ′| = 1 makes the condition weaker. For

example, inequality (3) does not imply (C1), as taking W ′ = ∅ is no longer possible. However,
surprisingly, it turns out that this is the only difference: allowing |W ′| > 1 does not increase
the strength of the condition. We will show that (3) together with (C1) is equivalent to (S5).
Thus, every price system satisfying (3) is SP.

Theorem 1. Inequality (3) together with condition (C1) is equivalent to condition (S5).

An important consequence of Theorem 1 is that (C1)–(C4) and (3) can be formulated as
a linear program, and thus, we can efficiently check whether a given committee is SP.

Corollary 2. Given election and a committee W , it can be checked in polynomial-time
whether there exists a stable price system supporting W .

This is in contrast to many other group fairness properties, which are coNP-hard to check
[Aziz et al., 2018]. Further, one can formulate a compact integer linear program for finding
SP committees (see Appendix C.1).

The most pressing question is whether SP committees exist for all elections. The answer
is negative. The counterexample is provided in Appendix A.

Theorem 2. There exists an election for which no feasible commitee is supported by a stable
price system.



In Appendix D we describe the results of experiments that we conducted for synthetic
distributions of voters’ preferences and for real datasets. There, we assumed that we are
allowed to return committees that are slightly smaller or slightly larger than k. We found
that it is almost always possible to find a committee, large part of which is SP (thus, even if
an SP committee does not exist we have means to find a committee which is “almost” SP).
Conversly, our experiments suggest it is possible to select an SP committee that exceeds the
desired size k only by a small magnitude.

3.2 SP versus Priceability and the Core

Stable priceability obviously implies priceability. The following result shows that it also
implies the core, and therefore, in turn, EJR.

Theorem 3. SP implies the core.

Corollary 3. SP implies EJR.

The core on its own is already a formidable axiom, and not known to be achievable in all
elections. Are there any advantages to considering an axiom that further strengthens the
core, and also strengthens priceability? We argue that there are several advantages.

As already mentioned, a first advantage that SP has over the core is that whether a
committee is SP can be checked in polynomial time (Corollary 2), whereas the same question
is known to be difficult for the core (see, e.g., the proof of Theorem 2 of Aziz and Monnot,
2020). Additionally, in elections like Example 1 presented in the introduction, the core
allows apparently unfair solutions (such as the committee of all green candidates), while SP
rules them out and allows only fairer solutions (such as the committee of all blue candidates
and one green candidate). Moreover, an advantage that SP has over priceability is that SP
implies the core, and in turn, EJR (Theorem 3), whereas priceability does not even imply
EJR (Corollary 1). Finally, one advantage that SP has over both the core and priceability is
that SP implies a high proportionality degree, as the following result shows.

Theorem 4. SP implies a proportionality degree of `− 1.

In contrast, it is known that EJR and the core only implies a proportionality degree of `−1
2

[Skowron, 2018], and priceability does not imply a proportionality degree better than 2 (see
Proposition 1).

3.3 SP and Lindahl equilibrium

The concept of (stable) priceability suggests there might exist a relation between our voting
model and classic market models for economies with public goods. In this section we explain
this relation in more detail, focusing on the most influential equilibrium concept from the
literature on public goods—the Lindahl equilibrium, which was formalized by Foley [1970].
The relation that we explain in this section: (i) gives additional insights into the concept
of SP, and (ii) explains the key differences that prohibit one to use the concepts from the
public economics directly for designing voting systems.

The public economics (PE) model for committee elections (CE), adapted from Foley
[1970], is set up as follows. Each voter is endowed with 1 dollar; thus, the total endowment
is n dollars. We imagine that there is a producer who will set up the committee in exchange
for money. The production function π : 2C → R+ assigns to each committee W ⊆ C the cost
to the producer of producing W .3 We assume the cost of producing a candidate is the same
for all candidates, so we use π(W ) = |W | · p for some p ∈ R+ and all W ⊆ C.

3In Foley’s model [Foley, 1970], the production function specifies how private goods can be transformed
into public goods. In our case, we assume there is only one private good, money (which represents voting



A PE price system is a collection {γi}i∈N , where each γi is a payment function (see the
definitions at the beginning of Section 3). PE price systems differ from the price systems as
used in Section 3 which we now call CE price systems. In CE price systems, the endowments
of the voters are fixed, while in PE price systems they are allowed to vary. To avoid confusion
we use different symbols to denote PE and CE price system (γi and pi, respectively).

A committee W is in Lindahl equilibrium if there is a price system {γi}i∈N such that the
following conditions hold:

(Lin-PM). Profit maximization: For each W ′ ⊆ C it holds that:∑
c∈W

∑
i∈N

γi(c)︸ ︷︷ ︸
total payments for the
produced public goods

− π(W )︸ ︷︷ ︸
total cost

of production

>
∑
c∈W ′

∑
i∈N

γi(c)− π(W ′).

Note that since π(∅) = 0 the above condition implies a feasibility condition:∑
c∈W

∑
i∈N γi(c) > π(W ) (the total payments payed to W are sufficient to pro-

duce W ).

(Lin-UM). Utility maximization: voters spend their money to maximise their utility. For
each voter i we have that:

(a)
∑

c∈W γi(c) 6 1 (feasibility), and

(b) there is no committee W ′ with
∑

c∈W ′ γi(c) 6 1 and:(
ui(W

′),
∑
c∈W ′

γi(c)

)
�

(
ui(W ),

∑
c∈W

γi(c)

)
.

In the definition above, the relation � can be defined arbitrarily—however, we further
assume that it is equivalent to the one defined in (2).

In the divisible PE model (where we can elect candidates fractionally) the conditions
(Lin-PM) and (Lin-UM) are always satisfiable, and the resulting committee is guaranteed to
be in the core [Foley, 1970]. For us, neither is true. We start by providing an example of a
profile where a Lindahl equilibrium is not Pareto optimal.

Example 2. There are 3 candidates C = {a, b1, b2}, and 2 voters:

A1 = {a, b1} A2 = {a, b2}.

Assume the price for each candidate is p = 2/3 (as each voter has 1 dollar, we can buy at
most 3 candidates). Consider the following price system:

γ1(a) = 2/3− 3/1000 γ2(a) = 2/3− 3/1000

γ1(b1) = 2/3− 2/1000 γ2(b1) = 1/1000

γ1(b2) = 1/1000 γ2(b2) = 2/3− 2/1000.

This price system witnesses that {a} is a Lindahl equilibrium. Intuitively, the producer
wants to produce a and does not want to produce b1 nor b2. Also, each voter prefers to
spend her money on a than on b1 or b2, and cannot buy both. Yet, {a} is Pareto-dominated
by {a, b1, b2}.

power); the candidates are the public goods. Thus, as in Foley’s model, the production function describes
how private goods can be transformed into public goods. A crucial difference to Foley’s model is that we
use an indivisible model, where each candidate can be either bought (elected) or not, and there are no
intermediate states. Due to indivisibilities, Foley’s existence proof does not apply. Further, in our model
each candidate is available in a single copy, which can affect decisions of the producers, and thus the prices.



The problem underlying Example 2 is that the producer gets paid less than the cost of
b1 and b2 if the producer chooses to produce these candidates. In contrast, the producer
receives a payment of almost double the cost of a for producing a. Thus, in this equilibrium,
the producer is better off at the cost of consumers. In the divisible model this issue never
appears: in every Lindahl equilibrium the total payment to the producer for producing
a unit of candidate c is always equal to the cost of producing that unit. (Otherwise, the
producer would want to produce an unlimited amount of c.) Since this equality is implied
in the divisible model, it is natural to add it as an additional property to our definition of
Lindahl equilibrium in the indivisible model.

We say that a committee W is a cost-efficient Lindahl equilibrium (CELE) if there exists
a price system {γi}i∈N that satisfies (Lin-PM), (Lin-UM), and:

(Lin-CE). Cost-Efficiency:
∑

c∈W
∑

i∈N γi(c) 6 π(W ).

By (Lin-PM), the condition in (Lin-CE) could also be written as an equality. Further, by
(Lin-PM) and (Lin-CE) we can infer a seemingly stronger condition, that for each c ∈W :∑

i∈N γi(c) = π(c).

Theorem 5, below, shows a close relationship between stable priceability and Lindahl
equilibrium. Let us slightly adapt condition (S5), by making the first inequality weak, and
the third inequality strict. We refer to this condition as (S5*) and call the resulting solution
concept strict SP.

Proposition 2. Every strict SP committee is SP.

We chose SP based on (S5) as our official definition, because strict SP does not exist
even on very simple instances, as illustrated in Example 3 below.

Example 3. Consider an election with two voters and two candidates, a and b, both
approved by one voter. The goal is to select a committee of size k = 1. It is straighforward
to check that the only strict SP committees are ∅ and {a, b}, both of which are not feasible.

As one of our main results, we can prove that strict SP coincides with cost-efficient
Lindahl equilibrium.

Theorem 5. For each p ∈ R, a committee satisfies cost-efficient Lindahl equilibrium for
price p, if and only if it satisfies strict SP for price p.

Based on this equivalence, we can immediately deduce several other properties of cost-
efficient Lindahl equilibria.

Corollary 4. Cost-efficient Lindahl Equilibria are SP.

Corollary 5. Every feasible committee that is in a cost-efficient Lindahl equilibrium is in
the core.

The latter result mirrors Foley’s theorem in the classical model [Foley, 1970].
Summarizing, the idea of SP is very close to the idea of Lindahl equilibrium. The key

conceptual difference is that in the public economics model, the price of the candidates is a
fixed element of the model. In our case, the price is an adjustable part of price systems—the
voters do not truly have money, they only have preferences, and money is a virtual concept
that we use to ensure that public decisions are fair.



4 Balanced Price Systems

So far we have considered priceability notions where two voters could face significantly
different prices for the same candidate. This can seem unnatural—why does one voter need
to pay much more for the same thing as another?—and might thereby limit the usefulness
of using these price systems as explanations. Here, we will study what happens if we insist
that all voters pay the same price.

As before, we assume that in order to be selected, a candidate needs to collect a total
payment of some value p that is identical across candidates. Previously, we implicitly assumed
that whenever a candidate c is picked, all the voters obtain utility from c’s election. Now,
we will assume that voters only appreciate candidates when they had to pay for them. More
concretely, in this section we consider price systems where for each candidate c there is one
individual price ρc. A voter i, in order to be able to derive utility from the elected candidate
c, needs to pay ρc dollars.

4.1 Motivation

As we have argued in Section 3, there is convincing evidence that stable priceability gives
strong fairness guarantees. However, as we just noted, when voters pay different prices for
the same candidate, there can be cases where even stable priceable committees can be argued
to not be entirely fair.

Example 4. Consider an election with 12 candidates and 9 voters. The voters have the
following approval sets. All 9 voters approve candidates c1, c2, and c3. Further, voters v1, v2,
v3 approve c4, c5, and c6; voters v4, v5, v6 approve c7, c8, and c9; and voters v7, v8, v9 approve
c10, c11, and c12. The committee size is k = 9. The election is depicted below.

v1 v2 v3 v4 v5 v6 v7 v8 v9

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

c11

c12

(a) v1 v2 v3 v4 v5 v6 v7 v8 v9

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

c11

c12

(b)

Here, the committee marked green in the left-hand side of the figure is SP. The cor-
responding price system can be the following: The price is p = 1

3 . Each from the last
three voters (v7, v8 and v9) pays 1/3 for each commonly approved candidate (c1, c2 and c3).
The voters v1, v2, v3 pay 1/3 for candidates c4, c5, and c6; the voters v4, v5, v6 pay 1/3 for
candidates c7, c8, and c9. However, the committee is arguably not fair. A much better choice
would be to pick the committee marked blue in the right-hand side part of the figure.

The reason why the SP solution from Example 4 is not fair is that the candidates who are
approved by all the voters (candidates c1, c2, and c3), are paid for by only a small subset of
them. Example 4 shows that the properties of committees supported by stable price systems
very much depend on the structure of payment functions. Specifically, in Example 4 the
payment functions were very unbalanced. Even though all voters approved c1, only v7, v8,
and v9 payed for it. In a way, the mechanism “stole money” from v7, v8, and v9, depriving
them the possibility of paying for other candidates.

This example suggests that in an ideally-fair price system, all voters who enjoy the same
utility from the same candidate should pay the same amount of money for it. We call such
price systems balanced.



4.2 Formal Definition

The notion of balanced stable priceability differs from the notion that we considered in
Section 3 in two main aspects. First, we require that any two voters, i and j, who decide to
pay for a given candidate c must pay the same price, i.e., pi(c) = pj(c). Second, we allow
a voter not to pay for some elected candidates—but then the voter takes no utility from
an approved candidate, even if the candidate is elected. This affects how we represent the
committees. Now, a committee is a pair (W, {ui}i∈N ), where ui : W → {0, 1} is a binary
utility function denoting whether voter i can use candidate c. We assume that, for each
i ∈ N and c ∈ W , c /∈ Ai =⇒ ui(c) = 0 (voters are never interested in using candidates
they do not approve). For convenience, we extend the utility function to sets: for each i ∈ N
and X ⊆W , we set ui(X) =

∑
c∈X ui(c).

We say that a committee (W, {ui}i∈N ) is supported by a balanced stable price system
(BSP) ps = (p, {pi}i∈N ) if ps satisfies conditions (C2)–(C4), and:

(E1). Balanced payments: For each c ∈W , there exists a value ρc such that for each i ∈ N
either pi(c) = ρc, or ui(c) = 0. Equivalently, pi(c) = ui(c) · ρc.

(E5). Condition for Stability: There exists no coalition of voters S ⊆ N , no committee
(W ′, {u′i}i∈N ) (W ′ ⊆ C \W ) and no collections {p′i}i∈S (p′i : W ′ → [0, 1]) and {Ri}i∈N
, (with Ri ⊆W for each i ⊆ N) such that all the following conditions hold:

1. For each c ∈ W ′, there exists a value ρc such that for each i ∈ N it holds that
p′i(c) = u′i(c) · ρc

2. For each c ∈W ′:
∑

i∈S p
′
i(c) > p.

3. For each i ∈ S: pi(W \Ri) + p′i(W
′) 6 1.

4. For each i ∈ S: (
ui(W \Ri) + u′i(W

′),pi(W \Ri) + p′i(W
′)
)
�(

ui(W ),pi(W )
)
.

Intuitively, (E1) implies (C1) and requires that all the voters using a candidate c pay the
same for c. (E5) is similar to (S5) with the additional requirement that the new payments
that witness breaking the stability must also be balanced.

The green committee in Example 4 is not BSP. The price system given in the example
violates condition (E5): all the voters would prefer to share the cost of candidate c1
(W ′ = {c1} and ρ′(c1) = 1/9). The first three voters would prefer to pay for c1 instead
of c4 (W ′i = {c1}, Ri = {c4}), since then the number of their representatives would not
change—recall that according to our definition of stability, a voter cannot be represented by a
candidate for whom she does not pay—but they would need to pay for them a smaller amount
of money (they would need to pay 1/9 dollars for c1 versus 1/3 dollars for c4). Similarly, voters
v4, v5, and v6 would prefer to pay for c1 instead of c7 (W ′i = {c1}, Ri = {c7}). Finally, the
last 3 voters would be happy with the change (W ′i = {c1}, Ri = {c1}) since the individual
price they would need to pay for c1 would be lower (1/9 instead of 1/3).

Besides being an intuitively appealing property, BSP also implies some other well-known
fairness properties, like EJR.

Proposition 3. Every feasible BSP committee satisfies EJR.



4.3 A Characterization of BSP Committees

Like in the case of SP, imposing |W ′| 6 1 in the definition of BSP does not reduce the
strength of the notion. Indeed, below we present the analogue of Theorem 1 for (E5), (E1)
and a suitably modified inequality (3):

∀c /∈W ∀S ⊆ N(c) |S|min
i∈S

max

(
max
c′∈W

(pi(c
′)) , ri

)
6 p (4)

Theorem 6. Inequality (4) together with condition (E1) is equivalent to condition (E5).

This result allows us to prove that BSP committees can be found and verified in polynomial
time, as stated in the following theorem:

Theorem 7. It can be verified in polynomial time whether a given committee is BSP. Besides,
for given election instance and price p, a BSP committee can be found in polynomial time.

We discuss this issue in detail in Appendix A.10—intuitively, we design a voting rule
computable in polynomial time characterizing the set of BSP committees. This rule is a
slight modification of a rule that was recently proposed by Peters and Skowron [2020] under
the name of Rule X.

Basing on the characterization, in Appendix C.2 we describe a polynomial-time heuristic
algorithm for finding BSP committees of a specified size k.

4.4 Existence

Like for SP, one could wonder whether BSP committees always exist, that is exist for every
size k. The answer again is negative.

Theorem 8. There exists an election for which no feasible committee is supported by an
BSP price system.

Using heuristic algorithms, we can show that in practice, committees which are “almost”
BSP exist. In Appendix D we describe experiments that provide quantive arguments for the
viability of this approach.

5 Conclusion

In this paper we have introduced two market-based solution concepts that allow to reason
about, explain, and justify fairness of the outcome of an election to voters. We specifically
focussed on approval-based committee elections, though our concepts generalize to participa-
tory budgeting with cardinal utilities (we discuss this generalization in Appendix E). We have
shown relations between our notions of stable priceability and known concepts of fairness
and stability from the literature, such as EJR, core, proportionality degree, and Lindahl
equilibrium. We have characterized the stable-priceable outcomes using simpler formulas,
which allowed us to obtain more efficient algorithms for finding stable-priceable outcomes.
As a consequence, we have characterized a close variant of Rule X as the only rule that
returns BSP committees. Although SP/BSP committees do not always exist, our algorithms
allow to find committees which are close to being SP/BSP—through extensive experiments
we have shown that these algorithms can effectively find stable-priceable committees which
are almost feasible.
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A Proofs Omitted From the Main Text

A.1 Proof of Proposition 1

Proposition 1. The proportionality degree of Utilitarian Priceable Rule is at most 2.

Proof. Consider the following construction. Let x > 2 be a natural number. We introduce
n = 4x3 voters, and 4x2 + x candidates; k = 2x2. The voters are divided into two groups.

1. The first group consists of 2x3 voters—we divide these voters into 2x2 equal-size
subgroups. Each subgroup (of size x) approves a single different candidate. Let A
denote the set of candidates approved by these voters; clearly |A| = 2x2.

2. The second group (containing also 2x3 voters) is constructed as follows. We divide
these voters again into x2 subgroups, each of size 2x. Each such a subgroup approves 2
common candidates—let B be the set of candidates approved by these voters; |B| = 2x2.
Additionally, from each subgroup we take one voter—let V denote the set of these
voters; clearly |V | = x2. The voters from V approve some common x candidates; let C
denote the set of these candidates.

First, observe that if the price is equal to x then B would be supported by a system with
equal prices, inducing the total utility of x2 · 2x · 2 = 4x3. The price cannot be lower than x.
If it were, all the candidates from A would need to be members of the winning committee,
leaving no room for the candidates from B; though the voters have money to pay a higher
price for these candidates. The price cannot be higher than x. If it were, then at most half of
the candidates from B could be members of the winning committee. The maximum possible
utility would be then:

x2 · 2x · 1︸ ︷︷ ︸
from B

+ x · x2︸ ︷︷ ︸
from C

+ (x2 − x) · x︸ ︷︷ ︸
from A

= 2x3 + x3 + x3 − x2 < 4x3.

Thus, the price must equal to x. Now, observe that if the committee contains at least
one candidate from C, then at most half of the candidates from B can get to the committee.
By the same reasoning as above we get that the total utility obtained in such a case is
lower than 4x3. Conseqently, the winning committee must be B. Each voters from V has
2 representatives in this committee. Yet, group V is (x/2)-cohesive. Thus, since x can be
arbitrarily large, this induces the proportionality degree of 2 (independently of `).

A.2 Proof of Proposition 2

Proposition 2. Every strict SP committee is SP.

Proof. It is clear that strict SP implies (C1). Hence, let W be some strictly SP committee
and assume for sake of contradiction that inequality (3) does not hold. Then there exists
c /∈W such that: ∑

i∈N(c)

max

(
max
a∈W

(pi(a)) , ri

)
> p.

Then, there exists ε > 0 such that:∑
i∈N(c)

max

(
max
a∈W

(pi(a))− ε, ri
)
> p.

However, then W ′ = {c}, S = N(c) and collection {Ri}i∈S such that Ri = ∅ if ri >
maxa∈W (pi(a)) and Ri = {argmaxa∈W (pi(a))} otherwise, witness violating condition (S5*).



A.3 Proof of Proposition 3

Proposition 3. Every feasible BSP committee satisfies EJR.

Proof. Consider any feasible BSP committee W and any `-cohesive group of voters S.
Suppose for the sake of contradiction that every voter in S approves only at most ` − 1
members of W . Since W is feasible, then p 6 n/k. If p = n/k, then for every voter i ∈ S we
have that ri = 0 (as the committee is feasible and there are only n dollars in the system)
and:

max

(
max
a∈W

pi(a), ri

)
= max

a∈W
pi(a) >

1

`− 1

Then |S| · 1/`−1 = /̀`−1 · n/k > p, so S is a witness for violating (4).
If p < n/k, then for every voter i ∈ S we have that:

max

(
max
a∈W

pi(a), ri

)
>

1

`

(i has 1 dollar and either has at least 1/` dollars left, or pays for some of her representatives
at least 1/` dollars). Then |S| · 1/` = n/k > p, so again S is a witness for violating (4), which
completes the proof.

A.4 Proof of Theorem 1

Theorem 1. Inequality (3) together with condition (C1) is equivalent to condition (S5).

Proof. The fact that condition (S5) implies the inequality (3) and (C1) was explained in the
main text.

For the other direction the proof proceeds as follows. Let W be a committee supported
by a price system ps = (p, {pi}i∈N ) satisfying (C1) and (3). Assume towards a contradiction
that there exist a coalition of voters S, a subset W ′, a collection of functions {p′i}i∈S and a
collection of sets {Ri}i∈S with Ri ⊆W for all i ∈ S, witnessing the violation of (S5).

Since each voter pays only for the candidates she approves (this follows from (C1)),
without loss of generality, we can assume that Ri ⊆ Ai for each voter i ∈ S.

Consider a voter i ∈ S. If ui(W
′) = ui(Ri), then |W ′ ∩Ai| = |Ri| and:∑

c∈W ′
p′i(c) 6

∑
c∈Ri

pi(c) 6 |Ri| ·max
a∈W

(pi(a)) = |W ′ ∩Ai| ·max
a∈W

(pi(a)).

On the other hand, if ui(W
′) > ui(Ri), then |W ′ ∩Ai| > |Ri|. If ri > maxa∈W (pi(a)), then:∑

c∈W ′
p′i(c) 6 ri +

∑
c∈Ri

pi(c) 6 (|Ri|+ 1) ·max

(
max
a∈W

(pi(a)), ri

)
6 |W ′ ∩Ai| ·max

(
max
a∈W

(pi(a)), ri

)
.

For each c ∈W ′ we have that:

p <
∑
i∈S

p′i(c),

and so:∑
c∈W ′

p <
∑
c∈W ′

∑
i∈S

p′i(c) =
∑
i∈S

∑
c∈W ′

p′i(c) 6
∑
i∈S

(
|W ′ ∩Ai| ·max

(
max
a∈W

(pi(a)), ri

))
=
∑
c∈W ′

∑
i∈N(c)∩S

max

(
max
a∈W

(pi(a)), ri

)
6
∑
c∈W ′

∑
i∈N(c)

max

(
max
a∈W

(pi(a)), ri

)
.



Finally:

0 <
∑
c∈W ′

 ∑
i∈N(c)

max

(
max
a∈W

(pi(a)), ri

)
− p

 .

Thus, there must exist c ∈W ′ such that:∑
i∈N(c)

max

(
max
a∈W

(pi(a)), ri

)
> p.

Which gives a contradiction, and completes the proof.

A.5 Proof of Theorem 3

Theorem 3. SP implies the core.

Proof. Let W be a committee supported by a stable price system ps = (p, {pi}i∈[n]), and
assume towards a contradiction that there exists a group of voters S and a set of candidates
T such that: (i) |T | 6 k · |S|/n, and (ii) |Ai ∩ T | > |Ai ∩W |+ 1 for each i ∈ S.

Since ps is stable, for each candidate c ∈ T \W we have that:∑
i∈N(c)

max

(
max
c′∈W

(pi(c
′)) , ri

)
6 p (5)

Also, for each c ∈W (in particular, for each c ∈ T ∩W ) we have that:∑
i∈N(c)

pi(c) 6 p. (6)

Now, let us sum inequalities (5) and (6) over all c ∈ T , using inequality (5) whenever
c ∈ T \W , and using inequality (6), for c ∈ T ∩W :∑

c∈T∩W

∑
i∈N(c)

pi(c) +
∑

c∈T\W

∑
i∈N(c)

max

(
max
c′∈W

(pi(c
′)) , ri

)
6 p · |T |.

Let us regroup the terms in the left-hand side of the above inequality:

∑
i∈N

( ∑
c∈Ai∩T∩W

pi(c) + |Ai ∩ (T \W )| ·max

(
max
c′∈W

(pi(c
′)) , ri

))
6 p · |T |.

Since S ⊆ N , the above inequality would also hold if we changed the range of summation so
that we consider only i ∈ S Next, note that since |Ai ∩ T | > |Ai ∩W |+ 1 for each i ∈ S, we
also have that |Ai ∩ (T \W )| > |Ai ∩ (W \ T )|+ 1. As a result, we get that:

p · |T | >
∑
i∈S

( ∑
c∈Ai∩T∩W

pi(c) + (|Ai ∩ (W \ T )|+ 1) ·max

(
max
c′∈W

(pi(c
′)) , ri

))

>
∑
i∈S

 ∑
c∈Ai∩T∩W

pi(c) +
∑

c∈Ai∩(W\T )

pi(c) + max

(
max
c′∈W

(pi(c
′)) , ri

)
=
∑
i∈S

( ∑
c∈Ai∩W

pi(c) + max

(
max
c′∈W

(pi(c
′)) , ri

))
.



From now, on we consider two cases.
Case 1: p < n/k. Here, we continue as follows:

n

k
· |T | >

∑
i∈S

( ∑
c∈Ai∩W

pi(c) + max

(
max
c′∈W

(pi(c
′)) , ri

))

>
∑
i∈S

( ∑
c∈Ai∩W

pi(c) + ri

)
=
∑
i∈S

1 = |S|.

This gives a contradiction.
Case 2: p = n/k. In this case, we note that the whole budget of all the voters must have

been spent (they, in total have n dollars). Thus, we continue, as follows:

n

k
· |T | >

∑
i∈S

( ∑
c∈Ai∩W

pi(c) + max

(
max
c′∈W

(pi(c
′)) , ri

))

>
∑
i∈S

( ∑
c∈Ai∩W

pi(c)

)
=
∑
i∈S

1 = |S|.

This, again, leads to a contradiction, and completes the proof.

A.6 Proof of Theorem 4

Theorem 4. SP implies a proportionality degree of `− 1.

Proof. Fix an election instance, and consider a size-k SP committee W . Let S be an `-
cohesive group of voters and let T be a set of ` candidates who are approved by all members
of S. We will show that an average number of representatives that the voters from S have in
W equals at least `− 1.

Without loss of generality, let us assume that there exists a not-elected candidate c /∈W
that is approved by all members of S (as, otherwise, the average number of representatives
for voters from S would be at least `).

Note that, by the pigeonhole principle, for each voter i ∈ N we have that:

max

(
max
c′∈W

(pi(c
′)) , ri

)
>

1

|Ai ∩W |+ 1
.

By condition (3) applied to c, we get that:

p >
∑
i∈S

max

(
max
c′∈W

(pi(c
′)) , ri

)
>

|S|
|Ai ∩W |+ 1

.

By the inequality between the harmonic and arithmetic mean, we get that:∑
i∈S(|Ai ∩W |)
|S|

=

∑
i∈S(|Ai ∩W |+ 1)

|S|
− 1 >

|S|∑
i∈S

1
|Ai∩W |+1

− 1

>
|S|
p
− 1 >

k

n
· |S| − 1 >

k

n
· n`
k
− 1 = `− 1.

This completes the proof.



A.7 Proof of Theorem 5

Theorem 5. For each p ∈ R, a committee satisfies cost-efficient Lindahl equilibrium for
price p, if and only if it satisfies strict SP for price p.

Proof. We first prove that the committees that are in a cost-efficient Lindahl equilibrium are
strictly SP. Consider a committee W ⊆ C that is in the cost-efficient Lindahl equilibrium, and
let {γi}i∈N be the corresponding price system. From {γi}i∈N we construct the price system
{pi}i∈N witnessing strict SP as follows. For each i ∈ N and c ∈ W we set pi(c) = γi(c);
for c /∈ W we set pi(c) = 0. We now verify that {pi}i∈N satisfies the conditions of stable-
priceability. (C1) follows from (S5*), and we will prove it later on. (C2) follows from
(Lin-UM(a)) (feasibility in the utility maximization condition). (C3) follows from profit
maximization (Lin-PM) and cost-efficiency, and (C4) follows directly from the construction
of the payment functions.

Let us now consider (S5*). Let us fix W ′ ⊆ C \W , set of voters S ⊆ N , collection
{Ri}i∈S and collection {p′i}i∈S satisfying for each i ∈ S:

∑
c∈W ′ p

′
i(c) +

∑
c∈W\Ri

pi(c) 6 1.

Observe that if ui((W \Ri)∪W ′) > ui(W ), then by (Lin-UM)
∑

c∈(W\Ri)∪W ′ γi(c) > 1 and
so: ∑

c∈W ′
p′i(c) 6 1−

∑
c∈W\Ri

pi(c) = 1−
∑

c∈W\Ri

γi(c)

= 1−
∑

c∈(W\Ri)∪W ′
γi(c) +

∑
c∈W ′

γi(c) <
∑
c∈W ′

γi(c).

On the other hand, if ui((W \ Ri) ∪W ′) = ui(W ) and
∑

c∈W ′ p
′
i(c) <

∑
c∈Ri

pi(c), then
either

∑
c∈(W\Ri)∪W ′ γi(c) > 1 (and we obtain the estimation as above), or

∑
c∈W γi(c) 6∑

c∈(W\Ri)∪W ′ γi(c). In the latter case we get that:∑
c∈W ′

p′i(c) <
∑
c∈Ri

pi(c) =
∑
c∈Ri

γi(c) =
∑
c∈W

γi(c)−
∑

c∈W\Ri

γi(c)

6
∑

c∈(W\Ri)∪W ′
γi(c)−

∑
c∈W\Ri

γi(c) =
∑
c∈W ′

γi(c).

In any case, we get that if
(
ui((W \Ri) ∪W ′),

∑
c∈W\Ri

pi(c) +
∑

c∈W ′ p
′
i(c)
)
�(

ui(W ),
∑

c∈W pi(c)
)

then
∑

c∈W ′ p
′
i(c) <

∑
c∈W ′ γi(c). By (Lin-PM) we get that for each

c ∈W ′ we have
∑

i∈N γi(c) 6 p. Thus, we can continue as:∑
i∈S

∑
c∈W ′

p′i(c) <
∑
i∈S

∑
c∈W ′

γi(c) =
∑
c∈W ′

∑
i∈S

γi(c) 6 |W ′| · p.

Hence, there needs to exist a candidate c ∈W ′ such that
∑

i∈S p
′
i(c) < p, which proves that

(S5*) is indeed satisfied.
Second, we show that a committee W that is strictly SP is in a cost-efficient Lindahl

equilibrium. Consider a committee W ⊆ C that is strictly SP and let (p, {pi}i∈N ) be the
corresponding price system. Let us fix ε to a small positive value (we will specify it later on).
We set the price of a candidate to p and construct a price system {γi}i∈N that will witness
that W is in the cost-efficient Lindahl equilibrium. For each i ∈ N and each c ∈W we set
γi(c) = pi(c). For c /∈W and i ∈ N(c) we set:

γi(c) = max

(
max
c′∈W

(pi(c
′))− ε, ri

)
+ ε.



Otherwise (for c /∈W and i /∈ N(c)) we set γi(c) = 0. By (C2) we know that for each voter i
the choice W is feasible (Lin-UM (a)). Observe that for each voter i and each c /∈W buying
c costs at least the same as buying any candidate from W ; by (S5*) she does not want
to stop paying for any candidate from W in order to obtain W ′ (even if we decreased the
individual prices of each c ∈W ′ so that they sum up to p). Thus, (Lin-UM (b)) is satisfied.

From (C3) we get cost-efficency and profit maximization for c ∈ W . The profit maxi-
mization for c /∈W follows from (S5*) applied for W ′ = {c} and S = N(c) (for each i ∈ S,
Ri is set either to the i’s most expensive candidate or to ∅):

∀ε′ > 0
∑

i∈N(c)

max

(
max
c′∈W

(pi(c
′))− ε′, ri

)
< p,

Thus, it is possible to set ε to a value such that:∑
i∈N(c)

(
max

(
max
c′∈W

(pi(c
′))− ε, ri

)
+ ε

)
< p,

from which it follows that
∑

i∈N γi(c) < p.

A.8 Proof of Theorem 2

For sake of clarity of the presentation, let us first introduce some auxiliary notation. For
each candidate c ∈ C, by N(−c) we denote N \ N(c), and for a set of candidates S ⊆ C
we will write N(S) as a shorthand for

⋂
c∈S N(c) and N(−S) for

⋂
c∈S N(−c). Further, for

q1, . . . , qt ∈ C ∪ 2C we will write N(±q1, . . . ,±qt) to denote N(±q1) ∩ . . . ∩N(±qk).
Before we prove Theorem 2 we prove a few auxiliary lemmas.

Lemma 1. For each election instance E, each committee W that is supported by a stable
price system ps = {p, {pi}i∈N}, each candidate a /∈ W and each set of candidates S ⊆ W
such that every voter from N(a) approves at most one candidate from S, the following
inequality holds: ∑

b∈S

∑
i∈N(a,b)

pi(b) +
∑

i∈N(a,−S)

1

|W ∩Ai|+ 1
6 p

Proof. Note that i pays for at most |W ∩Ai| members of W . Hence, either she pays at least
1

|W∩Ai|+1 for her most expensive representative, or she has at least 1
|W∩Ai|+1 money left.

Corollary 6. For each election instance E, each committee W that is supported by a stable
price system ps = {p, {pi}i∈N}, and each candidate a /∈W , the following inequality holds:∑

i∈N(a)

1

|W ∩Ai|+ 1
6 p

Proof. This follows directly from Lemma 1, applied to S = ∅.

For positive integers s, t, z, by E(s, t, z) we denote an election instance with N = [sz+2tz],
C = {x1, . . . , x2z, y}, and where the approval sets are as follows:

• s voters approve {x2i−1, x2i, y}, for each i ∈ [z],

• t voters approve {xi}, for each i ∈ [2z].

We will now prove a few useful properties of these instances.



Lemma 2. Consider an election instance E(s, t, z) such that z > 1 and s
3 <

t
z−1 , and a

committee W supported by a stable price system ps = {p, {pi}i∈N}. Then:

(1) if |W | = 2z + 1, then p 6 2z
2z+1 (t+ s

2 ) < t+ s
2 ,

(2) if |W | = 2z − 1, then p > t+ s
2 .

(3) if |W | = 2z, then p ∈ [ sz3 ; zt
z−1 ],

Proof of (1). All the voters have in total sz + 2tz dollars. Since they need to pay p dollars
for 2z + 1 candidates, it holds that p 6 sz+2tz

2z+1 = 2z
2z+1 (t+ s

2 ).

Proof of (2). Let us consider three cases:

Case 1. y /∈W . Then, there exist j ∈ [2z] such that xj /∈W . For simplicity, assume without
loss of generality that j = 1. From Corollary 6 we have that:∑

i∈N(x1)

1

|W ∩Ai|+ 1
= t+

s

2
6 p

as we have t supporters of x1 who have no representatives in W and s supporters of x1 who
have only one representative, x2.

Case 2. there exists j ∈ [z] such that both x2j−1, x2j /∈W . For simplicity, assume without
loss of generality that j = 1. Then we can repreat the reasoning from the previous case—from
Corollary 6: ∑

i∈N(x1)

1

|W ∩Ai|+ 1
= t+

s

2
6 p

as we have t supporters of x1 who have no representatives in W and s supporters of x1 who
have only one representative, y.

Case 3. there exist j1, j2 ∈ [2z] such that both xj1 , xj2 /∈ W and no voter approves both
xj1 , xj2 . For simplicity, assume without loss of generality that j1 = 1, j2 = 3.

From Corollary 6 we have that:∑
i∈N(x1)

1

|W ∩Ai|+ 1
= t+

s

3
6 p (7)

We will now try to find an upper bound for p. From Lemma 1 for a = x1, S = {y} we
obtain: ∑

i∈N(y,x1)

pi(y) 6 p−
∑

i∈N(x1,−y)

1

|W ∩Ai|+ 1
= p− t (8)

and analogously for a = x3, S = {y}:∑
i∈N(y,x3)

pi(y) 6 p− t (9)

Consider now any candidate xj for j /∈ {1, 3}. Then it holds that:

p− t =
∑

i∈N(xj ,y)

pi(xj) +
∑

i∈N(xj ,−y)

pi(xj)− t 6
∑

i∈N(xj ,y)

pi(xj) (10)



Now we can write the main inequality:

p =
∑

i∈N(y)

pi(y) =
∑

i∈N(y,x1)

pi(y) +
∑

i∈N(y,x3)

pi(y) +
∑

j∈[z]\[2]

∑
i∈N(y,x2j−1)

pi(y)

(8),(9)

6 2(p− t) + (z − 2)

s− ∑
j∈[z]\[2]

∑
i∈N(y,x2j−1)

pi(x2j−1) + pi(x2j)


(10)

6 2(p− t) + (z − 2)(s− 2(p− t)) = 2p− 2t+ (z − 2)s− 2p(z − 2) + 2t(z − 2)

= p(6− 2z) + sz − 2s+ 2tz − 6t

which can be simplified to:

p(2z − 5) 6 sz − 2s+ 2tz − 6t (11)

Combining inequality (11) with inequality (7), we obtain:(
t+

s

3

)
(2z − 5) 6 sz − 2s+ 2tz − 6t

2tz − 5t+
2sz

3
− 5s

3
6 sz − 2s+ 2tz − 6t

t 6
sz

3
− s

3
=
s

3
(z − 1)

t

z − 1
6
s

3

However, from our assumptions it holds that t
z−1 >

s
3 . Hence, this case leads to a contradic-

tion, which completes the proof.

Proof of (3). Let us consider two cases:

Case 1. y ∈ W . Then, there exists j ∈ [2z] such that xj /∈ W . For simplicity, assume
without loss of generality that j = 1. From Corollary 6 we have that:∑

i∈N(x1)

1

|W ∩Ai|+ 1
= t+

s

3
6 p (12)

as we have t supporters of x1 who have no representatives in W and s supporters of x1 who
have two representatives, y and x2.

Now we will try to find an upper bound for p. From Lemma 1 for a = x1, S = {y} we
obtain: ∑

i∈N(y,x1)

pi(y) 6 p−
∑

i∈N(x1,−y)

1

|W ∩Ai|+ 1
= p− t. (13)

Consider any candidate xj for j 6= 1. Then it holds that:

p− t =
∑

i∈N(xj ,y)

pi(xj) +
∑

i∈N(xj ,−y)

pi(xj)− t 6
∑

i∈N(xj ,y)

pi(xj). (14)



Now we can write the main inequality:

p =
∑

i∈N(y)

pi(y) =
∑

i∈N(y,x1)

pi(y) +
∑

j∈[z]\[1]

∑
i∈N(y,x2j−1)

pi(y)

(13)

6 p− t+ (z − 1)

s− ∑
j∈[z]\[1]

∑
i∈N(y,x2j−1)

pi(x2j−1) + pi(x2j)


(14)

6 p− t+ (z − 1)(s− 2(p− t)) = p− t+ (z − 1)s− 2p(z − 1) + 2t(z − 1)

which can be simplified to:

2p(z − 1) 6 2t(z − 1) + (z − 1)s− t

p 6 t+
s

2
− t

2(z − 1)
(15)

Combining inequality (15) with inequality (12), we obtain:

t+
s

3
6 t+

s

2
− t

2(z − 1)

t

2(z − 1)
6
s

6

t

z − 1
6
s

3

However, from our assumptions it holds that t
z−1 >

s
3 . Hence, this case leads to a contradic-

tion.

Case 2. W = {x1, . . . , x2z}. From Corollary 6 we have that:∑
i∈N(y)

1

|W ∩Ai|+ 1
=
sz

3
6 p (16)

as we have sz supporters of y, each of whom has two representatives in W .
On the other hand, for each j ∈ [2z] we have that:

p− t =
∑

i∈N(xj ,y)

pi(xj) +
∑

i∈N(xj ,−y)

pi(xj)− t 6
∑

i∈N(xj ,y)

pi(xj). (17)

and from Lemma 1 for a = y, S = {x1, x3, . . . , x2z−1} it holds that:∑
j∈[z]

∑
i∈N(y,x2j−1)

pi(x2j−1) +
∑

i∈N(y,−S)

1

|W ∩Ai|+ 1

=
∑
j∈[z]

∑
i∈N(y,x2j−1)

pi(x2j−1) 6 p
(18)

Combining inequalities (17) and (18) we have that:

z(p− t) 6 p

p 6
tz

z − 1
(19)

Indeed, from (16) and (19) we obtain that p ∈ [ sz3 ; zt
z−1 ], which completes the proof.



Theorem 2. There exists an election for which no feasible commitee is supported by a stable
price system.

Proof. Consider two election instances E(72, 97, 5) and E(88, 89, 4). Note that both instances
satisfy s

3 <
t

z−1 , hence we can apply Lemma 2 to them. For E(72, 97, 5) and committee W1

elected for this instance supported by a stable price system with price p, we obtain that:

• if |W1| = 11, then p < 133,

• if |W1| = 9, then p > 133,

• if |W1| = 10, then p ∈ [120; 485
4 ] = [120; 121.25]

Analogously, for E(88, 89, 4) and committee W2 elected for this instance supported by a
stable price system with price p, we obtain that:

• if |W2| = 9, then p < 133,

• if |W2| = 7, then p > 133,

• if |W2| = 8, then p ∈ [ 3523 ; 356
3 ] ≈ [117.33; 118.67].

Now consider an election instance obtained by merging E(72, 97, 5) and E(88, 89, 4)
(treating candidates x1, . . . , x2z, y from E(72, 97, 5) and E(88, 89, 4) as different copies). We
will prove that there exists no committee of size 18 supported by a stable price system for
this instance. Indeed, assume for the sake of contradiction that such a committee W exists.
Because our instance consists of two disjoint subinstances, we have that W = W1 ∪W2,
where W1,W2 are disjoint committees for resp. E(72, 97, 5) and E(88, 89, 4), supported by
stable price systems with a common price. Besides, |W1|+ |W2| = 18 and |W1| 6 11, W2 6 9,
which means that we have three cases:

• |W1| = 11 and |W2| = 7. Then we have p < 133 and p > 133, a contradiction.

• |W1| = 10 and |W2| = 8. Then we have p ∈ [120; 121.25] and p ∈ [117.33; 118.67], a
contradiction.

• |W1| = 9 and |W2| = 9. Then we have p > 133 and p < 133, a contradiction.

Hence, no stable price system for W exists.

A.9 Proof of Theorem 6

Theorem 6. Inequality (4) together with condition (E1) is equivalent to condition (E5).

Proof. We first prove that condition (E5) implies (4). Indeed, assume that for some
c ∈ C, S ⊆ N(c) equation (4) does not hold. As a result, it holds that p/|S| 6
mini∈S max (maxc′∈W (pi(c

′)) , ri). Set W ′ = {c}. For each i ∈ S set u′i(c) = 1. Be-
sides, if ri > maxc′∈W (pi(c

′)) then we set Ri = ∅, otherwise we set Ri to the candidate for
which i pays most. Moreover, for each i ∈ S we set p′i(c) = p/|S|. Then, we can clearly see
that (W ′, {u′i}i∈S), {Ri} and {p′i}i∈S satisfy all the conditions of (E5), hence they witness
the lack of stability.

To prove that (E1) and (4) imply (E5), assume that for some election instance with
approval preferences there exist a set of voters S, a committee (W ′, {ui}i∈S), and collections
{p′i}i∈N and {Ri}i∈N , witnessing the lack of stability. We will prove that in this case



condition (4) is not satisfied. Set c to the candidate from W ′ with the minimal ρc. Set
S′ = {i ∈ S : ui(c) = 1}. Note that by definition S′ ⊆ N(c). The second condition from (E5)
can be equivalently written for c as:

|S′| · p′i(c) = |S′| · ρc > p (20)

Now consider a voter i ∈ S′. We know that ui(Ri) 6 u′i(W
′). If we have that |Ri| = ui(Ri) =

u′i(W
′), then

∑
c′∈W ′ p

′
i(c
′) 6

∑
c′∈Ri

pi(c
′) and:

ρc =
ρc · u′i(W ′)
u′i(W

′)
=

∑
c′∈W ′ u

′
i(c
′) · ρc

ui(W ′)
6

∑
c′∈W ′ u

′
i(c
′) · ρc′

ui(W ′)

=

∑
c′∈W ′ p

′
i(c
′)

ui(W ′)
6

∑
c′∈Ri

(pi(c
′))

ui(W ′)

6

∑
c′∈Ri

(maxc′∈W (pi(c
′)))

ui(W ′)
6
|Ri| · (maxc′∈W (pi(c

′)))

ui(W ′)

= max
c′∈W

(pi(c
′)) 6 max

(
ri, max

c′∈W
(pi(c

′))

)
Otherwise, we have that |Ri| = ui(Ri) < u′i(W

′) and
∑

c∈W ′ p
′
i(c) 6 p−

∑
c′∈W\Ri

pi(c
′) =

ri +
∑

c′∈Ri
pi(c

′). In this case:

ρc =
ρc · u′i(W ′)
u′i(W

′)
=

∑
c′∈W ′ u

′
i(c
′) · ρc

ui(W ′)
6

∑
c′∈W ′ u

′
i(c
′) · ρc′

ui(W ′)

=

∑
c′∈W ′ p

′
i(c
′)

ui(W ′)
6
ri +

∑
c′∈Ri

pi(c
′)

ui(W ′)

6
ri +

∑
c′∈Ri

maxc′∈W (pi(c
′))

ui(W ′)
6
ri + |Ri| ·maxc′∈W (pi(c

′))

ui(W ′)

6
(|Ri|+ 1) ·max (ri,maxc′∈W (pi(c

′)))

ui(W ′)
6 max

(
ri, max

c′∈W
(pi(c

′))

)
Hence, in both cases we have that:

ρc 6 min
i∈S

(
max

(
ri, max

c′∈Ri

(pi(c
′))

))
(21)

Combining (20) and (21) we obtain:

|S|min
i∈S

(
max

(
ri, max

c′∈Ri

(pi(c
′))

))
> p

which completes the second part of the proof.

A.10 Proof of Theorem 7

We start by presenting a sequential voting rule that for each instance returns exactly the
BSP committees. We call it Rule X, as it is very similar to the rule of the same name defined
by [Peters and Skowron, 2020]

The definition of the variant of Rule X we consider here4 is the following: we say that a
group of voters Qc is demanding if every member of Qc has at least p/|Qc| dollars left and

4It is slighly different, yet very similar to the classical definition of this rule from [Peters and Skowron,
2020]. The only two differences is the possibility to avoid demanding groups which are not strongly demanding,
and that in our paper the payments need to be equal, while the original definition allowed unequal payments
in specific borderline situations.



W ← ∅
for i ∈ N :

for c ∈ C :
pi(c)← 0
ui(c)← 0

repeat :
Qa ← the largest demanding group
Qb ← the largest strongly demanding group
Qc ← max(Qa, Qb), according to some tie-breaking strict linear order over demanding groups
i f Qc = ∅ :

break
W ←W ∪ {c}
for i ∈ Qc :

pi(c)← p/|Qc|

ui(c)← 1
return (W, {ui}i∈N )

Listing 1: Rule X algorithm

approves some candidate c /∈W . We say that Qc is strongly demanding if it demanding and
every voter from Qc has more than p/|Qc| dollars left.

Intuitively, every demanding group can afford to additionally buy a new candidate to the
committee. Strongly demanding groups can afford to buy a candidate even for a price higher
than p. Rule X can be viewed as a rule greedily satisfying these demands, starting from
the largest groups. If the group is not strongly demanding, it can be either considered or
skipped. The algorithm stops when there are no nonempty, non-skipped demanding groups.
Formally, we perform the algorithm presented in Listing 1.

Theorem 7. It can be verified in polynomial time whether a given committee is BSP. Besides,
for given election instance and price p, a BSP committee can be found in polynomial time.

Proof. First we show that every committe elected by Rule X is BSP. It will prove that for
given instance and price p, we can find a BSP committee in polynomial time.

The corresponding price system is constructed implicitly by the algorithm. It is clear
that this price system satisfies (E1) and (C2)–(C4). Now, we show that it also satisfies (4).
Indeed, for the sake of contradiction suppose that it does not hold and let ε > 0, c /∈ W ,
and V ⊆ N(c) be witnessing the violation of stable priceability. Hence, every voter v ∈ V
has more than p/|V | money left or pays for some candidate from W more than p/|V |. If such
a candidate does not exist, then at the end of execution of the algorithm V is a strongly
demanding group, thus the algorithm would not stop. Otherwise, let c′ be the candidate
added to W at the earliest step such that each voter pays for c′ more than p/|V |. As the
individual price for c′ is greater than for c, it needs to be the case that c′ was added to W
for some demanding group of size smaller than |V |. However, before that step, group V was
a strongly demanding group. Hence, the demanding group supporting c′ was not the largest
one, a contradiction.

Now we show that every BSP committee is elected by Rule X with proper tie-breaking.
For the sake of contradiction suppose W is a stable-priceable committee that cannot be
elected by Rule X. Let |W | = `. Enumerate the candidates c1, . . . , c` in W by number of
voters who pay for them in the descending order and denote these groups by Qc1 , . . . , Qc` .
Consider a rule, which is similar to Rule X, but instead of taking the largest demanding
group, considers only groups Qc1 , . . . , Qc` . The only difference between such a rule and Rule



X may appear if at some ith iteration, there exists some strongly demanding group Qc which
is strictly larger than Qci . Such a group, if ignored, either remains strongly demanding at
the end of the execution of the algorithm (and then is a witness for violating stability of
W ) or stops being strongly demanding at some step (after some voters from Qc have their
initial budgets decreased). However, individual payments for the candidates added to W in
further steps need to be strictly higher than p/|Qc|. Hence, Qc is still the witness for violating
stability of W .

Finally, note that we can use the rule defined above to verify whether a given committee
is BSP—identifying and sorting groups Qc1 , . . . , Qc` can be clearly done in polynomial time.
If at some ith iteration, group Qci cannot be elected by Rule X, then we know that the
committee is not BSP, otherwise it is BSP.

A.11 Proof of Theorem 8

Lemma 3. Consider an election instance, two voters i, j and a committee W supported by
a BSP price system. If Ai = Aj, then for each c ∈ C we have that pi(c) = pj(c).

Proof. Let p be the price in the BSP price system. Suppose for the sake of contradiction
that there exists a candidate a for which i pays p

qa
dollars and j pays nothing. Then either j

has at least p
qa

dollars left or there exists a candidate b for which j pays and i does not. In

the first case, j prefers to join the other qa voters paying for a (then the individual price for
a decreases to p

qa+1 , which is strictly less than the amount of the savings of j). In the second

case, compare the individual payment for b (equal to p
qb

) to p
qa

. Without loss of generality,

assume that p
qa

6 p
qb

. Then j has an incentive to stop paying for b and join other qa voters

paying for a—then again the individual price for a decreases to p
qa+1 , which is strictly less

than p
qb

. We obtained a contradiction with the assumption that the price system is BSP,

which proves that for each c ∈ C it holds that pi(c) = pj(c).

Theorem 8. There exists an election for which no feasible committee is supported by an
BSP price system.

Proof. Let us consider the following election instance for n = 49,m = 46, k = 44:

Group 1 (16 voters) : {x1, . . . , x18}
Group 2 (8 voters) : {y1, . . . , y12}
Group 3 (3 voters) : {z1, . . . , z12}
Group 4 (4 voters) : {a, x1, . . . , x18}
Group 5 (6 voters) : {a, b, y1, . . . , y12}
Group 6 (4 voters) : {c, z1, . . . , z12}
Group 7 (4 voters) : {d, z1, . . . , z12}
Group 8 (2 voters) : {b, c, z1, . . . , z12}
Group 9 (2 voters) : {b, d, z1, . . . , z12}

In total, 20 voters approve candidates {x1, . . . , x18}, 14 voters approve candidates
{y1, . . . , y12}, 15 voters approve candidates {z1, . . . , z12}, 10 voters approve a, 10 vot-
ers approve b, 6 voters approve c and 6 voters approve d. Further, the sets of voters
who approve x-, y-, and z-candidates are disjoint. Hence, Rule X will elect candidates
x1, . . . , x18, z1, . . . , z12, y1, . . . , y12 first. After that, we have at most 42 candidates elected.
As our goal is to elect a committee of size 44, the value of price p should allow all those 42
candidates to be elected. After that:



1. Voters from groups 1-3 run out of approved candidates.

2. Each voter from group 4 has 10−9p
10 dollars left.

3. Each voter from group 5 has 7−6p
7 dollars left.

4. Each voter from groups 6-9 has 5−4p
5 dollars left.

We need to elect exactly 2 more candidates. Assume for the sake of contradiction that it is
possible and let us consider all possible pairs of candidates from {a, b, c, d} as the ones that
can be included in the final committee.

Case 1: {a, b}. As we have at least 4 voters (group 6) who approve c and have 5−4p
5

dollars left, the following inequality holds:

p

4
>

5− 4p

5

5p > 20− 16p

p >
20

21
≈ 0.952 (22)

Suppose that there exist a voter paying for both a and b (from group 5). As each voter from
this group has 7−6p

7 dollars left, at most 10 voters pay for a (groups 4 and 5) and at most 10
voters pay for b (groups 5, 8, 9) we would have the following inequality:

p

10
+

p

10
6

7− 6p

7

14p 6 70− 60p

p 6
70

74
≈ 0.946 (23)

which contradicts (22). Hence, we need to assume that no voter pays for both a and b. By
Lemma 3 we have only two cases: either no voters from group 5 pays for b or no voters from
group 5 pays for a.

If no voters from group 5 pays for b, then only at most 4 voters do so. Suppose that at
least one voter from group 8 pays for b (the case of group 9 is analogous) the individual price
which is at least p

4 dollars. Then, p
4 6 5−4p

5 . In this case, all 6 voters approving c would
prefer to pay p

6 dollars for c instead of paying for b or (in case of voters not paying for b)

from their savings—which is sufficient, as p
6 <

p
4 6 5−4p

5 . We obtain a contradiction.
Now assume that no voters from group 5 pay for a. Then only at most 4 voters from

group 4 do so. Then we have a following inequality:

p

4
6

10− 9p

10

5p 6 20− 18p

p 6
20

23
≈ 0.87 (24)

which also contradicts (22).
Case 2: {a,c}. In this case, 6 voters from groups 7 and 9 shall not be able to pay for d.

Hence we have the following inequality:

p

6
>

5− 4p

5



5p > 30− 24p

p >
30

29
> 1 (25)

Suppose now that only voters from group 5 pay for a. Then the following inequality needs
to hold:

p

6
6

7− 6p

7

7p 6 42− 36p

p 6
42

43
(26)

which contradicts (25).
Now suppose that at least one voter from group 4 pays for a. As in total there are 10

voters approving a, the following inequality holds:

p

10
6

10− 9p

10
= 1− 9p

10
= 1− p+

p

10

p 6 1 (27)

which also contradicts (25).
Case 3: {a,d}. The reasoning here is analogous as in Case 2 (inequality (25) still holds

because of candidate c and voters from groups 6 and 8).
Case 4: {b,c}. The reasoning in this case is similar to the one in Case 1. First, note that

10 voters approving a shall not be able to pay for this candidate. Hence:

p

10
>

10− 9p

10

p > 1 (28)

(an opposite inequality to (27)).
Suppose that there exist a voter paying for both b and c (from group 8). As each voter

from this group has 5−4p
5 dollars left, at most 10 voters pay for b (groups 5, 8, 9) and at

most 6 voters pay for c (groups 6, 8) we have:

p

6
+

p

10
6

5− 4p

5

20p+ 12p 6 120− 96p

p 6
120

128
(29)

which contradicts (28). Hence, we assume that no voter pays for both c and b. Note that by
Lemma 3 we have only two cases: either voters from group 8 pay for b or for c. The second
option is not possible—if the voters pay for c, then they pay at least p

6 , while voters paying
for b pay p

8 . Hence, they have an incentive to stop paying for c and start paying for b.
Now assume that voters from group 8 pay for b. Then only at most 4 voters from group

6 pay for c. Then we have a following inequality:

p

4
6

5− 4p

5

p 6
20

21
(30)

(the opposite inequality to (22)), which also contradicts (28).



Case 5: {b, d}. This case is analogous to Case 4 (swapping candidates c and d).
Case 6: {c, d}. In this case the voters from groups 6 and 8 pay for c and the voters from

groups 7 and 9 pay for d.
Consider the group of all 10 voters approving b who may want to start paying for b (and

in case of groups 8 and 9, stop paying for c and d—as p
10 <

p
6 , it is always profitable for

them). To prevent them, the price needs to be high enough so that voters from group 5 do
not have enough money to spend. Hence we have that:

p

10
>

7− 6p

7

7p > 70− 60p

p >
70

67
≈ 1.045 (31)

On the other hand, as at most 6 voters pay for c, we have that:

p

6
6

5− 4p

5

p 6
30

29
≈ 1.034 (32)

which contradicts (31).

B Stable Priceability for Other Types of Voters’ Pref-
erences

B.1 The Choice of the Preference Order for the Stability Condition

Condition (S5) uses a linear order � that indicates when a voter is willing to change a
committee. In the main text we have used the following preference relation:

(x, p) � (y, q) ⇐⇒ x > y or (x = y and p < q). (2)

Since in our model the only information we get from a voter is her preference relation
over the candidates (the initial endowments of the voters do not correspond to true money
that the voters could spend or save), another natural order seems to be the following:

(x, p) � (y, q) ⇐⇒ x > y. (33)

In the remainder of this section we explain how our results change if we use this preference
relation in condition (S5). In the further part of this section we assume that the preference
relation used in (S5) is given by (33).

Proposition Proposition 4 is similar to Theorem 3 except we need to addiitonally assume
that p 6= n/k.

Proposition 4. A feasible (strict) SP committee for the preference relation (33) with price
p 6= n/k is in the core.

Proof. Consider a committee W that is stable priceable for the preference relation (33) with
price p 6= n/k, and for the sake of contradiction assume W is not in the core. Since the
committee is feasible, we get that p < n/k. Then, there exists S ⊆ N and T ⊆ C with
|T | 6 k · |S|/n such that ui(W ) < ui(T ) for all i ∈ S. We set W ′ = T , and Ri = W for all
i ∈ S. Then we can set {p′i}i∈N such that for each i ∈ S and c ∈ T it holds that p′i(c) = 1/|T |.
It holds that:



1. For each c ∈ T :
∑

i∈S p
′
i(c) = |S|/|T | > n/k > p

2. For each i ∈ S:
∑

c∈W ′ p
′
i(c) +

∑
c∈W\Ri

pi(c) 6 1,

3. For each i ∈ S: ui(W
′) = ui(T ) > ui(W ) = ui(Ri).

This gives a contradiction, and completes the proof.

SP with (33) implies a slightly worse (yet, still very high) proportionality degree.

Theorem 9. SP for the preference relation (33) implies the proportionality degree of `−2
√
`.

Proof. Fix an election instance, and consider a size-k committee W that is SP. Let S be
an `-cohesive group of voters and let T be a set of ` candidates who are approved by all
members of S. Let us fix x, 1 6 x 6 `, and let S′ denote the set of voters from S who have
at most x− 1 representatives in W . Let W ′ consist of some x candidates from T . For each
voter i ∈ S′ we set Ri = |W ∩Ai|, that is to the set of all candidates the voter pays for; by
stop paying for Ri the voter can have in total one unit of unspent money. For i ∈ S \ S′
we set Ri to the set of x − 1 candidates i pays most for. Clearly, by stop paying for the
candidates from Ri the voter will end up with at least x−1

|Ai∩W | units of money. By (S5) we

infer that the money of all voters must sum up to less than x · p:

x · p >
∑

i∈S\S′

x− 1

|Ai ∩W |
+
∑
i∈S′

1

=
∑

i∈S\S′

x− 1

|Ai ∩W |
+
∑
i∈S′

x− 1

|Ai ∩W |+ x− 1− |Ai ∩W |
.

Further, by the inequality between the harmonic and arithmetic mean, we get that:

x · p > (x− 1) · |S|2∑
i∈S |Ai ∩W |+

∑
i∈S′(x− 1− |Ai ∩W |)

.

Since |S| > n /̀k and p 6 n/k, we get that:

x > (x− 1) ·
n
k · `

2∑
i∈S |Ai ∩W |+

∑
i∈S′(x− 1− |Ai ∩W |)

.

After reformulating:∑
i∈S
|Ai ∩W |+

∑
i∈S′

(x− 1− |Ai ∩W |) >
n

k
· `2 · x− 1

x
.

For the sake of contradiction assume that
∑

i∈S |Ai ∩W | < n /̀k · (`− 2
√
`). Then:∑

i∈S′
(x− 1− |Ai ∩W |) >

n

k
· ` ·

(
2
√
`− `

x

)
.

The above inequality must hold for each x, in particular, if we set x = d
√
`e. Then we get

that: ∑
i∈S′

(
√
`− |Ai ∩W |) >

n

k
· ` ·

(
2
√
`− `√

`

)
=
n

k
· `
√
`.

However, this is impossible, since |S′| 6 n /̀k (otherwise, the whole set of voters from S′

could replace their representatives with T ). This gives a contradiction, and completes the
proof.



Finally, we note that for SP using (33) we have a much weaker relation with the concept
of Lindahl equilibrium. In the proof of Proposition 5 below we show a simple example
where an SP committee W is not in a cost-efficient Lindahl equilibrium. In this example the
committee W is, intuitively, worse than other committees, and it should not be picked by
any reasonable rule. This, once again, shows that the concept of SP with (2) is the more
appealing one.

Proposition 5. For every committee W that is in a cost-efficient Lindahl equilibrium for
the preference relation (33), there exists a price system (p, {pi}i∈N ) that satisfies (C2)–(C4)
and (S5). There exists an instance with an SP committee W for (33), which is not in a
cost-efficient Lindahl equilibrium.

Proof. The proof of the first statement is similar to the first part of the proof of Theorem 5.
For the second statement, consider a profile with three candidates a, b, c and five voters:

2 voters:{a, b} 3 voters:{a, b, c}.

Here, committee {c} is SP for price p = 3. Indeed, only 2 voters would like to transfer money
towards {a} or {b}, which is not enough to cover the cost of each such a committee.

However, {c} is not in the cost-efficient Lindahl equilibrium. For the sake of contradiction,
assume it is. First, observe that the price of a candidate must equal at most p 6 3. For each
voter i among the first two, we have that γi(a) > 1 and γi(b) > 1. For each i among the last
three voters, we have that γi(a) + γi(b) > 1. Thus,

∑
i∈[5](γi(a) + γi(b)) > 7. Thus, one of

these candidates gets the total payment of more than 3, which contradicts (Lin-PM).

Let us conclude this section with a short discussion comparing the two preference relations,
(2) and (33). Money in our model is fictional and therefore voters do not have any natural
incentive to save it, when it does not improve their satisfaction. Given that, a reader may
find order (2) counterintuitive. There are two main reasons why we find it well-justified.

1. Consider the context of participatory budgeting, where the candidates come with their
actual monetary costs. Assume that the unspent money will stay in the municipal
budget and can be spent on some other citizens’ needs (but voter i will not be able to
influence how the saved money is spent). Fix the initial endowements of the voters to
1 dollar, and consider a voter i ∈ N . Consider two committees—W and W ′—which
i likes equally (ui(W ) = ui(W

′)). By picking a committee W rather than W ′, the
voter would choose a more efficient outome—the one which she likes equally as W ′,
but which allows a larger amount of money to be spent on the other voters’ needs.

2. The condion (2) appears technically more interesting and easier to be used in practice.
For example, it can be verified in polynomial time. It implies higher proportionality
degree (Theorem 4 versus Theorem 9). Further, it excludes many committees which are
intuitively not fair (see, e.g., the construction in the proof of Proposition 5) and is more
closely related to the concept of Lindahl equilibrium (Theorem 5 versus Proposition 5).

C Algorithms for Finding Stable Priceable Committees

In this section we describe two algorithms for finding SP and BSP committees.

C.1 An Integer Linear Program for Finding SP Committees.

Below we formulate an ILP for finding SP committees. For each candidate c ∈ C we have a
binary variable xc which indicates whether c is a part of the SP committee W . Inequality



(35) encodes the feaibility constraint for the committee W . For each c ∈ C and i ∈ N we
have a variable pi,c which denotes the amount of money that voter i pays for c. Inequality
(36) says that a voter can pay only for selected committee members and Inequality (37)
ensures that a voter will not spend more than its initial budget. Finally, (38) ensures that
the total payment for the selected candidates equals p (note that in any feasible solution p
must be lower or equal than |N |). For each voter i ∈ N we also have a variable mi, which
intuitively equals to max (maxa∈W (pi,a) , ri)—this interpretation is encoded in (39) and (40).
The last inequality (41) encodes the constraint of stability (3).

constraints: xc ∈ {0, 1} for c ∈ C (34)∑
c∈C

xc = k (35)

0 6 pi,c 6 xc for i ∈ N , c ∈ C (36)∑
c∈C

pi,c 6 1 for i ∈ N (37)

p+ (xc − 1)|N | 6
∑
i∈N

pi,c 6 p for c ∈ C (38)

mi > pi,c for i ∈ N , c ∈ C (39)

mi > 1−
∑
c∈C

pi,c for i ∈ N (40)∑
i∈N(c)

mi 6 p+ xc|N | for c ∈ C (41)

C.2 A Heuristic Algorithm for Finding BSP Committees

Our algorithm for finding weakly BSP committees is based on the characterization of such
committees given in Theorem 7. We use binary search to find the price for which Rule X (as
defined in Section 4.3) finds the committees of the closest size to k as possible. Besides, we
do not skip demanding groups which are not strongly demanding, until |W | = k.

This algorithm is heuristic, for two reasons: (i) our adapted tie-breaking rule is not the
only possible one, and (ii) the size of committees elected by Rule X is not monotonous with
respect to the price, as it is show in the following example.

However, our experiments show that this algorithm very often successfully manages to
find BSP committees.

Example 5. Consider the following election with n = 14 voters and m = 15 candidates.

4 voters : {a1, ..., a8, b1}
4 voter : {a1, ..., a8, b2}
1 voter : {c1, c2, c3, b1, b2}
2 voters : {c1, c2, c3}
1 voter : {d1, d2, d3, b1, b2}
2 voters : {d1, d2, d3}

If we set the price to p = 1, then Rule X chooses a1, . . . , a8, c1, c2, c3, d1, d2, d3, that is it
selects 14 candidates. If we set the price to p = 5/6, then Rule X first chooses a1, . . . , a8, and
next it selects b1 and b2. For b each voter pays 1/6. Thus, the voters who approve both b1
and b2 are left with 2/3 dollars. If they were to pay for 3 candidates, then the price each



voter would need to pay for such candidates would be equal to at most 2/9. However, then
each 3 voters, by paying this amount of money, would only collect 2/3 dollars, less than p.
Thus, only two c- and d-candidates can be selected. At most 13 candidates can be selected,
which shows the lack of monotonicity.

D Existence of Stable Priceable Committees: Experi-
ments

In this section we complement our theoretical analysis with experiments aimed at assessing
how often SP and BSP committees exist for given k. Our results show that, except for few
models, stable committees very often exist.

For instances where they do not exist, the next natural question is what is the greatest
value k′ 6 k, for which [balanced] stable priceable committees exist—note that in such case,
the largest possible fraction of the committee is fair according to the concepts of stable
priceability. Then we can either complete the remaining k − k′ seats in the committee in a
different way or decrease its size to k′.

However, sometimes we have the opposite situation—the value k is the lowest possible
number of seats in a committee and we could agree to increase it (as little as possible) if
it would improve proportionality. The real-life example here could be German parliamen-
tary elections. The election system (a mixed-member proportional representation system)
combines seats elected by a district using first-past-the-post (plurality) together with a
proportional party list election. As a result, there may be an overhang, when a party wins
more seats in the district elections than its overall share of party list votes at the national
level. Since 2013, in Germany this problem is solved by increasing the size of the parliament
so that the final division of seats is roughly proportional. These additional compensational
seats are called leveling seats. Due to this system, the German parliament elected in 2017
has 709 members, while the minimal legal number of seats is 598.

Hence, in our experiments we also calculated the lowest value k′′ > k, for which [balanced]
stable priceable committees exist. Finally, we considered also the minimum of these two
values k′, k′′ in case of the size of the committee can be both increased and decreased.

For finding SP committees, we used the ILP defined in Appendix C.1. For finding BSP
committees we used the heuristic algorithm described in Appendix C.2.

D.1 Datasets

We generated voters’ preferences over candidates randomly from the following models:

1D-Euclidean model. In this model the voters and candidates are represented as points
in the one-dimensional Euclidean space. The points were selected uniformly at random
form the interval [0, 1]. The approval ballots were created in one of the following two
ways:

1. For each candidate we chose uniformly at random the length of the radius of the
approval ball—every candidate was approved only by the voters inside her ball.

2. The radiuses were chosen for each voter, and every voters approved the candidates
inside her ball.

In our results, we refer to these two models as ’1D Euclidean 1’ and ’1D Euclidean 2’.

2D-Euclidean model. Here, we represent the voters and the candidates as points in the
Euclidean plane [0, 1]× [0, 1]. The points were generated as follows. We first generated



between 1 and 5 points of concentration of the voters and the candidates. Next, we
randomly divided the voters and the candidates so that each of them was assigned
to one point of concentration. Finally, for each voter and candidate we selected their
position from the normal distribution with the ceter at the corresponding point of
concentration and with the standard deviation set to 0.2.

We generated the approval-ballots from the positions of the voters and the candidates
similarly as in the first case in the 1D-Euclidean model.

Impartial Culture model. Here, each candidate was approved by each voter with proba-
bility 1/2.

Mallow’s model. Here we first generate a ranking-based preference profile according to
the mixture of three Mallow’s models [Mallows, 1957]. The parameters φ for the three
models were generated uniformly at random from [0, 1]; the reference rankings were also
selected uniformly at random. Next, for each voter we selected uniformly at random
a position p ∈ [0; 0.25 ·m], and made this voter approve the first p candidates in her
ranking.

Pólya-Eggenberger urn model. Here our model is parameterized by the size of the
approval sets α and the replacement value β. At first, we consider an urn containing all
the candidates; for each voter we draw α candidates from the urn uniformly at random,
and each time we return to the urn β copies of the selected candidate—increasing the
probability that next time the same candidate would be chosen again. In our tests
parameter α was chosen uniformly at random from interval [1; 0.1 ·m], and parameter
β was chosen in two ways:

1. uniformly at random from interval [0; 0.1 ·m],

2. uniformly at random from interval [0; 0.25 ·m].

In our results, we refer to these two models as ’Urn 1’ and ’Urn 2’.

In case of BSP, we used also some real instances (from 2020 participatory budget-
ing in Warsaw) and we naturally adapted BSP to the PB model with different costs of
candidates (see Appendix E for details). For complexity reasons, we did not computed SP
instances on them.

D.2 Results for BSP

Here we performed tests for n = 100 voters and m = 30 candidates. The value of the k
was sequentially increased, covering all the values from [m]. For each k and each model
with specific values of the parameters was run at least 1000 experiments. Thus, in total we
checked 1000 · 30 · 7 = 210000 election instances.

In Table 1 we present the results for existence for every model with fixed parameters and
every value of k. Summarizing, in most cases BSP committees exist— 2D Euclidean model
appeared to be the worst one, especially when k > 20. Therefore, in Table 2 we present the
additional results for that model, showing that in most cases, even if BSP committees do
not exist, they exist for slightly modified committee size k.

We also performed experiments for 19 real instances, coming from 2020 Warsaw partici-
patory budgeting. The instances correspond to 19 Warsaw districts. The overall budget was
25000000 PLN. In our experiments we distributed it to the districts proportionally to the
number of voters. The results are presented in Table 3. We can see that for every district,
it was possible to elect an SP outcome which either spends nearly all the budget or only
slightly exceeds it.



k 1D Euclidean 1 1D Euclidean 2 2D Euclidean IC Urn 1 Urn 2 Mallows

1 1000 1000 1000 1000 1000 1000 1000
2 1000 1000 1000 1000 1000 1000 1000
3 1000 999 999 1000 1000 1000 1000
4 996 998 999 1000 995 1000 1000
5 998 999 993 1000 999 1000 1000
6 995 999 996 1000 999 1000 999
7 991 998 989 1000 992 999 999
8 996 998 991 1000 991 998 998
9 991 999 993 1000 986 999 998
10 995 997 985 1000 981 998 998
11 997 999 992 1000 976 998 995
12 995 999 994 1000 972 999 999
13 994 999 988 1000 978 997 995
14 993 999 989 1000 981 999 998
15 994 998 983 1000 971 999 997
16 995 1000 980 1000 980 999 996
17 994 1000 970 1000 976 999 994
18 992 998 962 1000 979 998 996
19 994 997 960 1000 994 997 998
20 994 998 930 1000 983 1000 998
21 995 998 905 1000 998 1000 997
22 995 999 887 1000 997 999 996
23 989 999 872 1000 1000 1000 995
24 994 998 855 1000 1000 1000 996
25 997 997 865 1000 1000 1000 997
26 992 998 856 1000 1000 1000 1000
27 994 998 891 1000 1000 1000 999
28 998 1000 891 1000 1000 1000 1000
29 1000 994 934 1000 1000 1000 1000
30 1000 1000 1000 1000 1000 1000 1000

Table 1: Existence of BSP committees



k Max
absolute
deviation
(lower)

Average
absolute
deviation
(lower)

Max
absolute
deviation
(upper)

Average
absolute
deviation
(upper)

Max
absolute
deviation
(total)

Average
absolute
deviation
(total)

1 - - - - - -
2 - - - - - -
3 1 1 1 1 1 1
4 1 1 1 1 1 1
5 1 1 1 1 1 1
6 1 1 1 1 1 1
7 1 1 1 1 1 1
8 1 1 1 1 1 1
9 1 1 1 1 1 1
10 1 1 2 1.2 1 1
11 2 1.125 1 1 1 1
12 1 1 1 1 1 1
13 1 1 1 1 1 1
14 2 1.182 1 1 1 1
15 3 1.294 1 1 1 1
16 2 1.1 4 1.3 2 1.05
17 3 1.267 2 1.3 2 1.03
18 3 1.263 3 1.132 2 1.026
19 3 1.183 3 1.3 1 1
20 3 1.129 3 1.171 3 1.057
21 3 1.116 3 1.221 2 1.011
22 4 1.15 4 1.283 2 1.053
23 3 1.227 3 1.227 2 1.031
24 3 1.131 5 1.221 2 1.034
25 2, 1.119 5, 1.296 2, 1.015
26 2, 1.125 4, 1.271 2, 1.028
27 2, 1.119 3, 1.211 2, 1.028
28 2 1.055 4 1.165 2 1.028
29 1 1 3 1.152 1 1
30 - - - - - -

Table 2: Maximal and average absolute deviation of BSP committe size in instances generated
from 2D Euclidean model for which no BSP committee of size k existed. We consider the
case when we (i) require that k is the lower bound for committee size (lower), (ii) require
that k is upper bound for committee size (upper), (iii) do not have any requirements (total).



D.3 Results for SP

In case of SP, we were able to perform tests for n = 100 voters and m = 30 candidates
(analogous as in case of BSP) for all models except for Impartial Culture. In case of this
model, because of complexity issues we decided to reduce the number of voters to 50 and
the number of candidates to 15 (the number of experiments for each k ∈ [m] remained 1000).
Furthermore, the results (when k is small) were the worst for this model, even on such
reduced instances (which is somehow surprising, as they were the best in case of BSP). The
detailed results—in particular, checking how much we need to deviate k to obtain SP—are
presented in Table 4.

For other models—also for Euclidean 2D, which appeared to be the worst for the existence
of BSP—it was hard to even find any instance not satisfying SP, as we can see in Table 5.

E Stable Priceability for Participatory Budgeting with
Cardinal Utilities

In this section we explain how our notions extend to the more general setting of participatory
budgeting. We consider the following model.

An election is a tripple (C,N, b), where C = {c1, . . . , cm} is a set of candidates, N =
{1, . . . , n} is a set of voters, and b ∈ R+ is the total voters’ budget. For each voter i ∈ N
and for each candidate c ∈ C by ui(c) we denote the cardinal utility that i assigns to c;
intuitively, ui(c) quantifies the satisfaction the voter experiences if c is among the selected
candidates. Further, each candidate c ∈ C is associated with a cost, denoted as cost(c). We
adapt this notation to sets, setting uS(T ) =

∑
i∈S
∑

c∈T ui(c) and cost(T ) =
∑

c∈T cost(c)
for each S ⊆ N and T ⊆ C.

We adapt the conditions of priceability accordingly. A price system is a pair ps =
(p, {pi}i∈[n]), where p > b/n is the initial endowment (the initial budget) of each voter, and
for each voter i ∈ N , pi : C → [0, 1] is a payment function that specifies the amount of money
a particular voter pays for the elected candidates. In our main text, and in the original paper
of Peters and Skowron [2020] it is assumed that each voter is initially given one dollar, which
corresponds to setting p = 1, but that there is an additional variable that specifies the total
price that needs to be paid for an elected candidate. These two formulations are equivalent,
but we chose to use the one with fixed prices and adjustable voters’ initial budgets, since this
formulation more naturally extends to the general PB model. The requirement that p > b/n
ensures that the voters have at least enough money to buy candidates with the total cost of
b. Without this requirement, e.g., an empty outcome W = ∅ would be priceable (with p = 0).
Formally, we say that an outcome W is supported by a price system ps = (p, {pi}i∈[n]) if the
following conditions hold:

(C1). A voter can pay only for the approved candidates: pi(c) = 0 for each i ∈ N and
c /∈ Ai.

In the general PB model the condition is: ui(c) = 0 =⇒ pi(c) = 0.5

(C2). Each voter has the same initial budget, equal to p dollars:
∑

c∈C pi(c) 6 p for each
i ∈ N .

(The condition remains unchanged in the general model.)

5While condition (C1) is well-justified in the approval-based setting, in the general PB model it will have
a significantly limited scope of impact. Indeed, the condition does not put any restrictions on the payments
when the utilities ui(c) are very small, yet still positive. However, this condition will not play an instrumental
role in the further part of our study, and will be implied by some conditions that we will consider later on.



District name Unspent budget Exceeded budget Minimum

Bemowo 10.8% 23.0% 10.8%
Bialoleka 0.5% 0.4% 0.4%
Bielany 0.5% 1.1% 0.5%

Mokotow 0.0% 1.9% 0.0%
Ochota 0.4% 3.4% 0.4%

Ogolnomiejski 0.3% 0.8% 0.3%
Praga-Polnoc 7.3% 1.0% 1.0%

Praga-Poludnie 1.6% 2.1% 1.6%
Rembertow 0.3% 2.4% 0.3%
Srodmiescie 25.1% 2.0% 2.0%
Targowek 16.0% 7.8% 7.8%

Ursus 5.2% 3.5% 3.5%
Ursynow 0.8% 1.1% 0.8%
Wawer 0.5% 1.7% 0.3%
Wesola 31.2% 0.5% 0.5%

Wilanow 1.4% 0.3% 0.3%
Wlochy 4.8% 0.3% 0.3%
Wola 0.8% 0.1% 0.1%

Zoliborz 1.8% 2.2% 1.8%

Table 3: BSP outcomes for Warsaw PB instances. We aim to keep the outcome cost as close
to the budget value as possible, and consider cases when we prefer to have some money
unspent or to possibly exceed the budget.

k Existence Max
absolute
deviation
(lower)

Average
absolute
deviation
(lower)

Max
absolute
deviation
(upper)

Average
absolute
deviation
(upper)

Max
absolute
deviation
(total)

Average
absolute
deviation
(total)

1 1000 - - - - - -
2 587 6 2.065 1 1 1 1
3 649 5 1.607 2 1.761 2 1.362
4 842 5 1.411 3 2.576 3 1.361
5 948 4 1.327 4 3.462 4 1.288
6 968 3 1.1875 5 4.40625 3 1.1875
7 999 2 2 6 6 2 2
8 1000 - - - - - -
9 1000 - - - - - -
10 1000 - - - - - -
11 1000 - - - - - -
12 1000 - - - - - -
13 1000 - - - - - -
14 1000 - - - - - -
15 1000 - - - - - -

Table 4: Maximal and average deviation of SP committe size in instances generated from
Impartial Culture model for which no SP committee of size k existed. We consider the case
when we (i) require that k is the lower bound for committee size (lower), (ii) require that k
is upper bound for committee size (upper), (iii) do not have any requirements (total).



k 1D Euclidean 1 1D Euclidean 2 2D Euclidean Urn 1 Urn 2 Mallows

1 1000 1000 1000 1000 1000 1000
2 1000 1000 996 1000 990 996
3 1000 1000 1000 1000 1000 997
4 1000 1000 1000 1000 1000 1000
5 1000 1000 1000 1000 1000 1000
6 1000 1000 1000 1000 1000 1000
7 1000 1000 1000 1000 1000 1000
8 1000 1000 1000 1000 1000 1000
9 1000 1000 1000 1000 1000 1000
10 1000 1000 1000 1000 1000 1000
11 1000 1000 1000 1000 1000 1000
12 1000 1000 1000 1000 1000 1000
13 1000 1000 1000 1000 1000 1000
14 1000 1000 1000 1000 1000 1000
15 1000 1000 1000 1000 1000 1000
16 1000 1000 1000 1000 1000 1000
17 1000 1000 1000 1000 1000 1000
18 1000 1000 1000 1000 1000 1000
19 1000 1000 1000 1000 1000 1000
20 1000 1000 1000 1000 1000 1000
21 1000 1000 1000 1000 1000 1000
22 1000 1000 1000 1000 1000 1000
23 1000 1000 1000 1000 1000 1000
24 1000 1000 1000 1000 1000 1000
25 1000 1000 1000 1000 1000 1000
26 1000 1000 1000 1000 1000 1000
27 1000 1000 1000 1000 1000 1000
28 1000 1000 1000 1000 1000 1000
29 1000 1000 1000 1000 1000 1000
30 1000 1000 1000 1000 1000 1000

Table 5: Existence of SP committees



(C3). Each elected candidate gets the total payment of 1:
∑

i∈[n] pi(c) = 1 for each c ∈W .

In the general model:
∑

i∈[n] pi(c) = cost(c) for each c ∈W .

(C4). The voters do not pay for non-elected candidates:
∑

i∈[n] pi(c) = 0 for each c /∈W .

(The condition also remains unchanged in the general PB model.)

(C5). For each unelected candidate, her supporters have a remaining unspent budget of at
most 1:∑

i∈N(c)

(
p−

∑
c′∈W pi(c

′)
)
6 1 for each c /∈W .

For the general model:
∑

i∈N(c)

(
p−

∑
c′∈W pi(c

′)
)
6 cost(c) for each c /∈W .

The condition of stability (S5) also naturally extends.

(S5). Condition for Stability: There exists no coalition of voters S ⊆ N , no subset
W ′ ⊆ C \W and no collections, {p′i}i∈S (p′i : W ′ → [0, 1]) and {Ri}i∈S (with Ri ⊆W
for all i ∈ S) such that all the following conditions hold:

1. For each c ∈W ′: p′i(S) > cost(c).

2. For each i ∈ S: pi(W \Ri) + p′i(W
′) 6 p.

3. For each i ∈ S:(
ui(W \Ri ∪W ′), pi(W \Ri) + p′i(W

′)
)
�
(
ui(W ), pi(W )

)
.

In this section, similarly as in the main text we focus on the preference relation (2).

Proposition 6. An outcome that is either strictly SP or SP with p 6= b/n is in the core.

Proof. Consider an outcome W that is SP, and for the sake of contradiction assume W is
not in the core. Then, there exists S ⊆ N and T ⊆ C with

∑
c∈T cost(c) 6 b · |S|/n such

that ui(W ) < ui(T ) for all i ∈ S. We set W ′ = T , and Ri = W for all i ∈ S; for i /∈ S
we set Ri = ∅. Then we can set {p′i}i∈N such that for each i ∈ S and c ∈ T it holds that
p′i(c) = p·cost(c)/cost(T ). Clearly, for i ∈ S:

ui((W \Ri) ∪W ′) = ui(T ) > ui(W ),

and so: ∑
i∈S

∑
c∈T

p′i(c) = p|S| > b/n >
∑
c∈T

cost(c).

For strict stable priceability we get the contradiction. For stable priceability with p > b/n,
we note that the second inequality in the above sequence is strict, and we get a contradiction.
This completes the proof.

The PB adaptation of [cost-efficient] Lindahl equilibrium is similar as in case of
priceability—now parameter p does not equals a candidate’s production cost (which in-
stead equals cost(c)) but each voter’s endowment (which earlier was equal to 1 dollar).

Theorem 10. Every outcome that is in a cost-efficient Lindahl equilibrium for price pis
strictly stable priceable. The other implication does not hold.



Proof. Consider an outcome W ⊆ C that is in the cost-efficient Lindahl equilibrium, and let
{γi}i∈N be the corresponding price system. From {γi}i∈N we construct the price system
{pi}i∈N witnessing stable priceability as follows. For each i ∈ N and c ∈ W we set
pi(c) = γi(c); for c /∈W we set pi(c) = 0. We now verify that {pi}i∈N satisfies the conditions
of stable-priceability. (C1) follows from (S5), and we will prove it later on. (C2) follows
from (Lin-UM(a)) (feasibility in the customer-stability condition). (C3) follows from profit
maximization (Lin-PM) and cost-efficiency, and (C5) follows directly from the construction
of the paymnet functions.

Let us now consider (S5). Let us fix W ′ ⊆ C \W and a collection {Ri}i∈N . Observe that
if ui((W \Ri) ∪W ′) > ui(W ), then by (Lin-UM)

∑
c∈(W\Ri)∪W ′ γi(c) > p and so:∑

c∈W ′
p′i(c) 6 p−

∑
c∈W\Ri

pi(c) = p−
∑

c∈W\Ri

γi(c)

= p−
∑

c∈(W\Ri)∪W ′
γi(c) +

∑
c∈W ′

γi(c) <
∑
c∈W ′

γi(c).

On the other hand, if ui((W \Ri) ∪W ′) = ui(W ) then either
∑

c∈(W\Ri)∪W ′ γi(c) > p (and

we obtain the estimation as above), or p −
∑

c∈W γi(c) > p −
∑

c∈(W\Ri)∪W ′ γi(c). In the
latter case we get that:∑

c∈W ′
p′i(c) 6

∑
c∈Ri

pi(c) =
∑
c∈Ri

γi(c) =
∑
c∈W

γi(c)−
∑

c∈W\Ri

γi(c)

6
∑

c∈(W\Ri)∪W ′
γi(c)−

∑
c∈W\Ri

γi(c) =
∑
c∈W ′

γi(c).

In any case, we get that
∑

c∈W ′ p
′
i(c) 6

∑
c∈W ′ γi(c). By (Lin-PM) we get that for each

c ∈W ′ we have
∑

i∈N γi(c) 6 cost(c). Thus, we can continue as:∑
i∈N

∑
c∈W ′

p′i(c) <
∑
i∈N

∑
c∈W ′

γi(c) 6
∑
c∈W ′

cost(c′) = cost(W ′).

Which proves that (S5) is indeed satisfied.
Second, we show an instance and an outcome that is strictly stable priceable, but which

is not in a Lindahl equilibrium. We have four candidates, a1, a2, b1, b2, and two voters. The
budget is b = 2. The voters’ preferences and the costs of the candidates are summarized in
the table, below.

candidate cost u1(·) u2(·) p1(·) p2(·)
a1 ε 6 0 ε 0
a2 2− ε 1 3 1− ε 1
b1 1 2 2 0 0
b2 1 2 2 0 0

For this instance, outcome A = {a1, a2} is stable priceable with the initial endowments
p = 1. The corresponding price system is also given in the above table. The conditions
(C1)–(C5) are clearly satisfied. To see that (S5) is also satisfied, consider all possible values
of W ′—namely {b1}, {b2} and {b1, b2}.

If W ′ = {b1} or W ′ = {b2}, then it needs to hold that S = {1} and R1 ⊆ {a2} (voter
2 does not pay for a1 and will decrease her utility if she resigned from a2; voter 1 will
decrease her utility if she resigned from a1). Then p′1(W ′) 6 p1(a2) 6 1− ε < cost(W ′), a
contradiction.



If W ′ = {b1, b2} and S = {1, 2}, then R1 ⊆ {a2} (voter 1 will decrease her utility if
she resigned from a1) and R2 ⊆ {a2} (voter 2 does not pay for a1). Then

∑
i∈S p

′
i(W

′) 6∑
i∈S pi(a2) 6 2− ε < cost(W ′), a contradiction. Naturally, taking smaller set S will even

decrease value
∑

i∈S p
′
i(W

′).
Yet, given the initial endowment p = 1, the outcome {a1, a2} is not in the cost-efficient

Lindahl equilibrium. For the sake of contradiction, assume that {a1, a2} is in the cost-efficient
Lindahl equilibrium. Then, γ1(a1) = ε and γ2(a1) = 0. Further, it must also be the case that
γ1(a2) = 1− ε and γ2(a2) = 1. Further, since voter 1 prefers b1 to a2 and b2 to a2, it must
hold that γ1(b1) > 1− ε and that γ1(b2) > 1− ε. Also, γ2(b1) + γ2(b2) > 1. This means that
the sum of the prices for b1 and b2 is at least 3− 2ε, thus it exceeds the cost of producing b1
and b2, and so it violates (Lin-PM). This gives a contradiction, and completes the proof.


