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Abstract

A principal faces a decision and asks an external expert for a recommendation as well
as a probabilistic prediction about what outcomes might occur if the recommendation
were implemented. The principal then follows the recommendation and observes an
outcome. Finally, the principal pays the expert based on the prediction and the
outcome, according to some decision scoring rule. In this paper, we ask: What
does the class of proper decision scoring rules look like, i.e., what scoring rules
incentivize the expert to honestly reveal both the action he believes to be best for
the principal and the prediction for that action? We first show that in addition
to an honest recommendation, proper decision scoring rules can only incentivize
the expert to reveal the expected utility of taking the recommended action. The
principal cannot strictly incentivize honest reports on other aspects of the conditional
distribution over outcomes without setting poor incentives on the recommendation
itself. We then characterize proper decision scoring rules as ones which give or sell the
expert shares in the principal’s project. Each share pays, e.g., $1 per unit of utility
obtained by the principal. Owning these shares makes the expert want to maximize
the principal’s utility by giving the best-possible recommendation. Furthermore, if
shares are offered at a continuum of prices, this makes the expert reveal the value of a
share and therefore the expected utility of the principal conditional on following the
recommendation. We extend our analysis to the design of mechanisms for eliciting
recommendations and predictions from multiple experts. With a few modifications,
the above characterization for the single-expert case carries over. Among other
things, this characterization implies that the mechanism should not allow experts to
“short-sell” shares in the principal’s project and thereby profit if the project goes
poorly.

1 Introduction

Consider a firm that is about to make a major strategic decision. It wishes to maximize
the expected value of the firm. It hires an expert to consult on the decision. The expert is
better informed than the firm, but it is commonly understood that the outcome conditional
on the chosen course of action is uncertain even for the expert. The firm can commit to a
compensation package for the expert; compensation can be conditional both on the expert’s
predictions and on what happens (e.g., in terms of the value of the firm) after a decision is
made. (The compensation cannot depend on what would have happened if another action
had been chosen.) The firm cannot or does not want to commit to an arbitrary probabilistic
mapping from expert reports to actions: once the report is made, the firm will always choose
the action that maximizes expected value, according to that report. What compensation
schemes will incentivize the expert to report truthfully? One straightforward solution is
to give the expert a fixed share of the firm at the outset. Are there other schemes that
also reward accurate predictions? What compensation schemes are effective if the firm can
consult multiple experts? These are the main questions of this paper.

Our approach to formalizing and answering our main questions is inspired by existing
work on eliciting honest predictions about an event that the firm or principal cannot in-
fluence. In the single-expert case, such elicitation mechanisms are known as proper scoring



rules (Brier, [1950; Good, (1952, Section 8; McCarthy, [1956; Savage, |1971; Gneiting and
Raftery, |2007)). Formally, a scoring rule for prediction s takes as input a probability dis-
tribution P reported by the expert, as well as the actual outcome w, and assigns a score
or reward s(f{w). A scoring rule s is proper if the expert maximizes hi expected score
by reporting as P his true beliefs about how likely different outcomes are. The class of
proper scoring rules has been characterized in prior work (e.g., Gneiting and Raftery, 2007,
Section 2). This characterization also provides a foundation for the design of proper scoring
rules that are optimal with respect to a specific objective and potentially under additional
constraints (Osband, [1989; Neyman, Noarov, and Weinberg, 2020; Hartline et al., 2020} cf.
Boutilier, [2012). Work on proper scoring rules has also contributed to work on eliciting
information from multiple experts via so-called prediction markets (e.g., Hanson, 2003; Pen-
nock and Sami, [2007). For example, in a market scoring rule, agents successively update the
probability estimate, and an agent that updated the estimate from P, to pt+1 is eventually
rewarded s(P,,1,w) — s(P;,w). Alternative designs, which resemble real-world securities
markets, let experts trade Arrow-Debreu securities that each pay out a fixed amount — say,
$1 — if a given event happens, and $0 otherwise. Then, at any point, the price at which
this security trades can be seen as the current market consensus of the probability that the
event takes place. There is a close correspondence between Arrow-Debreu securities markets
and market scoring rules (Hanson, 2003; Hanson, |2007; Pennock and Sami, [2007, Section 4;
Chen and Pennock, 2007; Agrawal et al.,[2009; Chen and Vaughan, |2010]).

Contributions In this paper, we derive a similar characterization of what we call proper
decision scoring rules — scoring rules that incentivize the expert to honestly report the best
available action in addition to making an honest prediction. We introduce our setup and
the concept of propriety in detail in Section [2| We show that proper decision scoring rules
cannot give the expert strict incentives to report any properties of the outcome distribu-
tion under the recommended action other than its expected utility (Section . Intuitively,
rewarding the expert for getting anything else about the distribution right will make him
recommend actions whose outcome is easy to predict as opposed to actions with high ex-
pected utility. Hence, we let the expert’s score depend only on the reported expected utility
for the recommended action. Next we show that the scoring rule must be affine in utility
of the outcome obtained. Using these results, we then obtain five different (equivalent)
characterizations of proper decision scoring rules (Section . The first two (Section
are analogous to existing results on proper affine scoring (Frongillo and Kash, [2014)), in-
cluding the characterizations of proper scoring rules by Gneiting and Raftery (2007)). The
other three characterizations (Section , which we have not seen anywhere in this form
for affine scoring, have an especially intuitive interpretation: the principal offers shares in
her project to the expert at some pricing schedule. The price schedule does not depend on
the action chosen. Thus, given the chosen action, the expert is incentivized to buy shares
up to the point where the price of a share exceeds the expected value of the share, thereby
revealing the principal’s expected utility. Moreover, once the expert has some positive share
in the principal’s utility, he will be (strictly) incentivized to recommend an optimal action.
In Section [6, we discuss the implications of our characterization for mechanism for eliciting
decision-relevant mechanisms from multiple experts. Finally, we discuss related work in
Section

IFollowing convention, the principal is grammatically female (pronouns “she/her/hers”) and the expert
is grammatically male (pronouns “he/him/his”) throughout this paper.



2 Setup

Throughout most of this paper, we consider the following setup. A principal faces a choice
from a finite set A of at least two actions. Decisions stochastically give rise to outcomes from
a finite set ). The principal would like to choose an action that maximizes the expectation
of a utility function u: Q@ — R. We assume |u(2)| > 2, i.e., that the principal indeed has
a strict preference over outcomes. Before making a choice, she privately observes the value
of an evidence variable F, which has values in some finite, non-empty set H. The principal
knows neither the distributions over {2 arising from any a € A, conditional on any e € H,
nor the distribution of F.

To make a choice, the principal consults an expert. The expert does have probabilistic
beliefs. Specifically, he believes E to be distributed according to some probability distri-
bution @ € A(H) over H. Furthermore, for each e € H and a € A, he believes that the
outcome will be distributed according to some P(- | e,a) € A(Q) if e is observed and action
a is taken. The principal asks the expert to submit any report (&, Q P, ), where o € AH
specifies for each e € H specifies a recommendation a(e) € A, Q € A(H) is a probabilistic
prediction of what private evidence the principal observes, and Pa € A(Q)H provides for
each e € H a probabilistic prediction over what outcome will materialize once the principal
has observed any e and chosen the recommended a(e).

The principal would like the expert to reveal these truthfully. Formally, we call a recom-
mendation function « truthful if it is optimal as judged by the principal’s utility function
and the expert’s probabilistic beliefs, i.e., if for all e € H, a(e) € argmax,c 4>, co P(w |

e,a)u(w). The conditional outcome predlctlon P, is truthful if for all e € H, Py(w | €) =
P(w | e,a(e)). Finally, we call the evidence prediction Q truthful if Q = Q Note that,
because there might be multiple optimal actions for some e € H, there are multiple truthful
reports. As usual, the principal cannot verify directly whether a report is truthful.

Once the expert has submitted his report and the principal has observed £ = e € H,
the principal chooses the recommended action a(e). He then observes an outcome w.

To incentivize the expert to report honestly, the principal rewards the expert using a
decision scoring rule (DSR) s: A(H) x A(Q)¥ x H x Q — R, which maps the expert’s
evidence prediction Q, conditional outcome prediction P, the true evidence e, and the true
outcome w onto a score s(Q, Py, e,w).

The question we ask in this paper is what DSRs incentivize the expert to report honestly.
We define this formally as follows.

Definition 1. We say that a DSR s is proper if for all beliefs P(- | -,-) € A(Q)H*A and all
possible recommendations & € A and predictions P, € A(Q)H we have

Egvg.0nr |5(Q, Pai B.O) | B.a(B)| < Eprg.0np [5(Q, Par, E,O) | B, (E)]
for some honest recommendation a*.

Our goal is to to characterize proper DSRs. However, while this propriety implies that
the expert has no bad incentives, it does not require that the expert has any good incentives.
For example, any constant s is proper. We might therefore be interested in the structure
of strictly proper DSRs, i.e., ones where inequality [1]is strict unless (&, @, P,) is an honest
report. As we will see (Theorem, no DSR is strictly proper in this sense. In the following
we therefore define partially strict versions of propriety.

Definition 2. We say that a proper s is strictly proper w.r.t. the recommendation if for all
beliefs P(- | -,-) € A(Q)F*4,Q € A(H) and all possible reports (o, Q, P,) with dishonest
recommendation «, there exists an honest report (a*, @, Py+) s.t

Ez0.0-p |5(Q, Pa, E,0) | E,d(E)} <Ep0.0-p [5(Q, Pa-, E,0) | E,a*(E)].



Example 1 (Linear decision scoring rules). Let ¢ € Rgo. Then s: (Q, Py, e,w) — cou(w)
is proper. If furthermore, ¢, > 0 then s is strictly proper w.r.t. the recommendation for e.

A natural interpretation of this DSR is that for each e, the principal gives the expert
ce(> 0) assets that each pay, say, $1 per unit of utility obtained if e is observed by the
principal. If the principal is a firm, then these assets can be seen as shares in the company.
However, each of these shares only pays conditional on some e. Therefore, in allusion to
the concept of Arrow-Debreu securities, we call these assets Arrow-Debreu shares in the
principal’s project.

Definition 3. We say that a proper s is strictly proper w.r.t. the evidence distribution if
for all beliefs P(- | -,-) € A(Q2)7*4 and all possible reports (o, Q, Py) with Q # Q, there
exists an honest report (a*, @, Py+) s.t

]EENQ,ONP S(vaaanO) ‘ Ead(E):| < ]EENQ,ONP [S(Q,Pa*,E,O) | Eva*(E)} .

Example 2 (Brier’s (1950) scoring rule for evidence prediction). Consider the scoring rule
S(Q, Py e, w) = 2@(6) — D eeH Q(e’)Q. This is Brier’s quadratic scoring applied for scoring
Q as a prediction of e. It can be shown that s defined in this way is proper and strictly
proper w.r.t. the evidence prediction. (In fact any strictly proper scoring rule for prediction
(as defined and characterized by, e.g., Gneiting and Raftery, [2007, Section 2) is strictly
proper w.r.t. the evidence prediction when transferred in this way.) Of course, it is not
strictly proper w.r.t. anything else, because the score does not depend on P,,w at all.

We could combine Examples [I] and 2] to obtain a DSR that is proper and strictly proper
w.r.t. recommendations and evidence prediction. The next example illustrates the troubles
that arise when we aim for an analogous strict propriety w.r.t. the outcome prediction. As
noted above, we will show in Section [3] that these troubles cannot be fully overcome.

Example 3 (Misapplying Brier’s (1950) scoring rule for outcome predlctlon) Define the
following improper DSR: s(Q, P, e,w) = 2P, (w | ) — 3, eQP (w' | €)?. Once again this
is Brier’s scoring rule. However, this time it is applied to the submitted outcome prediction,
conditional on the observed e. Again it can be shown that to maximize his expected score,
the expert has to submit P, =P, honestly. Nevertheless, a DSR s defined in this way is
not proper, because to maximize his expected score, the expert has to recommend for each
e € H an action a(e) s.t. the true distribution P,(.) is easy to predict (in the sense of having
a high Brier score under honest prediction). For instance, suppose that |H| = 1, that Q =
{w1,...,wm }, that the optimal action a* leads to the outcome being uniformly distributed,
Oy = % *wW1 + ...+ % * Wy, while a leads to a bad outcome deterministically, O, = 1% wy.
Then the expert will (assuming m > 1) always prefer recommending the suboptimal o,

since E {S(Q,Pa/,E,Oa/)] —i>l-2_y o 1_F [S(Q Pu-, E,004)).

m

3 Only expected utilities can be strictly elicited

Next, we prove that if a DSR is to be proper, it can only strictly incentivize the expert to
be honest about the evidence prediction, optimal (recommended) actions and the ezpected
utility of those recommended actions. As a consequence, proper DSRs in general cannot
strictly incentivize the expert to honestly reveal, say, the variance of the utility under the
recommended actions, or the probability of a particular outcome.

Theorem 3.1. Let s be a proper DSR, Q € A(H) and P, P, € A)H be s.t. foralle € H,
minweg u(w) < Eo~p, [u(0) | e] =Eq_p, [u(O) | €] < maxyequ(w) and supp(Pu(- | €)) C
supp( w(-]€). Then Egg,o~p, [$(Q, Pa, E,0)] = Egg.0~p, [S(Q,Pa,E7O):|.



Next we show that in a proper DSR, the expert’s score can (aside from degenerate cases)
only depend on the utility of the outcome obtained, and not on the outcome itself.

Lemma 3.2. Let s be a proper DSR and wy,ws € Q be two outcomes with u(wy) = u(ws).
Let Q € A(H),P, € AQ)H be s.t. for all e € H, min,equ(w) < Eoup, [u(0) | €] <
max,co u(w). Further, let wy,wy € supp(Pa(- | €)) for some e € H. Then s$(Q, P, e,wy) =
s(Q, Py, e,ws).

Because of Theorem [3.1] and lemma [3.2] we will therefore limit our attention in the
following to scoring rules s: A(Q2) x R¥ x H x R — R that take as input a vector of reported
expected utilities 1 € R¥ (instead of the full distribution P,) and the utility y € R of the
outcome obtained (instead of the outcome w € Q itself).

To simplify notation throughout the paper, we adopt a slightly unusual convention for
reporting the conditional means. Specifically, for any true belief Q, P, and any e € H,
we call e = Egg,o~p, [L[E=€]u(0)] = Q(e)Eo~p, [u(O) | €], the Arrow-Debrew (A-D)
mean for e in allusion to the concept of Arrow-Debreu shares and securities. We then want
the expert to report the A-D means, rather than the regular conditional means. In words, we
would like the expert to report for each e the expected utility if the principal only received
utility in the case that E = e. Of course, since the expert reports both @ and fi, we can
translate a reported A-D mean of [i. for e into the more traditional notion of conditional
expected utility by dividing by Q(e), except for the degenerate case Q(e) = 0.

Definition 4. We say that s is strictly proper w.r.t. the means if it is proper and for all
beliefs @, P with A-D means p and all reports (o, @, ft) for which there is e with fi. # p.

and Q(e) > 07 it is ]EENQ,ONPQ [S(Q, [1,, E, O):| < EENQ,ONPQ [S(Q,/l,, E, O)]

4 Proper decision scoring rules are (non-negative) affine

We now show a result about the shape of proper DSRs. The result essentially establishes
that the expected score is affine in the true A-D means pu and the true distribution Q. Note
that in the case of @ this is trivial by the definition of the expectations, so the substantial
part of the result is affinity in p.

Lemma 4.1. Let s be a proper DSR. Then there are functions fy: A(H) x RE —
Rgo,fE: A(H) x RE - RE g: A(H) x RE — R, s.t. for all Q,f1,e,y, s(Q, 1, e,y) =

Q. )ey + fB(Q, )e + 9(Q, 1)

Note that fy is non-negative, making the expected scores non-negative affine in .
Clearly, this is needed to make sure that the expert makes recommendations that maximize
(rather than minimize) the principal’s expected utility. Note also that we could do away
with the function g and incorporate it into fr. However, below it will be useful to separate
the two.

Corollary 4.2. Let s be a proper scoring rule specified via fy, fr,g as per Lemma 1
Then for all reports Q, [t evidence variables E distributed according to Q and all means Y

with true means p, E [S(QA,[L7E, Y)} = (fE(Q,ﬂ),fY(Qvﬂ))(QalJ’) "‘Q(Q?ﬂ)'

Note that to obtain that the expectation of s is affine in (Q, ), it is necessary that
p follows our convention. Without the convention, we would get a non-linear term (the
products of Q(e) and the standard expected utility of Y given e). For the rest of the paper
it is essential that we can work with linear terms. Corollary [£:2] allows us to introduce some
additional simplifying notation. For a fixed scoring rule s with functions fy, fg,g we let

f=(fv.fe) and s(Q, 1, Q, p) = f(Q, 1)(Q, p) + g(Q, jx), which in turn by Corollary
is the expected score under true means g and E ~ Q.



5 Characterizations

So far we have established that (up to edge cases that we will ignore) proper decision scoring
rules are affine in the true evidence distribution @ and the true means p. The question
of characterizing affine scoring rules has been considered before in different settings. In
particular, Frongillo and Kash (2014)) study the question in its generic form. Also, (proper)
scoring rules for prediction are trivially affine in the true distribution. Thus, characterizing
proper scoring rules for prediction (as done by, e.g., Gneiting and Raftery, 2007) is another
special case of characterizing proper affine scoring rules. We can therefore apply existing
ideas to characterize proper decision scoring rules. We do this in Section [5.1] obtaining two
different characterizations. In Section we then give two other characterizations that we
have not seen in this form before. We find one of them (Theorem to be particularly
intuitive.

5.1 Characterization a la Gneiting and Raftery (2007) and
Frongillo and Kash (2014)

Theorem 5.1. Let s be a DSR. Then s is proper if and only if there exist functions
frAH_;) x RE-i 5 RH-i x Rg&i’ and F: A(H_;) x RT-i — R s.t. s(Q,f1,Q,pu) =
f(@, 2)(Q, ) — (Q, ) —|—F(Q7 i), where F is convex and f is a subgradient of F. Further,
s 1is strictly proper w.r.t. the recommendation for e if fy.. > 0.

This follows directly from our affinity results in Section [4] combined with the general
characterization of linear scoring rules by Frongillo and Kash (2014). As noted by Gneiting
and Raftery (2007) and Frongillo and Kash (2014), we can use Theorem (and Theo-
rem to obtain the following alternative characterization. The characterization uses
the concept of cyclic monotonicity, the relevance of which for this type of characterization
was first recognized by Rochet (1987)).

Theorem 5.2. Let s be a DSR. Then s is proper if and only if there is a cyclically monotone
increasing function f: A(H) x RE — RH x Rgo, CeR,beA(H) xRE s.t.

) A ) (Q.1)

Q@) = FQEN@ W = Qi)+ [ Szt C 1)
The integral here is a path integral, as discussed in Appendix [A] Because it is path

independent (Lemma , it suffices to specify the endpoints of the path (b and (Q, f)).

Example 4. If we assume true and reported means to always be positive, we obtain the
simplest proper DSR that is strict w.r.t. evidence prediction and means by setting f(Q), it) =
A b . . A A . ~ .
(Q. ) (and C = [ f(z)dz), which yields s(Q, ft, ,y) = Q(€) + ey — 5 Y orey Q(€))* + 13-

Note that the scoring of @) is exactly the Brier scoring rule of Example

5.2 Offering different quantities of shares — the inverse of f as a
pricing schedule

By Lemma every proper DSR can be written as s(Q,ft.e,y) = fy(Q,f)ey +
f5(Q, t)e + g(Q, ft). In line with our interpretation of Example [I| we can interpret any
proper DSR as follows. By submitting (Q, [t), the expert buys fy(Q, [t)e Arrow-Debreu
shares and fE(Q,ﬂ)e Arrow-Debreu securities in every evidence value e, at an overall
price of g(@,ﬂ). Unfortunately, in the characterizations of Section the price term



(g(@7 /l)f(@, i) (Q, o) — féQ’“) f(z)dz — C) is unintuitive. In this section, we provide a sec-
ond cluster of three characterizations that correspond very intuitively to the mechanism of
offering the expert A-D shares and securities at different prices. In fact, even the derivation
of the characterizations (though not in its path integral form) can be comfortably put in
these terms, which is why we give it in the main text.

We start with a lemma which says that the quantity of shares and securites bought
(f(Q, fr)) uniquely determines the price.

Lemma 5.3. Let s: (Q,A/:L, Q,p) — F(Q, o) —g(@, ft) be a proper DSR for functions f,g.
Then for all (Q1, fu1), (Q2, frz), [(Q1, 1) = [(Q2, f2) = 9(Q1, 1) = 9(Q2; f13).

Instead of having the expert report (Q, [t), we can therefore imagine that the expert
chooses a quantity vector q(= f(Q, ) € im(f) of Arrow-Debreu shares and securities.
(The set im(f) € R x RY, is the set of possible quantity vectors available for sale.)
Of course, there may be multiple beliefs (Q, p) under which the expert prefers the same
quantity q. However, by Lemma the quantity q of shares uniquely determines the
price. (Intuitively, in the offering-quantities framework if there were multiple prices for the
same quantity, the expert would always choose the lowest price.) We can therefore define
G: im(f) = R: q+~ g(f~%(q)) to be the quantity-price function of s. Instead of specifying
a scoring rule s in terms of a pair f, g, we can specify it in terms of a pair f, G or equivalently
f~4aG.

To characterize proper DSRs, we need to specify what property f/f~! and G must
(jointly) satisfy. By definition, propriety means that under any belief (Q, ), (Q,p) is
among the optimal reports. With our interpretation of DSRs, this is equivalent to saying
that the quantity f(Q,p) is among the optimal quantities to buy under the belief (Q, )
and under the prices specified by G. By the definition of inverses, another equivalent
way of stating this relationship between f and G is the following. For any quantity vector
qo € im(f), f~1(qo) must contain exactly those beliefs (Q, ) under which the expert would
choose to buy quantities qq if the quantity-price function is G. In other words, for all qo,
f7(qo) is the set of all (Q, p) s.t. for all q € im(f), qo(Q, 1) — G(qo) > q(Q, p) — G(q).
Now rearranging this inequality gives G(q) > G(qo) + f~*(qo)(q — qo), the subgradient
inequality. That is, we have shown that propriety is equivalent to f ~! being a subgradient
of G. With this, we get the following characterization.

Theorem 5.4. Let s be a DSR. Then s is proper if and only if there are f: A(H) x RT —
R¥ x RE,, G:im(f) = R st s(Q, 1, Q, ) = f(Q, 1)(Q, p) — G(f(Q, 1)) and [~ is a
subgradient of G.

Like Theorem [5.1] this theorem is stated in terms of subgradients. However, as shown in
the above derivation, the subgradient inequality now directly expresses the intuitive require-
ment that f~!(q) infers the expert’s beliefs (Q, u) from a choice of quantity q under the

quantity-price function G. As in Section we can replace the function G with subgradient
f~! by a path integral over f~!. We thus obtain the following characterization.

Theorem 5.5. Let s be a DSR. Then s is (strictly) proper if and only if there is cyclically
monotone increasing f: A(H) x R¥ — R x Rgm C,b s.t.

SO0 Qo) = F(O. ) Qo pr) — / F Y (@)dq + C. ()

fib,@.m

Note that this is a path integral again. Since f‘ by(O,0)]" the restriction of f to the line

b, (Q, jt)] might not be a continuous path and f~! may not be single-valued, we need a



minor extension of the notion of path integral, see Appendix In Corollary [A716] we
show the path independence of this extension of path integrals.

We now give an intuitive interpretation of Theorem[5.4] which we put in terms of continu-
ously selling A-D shares and securities. For simplicity, we here imagine that f is injective and
continuous. The principal starts out giving the expert a quantity vector f(b) € R x Rgo of
A-D securities and shares for some constant (potentially negative) price C. (In our model,
the expert has no choice of whether to accept this offer.) The expert can then move this
quantity (through im(f)), i.e., can buy or sell these assets. The prices of both buying and
selling infinitesimal A-D shares and securities are f~1(q) € R¥ x R¥ where q denotes the
current quantity vector. Here, f~! can be any cyclically monotone increasing function. (By
Lemma f is cyclically monotone increasing if and only if f~! is cyclically monotone
increasing.) Intuitively, this means that the more assets the expert has, the higher the
marginal price of the assets. Further, by the path independence property, the f~! pricing
is such that if the expert owns quantity vector q, then after any sequence of infinitesimal
purchases that end up in q, the overall price paid by the expert for the sequence is zero.

Under this interpretation, how can we understand that the DSRs as described in The-
orem [5.5] are proper? In the above interpretation, the expert buys and sells quantities. At
what quantity vector q* does he stop trading? Clearly, this must be one where the marginal
price of the shares and securities is exactly equal to their value. That is, the quantity
vector at which the expert stops trading must have the property f~1(q*) = (Q, u), where
(Q, p) is the expert’s belief (given his recommendation). Thus, the value of the shares can
be interpreted from the quantity bought. Of course, if we return to the DSR formalism,
the expert does not report q* (or move through the space of possible quantities, making
infinitesimal shares). Instead, we can interpret the expert as directly reporting the price at
which they want to cease trading. This is because the quantity resulting from a report of
(Q, 1) is f(Q, jr), where the marginal price is f~1(f(Q, i) = (Q, t) (assuming injectivity
of f for simplicity). As noted above, the expert prefers to stop trading at (@, ) — hence,
the expert prefers honest reporting.

6 Multiple experts

Besides eliciting from a single expert, we are interested in designing mechanisms for elicit-
ing information for decision making from multiple experts, ideally analogous to real-world
prediction markets. We are here interested in generic mechanisms, that is, mechanisms that
work regardless of how the experts’ information is structured. We will show by a revela-
tion principle-type result that such mechanisms are characterized by proper decision scoring
rules. Thus, our results (in particular, the characterizations from Section [5)) characterize
generic proper mechanism for eliciting information for decision making. Based on that we
will offer some speculation on what a decision making equivalent to prediction markets might
look like.

6.1 Information structure in the multi-expert case

Again, we consider a principal who selects from a set of actions A. After she has taken an
action, an outcome from (Q is obtained. The principal would like to select the action that
maximizes the expectation of the value of some utility function u: Q@ — R. This time the
principal consults n different experts and (to keep things simple) does not have any private
evidence of her own. Again, she asks for information, then takes the best action given the
information submitted and finally rewards the experts based on the submitted information
and the outcome obtained.



When it comes to the format and reporting of information, however, switching to the
multi-expert setting poses a few additional challenges compared to the single-expert setting.
First, of what types are the beliefs and reports of the experts? We do not want to simply
let each expert’s beliefs be some conditional probability distribution A(Q)4 again, because
it would be unclear how one would aggregate these beliefs. We address this with a standard
solution from the economic literature: the common prior model.

We assume that each expert ¢ = 1,..,n has access to a private piece of information
from some set H;. The experts (and principal) share a common prior @ € A(H) over
H = ><z‘=1,...,n H;. For simplicity, we assume that Q(e) > 0 for all e € H so that the
experts cannot contradict each other. We imagine also that the experts (and principal)
share a common conditional distribution P € A(Q)4*H  which for any action a € A and
evidence vector e € H specifies a probability distribution P(- | a,e) over outcomes given
that e is observed by the experts and action a is taken by the principal.

6.2 Truthful mechanisms

In general, a mechanism for a given private information structure is a special type of game
T" of n players in which each player observes some e; € H;, at some point an action a € A is
selected, and an outcome w ~ P(- | eq, ..., en,a) is observed. Each player i’s payoff function
can be arbitrarily determined by I". We will denote it by u; (not to be confused with wu,
which we will continue to use to denote the principal’s utility function).

We say that a mechanism is truthful for a given information structure if the
game has a Nash equilibrium o s.t. in o an optimal action, i.e., an element from
argmax,c 4 Ep [u(O) | e, a], is selected for any possible vector of observations on the ex-
pert’s side. For strict propriety, we could add additional restrictions. For example, for strict
propriety w.r.t. evidence prediction, we could require that there is an interpretation function
(similar to the function that, as part of the game, selects an action) that takes a trajec-
tory of the game as an argument and in o accurately returns each player ¢’s distribution
Qi(- | e;) € A(H_;); and further require that if any player ¢ deviates from o; in a way that
misleads the interpretation function, player ¢’s payoff decreases strictly relative to o.

Proper DSRs as characterized in this paper can be used in various ways to construct
specific generic truthful mechanisms. Here is one example of such a setup:

Example 5. Take proper DSRS s1, ..., 8, where s;: A(H_;)xRH-ix H_;xQ — R. Asusual
when considering such a scoring rule, each expert i is asked to submit a recommendation
function a;: H_; — A, an evidence prediction Ql and a collection of means fi; € RH-i.
In addition, each expert submits e; itself. The principal then feeds into each submitted
«; the vector e_; of evidence values submitted by the other experts. Of the resulting
n recommendation, she selects one, say, according to majority vote (with arbitrary tie-
breaking), and an outcome with utility y is obtained. Each expert ¢ then receives the score
sl(Ql, f;,e_;,y). This scoring system is proper for every information structure, i.e., honest
reporting is always a Nash equilibrium of this game.

It is also easy to come up with truthful mechanisms that score quite differently, at least
in some situations. Here is one such example:

Example 6. The information structure is as follows. There are two experts. With probabil-
ity 1/2, Expert 1 observes what the best action is. Otherwise, he observes nothing. Expert
2 observes (with probability 1) for each action a the outcome distribution P(- | a) € A(9).
The principal asks both experts to report their private information. If Expert 1 submits a
recommendation @ € A, the principal always follows that recommendation to obtain an out-
come w. Expert 1 is paid in proportion to u(w), and Expert 2 is paid using the Brier score



for his outcome prediction for a (cf. Example . If, on the other hand, Expert 1 provides no
recommendation, the principal follows Expert 2’s recommendation and rewards him using a
proper DSR for the |[H| =1 case. This mechanism is truthful for the information structure
outlined.

The example shows that if one expert reports a definitive claim that cannot be overruled
by some other expert, the principal can potentially score the latter expert in ways that do
not correspond to proper DSRs.

6.3 Proper DSRs characterize truthful mechanisms in generic sit-
uations

Definition 5. We say that an information structure is generic for i under observation of
H', C H_; if player i’s private evidence can imply any distribution @; over H' ; and any
family of distributions (P(- | €_;,a))acAe_jcH_;-

Theorem 6.1. Let I in NE o be a proper mechanism for an information structure that
is generic for i under observation of H' ;. Then the following is a proper decision scoring
rule:

A(H_;) x AQ)AH-IXA 5 H 5 Q= R: (Qs, Piye_i,w) — ui(o, (e_s, (Qi, By)),w). (3)

We now give some intuition for the core of the genericism condition above and for what
the theorem says. Intuitively, in an elicitation process it can happen that players —i honestly
make some definitive claim that they are certain cannot be overruled by whatever player
i reports. If this happens, then Theorem does not apply and, depending on the exact
nature of the definitive information, the mechanism might be able to reward ¢ in specific
ways that violate propriety in general, see Example[6l Our theorem applies when players —i
provide information that is tentative and leaves open (if only with small probability) that
player i can hold any belief about what the best action is and what the outcome distribution
over actions is.

Of course, situations like Example[6] may well occur — that is, in some cases at least some
of the consulted experts can supply only a specific type of information and can therefore
be scored in problem-specific ways. Also, the extreme assumption of e_; leaving everything
open is usually not realistic, either. Most of the time, experts may well be able to definitely
rule out various absurd reports. Nevertheless, we find that Theorem operates on a useful
model.

6.4 Some conclusions about how to design realistic mechanisms

We can now draw conclusions from these results about what kind of characteristics any
proper mechanism for eliciting information for decision making from multiple experts must
have in generic situations. For instance, as in the single-expert case, it shows that we cannot
incentivize experts to — along with an honest recommendation — reveal anything other than
the expected utility of taking the recommended action. Further, no expert may profit from
the failure of the principal’s project. If we imagine the principal to be a firm maximizing
its value, then no expert can be allowed to short-sell shares in the firm. In the rest of this
section, we consider another important, multi-expert-specific, desirable property that as a
consequence of our results we cannot obtain.

We might like to reward experts in proportion to how much their report updates the
principal’s beliefs. This is one of many desirable properties of prediction markets: experts (or
traders) are rewarded based on how far they can move the market probabilities toward the



truth. For example, an expert who at any point simply agrees with the market probabilities
(because he has no relevant private information) can earn no money (in expectation). An
expert who updates the market probability for an event from, say, 0.5 to 0.1 receives a high
expected score (assuming 0.1 represents his true beliefs over the outcome of the random
event). We might want an elicitation mechanism for decision making — perhaps a kind of
decision market (see Section — to similarly reward experts for submitting evidence that
yields large (justified) changes in the principal’s beliefs.

However, from our results it follows immediately that a number of types of changes
cannot be rewarded at all. Generally, let el,e? € H; be two possible pieces of evidence for
expert i that imply the same conditional A-D means u € Rf-i and Q € A(H_;). Then
the expert must receive the same expected score from honestly reporting e} and honestly
reporting eZ. This is the case even if the impact of these two pieces of information on the
aggregate expert report differs substantially. For example, if for each e_;, the best action
given e_; is the same as the best action given (el,e_;), then the report of e! has little
impact.

This is the case even if e} affects what the best action is and implies wild changes to
the distributions of all actions while e? does not change the principal’s beliefs at all. In
particular this implies that a generic strictly proper DSR gives positive expected rewards
even to experts ¢ whose private evidence F; turns out to be of no value to the principal.

How can the principal make sure that despite these impossibilities, experts with more
useful information receive higher scores? The only way out, it seems, is to reward experts
based on the ex ante value of their information. That is, pay expert ¢ (in shares or constant
reward) in proportion to how much the principal would be willing to pay to learn E;. One
could also use the willingness to pay given that one already knows or will know E_;. In the
extreme case, one could even give a constant score of 0 to experts whose value of information
is zero. (The mechanism would then not quite satisfy our generic notion of strict propriety
anymore.) This way, obtaining F; is incentivized to the extent that E; is useful to the
expert.

7 Related work

As noted in the introduction, our work is inspired by the literature on proper scoring rules
and prediction markets. Further, we have noted in Section [5| (as well as the appendix) how
results from this literature and from convex analysis can be used to derive our characteri-
zations. In this section, we discuss further related work.

7.1 Conditional prediction markets

The earliest line of work that shares one of the goals of this paper (designing prediction
market-like mechanisms for eliciting information for decision making) proposes conditional
prediction markets (Hanson, 1999, 2002} Berg and Rietz, 2003; Hanson, [2006, 2013, Section
IV), which work as follows. For each action a € A, the principal sets up a prediction
market dedicated to predicting the outcome conditional on a being taken. At some point
the principal takes the action that is best according to the market probability distributions.
An outcome is observed and the prediction market for a is resolved in the usual way. The
prediction markets corresponding to all other actions are not resolved at all, i.e., no profits
or losses are made on these markets. (If the market uses Arrow-Debreu securities, then all
trades must be reversed.) As far as we are aware, Othman and Sandholm (2010, Section
3) are the first to point out incentive problems with this model. Our impossibility results
can be seen as an extension of their result (though we have limited attention to mechanisms



which guarantee full information aggregation, which may not a be a primary goal for the
design of decision markets). Compare our discussion of Chen et al.’s (2011; 2014) work
below, who show how a variant of conditional prediction markets is indeed truthful.

7.2 Othman and Sandholm (2010)

As far as we can tell, Othman and Sandholm (2010) are the first to consider proper decision
scoring rules as defined in our paper. In particular, they study a simplified case in which
|?] = 2 and |H| = 1. Note that the two-outcome-case is special because the mean of a binary
random variable fully determines its distribution. (The results of our Sections [3| and 4] are
therefore trivial in the two-outcome case.) In Section 2.3.2, they give a characterization of
differentiable proper decision scoring rules. A generalization to differentiable scoring rules s
for arbitrary H, ) is given in Appendix [E] The characterization’s shape does not correspond
straightforwardly to any of our general characterizations.

7.3 Chen, Kash, et al. (2014)

Chen, Kash, et al. (2014} also characterize scoring rules for decision making. (An alternative
proof of their main result is also given by Frongillo and Kash (2014, Section E.1).) They
consider the case |[H| = 1 (though their results would be impacted little if we allowed the
principal to have private evidence). Their key positive idea is the following. The expert
reports an outcome prediction (i.e., a distribution over ) for each action a € A. Based on
these predictions, the principal chooses an action a randomly according to some distribution
¢ € A(A). For example, ¢ could assign 1—e probability to an action that is optimal according
to the expert’s reports and distribute the remaining probability € equally among the other
actions. Importantly, (if we want to strictly incentivize honest reports from the experts) ¢
must have full support, i.e., each action must be taken with positive probability. The expert
is then scored for his outcome prediction for a according to, say, Brier’s scoring rule (or any
other proper scoring rule for prediction, as characterized by Gneiting and Raftery, 2007).
However, the score is divided by ¢(a). Thus for each action a, the prediction is scored only
with probability ¢(a) but scaled up by 1/¢(a). These cancel out in the expert’s expected
score term. Therefore, the expected scoring of the outcome prediction for a is as though the
prediction for a was tested and scored according to Brier’s scoring rule with probability 1. In
particular, the expert is strictly incentivized to report honestly. Chen, Kash, et al. (2014)’s
provide a general characterization of truthful mechanisms when the principal randomizes.
In particular, they show that scaling up rewards by a factor of 1/¢(a) is necessary.

Relative to our approach, Chen, Kash, et al.’s has at least two advantages. For one, it
allows us to elicit full distributions for all actions rather than merely the expected utility
of a single recommended action. Second, it allows us to construct decision markets that
closely match the design of prediction markets (of either the market scoring rule or the
Arrow-Debreu securities type) (cf. Wang and Pfeiffer, |2021). Our main concern with their
approach is that randomization (and the required scaling in proportion to 1/¢(a)) comes
with a number of drawbacks. We discuss these in detail in Section 2

Chen, Kash, et al. (2014 Section 5) do also consider a setting similar to ours in which
the expert recommends a single (optimal) action. But they do not give a characteriza-
tion of proper decision scoring rules for expected-utility-maximizing principals or of what
information can be extracted along with the best action.
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A Background: convex analysis

All of our characterizations in Section [5] refer to either the concepts of convex functions and
their subgradients; or the concepts of cyclic monotonicity and path integrals. We introduce
these concepts and their relation here. Except for the ideas in Appendix all of the
below is known in the literature on cyclic monotonicity and convex functions.

A.1 Convex functions and subgradients

A set M CR"™ is convex if for all x,y € M and p € [0,1], tx+ (1 — t)y € M. In particular,
R™ is convex for all n € N and the set of probability distributions over any finite outcome
space is convex. Further, the Cartesian product of two convex sets is convex.

Definition 6 (Convex function). A function F': M — R on a convex set M is convez if for
all x,y € R" and p € (0, 1),
F(px+ (1 =p)y) < pF(x) + (1 - p)F(y).
We call F strictly convex if the inequality is strict for all x,y, p.
Definition 7 (Subgradient). Let F': R® — R be a function. We call f: R® — R” a
subgradient function of F' if for all xp,x € R",
F(x) 2 F(xo) + f(x0)(x = %o). (4)

Lemma A.1l. If a function F' has a subgradient, F' is convez.
Proof. Let z :=px+ (1 — p)y and f be F’s subgradient. Then

Flpx+(=ply) = F@)+[(2)(px+(1-ply-2)
p(F(2) + f(z)(x — 2)) + (1 — p)(F(z) + f(2)(y — 2))
pF(z) + (1 —p)F(y).

IN

Ineq.
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Figure 1: An illustration of the proof of Lemma [A74]
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Lemma A.2. Let M be any index set. Let F;: U — R be convex functions for all i € M.
Then if the pointwise mazimum function

F*: U — R: x — max F;(x)
ieM

exists, it s conver.

Proof. Let x1,x2 € U, p € [0,1]. Let i* be s.t. F(px1 + (1 — p)x2) = Fi« (px1 + (1 — p)Xa2).
It is

pF*(x1) + (1 — p)F* (x2)

pEi-(x1) + (1 — p)Fi- (x2)

Fi-(px1 + (1 — p)x2)

= F'(px1+ (1—-p)x2)

(AVARVS

Lemma A.3. Let xq,...,x; € R"™ and

k
F: {Zpixi
i=1

be convex. Then F(x) < max;=1,  F(x;) for all x in F’s domain.

k
Zpi=1,Vi1pi20}—>R (5)

=1

Lemma A.4. Let U C R™ be open and conver and F: U — R be convex. Then F is
continuous.

Proof. We prove the contrapositive. Let there be a discontinuity at x. This means that
there is § > 0 s.t. there are arbitrarily small € > 0 with x. € U with distance exactly € from
x s.t. |F(x.) — F(x)| > 6. It follows that (at least) one of the following two must hold.



(1) There is § > 0 s.t. there are arbitrarily small € > 0 with x. € U with distance exactly
€ from x s.t. F(x.) — F(x) > ¢.

(2) There is § > 0 s.t. there are arbitrarily small € > 0 with x. € U with distance exactly
€ from x s.t. F(x) — F(x¢) > 0.

We first prove convexity in case 1. First, draw a convex polygon around x that contains
some € ball around x. Because U is open, if we make the polygon small enough, it lies fully
in U. By Lemma[AZ3] F is upper-bounded by some L € R.

Next, there is K > 0 s.t. for all € > 0,

X+ (x — %) (6)
is in the convex polygon. Intuitively, this is a point that arises from going in the direction
of x, for a distance K that is constant and in particular independent of €. In particular, for
small € we walk past x.. It is,

< (1- %) F(x) + %L
= F(x)
< F(x) -9

For small enough €, we thus find convexity violated.
Case 2 is mostly analogous. The main difference is that we need to consider

X + %(x—xe). (7)

Thus, we now walk from x. in the direction of (and for small € past) x. This way, we again
walk from the smaller value of F' to the larger one. It then is

(1 — %) F(x.) + %F (xe + %(X - Xe)>

< (1 - %) F(xd) + %L

F(x)
< Fx)-9¢

(e (s )

Again we find convexity violated. Here the 2% line should be interpreted as the difference
of the left and right-hand side going to zero. O

Lemma A.5. Let F be differentiable with gradient VF. Further let F' have a subgradient
f- Then f =VF.



Proof. We prove this by proving equality of each of the entries of f, VF. The k-th entry of
VF(x) is simply ﬁF (x), the derivative w.r.t. zy. By definition of differentiability,

lim O+ hey) = f(x) = i
h—0 h dxy,

F(x)

for all x, where e is the vector whose k-th entry is 1 and whose other entries are 0.
Equivalently,
fx+hep) — f(x) _ d f(x) — f(x — hex)

1i =% Fx) =1
hlo h dix () = L h ’ (8)

where both limits let h go to zero from above.
For f to be a subgradient of F', it must be for all h > 0,

F(x+ hey) 2 F(x) + f(x)(hex)

as well as
F(x — heg) > F(x) — f(x)(heg).

Solving both inequalities for f(x), we obtain that for all A > 0,

f(x) = f(x— hey) fx+ hey) = f(x)

2 < fl(x)er < Y
From equation [8) it follows that f(x)ex = ﬁkF(x) as claimed. O

A.2 Convex functions are path integrals of their subgradients
Define [x1,x1] == {x1 + t(x2 —x1) | £ € [0, 1]} to be the line from x; to xs.

Theorem A.6. Let f: R — R" be the subgradient of some function F: R™ — R. Then
for all x1,x2 € R.,

X

" f@)dz = F(xa) - F(x1), (9)

X1

where the path integral is path-independent.

This result is analogous to the fundamental theorem of calculus for line integrals (a.k.a.
the gradient theorem). Rockafellar (1970, Corollary 24.2.1) first gave the n = 1 special case
of this results (which in can be seen as a version of the fundamental theorem of calculus).
Theorem follows directly from Rockafellar’s result (cf. Frongillo and Kash, 2014, Ap-
pendix A, Fact 3). We omit a direct proof of Theorem here, because it can be proven
using a subset of the ideas in the proof of one of the directions of Lemma [D-3]

A.3 Cyclic monotonicity

Definition 8. A function f: M C R"™ — R" is called cyclically monotone increasing if for
all sequences xg, X1, ..., X € M with k£ > 1 and xg = Xy,

k

Zf(xi—l)(xi —x;-1) <0. (10)

i=1

We call f is strictly cyclically monotone increasing if this inequality is strict unless xy =
v = Xp.



Lemma A.7. A function f: M C R"™ — R"™ is cyclically monotone increasing if and only
if for all zg, ...,z € M with zo = 2k,

Zf(zi)(zi —2;-1) > 0. (11)

Proof. Multiplying Ineq.[I0] by —1 yields
f(x0)(x0 —x1) + f(x1)(x1 — X2) + ... + f(Xn-1)(Xn—1 — Xn) + f(Xn)(Xn — X0) > 0. (12)

Choosing x,, = zg, Xp—1 = Z1, ..., X9 = Zn, We obtain

[ (20)(Zn —Zn—1) + [(Zn-1)(Zn-1 — Zn—2) + ... + f(21)(z1 — 20) + [(20)(20 — Z,) > 0. (13)

And this is the same as Ineq. except that the order of the first n summands is reversed.
O

Lemma A.8. If f: R™ — R"™ is cyclically monotone increasing, then for any X,Xp, the
function [0,1] = R™: t = (xp — X4 ) f (Xa + t(Xp — X4)) s monotone increasing.

Conditions equivalent to this monotonicity on the line are sometimes used for defining
monotonicity (a.k.a. two-cycle monotonicity) for functions R” — R™. Note that the lemma
only holds in one direction.

Proof. Let t1,ts € [0,1], t; < t2. Define x; = x, + t(xp — X, for ¢ = 1,2. By definition of
cyclic monotonicity and Lemma [A77]

f(x2)(x2 —x1) + f(x1)(x1 — x2) > 0.
By simple arithmetics, this is equivalent to

f(x2)(x2 —x1) > f(x1)(x2 — x1).

Inserting the definitions of x1,xs and dividing by ¢ yields that

(x5 — Xa) f(Xa + t2 (X6 — Xa)) = (Xp — Xq) [(Xq + t1(xXp — Xq))
as claimed. O

Lemma A.9. Let f: R — R be a function on the reals. Then f is cyclically monotone
increasing if and only if f is monotone increasing.

Lemma A.10. Let f: R® — R™ be cyclically monotone increasing. Then [ is path-
independently integrable.

Proof. First note that the line integral of f on any [x,, Xp] is by definition a regular integral
of the real function in Lemma[A.8|on the interval [0, 1]. Because by Lemma[A §|this function
is monotone, it is integrable (e.g., Rudin 1976, Theorem 6.9). Hence, f is (path-)integrable
on [Xg,Xp).

It is left to show path-independence, i.e., that for closed curves -,

L F(x)dx = 0.



This can be seen as follows. Because f is cyclically monotone increasing, it is for all
X0, X1, ..., X} € R" with xg = xj, by definition and Lemma [A77]

k

k
Zf(xl)(x — X 1 Z Xi— 1 — Xi— 1) (14)

i=1

Now, because f is integrable, if we let the cycle x1, ..., X become arbitrarily fine approxi-
mations of v, the left and right sum converge to the integral along v and therefore to the
same value. By Ineq. that value must be 0. O

Lemma A.11. If f: R™ — R” is strictly two-cycle monotone, then f is injective.

Proof. By contradiction. Assume there are x,,x, € R™ with x, # x, but f(x4) = f(xp).
Then

Xa(f(xa) = f(x3)) + xb(f (%) = f(%a)) =0

in contradiction to strict two-cycle monotonicity of f. O

Lemma A.12. Let f: R® — R" be strictly cyclically monotone. Then f~':im(f) — R",
which exists as per the above, is strictly cyclically monotone.

Proof. Let yo,y1,...,yx € im(f) with yo = yj. Further, let x; = f~1(y;). Then

ZYz Y1 f_l(Yi—l))

= Zf(xi)(xi - Xj-1)

O

A.4 A function is a subgradient if and only if it is cyclically mono-
tone increasing

Theorem A.13 (Rockafellar, 1970, Theorem 24.8). Let f: R™ — R™. Then there is a
function F such that f is a subgradient function of F if and only if f is cyclically monotone
mcereasing.

We omit proofs here, because the two directions are analogous to other proofs we give
below. If f is a subgradient, then it is easy to show that f is cyclically monotone increasing,
compare the proof of Lemma The other direction is harder and analogous to the proof
of one of the two directions of Lemma [D.3]

A.5 Path integral of the inverse

Besides taking integrals along lines [a, b] C R™, we would like to take curve integrals along
functions v: [a,b] — R™. In particular, we want to take them along functions + that are
cyclically monotone increasing, but not necessarily continuous.
To make this well-defined we first extend +y to a set-valued function % such that 5([a, b])
is a curve. So let v be discontinuous at x € [a, b]. Specifically imagine that there isa § > 0
s.t. for all € > 0,
Iy + e(b—a)) = 1) > 3,



i.e., that v jumps immediately after x. Imagine further that « is continuous in the other
direction from x. Then define

3(x) = [v(x), 1513 v(x + (b —a))]

If  jumps to the left or on both sides of x, we define J(x) analogously. If 7 is continuous
at x, we simply let ¥(x) = {y(x)}.

We can now define the path integral in almost the usual way via partitioning the curve
7. So for each n let y,.0,...,yn.n € f([a,b]) that are ordered in the natural way. Further
let y5,0, ..., Yn,n become arbitrary fine as n — co. We then consider limits

n

Z g(Yn,i)(Yn,i - Yn,i—l)

=1

as n — oo. If these limits exist and are the same for all all partitions, we call that limit

L g(x)dx.

We have now slightly extended the notion of curves for curve integrals. Next, we would
like to take integrals of the form

[ iy,
fitamb)

where f|[a,b) is the restriction of f to the line [a, b] and f|[_a1,b]: f([a,b]) is its inverse. This
presents another small technical difficulty, which is that f|a ) need not be injective and
thus fITa{b] may be set-valued. We will deal with this by tie-breaking to get a single-value.
We will see that in our context it does not matter which value is chosen.

Lemma A.14. Let f be cyclically monotone increasing. Then for all y,a,b, f‘?alb] (y) is a
line segment/interval.

This follows directly from the monotonicity on the line as per Lemma

Theorem A.15. Let f: R™ — R" be cyclically monotone increasing and a,b € R™. Then

b
/ f|[j,b] (y)dy =bf(b) —af(a) — / F(x)dx. (15)
fifa,b) a

For strictly monotone, continuous functions f: R — R and regular Riemann integrals,
this is a well-known and intuitive result (see, e.g., Key, (1994, Theorem 1). We generalize
this result in two (novel, as far as we know) ways. The first is that we allow f to be only
weakly (cyclically) monotone and discontinuous. The second is that we allow n > 1, i.e.,
that we generalize the result to path integrals.

As long as we keen = 1, the result remains intuitive and we give the typical type of

2

illustration in Figure |2l As usual, the integral f: f(z)dz is the area under the curve of f

between a and b. Similarly, the integral [ f(f)) f~Y(y)dy, with our technical extension, is the
light blue area, which is the area under the curve between f(a) and f(b) if we turn the graph
90 degrees counter-clockwise and fill the discontinuity with a straight line. By inspection,
we can see that the square with area f(b)b can be partitioned into a square with area f(a)a
and the area under curves described by the integrals ff f(z)dxz and f;((:)) f~1(y)dy. This is
exactly the claim of the theorem in case n = 1.



Figure 2: An illustration of Theorem for n = 1.

Proof. Consider any sequence of partitions yp, o, ..., yn,» of the path ﬁ[a,b] as specified above.
First, take a sequence of partitions x, o, ..., Xn,n of [a,b] (ordered in the natural way), s.t
for each n € N;i € {0,...,n}, yni € f(Xn,i)-
First, it is
n

Z f (Yni)(Yni — Ynji-1) — an,i(ym‘ —¥Yn,i—1) = 0 as n — oco.
i=1

Note that the left-hand side is the “Riemann sum” for f~! on the path f. Intuitively, this
just means that whenever f~1(y, ;) has multiple values, it doesn’t matter which one we
pick and so we can assume that we pick a specific x; as per the above partition of [a, b].
This fact follows from Lemma [A14]

Furthermore, it is

n
an,i(ymi —Yn,i— 1 an 7 Xn z - f(xn,ifl)) — 0 as n — oo.

Now, we can rewrite this as

anz an _f(Xn,i—l))
n
= an,if(xn,z — Xn,i— 1f Xn i— 1 Z Xn,i - Xn,ifl)f(xn,ifl)
i=1 =1

n
== Xn nf(xn n) — X, O.f X, 0 Z Xn,i — Xn,i—l)f(xn,i—l)

i=1

— bf(b)-af(a /f

as claimed. O

Corollary A.16. Let f: R™ — R"™ be cyclically monotone increasing. Then the path integral
of f~1 is path-independent. That is, for all a,b,c € R",

/ f|[ab]( )der/ flfbl’c](y)dy:/
fita.b) Jitb.e] Tit

Flme (¥)dy (16)

a,c]



Proof.

/f” . fﬁalb]( )dY‘i‘/f fl[])lc](y)dy

]

Theorem T3 (f ) —af(a / fx dX) (Cf (c) / f(x dx)
— of(c)-af(a (/f i [ ) )

Lemma [T0 cf(c) —af(a) - /a f(x)dx

Thcor(;n AETA fl[

B Proofs for Section [3

B.1 Expected proper scoring under honest reporting is convex

We here prove an easy lemma that we will use our proofs. This type of result/proof is
well-known in the literature on proper scoring rules for prediction.

Lemma B.1. If s is proper, then the function (Q,P,) — Eg~g.o~p, [$(Q, Pa, E,O)] is
convet.

Proof. Because s is proper,

EE"’Q’ONPQ [S(Q7 Paa E7 O)] = . mgx EENQ’ONPQ |:S(Q7 Pa, E‘7 O) .
QEA(H),PLeA(Q)H

For fixed, Q, P,, the term

Ep~qQ,0~P. [S(Q, Po, E, O)}
is affine in @, P,. Hence, Eg.g o~p, [$(Q, P, E,O)] is the point-wise maximum of a set of
affine and therefore convex functions. By Lemma the point-wise maximum of affine
convex functions is convex. O
B.2 Continuity under honest reporting

Lemma B.2. If s is proper, then Eg~g.o~p, [$(Q, Pa, E,O)] is continuous in Py, Q in the
set of Py, Q with full support.

Proof of Lemma[B-4 with convex analysis. By Lemma|[B.1] the given function is convex. By
Lemma it is therefore continuous on the given (open) set. O

Proof of Lemma [B-4 without convex analysis. We prove the contrapositive. Let there be a
discontinuity at (Q, P,). This means there is § > 0 s.t. for all € > 0 there is (Qc, Pa,c) s.t.

|EE~Q,O~PQ [S(Qa Pou Ev O)] - IEENQHONPQ,€ [S(Qea Pa,ea Ev O)H > 0.

It follows that for the given ¢ (at least) one of the following two must hold:



(1) For all € > 0 there is (Qe, Pae) s.t.

Ep~qQ,0~pP, [5(Q; Pa, E,0)] = Ep~q.,0~P.. [$(Qc, Pa,c, E,0)] > 6.
(2) For all € > 0 there is (Qe, Pae) s-t.

Egnq.o~p, [5(Q, Pa, E,O)] = Epnqg..0~P, . [5(Qc, Po.c, E,O)] < —0.

Consider case 1. The idea is now that if the expert’s belief is (Q, Pa.c), he could re-
port (Q, P,) because intuitively speaking as e approaches 0, the expected score cannot tell
whether the true distribution is (Q., Pa,e) or (Q, Py ):

EENQmONPa,e [S(Q7Pa>EaO)] 6:;0 ]EENQ’ONPO( [S(Q,Pa,E,O)]
> IEENQQONPD(,E [S(Qéapa,eanO)] +5

The convergence is due to the fact that the expectation is continuous in the distribution(s)
that it is over (in this case Qe, Py ). It follows that for small enough e,

EENQE,ONPQ,E [S(Q7 Po, E, O)] > EENQ530~PQ,€ [S(Q€7 Pa,eﬂ E, O)] :

By definition, this means that s is not proper, as claimed.
Case 2 is dealt with analogously by reporting (Q., Pa,.) when the true belief is (Q, P,),
for small enough e. O

B.3 No expert preferences under honest reporting

Lemma B.3. Let s be a proper DSR and P,, P!, € A(Q)" be s.t. for alle € H

min u(w) < Eor, [u(0) | ¢ = Eonpy, [u(0) | o] < maxu(w). (17)
Then
EE~Q,O~PQ [S(Q, Pa, E, O)] = EE~Q,O~Pa, [S(Q, Po/, E, O)] . (18)

Proof. Let wy, = arg mingecq u(w) and wy = arg max,co u(w) (with ties broken arbitrarily).
For any p € (0,1)f, define R, € A(Q) to be the distribution where for all e € H:

Ry (wh | e) = pe (19)
Rp(wr [€) =1—pe (20)
Rp(w|e)=0for all w € {wr,wp} (21)

Now consider any (non-extreme) P, as well as R, as defined above. For s to be proper
it has to be
EENQ,ONPOL [S(Q7 POM E7 O)] 2 EENQ,ONRP [3(Q7 Rp7 E7 O)] (22)

whenever all the means of Ry are element-wise at most the means of F,. The reverse
inequality has to hold if the means of Ry are at at least as high the means of P,. By
continuity of Ep~q,o~r, [s(Rqp, E,O)] as per Lemma it follows that

IEENQ,ONP@ [S(Qa Pou E7 O)] = EE~Q7O~RP [S(Qv va Ea 0)] (23)

whenever R, and P, have the same means. The same line of reasoning applies to P,/ with
the same means as P,. Hence,

EENQ»ONPa [S(QaPOMEaO)] = EENQ,ONRP [S(QaRP,EaO)]
= IEENQ,ONPD/ [S(Qv Po/y E’ O)] )

as claimed. O



It is worth that Lemma[B3]is based on the lack of “space” in the set R of possible scores.
We could imagine experts who maximize a lexicographic score. Then our result only shows
that the lexically highest value of the scores — under honest reporting — of two equally good
recommendations must be the same. But the lexically lower values could be given according
to some scoring rule for prediction (such as the quadratic scoring rule) and thus make the
expert prefer one of two recommendations with equal expected utility for the expert.

Note also that the lemma only shows that the expected scores across realizations of E
under honest report of P,, P, are the same. For individual realizations e, the expected
scores can be different.

Example 7. Define s as follows. Based on the reported Q, P, a special e* will be determined
in a way described below. We then let S(Q, P, e, w) = u(w) for e # e* and s(@, P, ef,w) =
2u(w). In the “giving shares” interpretation, explained after Example |1} the expert receives
a single A-D share for every e and an extra A-D share for e*. Let e* be selected from
argmax, E,_ 5 [u(0) | €] Q(e). ITmportantly, ties are broken based on P,, for example, by

the entropy of P.(- | €). Note that such s is proper, because Eop, [u(0) | €] Q(e) is the
value of an extra share for e to the expert. Under this proper DSR, two different, honestly
reported a, P, and o', P,y may then differ in their expected scores for e, €', if they both
claim e, e’ to both be in the above argmax but the tie is broken differently for P, versus
P,.

B.4 Proof of Theorem 3.1

Theorem 3.1. Let s be a proper DSR, Q € A(H) and P, P, € A(Q)H be s.t. foralle € H,
minwegu(w) < Eo~p, [u(O) | €] = EONR, [u(0) | ] < maxyequ(w) and supp(Pu(- | e)) C

supp(Pu(- | €)). Then Epnq.onp, [$(Q, Pa; E,0)] = Ep~q.o~p, [S(Q,Pa,EO)}-
Proof. For p € (0, 1] consider

P = 1% (Pa - pPa) . (24)

Because supp(Pa(- | €)) C supp(Pa(- | €)) for all e € H, there is p € (0,1] so small that
Po(w | e) = pPy(w | e) is positive for all w € Q,e € H. Choose such a p for the rest of this
proof. Dividing by 1 — p renormalizes such that P/, € A(Q)¥ with

P, =pP.+(1-p)P,. (25)
Note that for all e, Eovp; [u(O) | €] = Ey_p [u(O)|e] = Eo~p, [u(O) |e]. That is,
P/ P,, P, all predict the same expected utility for each e.

Then
s, [£(@ o, 2.0) (26)
= pBp, [5(Q.Pa, B,0)| + (1 - p)Ep, [5(Q, Pa, F,0) (27)
LS 9B, [sQ PuBO)| + (1= p)Er [s(Q. Pl B,O)] (28)
o S PEP S(Q P B O+ (1= p)Br [5(@Q, By, B, O) (29)
vz Br 5@ P BLO)] (30)

Because the expression at the beginning is the same as the expression in the end, the weak
inequalities in the middle must be equalities. Therefore, because p > 0, it must be the case

that Ep, [s(Q, Pa, E,0)] = Ep, [S(Q, Py, E, 0)] O



B.5 Proof of Lemma [3.2]

Lemma 3.2. Let s be a proper DSR and wy,ws € Q be two outcomes with u(wy) = u(ws).
Let Q € A(H), P, € A be s.t. for all e € H, min,cqu(w) < Eo~p, [u(0) | €] <
max,eq u(w). Further, let wi,ws € supp(Py(- | €)) for some e € H. Then s(Q, Py, e,w1) =
$(Q, Py, e,wa).

Proof If u(wi/2) = Eo~p, [u(O) | €], the result follows (almost) immediately from Lemma
Else, there exists some w3 € supp(Py (- | €)) and p € (0,1] s.t.

O1]le=p*xwi+ (1 —p)*ws (31)
Oz |e=pxwy+ (1 —p)*ws (32)

both have the same mean as P, (- | e). Further, for ¢’ # e let Oy | €' be distributed
according to P, (- | ¢’). Let Po, be the conditional distribution of O;. Then

Qe)ps(Q, P, e,w1) + Q(e)(1 — p)s(Q, Pa, e,w3) + (1 — Q(e))E[s(Q, Pa, E,0) | E # €]
= Q(e)E[s(Q, Pa,e,01) | e] + (1 = Q(e))E[s(Q, Pu, E, O1) | E # €]
- E[S(Q Pave Ol)]
ey C15(@ For e, 01)]
Lemm:am E [S(Q PO27 & 02)]
Lcmr?am E [S(Q PO” & 02)]
= Q(e)E[s(Q, Pa,e,02) | €] + (1 — Q(e))E [s(Q, Pa, E,02) | E # €]
Qe)ps(Q, P, e,w2) + Q(e)(1 — p)s(Q, Pa, e,w3) + (1 — Q(e))E[s(Q, Pa, E,0) | E # €]
Since, Q(e),p > 0, it follows that s(Q, P, e,w1) = $(Q, Pa,e,ws) as claimed. O

C Proofs for Section 4

C.1 Proof of Lemma [4.1]

Lemma 4.1. Let s be a proper DSR. Then there are functions fy: A(H) x RHE —
>0,fE A(H) x RE — RE g: A(H) x R — R, s.t. for all Q,fu, ey, s s(Q v, e,y) =

fY(Q;l")ey—’_fE(Qa )6+9(Q7u’)

Proof. Fix any Q, ju,e. We will show that S(Q7 ft,e,-) is affine. Specifically we show this by
showing that for any random variable X over R with mean x it is

x [8(Qu e, X)] = 5(Q. e, ). (33)

From this, the claimed affinity follows immediately.

So take any variable X with mean z. Let £ ~ (). Further, define new random variables
Y)Y withY|le=p*x X + (1 — )*a:’ Yie=p*xz+ (1 —p)*a’, where 2’ € R,p € (0,1] are
chosen such that Q(e)E[Y | e] = Q(e)E {Y | e] = fic. Fore' #e let Y | ¢ and Y | ¢ be



equally distributed with mean fi.,. Then
QUE [5(Q fr,e, X)| +Q(e) (1 = )s(Q, . e,2') + (1= Q)E [5(Q. 0. B, Y) | E A3d)

= QUOE[s(Q e, V)| + (1= QNE [s(Q. 10, E,Y) | E # €] (35)
= E[s(Q.fe,Y)| (

— E[s(Q.fe,Y)] (37)
= QUOE[s(Q 1., V)| + (1= Q)E [s(Q. 0, B, V) | B # €] (38)
= QEWE [5(Q,i1,e,2)] + Qo)1 = p)s(Q i1, e,2") + (1 = Q(e)E [5(Q. i1, B V) | E A(3))

Now, E {s Q, i, e, X) } [s(@,ﬂ, e,x)] follows directly from Q(e) >0,p >0 and

E[s(@,ﬂ,EY) | E;«ée} :E[S(Q,ﬁ,E,?) | E;«ée}.

We have now shown that for fixed Q, fr, e, the function S(Q, [, e,y) is affine in y. This
means that there are functions fy, fg s.t. S(Q,ﬂ, e,y) = fy(@, ﬂ)6y+fE(Q,ﬁ)e, as claimed
(setting g = 0).

Finally, notice that for propriety fy must be non-negative — otherwise the expert would
be incentivized to recommend an action that minimizes expected utility. O

C.2 Proof of Corollary

Corollary 4.2. Let s be a proper scoring rule specified via fy, fr,g as per Lemma 1
Then for all reports Q, fv evidence variables E distributed according to Q) and all means Y

with true means u, E [S(Q,ﬂ,E, Y)] = (fE(Q,ﬂ),fy(Q,/l))(Q,u) Jrg(Q,ﬂ)'
Proof.

Qi B.Y)] = 3 QU 5@t ) | ]
= Y awE Q)Y + f5(Q. 1) + 9(Qsi) | €]
- Qe Q)Y | e] + Q) f5(Q ). + Q(e)g(Q. 1)
= Zc?,m + Zny(Q,meE [Qe)Y | e] + fr(Q: 1) Q(e)
= 9@+ e:Zny@, )ete + f5(Q. 1).Q(e)

D Proofs for Section [5

D.1 Proof of Theorem [5.1]

Theorem 5.1. Let s be a DSR. Then s is proper if and only if there exist functions
FrAH-) x RT= — R x RS and F: AH_;) x RT-1 — R st s(Q, 1, Q, ) =



FQ, )(Q, ) —(Q, )+ F(Q, ju), where F is convex and f is a subgradient of F. Further,

s 1is strictly proper w.r.t. the recommendation for e if fy.. > 0.

Proof. «<: We first show that scoring rules of the given form are indeed proper. Because f
is non-negative in those entries that are multiplied by w, it is immediately obvious that —
whatever (Q, [t) is reported — the expert always weakly prefers reporting an optimal set of
recommendations. Next, let (Q, p) be any true evidence distribution and means and (Q, i)
be any report. Then

s(Q.,Q.p) = FQAQ,n) —(Q,R)+F(Q, i) (40)
e F(Q,p) (41)

F(Q,p) + f(Q,m)((Q, 1) — (Q, 1)) (42)

= s(Q,p1,Q,p). (43)

=: By Corollary [£.2] there are functions f, g s.t.

$(Q 1, Q, 1) = F(Q )(Q, 1) +9(Q, i) = f(Q, 1)(Q, ) +9(Q, )+ (Q, ) ((Q. m(afm).

44
Now, define F(Q7 MES f(Q,I:L)(Q»I:L) + g(Q,ﬂ). It is left to show that for s to be proper,
f must be a subgradient function of F' — the convexity of F follows from Lemma

For all (Q, p) and (Q, f1), it is

FQ,p)=5Qm,Q.pm) > s(QfQ,p)=FQ )+ fQ Q1) —(Q, k). (45)

s proper

This is exactly the subgradient inequality (Ineq. [4). O

D.2 Direct proof of Theorem

Theorem 5.2. Let s be a DSR. Then s is proper if and only if there is a cyclically monotone
increasing function f: A(H) x RT — RH x RIZJO, CeR,be A(H) x R s.t.

R ) R (@)
Qi Q) = FQ(Q) ~ Q)+ [T fmanC. 1)
This section is dedicated to a direct proof of Theorem without using any of the
previous results. While one of the components of the proof is somewhat of an arithmetic
grind, we think that the proof illustrates well how f uniquely determines g.
The key is the following lemma, which shows how the rate of change of g is related to
the rate of change of f.

Lemma D.1. Let s(Q,ﬂ,Q,u) = f(@,ﬂ)(Q,u) - g(@,ﬂ) be an expectation of a DSR.
Then s is proper if and only if for all (Qa, ), (Qb, ),

(f(Qas o) = f(Quy 1)) (Qu, 13) < 9(Qas 1a) — 9(Qu, 1) < (f(Qa,ua)*f(Qb,ub))(Qa,;(La))-

46
Further, s is strictly proper if and only if Ineq. is strict (in both directions) whenever
Hq 7& Hy-

Note that the two sides of the inequality are equivalent under renaming. Also notice the
similarity (but not equivalence!) of the inequality to the subgradient inequality.

Here is an intuition for the result. For simplicity, assume g(Qq, it,) > 9(Qp, ). Then
9(Qa,s t,) — 9(Qp, 1) is the extra money that the expert has to pay to obtain f(Qa,tt,)



instead of f(Qp, p,) shares and securities. For s (as defined by f, g to be (strictly) proper,
this price increase must be (strictly) worth it if the true belief is Qq, p,, (this is the right-
hand inequality). Also, the price increase must be (strictly) not worth it, if the true belief

is vall’b‘

Proof. DSR s is proper if and only if s(Qq, t,, Qp, ) < $(Qb, iy, Qb, 1) This is equivalent
to f(Qa, 1) (@b, 1) —9(Qa, 1) < f( Qs 11y)(Q, 1) =9 (@b, ), which in turn is equivalent

to
(f(Qa, 1) — [(Qb,s 1)) (Qo, 11y) < 9(Qas g) — 9(Qb, py)- (47)

The other inequality is similarly equivalent to s(Qp, by, Qu, ) < $(Qa, g, Qas Ky )-
L]

Lemma D.2. Let f: R" — R" g: R" — R. If Ineq. holds for all (Qa,p,), (Qv, 1p),
then f is cyclically monotone increasing.

P?"OOf. Let (Qla ""1)’ ) (Qna p’n)7 (Q7L+17u'n+1) = (Qla u/l) Then

Z(f(QH—hMi—&-l) - f(Qule))(Qqu) < Zg(Qi-i-lqu—l) - g(QHHz) = Oa

i—1 Lemma [D1] i—1
as required. O

The idea now is for given f, Ineq. [6]specifies g uniquely up to a constant, by considering
(Qa, 1b,) and (Qp, pp,) that are infinitesimally close to one another.

Lemma D.3. Let f be cyclically monotone increasing. Then the set of functions defined by

. . . (Q.ix)
9@ = Q@i [T feixC. (48)
for any C € R,b € A(H) x R¥ are exactly the functions that satisfy Ineq. for all
(Qa7 I’La)7 (Qb7 l'l'b)

Proof. «<: First we show that if g satisfies Ineq. for given f, g must be of the form in

Eq. 48]

Fix any (Q,ﬂ) For n € N, let x5,,0,Xn,1, -, Xn,n be in [b, (Q,ﬂ)] Let these be ordered
in the natural way with x, o = b and x,,,, = (Q,[L) For example, we could let x,; =
Xn,i—1 + ((Q, ft) — b)/n By telescoping, we can write:

n

9(Qut) = 9(b) + 3" g (%) — g (Xnio1) (49)

i=1

Since relative to any f, g can only be unique up to a constant, we will write C' instead of
g(b). From Lemma it follows that

an,H (f i) = f (%ni-1)) (50)
< g(Q.p)-C (51)
< D% (f (o) = f (i) (52)

for all n € Nyg.



We would now like to find g by taking the limit w.r.t. n — oo of the two series, where
we let the partitions (xy,;); become arbitrarily fine as n — co. To do so, we will rewrite the
two sums to interpret them as the (right and left) Riemann sums for the path integral of
some functionP] Tt is

Z Xn 7 xn z - f (Xn,ifl)) (53)

n

= an zf Xn, 1,) — Xn,i— lf Xn,i— 1 Z Xn,i _Xn,i—l)f (xn,i—l) (54)
=1

=1

= (Q )f(@ lj" Z Xn,i — Xn,i— l)f (an 1) (55)

i=1

The last step is due to telescoping of the left-hand sum. Analogously,
n
an,i—l (f %n,i) = f (Xn,i-1)) (56)
i=1

- an,if (Xn ’L) Xn,i— 1f an 1 Z xn,i - Xn,ifl)f (xn,i) (57)
i=1 i=1

= (Qf(Q ) =bf(d) =D (Xni = Xni-1)f (%ns)- (58)
i=1

By Lemma [A.10]
n (Q.)

Z(X”ai —Xp,i—1)f (Xnji-1) —

k— o0
i=1 0

f(x)dx = Z<Xn’i —Xp,i—1)f Xni).  (59)

So for k — oo, the lower and upper bound on g(@7 i) converge to the same value. Hence,
9(Q, fi) must be that value, i.e.

A . ) Q.1
9(Q, ) = C+(Q, ) f(Q, 1) — f(z)dz, (60)

0

as claimed. . R
=: Consider any (Qq, ft,) and (Qs, f,). It is

9(Qar 1y) — 9(Qo, 1)

(Qarry) (Qb,1p)
F(Qur 180)( Qs ) — /b F)dx — F( Qo 1) Qo 1) + /b f(x)dx

(Qaspry)

= (P Qurt0) — F (@ )@ ) — F(Qar 120) (@ 10) — (Qur 1)) — /(Q S

2In fact, we could immediately interpret them as Riemann sums of the function f~1, see Appendix
and in particular the proof of Theorem @



Now let (x,,;)n,i be partitions of [(Qp, ), (Qa, K, )] that become arbitrarily fine. Then

(Qasky)

(f(Qaal'l’a)_f(vaub))(QbaNb)_f(Qaa“a)((Qbaﬂ'b)_(Qavﬂa))_/(Q ) f(x)dx

(Pt = F(500))(%m0) — F(Xmn) (Ko — Xomm) — / " px)dx

n,0

n

— (f(xn,n) - f(xn,O))(Xn.,O) - f(xn,n)(xn,o - Xn,n) - Z f(xn,ifl)(xn,i - Xn,ifl)

i=1
> (f(xn,n) - f(Xn,O))(xn,O)
= (f(Qav ll'a) - f(va p‘b))(Qaa ll’b)

Together, Lemmas to imply Theorem [5.2)

D.3 Proof of Lemma [5.3

Lemma 5.3. Let s: (Q,Aﬂ, Q,p) — f(Q,[J,)u ftq(Q, ft) be a proper DSR for functions f,g.
Then fOT’ all (Ql?ﬂl)? (Q27ﬂ2)7 f(Qlap’l) = f(QQ;ﬂQ) = g(leﬁ‘l) = g(QQaI)‘Q)‘

Proof. It f(Q1,f1,) = f(Qa,f1y), but (WLOG) g(Q1, fuy) > Ag(QAQ, [15), then the expert
would always strictly prefer reporting (Q2, f15) over reporting (Q1, ft1) — even when the true
evidence distribution and means are (Q1, ft;). This contradicts the propriety of s. O

E A generalization of Othman and Sandholm’s (2010)
characterization

Consider the special case of differentiable DSRs. Since by Lemma [A7F] the subgradient is
equal to the gradient for differentiable convex functions, we could directly obtain character-
izations of differentiable scoring rules from Theorems and However, we here give a
third characterization of differentiable proper DSRs, which generalizes the characterization
of differentiable proper DSRs for the case |H| = 1, 2| = 2 of Othman and Sandholm (2010},
Section 2.3.2).

Lemma E.1. Let s be a differentiable proper DSR. Then there are differentiable f,g with
S(Qv l)‘a €, y) - fE(Q? ﬂ)e =+ fY(Qv l"’)ﬁy - g(Q7 ﬂ)

Proof. Lemma shows that there are f, g with s(Q, f1,e,y) = fe(Q,ft)e + fy (Q, p)ey —
g(Q,ﬂ). It is left to show that in particular we can choose f,g that are differentiable.
We do this by choosing a representation where g = 0. (As noted before, this is possible
because otherwise we can define fE(Q, e = fE(Q, e — g(@7 [t) to obtain S(Q,/l,e, y) =
fE(Q7ﬂ)€+fY(Qap’)ey)' N N R N

Now notice that for all Q, i1, e, s(Q, ft,e,1) — s(Q, fr,e,0) = fy(Q, ft)e. Since the dif-
ference of two differentiable functions is differentiable, fy is differentiable. Furthermore,
S(Q,[he,()) = fE(Q,ﬂ)e. Thus, fr must also be differentiable. O

Proposition E.2. Let s be a differentiable DSR. Then s is proper if and only if there are
cyc. mon. incr., differentiable f: A(H) x RE — RH x Rgo and differentiable g: RH — R
ERA

s(Q,p, Q, 1) = f(Q, 1)(Q, 1) — 9(Q, i) (61)



with

(Q, u) f(Q ) = due 9(Q, 1) (62)
d
(@ 15 Q( ] (Q,p) = 100" 9(Q, p) (63)

for alle € H,(Q,p) € A(Q) x RE,

We here use the derivative with respect to entries of Q without much care. A technical
issue here is that if we only change one entry of (), we do not obtain a probability distribution.
Thus, for defining the derivative w.r.t. Q(e) we have to specify a way to counterbalance the
change in Q(e) to obtain a new probability distribution to feed into f,g. The definition of
the derivative is ambiguous w.r.t. how we counterbalance. Since it doesn’t matter for the
proposition or proof how we specify the derivative, we do not have to resolve the ambiguity
here.

Proof. =: By Lemma [E.]] -, there are differentiable functions f, g s.t. the expected scores
are S(Q ,Q,p) = 0 S — g(Q ft). We have already shown that f must be cyclically
monotone (Lemma . Note that if s(Q, [, e,y) is differentiable, so is the expected score
s(Q, i1, Q, i), because the linear combination of differentiable functions is differentiable.

For s to be proper, for each (Q, u), (Q, [, Q, p) has to be maximal at x = pu. Hence,
for each e, (Q,M,Q, ©) =0 at u=f. Now,

d 50,
die

d A d A
) s(Q, i1, Q, p) (Q, 1) Q()f(Q ) 10(0)

For this to be zero at (Q, i) = (Q, p), Equations |62 and [63| must hold, as claimed.

<: For the other direction, we provide a short but indirect argument. Notice first that
any cyclically monotonically increasing, differentiable f the derivatives of f, which in turn
determine uniquely via Equations [62] and [63] the derivatives of g, which in turn determine
g uniquely up to a constant. In sum, any cyclically monotonically increasing, differentiable
f of the given type signature determines a set of scoring rules that satisfy Equations
and [63| and that differ only by a constant. Call this set of scoring rules M. By the proof
of the other direction of the proposition above (=), all proper DSRs with the given f are
in this set. By our other characterization there are proper DSRs for the given (cyclically
monotonically increasing) f (whose fy entries are positive). Thus, My contains at least one
proper DSR. Since any pair of scoring rules in M/ differ only by a constant and adding a
constant preserves propriety, all scoring rules in M are proper. O

@>

Q ) (Qau)diﬂef(éa[l’) -

We briefly show this is indeed equivalent to the characterization of Othman and Sand-
holm (2010) in the |H| = 1,|Q| = 2 special case. They characterize such differentiable

proper scoring rules s as ones where A) s(p,1) > s(p,0) and B) ‘;:E% = ijl for all p.

A is equivalent to being able to write s(p,1) = f(p) — g(p) and s(p,0) = —g(p) for some
differentiable g and positive, differentiable f. With that we can re-write B:

R L A I

which is exactly the relationship between f’, g’ stated in our Proposition Othman and
Sandholm seem to forget the necessity of s’(p, 1) > 0 (i.e., the monotonicity of s). Note that



Othman and Sandholm use different names for scoring rules. In particular, they use “f(p)”
for s(p,1) and “g(p)” for s(p,0).

Can Proposition be generalized to non-differentiable DSRs s, giving yet another
style of characterization? At least on first sight, this seems difficult, because if f can be
discontinuous it is unclear what concept could replace the derivative of f.
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