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Abstract

AI systems are often used to make or contribute to important decisions in a growing
range of applications, including criminal justice, hiring, and medicine. Since these
decisions impact human lives, it is important that the AI systems act in ways which
align with human values. Techniques for preference modeling and social choice help
researchers learn and aggregate peoples’ preferences, which are used to guide AI
behavior; thus, it is imperative that these learned preferences are accurate. These
techniques often assume that people are willing to express strict preferences over
alternatives; which is not true in practice. People are often indecisive, and espe-
cially so when their decision has moral implications. The philosophy and psychology
literature shows that indecision is a measurable and nuanced behavior—and that
there are several different reasons people are indecisive. This complicates the task
of both learning and aggregating preferences, since most of the relevant literature
makes restrictive assumptions on the meaning of indecision. We begin to close this
gap by formalizing several mathematical indecision models based on theories from
philosophy, psychology, and economics; these models can be used to describe (inde-
cisive) agent decisions, both when they are allowed to express indecision and when
they are not. We test these models using data collected from an online survey where
participants choose how to (hypothetically) allocate organs to patients waiting for a
transplant.

1 Introduction

AI systems are currently used to make, or contribute to, many important decisions. These
systems are deployed in self-driving cars, organ allocation programs, businesses for hiring,
and courtrooms to set bail. It is an ongoing challenge for AI researchers to ensure that these
systems make decisions that align with human values.

A growing body of research views this challenge through the lens of preference aggrega-
tion. From this perspective, researchers aim to (1) understand the preferences (or values)
of the relevant stakeholders, and (2) design an AI system that aligns with the aggregated
preferences of all stakeholders. This approach has been proposed recently in the context
of self-driving cars [24] and organ allocation [11]. These approaches rely on a mathemat-
ical model of stakeholder preferences–which is typically learned using data collected via
hypothetical decision scenarios or online surveys.1 There is a rich literature addressing
how to elicit preferences accurately and efficiently, spanning the fields of computer science,
operations research, and social science.

It is critical that these observed preferences accurately represent peoples’ true prefer-
ences, since these observations guide deployed AI systems. Importantly, the way we measure
(or elicit) preferences is closely tied to the accuracy of these observations. In particular,
it is well-known that both the order in which questions are asked, and the set of choices
presented, impact expressed preferences [7, 8].

1The MIT Moral Machine project is one example: https://www.moralmachine.net/



Often people choose not to express a strict preference, in which case we call them indeci-
sive. The economics literature has suggested a variety of explanations for indecision [16]—for
example when there are no desirable alternatives, or when all alternatives are perceived as
equivalent. Moral psychology research has found that people often “do not want to play god”
in moral situations, and would prefer for somebody or something else to take responsibility
for the decision [15].

In philosophy, indecision of the kind discussed in this paper is typically linked to a class
of moral problems called symmetrical dilemmas, in which an agent is confronted with the
choice between two alternatives that are or appear to the agent equal in value [31].2 Much
of the literature concerns itself with the morality and rationality of the use of a randomizer,
such as flipping a coin, to resolve these dilemmas. Despite some disagreements over details
[22, 9, 2, 17], many philosophers do agree that flipping a coin is often a viable course of
action in response to indecision3.

The present study accepts the assumption that flipping a coin is typically an expression
of one’s preference to not decide between two options, but goes beyond the received view
in philosophy by suggesting that indecision can also be common and acceptable when the
alternatives are asymmetric. We show that people often do adopt coin flipping strategies in
asymmetrical dilemmas, where the alternatives are not equal in value. Thus, the use of a
randomizer is likely to play a more complex role in moral decision making than simply as a
tie breaker for symmetrical dilemmas.

Naturally, people are also sometimes indecisive when faced with difficult decisions re-
lated to AI systems. However it is commonly assumed in the preference modeling literature
that people always express a strict preference, unless (A) the alternatives are approximately
equivalent, or (B) the alternatives are incomparable. Assumption (A) is mathematically
convenient, since it is necessary for preference transitivity.4 Since indecision is both a com-
mon and meaningful response, strict preferences alone cannot accurately represent peoples’
real values. Thus, AI researchers who wish to guide their systems using observed preferences
should be aware of the hidden meanings of indecision. We aim to uncover these meanings
in a series of studies.
Our Contributions. First, we conduct a pilot experiment to illustrate how different
interpretations of indecision lead to different outcomes (§ 2). Using hypothesis testing, we
reject the common assumption (A) that indecision is expressed only toward equivalent—or
symmetric—alternatives.

Then, drawing on ideas from psychology, philosophy, and economics, we discuss several
other potential reasons for indecision, drawing (§ 3). We formalize these ideas as math-
ematical indecision models, and develop a probabilistic interpretation that lends itself to
computation (§ 4).

To test the utility of these models, we conduct a second experiment to collect a much
larger dataset of decision responses (§ 5). We take a machine learning (ML) perspective,
and evaluate each model class based on its goodness-of-fit to this dataset. We assess each
model class for predicting individual peoples’ responses, and then we briefly investigate
group decision models.

In all of our studies, we ask participants who should receive the kidney? in a hypothetical
scenario where two patients are in need of a kidney, but only one kidney is available. As
a potential basis for their answers, participants are given three “features” of each patient:
age, amount of alcohol consumption, and number of young dependents.

2Sophie’s Choice is a well-known example: a guard at the concentration camp cruelly forces Sophie to
choose one of her two children to be killed. The guard will kill both children if Sophie refuses to choose.
Sophie’s reason for not choosing one child applies equally to another, hence the symmetry.

3With some exceptions: for example, see [28].
4My preferences are transitive if “I prefer A over B” and “I prefer B over C” implies “I prefer A over C”.



We chose this task for several reasons: first, kidney exchange is a real application where
algorithms influence—and sometimes make—important decisions about who receives which
organ.5 Second, organ allocation is a difficult problem: there are far fewer donors organs
than there are people in need of a transplant.6 Third, the question of who should receive
these scarce resources raises serious ethical dilemmas [29]. Kidney allocation is also a com-
mon motivation for studies of fair resource allocation [1, 21, 20]. Furthermore, this type
of scenario is frequently used to study peoples’ preferences and behavior [11, 13, 14, 25].
Importantly, this prior work focuses on peoples’ strict preferences, while we aim to study
indecision.

2 Study 1: Indecision is Not Random Choice

We first conduct a pilot study to illustrate the importance of measuring indecision. Here
we take the perspective of a preference-aggregator; we illustrate this perspective using a
brief example: Suppose we must choose between two alternatives (X or Y), based on the
preferences of several stakeholders. Using a survey we ask all stakeholders to express a strict
preference (to “vote”) for their preferred alternative; X receives 10 votes while Y receives 6
votes, so X wins.

Next we conduct the same survey, but allow stakeholders to vote for “indecision” instead;
now, X receives 4 votes, Y receives 5 votes, and “indecision” receives 7 votes. If we assume
that voters are indecisive only when alternatives are nearly equivalent (assumption (A) from
Section 1), then each “indecision” vote is analogous to one half-vote for both X and Y, and
therefore Y wins. In other words, in the first survey we assume that all indecisive voters
choose randomly between X and Y. However, if indecision has another meaning, then it is
not clear whether X or Y wins. Thus, in order to make the best decision for our constituents
we must understand what meaning is conveyed by indecisive voters. Unfortunately for our
hypothetical decision-maker, assumption (A) is not always valid.

Using a small study, we test—and reject—assumption (A), which we frame as two differ-
ent hypotheses, H0-1: if we discard all indecisive votes, then both X and Y receive the same
proportion votes, whether or not indecision is allowed. A second related hypothesis is H0-2:
if we assign half of a vote to both X and Y when someone is indecisive, then both X and Y
receive the same proportion votes, whether or not indecision is allowed. We conducted the
hypothetical surveys described above, using 15 kidney allocation questions (see Appendix B
for the survey text and analysis). Participants were divided into two groups: participants
in group Indecisive (N=62) were allowed to express indecision (phrased as “flip a coin to
decide who receives the kidney”), while group Strict (N=60) was forced to choose one of
the two recipients. We test H0-1 by identifying the majority patient, “X” (who received
the most votes) and the minority patient “Y” for each of the 15 questions (details of this
analysis are in Appendix B). Overall, group Indecisive cast 581 (74) votes for the majority
(minority) patient, and 275 indecision votes; the Strict group cast 751 (149) votes for the
majority (minority) patient. Using a Pearson’s chi-squared test we reject H0-1 (p < 0.01).
According to H0-2, we might assume that all indecision votes are “effectively” one half-vote
for both the minority and majority patient. In this case, the Indecisive group casts 718.5
(211.5) “effective” votes for the majority (minority) patients; using these votes we reject
H0-2 (p < 0.01).

5Many exchanges match patients and donors algorithmically, including the United Network for Organ
Sharing (https://unos.org/transplant/kidney-paired-donation/) and the UK national exchange (https:
//www.odt.nhs.uk/living-donation/uk-living-kidney-sharing-scheme/).

6There are around 100, 000 people in need of a transplant today (https://unos.org/data/
transplant-trends/), and about 22, 000 transplants have been conducted in 2020.



In the context of our hypothetical choice between X and Y, this finding is troublesome:
since we reject H0-1 and H0-2, we cannot choose a winner by selecting the alternative with
the most votes—or, if indecision is measured, the most “effective” votes. If indecision has
other meanings, then the “best” alternative depends on which meanings are used by each
person; this is our focus in the remainder of this paper.

3 Models for Indecision

The psychology and philosophy literature find several reasons for indecision, and many of
these reasons can be approximated by numerical decision models. Before presenting these
models, we briefly discuss their related theories from psychology and philosophy.
Difference-Based Indecision In the preference modeling literature it is sometimes as-
sumed that people are indecisive only when both alternatives (X and Y) are indistinguish-
able. That is, the perceived difference between X and Y is too small to arrive at a strict
preference. In philosophy, this is referred to as “the possibility of parity” [5].
Desirability-Based Indecision In cases where both alternatives are not “good enough”,
people may be reluctant to choose one over the other. This has been referred to as “single
option aversion” [23], when consumers do not choose between product options if none of
the options is sufficiently likable. Zakay et al. [35] observes this effect in single-alternative
choices: people reject an alternative if it is not sufficiently close to a hypothetical “ideal”.
Similarly, people may be indecisive if both alternatives are attractive. People faced with the
choice between two highly valued options often opt for an indecisive resolution in order to
manage negative emotions [19].
Conflict-Based Indecision People may be indecisive when there are both good and bad
attributes of each alternative. This is phrased as conflict by Tversky et al. [34]: people have
trouble deciding between two alternatives if neither is better than the other in every way.
In the AI literature, the concept of incomparability between alternatives is also studied [27].

While these notions are intuitively plausible, we need mathematical definitions in order
to model observed preferences. That is the purpose of the next section.

4 Indecision Model Formalism

In accordance with the literature, we refer to decision-makers as agents. Agent preferences
are represented by binary relations over each pair of items (i, j) ∈ I × I, where I is a
universe of items. We assume agent preferences are complete: when presented with item
pair (i, j), they expresses exactly one response r ∈ {0, 1, 2}, which indicates:

• r = 1, or i � j: the agent prefers i more than j

• r = 2, or i ≺ j: the agent prefers j more than i

• r = 0, or i ∼ j: the agent is indecisive between i and j

When preferences are complete and transitive,7 then the preference relation corresponds to
a weak ordering over all items [30]. In this case there is a utility function representation
for agent preferences, such that i � j ⇐⇒ u(i) > u(j), and i ∼ j ⇐⇒ u(i) = u(j),
where u : I → R is a continuous function. We assume each agent has an underlying utility
function, however in general we do not assume preferences are transitive. In other words, we
assume agents can rank items based on their relative value (represented by u(·)), but in some
cases they consider other factors in their response—causing them to be indecisive. Next, to

7Agent preferences are transitive if i � j and i � k iff i � k.



model indecision we propose mathematical representations of the causes for indecision from
Section 3.

4.1 Mathematical Indecision Models

All models in this section are specified by two parameters: a utility function u(·) and a
threshold λ. Each model is based on scoring functions: when the agent observes a query
they assign a numerical score to each response, and they respond with the response type that
has maximal score; we assume that score ties are broken randomly, though this assumption
will not be important. In accordance with the literature, we assume the agent observes
random iid additive error for each response score (see, e.g., [33]). Let Sr(i, j) be the agent’s
score for response r to comparison (i, j); the agent’s response is given by

R(i, j) = argmax
r∈{0,1,2}

Sr(i, j) + εrij .

That is, the agent has a deterministic score for each response Sr(i, j), but when making
a decision the agent observes a noisy version of this score, Sr(i, j) + εrij . We make the
common assumption that noise terms εrij are iid Gumbel-distributed, with scale µ = 1. In
this case, the distribution of agent responses is

p(i, j, r) =
eSr(i,j)

eS0(i,j) + eS1(i,j) + eS2(i,j)
. (1)

Each indecision model is defined using different score functions Sr(·, ·). Score functions for
strict responses are always symmetric, in the sense that S2(i, j) = S1(j, i); thus we need
only define S1(·, ·) and S0(·, ·). We group each model by their cause for indecision from
Section 3.
Difference-Based Models: Min-δ, Max-δ Agents are indecisive when the utility difference
between alternatives is either smaller than threshold λ (Min-δ) or greater than λ (Max-δ).
The score functions for these models are

Min-δ :

{
S1(i, j) ≡ u(i)− u(j)
S0(i, j) ≡ λ

Max-δ :

{
S1(i, j) ≡ u(i)− u(j)
S0(i, j) ≡ 2|u(i)− u(j)| − λ

Here λ should be non-negative: for example with Min-δ, λ ≤ 0 means the agent is never
indecisive, while for Max-δ this means the agent is always indecisive. Model Max-δ seems
counter-intuitive (if one alternative is clearly better than the other, why be indecisive?),
yet we include it for completeness. Note that this is only one example of a difference-based
model: instead the agent might assess alternatives using a distance measure d : I×I → R+,
rather than u(·).
Desirability-Based Models: Min-U , Max-U Agents are indecisive when the utility of
both alternatives is below threshold λ (Min-U), or when the utility of both alternatives is
greater than λ (Max-U). Unlike the difference-based models, λ here may be positive or
negative. The score functions for these models are

Min-U :

{
S1(i, j) ≡ u(i)
S0(i, j) ≡ λ

Max-U :

{
S1(i, j) ≡ u(i)
S0(i, j) ≡ 2 min{u(i), u(j)} − λ

Both of these models motivated in the literature (see § 3).



Conflict-Based Model: Dom In this model the agent is indecisive unless one alternative
dominates the other in all features, by threshold at least λ. For this indecision model, we
need a utility measure associated with each feature of each item; for this purpose, let un(i)
be the utility associated with feature n of item i. As before, λ here may be positive or
negative. The score functions for this model are

Dom :

{
S1(i, j) ≡ minn∈[N ] (un(i)− un(j))
S0(i, j) ≡ λ

This is one example of a conflict-based indecision model, though we might imagine others.
These models serve as a class of hypotheses which describe how agents respond to com-

parisons when they are allowed to be indecisive. Using the response distribution in (1), we
can assess how well each model fits with an agent’s (possibly indecisive) responses. How-
ever, in many cases agents are required to express strict preferences—they are not allowed
to be indecisive (as in Section 2). With slight modification the score-based models from
this section can be used even when agents are forced to express only strict preferences; we
discuss this in the next section.

4.2 Indecision Models for Strict Comparisons

We assume that agents may prefer to be indecisive, even when they are required to express
strict preferences. That is, we assume that agents use an underlying indecision model to
express strict preferences. When they cannot express indecision, we assume that they either
resample from their decision distribution, or they choose randomly. That is, we assume
agents use a two-stage process to respond to queries: first they sample a response r from
their response distribution p(·, ·, r); if r is strict (1 or 2), then they express it, and we are
done. If they sample indecision (0), then they flip a weighted coin to decide how to respond:

(heads) with probability q they re-sample from their response distribution until they sample
a strict response, without flipping the weighted coin again

(tails) with probability 1− q they choose uniformly at randomly between responses 1 and
2.

That is, they respond according to distribution

pstrict(i, j, r) ≡


q
(

eS(i,j)+(1/2)eS0(i,j)

C

)
+ 1−q

D

(
eS1(i,j)

) if r = 1

q
(

eS2(i,j)+(1/2)eS0(i,j)

C

)
+ 1−q

D eS2(i,j)
if r = 2

(2)

Here, C ≡ eS0(i,j) + eS1(i,j) + eS2(i,j) , and D ≡ eS1(i,j) + eS(2(i,j). The (heads) condition
from above has another interpretation: the agent chooses to sample from a “strict” logit,
induced by only the score functions for strict responses, S1(i, j) and S1(i, j). We discuss
this model in more detail, and provide an intuitive example, in Appendix C.

We now have mathematical indecision models which describe how indecisive agents re-
spond to comparison queries, both when they are allowed to express indecision (§ 4.1), and
when they are not (§ 4.2). The model in this section, and response distributions (1) and
(2), represent one way indecisive agents might respond when they are forced to express
strict preferences. The question remains whether any of these models accurately represent
peoples’ expressed preferences in real decision scenarios. In the next section we conduct a
second, larger survey to address this question.



5 Study 2: Fitting Indecision Models

In our second study, we aim to model peoples’ responses in the hypothetical kidney allocation
scenario using indecision models from the previous section as well as standard preference
models from the literature. The models from the previous section can be used to predict
peoples’ responses, both when they are allowed to be indecisive, and when they are not. To
test both class of models, we conducted a survey with two groups of participants, where
one group was were given the option to express indecision, and the other was not. Each
participant was assigned to 1 of the 150 random sequences, each of which contains 40
pairwise comparisons between two hypothetical kidney recipients with randomly generated
values for age, number of dependents, and number of alcoholic drinks per week. We recruited
150 participants for group Indecisive, which was given the option to express indecision8. 18
participants were excluded from the analysis for failing attention checks, leaving us with a
final sample of N=132. Another group, Strict (N=132), was recruited to respond to the
same 132 sequences, but without the option to express indecision.

We remove 26 participants from Indecisive who never express indecision, because it
is not sensible to compare goodness-of-fit for different indecision models when the agent
never chooses to be indecisive. This study was reviewed and approved by our organization’s
Institutional Review Board; please see Appendix B for a full description of the survey and
dataset.
Model Fitting. In order to fit these indecision models to data, we assume that agent
utility functions are linear: each item i ∈ I is represented by feature vector xi ∈ RN ; agent
utility for item i is u(i) = u>xi, where u ∈ RN is the agent’s utility vector. We take a
maximum likelihood estimation (MLE) approach to fitting each model: i.e., we select agent
parameters u and λ which maximize the log-likelihood (LL) of the training responses. Since
the LL of these models is not convex, we use random search via a Sobol process [32]. The
search domain for utility vectors is u ∈ [−1, 1]N , the domain for probability parameters is
(0, 1), and the domain for λ depends on the model type (see Appendix C). The number of
candidate parameters tested and the nature of the train-test split vary between experiments.
All code used for our analysis is available online, 9 and details of our implementation can
be found in Appendix C.

We explore two different preference-modeling settings: learning individual indecision
models, and learning group indecision models.

5.1 Individual Indecision Models

The indecision models from Section 4 are indented to describe how an indecisive agent
responds to queries—both when they are given the option to be indecisive, and when they
are not. Thus, we fit each of these models to responses from both participant groups:
Indecisive and Strict . For each participant we randomly split their question-response pairs
into a training and testing set of equal size (20 responses each). For each participant we
fit all five models from Section 4, and two baseline methods: Rand (express indecision
with probability q and chooses randomly between alternatives otherwise), MLP (a multilayer
perceptron classifier with two hidden layers with 32 and 16 nodes). We use MLP as a state-
of-the-art benchmark, against which we compare our models; we use this benchmark to see
how close our new models are to modern ML methods.

For group Indecisive we estimate parameter q for NaiveRand from the training queries;
for Strict q is 0. For MLP we train a classifier with one class for each response type, using

8As in Study 1, this is phrased as “flip a coin.”
9https://github.com/duncanmcelfresh/indecision-modeling



Table 1: Best-fit models for individual participants in group Indecisive (left) and Strict
(right). The number of participants for which each model has the largest test log-likelihood
(#1st), second-largest test LL (#2nd), as well as third-largest (#3rd) are given for each
model, and the median training and test LL over all participants.

Group Indecisive (indecision & strict responses) Group Strict (only strict responses)

Model #1st #2nd #3rd Train/Test # 1st # 2nd # 3rd Train/Test

Min-δ 29 (27%) 23 (22%) 13 (12%) -0.82/-0.85 26 (20%) 53 (40%) 34 (26%) -0.44/-0.47

Max-δ 11 (10%) 12 (11%) 19 (18%) -0.81/-0.90 31 (23%) 57 (43%) 25 (19%) -0.44/-0.47

Min-U 8 (8%) 32 (30%) 17 (16%) -0.83/-0.88 1 (1%) 5 (4%) 20 (15%) -0.53/-0.56

Max-U 22 (21%) 23 (22%) 12 (11%) -0.81/-0.83 1 (1%) 5 (4%) 15 (11%) -0.53/-0.55

Dom 0 (0%) 3 (3%) 9 (8%) -0.88/-0.95 2 (2%) 4 (3%) 3 (2%) -0.57/-0.58

Logit 5 (5%) 12 (11%) 31 (29%) -0.84/-0.90 4 (3%) 5 (4%) 27 (20%) -0.53/-0.55

Rand 1 (1%) 0 (0%) 3 (3%) -1.10/-1.10 6 (5%) 0 (0%) 1 (1%) -0.69/-0.69

MLP 30 (28%) 1 (1%) 2 (2%) -0.04/-1.15 61 (46%) 3 (2%) 7 (5%) -0.03/-0.49

scikit-learn [26]: for Indecisive responses we train a three-class model (r ∈ {0, 1, 2}), and
for Strict we train a two-class model (r ∈ {1, 2}).
Goodness-of-fit. Using the standard ML approach, we select the best-fit models for each
agent using the training-set LL, and evaluate the performance of these best-fit models using
the test-set LL. Table 1 shows the number of participants for which each model was the
1st-, 2nd-, and 3rd best-fit for each participant (those with the greatest training-set LL),
and the median test and train LL for each model. First we observe that no indecision model
is a clear winner: several different models appear in the top 3 for each participant. This
suggests that different indecision models fit different individuals better than others — there
is not a single model that reflects everyone’s choices. However, some models perform better
than others: Min-δ and Max-δ appear often in the top 3 models, as does Max-U for group
Indecisive.

It it is somewhat surprising the Max-δ fits participant responses, since this model does
not seem intuitive: in Max-δ, agents are indecisive when two alternatives have very different
utility—i.e. one has much greater utility than the other. It is also surprising the Max-U is a
good fit for group Indecisive, but not for Strict . One interpretation of this fact is that some
people use (a version of) Max-U when they have the option, but they do not use Max-U
when indecision is not an option. Another interpretation is that our modeling assumptions
in Section 4.2 are wrong—however our dataset cannot definitively explain this discrepancy.

Finally, MLP is the most common best-fit model for all participants in both groups,
though it is rarely a 2nd- or 3rd-best fit. This suggests that the MLP benchmark accurately
models some participants’ responses, and performs poorly for others; we expect this is due
to overfitting. While MLP is more accurate than our models in some cases, it does not shed
light on why people are indecisive.

It is notable that some indecision models (Min-δ and Max-δ) outperform the standard
logit model (Logit), both when they are learned from responses including indecision (group
Indecisive), and when they are learned from only strict responses (group Strict). Thus,
we believe that these indecision models give a more-accurate representation for peoples’
decisions than the standard logit, both when they are given the option to be indecisive, and
when they are not.

Since these indecision models may be accurate representations of peoples’ choices, it
is informative to examine the best-fit parameters. Figure 1 shows best-fit parameters for
participants in group Indecisive (top) and Strict (bottom); for each indecision model, we
show all learned parameters for participants for whom the model is the 1st-best-fit (see
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Figure 1: Best-fit parameters for each indecision model, for participants in group Indecisive
(top) and Strict (bottom). Elements of the agent utility vector correspond to patient age
(u1), alcohol consumption (u2), and number of dependents (u3); the interpretation of λ
depends on the model class. Only participants for which the model is the 1st-best-fit are
included (see Table 1).

Table 1). Importantly, the best-fit values of u1, u2, and u3 are similar for all models, in both
groups. That is, in general, people have similar relative valuations for different alternatives:
u1 < 0 means younger patients are preferred over older patients, u2 < 0 means patients who
consume less alcohol are preferred more; u3 > 0 means that patients with more dependents
are preferred more. We emphasize that the indecision model parameters for group Strict
(bottom panel of Figure 1) are learned using only strict responses.

These models are fit using only 20 samples, yet they provide useful insight into how
people make decisions. Importantly, our simple indecision models fit observed data better
than the standard logit—both when people can express indecision, and when they cannot.
Thus, contrary to the common assumption in the literature, not all people are indecisive
only when two alternatives are nearly equivalent. This assumption may be true for some
people (participants for which Min-δ is a best-fit model), but it is not always true.

5.2 Group Models

Next we turn to group decision models, where the goal is for an AI system to make decisions
that reflect the values of a certain group of humans. In the spirit of the social choice
literature, we refer to agents as “voters”, and suggested decisions as “votes”. We consider
two distinct learning paradigms, where each reflects a potential use-case of an AI decision-
making system.

The first paradigm, Population Modeling, concerns a large or infinite number of voters;
our goal is to estimate responses to new decision problems that are the best for the entire
population. This scenario is similar to conducting a national poll: we have a population
including thousands or millions of voters, but we can only sample a small number (say,
hundreds) of votes. Thus, we aim to build a model that represents the entire population,
using a small number of votes from a small number of voters. There are several ways to
aggregate uncertain voter models (see for example Chapter 10 of [4]); our approach is to
estimate the next vote from a random voter in the population. Since we cannot observe
all voters, our model should generalize not only a “known” voter’s future behavior, but all
voters’ future behavior.

In the second paradigm, Representative Decisions, we have a small number of “repre-
sentative” voters; our goal is to estimate best responses to new decision problems for this
group of representatives. This scenario is similar to multi-stakeholder decisions including



organ allocation or public policy design: these decisions are made by a small number of
representatives (e.g., experts in medicine or policy), who often have very limited time to
express their preferences. As in Population Modeling we aim to estimate the next vote from
a random expert—however in this paradigm, all voters are “known”, i.e., in the training
data.

Both voting paradigms can be represented as a machine learning problem: observed votes
are “data”, with which we select a best-fit model from a hypothesis class; these models make
predictions about future votes.10 Thus, we split all observed votes into a training set (for
model fitting) and a test set (for evaluation). How we split votes into a training and test set
is important: in Representative Decisions we aim to predict future decisions from a known
pool of voters—so both the training and test set should contain votes from each voter. In
Population Modeling we aim to predict future decisions from the entire voter population—so
the training set should contain only some votes from some voters (i.e., “training” voters),
while the test set should contain the remaining votes from training voters, and all responses
from the non-training voters.

We propose several group indecision models, each of which is based on the models from
Section 4; please see Appendix C for more details.
VMixture Model. We first learn a best-fit indecision (sub)model for each training voter; the
overall model generates responses by first selecting a training voter uniformly at random,
and then responding according to their submodel.
k-Mixture Model. This model consists of k submodels, each of which is an indecision
model with its own utility vector u and threshold λ. The type of each submodel (Min/Max-δ,
Min/Max-U , Dom) is itself a categorical variable. Weight parameters w ∈ Rk indicate the
importance of each submodel. This model votes by selecting a submodel from the softmax
distribution11 on w, and responds according to the chosen submodel.
k-Min-δ Mixture. This model is equivalent to k-Mixture, however all submodels are of
type Min-δ. We include this model since Min-δ is the most-common best-fit indecision
model for individual participants (see § 5).

We simulate both the Population Modeling and Representative Decisions settings using
various train/test splits of our survey data. For Population Modeling we randomly select
100 training voters; half of each training voter’s responses are added to the test set, and
half to the training set. All responses from non-training voters are added to the test set.12

For Representative Decisions we randomly select 20 training voters (“representatives”),
and randomly select half of each voter’s responses for testing; all other responses are used
for training; all non-training voters are ignored.

For both of these settings we fit all mixture models (2-Mixture, 2-Min-δ, and VMixture),
each individual indecision model from Section 4, and each each baseline model. Table 2
shows the training-set and test-set LL for each method, for both voting paradigms. Most
indecision models achieve similar test-set LL, with the exception of Dom. In the Repre-
sentatives setting, both mixture models and (non-mixture) indecision models perform well
(notably, better than MLP. This is somewhat expected, as the Representatives setting uses
very little training data, and complex ML approaches such as MLP are prone to overfitting—
this is certainly the case in our experiments. In the Population setting the mixture models
outperform individual indecision models; this is expected, as these mixture models have
a strictly larger hypothesis class than any individual model. Unsurprisingly, MLP achieves
the greatest test-set LL in the Population setting—yet provides no insight as to how these
decisions are made.

10Several researchers have used techniques from machine learning for social choice [10, 6, 18, 36].
11With the softmax distribution, the probability of selecting i is ewi/

∑
j e

wj . We use this distribution
for mathematical convenience, though it is straightforward to learn the distribution directly.

12Each voter in our data answers different questions, so all questions in the test set are “new.”



Table 2: Average train-set and test-set LL per question (reported as “train/test”) for
Representative Decisions with 20 training voters, (left) and Population Modeling with 100
training voters (right), for both the Indecisive and Strict participant groups. The greatest
test-set LL is highlighted for each column. For Representatives, the test set includes only
votes from the representative voters; for Population, the test set includes all voters.

Model Name Represenatitives (20) Population (100)

Indecisive Strict Indecisive Strict

2-Min-δ -0.90/-0.88 -0.46/-0.47 -0.87/-0.88 -0.54/-0.52

2-Mixture -0.87/-0.86 -0.45/-0.47 -0.87/-0.88 -0.53/-0.52

VMixture -0.92/-0.90 -0.49/-0.51 -0.93/-0.94 -0.57/-0.56

Min-δ -0.92/-0.90 -0.46/-0.48 -0.87/-0.87 -0.54/-0.53

Max-δ -0.95/-0.90 -0.45/-0.46 -0.96/-0.95 -0.54/-0.52

Min-U -0.96/-0.95 -0.52/-0.54 -0.98/-0.99 -0.58/-0.57

Max-U -0.87/-0.86 -0.54/-0.54 -0.94/-0.94 -0.58/-0.57

Dom -1.08/-1.07 -0.57/-0.58 -1.05/-1.06 -0.61/-0.60

MLP -0.40/-1.55 -0.15/-0.85 -0.71/-0.77 -0.42/-0.51

Logit -0.91/-0.88 -0.53/-0.54 -0.93/-0.94 -0.57/-0.56

Rand -1.03/-1.00 N/A -1.07/-1.07 N/A

6 Discussion

In many cases it is natural to feel indecisive, for example when voting in an election or buy-
ing a new car; people are especially indecisive when their choices have moral consequences.
Importantly, there are many possible causes for indecision, and each conveys different mean-
ing: I may be indecisive when voting for a presidential candidate because I feel unqualified
to vote; I may be indecisive when buying a car because all options seem too similar. Using
a small study, in Section 2 we demonstrate that indecision cannot be interpreted as a “flip-
ping a coin” to decide between alternatives. This violates a key assumption in the technical
literature, and it complicates the task of selecting the best alternative for an individual
or group. Indeed, defining the “best” alternative for indecisive agents depends on what
indecision means.

These philosophical and psychological questions have become critical to computer science
researchers, since we now use preference modeling and social choice to guide deployed AI
systems. The indecision models we develop in Section 4 and test in Section 5 provide a
framework for understanding why people are indecisive—and how indecision may influence
expressed preferences when people are allowed to be indecisive (§ 4.1), and when they are
required to express strict preferences (§ 4.2). The datasets collected in Study 1 (§ 2) and
Study 2 (§ 5) provide some insight into the causes for indecision, and we believe other
researchers will uncover more insights from this data in the future.

Several questions remain for future work. First, what are the causes for indecision, and
what meaning do they convey? This question is well-studied in the philosophy and social
science literature, and AI researchers would benefit from interdisciplinary collaboration.
Methods for preference elicitation [3] and active learning [12] may be useful here.

Second, if indecision has meaning beyond the desire to “flip a coin”, then what is the
best outcome for an indecisive agent? ... for a group of indecisive agents? This might be
seen as a problem of winner determination, from a perspective of social choice [27].
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A Ethics

Many AI systems are designed and constructed with the goal of promoting the interests,
values, and preferences of users and stakeholders who are affected by the AI systems. Such
systems are deployed to make or guide important decisions in a wide variety of contexts,
including medicine, law, business, transportation, and the military. When these systems
go wrong, they can cause irreparable harm and injustice. There is, thus, a strong moral
imperative to determine which AI systems best serve the interests, values, and preferences
of those who are or might be affected.

To satisfy this imperative, designers of AI systems need to know what affected parties
really want and value. Most surveys and experiments that attempt to answer this question
study decisions between two options without giving participants any chance to refuse to
decide or to adopt a random method, such as flipping a coin. Our studies show that
these common methods are inadequate, because providing this third option—which we call
indecision—changes the preferences that participants express in their behavior. Our results
also suggest that people often decide to use a random method for variety of reasons captured
by the models we studied. Thus, we need to use these more complex methods—that is, to
allow indecision—in order to discover and design AI systems to serve what people really
value and see as morally permitted. That lesson is the first ethical implication of our
research.

Our paper also teaches important ethical lessons regarding justice in data collection. It
has been shown that biases can, and are, introduced at the level of data collection. Our
results open the door to the suggestion that biases could be introduced when a participant’s
values are elicited under the assumption of a strict preference. Consider a simple case of
choosing between two potential kidney recipients, A and B, who are identical in all aspects,
except A has 3 drinks a week while B has 4. Throughout our studies, we have consistently
observed that participants would overwhelmingly give the kidney to patient A who has 1
fewer drink each week, when forced to choose between them. However, when given the
option to do so, most would rather flip a coin. An argument can be made here that the
data collection mechanism under the strict-preference assumption is biased against patient
B and others who drink more than average.

Finally, our studies also have significant relevance to randomness as a means of achieving
fairness in algorithms. As our participants were asked to make moral decisions regarding
who should get the kidney, one interpretation of their decisions to flip a coin is that the fair
thing to do is often to flip a coin so that they (and humans in general) do not have to make
an arbitrary decision. The modeling techniques proposed here differ from the approach
to fairness that conceives random decisions as guaranteeing equity in the distribution of
resources. Our findings about model fit suggest that humans sometimes employ random
methods largely in order to avoid making a difficult decision (and perhaps also in order to
avoid personal responsibility). If our techniques are applied to additional problems, they
will further the discussion of algorithmic fairness by emphasizing the role of randomness
and indecision. This advance can improve the ability of AI systems to serve their purposes
within moral constraints.
Experiment Scenario: Organ Allocation. Our experiments focus on a hypothetical
scenario involving the allocation of scarce donor organs. We use organ allocation since it
is a real, ethically-fraught problem, which often involves AI or other algorithmic guidance.
However our hypothetical organ allocation, and our survey experiments, are not intended
to reflect the many ethical and logistical challenges of organ transplantation; these issues
are settled by medical experts and policymakers. Our experiments do not focus on a re-
alistic organ allocation scenario, and our results should not be interpreted as guidance for
transplantation policy.



B Online Survey Experiments

This appendix describes our survey experiments in greater detail. B.1 describes the online
platform we used for this survey, Section B.2 describes Study 1 and our analysis, and
Section B.3 describes the design of Study 2.

B.1 Online Platform

All online experiments were conducted using a custom online survey platform. After agree-
ing to an online consent form, participants were shown background information on kidney
allocation and about the patient features in this survey, shown below:

Sometimes people with certain diseases or injuries require a kidney transplant. If
they don’t have a biologically compatible friend or family member who is willing
to donate a kidney to them, they must wait to receive a kidney from a stranger.

Choose which of two patients should receive a sole available kidney. Information
about Patient A will always be on the left. Information about Patient B will
always be on the right. The characteristics of each patient will change in each
trial. Patients who do receive the kidney will undergo an operation that is almost
always successful. Patients who do not receive the kidney will remain on dialysis
and are likely to die within a year.

After completing an online consent form, participants were asked to respond to a series of
comparisons between two potential kidney recipients. Each recipient is represented by three
features: “number of child dependent(s)”, “years old”, and “drinks per day prediagnosis.”
Figure 2 shows a screenshot of the decision scenario.

Figure 2: Screenshot of a comparison question from our online survey (Study 1). This
screenshot is for the group Indecisive; for participants in group Strict , the middle response
option “Flip a coin” was not shown.

All participants were recruited on Amazon Mechanical Turk13 (MTurk). We included
only participants in the United States, who have completed more than 500 HITs, with HIT
approval rate at least 98%, and who have not participated in any previous studies for this
project.

B.2 Study 1

We recruited 120 participants via MTurk. One participant was excluded from the cohort
due to incompleteness, leaving us a sample of N= 119 (32% female and 68% male; mean

13https://www.mturk.com/



Table 3: Number of votes for the majority patient (#Maj.) and minority patient (#Min.)
for each group. The number of “flip a coin” votes (#Flip) is shown for group Indecisive. The
right column Q# indicates the order in which the comparison was shown to each participant.

Q#
Group Indecisive Group Strict

#Maj. #Min. #Flip #Maj. #Min.

1 31 5 2 38 22

2 48 2 12 50 10

3 43 2 17 57 3

4 40 13 9 42 18

5 37 0 25 51 9

6 55 0 7 57 3

7 43 1 18 56 4

8 37 9 16 48 12

9 29 8 25 43 17

10 22 5 35 54 6

11 41 12 9 43 17

12 51 3 8 54 6

13 29 4 29 55 5

14 42 1 19 56 4

15 33 9 20 47 13

age = 35.2, SD = 10.12, 82% white) with N=60 for group Indecisive and N=59 for group
Strict . On our online platform, both groups were asked to make decisions on a set of 15
pairs of hypothetical patients, whose features were pre-determined a priori. Both groups
were given the same sequence of scenarios; the features of each patient in these scenarios is
included in our dataset (included in the supplement and online, see below).

The Indecisive group were given the additional option to flip a coin, instead of choosing
one of the two patients.

Anonymized responses from Study 1 are available online,14 and included in this paper’s
online supplement.

Study 1 Analysis: Hypothesis Testing For this analysis we refer to each strict re-
sponse as a “vote”. For example if a participant expresses the preference for patient A over
patient B, we say this is a vote for A. To test hypotheses H0-1 and H0-2 we first identify
the majority patient (the patient who received more votes than the other patient); the other
patient is referred to as the minority patient. Coincidentally, the majority and minority
patients were the same for both groups, Indecisive and Strict . Table 3 shows the number
of votes for the minority and majority patient for each question, for both groups.

B.3 Study 2

We first recruited 150 participants using MTurk for the Indecisive group. Each participant
was assigned a randomly generated sequence of 40 pairs of hypothetical patients, and they
were presented with the option to either give a kidney to one of the patients, or flip a coin
(see Figure 2). Patient features were generated uniformly at random from the ranges:

14Link removed for blind review.



• # dependents: 0, 1, 2

• age: 25, . . . , 70

• # drinks: 1, 2, 3, 4, 5

In addition, 3 or 4 attention-check pairs, in which the participant is presented with the
choice between an already deceased patient and a “favorable” patient,15 were randomly
distributed in each sequence. After data collection, 18 participants were excluded for failing
at least one attention check, i.e., choosing to give the kidney to the deceased patient. This
leaves us N=132 participants (age distribution was 31%: 18-29, 48%: 39-30, 10%: 40-49,
6%: 50-59, 3%: 60+; gender distribution was 29%: female, 70%: male; racial distribution
was 75%: white, 25% nonwhite).

Next we recruited 153 participants for group Strict ; these participants were given the
exact same task as the Indecisive group, but without the option to flip a coin. 21 participants
were excluded from the analysis due to attention check failures, leaving us with a final sample
of N=132 (age distribution was 26%: 18-29, 46%: 39-30, 17%: 40-49, 10%: 50-59, 2%: 60+;
gender distribution was 36%: female, 63%: male; racial distribution was 72%: white, 28%
nonwhite).

Anonymized responses from Study 2 are available online,16 and included in this paper’s
online supplement.

C Fitting Indecision Models

In this appendix we provide additional details on the indecision models from Section 4, as
well as details of our computational experiments.

First, in C.1 we motivate the score-based decision models (from Section 4) using an
intuitive—and equivalent—representation as response functions. In C.2 we provide addi-
tional motivation for the strict response model from Section 4.2. In C.3 we provide addi-
tional details on our group indecision models. Finally, in C.4 we describe the implementation
of our computational experiments.

C.1 Response Functions vs Score-Based Models

In the score-based models from Section 4, the agent responds by evaluating a “score” for
each possible response. Here we provide an intuitive motivation for each of these indecision
models, framed as response functions. As in Section 4, an agent response function R :
I × I → {0, 1, 2} maps a pair of items (a comparison question) to a response. In this
section, all agent response functions are expressed in terms of the agent utility function u(·)
and threshold λ. Each response function identifies a set of feasible responses for the agent,
which depend on the agent utility function and threshold. If there are multiple feasible
responses, the agent chooses one uniformly at random. Importantly, we show below that
these response functions are identical to the score-based response functions for models in
Section 4, when the agent observes no “noise.”

Below we formalize each response function, grouped by by their “causes” (see Section 3).
Each of the functions here appears We emphasize that each of these response “functions”

is in fact a multifunction, as multiple responses may be possible. However
Difference-Based Response Functions: Min-δ, Max-δ Here the agent is indecisive when
the utility difference between alternatives is either smaller than threshold λ (Min-δ) or

15A 30-year-old patient who consumed 1 alcoholic drink per week, with 2 dependents.
16Link removed for blind review.



greater than λ ∈ R+ (Max-δ). The corresponding response functions are

Min-δ : R(i, j) ≡


1 ifu(i)− u(j) ≥ λ
2 ifu(i)− u(j) ≤ λ
0 if |u(i)− u(j)| ≤ λ

Max-δ : R(i, j) ≡


1 if 0 ≤ u(i)− u(j) ≤ λ
2 if − λ ≤ u(i)− u(j) ≤ 0

0 if |u(i)− u(j)| ≥ λ

Note that in these definitions, multiple responses may be feasible (i.e., the conditions may
be met for multiple responses. In this case, we assume the agent selects a feasible response
uniformly at random. For example, for both models Min-δ and Max-δ, if u(i) − u(j) = λ
then the agent selects a response randomly with either 1 or 0.

In these models the agent response depends on the utility difference between i and j,
(u(i)−u(j)). Depending on how this utility difference compares with threshold λ, the agent
may be indecisive. Since the agent is indecisive only when the absolute difference in item
utility (|u(i)− u(j)|) is too large or too small, negative λ is not meaningful here—thus, we
only consider λ > 0.
Desirability-Based Models: Min-U , Max-U Here the agent is indecisive when the utility
of both alternatives is below threshold λ ∈ R (Min-U), or when the utility of both alternatives
is greater than λ (Max-U). Unlike the difference-based models, λ here may be positive or
negative. The response functions for these models are

Min-U : R(i, j) ≡


1 ifu(i) ≥ max{u(j), λ}
2 if u(j) ≥ max{u(i), λ}
0 ifλ ≥ max{u(i), u(j)}

Max-U : R(i, j) ≡


1 ifu(j) ≤ min{u(i), λ}
2 if u(i) ≤ min{u(j), λ}
0 ifλ ≤ min{u(i), u(j)}

As before, if there are multiple feasible responses, the agent selects one feasible response
uniformly at random.

Unlike the difference-based models, both positive and negative λ are reasonable here. For
example: suppose an agent is only indecisive when both alternatives are very undesireable
(e.g., both items have utility less than −100). This agent’s decisions might be best modeled
by Min-U , with λ = −100.
Conflict-Based Model: Dom Here the agent is indecisive unless one alternative dominates
the other in all features, by threshold at least λ ∈ R. For this indecision model, we need
a utility measure associated with each feature of each item; for this purpose, let un(i) be
the utility associated with feature n of item i. As before we assume λ may be positive or
negative. The response function for this model is

Dom : R(i, j) ≡


1 if Mij ≥ max{Mji, λ}
2 if Mji ≥ max{Mij , λ}
0 if λ ≥ max{Mij ,Mji}

where Mij ≡ min
n=1,...,N

{un(i) − un(j)} and Mji ≡ min
n=1,...,N

{un(j) − un(i)}. In other words,

Mij is the minimum difference between the feature utilities of i and j: if Mij is positive, then
all features of alternative i are strictly better than those of j. If neither i nor j “dominates”



the other by at least threshold λ, then the agent is indecisive. As before, the agent selects
uniformly at random from all feasible responses.

While these response functions appear qualitatively different from the score functions in
Section 4, they are in fact identical under certain circumstances.

Proposition 1. For each indecision model (Min-δ, Max-δ, Min-U , Max-U , Dom), the re-
sponse function given in Appendix C.1 is identical to the response function induced by score
functions S0(·, ·) and S1(·, ·) as in Section 4, when the agent observes no score error. This
score-induced response function is expressed as

RS(i, j) ≡ argmax
r∈{0,1,2}

Sr(i, j)

where if multiple scores are maximal (i.e., the corresponding response is feasible), the agent
selects a response with maximal score uniformly at random.

Proof. We prove equivalence for each indecision model separately. Note that, if both re-
sponse functions RS(i, j) and R(i, j) have the same set of feasible responses for a given
comparison (i, j), then these responses are identical–since both response function chooses a
feasible response uniformly at random. Thus, we prove that the set of feasible responses is
the same for both RS(i, j) and R(i, j), for an arbitrary comparison (i, j).

Min-δ For score-based response function RS(i, j), response 1 is feasible if the following
conditions are met

S1(i, j) ≥ S0(i, j)

S1(i, j) ≥ S2(i, j)
⇐⇒ u(i)− u(j) ≥ λ

u(i)− u(j) ≥ 0

where the left and right side are equivalent. Note that the right side conditions are equivalent
to the conditions for response 1 in R(i, j), since λ is positive. Note that the same argument
holds for response 2.

Next, for score-based response function RS(i, j), response 0 is feasible if the following
conditions are met

S0(i, j) ≥ S1(i, j)

S0(i, j) ≥ S2(i, j)
⇐⇒ λ ≥ u(i)− u(j)

λ ≥ u(j)− u(i)

and these conditions are equivalent to |u(i)− u(j)| ≤ λ, since λ is positive. This condition
is equivalent to the condition for response 0 in R(i, j).

Max-δ For score-based response function RS(i, j), response 1 is feasible if the following
conditions are met

S1(i, j) ≥ S0(i, j)

S1(i, j) ≥ S2(i, j)
⇐⇒

u(i)− u(j)

≥ 2|u(i)− u(j)| − λ

u(i)− u(j) ≥ 0.

Note that the first constraint right side reduces to u(i)−u(i) ≤ λ; thus, these conditions are
equivalent to the conditions for response 1 in R(i, j). Note that the same argument holds
for response 2.

Next, for score-based response function RS(i, j), response 0 is feasible if the following
conditions are met

S0(i, j) ≥ S1(i, j)

S0(i, j) ≥ S2(i, j)
⇐⇒ 2|u(i)− u(j)| − λ ≥ u(i)− u(j)

2|u(i)− u(j)| − λ ≥ u(j)− u(i).



There are two cases: (1) if u(i) ≥ u(j), then the first condition on the right side reduces to
|u(i)−u(j) ≥ λ, and the second condition on the right side holds trivially; (2) if u(i) < u(j),
then the second condition on the right side reduces to |u(i) − u(j) ≥ λ, and the first
condition on the right side holds trivially. In both cases, these conditions are equivalent to
the conditions for response 0 in R(i, j).

Min-U For score-based response function RS(i, j), response 1 is feasible if the following
conditions are met

S1(i, j) ≥ S0(i, j)

S1(i, j) ≥ S2(i, j)
⇐⇒ u(i) ≥ λ

u(i) ≥ u(j)

where the right-side conditions reduce to u(i) ≥ max{u(i), λ}, which is equivalent to the
condition for response 1 in R(i, j). Note that the same argument holds for response 2.

Next, for score-based response function RS(i, j), response 0 is feasible if the following
conditions are met

S0(i, j) ≥ S1(i, j)

S0(i, j) ≥ S2(i, j)
⇐⇒ λ ≥ u(i)

λ ≥ u(j)

which is equivalent to λ ≥ max{u(i), u(j)}, the condition for response 0 in R(i, j).

Max-U For score-based response function RS(i, j), response 1 is feasible if the following
conditions are met

S1(i, j) ≥ S0(i, j)

S1(i, j) ≥ S2(i, j)
⇐⇒

u(i)− u(j)

≥ max{u(i), u(j)} − λ

u(i) ≥ u(j).

The first condition on the right side reduces to u(j) ≤ λ; thus, the right side conditions are
equivalent to u(j) ≤ min{u(i), λ}, which is the condition for response 1 in function R(i, j).
Note that the same argument holds for response 2.

Next, for score-based response function RS(i, j), response 0 is feasible if the following
conditions are met

S0(i, j) ≥ S1(i, j)

S0(i, j) ≥ S2(i, j)
⇐⇒

max{u(i), u(j)} − λ
≥ u(i)− u(j)

max{u(i), u(j)} − λ
≥ u(j)− u(i).

There are two cases: (1) if u(i) ≥ u(j), then the first condition on the right side reduces
to u(j) ≥ λ, and the second condition on the right side reduces to 2u(j) − u(j) ≥ λ
(which holds trivially); (2) if u(i) < u(j), then the second condition reduces to u(i) ≥ λ
(and the first condition holds trivially). In both cases, these conditions are equivalent to
λ ≤ min{u(i), u(j)}, which is the condition for response 0 in R(i, j).

Dom This proof is identical to that of Min-U : let u(i) and u(j) be replaced by Mij and
Mji, respectively, and the proof is identical.



C.2 Strict Decision Models

In Section 4.2 we describe how indecision models can be used to model scenarios where an
indecisive agent is required to express a strict preference. Here we assume that the agent
uses a two-step process to respond, represented in Figure 3.

Indecisive agent
is presented with
comparison (i, j)

Agent draws re-
sponse r from their

response distribution

Agent flips a coin with
“heads” probability q

Agent responds r

r ∈ {1, 2}r = 0

Agent draws from
strict distri-

bution pS(i, j)

Agent responds
either 1 or 2 uni-
formly at random

heads tails

Figure 3: Flowchart describing our model for an indecisive agent who is required to express
a strict preference.

If the agent’s coin flip is “heads” (with probability q), then the agent draws from a strict
version of their response distribution, defined as

pS(i, j, r) ≡ eSr(i,j)

eS1(i,j) + eS2(i,j)

for r ∈ {0, 1}. Note that this is similar to the agent’s true response distribution (Equation 1),
but assigns zero probability to response 0.

The overall response distribution described in Figure 3 has a closed-form expression, since
the probability-q coin flip is independent from each draw of the agent’s decision function.
As stated in Section 4.2, this distribution is

pstrict(i, j, r) ≡


q
(

eS(i,j)+(1/2)eS0(i,j)

C

)
+ 1−q

D

(
eS1(i,j)

) if r = 1

q
(

eS2(i,j)+(1/2)eS0(i,j)

C

)
+ 1−q

D eS2(i,j)
if r = 2

where, C ≡ eS0(i,j) + eS1(i,j) + eS2(i,j) , and D ≡ eS1(i,j) + eS(2(i,j). The (heads) condition
from above has another interpretation: the agent chooses to sample from a “strict” logit,
induced by only the score functions for strict responses, S1(i, j) and S1(i, j). We discuss
this model in more detail, and provide an intuitive example, in Appendix C.



C.3 Group Decision Models

Here we outline the mathematical group decision models from Section 5.2.
A set of L observed responses is represented by vectors i ∈ IL, j ∈ IL, r ∈ {0, 1, 2}L,

where ik and jk are the indices of items i and j in query j, and rk is the observed agent’s
response.

VMixture This model is parameterized only by the best-fit models for each of its con-
stituent voters. Let V ∈ Z be the number of voters, and let Sv

r (·, ·) be the best-fit score
function for voter v and response r. Since we take an MLE approach, the goodness-of-fit
metric for these models is the log-likelihood of the model, given observed responses.

The log-likelihood for model VMixture is

L∑
l=1

log

(
V∑

v=1

1

V
pv(il, jl, rl)

)
where

pv(i, j, r) ≡ eS
v
r (i,j)

eS
v
0 (i,j) + eS

v
1 (i,j) + eS

v
2 (i,j)

is the response distribution for voter v.

k-Mixture This model class is parameterized by k distinct sets of submodel parameters:
each submodel consists of a utility vector u ∈ RN and threshold λ ∈ R; the type of each
model is also a variable (i.e., a categorical variable). Weight parameters w indicate the
importance of each submodel. Let Sk

r (·, ·) be the score function for model l ∈ {1, . . . , k}
and response r ∈ {0, 1, 2}; these score functions depend on the type of each model (see
Section 4). For the k-Mixture model, the log-likelihood is

L∑
l=1

log

(
k∑

k′=1

ewk′∑k
n=1 e

wn

pk
′
(il, jl, rl)

)

where

pk
′
(i, j, r) ≡ eS

k′
r (i,j)

eS
k′
0 (i,j) + eS

k′
1 (i,j) + eS

k′
2 (i,j)

is the response distribution for model k′.

C.4 Experiments and Implementation

All code used for our computational experiments is available online,17 and attached in our
supplementary material. All code is written in Python 3.7, and uses packages Ax18 for
random sampling. All experiments were run on a single Intel Xeon E5-2690 node with
16GB memory.

For all experiments, models were fit by sampling several random parameter sets using a
Sobol process (implemented using Ax). Each model is “trained” using a different number
or random Sobol points in our experiments:

• Individual indecision models (Table 1): 1,000 points for Indecisive, and 5,000 for Strict
(which uses an additional parameter q).

17https://github.com/duncanmcelfresh/indecision-modeling
18https://ax.dev/



• Group indecision models (Table 2, models Min-δ, Max-δ, Min-U , Max-U , Dom, Logit):
5,000 points

• VMixture: 500 points for group Indecisive and 1,000 points for Strict , for each indi-
vidual model.

• k-Mixture, k-Min-δ: 100,000 points
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