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Abstract

We study the problem of fairly allocating a divisible resource, also known as cake
cutting, with an additional requirement that the shares that different agents receive
should be sufficiently separated from one another. This captures, for example, con-
straints arising from social distancing guidelines. While it is sometimes impossible
to allocate a proportional share to every agent under the separation requirement, we
show that the well-known criterion of maximin share fairness can always be attained.
We then establish several computational properties of maximin share fairness—for
instance, the maximin share of an agent cannot be computed exactly by any finite
algorithm, but can be approximated with an arbitrarily small error. In addition,
we consider the division of a pie (i.e., a circular cake) and show that an ordinal
relaxation of maximin share fairness can be achieved.

1 Introduction

The end of the year is fast approaching, and members of a city council are busy planning
the traditional New Year’s fair on their city’s main street. As usual, a major part of their
work is to divide the space on the street among interested vendors. Each vendor naturally
has a preference over potential locations, possibly depending on the proximity to certain
attractions or the estimated number of customers visiting that space. Additionally, this
year is different from previous years due to the social distancing guidelines issued by the
government—vendors are required to be placed at least two meters apart. How should the
city council allot the space so that all vendors feel fairly treated and at the same time
everyone stays safe and sound under the new guidelines?

The problem of fairly allocating a heterogeneous divisible good among a set of agents in a
fair manner has a long history and is commonly known as cake cutting [Brams and Taylor,
1996, Robertson and Webb, 1998, Procaccia, 2016]. A typical fairness criterion in cake
cutting is proportionality, which means that each agent should receive her proportionally
fair share—specifically, this amounts to 1/n of the agent’s value for the whole cake, where
n denotes the total number of agents. For any set of agents with arbitrary valuations, a
proportional allocation in which each agent receives a single connected piece is guaranteed
to exist. Better still, such an allocation can be found by a simple and efficient algorithm
[Dubins and Spanier, 1961].

In this paper, we initiate the study of cake cutting with separation requirements. Besides
the social distancing example that we mentioned, our setting captures the task of allocating
machine processing time, where we need time to erase data from the previous process before
the next process can be started, as well as land division, where we want space between
different plots in order to avoid cross-fertilization. When separation is imposed, it is no
longer the case that proportionality can always be satisfied—an extreme example is when
all agents value only a common small piece of length less than the minimum gap required.
A similar failure of proportionality has notably been observed in the allocation of indivisible

1 An earlier version was presented at AAAI’21. The current version contains additional results as well as
proofs omitted from the AAAT paper.



items (without separation), and a solution that has been proposed and widely studied in that
context is mazximin share fairness [Budish, 2011, Kurokawa et al., 2018]. Maximin share
fairness requires each agent to receive her “maximin share” (MMS)—the best share that the
agent can secure by dividing the items into n bundles and getting the worst bundle. In this
work, we show that maximin share fairness is an appropriate substitute for proportionality
in cake cutting with separation, and analyze it from an algorithmic perspective. This is one
of the first uses of maximin share fairness in cake cutting (see Section 1.2).

1.1 Our Results

As is commonly done in cake cutting, we assume that the cake is represented by an interval
and each agent is to be allocated a single subinterval of the cake. We further require the
pieces of any two agents to be separated by distance at least s, where s > 0 is a given
separation parameter. For the sake of exposition, we follow the convention in most of the
literature and assume that the agents have additive valuations over the cake. However, as
we discuss in Section 5, several of our positive results hold even for agents with arbitrary
monotonic valuations.

In Section 3, we begin by proving that an allocation that gives every agent at least her
maximin share always exists, meaning that maximin share fairness can be guaranteed. Such
an allocation can be found by a simple algorithm provided that the algorithm knows the
maximin share of each agent. Unfortunately, we show that no finite algorithm can com-
pute the maximin share of an agent exactly in the standard Robertson—-Webb model—this
impossibility holds even when n = 2 and the agents have piecewise constant valuations.
Nevertheless, we design an algorithm that approximates the maximin share up to an arbi-
trarily small error, which also allows us to compute an allocation wherein each agent obtains
an arbitrarily close approximation of her maximin share. In addition, we present algorithms
that decide whether the maximin share of an agent is greater than, less than, or equal to
a given value r, and show that if the agents have piecewise constant valuations that are
given explicitly as part of the input, then we can exactly compute their maximin shares,
and therefore an MMS-fair allocation, in polynomial time.

In Section 4, we consider the allocation of a “pie”, which is a one-dimensional circular
cake and serves to model, for example, the streets around a city square, the shoreline of an
island, or daily time slots for using a facility. In contrast to cake cutting, maximin share
fairness cannot necessarily be guaranteed in pie cutting, and even the commonly studied
cardinal multiplicative approximation cannot be obtained. Therefore, we focus instead on
an ordinal relaxation of the maximin share, which allows each agent to partition the pie
into k pieces for some parameter £k > n. We show that when & = n + 1, the resulting
notion—called the 1-out-of-(n + 1) mazimin share—can be satisfied. We then investigate
computational properties of maximin share fairness in pie cutting and demonstrate several
similarities and differences with cake cutting. In particular, while we can still approximate
the maximin share of an agent, deciding whether the maximin share is greater than, less
than, or equal to a given value r is no longer possible for any finite algorithm. A summary
of our results can be found in Table 1.

1.2 Related Work

Cake cutting has long been studied by mathematicians and economists, and more recently
attracted substantial interest from computer scientists, as it suggests a plethora of compu-
tational challenges. In particular, a long line of work in the artificial intelligence community
in recent years has focused on cake cutting and its variants [Balkanski et al., 2014, Li et al.,
2015, Branzei et al., 2016, Alijani et al., 2017, Bei et al., 2017, Menon and Larson, 2017,



Task ‘ Cake Cutting ‘ Pie Cutting ‘

Decide whether MMS; = r Yes (Cor. 3.9) No (Thm. 4.3)
Decide whether MMS; > r Yes (Thm. 3.8) | No (Thm. 4.3)
Decide whether MMS; > r Yes (Thm. 3.5) | No (Thm. 4.6)
Compute the maximin share of an agent | No (Thm. 3.2) | No (Cor. 4.10)
Approximate the maximin share up to e | Yes (Cor. 3.6) | Yes (Thm. 4.11)
Compute a maximin partition of an agent | No (Cor. 3.4) No (Cor. 4.10)
Approximate a maximin partition up to e | Yes (Cor. 3.6) | Yes (Thm. 4.11)

Table 1: Summary of the tasks that can and cannot be accomplished by finite algorithms
in the Robertson—-Webb model for cake cutting and pie cutting. All negative results hold
even when the valuations of the agents are piecewise constant (but not given explicitly).

Arunachaleswaran et al., 2019b, Hosseini et al., 2020].

In order to prevent agents from receiving a collection of tiny pieces, it is often assumed
that each agent must receive a connected piece [Dubins and Spanier, 1961, Stromquist,
1980, Su, 1999, Bei et al., 2012, Cechlarovda and Pillarova, 2012, Cechldarova et al., 2013,
Aumann and Dombb, 2015, Arunachaleswaran et al., 2019a, Goldberg et al., 2020]. Indeed,
when we divide resources such as time or space, non-connected pieces (e.g., disconnected
time intervals or land plots) may be hard to utilize, or even totally useless. Note that we
impose the connectivity constraint not only on the allocation but also in the definition of the
maximin share benchmark. Similar conventions have been used in the context of indivisible
items, where the items are vertices of an undirected graph and every agent must be allocated
a connected subgraph [Bouveret et al., 2017, Lonc and Truszczynski, 2020].2

Most previous works on cake cutting did not explicitly consider the maximin share. This
is because, with additive utilities, a proportional allocation is also an MMS-fair allocation,
since each agent’s maximin share is always at most 1/n of the agent’s value for the entire
cake. In particular, without separation constraints, classic algorithms for proportional cake
cutting [Steinhaus, 1948, Dubins and Spanier, 1961, Even and Paz, 1984] attain maximin
share fairness. The maximin share becomes interesting when a proportional allocation may
not exist. We know of two recent studies of the maximin share in cake cutting. Bogomolnaia
and Moulin [2020] considered agents with general continuous valuations—not necessarily
additive or even monotone. They showed that the maximin share is not always attainable,
but the minimax share (i.e., the worst-case share of an agent when the items are partitioned
into n bundles and the agent gets the best bundle) can always be guaranteed. Segal-Halevi
[2021, Appendix B] showed that maximin share fairness can be attained when the cake is a
collection of disconnected intervals and each agent should receive a connected piece.

2 Preliminaries

In cake cutting, the cake is represented by the interval [0, 1]. The set of agents is denoted by
N = [n], where [k] := {1,2,...,k} for any positive integer k. The preference of each agent
i is represented by an integrable density function f; : [0,1] — R, which captures how the
agent values different parts of the cake. A piece of cake is a finite union of disjoint intervals

2Bei et al. [2021] explored the relations between the constrained and unconstrained versions of the
maximin share in that context.



of the cake; it is said to be connected if it consists of a single interval. Agent i’s value for a
piece of cake X is given by v;(X) := fzeX fi(x)dx. For 0 < z <y < 1, we simplify notation
and write v;(z,y) = v;([z,y]). As is standard in cake cutting, we assume that the density
functions are normalized so that v;(0,1) = 1 for all ¢ € N. A valuation function is said
to be piecewise constant if it is represented by a piecewise constant density function. An
allocation of the cake is denoted by a vector A = (Ay,..., A,), where each A; is a piece of
cake, and A; and A; are disjoint for all ¢ # j. The piece A; is allocated to agent i. We are
interested in allocations that are connected—each A; is a connected piece.

Let s be a real parameter. We seek allocations in which every two pieces are separated
by length at least s; we call such allocations s-separated. The case s = 0 corresponds to
the classic setting (without separation), and when s > ﬁ an s-separated allocation must
have at least one empty piece. Therefore, from now on we assume that s € (0, ﬁ) We
define partitions and s-separated partitions in a similar manner, with the difference being
that for partitions, we have a set P = {Py,..., P,} instead of a vector A = (44,...,4,).
The min-value of partition P for agent i is defined as min7_, v;(P;). Assume without loss
of generality that the pieces Py, ..., P, are in increasing order from left to right, and denote
by II,, s(z,y) the set that consists of all s-separated partitions of the interval [x,y] (where
[z,y] C [0,1]). Note that an s-separated allocation or partition is incomplete since some of
the cake necessarily remains unallocated. An instance consists of the agents, cake, density
functions, and separation parameter.

A standard method for a cake-cutting algorithm to access agents’ valuations is through
queries in the model of Robertson and Webb [1998], which supports two types of queries:

e EvAL;(z,y): Asks agent i to evaluate the interval [z, y] and return the value v;(x,y).

e CuT;(z,a): Asks agent i to return the leftmost point y such that v;(z,y) = «, or
state that no such point exists.

We now define the main fairness criterion of our paper.

Definition 2.1. The maximin share of agent i € N with respect to an interval [z,y] C [0,1]
is defined as
MMS"*(z,y) :=  sup  minv;(P;).
Pell,, . (z,y) I€M]

When n and s are clear from context, we omit them from the notation and write MMS; (z, )
instead of MMS;"’(x,y). When [z,y] = [0, 1], we further abbreviate this to MMS;.

Let IT), ((2,y) C I, s(x,y) be the set of s-separated partitions of [z, y] such that every
pair of consecutive pieces is separated by length exactly s. We claim that the definition of
the maximin share can be simplified by replacing II,, ;(x,y) with H;L’S(x, y); intuitively, for
every partition in which the distance between some pair adjacent pieces is larger than s,
there is a partition with at least the same min-value in which the distance between all pairs
of adjacent pieces is exactly s. We also claim that the supremum in the definition can be
replaced with a maximum, i.e., a maximizing partition always exists.

Proposition 2.2. For every agent ¢ € N, it holds that

MBI = o ) R )

From now on, we will work with this new definition of the maximin share. An s-separated
partition is said to be a mazimin partition for agent ¢ if every piece in the partition yields
value at least MMS!"®. Proposition 2.2 implies that every agent has at least one maximin
partition. Similarly, an s-separated allocation is said to be an MMS-fair allocation if every
agent i receives value at least MMS"® from the allocation.

All omitted proofs can be found in Appendix A.



3 Cake Cutting

In this section, we consider cake cutting with separation, both in the Robertson—Webb query
model and in a model where the agents’ valuations are given explicitly.

3.1 Robertson—Webb Query Model

We begin by showing that the maximin share is an appropriate fairness criterion in our
setting: it is always possible to fulfill this criterion for every agent using a quadratic number
of queries in the Robertson—Webb model. Our algorithm is similar to the famous Dubins—
Spanier protocol for finding proportional allocations when separation is not required [Dubins
and Spanier, 1961]: we process the cake from left to right and, at each stage, allocate a
subsequent piece of cake to an agent who demands the smallest piece.

Theorem 3.1. For any instance, there exists an MMS-fair allocation. Moreover, given the
maximin share of each agent, such an allocation can be computed using O(n?) queries in the
Robertson—Webb model.

Proof. We ask each agent ¢ to mark the leftmost point x; such that v(0,z;) = MMS,. The
agent who marks the leftmost z; is allocated the piece [0, x;] (with ties broken arbitrarily);
we then remove this agent along with the piece [z;,x; + s, and recurse on the remaining
agents and cake. If there is only one agent left, that agent receives all of the remaining cake.
Since we make n — j cut queries when there are n — j agents left (and no eval queries), our
algorithm uses Z?;Ol (n — j) = O(n?) queries.

We now prove the correctness of the algorithm. Consider any agent ¢ and her maximin
partition. If agent ¢ receives the first piece allocated by the algorithm, she receives value
MMS;. Else, the allocated piece is no larger than the first piece of her maximin partition.
Since the algorithm inserts a separator of length exactly s, the right endpoint of the first
separator is either the same or to the left of the corresponding point in agent ¢’s maximin
partition. Applying a similar argument repeatedly, we find that if agent 4 is not allocated
any of the first n — 1 pieces, then the remaining cake contains the n-th piece of the agent’s
partition. Hence, agent i receives a value of at least MMS; in this case too. O

The algorithm in Theorem 3.1 crucially relies on knowing the maximin share of each
agent. Unfortunately, we show next that this knowledge is impossible to achieve in finite
time, even if the valuations are piecewise constant but are not given explicitly as part of
the input. Our result is similar in spirit to the non-finiteness results for connected envy-
free cake cutting [Stromquist, 2008], equitability with connected pieces [Cechldrovd and
Pilldrova, 2012, Branzei and Nisan, 2017] and with arbitrary pieces [Procaccia and Wang,
2017], and average-proportionality [Segal-Halevi and Nitzan, 2019]. However, all previous
impossibility results were for two or more agents with possibly different valuations. In
contrast, our impossibility result is attained even for a single agent who wants to cut the
cake into two s-separated pieces.

Theorem 3.2. There is no algorithm that always computes MMS!"* for any s > 0 and
agent i by asking the agent a finite number of Robertson—Webb queries. This holds even
when n = 2 and the agent’s valuation is piecewise constant and strictly positive (but is not
given explicitly).

We prove the theorem by reducing from a more general problem, which may be of
independent interest.



Problem FINDSUM1(s), where s € [0,1] is a real parameter.

Input: g¢:[0,1] — [0, 1], a continuous monotone-increasing bijective function, speci-
fied by oracles that can answer queries of two kinds:

e Given z € [0,1], what is g(z)?

e Given « € [0,1], what is g7 (a)?

Output: A point g € [0,1 — s] for which g(zo) + g(xo + s) = 1.

Note that g(0) = 0 and g(1) = 1 due to the properties of g, and that FINDSUMI(s)
always has a solution due to the intermediate value theorem. FINDSUM1(0) can be solved
by one query g~!(1/2). Below we prove that, for any s > 0, FINDSUM1(s) cannot be solved
by finitely many queries. Then, we show that FINDSUM1(s) can be reduced to computing
MMS?’S. This implies Theorem 3.2.

Lemma 3.3. For any s > 0, there is no algorithm that solves FINDSUM1 (s) using finitely
many queries. This holds even if it is known that g is piecewise linear.

Proof of Theorem 3.2. Let s > 0 be the separation parameter. We reduce FINDSuM1(s) to
the problem of computing MMS?’S: we show that, given an algorithm ALG that computes
MMS?’S using at most ¢ Robertson—Webb queries, we can solve FINDSUM1(s) for any func-
tion ¢ using at most 2t + 1 queries. This is sufficient by Lemma 3.3. For each query asked
by ALG, our reply will imitate a valuation v for which v(0, z) = g(z), namely:

e If ALG asks EvAL;(z,y), we ask g(z) and g(y) and reply g(y) — g(z);
e If ALG asks CUT;(z,a), we ask g(z) and g~ !(a + g(z)) and reply the latter value.

At some point, ALG stops and outputs some r € (0,1) as the value of MMS?’S; at that point
we ask one more query g~1(r) and return its result zo as the answer to FINDSUM1(s). Note
that if ALG uses t queries, then we have used 2t + 1 queries.

The correctness of ALG implies that » must be the correct MMS%S for any valuation v
compatible with the query replies. This means that there exists an s-separated partition of
the cake into two pieces [0, zg] and [z¢+s, 1] for which v(0, z9) = v(zg+s,1) = r. The former
equality implies that v(0,zg) +v(0, 20+ s) = 1. This is true, in particular, for the valuation
by which we answered the queries, v(0,z) := g(z). Hence, g(x¢) = r so xg = g~ (), and
g(x0) + g(xo + s) = 1 so xg is indeed the right answer to FINDSUM1(s). O

Given a maximin partition of an agent, we can compute the agent’s maximin share
by simply taking the minimum among the agent’s values for the pieces in the partition.
Moreover, for two agents with identical valuations, an allocation in which each agent receives
at least their (common) maximin share corresponds to a maximin partition for the common
valuation. Theorem 3.2 therefore yields the following corollary, which also implies that an
allocation whose existence is guaranteed by Theorem 3.1 cannot be computed without the
knowledge of the agents’ maximin shares.

Corollary 3.4. There is no finite algorithm in the Robertson—Webb model that can always
(a) compute a mazimin partition of a single agent, or (b) compute an MMS-fair allocation
for n agents. This holds even when n = 2 and the agents’ valuations are piecewise constant
(but not given explicitly).



Despite these negative results, we show next that it is possible to get an arbitrarily good
approximation of the maximin share, partition, and allocation.

Theorem 3.5. Given an agent ¢ and a number v > 0, it is possible to decide whether
MMS; > r (and, if so, compute a partition with min-value at least r for agent i) using at
most n queries in the Robertson—Webb model.

Combining the algorithm in Theorem 3.5 with binary search allows us to approximate
the maximin share.

Corollary 3.6. Given an agent i and a number € > 0, it is possible to find a number r for
which MMS; — e < r < MMS; (together with a partition with min-value at least r for agent
1) using O(nlog(1/e)) Robertson—Webb queries.

If instead of the exact MMS;, we are given a number r; < MMS; for each agent i, the
algorithm for computing an MMS-fair allocation in Theorem 3.1 still computes an allocation
in which agent i receives value at least r;; the proof is essentially the same. We therefore
have the following;:

Corollary 3.7. For any € > 0, it is possible to compute an allocation in which every agent
i receives value at least MMS; — & using at most O(n?log(1/¢)) Robertson—Webb queries.

Next, we consider the question of deciding whether the maximin share of an agent is
strictly greater than a given number r. At first glance, it may seem that to this end, we
can simply run the algorithm from Theorem 3.5 and answer yes exactly when the value left
after n — 1 iterations is strictly greater than r. While this modification indeed works if the
density function is positive throughout the cake, it may fail when intervals with zero value
are present. Concretely, suppose that v;(0,1/3) = 0.4, v;(1/3,2/3) = 0, v;(2/3,1) = 0.6,
and the value is distributed uniformly within each interval. Moreover, s = 1/3 and we want
to decide whether MMS?*® > 0.4. Even though there is leftover value at the right end of the
cake when we run the algorithm, which may tempt us to believe that the maximin share
can go above 0.4, the zero-valued middle part in fact renders this belief false.

This example suggests a simple modification to the algorithm from Theorem 3.5: instead
of marking the leftmost point such that the value of the resulting piece is r, we should
mark the rightmost point with this property. It is easy to verify that MMS; > r if and
only if after executing this modified algorithm we are left with a positive-value piece. The
modified algorithm requires a query CUTRIGHT;(z, ) that returns the rightmost point y
for which that v(z,y) = a. Unfortunately, and perhaps surprisingly, CUTRIGHT cannot be
implemented using the queries available via the Robertson-Webb model—see Appendix B.
Nevertheless, we can get around this issue by instead going over the cake from right to left.
In the first iteration, we want the leftmost point x such that v(x,1) = . This is equivalent
to finding the leftmost point x such that v(0, ) = 1 —r, which can be done with a standard
Cur;(0,1 —r) query.

Theorem 3.8. Given an agent i and a number r > 0, it is possible to decide whether
MMS; > r using at most n queries in the Robertson—Webb model.

Theorems 3.5 and 3.8 immediately imply the following:

Corollary 3.9. Given an agent i and a number v > 0, it is possible to decide whether
MMS; = r using at most 2n queries in the Robertson—Webb model.



3.2 Explicit Piecewise Constant Valuations

In this subsection, we assume that all agents have piecewise constant valuations and, more-
over, these valuations are given ezplicitly. That is, for an agent i« € N we are given a list
of breakpoints (po,p1,...,pq) with pg = 0, pg = 1, and a list of densities (y1,...,74), SO
that for each j € [d] and each x € [p;_1,p;] the valuation function v; of agent ¢ satisfies
v(0,2) = %;i [ve- (pe —pe—1)]+7; - (x —p;j—1). Moreover, all breakpoints and densities are
rational numbers, represented as fractions whose numerators and denominators are given
in binary. It is straightforward to implement both types of Robertson-Webb queries in this
model, so every problem that can be solved in polynomial time in the Robertson-Webb
model can also be solved in polynomial time in this model. But the explicit representation
offers additional benefits: we can compute the agents’ maximin shares exactly rather than
approximately.

Theorem 3.10. Given an agent i with a piecewise constant valuation function given ex-
plicitly, we can compute MMS]"® in time polynomial in the size of the input.

At a high level, the proof of Theorem 3.10 proceeds by formulating a linear program
whose solution corresponds to MMS;. The challenge is that in order to have a linear program
that returns a correct answer, we need to find out the intervals to which each endpoint of a
maximin partition belongs. To accomplish this, we proceed from left to right, determining
the interval for one endpoint at a time. By comparing the maximin shares between optimal
subpartitions to the left and right of the potential intervals to which the next endpoint
belong, we ensure that at each step of the algorithm, there exists a maximin partition
whose endpoints are consistent with the intervals we have chosen.

Combined with Theorem 3.1, Theorem 3.10 implies that when agents have piecewise
constant valuations given explicitly, an MMS-fair allocation can be computed efficiently (cf.
Corollary 3.4).

Corollary 3.11. For agents with piecewise constant valuations given explicitly, an MMS-
fair allocation can be computed in time polynomial in the size of the input.

4 Pie Cutting

In the canonical model of cake cutting the cake is assumed to be linear. By contrast, in
this section we assume that it is circular. In other words, our resource is represented by
the interval [0, 1] with its two endpoints identified with each other. The respective division
problem is known in the literature as pie cutting; its applications include dividing the
shoreline of an island among its inhabitants and splitting a daily cycle for using a facility
[Thomson, 2007, Brams et al., 2008, Barbanel et al., 2009].

The definitions of s-separated partitions and allocations can be readily adjusted to pie
cutting—the only difference is that, due to the circular structure, there are n separators
in pie cutting rather than n — 1 (so we assume that s < 1/n). Note that, since the pie is
one-dimensional, distances are measured along the circumference of the pie. We denote by
IL,, s the set of s-separated partitions with respect to the pie, and by H;L)S C II,, s the subset
of partitions for which every pair of consecutive pieces is separated by length exactly s. The
maximin share can then be defined similarly to how it is defined in cake cutting (Defini-
tion 2.1); just as in Proposition 2.2, we can show that MMS;"® = maxperr, | minjep,) vi(P;).

However, in pie cutting, unlike in cake cutting, an MMS-fair allocation does not nec-
essarily exist. This is evident in the example in Figure 1, where s > 1/4 and 0 < ¢ <
min{s —1/4,1/2 — s}, and Alice values pieces of length ¢ centered at the top and bottom of
the pie while Bob values similar pieces on the left and right. Since s < 1/2 — ¢, both agents



have a maximin share of 1/2. However, since the distance between any point in Alice’s piece
and any point in Bob’s piece is at most 1/4 + & < s, no s-separated allocation gives both
agents a positive value. Hence, no MMS-fair allocation exists.

Figure 1: Example of a pie cutting instance with no MMS-fair allocation. Each of the two
agents uniformly values the bold part of the pie, s > 1/4, and 0 < ¢ < min{s—1/4,1/2—s}.

In fair division, a common response to the non-existence of MMS-fair allocations is
to seek allocations that guarantee each agent a constant fraction of their maximin share.
However, the same example shows that, in our setting, no positive fraction of the maximin
share can be guaranteed. Given this negative result, it may seem unclear whether any
meaningful fairness guarantee can be achieved in pie cutting with separation. Fortunately,
positive results can be obtained if, instead of using cardinal approximations of the maximin
share, we relax the criterion in an ordinal manner. Specifically, when each agent computes
her maximin share, we allow partitioning into k pieces, where k is a parameter greater than
n—we refer to the resulting notion as the 1-out-of-k maximin share and write MMS?’S or
simply MMS;C for the share of agent i. Ordinal approximations were introduced by Budish
[2011] in the context of indivisible item allocation. In particular, he considered the case®
k=n+1.

It turns out that this relaxation is precisely what we need for pie cutting.

Theorem 4.1. For any pie cutting instance with n agents, there exists an allocation in
which every agent i receives a piece of value at least MMS?H. Moreover, given the 1-out-
of-(n + 1) mazimin share of each agent, such an allocation can be computed using O(n?)
queries in the Robertson—Webb model.

The idea behind our algorithm is similar to that of the analogous result for cake cutting
(Theorem 3.1). The difference is that, because of the circular structure, when we start
proceeding over the pie from a certain point (which we take to be the point 0), we may
destroy one of the pieces in each agent’s partition. This is why we need n + 1 pieces in the
partition rather than n. We sometimes view the pie as an interval [0, 1] and refer to ‘left’
and ‘right” with respect to this interval.

Proof. We ask each agent i to mark the leftmost point x; such that v(0, ;) = MMS*'. The
agent who marks the leftmost x; is allocated the piece [0, x;] (with ties broken arbitrarily);
we then remove this agent along with the piece [z;,2; + s], and recurse on the remaining
agents and pie. If there is only one agent left, we still allocate to that agent a piece worth
MMS?‘”‘1 (as opposed to the entire remaining pie). Since we make n — j cut queries when
there are n — j agents left (and no eval queries), our algorithm uses Z;L:_Ol (n —j) = O(n?)
queries.

30ne way to think about this relaxation is that we pretend that there are k > n agents when computing
the maximin share. 1-out-of-k maximin share is a special case of the f-out-of-k maximin share notion
introduced by Babaioff et al. [2019] and further studied by Segal-Halevi [2020], which takes the ¢ pieces of
minimum value in a partition into k pieces.



We now prove the correctness of the algorithm. Consider any agent ¢ and her 1-out-
of-(n 4+ 1) maximin partition. When we turn the pie into a cake by cutting at the point 0
(equivalently, the point 1), we may break one of the pieces in the partition. Nevertheless,
at least n pieces remain intact. If agent i receives the first piece allocated by the algorithm,
she receives value MMS?‘H. Else, the allocated piece is no larger than the first intact piece
of her maximin partition. Since the algorithm inserts a separator of length exactly s, the
right endpoint of the first separator is no further to the right than the left endpoint of the
agent’s second intact piece. Applying a similar argument repeatedly, we find that if agent
¢ is not allocated any of the first n — 1 pieces, then after removing the (n — 1)-st piece
and the following separator, the remaining cake contains the n-th intact piece of agent i’s
partition as well as a positive amount of the (n + 1)-st piece (which may be intact or not).
In particular, after allocating a piece of value MMS?Jr1 to the agent, the separator between
the n-th and (n + 1)-st pieces still remains. This means that there is a gap of length at
least s between the first and last pieces of our allocation, and therefore the allocation is
s-separated. O

Remark 4.2. Theorem 4.1 can be generalized to guarantee to each agent her ¢-out-of-(¢n+
1) maximin share, for any integer £ > 1. As an example where this can be useful, suppose
s =1/6 and n = 2, and consider an agent who values the regions [0,1/30], [6/30,7/30],
[12/30,13/30], [18/30,19/30], [24/30,25/30] uniformly at 1/5 each (and has no value for
the remaining pie). Then her 2-out-of-5 maximin share is 2/5, which is higher than her
1-out-of-3 maximin share. On the other hand, if she values the regions [0,1/6], [2/6,3/6],
[4/6,5/6] uniformly at 1/3 each, then her 1-out-of-3 maximin share is 1/3, which is higher
than her 2-out-of-5 maximin share.

The following algorithm for the generalization is moreover pluralistic in that it allows
each agent i to get the ¢;-out-of-(¢;n + 1) maximin share for her optimal ¢;. Reduce the pie
into a cake by breaking it at an arbitrary point (say, the point 0). This destroys, for each
agent i, at most a single part in her (¢;n + 1)-maximin partition. Thus, at least ¢;n parts
(with their adjacent separators) remain intact. A procedure similar to the one described in
Theorem 4.1 then guarantees each agent at least ¢;n/n = ¢; of these parts.

For cake cutting, there exists an algorithm that, given an agent ¢ and a number r, decides
whether MMS; > r and whether MMS; = r (Theorem 3.8 and Corollary 3.9). In contrast,
for pie cutting this is not the case.

Theorem 4.3. Fiz any k > 2. For pie cutting, there is no finite algorithm in the Robertson—
Webb model that can decide, for any agent i and real number r, whether MMS;C > r oor
whether MMS? = r, even when the valuation of this agent is piecewise constant (but not
given explicitly).

Theorem 4.3 leaves open the question of whether it is possible to decide whether MMS;C >
r for a given r. We show next that the answer to this question, too, is negative. We do so
by reducing from the following problem, which may be of independent interest.

Problem HASLOWVALUE(s, ¢), where s > 0 and ¢ > 0 are real parameters.
Input: A value measure v on a pie [0, 1], accessible through CuT and EVAL queries.

Output: “Yes” if the pie contains an interval of length s with value at most ¢, i.e.,
there is an zg € [0, 1] for which v(zg, 20 + s) < ¢, where addition is done modulo 1.
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Lemma 4.4. For any real numbers s > q > 0, there is no algorithm that solves
HASLOWVALUE(s,q) using finitely many queries in the Robertson—Webb model. This holds
even if the valuation v is known to be piecewise constant and strictly positive (but not given
explicitly).

Remark 4.5. The requirement s > ¢ > 0 is essential for the impossibility. When ¢ > s,
the answer to HASLOWVALUE(s, ¢) is always “yes”. When ¢ = 0, HASLOWVALUE(s, ¢) can
be answered using finitely many queries, using a similar idea as in the proof of Theorem 4.7
below.

Theorem 4.6. In pie cutting, for any k > 2, there is no finite algorithm in the Robertson—
Webb model that can decide, for any agent i and real number r, whether MMS;c >r, even
when the valuation of this agent is piecewise constant and strictly positive (but not given
explicitly).

Proof. We prove a somewhat stronger claim: for any r € (% — 57%

algorithm that can decide whether MMSi-c > r. In particular, there is a whole interval
of “undecidable values” rather than a single such value. For the sake of convenience, we
represent the pie by the interval [0, k] instead of [0, 1].

The proof is by reduction from HASLOWVALUE(s, ¢). We show that, given an algorithm
ALG that decides, for any r, whether MMS;C > r on the pie m := [0, k], we can decide, for
any ¢ € (0,s) and any valuation v on the pie 71 := [0, 1], whether there exists an interval of
length s and value at most g. This is sufficient by Lemma 4.4.

We run ALG with r := % — ¢; note that r € (% — s, %) For each query asked by ALG, we
reply like an agent whose density function on 75 is made of k copies of the density function
of v on .

If there exists an interval in 7 of length s and value at most ¢, then by using the k
corresponding pieces of 7 as separators, the resulting partition has value at least (1 —
kq)/k =, so ALG answers “yes”.

Conversely, suppose that no such interval exists in 7, and consider any s-separated
partition of m;. Each separator takes up value strictly greater than ¢, so the remaining
value outside the k separators is less than 1 — kq = kr. Hence, at least one of the pieces in
the partition has value less than r, implying that MMS? < r; so ALG answers “no”.

In both cases, the answer of ALG is the right answer to HASLOWVALUE(s, q). O

), there is no finite

Complementing the negative result for r € (% — s, %), we now present a positive result
for 7 = 1/k. Note that we always have MMS? < 1/k, and, moreover, MMS? = 1/k only
if there is a partition where each separator has value 0. These observations turn out to be
very useful for the analysis of this case.

Theorem 4.7. For pie cutting, there exists an algorithm that, given an agent i and any
k > 2, decides whether MMS;C > 1/k (and if so, computes a mazimin partition) using
O(k/s) queries in the Robertson—Webb model.

The number of queries made by Algorithm 1 scales linearly with 1/s. This is in contrast
to Theorem 3.5 for cake cutting, where the number of queries is independent of s. We will
now show that for pie cutting the number of queries must depend on s; this result holds
even for k =2 and r = 1/k.

Theorem 4.8. Let ¢ be any constant not depending on s. For pie cutting, there is no
algorithm using at most ¢ Robertson—Webb queries that, given an agent i, can always decide
whether MMS? > 1/2, even when the agent’s valuation is piecewise constant (but not given
explicitly).
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At the other extreme, we show next that deciding whether the maximin share is nonzero
can also be done by a finite algorithm. Moreover, unlike for MMSf > 1/k, the number of
queries needed to decide whether MMSQC > 0 does not depend on s. For this result we will
need the assumption s < Q—E—this assumption means that the length of a separator is smaller
than the average length of the pieces in a partition. While this is a reasonable assumption
as separators are small in most applications, it remains open whether the assumption can
be removed.

Theorem 4.9. For pie cutting, there exists an algorithm that, given an agent i and any
k>2ands < i, decides whether MMSF > 0 using O(k) queries in the Robertson—Webb
model.

We now turn to the problem of computing the maximin share and a maximin partition
of a pie. Theorem 4.3 obviously rules out the possibility of exact computation:

Corollary 4.10. Fixz any k > 2. For pie cutting, there is no finite algorithm in the
Robertson-Webb model that, given an agent i, can either (a) compute MMSf, or (b) com-

pute a maximin partition into k pieces for i. This holds even when the valuation of this
agent is piecewise constant (but not given explicitly).

Despite these negative results, we show that it is possible to approximate the maximin
share of an agent up to an arbitrary error. The idea is to mark points on the pie so that any
piece between two adjacent marks has value at most /2, and, for each piece between two
(not necessarily adjacent) marks, try to construct an s-separated partition with min-value
equal to the value of this piece, by means of a greedy algorithm.

Theorem 4.11. Fix any k > 2. For pie cutting, given an agent i and a number € > 0, it
is possible to find a number r such that MMS;€ —e<r< MMS?, along with an s-separated
partition with min-value r, using O(1/e) queries in the Robertson—Webb model.

5 Conclusion and Future Work

In this paper, we have initiated the study of cake cutting under separation requirements,
which capture scenarios including data erasure in machine processing, cross-fertilization
prevention in land allocation, as well as social distancing. We established several existence
and computational results on maximin share fairness—overall, our results indicate that
maximin share fairness is an appropriate substitute for proportionality in this setting.

Interestingly, several of our positive results, including Theorems 3.1, 3.5, 3.8, and 4.1, do
not rely on the assumption that valuations are additive (which is standard in the cake-cutting
literature [Procaccia, 2016]) and work for agents with arbitrary monotonic valuations. This
observation reveals another significant advantage of maximin share fairness over propor-
tionality: when valuations are not necessarily additive, even in the absence of separation
requirements, no multiplicative approximation of proportionality can be guaranteed.*

At a higher level, separation requirements represent one type of constraints that arise
in a number of applications of cake cutting. In other applications, it may be desirable to
limit the amount of cake that certain agents receive, or ensure that the cake is allocated
to agents in a given order. Examining the interplay between such constraints and fairness
considerations is an important direction that will likely lead to fruitful research.

4To see this, consider agents with identical valuations such that the value of a piece is defined by a non-
decreasing function f(¢) that depends only on the length ¢ of the piece. Even without separation, in any
allocation, at least one of the agents will receive value at most f(1/n), which can be 0 (or, if f is required
to be strictly increasing, arbitrarily close to 0).
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A Omitted Proofs

A.1 Proof of Proposition 2.2

Fix a partition P € IL, s(z,y). If some pair of consecutive pieces of P is separated by
length more than s, then by extending some pieces so that every pair of consecutive pieces
is separated by length exactly s, we obtain another partition P’ € H;L’S(x,y) such that
P; C Pj for all j € [n]. It follows that mine,) v;(P}) > minje(,) vi(P), so in Definition 2.1
we may replace I, s(z,y) with 1T}, ((x,y).

Next, we show that we can also replace sup with max. Define

B:={(z1,...;2n-1) |2<21 < - <xp_1 <y—s, and x; + s < x;y1 Vi € [n—2]}.
Let g; : B — [0,1] be a function defined by
gi(zla s 7xn—1) = min{vi(x,xl),vi(xl + 57502)7 s 71}@‘(1'”_1 + Say)}'

Since B is a closed and bounded subset of R*~!, the Heine-Borel theorem implies that it is
compact. Moreover, since v; is the integral of an integrable function, each of the n functions
inside the minimum operator is continuous. This means that g;, which is a minimum of
continuous functions, is continuous too. Hence, the extreme value theorem for functions of
several variables implies that g; attains a maximum in B. It follows that

MMS;"*(z,y) = sup  min v;(P))
Pell, (z,y) J€IM

= sup gi(xla"wxnfl)
(z1,...,xn—1)EB

= max gi(xla"wxnfl)
($17---,wn71)€B

=  max minv;(F),
Pell], ,(z,y) j€[n]

as claimed.

A.2 Proof of Lemma 3.3

Assume for contradiction that a finite algorithm exists. We will show how an adversary can
answer the queries made by the algorithm in such a way that after any finite number of
queries, for any value of xy that the algorithm may output, there exists a piecewise-linear
function g consistent with the adversary’s answers for which x( is not the right answer for
the algorithm. This is sufficient to obtain the desired contradiction.

During the run, there is always a finite set of points € [0, 1] for which the algorithm
knows the value of g(z); we say that such points are recorded. Initially, only points 0 and
1 are recorded: since g is a bijection and it is monotone-increasing, g(0) = 0 and g(1) = 1.
Given a point z € [0, 1], we denote by z_ the largest recorded point that is at most z, and by
x4 the smallest recorded point that is at least x. If x itself is recorded, then x_ =z = .

When asked “given x, what is g(z)?”, if x is recorded then the adversary replies g(z);
else, the adversary chooses a value for g(z) satisfying the following properties:

(i) Monotonicity is preserved, i.e., g(x_) < g(z) < g(z4).
(ii) If the point 4 s is recorded, then g(x) # 1 — g(x + s).

(iii) If the point x — s is recorded, then g(x) # 1 — g(x — s).
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Since condition (i) allows infinitely many values to choose from, and each of the conditions
(ii) and (iii) rules out at most one value, the adversary can make a choice satisfying these
conditions.

When asked “given «, what is g~ («)?”, if there is a recorded point x such that g(z) = «,
then the adversary replies x; else, the adversary chooses a point x satisfying the following
properties:

(i) Monotonicity is preserved, i.e., g(z_) < a < g(x4).
(if) None of the points z — s, z + s, and z is recorded.

Again, the former condition allows infinitely many points, and the latter forbids only a finite
number of them.

Since the algorithm is finite, it must eventually return some number zy € [0,1 — s].
Now, in order to falsify the algorithm’s answer, the adversary voluntarily answers two more
queries by the same rules as above: g(zo) and g(zo + s). Now both zy and zy + s are
recorded. The answering rules guarantee that g(zo) + g(xo + s) # 1, so xy cannot be a
correct solution to FINDSUM1(s).

Finally, to complete the function g, the adversary simply connects every pair of consec-
utive recorded points linearly.

A.3 Proof of Theorem 3.5

The idea is similar to that in Theorem 3.1. Ask the agent to mark the leftmost point x
such that v(0,z) = r, make [0, 2] one of the pieces in a potential partition, add a separator
[z, + s], and repeat starting from x + s. If there is still value at least r left after n — 1
iterations, answer yes; else, answer no. It is clear that at most n queries are used.

If the algorithm answers yes, then it finds a partition with value at least r, so MMS; > r.
Conversely, suppose that MMS; > r, and consider a maximin partition. The right endpoint
of the first piece in this partition is either the same or to the right of our first marked point
z. In addition, since our algorithm inserts a separator of length exactly s, the right endpoint
of our first separator is no further to the right than the corresponding point in the maximin
partition. Applying a similar argument n — 1 times, we find that the right endpoint of our
(n — 1)-st separator is no further to the right than the corresponding point in the maximin
partition. Since the final piece of the partition has value at least MMS;, our remaining piece
also has value at least MMS; > r. Hence the algorithm answers yes, as claimed.

A.4 Proof of Theorem 3.8

Ask the agent to mark the leftmost point x such that v(0,z) = 1 — r, make [z, 1] one of
the pieces in a potential partition, add a separator [x — s,z], and repeat going from x — s
leftwards. If there is still cake left after n pieces have been created, answer yes; else, answer
no.

If we cannot create n pieces or if there is no cake left once we have created n pieces,
then by an argument similar to those in Theorems 3.1 and 3.5, the maximin share cannot
be greater than r. Suppose now that there is cake left after n pieces have been created. We
will show that the partition can be modified so that it has min-value more than r. First,
we extend the left end of the leftmost piece by an arbitrarily small positive amount so that
the piece has value greater than r—this is possible by definition of the left endpoint—and
shrink the right end so that the value of the piece is still more than r. We then repeat this
process for subsequent pieces, with the modification that instead of extending the left end
of each piece by an arbitrarily small amount, we extend it by no more than the amount
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by which we shrank the right end of the preceding piece; this ensures that the separation
between any two consecutive pieces is still at least s. The resulting partition is therefore
s-separated and has min-value greater than r, so MMS; > r, as claimed.

A.5 Proof of Theorem 3.10

Let v be the piecewise constant valuation function of agent i, described by a list of break-
points (pg, p1, . - -, pa) with pg = 0, pg = 1, and a list of densities (71, ...,7v4). For readability,
we set I; := [pj_1,p;] for each j € [d], as illustrated below:

I Iy I,

Po b1 b2 s Pa

We also write

J
ct = 1\/_[1\/_[8?’57 wj = 'U(O,pj) = Z’yﬁ . (pl _pffl)
=1

Since we can check whether ¢* > 0 using Theorem 3.8, we assume from now on that this
is the case. Given two points y <y’ with y € I, and y" € I, the value v(y,y’) is a linear
function of y and y/':

v(y,y") = (pe — Y)ve + (wr—1 —we) + (¥ — pr—1)r (1)
This is illustrated below:
I o I,

[ |

!
Pe—1 4 De s Pr—1 Y

Dr

In what follows, we depart from the notation used in the remainder of the paper and
represent an s-separated partition of [0,1] into n parts as (xg,z1,...,2,) where g = —s
and x,, = 1, so that the k-th part of the partition is given by [xx_1 + s, 2]

For each t € [0,1], each k € [n], and each list of intervals Zp, = (Iy1y, Ir(1ys - - - > Loy Ir(k))
such that £(1) < r(1) < --- < L(k) < r(k) and O € Iyy), t € I,(x), consider the following

linear program, with variables xg, x1,..., 2k, c:
Program LP(Zy,t):
max ¢
subject to
Trog = —S8, T =1
Tyg-1+SE Ig(q), Tq € Ir(q) for all g € [k] (2)
Tg—1+ s < x4 for all ¢ € [k]
v(xg_1 + 8,24) > ¢ for all g € [k] (3)
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Note that LPy(Zg,t) is indeed a linear program; in particular, constraints (2) are linear,
because the endpoints of each I; are known, and constraints (3) are linear because, by
(1), the function v(y,y’) is a linear function of y and y' as long as the intervals containing
y and 3 are known. Every feasible solution of this linear program corresponds to an s-
separated partition of [0,t] into k parts, where the beginning and the end of the ¢-th part
(i.e., g—1 + s and z, in the linear program), 1 < ¢ < k, are contained in the intervals
Iyq) and I,.(4), respectively; thus, the solution of this linear program is the maximum value
among all such partitions. It follows that we can compute MMS; by solving a linear program
as long as we know the ‘correct’ intervals for both endpoints of each part of an s-separated
maximin partition. We now show how to identify such intervals in polynomial time.

Given k € [n], a list of intervals 7, = (Iy(q), Ir(q))qe[r) and a partition (zo,...,2,) of
[0, 1], we will say that (xo,...,2,) and Zy are consistent if x,_1 + s € Iy and x4 € I, (g
for each q € [k]. If (zo,...,%,) is an s-separated maximin partition of [0, 1], and Z,, =
(Zo(q)s Ir(q))qeln) is consistent with (zo,...,,), then the solution of the linear program
LP,(Z,,1) is c*.

To build a list Z, that is consistent with some s-separated maximin partition, we

proceed inductively. First, we construct a list Zy = (Iy1), Ir(1)) that is consistent with
some s-separated maximin partition. Then, for each 1 < k < n we extend the list
Tr—1 = (Le(q)s Ir(q))qelk—1) t0 a list Ty = (Iy(q), Ir(q))qelr] SO that Zy is also consistent with
some s-separated maximin partition.
Base case We compute Z; = (141, I,(1)) as follows. Since the first part of any partition
starts at 0, we set £(1) = 1. To compute (1), for each j € {0,...,d}, set w; := v(0,p;), and
use the algorithm from Theorem 3.5 to check® whether w; < MMS!™"*(p, +s,1). Pick the
first j for which the answer is “no”, and set I,.1) = I;, as illustrated below:

I = I e I = IL.q) [MMS! ™ * < wj)
0 | 1

S
Po P cee Pi—1 Dy Pd

To see that this approach is correct, consider two s-separated maximin partitions of [0, 1],
which we denote by (xy,...,2;) and (zg,...,2;}): these partitions are chosen so that for
every s-separated maximin partition (zo,...,7,) of [0,1] we have 2] < 21 < xf. (These
two partitions may coincide.) Since ¢* > 0, we have 0 < x] and z] < 1. Suppose that
pj-—1 <xp < pj- and pj+_q < < p;+ for some j7,j* € [d]. For every z € [z, 2],
the partition (x;, 2,25 ,...,7;) is also an s-separated maximin partition of [0, 1]. Thus, for
every j such that j— < j < jT, there exists an s-separated maximin partition of [0, 1] such
that the right endpoint of the first part lies in I, i.e., any such choice of j is suitable for
r(1); we will argue that our algorithm selects r(1) so that ;= < r(1) < j*.

[j, [;r

} } }

] z

IE+
Pj-—1 Pj- Dj+-1 L pj+
Indeed, by our choice of ] we have v(0,27) = ¢*: if v(0,27) < ¢*, then the value of
the first part is less than ¢*, and if v(0, 2] ) > ¢*, we can find an z < z] with v(0,z) = ¢*, a
contradiction with our choice of 27 . By the same argument, v(0, z) < v(0,z; ) = ¢* for every
x < zy and hence v(0, p;/) < ¢* for every 5/ < j~. On the other hand, for j' < j~, [p;s+s, 1]

5Even though the algorithm in Theorem 3.5 is designed for MMS?’S(O, 1), it can be easily adapted to
our task by allowing n — 1 pieces in the partition and considering the interval [p; + s, 1] instead of [0, 1].
Similar statements hold for other applications of the algorithm in the remainder of this proof.
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is a superset of [z] + s,1] and hence MMS! ™ "*(p;s + s,1) > ¢*. Thus, (1) > j~. By a
similar argument, v(0,p;+) > v(0,27) > ¢*. Further, if MMS?fl’S(pﬁ +s,1) > c¢*, then,
by combining the corresponding maximin partition with [0, p,+], we obtain an s-separated
partition of [0, 1] into n parts such that the value of each part is at least ¢* and the first part
ends at p;+ > x], a contradiction with our choice of . Thus, no such partition of [pj+,1]

exists and hence our algorithm selects 7(1) < 5+. This concludes the proof for k = 1.

Inductive step Now, fix an integer k£ with 1 < k£ < n, and suppose we have already con-
structed a list Zy 1 = (Iy(q), Ir(q))qe[k—1) that is consistent with some s-separated maximin
partition of [0, 1]. Our goal is to compute Iy(), I(x) so that the list Zp = (Iy(q), Ir(q))qe[r] I8
consistent with some s-separated maximin partition of [0, 1].

We start with I;(). Among all s-separated maximin partitions that are consistent with
Ty_1, consider a partition with the smallest value of x;_; and one with the largest value
of zx_1; we denote these partitions by (z7,...,z,) and (zg,...,z;), respectively. Since
c* > 0, we have fol +s < 1. Suppose that p;— 1 < z;_;+s <p;- and pj+_; < xﬁfﬁ—s <
pj+ for some j~,jT € [d]. Note that for every z such that z,_; < z < z;_, it holds that
(g ... ,:17,;_2,z,xg, ...,x}) is an s-separated maximin partition. Therefore, for every j
such that = < j < jT, there exists an s-separated maximin partition (yo,...,¥,) of [0,1]
that is consistent with Z,_; and satisfies y,_1 + s € I;. Hence, any j in this range is a
suitable choice for £(k).

I;- [;r

] ]

+
Tp_1+s

xr, ,+ S
pj-—1 k-1

Dj- cee Pj+-1 Dj+

Let £ be the collection of all intervals I; that have a non-empty intersection with
[Pr(k—1)—1 + 8, Pr(k—1) + 8], where 7(k — 1) is the index of the rightmost interval in Z_;.
For every interval I; € L, we solve LPy_1(Zy_1,p; — s); let ¢’ be the solution of this lin-
ear program. We then check whether MMS?7k+1’S(pj, 1) > ¢ using the algorithm from
Theorem 3.5, and set £(k) to be the smallest j for which this is not the case.

To see the correctness of our approach, first observe that it suffices to restrict our atten-
tion to intervals in £. Indeed, for every maximin partition (xg,...,z,) that is consistent
with Z,_1 we have x,_1 € Ir(k,l), and hence Drk—1)—1+8 S Tp—1+8 < Prp—1) + 5. Thus,
rp_1 + s has to be contained in an interval I; such that I; N [py(x—1)—1 + 8, pr(k—1) + ] # 0.

Next, we will argue that (a) ¢(k) > 57, and (b) £(k) < j%. To prove (a), consider
some j' < j~. We claim that the solution of LPy_1(Zy_1,pjs — s) is strictly less than
c*. Indeed, otherwise there is an s-separated partition of [0, p; — s] into k — 1 parts that
is consistent with Zj_; and such that the value of each part is at least c*; since p;» <
pj-—1 < T;,_; + s, combining this partition with [p;/, ], [z, + s, 24, [z, +5,1],
we obtain a maximin partition of [0,1] that is consistent with Z;_;, a contradiction with
our choice of j~. Also, we claim that Ml\/[S?_k"rl’s(pjf7 1) > ¢*: again, this is witnessed by
[pjrs )5 [T +8,24], - [2,_1 + 5, 1]. Hence, our algorithm will not set £(k) = ;.

To prove (b), observe that since p;+ — s > xLl, we have that (zg,z7,... ,xLQ,pﬁ —
5,c*) is a feasible solution for LPy_1(Zy—1,p;+ — s), i.e., the solution of this LP is at least
c*. Now, if MMS?*ICH’S(ijr7 1) > ¢*, we can combine the corresponding partition with
0,21, [z +s,25],..., [*f_5 + s,p;+ — s] to obtain an s-separated maximin partition of
[0,1] where the k-th part starts at p;+, a contradiction with our choice of jT. Thus, we
have £(k) < jT.

Combining (a) and (b), we conclude that j= < ¢(k) < jT, so our choice of ¢(k) works.

To compute I,.(x), we proceed in a similar fashion. Specifically, let R be the collection of
intervals (I;)x)<j<a- For each interval I; in this collection, let Z(j) be the list obtained
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by taking Zj,_; and appending I, (which we have computed in the previous step) and I;
to it. We then solve LP(Zx(j), p;); let ¢’ be the solution of this linear program. We check
whether MMS?_k’S(pj +s,1) > ¢, pick the smallest j for which this is not the case, and set

IT(k) == Ij'
The proof of correctness for this case is similar. We know that the set of maximin
partitions (zo,...,x,) that are consistent with Z;_; and satisfy xp_1 + s € Iy is not

empty. Among all such partitions, consider one with the minimum z; and one with the
maximum zp. Let I;— and I;+ be the respective intervals containing the k-th cut xy; we
claim that ;= < r(k) < j%. Both inequalities are proved in exactly the same way as for
£(k). This completes the inductive argument.

Both for Iy and for I,.(;), we can speed up the search for the appropriate j by using
binary search on L (respectively, R) rather than checking each interval in that list; with
this modification, we can identify each interval in Z,, by solving O(logn) linear programs.

To see that our algorithm runs in polynomial time, it remains to observe that, to find
the maximin share of agent i, we first need to identify all intervals in Z,,, and then solve
the resulting linear program. Thus, we need to solve O(nlogn) linear programs, and the
size of each linear program is polynomial in the size of the input. The remaining steps of
the algorithm (such as invoking the algorithm from Theorem 3.5) can also be implemented
efficiently.

A.6 Proof of Theorem 4.3
1

Assume for contradiction that such an algorithm exists, and take r = ; —s. We show
how an adversary can answer the queries of the algorithm in such a way that after a finite
number of queries, there exists a piecewise constant valuation function consistent with the
answers for which MMSF > 7, but also one for which MMS} = r.

The adversary records any point that appears in a query or its own answer, and answers
queries as if the valuation is uniform throughout the pie—that is, for any two consecutive
recorded points on the pie, if the interval between them has length ¢, then it also has value
t. Suppose that some finite number of queries have been answered in this manner, and
consider the following two possibilities:

Possibility 1: The entire valuation function is uniform. For any s-separated partition,
the k pieces have total length at most 1 — ks, so one of the pieces has length (and value) at
most 1‘,!“ = r. On the other hand, there exists an s-separated partition such that each of

the k pieces has length r. Hence MMSZ—C = r in this case.

Possibility 2: Consider all s-separated k-partitions in which each of the k pieces has
length . Among all such partitions, choose a partition P for which none of the 2k endpoints
of the pieces coincides with any recorded point; since there are infinitely many partitions
and only a finite number of them are forbidden, this choice is possible. If a piece or a
separator does not contain a recorded point, record an arbitrary point in its interior. This
ensures that each interval between two recorded points contains at most one endpoint of
P. Now, for each interval I of length z containing an endpoint of P, distribute a value of
z uniformly within the intersection of I with the associated piece of P, so the intersection
of I and the associated separator has value zero. For the remaining intervals, their value
(which is equal to their length) is distributed uniformly within the interval. The resulting
valuation function is piecewise constant, and each of the k pieces of P has value strictly
greater than 7. Hence MMS? > 7.

We conclude that a finite algorithm cannot distinguish between the case MMSQc > r and
the case MMS? = 7.
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A.7 Proof of Lemma 4.4

Similarly to Theorem 3.2, we use an adversary argument assuming that the algorithm only
asks queries of the form EvAL(0,2) and CuT(0, ).

During the run, there is always a finite set of points a € [0, 1] for which the algorithm
knows the value of v(0,x); we say that such points are recorded. Initially only point 0
(which is equivalent to point 1) is recorded. Given a point x, we denote by z_ the closest
recorded point counterclockwise, and by x the closest recorded point clockwise. If x itself
is recorded, then z_ =z, = =.

Assume for contradiction that there exists an algorithm as in the theorem statement.
We will show how an adversarial agent can answer the queries made by the algorithm. For
any integer t > 0, after ¢ queries are made, the adversary has in mind a valuation function
v satisfying the following properties:

(i) v is compatible with all previously recorded points.

(ii) There is a point z; such that neither z; nor x; + s is recorded, the density between
x¢ and x¢ + s is exactly ¢/s throughout, and the density elsewhere is strictly greater
than ¢/s throughout.

For the base case t = 0, the adversary chooses any zo € {0,1 — s}, and sets the density
outside [z, zo + s] to be constant. Observe that this density is (1 — ¢)/(1 — s), which is
greater than ¢/s since ¢ < s.

For t > 1, assume that the adversary has in mind the valuation v;_; and the associated
point y := x;—1. Recall that neither y nor y+ s are recorded. If there is no recorded point in
the range (y,y + s), the adversary voluntarily records an arbitrary point in that range, and
similarly for its complement range (y + s,y). This ensures that y; belongs to the interval
(y, (y — s)—]. Note that none of the points y_, y4+, (y + s)—, and (y + s)+ belong to the
set {y,y + s}. When the algorithm makes the ¢-th query, if both y and y + s would still be
unrecorded upon answering according to v;_1, the adversary answers the query according to
v;_1 and sets vy, = v;_1 and x; = y. Else, assume that y would be recorded if the adversary
answers the query according to v;_1; the case where y+ s would be recorded can be handled
analogously. Let z be an arbitrary point in the range (y, ) such that z + s belongs to the
range (y + 8, (y + s)+). The adversary constructs v; by making the following changes to
Vi—1-

(a) Set the density in [y—, z] to be the constant such that the total value of [y_, y4] is
the same in v; as in v;—1. Note that the density in [y—, y] is smaller and the density
in [y, 2] is larger than in v;_;.

(b) Set the density in [y + s, 2z + s] to be ¢/s, and the density in [z + s, (y + s)+] to be
the constant such that the total value in [(y + s)—, (y + s)4] is the same in v; as in
Ve—1-

See Figure 2 for an illustration of this construction. Observe that in v;_1, the average
density in the range [y_,y4] is strictly greater than ¢/s. Since the density in [z,y] is set
to be exactly ¢/s in v, the constant density in [y_, z] such that the total value between
y— and yy is the same in vy as in vy_q is strictly greater than ¢/s. Similarly, the constant
density in [z + s, (y + $)4] in v, is strictly greater than ¢/s.

The adversary then answers the query according to v;. If the query is an eval query, the
new recorded point is y # z. Else, the query is a cut query; in this case, one can check that
since ¢ > 0 and the point 0 does not belong to the interval (y_,y+) (because this interval
contains no recorded point), the answer to the query will be a point in the interval (y, z),
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Figure 2: Illustration of the construction in the proof of Theorem 4.4, focusing only on a
portion of the pie. The solid blue lines depict the density function of the valuation vy 1
and the dashed red lines depict the density function of the valuation v;. Thicker tickmarks
denote recorded points.

which is in particular different from z and z 4+ s. This means that v; satisfies the properties
(i) and (ii) with z; = 2.

Since the algorithm is finite, it must eventually answer whether there is an interval of
length s that the agent values at most g. If it answers no, the adversary reveals that the
agent’s valuation is v, so the value of [y, x; + s] is exactly g. On the other hand, if the
algorithm answers yes, the adversary constructs v, from v; by changing the density in
[(zt)—, (xt)4+] to be the constant such that the total value in this interval is the same in
Ury1 as in vg; by a similar argument as in the previous paragraph, this constant density is
strictly greater than ¢/s. With respect to vy11, any interval of length s contains portions
with density greater than ¢/s and those with density exactly ¢/s, with the former taking
up a positive amount. This means that such a piece must yield value greater than ¢ to the
agent, so by revealing the agent’s valuation to be vy, the adversary can again falsify the
algorithm’s answer, completing the proof.

A.8 Proof of Theorem 4.7

Since MMS¥ < 1/k always holds, we only need to decide whether MMSY = 1/k. For the
sake of convenience, we modify the queries slightly for pie cutting as follows:

o EvAL;(z,y): Asks agent ¢ to evaluate the interval [z,y] starting from z and going
clockwise to y, and return the value v;(z,y).

e CuT;(z,a): For a < 1, asks agent 7 to return the first point y going clockwise from x
such that v;(z,y) = «.

It is clear that each of these queries can be implemented using no more than two queries in
the original model. If x > 1, we identify the point x with the point = — 1.

The pseudocode of our algorithm is given as Algorithm 1. We first divide the pie into
[2/s] equal-length intervals, so that the length of each interval is at most s/2. For each
resulting interval [z, y], if it has value 0, we find the closest point z going clockwise from x
such that v;(x,z) = 1; note that z is also the farthest point counterclockwise from x such
that v;(z,2) = 0. From point z, we check for a potential partition with min-value 1/k: we
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Algorithm 1 Determining whether MMS;f = 1/k in pie cutting
1: procedure MMS-1/k-P1E(k, s)
2 Divide the pie into [2/s] equal-length intervals.
3 for each resulting interval [z,y] do
4 if EvaL;(x,y) =0 then
5: z + Cutj(z, 1)
6
7
8
9

works < True
for j=1,2,...,k do
if EVAL;(z,2z+ s) # 0 then
: works < False
10: z + CuTi(z +s,1/k)

11: if works = True then
12: return Yes
13: return No

insert a separator of size s, jump by value 1/k, and repeat these steps k — 1 more times. If
all k separators have value 0, return Yes. Otherwise, if this fails for all candidate intervals
[,y], return No. Since our pie division consists of O(1/s) intervals and we make O(k)
queries for each interval, our algorithm uses O(k/s) queries.

Next, we prove the correctness of the algorithm. If the algorithm returns Yes, then the
k separators together with the pieces in between form a partition with min-value 1/k, so
MMS? = 1/k.

For the converse direction, suppose that MMSic = 1/k, so there exists a partition with
min-value 1/k. We can assume without loss of generality that each separator in our partition
cannot be extended in either direction without reducing the value of the adjacent parts, i.e.,
each separator is an inclusion-maximal interval of value 0 (in particular, we allow separators
to have length greater than s). Since the length of each separator in this partition is at
least s, there exists an interval in our initial pie division that is contained in one of the
separators; let [x,y] be one such interval. It suffices to show that the algorithm returns Yes
when starting with the interval [z, y] in the for-loop.

Since [x,y] is contained in a separator, we have v;(z,y) = 0. Denote by S; the sepa-
rator containing [z, y]. Let P; be the adjacent piece of the partition going clockwise, and
denote the following separators and pieces by So, P, ..., Sk, Pr. Considering all pieces in
the clockwise direction, we find that z coincides with the starting point of S;. Since S has
length at least s, the separator that the algorithm inserts has value 0; moreover, when the
algorithm jumps by value 1/k, it will reach exactly the endpoint of P;, which is also the
starting point of S;. Repeating this argument, we conclude that all k£ separators that the
algorithm inserts indeed have value 0, and the algorithm returns Yes, as claimed.

A.9 Proof of Theorem 4.8

Assume for contradiction that such an algorithm exists, and let 0 < s < 4%. We will show
how an adversary can answer the queries of the algorithm in such a way that after at most
¢ queries, there exists a piecewise constant valuation function consistent with the answers
for which MMS? > 1/2, but also one for which MMS? < 1/2. This is sufficient to obtain the
desired contradiction. Since it always holds that MMS? < 1/2, the first case is equivalent
to MMS? = 1/2.

The adversary records any point that appears in a query or an answer to it, and answers
queries as if the valuation is uniform. Suppose that at most ¢ queries have been answered
in this manner. Each query and its answer increase the number of recorded points by at
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Figure 3: Illustration for the proof of Theorem 4.8, with a pie and its recorded points. The
two highlighted intervals are “good” intervals.

most two, so there are at most 2¢ recorded points. Call an interval of length s “good” if
neither it nor the diametrically opposite interval of length s contains any recorded point
inside or on its border (see Figure 3). For each recorded point, the set of points that it
rules out as potential centers of a good interval is a union of two intervals of length s; since
2¢ x 2s < 1, a good interval exists. Choose one such interval along with the diametrically
opposite interval, and if necessary, record additional points so that there is at least one
recorded point on both pieces of the pie between the two intervals. Consider the following
two possibilities:

Possibility 1: The entire valuation function is uniform. Since s > 0, we have MMS? < 1/2
in this case.

Possibility 2: Consider a piece between any two consecutive recorded points. If the
piece does not contain one of the two intervals, the adversary simply distributes the value
uniformly across the piece. Else, the adversary “shifts” the value away from the interval in
the following manner: Divide the interval into two subintervals of length s/2, and for each
subinterval, move its value to the adjacent part of the same piece outside the interval. This
can be done so that the resulting valuation is piecewise constant. Since the two intervals of
length s serve as separators for a partition with min-value 1/2, we have MMS? = 1/2.

Therefore, a finite algorithm using at most ¢ queries cannot distinguish between the case
MMS? < 1/2 and the case MMS? > 1/2.

A.10 Proof of Theorem 4.9

We work with the same CUT and EVAL queries as in Theorem 4.7, and use [a, b] and [a, b) to
refer to the closed and half-open interval going clockwise from a to b, respectively. Addition
is taken modulo 1.

The pseudocode of our algorithm is given as Algorithm 2. We first divide the pie into 2k
equal-length intervals. If all of these intervals yield nonzero value, we return Yes. Else, we
consider one of the intervals with value 0, say [z,y]. Starting from y, we find the farthest
point z” counterclockwise such that the interval [2”,y] has value 0—this is done by making
a cut query of value 1 clockwise from y—and insert a separator [z/, z”] of length s:

Value: >0 =0 =0
Length: =5 =1/(2k)

z z T Y=z

We then repeat this process k — 2 more times starting from z’. If we cover the entire pie
and reach point y at any stage during the process, we return No. Else, we return Yes. The
first step where we check whether all 2k intervals are of positive value requires O(k) eval
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Algorithm 2 Determining whether MMS;f > 0 in pie cutting when s < ﬁ

1: procedure MMS-0-PIE(k, 5)

2 Divide the pie into 2k equal-length intervals.
3 if all 2k intervals have a positive value for agent ¢ then
4 return Yes

5: [x,y] + one of the intervals with value 0

6 Z4y

7 for 7=1,2,....k—1do

8 Z2" + CuT;(z,1)

9 if the interval [2”, z) contains y then
10: return No
11: 22—
12: if the interval [2/,z") contains y then
13: return No
14: 27
15: if EVAL(y, z) = 0 then
16: return No
17: return Yes

queries, while the remaining steps take O(k) cut queries, so the total number of queries is
O(k).

Next, we prove the correctness of the algorithm. If all 2k intervals of length ﬁ are of
positive value, then since s < ﬁ, the partition with all odd-numbered intervals as separators
has a positive min-value, and our algorithm correctly returns Yes. Assume now that there
exists a zero-valued interval [z, y], and consider the for-loops. By definition of the cut query,
the intervals [2”, z] (some of which may be empty) have zero value. Hence, if the algorithm
returns No, the entire value of the pie is covered by the (at most) k — 1 separators [z/, 2"].
When this is the case, we indeed have MMSQC = 0: for any s-separated partition of the
pie into k parts, at most one part can overlap each interval [2/,2”], so at least one part
necessarily has zero value.

x Yy

2y

/
z /

! Zk—1

1"
" Zk—1
22

2

Figure 4: Tllustration for the proof of Theorem 4.9. The interval [z, y] is one of the original
2k equal-length intervals and has value 0. Each interval [z}, z/'] is a separator of length s

1™
inserted by the algorithm.

Finally, suppose the algorithm returns Yes in the last line of the algorithm, and call the
k—1 separators inserted by the algorithm [z, 21'],.. ., [2}._;, z;_;] in this order (see Figure 4).
The interval [y, zj,_,] has a positive value by line 15 of the algorithm. Therefore, we can
slightly move the separator [z},_;,z)_,] towards y, so that [y, z}._,] still retains a positive
value. By definition of z}/_;, now the interval [z} _,, z,_,] has a positive value. Applying
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the same argument k — 1 times, we see that the entire set of separators can be slightly
moved to yield a k-partition with a positive min-value and k — 1 separators of length s. The
interval [z, y], which has length i > s, then serves as the k-th separator of a partition with
a positive min-value.

A.11 Proof of Theorem 4.11

Mark points on the pie so that for any two adjacent marks the value of the piece between
them is at most £/2; let M be the set of marked points. Let r denote the highest min-value
among all s-separated partitions such that both endpoints of each of the k pieces are in M.
We first claim that r > MMS;C —e¢. Indeed, consider a maximin partition, and shrink each of
the k pieces by moving each endpoint until it coincides with a marked point. The resulting
partition is still s-separated, and the value lost by each piece is at most €/2+¢/2 = . Since
the min-value of the original partition is MMS?, the min-value of the new one is at least
MMS? — ¢.

Our algorithm starts by marking points as above. For each interval [z, y] where z,y € M,
we attempt to construct an s-separated partition with min-value v;(x,y) that has [z,y] as
one of its pieces and such that the endpoints of all k£ pieces are in M. The construction
proceeds in a greedy fashion: starting with [z,y] and going clockwise, we add the smallest
separator of length at least s that ends at another marked point (say, x’), create the next
piece by finding the smallest ¢y’ € M such that v;(z’,y') > v;(x,y), add another separator
of length at least s, and so on. If we can add n separators without overlapping with the
original interval [z, y], the construction succeeds. We return the highest value v;(x,y) such
that the construction succeeds, along with the corresponding partition.

Note that the algorithm only needs O(1/¢e) queries in order to mark points in the first
step; the additional steps do not require further queries. To see its correctness, consider a
partition with min-value r defined in the first paragraph, and let [z,y] be a piece in this
partition with value exactly r. The algorithm succeeds when it starts with [z, y]: this follows
from a greedy argument similar to that in Theorem 3.5. Hence the value returned by the
algorithm is at least r > MMS? — &. Moreover, the algorithm necessarily outputs the min-
value of an s-separated partition, which is at most MMSé€ by definition. This concludes the
proof.

B CutRight Query

We show that the CUTRIGHT;(z, &) query, which returns the rightmost point y for which
v(z,y) = «, cannot be implemented using finitely many queries in the standard Robertson—
Webb model. This query has been used by Cechldrovd and Pilldrové [2012], where it was
called a “reverse cut” query.

Theorem B.1. For any agent i and real number o € (0,1), let CUTRIGHT;(0, ) be
the largest x € (0,1) for which v;(0,2) = «. There is no algorithm that computes
CUTRIGHT; (0, o) by asking agent i a finite number of Robertson-Webb queries.

Proof. Suppose for contradiction that CUTRIGHT;(0,«) can be computed using finitely
many Robertson—-Webb queries. An adversary can answer all queries as if v; is uniform, i.e.,
for any two consecutive recorded points on the cake, if the piece between them has length
t, then it also has value ¢. After any finite number of queries, it is possible that the entire
valuation is uniform, in which case the algorithm should answer «. But it is also possible
that, for some small ¢ > 0, it holds that v;(c,« + €) = 0, where « + ¢ is smaller than the
next recorded point (i.e., the next point involved in any query or answer). In this case, the
algorithm should answer at least o + €. O
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