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Abstract

We consider an agent who is endowed with two sets of orderings: pro-orderings and con-
orderings. For each choice set, if an alternative is the top-ranked by a pro-ordering (con-ordering),
then this is a pro (con) for choosing that alternative. The alternative with more pros than cons
is chosen from each choice set. Each ordering may have a weight reflecting its salience. In this
case, each alternative is chosen with a probability proportional to the total weight of its pros and
cons. We show that every nuance of the rich human choice behavior can be captured via this
structured model. Our technique requires a generalization of Ford-Fulkerson Theorem, which
may be of independent interest. As an application of our results, we show that every choice rule
is plurality-rationalizable.

1 Introduction

Charles Darwin, the legendary naturalist, wrote “The day of days!” in his journal on November 11,
1838, when his cousin Emma Wedgwood accepted his marriage proposal. However, whether to marry
at all had been a hard decision for Darwin. Just a few months prior, Darwin had scribbled a carefully
considered list of pros –such as “constant companion” and “charms of music” –and cons –such as “fewer
conversations with clever people” and “no books”– regarding the potential impact of marriage on his
life.1 With this list of pros and cons, Darwin seems to follow a choice procedure ascribed to Benjamin
Franklin.2 Here we present Franklin (1887)’s choice procedure in his own words.

To get over this, my Way is, to divide half a Sheet of Paper by a Line into two Columns,
writing over the one Pro, and over the other Con. I endeavour to estimate their respective
Weights; and where I find two, one on each side, that seem equal, I strike them both out:
If I find a Reason pro equal to some two Reasons con, I strike out the three. If I judge some
two Reasons con equal to some three Reasons pro, I strike out the five; and thus proceeding
I find at length where the Ballance lies. And tho’ the Weight of Reasons cannot be taken
with the Precision of Algebraic Quantities, yet when each is thus considered separately and
comparatively, and the whole lies before me, I think I can judge better, and am less likely to
take a rash Step; and in fact I have found great Advantage from this kind of Equation, in
what may be called Moral or Prudential Algebra.

Choice models most commonly used in economics are based on maximization of preferences. An
alternative mode of choice, which is common for the scholarly work in other social disciplines such as
history, law, and political science, is the less formal reason-based analysis (Shafir et al. (1993)). Reason-
based analysis is also commonly used for the analysis of ‘case studies’ in business and law schools.3 In
the vein of Franklin’s prudential algebra, first, various arguments that support or oppose an alternative
are identified, then the balance of these arguments determines the choice.4 We formulate and analyze
the pro-con choice model that connects these two approaches by presenting a reason-based choice
model, in which the ‘reasons’ are formed via a preference-based language.

1See Glass (1988) for the full list.
2In 1772, Joseph Priestley wrote a letter to Benjamin Franklin asking for Franklin’s advice on a decision he was trying to

make. Franklin wrote back indicating that he could not tell him what to do, but he could tell him how to make his decision,
and suggested his prudential algebra.

3Köksalan et al. (2011) reports Franklin’s moral algebra as an early example of multi-criteria decision making.
4Shafir et al. (1993) argue that reason-based analyses have been used to understand unique historic, legal and political

decisions. Examples include presidential decisions taken during the Cuban missile crisis (Allison (1971)), the Camp David
accords (Telhami (1990)), and the Vietnam war (Gelb & Betts (2016)).



We formulate the pro-con choice model in the deterministic choice setup by extending Franklin’s
prudential algebra to choice sets that possibly contain more than two alternatives. A (deterministic)
pro-con model (pcM) is a pair 〈�,B〉 such that �= {�1, ∙ ∙ ∙ ,�m} is a set of pro-orderings and B=
{B1, ∙ ∙ ∙ ,Bq} is a set of con-orderings. We require that an ordering can not both serve as a pro- and
con-ordering. Since � and B are defined as sets of orderings rather than lists or profiles of orderings,
each ordering can be used only once as a pro- or con-ordering.5 Given an pcM 〈�,B〉, for each choice
set S and alternative x, if x is the �i-top-ranked alternative in S for some �i ∈ �, then we interpret
this as a ‘pro’ for choosing x from S. On the other hand, if x is the Bi-top-ranked alternative in S for
some Bi∈B, then we interpret this as a ‘con’ for choosing x from S.

Our central new concept is the following: A choice function6 is pro-con rational(izable) if there is
an pcM 〈�,B〉 such that for each choice set S, an alternative x is chosen from S if and only if pros for
choosing x from S are more than the cons for choosing x from S.7

A random pro-con model (RpcM) is a triplet 〈�,B, λ〉, where � and B stand for the sets of pro-
orderings and con-orderings, as before. The weight function λ assigns to each pro-ordering �i ∈ � a
value in the [0, 1] interval and con-ordering Bi ∈ B a value in the [−1, 0] interval, which we interpret
as a measure of the salience of each ordering.8 The total weight of an alternative in a choice set is the
total weight of the pro-and con-orderings at which it is top-ranked. To make a choice from each choice
set, a pro-con–rational agent considers the alternatives with a positive total weight, and chooses each
alternative from this consideration set with a probability proportional to its total weight.

The most familiar stochastic choice model in economics is the random utility model (RUM),
which assumes that an agent is endowed with a probability measure μ over a set of orderings � such
that he randomly selects an ordering to be maximized from � according to μ. An RUM 〈�, μ〉 is an
RpcM in which there is no set of con-orderings. Both the RpcM and the RUM are additive models, in the
sense that the choice probability of an alternative is calculated by summing up the weights assigned to
the orderings. The primitives of both the RpcM and RUM are structurally invariant, in the sense that
the decision maker uses the same 〈�, μ〉 and 〈�,B, λ〉 to make a choice from each choice set. These
two features of RUM reflect themselves in its characterization.9 Despite the similarity between the
RpcM and the RUM, in Theorem 2, we show that every random choice function is pro-con rational.
Our technique is build on our Theorem 3 an original extension of Ford Jr & Fulkerson (2015)’s seminal
result in optimization theory. Then, by using the construction in Theorem 2’s proof together with two
key results from the integer-programming literature, in Theorem 1, we show that each (deterministic)
choice function is pro-con rational.10

The remaining observations in the paper are as follows. In Section 2.3, we observe that our The-
orem 1 fails to hold in the context of multi-valued choice rules unless we allow multiple appearance of
an ordering as a pro- or con-ordering. In Section 2.4, we illustrate that our results facilitate identifica-
tion of other inclusive choice models, by showing that each choice function is plurality-rationalizable.
The model and the result can thought of as a generalization of an earlier model and a related result
by McGarvey (1953). For the uniqueness of representation, the RpcM has characteristics similar to the
RUM, which we present and discuss in Section 3.3.

5One concern is the number of orderings in � and B. It follows from this requirement that if there are n alternatives in X,
then at most n!-many orderings are used in a pro-con model.

6A choice function C singles out an alternative from each choice set S, which is a nonempty subset of the grand alternative
set X.

7In extending Franklin’s prudential algebra, one can consider a sequential pro-con model in which first the alternatives that
fail to have more pros than cons in the given choice set are eliminated, and then the elimination continues until an alternative
is singled out. Our model is a specific sequential pro-con model in which all the alternatives but the chosen one are eliminated
in the first step.

8 In line with the experimental findings of Shafir (1993) indicating that the weight assigned to the pros is more than the
weight assigned to the cons, we require the total weighted sum of pro-orderings and con-orderings be unity.

9Namely, the random choice functions that render a random utility representation are those with nonnegative Block-
Marschak polynomials. See Block & Marschak (1960), Falmagne (1978), McFadden (1978), and Barberá & Pattanaik (1986).

10This result does not directly follow from Theorem 2, since a pro-con model is not a direct adaptation of the random pro-
con model, in that we require each ordering to have a fixed unit weight instead of having fractional weights. To best of our
knowledge the use of integer programming techniques in this context is new.



1.1 Related literature

In the deterministic choice literature, previous choice models proposed by Kalai et al. (2002) and
Bossert & Sprumont (2013) yield similar “anything goes” results. A choice function is rationalizable
by multiple rationales (Kalai et al. (2002)) if there is a collection of preference relations such that
for each choice set the choice is made by maximizing one of these preferences. Put differently, the
decision maker selects an ordering to be maximized for each choice set. A choice function is backwards-
induction rationalizable (Bossert & Sprumont (2013)) if there is an extensive-form game such that for
each choice set the backwards-induction outcome of the restriction of the game to the choice set
coincides with the choice. In this model, for each choice set, a new game is obtained by pruning the
original tree of all branches leading to unavailable alternatives. For random choice functions, Manzini
& Mariotti (2014) provide an anything-goes result for the menu-dependent random consideration set
rules, in which an agent keeps a single preference relation and attaches to each alternative a choice-
set-specific attention parameter. Then, he chooses an alternative with the probability that no more-
preferable alternative grabs his attention. In contrast to these models, we believe that the pro-con
model is more structured and exhibits limited context dependency. An agent following a pro-con
model restricts the pro- and con-orderings to the given choice set to make a choice.

It may be of interest to view our model from the perspective of probabilistic social choice. Exist-
ing work in this literature show that the class of probabilistic group decision rules have considerable
richness and appeal. As a partial list one can consider Intriligator (1973), Barberá & Sonnenschein
(1978), Pattanaik & Peleg (1986), and Intriligator (1982). These studies typically investigate the
structure of coalitional power under probabilistic social decision rules. The closest to our work is Pat-
tanaik & Peleg (1986) who axiomatically characterize the random dictatorship procedure, in which
there is a probability measure μ on the members of the society N such that for each profile of individ-
ual preferences {�i}i∈N , the society chooses from each choice set according to the RUM 〈{�i}i∈N , μ〉.
Along these lines, for a social-choice interpretation of the mixed-sign representation in an RpcM, con-
sider a chair who stochastically aggregates different opinions in a committee to make a choice. It is
typically assumed that as more committee members top rank an alternative, the choice probability of
this alternative increases. However, there may be an antagonistic relationship between the chair and
some committee members, so that the chair would be less likely to choose the alternative favored by
them.

Franklin’s moral algebra is well known in the field of multi-criteria decision making.11 Köksalan
et al. (2011) reports Franklin’s moral algebra as one of the earliest examples of multi-criteria decision
making. Hammond et al. (1998) proposes the related ‘even swaps’ method as a practical way of
making trade-offs among any set of objectives across a range of alternatives. Our approach diverges
from the bulk of research in this literature in taking the route of revealed preference analysis. That is,
we recover the primitive objectives and the way that they are reconciled from observed choices.

Our Theorem 2 is related to a result in a contemporary paper by Saito (2017), who offers
characterizations of the mixed logit model. It follows from the results of this paper, which is proved by
using a different approach, that each RCF can be expressed as a convex combination of two random
utility functions.12 We discuss the technical differences at the end of Section 3.2.

2 Deterministic pro-con choice

2.1 The model

Given a nonempty finite alternative set X, any nonempty subset S is called a choice set. Let Ω denote
the collection of all choice sets. A (deterministic) choice function C is a mapping that assigns each
choice set S ∈ Ω a member of S, that is C : Ω → X such that C(S) ∈ S. An ordering, denoted
generically by �i or Bi, is a complete, transitive, and antisymmetric binary relation on X.

11For a classical reference one can consult Arrow et al. (1986).
12We are grateful to an anonymous referee for bringing this connection to our awareness.



A (deterministic) pro-con model (pcM) is a pair 〈�,B〉, where �= {�1, ∙ ∙ ∙ ,�m} and
B= {B1, ∙ ∙ ∙ ,Bq} are sets of pro- and con-orderings on X. Given an pcM 〈�,B〉, for each choice
set S and alternative x ∈ S, if x is the �i-top-ranked alternative in S for some �i ∈ �, then
we interpret this as a ‘pro’ for choosing x from S. On the other hand, if x is the Bi-top-ranked
alternative in S for some Bi∈B, then we interpret this as a ‘con’ for choosing x from S. Define
Pros(x, S) = {�i ∈ � : x = max(S,�i)} and Cons(x, S) = {Bi ∈B : x = max(S,Bi)}.

Definition 1 A choice function C is pro-con rational if there is an pcM 〈�,B〉 such that for each choice
set S ∈ Ω and x ∈ S, C(S) = x if and only if |Pros(x, S)| > |Cons(x, S)|.

Note that if an agent is pro-con rational, then at each choice set S there should be a single
alternative x such that the number of Pros(x, S) is greater than the number of Cons(x, S). Moreover,
the pro-con model is not a direct adaptation of its random counterpart. In that, we require each
ordering to have a fixed unit weight, instead of having fractional weights. Next, to illustrate how
the model works, we revisit Luce and Raiffa’s dinner example (Luce & Raiffa (1957)) by following a
pro-con model.

Example 1 Suppose you choose chicken when the menu consists of steak and chicken only, yet go for
the steak when the menu consists of steak (S), chicken (C), and fish (F ). Consider the pro-orderings
�1 and �2 that order the three dishes according to their attractiveness and healthiness, so suppose
S �1 F �1 C and F �2 C �2 S. As a con-ordering, consider F B S B C, which orders the dishes
according to their riskiness. Since cooking fish requires expertise, it is the most risky one and chicken
is the safest option.

Now, to make a choice from the grand menu, the pros are: “S is the most attractive”, “F is the
most healthy”, but also “F is the most risky”. Thus, S is chosen from the grand menu. If only S and C
are available, then we have “C is the most healthy”, “S is the most attractive”, but also “S is the most
risky”, so C is chosen.

In our Definition 1, we ask for a rather structured representation that corresponds to one-to-one
elimination in Franklin’s prudential algebra. We see at least two benefits of this stringency. First, we
obtain the uniqueness property presented in Section 3.3. Second, in Section 2.3, we argue that our
Theorem 1 fails to hold in the context of multi-valued choice rules. Finally, given our Theorem 1, one
can use our representation to identify other inclusive choice models, which otherwise may not be an
easy exercise. In Section 2.4, we present an application along these lines, in which we show that each
choice function is plurality-rationalizable.

2.2 Main result

We show that every choice function is pro-con rational. In the language of mathematical programming,
in Theorem 2, we show that the relaxed (convex) problem has a solution. In Section 5.3, we prove
Theorem 1, which translates into finding an integer solution, by using the construction in Theorem
2’s proof together with two key results from the integer-programming literature, the ones developed
by Hoffman & Kruskal (2010) and Heller & Tompkins (1956).

Theorem 1 Every choice function is pro-con rational.

Remark 1 The constructed pro-con representation is a rather parsimonious one. To see this, consider
a more stringent pro-con model, in which if an alternative x is chosen from a choice set S, it is barely
chosen in the sense |Pros(x, S)| − |Cons(x, S)| = 1, and if an alternative y is not chosen, it is barely
not chosen in the sense |Pros(y, S)| − |Cons(y, S)| = 0. It follows from the proof of Theorem 1 that
the same anything–goes-result holds for this model.



2.3 Extension to multi-valued choice

There are instances in which an agent must choose more than a single alternative from a choice set.
For example, consider a school that chooses a cohort from a set of applicants or a professor who
chooses a set of questions out of his archive to prepare an exam. As for the random choice, imagine
that we have access the support of the random choice function, but not the frequencies, then the
observed choice behavior yields a choice rule.13

So far, we have assumed that the observed choice behavior is summarized by a choice function
or a random choice rule. Both models rule out the possibility that choice can be multi-valued. Formally,
a choice rule C : Ω → Ω such that for each S ∈ Ω, C(S) ⊂ S. A choice rule is pro-con rational if there
exists a pro-con model 〈�,B〉 such that for each choice set S ∈ Ω, C(S) = arg maxx∈S(|Pros(x, S)| −
|Cons(x, S)|). That is, for each choice set S ∈ Ω and x ∈ S, x ∈ C(S) if and only if |Pros(x, S)| −
|Cons(x, S)| ≥ |Pros(y, S)| − |Cons(y, S)| for each y ∈ S.

A natural question is if our result in Theorem 1 extends to choice rules or not. To see that
not every choice rule is pro-con rational, consider the choice rule C defined on {x, y, z} such that
C({x, y, z}) = {x, y}, C({x, y}) = {x}, C({y, z}) = {y}, and C({x, z}) = {z}. It is easy to see that C
is not pro-con rational.14 The stringency in here derives from the requirement that each ordering can
be used only once as a pro- or con-ordering in a pro-con model.

In contrast, if we allow multiple appearance of an ordering as a pro- or con-ordering, then every
choice rule can be recovered. To see this, let C be a choice rule, and let p be the associated random
choice function such that for each S ∈ Ω and x ∈ C(S), p(x, S) = 1/|C(S)|. It follows from Theorem
2 that there is a random pro-con model 〈�,B, λ〉 which represents p. Moreover, it follows from the
construction in the proof of Theorem 2 that if for each S ∈ Ω and x ∈ C(S), p(x, S) is a rational
number, then for each �i ∈ � and Bj∈B, we can choose λ(�i) = mi/M and λ(Bj) = mj/M , where
mi,mj ,M are positive integers. Now, consider a list (or a profile) of pro-orderings with mi-many
copies of �i and mj-many copies of Bj for each �i ∈ � and Bj∈B. It directly follows from this
construction that for each S ∈ Ω and x ∈ S, x ∈ C(S) if and only if x maximizes the difference
between number of pro-orderings at which x is top-ranked in S and the number of con-orderings at
which x is top-ranked in S.

2.4 Plurality-rationalizable choice rules

We analyze a collective decision making model based on plurality voting. It turns out that this model
is closely related to our pro-con choice model. To introduce this model, let [�∗] = [�∗

1, . . . ,�
∗
m] be a

preference profile, which is a list of orderings. In contrast to a set of orderings, denoted by � or B,
an ordering �∗

i can appear more than once in a preference profile [�∗]. For each choice set S ∈ Ω and
x ∈ S, x is a plurality winner of [�∗] in S if for each y ∈ S \{x}, the number of orderings in [�∗] that
top rank x in S is more than or equal to the number of orderings in [�∗] that top rank y in S. That
is, for each y ∈ S \ {x}, |{�∗

i ∈ [�∗] : x = max(S,�∗
i )}| ≥ |{�∗

i ∈ [�∗] : y = max(S,�∗
i )}|. Next,

we define plurality-rationalizability, then by using our Theorem 1, we show that every choice rule is
plurality-rationalizable.

Definition 2 A choice rule C is plurality-rationalizable if there is preference profile [�∗] such that for
each choice set S ∈ Ω and x ∈ S, x ∈ C(S) if and only if x is a plurality winner of [�∗] in S.

Proposition 1 Every choice rule is plurality-rationalizable.15

13See, for example, Fishburn (1978) who explores a connection in this vein.
14The two stage threshold representation analyzed by Manzini et al. (2013) has a similar feature. In that, although each

choice function has a two-stage threshold representation, this does not hold for choice rules. That is, for each choice function
there is a triplet 〈f, θ, g〉 such that for each S ∈ Ω, the alternative that maximizes g(x) subject to f(x) ≥ θ(S) is chosen,
However, such a two stage threshold representation can not be obtained for every choice rule.

15Our initial result was for choice functions. We thank Vicki Knoblauch and an anonymous referee for suggesting the exten-
sion to choice rules.



Proof. Let C be a choice rule. In Section 2.3, by using Theorem 1, we show that if we allow multi-
ple appearance of an ordering as a pro- or con-ordering, then every choice rule is pro-con rational.
First, to formalize this representation, let � and B be the set of pro- and con-orderings such that
each �i∈� (Bi∈B) is copied ki times to represent C. Then, define for each S ∈ Ω and x ∈ S,
SPros(x, S) =

∑
{�i∈Pros(x,S)} ki and SCons(x, S) =

∑
{Bi∈Cons(x,S)} ki, where Pros(x, S) and

Cons(x, S) are defined as usual with respect to � and B. Now, we know that for each S ∈ Ω and
x ∈ S, x ∈ C(S) if and only if x ∈ arg maxx∈S(|SPros(x, S,�∗)| − |SCons(x, S,B∗)|).

Now, to construct the desired preference profile, let k = max{Bi∈B∗}ki, and begin with the list
of all orderings defined on X copied k times. This is preference profile with kn! elements. Then,
eliminate ki copies of the inverse of each ordering Bi∈B, and add ki copies of each ordering �i∈ �.
Note that since we have k copies of each ordering, the elimination part is well-defined. Let [�∗] be
the obtained preference profile.

We show that for each S ∈ Ω and x ∈ S, x ∈ C(S) if and only if x is a plurality winner of [�∗]
in S. We know that x ∈ C(S) if and only if for each y ∈ S \ {x}, |SPros(x, S)| − |SCons(x, S)| ≥
|SPros(y, S)| − |SCons(y, S)|. Now, note that by construction of [�∗], for each y ∈ S the number of
orderings in [�∗] that top rank y in S equals k times the number of all orderings that top rank y in S,
added to |SPros(y, S)| − |SCons(y, S)|. Since for each y ∈ S, the number of all orderings that top
rank y in S is fixed, it follows that x ∈ C(S) if and only if x is a plurality winner of [�∗] in S.

If we restrict our attention to choice functions, then we can consider an even more stringent
model. In which, we require that an alternative x is chosen from a choice set S if and only if x is
the plurality winner at the margin, in the sense that if x receives k votes then each other alternative
receives k−1 votes. It follows from Remark 1 and the proof of Proposition 1 that every choice function
is plurality-rationalizable via this more demanding model.

In an early paper McGarvey (1953) shows that for each asymmetric and complete binary rela-
tion, there exists a preference profile such that the given binary relation is obtained from the prefer-
ence profile by comparing each pair of alternatives via majority voting.16 We obtain McGarvey’s result,
as a corollary to Proposition 1. To see this, note that if we restrict a choice rule to binary choice sets,
then we obtain an asymmetric and complete binary relation. Since for binary choices, being a plurality
winner means being a majority winner, McGarvey’s result directly follows.

3 Random pro-con choice

3.1 The model

A random choice function (RCF) p is a mapping that assigns each choice set S ∈ Ω, a probability
measure over S. For each S ∈ Ω and x ∈ S, we denote by p(x, S) the probability that alternative x is
chosen from choice set S.

A random pro-con model (RpcM) is a triplet 〈�,B, λ〉, where � and B stand for the sets of
pro- and con-orderings on X as before. The weight function, denoted by λ, is such that for each
�i ∈ � and Bi∈B, we have λ(�i) ∈ (0, 1], λ(Bi) ∈ [−1, 0), and the weighted sum of pro-orderings
and con-orderings is one, i.e.

∑
{�i∈�} λ(�i) +

∑
{Bi∈B} λ(Bi) = 1. The weight function λ acts like

a probability measure over the set of orderings that can assign negative values. In measure theoretic
language, the primitive of a random pro-con model is a signed probability measure defined over the
set of orderings.

Given an RpcM 〈�,B, λ〉, for each choice set S and alternative x ∈ S, if x is the �i-top-ranked
alternative in S for some �i ∈ �, then we interpret this as a ‘pro’ for choosing x from S. On the
other hand, if x is the Bi-top-ranked alternative in S for some Bi∈B, then we interpret this as a ‘con’
for choosing x from S. We interpret the weight assigned to each pro-ordering or con-ordering as a
measure of the strength of that ordering.

16Stearns (1959) finds upper and lower bounds on the number of voters to generate any binary relation. Knoblauch (2016)
provides an extension for infinite sets.



To define when an RCF is pro-con rational, let Pros(x, S) = {�i ∈ � : x = max(S,�i)} and
Cons(x, S) = {Bi∈B : x = max(S,Bi)}. Next, we formally define when an RCF is pro-con rational.
For a given RpcM 〈�,B, λ〉, for each choice set S ∈ Ω and x ∈ S, we denote the total weight of x in S
by λ(x, S), i.e. λ(x, S) = λ(Pros(x, S)) + λ(Cons(x, S)). For each choice set S ∈ Ω, let S+ be the set
of alternatives in S that receives a positive total weight, i.e. S+ = {x ∈ S : λ(x, S) > 0}.

Definition 3 An RCF p is pro-con rational if there is an RpcM 〈�,B, λ〉 such that for each choice set
S ∈ Ω and x ∈ S,

p(x, S) = max

{
0 ,

λ(x, S)
∑

{y∈S+} λ(y, S)

}

(1)

That is, to make a choice from each choice set S, a pro-con–rational agent considers the alter-
natives with a positive total weight, and chooses each alternative from this consideration set with
a probability proportional to its total weight. An equivalent formulation is as follows. An RCF p
is pro-con rational if there is an RpcM 〈�,B, λ〉 such that for each choice set S ∈ Ω and x ∈ S,
p(x, S) = λ(Pros(x, S)) + λ(Cons(x, S)) , where λ(Pros(x, S)) and λ(Cons(x, S)) are the sum of the
weights over Pros(x, S) and Cons(x, S). Our proof of Theorem 2 clarifies this equivalence.

As an alternative to the random utility model (RUM), Tversky (1972) proposes elimination by
aspects model in which an agent views each alternative as a set of attributes. Then, at each stage, the
agent selects an attribute with probability proportional to its weight and eliminates all the alternatives
without the selected attribute. Pro-con model offers a choice procedure that both carries the act of
selecting an ordering to be maximized as in the random utility model and elimination of the alterna-
tives based on their attributes as in Tversky (1972)’s elimination by aspects. In that, a pro-con–rational
agent’s attitude to the relevant attributes is twofold: If it is a pro-ordering, then he seeks maximization
as in the RUM, if it is a con-ordering, then he is satisfied by elimination of the worst alternative as in
the elimination by aspects model. In line with this interpretation, we illustrate in Example 2 that each
ordering in an RpcM can be interpreted as an attribute or a relevant criterion.

To illustrate how RpcM works, we focus on a particular choice problem in which there are only
two orderings (�1,�2) that are relevant for choice, such as price and quality, and present an attraction
effect scenario.17 In this scenario, when we introduce an asymmetrically dominated alternative, called
a decoy, the choice probability of the dominating alternative goes up. This choice behavior, known as
the attraction effect, is incompatible with any RUM.

Example 2 (Attraction Effect) Suppose X = {x, y, z}, where x and y are two competing alternatives
such that none clearly dominates the other, and z is another alternative that is dominated by x but
not y. Consider the following RpcM 〈�,B, λ〉, in which there is single pair of orderings used both as
the pro- and con-orderings, with weights shown in parenthesis. We can interpret this ordering pair as
two distinct criteria that order the alternatives.

(1) (1) (− 1
2 ) (− 1

2 )
�1 �2 �−1

1 �−1
2

x y y z
z x z x
y z x y

Now, since for both criteria x is better than z, we get p(x, {x, z}) = 1. Since x and y fail to dominate
each other, and y fail to dominate z, we get p(y, {x, y}) = p(y, {y, z}) = 1/2. That is, z is a ‘decoy’ for
x when y is available. Note that when only x and y are available, since x is the �2-worst alternative,
x is eliminated with a weight of 1/2. However, when the decoy z is added to the choice set, then x is
no longer the �2-worst alternative, and we get p(x, {x, y, z}) = 2/3. That is, availability of decoy z
increases the choice probability of x. Thus, our model captures the intuition that the choice probability

17Experimental evidence for the attraction effect is first presented by Payne & Puto (1982) and Huber & Puto (1983). Fol-
lowing their work, evidence for the attraction effect has been observed in a wide variety of settings. For a list of these results,
consult Rieskamp et al. (2006).



of an alternative may increase when a decoy is added, since this alternative may no longer be the worst
one according to a relevant attribute.

3.2 Main result

In our main result, we show that every random choice function is pro-con rational. We present a
detailed discussion of the result in the introduction. We present the proof in Section 5.2. As a notable
technical contribution, we generalize the Ford-Fulkerson Theorem (Ford Jr & Fulkerson (2015)) from
combinatorial matrix theory to prove the result. Next, we state the theorem and present an overview
of the proof. Then, we discuss the technical connection to Saito (2017).

Theorem 2 Every random choice function is pro-con rational.

An overview of the proof: For a given RCF p, we show that there is a signed weight function
λ, which assigns each ordering �i, a value λ(�i) ∈ [−1, 1] such that λ represents p. That is, for each
choice set S and x ∈ S, p(x, S) is the sum of the weights over orderings at which x is the top-ranked
alternative. We prove this by induction.

To clarify the induction argument, for k = 1, let Ω1 = {X} and let P1 consists of n-many
equivalence classes such that each class contains all the orderings that top rank the same alternative,
irrespective of whether these are chosen with positive probability. That is, for X = {x1, . . . , xn}, we
have P1 = {[�x1 ], ∙ ∙ ∙ , [�xn ]}, where for each i ∈ {1, . . . , n} and ordering �i ∈ [�xi ], xi = max(X,�i

). Now for each xi ∈ X, define λ1([�xi ]) = p(xi, X). It directly follows that λ1 is a signed weight
function over P1 that represents the restriction of the given RCF to Ω1, denoted by p1. By proceeding
inductively, it remains to show that we can construct λk+1 over Pk+1 that represents pk+1.

In Step 1 of the proof we show that finding such a λk+1 boils down to finding a solution to the
system of equalities described by row sums (RS) and column sums (CS). Up to this point the proof
structure is similar to the one followed by Falmagne (1978) and Barberá & Pattanaik (1986) for the
characterization of RUM.

To understand (RS), while moving from the kth-step to the (k + 1)th-step, each [�k] is decom-
posed into a collection {[�k+1

j ]}j∈J such that for each [�k+1
j ] there exists an alternative xj that is not

linearly ordered by [�k], but placed at [�k+1
j ] right on top of the alternatives that are not linearly

ordered by [�k]. Therefore, the sum of the weights assigned to {[�k+1
j ]}j∈J should be equal to the

weight assigned to [�k]. This gives us the set of equalities formulated in (RS). To understand (CS),
let S be the set of alternatives that are not linearly ordered by [�k]. Now, we should design λk+1

such that for each xj ∈ S, p(xj , S) should be equal to the sum of the weights assigned to orderings at
which xj is the top-ranked alternative in S. The set of equalities formulated in (CS) guarantees this.
This follows from our Lemma 2, which we obtain by using the Mobius inversion.18

Our proof is based on two interwoven observations. To understand the first, let us turn back to
the induction argument. It is easy to see that the signed weight function λ2 over P2 that represents
p2 is determined uniquely. That is, there is a unique λ2 that satisfies equalities (RS) and (CS) formed
for k = 2. But, then for λ3 (in general for each k ≥ 3) to be defined over P3, the solution to the
associated (RS) and (CS) for k = 3 is no longer unique. The difficulty is that although any λ3 that
satisfies equalities (RS) and (CS) for the k = 3 represents p3, depending on the choice of λ3, the
(RS) and (CS) formed for a future step, k > 3, may not have a solution. Therefore, to conclude the
induction successfully, for each k ≥ 3, we should be “forwarding looking” in choosing λk.

Our second critical observation is that finding a solution to the system described by (RS) and
(CS) can be translated to the following basic problem: Let R = [r1, . . . , rm] and C = [c1, . . . , cn] be
two real-valued vectors such that the sum of R equals to the sum of C. Now, for which R and C can
we find an m × n matrix A = [aij ] such that A has row sum vector R and column sum vector C, with
each entry aij ∈ [−1, 1]? Ford Jr & Fulkerson (2015) provide a full answer to this question when R
and C are positive real valued.19 However, there are two issues peculiar to our problem. First issue is

18Fiorini (2004) is the first who makes the same observation.
19Brualdi & Ryser (1991) provides a detailed account of similar results.



that the row and column sums can be negative real valued. Indeed, we get nonnegative-valued rows
and columns only if the Block-Marschak polynomials are nonnegative, that is, the given p is an RUM.
Second issue is that, related to our previous observation, we need “forward looking” solutions. In our
Theorem 3, we provide a generalization of Ford-Fulkerson Theorem that paves the way for our proof
by solving the two issues.

Theorem 3 (Generalized Ford-Fulkerson Theorem) Let R = [r1, . . . , rm] and C = [c1, . . . , cn] be
real-valued vectors with −1 ≤ ri ≤ 1 and −m ≤ cj ≤ m such that

∑m
i=1 ri =

∑n
j=1 cj . If 2m ≥

∑m
i=1 |ri| +

∑n
j=1 |cj |, then there is an m × n matrix A = [aij ] such that:

i. A has row sum vector R and column sum vector C,

ii. each entry aij ∈ [−1, 1], and

iii. for each j ∈ {1, . . . , n},
∑m

i=1 |aij | ≤ |cj | + max{0,
∑m

i=1 |ri|−
∑n

j=1 |cj |
n }.

To get an intuition for Theorem 3,20 it is easy to see that the sum of the absolute values of
the rows and columns should be bounded in order to extend the result to real-valued vectors. So, in
Theorem 3, we require this sum be less than or equal to 2m, where m is the number of rows. The
choice of this specific bound has two implications. First, we can extend Ford-Fulkerson Theorem with
real-valued rows and columns. This solves the first issue. Second, we guarantee that there is a solution
that satisfy the bound in item (iii) of Theorem 3. This solution turns out be the forwarding looking
solution, which solves the second issue.

The rest of the proof is as follows. In Step 2, we show that (RS) equals (CS). In Step 3, by using
a structural result presented in Lemma 3, we show that the row and column vectors associated with
(RS) and (CS) satisfy the premises of our Theorem 3. This completes the construction of the desired
signed weight function.

As discussed in Section 1.1, Saito (2017) independently shows that each RCF can be expressed
as a convex combination of two random utility functions by using different techniques. To see our
technical contribution note that by following the construction in our proof and directly applying the
Ford-Fulkerson Theorem, each RCF can be expressed as an affine combination of random utility func-
tions. To show that these weights can be chosen from [−1, 1] interval, we generalize the Ford-Fulkerson
Theorem (see Theorem 3) and follow a deliberate induction argument supported by other structural
results, such as Lemma 3. We believe that our technique can be fruitful in solving similar random
choice problems.

3.3 Uniqueness

An RCF may have different random utility representations even with disjoint sets of orderings. Fal-
magne (1978) argues that random utility representation is essentially unique. That is, the sum of the
probabilities assigned to the orderings at which an alternative x is the kth-top-ranked in a choice set is
the same for all random utility representations of the given RCF. Similarly, the primitives of an RpcM
are structurally invariant in the sense that the agent uses the same triplet 〈�,B, λ〉 to make a choice
from each choice set. As an instance of this similarity, both models render a unique representation
when there are only three alternatives.21 As for the general case, Proposition 2 provides a uniqueness
result for the RpcM, which can be thought as the counterpart of Falmagne’s result for the RUM. Fi-
nally, as a direct corollary to Proposition 2, we present the counterpart of our uniqueness result for a
pro-con model.

For a given RpcM 〈�,B, λ〉, let for each S ∈ Ω and x ∈ S, λ(x = Bk|S,�,B) be the sum of the
weights assigned to the pro- and con-orderings at which x is the kth-top-ranked alternative in S. In
our next result, we show that for each RCF the sum of the weights assigned to the orderings at which
x is the kth-top-ranked alternative in S is the same for each pro-con representation of the given RCF.
That is, λ(x = Bk|S,�,B) is fixed for each RpcM 〈�,B, λ〉 that represents the given RCF.

20We present the proof in Section 5.1.
21This directly follows from the construction used to establish the base of induction in Theorem 2’s proof.



Proposition 2 If 〈�,B, λ〉 and 〈�′,B′, λ′〉 are random pro-con representations of the same RCF p, then
for each S ∈ Ω and x ∈ S,

λ(x = Bk|S,�,B) = λ′(x = Bk|S,�′,B′). (2)

Proof. Let 〈�,B, λ〉 and 〈�′,B′, λ′〉 be two RPMs that represent the same RCF p. Now, for each choice
set S ∈ Ω, both λ and λ′ should satisfy the identity (CS) used in Step 1 of the proof of Theorem 2.
That is, for each S ∈ Ω and x ∈ S both λ and λ′ generates the same q(x, S) value. Therefore, if we
can show that λ(x = Bk|S,�,B) can be expressed in terms of q(x, ∙), then (2) follows. To see this, let
〈�,B, λ〉 be any RpcM that represents p. Next, for each S ∈ Ω, x ∈ S, and k ∈ {1, . . . , |S|}, consider
a partition (S1, S2) of S such that x ∈ S2 and |S1| = k − 1. Let P(S, x, k) be the collection of all these
partitions. Now, for each fixed (S1, S2) ∈ P(S, x, k), let λ(x|S1, S2,�,B) be the sum of the weights of
the orderings at which x is the top-ranked alternative in S2 and the top-ranked alternative in S1. Note
that for each such ordering, x is the kth-top-ranked alternative in S. Now, it follows that we have:

λ(x = Bk|S,�,B) =
∑

{(S1,S2)∈P(S,x,k)}

λ(x|S1, S2,�,B). (3)

Since for each T ∈ Ω such that S2 ⊂ T and T ⊂ X \ S1, by definition, q(x, T ) gives the total
weight of the orderings at which x is the top-ranked alternative in S, it follows that

∑

P(S,x,k)

λ(x|S1, S2,�,B) =
∑

P(S,x,k)

∑

S2⊂T⊂X\S1

q(x, T ). (4)

Finally, if we substitute (3) in (4), then we express λ(x = Bk|S,�,B) only in terms of q(x, ∙), as
desired.

Next, we present the counterpart of our uniqueness result for a pro-con model. For a given
pcM 〈�,B〉, let for each S ∈ Ω and x ∈ S, Prosk(x, S) be the set of pro-orderings at which x is the
kth-top-ranked alternative in S. Similarly, let Consk(x, S) be the set of con-orderings at which x is
the kth-top-ranked alternative in S. We show that for a given choice function, the difference between
the number of pro-orderings at which x is the kth-top-ranked alternative in S and the number of con-
orderings at which x is the kth-top-ranked alternative in S is the same for each pro-con representation
of the given choice function. We obtain this result as a direct corollary to our Proposition 2.

Corollary 1 If 〈�,B〉 and 〈�′,B′〉 are pro-con representations of the same choice function C, then for
each S ∈ Ω, x ∈ S, and k ∈ {1, . . . , n}, both representations lead the same |Prosk(x, S)|− |Consk(x, S)|
value.

Proof. Since each pro- and con-ordering has a unit weight at each pro-con representation of a given
choice function, |Prosk(x, S)| − |Consk(x, S)| equals λ(x = Bk|S,�,B). Then, it follows from Propo-
sition 2 that |Prosk(x, S)| − |Consk(x, S)| is fixed for each pro-con representation.

4 Conclusion

Our main results show that the pro-con model–an additive model similar to the RUM–provides a lan-
guage to describe any choice behavior in terms of structurally-invariant primitives. The structural in-
variance of the pro-con model reflects itself as a form of uniqueness, which is similar to the uniqueness
of a random utility model. Knowing that each choice function is pro-con rational facilitates identifi-
cation of other permissive choice models. We present an application along these lines, in which we
show that each choice rule is plurality-rationalizable. Although our study covers a rather extensive
treatment of the pro-con model, we can hardly claim that it is exhaustive, as it leads to a wide variety
of directions yet to be pursued.



References

Allison, G. T. (1971), Essence of decision: Explaining the Cuban missile crisis, number 327.5 (729.1),
Little, Brown and Company,. 1

Arrow, K. J., Raynaud, H. et al. (1986), ‘Social choice and multicriterion decision-making’, MIT Press
Books 1. 3
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5 Appendix

5.1 Proof of Theorem 3

We start by proving some lemmas that are critical for proving the theorem. First, we report the original
Theorem of Ford Jr & Fulkerson (2015).22 Then, we prove Theorem 3, which offers a generalization
of the result to any real-valued row and column vectors.

Theorem 4 (Ford Jr & Fulkerson (2015)) Let R = [r1, . . . , rm] and C = [c1, . . . , cn] be positive real-
valued vectors with

∑m
i=1 ri =

∑n
j=1 cj . There is an m × n matrix A = [aij ] such that A has row sum

vector R and column sum vector C, and each entry aij ∈ [0, 1] if and only if for each I ⊂ {1, 2, . . . ,m}
and J ⊂ {1, 2, . . . , n},

|I||J | ≥
∑

i∈I

ri −
∑

j /∈J

cj . (FF)

Lemma 1 Let R = [r1, . . . , rm] and C = [c1, . . . , cn] be positive real-valued vectors with 0 ≤ ri ≤ 1 and
0 ≤ cj ≤ m such that

∑m
i=1 ri =

∑n
j=1 ci. Then there is an m × n matrix A = [aij ] such that A has row

sum vector R and column sum vector C, and each entry aij ∈ [0, 1].

Proof. Given such R and C, since for each i ∈ {1, 2, . . . ,m}, 0 ≤ ri ≤ 1, we have for each I ⊂
{1, 2, . . . ,m},

∑
i∈I ri ≤ |I|. Then, it directly follows that (FF) holds and conclusion follows from

Theorem 4.

By using Lemma 1, we prove Theorem 3 that is formulated and discussed in Section 3.2.

Proof of Theorem 3 (Generalized Ford-Fulkerson Theorem). Since ri and cj values can be positive
or negative, although the sum of the rows equals the sum of the column, their absolute values may not
be the same. We analyze two cases separately, where

∑m
i=1 |ri| ≥

∑n
j=1 |cj | and

∑m
i=1 |ri| <

∑n
j=1 |cj |.

Before proceeding with these cases, first we introduce some notation and make some elementary
observations.

For each real number x, let x+ = max{x, 0} and x− = min{x, 0}. Note that for each x, x++x− =
x. Let R+ = [r+

1 , . . . , r+
m] and R− = [r−1 , . . . , r−m]. Define the n-vectors C+ and C− respectively. Next,

let ΣR+ =
∑m

i=1 r+
i , ΣR− =

∑m
i=1 r−i , ΣC+ =

∑n
j=1 c+

j and ΣC− =
∑n

j=1 c−j . That is, ΣR+(ΣR−) and
ΣC+(ΣC−) are the sum of the positive (negative) rows in R and columns in C. Since the sum of the
rows equals the sum of the columns, we have ΣR+ +ΣR− = ΣC+ +ΣC− .

For each row vector R and column vector C, suppose for each i ∈ {1, . . . ,m1}, ri ≥ 0 and for
each i ∈ {m1 + 1, . . . ,m}, ri < 0. Similarly, suppose for each j ∈ {1, . . . , n1}, cj ≥ 0 and for each
j ∈ {n1+1, . . . , n}, cj < 0. Now, let R1(R2) be the m1-vector ((m−m1)-vector), consisting of the non-
negative (negative) components of R. Similarly, for each column vector C, let C1(C2) be the n1-vector
((n− n1)-vector), consisting of the non-negative (negative) components of C. It directly follows from
the definitions that

∑m1

i=1 ri =
∑m

i=1 r+
i and

∑m
i=m1+1 ri =

∑m
i=1 r−i . Similarly,

∑n1

j=1 cj =
∑n

j=1 c+
j

and
∑n

j=n1+1 cj =
∑n

j=1 c−j .

Case 1: Suppose that
∑

i=I |ri| ≥
∑

j∈J |cj | and let

δ =
ΣR+ −ΣC+

n
.

Note that since
∑m

i=1 |ri| ≥
∑n

j=1 |cj |, we have ΣR+ ≥ ΣC+ and ΣR− ≤ ΣC− . Moreover, since the
sum of the rows equals the sum of the columns, we have ΣR+ −ΣC+ = ΣC− −ΣR− . Therefore, by
the choice of δ, we get

m∑

i=1

r+
i =

n∑

j=1

c+
j + δ and

m∑

i=1

r−i =
n∑

j=1

c−j − δ. (5)

22This result, as stated in Lemma 4, but with integrality assumptions on R, C, and A follows from Corollary 1.4.2 in Brualdi &
Ryser (1991). They report that Ford Jr & Fulkerson (2015) prove, by using network flow techniques, that the theorem remains
true if the integrality assumptions are dropped, and the conclusion asserts the existence of a real nonnegative matrix.



Next, consider row-column vector pairs (R1, C+ + ε) and (−R2,−(C− − ε)), where ε is the non-
negative n-vector such that for each j ∈ {1, . . . , n}, εj = δ. It follows from (5) that for both pairs the
sum of the rows equals the sum of the columns. Now we apply Lemma 1 to the row-column vector
pairs (R1, C+ + ε) and (−R2,−(C− − ε)). It directly follows that there exists a positive m1 × n matrix
A+ and a negative (m−m1)× n matrix A− that satisfy (i) and (ii). We will obtain the desired matrix
A by augmenting A+ and A−. We illustrate A+ and A− below.

(c+
1 + ε1) (c+

2 + ε2) (c+
3 + ε3) ∙ ∙ ∙ (c+

n + εn)
r1 ≥ 0
r2 ≥ 0

...
rm1 ≥ 0

A+

A− rm1+1 < 0
...

rm < 0
(c−1 − ε1) (c−2 − ε2) (c−3 − ε3) ∙ ∙ ∙ (c−n − εn)

Since A+ and A− satisfy (i) and (ii), A satisfies (i) and (ii). To see that A satisfies (iii), for each j ∈
{1, . . . , n}, consider

∑m
i=1 |aij |. Note that, by the construction of A+ and A−, for each j ∈ {1, . . . , n},

m∑

i=1

|aij | = c+
j + εj + (−c−j + εj) = |cj | + 2εj = |cj | + 2

ΣR+ −ΣC+

n
. (6)

Since for each j ∈ {1, . . . , n}, cj = c+
j + c−j such that either c+ = 0 or c−j = 0, we get |cj | =

c+
j − c−j . To see that (iii) holds, observe that

∑m
i=1 |ri| −

∑n
j=1 |cj | = ΣR+ −ΣC+ +ΣC− −ΣR− . Since

the sum of the rows equals the sum of the columns, i.e. ΣR+ +ΣR− = ΣC+ +ΣC− , we also have
ΣR+ −ΣC+ = ΣC− −ΣR− . This observation, together with (6), implies that (iii) holds.

Case 2 Suppose that
∑m

i=1 |ri| <
∑n

j=1 |cj |. First, we show that there exists a non-negative m-vector
ε such that

(E1) for each i ∈ {1, . . . ,m}, r+
i + εi ≤ 1 and r−i − εi ≥ −1, and

(E2)
∑m

i=1 r+
i + εi =

∑n
j=1 c+

j (equivalently
∑m

i=1 r−i − εi =
∑n

j=1 c−j ) holds.

Step 1: We show that if ΣC+ −ΣR+ ≤ m −
∑m

i=1 |ri|, then there exists a non-negative m-vector
ε that satisfies (E1) and (E2). To see this, first note that m −

∑m
i=1 |ri| =

∑m
i=1(1 − |ri|). Next, note

that, by simply rearranging the terms, we can rewrite (E2) as follows:

m∑

i=1

εi = ΣC+ −ΣR+ . (7)

Since ΣC+ −ΣR+ ≤
∑m

i=1(1 − |ri|), for each i ∈ {1, . . . ,m}, we can choose an εi such that 0 ≤ εi ≤
1 − |ri| and (7) holds. It directly follows that the associated ε vector satisfies (E1) and (E2).

Step 2: We show that since 2m ≥
∑m

i=1 |ri| +
∑n

j=1 |cj |, we have ΣC+ −ΣR+ ≤ m −
∑m

i=1 |ri|.
First, it directly follows from the definitions that

m∑

i=1

|ri| +
n∑

j=1

|cj | = ΣR+ −ΣR− +ΣC+ −ΣC− .

Since the sum of the rows equals the sum of the columns, i.e. ΣR+ +ΣR− = ΣC+ +ΣC− , we also have
ΣR+ −ΣC− = ΣC+ −ΣR− . It follows that

ΣC+ −ΣR− ≤ m.

Finally, if we subtract
∑m

i=1 |ri| from both sides of this equality, we obtain ΣC+ −ΣR+ ≤ m−
∑m

i=1 |ri|,
as desired.



It follows from Step 1 and Step 2 that there exists a non-negative m-vector ε that satisfies (E1)
and (E2). Now, consider the row-column vector pairs (R+ + ε, C1) and (−(R− − ε),−C2). Since ε
satisfies (E1) for each i ∈ {1, . . . ,m}, r+

i + εi ∈ [0, 1] and r−i − εi ∈ [−1, 0]. Since ε satisfies (E2), for
both of the row-column vector pairs the sum of the rows equals the sum of the columns. Therefore,
we can apply Lemma 1 to row-column vector pairs (R+ + ε, C1) and (−(R− − ε),−C2). It directly
follows that there exists a positive m × n1 matrix A+ and a negative m × (n − n1) matrix A− that
satisfy (i) and (ii). We obtain the desired matrix A by augmenting A+ and A−. We illustrate A+ and
A− below.

c1 c2 ∙ ∙ ∙ cn1 ≥ 0
(r+

1 + ε1)
(r+

2 + ε2)
...
...

(r+
m + εm)

A+ A−
(r−1 − ε1)
(r−2 − ε2)

...

...
(r−m − εm)

cn1+1 < 0 ∙ ∙ ∙ cn

Since A+ and A− satisfy (i) and (ii), A satisfies (i) and (ii). In this case, since we did not add
anything to the columns and each entry in A+(A−) is non-negative (negative), for each j ∈ {1, . . . , n},∑m

i=1 |aij | = |cj |. Therefore, A also satisfies (iii).

5.2 Proof of Theorem 2

To prove Theorem 2, let p be an RCF and P denote the collection of all orderings on X. First, we
show that there is a signed weight function λ : P → [−1, 1] that represents p, i.e. for each S ∈ Ω
and x ∈ S, p(x, S) is the sum of the weights over {�i ∈ P : x = max(S,�i)}. Note that λ can
assign negative weights to orderings. Once we obtain this signed weight function λ, let � be the
collection of orderings that receive positive weights, and let B′ be the collection of orderings that
receive negative weights. Let B be the collection of the inverse of the orderings in B′. Finally, let λ∗

be the weight function obtained from λ by assigning the absolute value of the weights assigned by λ.
It directly follows that p is pro-con rational with respect to the RpcM 〈�,B, λ∗〉. We first introduce
some notation and present crucial observations to construct the desired signed weight function λ.

Let p be a given RCF and Let q : X × Ω → R be a mapping such that for each S ∈ Ω and a /∈ S,
q(a, S) = q(a, S∪{a}) holds. Next, we present a result that is directly obtained by applying the Möbius
inversion.23

Lemma 2 For each choice set S ∈ Ω, and alternative a ∈ S,

p(a, S) =
∑

S⊂T⊂X

q(a, T ) (8)

if and only if
q(a, S) =

∑

S⊂T⊂X

(−1)|T |−|S|p(a, T ) (9)

Proof. For each alternative a ∈ X, note that p(a, ∙) and q(a, ∙) are real-valued functions defined on
the domain consisting of all S ∈ Ω with a ∈ S. Then, by applying the Möbius inversion, we get the
conclusion.

Lemma 3 For each choice set S ∈ Ω with |S| = n − k,
∑

a∈X

|q(a, S)| ≤ 2k. (10)

23See Stanley (1997), Section 3.7. See also Fiorini (2004), who makes the same observation.



Proof. First, note that (10) can be written as follows:
∑

a∈S

|q(a, S)| +
∑

b/∈S

| − q(b, S)| ≤ 2k. (11)

For a set of real numbers,{x1, x2, . . . xn}, to show
∑n

i=1 |xi| ≤ 2d, it suffices to show that for each
I ⊂ {1, 2, ∙ ∙ ∙ , n}, we have −d ≤

∑
i∈I xi ≤ d. Now, as the set of real numbers, consider {q(a, S)}a∈X .

It follows that to show that (11) holds, it suffices to show that for each S1 ⊂ S and S2 ⊂ X \ S,

−2k−1 ≤
∑

a∈S1

q(a, S) −
∑

b∈S2

q(b, S) ≤ 2k−1

holds. To see this, first, for each S1 ⊂ S and S2 ⊂ X \S, it follows from Lemma 2 that for each a ∈ S1

and for each b ∈ S2, we have

q(a, S) =
∑

S⊂T⊂X

(−1)|T |−|S|p(a, T ) and q(b, S) =
∑

S⊂T⊂X

(−1)|T |−|S|−1p(b, T ). (12)

Note that we obtain the second equality from Lemma 2, since for each b /∈ S, by definition of q(b, S),
we have q(b, S) = q(b, S ∪ {b}). Next, note that for each T ∈ Ω with S ⊂ T , a ∈ S, and b /∈ S, p(a, T )
has the opposite sign of p(b, T ). Now, suppose for each b ∈ S2, we multiply q(b, S) with −1. Then, it
follows from (12) that

∑

a∈S1

q(a, S) −
∑

b∈S2

q(b, S) =
∑

S⊂T⊂X

(−1)|T |−|S|
∑

a∈S1∪S2

p(a, T ). (13)

Note that, for each T ∈ Ω such that S ⊂ T ,
∑

a∈S1∪S2
p(a, T ) ∈ [0, 1]. Therefore, the term

(−1)|T |−|S|∑
a∈S1∪S2

p(a, T ) adds at most 1 to the right-hand side of (13) if |T | − |S| is even, and

at least −1 if |T | − |S| is odd. Since |S| = n − k, for each m with n − k ≤ m ≤ n, there are
(

k
m−n+k

)

possible choice sets T ∈ Ω such that S ⊂ T and |T | = m. Moreover, for each i ∈ {1, . . . , k}, there
are

(
k
i

)
possible choice sets T such that S ⊂ T and |T | = n − k + i. Now, the right-hand side of (13)

reaches its maximum (minimum) when the negative (positive) terms are 0 and the positive (negative)
terms are 1(−1). Thus, we get

−
b k−1

2 c∑

i=0

(
k

2i + 1

)

≤
∑

S⊂T⊂X

(−1)|T |−|S|
∑

a∈S1∪S2

p(a, T ) ≤
b k

2 c∑

i=0

(
k

2i

)

.

It follows from the binomial theorem that both leftmost and rightmost sums are equal to 2k−1. This,
combined with (13), implies

−2k−1 ≤
∑

a∈S1

q(a, S) −
∑

b∈S2

q(b, S) ≤ 2k−1.

Then, as argued before, it follows that
∑

a∈X |q(a, S)| ≤ 2k.

Now, we are ready to complete the proof of Theorem 2. Recall that we assume |X| = n. For
each k ∈ {1, . . . , n}, let Ωk = {S ∈ Ω : |S| > n − k}. Note that Ωn = Ω and Ω1 ⊂ Ω2 ⊂ ∙ ∙ ∙ ⊂ Ωn. For
each pair of orderings �1,�2∈ P , �1 is k-identical to �2, denoted by �1∼k�2, if the first k-ranked
alternatives are the same. Note that ∼k is an equivalence relation on P . Let Pk be the collection of
orderings, such that each set (equivalence class) contains orderings that are k-identical to each other
(Pk is the quotient space induced from ∼k). For each k ∈ {1, . . . , n}, let [�k] denote an equivalence
class at Pk, where �k linearly orders a fixed set of k alternatives in X.

Note that for each k ∈ {1, . . . , n}, S ∈ Ωk and �1,�2∈ P , if �1∼k�2, then since S contains
more than n − k alternatives, max(�1, S) = max(�2, S). Therefore, for each S ∈ Ωk, it is sufficient
to specify the weights on the equivalence classes contained in Pk instead of all the weights over P .
Let pk be the restriction of p to Ωk. Similarly, if λ is a signed weight function over P , then let λk be
the restriction of λ to Pk, i.e. for each [�k] ∈ Pk, λk[�k] =

∑
�i∈[�k] λ(�i). It directly follows that λ



represents p if and only if for each k ∈ {1, . . . , n}, λk represents pk. In what follows, we inductively
show that for each k ∈ {1, . . . , n}, there is a signed weight function λk over Pk that represents pk. For
k = n we obtain the desired λ.

For k = 1, Ω1 = {X} and P1 consists of n-many equivalence classes such that each class
contains all the orderings that top rank the same alternative, irrespective of whether these are chosen
with positive probability. That is, if X = {x1, . . . , xn}, then P1 = {[�x1 ], ∙ ∙ ∙ , [�xn ]}, where for each
i ∈ {1, . . . , n} and �i∈ [�xi ], max(X,�i) = xi. Now, for each xi ∈ X, define λ1([�xi ]) = p(xi, X). It
directly follows that λ1 is a signed weight function over P1 that represents p1.

For k = 2, Ω2 = {X} ∪ {X \ {x}}x∈X and P2 consists of
(
n
2

)
-many equivalence classes such

that each class contains all the orderings that top rank the same two alternatives. Now, for each
[�2

i ] ∈ P2 such that xi1 is the first-ranked alternative and xi2 is the second-ranked alternative, define
λ2([�2

i ]) = p(xi2, X \ {xi1})− p(xi2, X). It directly follows that λ2 is a signed weight function over
P2 that represents p2. Next, by our inductive hypothesis, we assume that for each k ∈ {1, . . . , n − 1},
there is a signed weight function λk over Pk that represents pk. Next, we show that we can construct
λk+1 over Pk+1 that represents pk+1.

Note that Pk+1 is a refinement of Pk, in which each equivalence class [�k] ∈ Pk is divided
into sub-equivalence classes {[�k+1

1 ], ∙ ∙ ∙ [�k+1
n−k]} ⊂ Pk+1. Given λk, we require λk+1 satisfy for each

[�k] ∈ Pk the following

λk([�k]) =
n−k∑

j=1

λk+1([�k+1
j ]). (14)

If λk+1 satisfies (14), then since induction hypothesis implies that λk represents pk, we get for each
S ∈ Ωk and x ∈ S, p(x, S) = λk+1

(
{[�j ] ∈ Pk+1 : x = max(S,�j)}

)
.

Next, we show that λk+1 can be constructed such that (14) holds, and for each S ∈ Ωk+1\Ωk,
λk+1 represents pk+1(S). To see this, pick any S ∈ Ωk+1\Ωk. It follows that |S| = n − k. Let
S = {x1, , .., xn−k} and X \ S = {y1, y2, ∙ ∙ ∙ yk}. Recall that each [�k] ∈ Pk linearly orders a fixed
set of k-many alternatives. Let {�k} denote the set of k alternatives ordered by �k. Now, there
exist k!-many [�k] ∈ Pk such that {�k} = X \ S. Let

{
[�k

1 ], ∙ ∙ ∙ , [�k
k!]
}

be the collection of all such
classes. Each ordering that belongs to one of these classes is a different ordering of the same set of k
alternatives.

Now, let I = {1, . . . , k!} and J = {1, . . . , n − k}. For each i ∈ I and j ∈ J , suppose that �k+1
ij

linearly orders X \S as in �k
i and ranks xj in the k+1th position. Consider the associated equivalence

class [�k+1
ij ]. Next, we specify λk+1([�k+1

ij ]), the signed weight of [�k+1
ij ], such that the resulting λk+1

represents pk+1. To see this, we proceed in two steps.

Step 1: First, we show that for each S ∈ Ωk+1\Ωk, if the associated {λk+1
ij }ij∈I×J satisfies the follow-

ing two equalities for each i ∈ I and j ∈ J ,
∑

j∈J

λk+1
ij = λk([�k

i ]) (RS)

∑

i∈I

λk+1
ij = q(xj , S) (CS)

then λk+1 represents pk+1(S). For each S ∈ Ω and xj ∈ S, q(xj , S) is as defined in (9) by using the
given RCF p.

For each S ∈ Ω and a ∈ S, let B(a, S) be the collection of all orderings at which a is the top-
ranked alternative in S, and for each k ∈ N such that n − k ≤ |S|, Bk+1(a, S) be the set of associated
equivalence classes in Pk+1, i.e. B(a, S) = {� ∈ P : a = max(S,�)} and Bk+1(a, S) = {[�k+1] ∈
Pk+1 : [�k+1] ⊂ B(a, S)}. To prove the result we have to show that for each xj ∈ S,

p(xj , S) =
∑

{[�k+1]∈Bk+1(xj ,S)}

λk+1([�k+1]). (15)

To see this, for each � ∈ P and a ∈ X, let W (�, a) denote the set of alternatives that are worse than
a at � and a itself, i.e. W (�, a) = {x ∈ X : a � x} ∪ {a}. For each S ∈ Ω with a ∈ X. Let Q(a, S)



be the collection of all orderings such that W (�, a) is exactly S ∪ {a} and for each k ∈ N such that
n − k ≤ |S|, Qk+1(a, S) be the set of associated equivalence classes in Pk+1, i.e. Q(a, S) = {� ∈ P :
W (�, a) = S ∪ {a}} and Qk+1(a, S) = {[�k+1] ∈ Pk+1 : [�k+1] ⊂ Q(a, S)}. Note that, for each
xj ∈ S, we have Q(xj , S) =

⋃
i∈I [�k+1

ij ]. Moreover, it directly follows from the definitions of Q(xj , ∙)
and B(xj , ∙) that

B(xj , S) =
⋃

S⊂T

Q(xj , T ). (16)

It follows from this observation that the right-hand side of (15) can be written as
∑

S⊂T

∑

{[�k+1]∈Qk+1(xj ,T )}

λk+1([�t+1]). (17)

i. Since (CS) holds, we have

q(xj , S) =
∑

{[�k+1]∈Qk+1(xj ,S)}

λk+1([�k+1]). (18)

ii. Next, we argue that for each T ∈ Ω such that S ( T ,

q(xj , T ) =
∑

{[�k+1]∈Qk+1(xj ,T )}

λk+1([�k+1]). (19)

To see this, recall that by definition of q(xj , T ) (9), we have

q(xj , T ) =
∑

T⊂T ′

(−1)|T
′|−|T |p(xj , T

′). (20)

Since by the induction hypothesis, λk represents pk, we have

p(xj , T
′) =

∑

{[�k]∈Bk(xj ,T ′)}

λk([�k]). (21)

Next, suppose that we substitute (21) into (20). Now, consider the set collection {B(xj , T
′)}{T⊂T ′}.

Note that if we apply the principle of inclusion-exclusion to this set collection, then we obtain Q(xj , T ).
It follows that

∑

T⊂T ′

(−1)|T
′|−|T |

∑

{[�k]∈Bk(xj ,T ′)}

λk([�k]) =
∑

{[�k]∈Qk(xj ,T )}

λk([�k]). (22)

Since (RS) holds, we have
∑

{[�k]∈Qk(xj ,T )}

λk([�k]) =
∑

{[�k+1]∈Qk+1(xj ,T )}

λk+1([�k+1]). (23)

Thus, if we combine (20)-(23), then we obtain that (19) holds.

Now, (17) combined with (18) and (19) imply that the right-hand side of (15) equals to∑
S⊂T q(xj , T ). Finally, it follows from Lemma 2 that

p(xj , S) =
∑

S⊂T

q(xj , T ). (24)

Thus, we obtain that (15) holds.

In what follows we show that for each S ∈ Ωk+1\Ωk, there exists k!× (n− k) matrix λ = [λk+1
ij ]

such that both (RS) and (CS) holds, and each λk+1
ij ∈ [−1, 1]. To prove this we use Theorem 3. For

this, for each i ∈ I let ri = λk([�k
i ]) and for each j ∈ J let cj = q(xj , S). Then, let R = [r1, . . . , rk!]

and C = [c1, . . . , cn−k]. In Step 2, we show that the sum of C equals the sum of R. In Step 3, we show
that for each k > 1, 2k! ≥

∑k!
i=1 |ri| +

∑n−k
j=1 |cj |.



Step 2: We show that the sum of C equals the sum of R, i.e.
∑

j∈J

q(xj , S) =
∑

i∈I

λk[�k
i ]. (25)

First, if we substitute (9) for each q(xj , S), then we get
∑

j∈J

q(xj , S) = 1 +
∑

j∈J

∑

S(T

(−1)|T |−|S|p(xj , T ). (26)

Now, let F (xj) be the collection of orderings � such that there exists T ∈ Ω such that S ( T and xj

is the �-top-ranked alternative in T , i.e. F (xj) = {� ∈ P : max(T,�) = xj for some S ( T}. For
each k ∈ N such that n − k ≤ |S|, let F(xj) be the set of associated equivalence classes in Pk. Next,
we show that for each xj ∈ S,

∑

S(T

(−1)|T |−|S|+1p(xj , T ) =
∑

{[�k]∈F(xj)}

λk([�k]). (27)

To see this, first, since by the induction hypothesis, λk represents pk, we can replace each
p(xj , T ) with

∑
{[�k]∈Bk(xj ,T )} λk([�k]). Next, consider the set collection {B(xj , T )}{S(T}. Since

∪{S(T}B(xj , T ) = F (xj), it follows from the principle of inclusion-exclusion that (27) holds. Next,
when we substitute (27) in (26), we obtain

∑

j∈J

q(xj , S) = 1 −
∑

{[�k]∈F(xj)}

λk([�k]). (28)

Then, since, by the induction hypothesis, λk represents pk, we can replace 1 with
∑

{[�k]∈Pk} λk([�k]).

Finally, note that an equivalence class [�k] /∈ ∪j∈JF(xj) if and only if {�k} ∩ S = ∅. This means
Pk \ ∪j∈JF(xj) = {[�k

i ]}{i∈I}. It follows that (25) holds.

Step 3: To show that the base of induction holds, we showed that for k = 1 and k = 2, the desired
signed weight functions exist. To get the desired signed weight functions for each k + 1 > 2, we will
apply Theorem 3. To apply Theorem 3, we have to show that for each k ≥ 2,

∑k!
i=1 |ri| +

∑n−k
j=1 |cj | ≤

2k!. In what follows we show that this is true. That is, we show that for each S ∈ Ωk+1 \ Ωk

∑

i∈I

|λk([�k
i ])| +

∑

j∈J

|q(xj , S)| ≤ 2k!. (29)

To see this, first we will bound the term
∑

i∈I |λ
k([�k

i ])|. As noted before, each i ∈ I = {1, . . . , k!}
corresponds to a specific linear ordering of X \ S. For each y /∈ S, there are k − 1! such different
orderings that rank y at the kth position. So, there are k − 1! different equivalence classes in Pk that
rank y at the kth position. Let I(y) be the index set of these equivalence classes. Since {I(y)}y/∈S

partitions I, we have ∑

i∈I

|λk([�k
i ])| =

∑

y/∈S

∑

i∈I(y)

|λk([�k
i ])|. (30)

Now, fix y /∈ S and let T = S ∪ {y}. Since for each i ∈ I(y), [�k
i ] ∈ Qk(y, T ) and vice versa, we have

∑

i∈I(y)

|λk([�k
i ])| =

∑

[�k
i ]∈Qk(y,T )

|λk([�k
i ])|. (31)

Recall that by the definition of q(y, T ), we have

q(y, T ) =
∑

[�k
i ]∈Qk(y,T )

λk([�k
i ]). (32)

Next, consider the construction of the values {λk([�k
i ]}{i∈I(y)} from the previous step. For k = 2, as

indicated in showing the base of induction, there is only one row; that is, there is a single {[�k
i ]} =



Qk(y, T ). Therefore, we directly have |λk([�k
i ])| = |q(y, T )|. For k > 2, we construct λk by applying

Theorem 3. It follows from iii of Theorem 3 that

∑

[�k
i ]∈Qk(y,T )

|λk([�k
i ])| ≤ |q(y, T )| +

(k − 1)!
n − k + 1

. (33)

Now, if we sum (33) over y /∈ S, we get

∑

y/∈S

∑

[�k
i ]∈Qk(y,S∪y)

|λk([�k])| ≤




∑

y/∈S

|q(y, S ∪ y)|



+
k!

n − k + 1
. (34)

Recall that by definition, we have Qk(y, S ∪ y) = Qk(y, S) and q(y, S ∪ y) = q(y, S). Similarly, since
each j ∈ J = {1, . . . , n} denotes an alternative xj ∈ S, we have

∑
x∈S |q(x, S)| =

∑
j∈J |q(xj , S)|.

Now, if we add
∑

j∈J |q(xj , S)| to both sides of (34), then we get

∑

i∈I

|λk([�k
i ])| +

∑

j∈J

|q(xj , S)| ≤
∑

x∈X

|q(x, S)| +
k!

n − k + 1
. (35)

Since by Lemma 3,
∑

x∈X |q(x, S)| ≤ 2k, we get

∑

i∈I

|λk([�k
i ])| +

∑

j∈S

|q(xj , S)| ≤ 2k +
k!

n − k + 1
. (36)

Finally, note that since for each k such that 2 < k < n 2k ≤ (2n−2k+1)k!
n−k+1 holds, we have 2k + k!

n−k+1 ≤
2k!. This, together with (36), implies that (29) holds. Thus, we complete the inductive construction
of the desired signed weight function.

5.3 Proof of Theorem 1

We prove this result by following the construction used to prove Theorem 2. So, we proceed by
induction. Note that since C is a deterministic choice function, for each xi ∈ X, λ1([�xi ]) ∈ {0, 1}.
Next, by proceeding inductively, we assume that for any k ∈ {1, . . . , n − 1}, there is a signed weight
function λk that takes values {−1, 0, 1} over Pk and represents Ck. It remains to show that we can
construct λk+1 taking values {−1, 0, 1} over Pk+1, and that represents Ck+1. We know from Step 1
of the proof of Theorem 2 that to show this it is sufficient to construct λk+1 such that (RS) and (CS)
holds. However, this time, in addition to satisfying (RS) and (CS), we require each λk+1

ij ∈ {−1, 0, 1}.

First, note that equalities (RS) and (CS) can be written as a system of linear equations: Aλ = b,
where A = [aij ] is a (k! + (n − k)) × (n − k)k! matrix with entries aij ∈ {0, 1}, and b = [λk([�k

1

]), . . . , λk([�k
k!]), q(x1, S), . . . , q(xn−k, S)] is the column vector of size k! + (n − k). Let Q denote the

associated polyhedron, i.e. Q = {λ ∈ R(n−k)k! : Aλ = b and − 1 ≤ λ ≤ 1}. A matrix is totally
unimodular if the determinant of each square submatrix is 0, 1 or −1. Following result directly
follows from Theorem 2 of Hoffman & Kruskal (2010).

Lemma 4 (Hoffman & Kruskal (2010)) If matrix A is totally unimodular, then the vertices of Q are
integer valued.

Heller & Tompkins (1956) provide the following sufficient condition for a matrix being totally
unimodular.

Lemma 5 (Heller & Tompkins (1956)) Let A be an m × n matrix whose rows can be partitioned into
two disjoint sets R1 and R2. Then, A is totally unimodular if:

1. Each entry in A is 0, 1, or −1;



2. Each column of A contains at most two non-zero entries;

3. If two non-zero entries in a column of A have the same sign, then the row of one is in R1, and the
other is in R2;

4. If two non-zero entries in a column of A have opposite signs, then the rows of both are in R1, or
both in R2.

Next, by using Lemma 5, we show that the matrix that is used to define (RS) and (CS) as a system
of linear equations is totally unimodular. To see this, let A be the matrix defining the polyhedron Q.
Since A = [aij ] is a matrix with entries aij ∈ {0, 1}, (1) and (4) are directly satisfied. To see that (2) and
(3) also hold, let R1 = [1, . . . , k!] consist of the the first k! rows and R2 = [1, . . . , n − k] consist of the
the remaining n − k rows of A. Note that for each i ∈ R1, the ith row Ai is such that Aiλ = λk([�k

i ]).
That is, for each j ∈ {(i − 1)k!, . . . , ik!}, aij = 1 and the rest of Ai equals 0. For each i ∈ R2, the ith

row Ai is such that Aiλ = q(xi, A). That is, for each j ∈ {i, i + k!, . . . , i + (n − k − 1)k!}, aij = 1 and
the rest of Ai equals 0. To see that (2) and (3) hold, note that for each i, i′ ∈ R1 and i, i′ ∈ R2, the
non-zero entries of Ai and Ai′ are disjoint. It follows that for each column there can be at most two
rows with value 1, one in R1 and the other in R2.

Finally, it follows from the construction in Step 3 of the proof of Theorem 2 that Q is nonempty,
since there is λ vector with entries taking values in the [−1, 1] interval. Since, as shown above, A
is totally unimodular, it directly follows from Lemma 4 that the vertices of Q are integer valued.
Therefore, λk+1 can be constructed such that (RS) and (CS) hold, and each λk+1

ij ∈ {−1, 0, 1}.
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