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Abstract

Social decision schemes (SDSs) map the preferences of a group of voters over some
set of m alternatives to a probability distribution over the alternatives. A seminal
characterization of strategyproof SDSs by Gibbard (1977) implies that there are no
strategyproof Condorcet extensions and that only random dictatorships satisfy ex
post efficiency and strategyproofness. The latter is known as the random dictatorship
theorem. We relax Condorcet-consistency and ex post efficiency by introducing a
lower bound on the probability of Condorcet winners and an upper bound on the
probability of Pareto-dominated alternatives, respectively. We then show that (i)
strategyproof SDSs can guarantee the Condorcet winner a probability of at most
2/m, (ii) the SDS that assigns probabilities proportional to Copeland scores is the
only anonymous, neutral, and strategyproof SDS that achieves this bound, and (iii)
every strategyproof SDS that assigns Pareto-dominated alternatives less than 1/m
probability will be dictatorial with positive probability. The last statement can be
formulated as a continuous strengthening of Gibbard’s random dictatorship theorem:
the less probability we put on Pareto-dominated alternatives, the closer to random
dictatorship is the resulting SDS.

1 Introduction
A pervasive phenomenon when making collective decisions is strategic manipulation: voters
may be better off by lying about their preferences than reporting them truthfully. This
is problematic for a number of reasons. For one, spending resources on finding out other
voters’ preferences and identifying beneficial manipulations is rewarded. These resources
are typically not spread evenly across society. Perhaps more importantly, when a voting
rule is manipulable, all of its desirable properties are in doubt because they were shown to
hold under the assumption that all voters submit their preferences truthfully.

Unfortunately, Gibbard (1973) and Satterthwaite (1975) have shown independently that
the only non-imposing social choice functions that are immune to strategic manipulation are
dictatorships. Here, social choice functions are defined as mappings from ordinal preferences
of the voters over some set of alternatives to a single collectively most-preferred alternative.
Dictatorial social choice functions invariably return the most preferred alternative of one
fixed voter, the dictator, and are therefore unacceptable for most applications. A natural
question is whether more positive results can be obtained when allowing for randomization.
Gibbard (1977) hence introduced social decision schemes (SDSs), which map ordinal pref-
erences of the voters to a lottery over the alternatives and defined SDSs to be strategyproof
if no voter can obtain more expected utility for any utility representation that is consistent
with his ordinal preference relation. He then gave a complete characterization of strate-
gyproof SDSs in terms of convex combinations of two types of restricted SDSs, so-called
unilaterals and duples. An important consequence of Gibbard’s characterization, known
as the random dictatorship theorem, is that all ex post efficient and strategyproof SDSs
are random dictatorships. Random dictatorships are convex combinations of dictatorships,
i.e., each voter is selected with some fixed probability and the top choice of this voter is



implemented as the collective decision.
While Gibbard’s result may seem like an extension of the Gibbard-Satterthwaite theorem

to the randomized context, it is in fact much more positive. In contrast to deterministic dic-
tatorships, the uniform random dictatorship, in which every agent is picked with the same
probability, enjoys a high degree of fairness and is in fact used in many subdomains of social
choice that are concerned with the fair assignment of objects to agents (see, e.g., Abdulka-
diroğlu and Sönmez, 1998; Che and Kojima, 2010). Nevertheless, random dictatorships are
rather restricted. Since they only depend on the top choice of each voter, they cannot satisfy
many desirable properties from the social choice literature such as Condorcet-consistency,
which demands that an alternatives that beats every other alternative in pairwise majority
comparisons should be selected with probability 1. Gibbard’s theorem has been the point
of departure for a lot of follow-up work on strategyproof SDSs. Apart from a number of al-
ternative proofs of the theorem (e.g., Duggan, 1996; Nandeibam, 1997; Tanaka, 2003), there
have been extensions with respect to manipulations by groups (Barberà, 1979a), cardinal
preferences (e.g., Hylland, 1980; Dutta et al., 2007; Nandeibam, 2013), weaker notions of
strategyproofness (e.g., Benoît, 2002; Sen, 2011; Aziz et al., 2018; Brandl et al., 2018), and
restricted domains of preferences (e.g., Dutta et al., 2002; Chatterji et al., 2014).

The question we pursue in this paper is which strategyproof SDSs satisfy relaxations of
two classic conditions: Condorcet-consistency and ex post efficiency. To this end, we say
that an SDS is α-Condorcet-consistent if a Condorcet winner always receives a probability
of at least α and β-ex post efficient if a Pareto-dominated alternative always receives a
probability of at most β. Furthermore, we define that an SDS is γ-randomly dictatorial
if it can be represented as a convex combination of two strategyproof SDSs, one of which
is a random dictatorship that will be selected with probability γ. All of these axioms
are discussed in more detail in Section 2.2. Building on an alternative characterization of
strategyproof SDSs by Barberà (1979b), we then show the following results (m is the number
of alternatives and n the number of voters):

• Let n ≥ 3 and α > 2
m . Then, there is no strategyproof SDS that satisfies α-Condorcet-

consistency.

• The randomized Copeland rule, which assigns probabilities proportional to Copeland
scores, is the only strategyproof SDS that satisfies anonymity, neutrality, and 2

m -
Condorcet-consistency when m,n ≥ 3.

• Let m ≥ 3 and β < 1
m . Then, there is no strategyproof SDS that is β-ex post efficient

and 0-randomly dictatorial.

• Let 0 ≤ ε ≤ 1. Every strategyproof SDS that is 1−ε
m -ex post efficient is γ-randomly

dictatorial for γ ≥ ε.

The first two statement characterize the randomized Copeland rule as the “most”
Condorcet-consistent strategyproof SDS. The third statement highlights the robustness of
random dictatorships: even when relaxing ex post efficiency, we are still stuck with SDSs
that have a “random dictatorship component”. In other words, all SDSs that have no ran-
dom dictatorship component are as “inefficient” as the SDS that always returns a uniform
lottery over all alternatives. The last statement, which is a corollary of the third statement,
can be interpreted as a continuous strengthening of Gibbard’s random dictatorship theorem:
the less probability we put on Pareto-dominated alternatives, the more randomly dictatorial
is the resulting SDS.



2 The model
Let N = {1, 2, . . . , n} be a finite set of voters and let A = {a, b, . . . } be a finite set of m
alternatives. Every voter i has a (strict) preference relation �i, which is an anti-symmetric,
complete, and transitive binary relation on A. We write x %i y if voter i prefers x weakly to
y and x �i y if voter i prefers x strictly to y. The set of all preference relations is denoted
by R. A preference profile R ∈ Rn is a n-tuple that contains the preference relation of each
voter i ∈ N . We represent preference profiles as tables in which each column represents a
preference relation and the number above the columns indicates the number of voters who
report the corresponding preference relation (see Figure 1 for example). Furthermore, let
nxy(R) = |{i ∈ N : x �i y}| denote the supporting size for x against y in the preference
profile R.

Given a preference profile, we are interested in the winning chance of each alternative.
We therefore analyze social decision schemes (SDSs), which map each preference profile to
a lottery over the alternatives. A lottery p is a probability distribution over the set of alter-
natives A, i.e., it assigns each alternative x a probability p(x) ≥ 0 such that

∑
x∈A p(x) = 1.

The set of all lotteries over A is denoted by ∆(A). Formally, a social decision scheme (SDS)
is a function f : Rn → ∆(A). We denote with f(R, x) the probability assigned to alternative
x by f at the preference profile R.

Since there is a huge number of SDSs, we now discuss axioms formalizing desirable
properties of SDSs. Two basic fairness conditions are anonymity and neutrality. Anonymity
requires that every voter is treated equally. Formally, an SDS f is anonymous if f(R) =
f(π(R)) for all preference profiles R and permutations π : N → N . Note that R′ = π(R)
denotes the profile with R′π(i) = Ri for all voters i ∈ N . Neutrality is a fairness axiom that
guarantees that alternatives are treated equally. This idea can again be formalized using
permutations: an SDS f is neutral if f(R, x) = f(τ(R), τ(x)) for all preference profiles R
and permutations τ : A → A. Here, R′ = τ(R) is the profile derived by permuting the
alternatives in R according to τ , i.e, τ(x) %′i τ(y) if and only if x %i y for all alternatives
x, y ∈ A and voters i ∈ N .

2.1 Stochastic Dominance and Strategyproofness
In this paper, we investigate strategyproof SDSs, i.e., social decision schemes in which
voters cannot benefit by misrepresenting their preferences. Unfortunately, it is not obvious
in which situations a voter benefits from misrepresenting his preferences because he only
reports his ordinal preferences over alternatives while the outcome of the SDS is a lottery.
We use the concept of stochastic dominance to let agents compare two lotteries with each
other: a voter i (weakly) prefers a lottery p to another lottery q, written as p %i q, if∑
y∈A:y�ix p(y) ≥

∑
y∈A:y�ix q(y) for every alternative x ∈ A. Less formally, a voter prefers

a lottery p weakly to a lottery q if, for every alternative x ∈ A, p returns a better alternative
than x with as least as much probability as q. Note that stochastic dominance is no complete
order on the set of lotteries, i.e., there are lotteries p and q such that a voter i neither prefers
p to q nor q to p.

Based on stochastic dominance, we can now formalize strategyproofness. An SDS f is
strategyproof if f(R) %i f(R′) for all preference profiles R and R′ and voters i ∈ N such
that Rj = R′j for all j ∈ N \ {i}. This means that an SDS is strategyproof if every voter
prefers the lottery obtained by voting truthfully to any lottery that he could obtain by
voting dishonestly. Conversely, we call an SDS f manipulable if it is not strategyproof.

While there are other ways to compare lotteries with each other, stochastic dominance is
the most common one (see, e.g, Gibbard, 1977; Barberà, 1979b; Bogomolnaia and Moulin,
2001; Ehlers et al., 2002; Aziz et al., 2018). This is mainly due to the following reason: if



p %i q, the expected utility of p is at least as high as the expected utility of q for every
vNM utility function that is ordinally consistent with voter i’s preferences. Hence, if an
SDS is strategyproof, no voter can manipulate regardless of his exact utility function (see,
e.g., Sen, 2011; Brandl et al., 2018). This observation immediately implies that the convex
combination h = λf + (1 − λ)g (for some λ ∈ [0, 1]) of two strategyproof SDSs f and g is
again strategyproof: if a manipulator obtains more expected utility for h(R′) than for h(R),
then he has to prefer f(R′) to f(R), or g(R′) to g(R).

Two particularly important results about strategyproof SDSs are due to Gibbard (1977)
and Barberà (1979b). Gibbard (1977) shows that every strategyproof SDS can be repre-
sented as a convex combination of unilaterals and duples.1 The terms “unilaterals” and
“duples” refer here to special classes of SDSs: a unilateral is a strategyproof SDS that only
depends on the preferences of a single voter i, i.e., f(R) = f(R′) for all preference profiles
R and R′ such that Ri = R′i. A duple, on other hand, is a strategyproof SDS that can only
choose between two alternatives x and y, i.e., f(R, z) = 0 for all preference profiles R and
alternatives z ∈ A \ {x, y}.

Theorem 1 (Gibbard, 1977). An SDS is strategyproof if and only if it can be represented
as a convex combination of unilaterals and duples.

Note that we define duples and unilaterals as strategyproof SDSs. Thus, Theorem 1 only
states that strategyproof SDSs can be decomposed into a mixture of strategyproof SDSs,
each of which must be of a special type. In order to circumvent this restriction, Gibbard
proves another characterization of strategyproof SDSs.

Theorem 2 (Gibbard, 1977). An SDS is strategyproof if and only if it is non-perverse and
localized.

Non-perversity and localizedness are two axioms describing the behavior of an SDS. In
more detail, non-perversity—which is now often referred to as monotonicity—requires that
reinforcing an alternative should not reduce its probability. For a formal definition, we
denote with Ri:yx the profile derived from R by only reinforcing y against x. Note that this
requires that x �i y and that there is no alternative z ∈ A such that x �i z �i y in R.
Then, an SDS f is non-perverse if f(Ri:yx, y) ≥ f(R, y) for all preference profiles R, voters
i ∈ N , and alternatives x, y ∈ A. Moreover, an SDS is localized if changes in the preferences
of voters only affect the probabilities of the alternatives that are involved in these changes.
Formally, an SDS f is called localized if f(Ri:yx, z) = f(R, z) for all preference profiles R,
voters i ∈ N , and distinct alternatives x, y, z ∈ A. Together, Theorem 1 and Theorem 2
show that each strategyproof SDS can be represented as a mixture of unilaterals and duples,
each of which is non-perverse and localized.

Since Gibbard’s results can be quite difficult to work with, we now state another char-
acterization of strategyproof SDSs due to Barberà (1979b). Barberà has shown that every
strategyproof SDS that satisfies anonymity and neutrality can be represented as a con-
vex combination of a supporting size SDS and a point voting SDS. A point voting SDS is
defined by a scoring vector (a1, a2, . . . , am) that satisfies a1 ≥ a2 ≥ · · · ≥ am ≥ 0 and∑
i∈{1,...,m} ai = 1

n . The probability assigned to an alternative x by a point voting SDS f
is f(R, x) =

∑
i∈N a|{y∈A:y%ix}|. Furthermore, supporting size SDSs also rely on a scoring

vector (bn, bn−1, . . . , b0) with bn ≥ bn−1 ≥ · · · ≥ b0 ≥ 0 and bi + bn−i = 2
m(m−1) for all

i ∈ {0, . . . , n} to compute the outcome. The probability assigned to an alternative x by a
supporting size SDS f is then f(R, x) =

∑
y∈A\{x} bnxy(R). Note that point voting SDSs

can be seen as a generalization of (deterministic) positional scoring rules and supporting
size SDSs can be seen as a variant of Fishburn’s C2 functions (Fishburn, 1977).

1In order to simplify the exposition, we slightly modified Gibbard’s terminology by requiring that duples
and unilaterals have to be strategyproof.



Theorem 3 (Barberà, 1979b). An SDS is anonymous, neutral, and strategyproof if and
only if it can be represented as a convex combination of a point voting SDS and a supporting
size SDS.

Many well-known SDSs can be represented as point voting SDSs or supporting size
SDSs. For example, the uniform random dictatorship fRD , which chooses one voter uni-
formly at random and returns his best alternative, can be formalized as the point voting
SDS with the scoring vector

(
1
n , 0, . . . , 0

)
. An instance of a supporting size SDS is the

randomized Copeland rule fC , which assigns probabilities proportional to the Copeland
scores c(x,R) = |{y ∈ A \ {x} : nxy(R) > nyx(R)}| + 1

2 |{y ∈ A \ {x} : nxy(R) = nyx(R)}|.
This SDS is the supporting size SDS defined by the vector b = (bn, bn−1, . . . , 0), where
bi = 2

m(m−1) if i > n
2 , bi = 1

m(m−1) if i = n
2 , and bi = 0 otherwise. Furthermore, there

are SDSs that can be represented both as point voting SDSs and supporting size SDSs.
An example is the randomized Borda rule fB , which randomizes proportional to the Borda
scores of the alternatives. This SDS is the point voting SDS defined by the scoring vector(

2(m−1)
nm(m−1) ,

2(m−2)
nm(m−1) , · · · ,

2
nm(m−1) , 0

)
and equivalently the supporting size SDS defined by

the scoring vector
(

2n
nm(m−1) ,

2(n−1)
nm(m−1) , · · · ,

2
nm(m−1) , 0

)
. The randomized Copeland rule

as well as the randomized Borda rule were rediscovered several times by authors who were
apparently unaware of Barberà’s work (see Heckelman, 2003; Conitzer and Sandholm, 2006;
Procaccia, 2010; Heckelman and Chen, 2013).

2.2 Relaxing Classic Axioms
The goal of this paper is to analyze the effectiveness of strategyproof SDSs by relaxing classic
axioms from social choice theory. In more detail, we investigate how much probability
can be guaranteed to Condorcet winners and how little probability must be assigned to
Pareto-dominated alternatives by strategyproof SDSs. These ideas are formalized using
α-Condorcet-consistency and β-ex post efficiency, which are introduced in the sequel.

Let us first consider β-ex post efficiency, which is based on Pareto-dominance. An alter-
native x Pareto-dominates another alternative y in a preference profile R if x �i y for all
i ∈ N . Clearly, a Pareto-dominated alternative y should have no chance of winning because
every voter agrees that its dominator x is a better choice. This is formalized by ex post
efficiency, which requires that f(R, x) = 0 for all preference profiles R and alternatives x
such that x is Pareto-dominated in R. As first shown by Gibbard, random dictatorships
are the only strategyproof SDSs that satisfy ex post efficiency. These SDSs choose each
voter with a fixed probability and return his best alternative as winner. However, this re-
sult, which is often called random dictatorship theorem, breaks down once we allow that
Pareto-dominated alternatives can have a non-zero chance of winning β > 0. This follows
by considering two SDSs d and g such that d is a random dictatorship and g is another
strategyproof SDS. Then, the SDS f∗ = (1− β)d+ βg is strategyproof for every β ∈ (0; 1)
and no random dictatorship, but assigns a probability of at most β to Pareto-dominated
alternatives. We call the last property β-ex post efficiency: an SDS f is β-ex post efficient
if f(R, x) ≤ β for all preference profiles R and alternatives x that are Pareto-dominated in
R.

A natural generalization of the random dictatorship theorem is to ask which strate-
gyproof SDSs satisfy β-ex post efficiency for small values of β. If β is sufficiently small, β-ex
post efficiency may be quite acceptable. As we show, the random dictatorship theorem is
quite robust in the sense that all SDSs that satisfy β-ex post efficiency for β < 1

m are similar
to random dictatorships. In order to formalize this observation, we introduce γ-randomly
dictatorial SDSs: an SDS f is γ-randomly dictatorial if γ ∈ [0, 1] is the maximal value such
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Figure 1: Condorcet-consistent SDSs violate strategyproofness when m = n = 3. Due to
the symmetry of R′, we may assume without loss of generality that f(R′, a) > 0. Since f is
Condorcet-consistent, it holds that f(R, c) = 1. Thus, voter 1 can manipulate by swapping
c and b in R, resulting in profile R′, because f(R′, a) =

∑
x�1c

f(R′, x) >
∑
x�1c

f(R, x) =
f(R, a) = 0.

that f can be represented as f = γd+(1−γ)g, where d is a random dictatorship and g is an-
other strategyproof SDS. Note that this definition entails that γ-randomly dictatorial SDSs
are strategyproof since they are convex combinations of strategyproof SDSs. In particular,
we require that g is strategyproof as otherwise, SDSs that seem ”non-dictatorial” are not
0-randomly dictatorial. For instance, the uniform lottery, which always assigns probability
1
m to all alternatives, is not 0-randomly dictatorial if g is not required to be strategyproof.
Moreover, it should be mentioned that the maximality of γ implies that g is 0-randomly
dictatorial. Otherwise, we could also represent g as a mixture of a random dictatorship and
some other strategyproof SDS h, which means that f is γ′-randomly dictatorial for γ′ > γ.

For a better understanding of γ-randomly dictatorial SDSs, we first provide a character-
ization of these SDSs. Recall for the following lemma that Ri:yx denotes the profile derived
from R by only reinforcing y against x in voter i’s preference.

Lemma 1. A strategyproof SDS f is γ-randomly dictatorial if and only if there are non-
negative values γ1, . . . , γn that satisfy the following conditions:

i)
∑
i∈N γi = γ.

ii) f(Ri:yx, y) − f(R, y) ≥ γi for all alternatives x, y ∈ A, voters i ∈ N , and preference
profiles R in which voter i prefers x the most and y the second most.

iii) for every voter i ∈ N there are alternatives x, y ∈ A and a profile R such that voter i
prefers x the most and y the second most in R, and f(Ri:yx, y)− f(R, y) = γi.

Due to space restrictions, we defer the proof of this lemma to the appendix. Note that
Lemma 1 gives an intuitive interpretation of γ-randomly dictatorial SDSs: this axiom only
requires that there are voters who always increase the winning probability of an alternative
by at least γi if they reinforce it to the first place. Hence, for small values of γ, this axiom
is desirable as it only formulates a variant of strict monotonicity. However, for larger of γ,
γ-randomly dictatorial SDSs become more similar to random dictatorships. Furthermore,
Lemma 1 implies that the decomposition of γ-randomly dictatorial SDSs is unique because
it is completely determined by the values γ1, . . . , γn.

Finally, we introduce α-Condorcet-consistency. To this end, we first define the notion
of a Condorcet winner. A Condorcet winner is an alternative x that wins every majority
comparison according to preference profile R, i.e., nxy(R) > nyx(R) for all y ∈ A \ {x}.
Condorcet-consistency demands that f(R, x) = 1 for all preference profiles R and alterna-
tives x such that x is the Condorcet winner in R. Condorcet-consistent SDS are sometimes
also called Condorcet extensions. Unfortunately, all Condorcet extensions violate strate-
gyproofness, which can easily be derived from Gibbard’s random dictatorship theorem. A



SDS α-Condorcet
-consistency

β-ex post
efficiency

γ-random
dictatorship

uniform random dictatorship 0 0 1

uniform lottery 1
m

1
m 0

randomized Borda rule 1
m + t

mn
2(m−2)
m(m−1)

2
m(m−1)

randomized Copeland rule 2
m

2(m−2)
m(m−1) 0

Table 1: Values of α, β, and γ for which specific SDSs are α-Condorcet-consistent, β-ex post
efficient, and γ-randomly dictatorial. Each row shows the values of α, β, and γ for which a
specific SDS satisfies the corresponding axioms. The value of α for the randomized Borda
rule depends on the parity of n: t = 1 if n is odd and t = 2 otherwise.

simple two-profile proof for this fact when m = n = 3 is given in Figure 1. To circumvent
this impossibility, we relax Condorcet-consistency: instead of requiring that the Condorcet
winner always obtains probability 1, we only require that it receives a probability of at least
α. This idea leads to α-Condorcet-consistency : an SDS f satisfies this axiom if f(R, x) ≥ α
for all profiles R and alternatives x ∈ A such that x is the Condorcet winner in R. For
small values of α, this axiom is clearly compatible with strategyproofness and therefore, we
are interested in the maximum value of α such that there are α-Condorcet-consistent and
strategyproof SDSs.

For a better understanding of α-Condorcet-consistency, β-ex post efficiency, and γ-
random dictatorships, we discuss some of the values in Table 1 as examples. The uniform
random dictatorship is 1-randomly dictatorial and 0-ex post efficient by definition. More-
over, it is 0-Condorcet-consistent because a Condorcet winner may not be top-ranked by
any voter. The randomized Borda rule is 2(m−2)

m(m−1) -ex post efficient because it assigns this
probability to an alternative that is second-ranked by every voter. Moreover, it is 2

m(m−1) -

randomly dictatorial as we can represent it as 2
m(m−1)fRD +

(
1− 2

m(m−1)

)
g, where fRD

is the uniform random dictatorship and g is the point voting SDS defined by the scoring
vector

(
2(m−2)

n(m(m−1)−2) ,
2(m−2)

n(m(m−1)−2) ,
2(m−3)

n(m(m−1)−2) , . . . , 0
)
. Finally, the randomized Copeland

rule is 0-randomly dictatorial because there is for every voter a profile in which he can
swap his two best alternatives without affecting the outcome. Moreover, it is 2

m -Condorcet-
consistent because a Condorcet winner x satisfies that nxy(R) > n

2 for all y ∈ A \ {x}
and hence, fC(R, x) =

∑
y∈A\{x} bnxy(R) = (m − 1) 2

m(m−1) = 2
m . Note that Table 1 also

contains a row corresponding to the uniform lottery. We consider this SDS as a threshold
with respect to α-Condorcet-consistency and β-ex post efficiency because we can compute
the uniform lottery without knowledge about the voters’ preferences. Hence, if an SDS per-
forms worse than the uniform lottery with respect to α-Condorcet-consistency or β-ex post
efficiency and if we are only interested in these axioms, we could also dismiss the voters’
preferences.

3 Results
In this section, we present our results about the α-Condorcet-consistency and the β-ex
post efficiency of strategyproof SDSs. Our results are rather negative for both axioms.
No strategyproof SDS satisfies α-Condorcet-consistency for α > 2

m and the randomized
Copeland rule fC is the only anonymous, neutral, and strategyproof SDS that satisfies α-



Condorcet-consistency for α = 2
m . Moreover, we show that no 0-randomly dictatorial SDS

satisfies both strategyproofness and β-ex post efficiency for β < 1
m . This means that 0-

randomly dictatorial SDSs cannot be more ex post efficient than the uniform lottery. A
corollary of this impossibility is that every 1−ε

m -ex post efficient and strategyproof SDS is
γ-randomly dictatorial for γ ≥ ε. This corollary can be seen as a continuous generalization
of the random dictatorship theorem.

We derive these results through a series of lemmas. Because of space restrictions, all
these lemmas, as well as all other results for which the proof has been omitted, are proved
in the appendix and we only present short proof sketches instead.

3.1 α-Condorcet-consistency
As discussed in Section 2.2, Condorcet-consistent SDSs violate strategyproofness. There-
fore, we analyze the maximal α such that α-Condorcet-consistency and strategyproofness
are compatible. Our results are rather negative: we prove that no strategyproof SDS satis-
fies α-Condorcet-consistency for α > 2

m . This bound is tight as the randomized Copeland
rule satisfies 2

m -Condorcet-consistency. We use this observation to characterize the random-
ized Copeland rule as the only strategyproof SDS that satisfies 2

m -Condorcet-consistency,
neutrality, and anonymity.

We first focus on the impossibility of strategyproof α-Condorcet-consistent SDSs for
α > 2

m . As first step, we show in Lemma 2 that we can use a strategyproof and α-
Condorcet-consistent SDS to construct another strategyproof SDS that satisfies anonymity,
neutrality, and α-Condorcet-consistency for the same α. Hence, we can restrict our attention
to anonymous, neutral and strategyproof SDSs, which means that we can use Theorem 3
to represent the SDS as a mixture of a point voting SDS and a supporting size SDS. Next,
we prove bounds on the α-Condorcet consistency of point voting SDSs and supporting size
SDSs in Lemmas 3 and 4, respectively. By combining all these results, we derive that no
strategyproof SDS satisfies α-Condorcet-consistency for α > 2

m .

Lemma 2. If a strategyproof SDS satisfies α-Condorcet-consistency for some α ∈ [0, 1],
there is also a strategyproof SDS that satisfies anonymity, neutrality, and α-Condorcet-
consistency for the same α.

The central idea in the proof of Lemma 2 is the following: if there is a strategyproof
and α-Condorcet-consistent SDS f , then the SDS fπτ (R, x) = f(τ(π(R)), τ(x)) is also
strategyproof and α-Condorcet-consistent for all permutations π : N → N and τ : A → A.
Since mixtures of strategyproof and α-Condorcet-consistent SDSs are also strategyproof and
α-Condorcet-consistent, it follows that f∗ = 1

m!n!

∑
π∈Π

∑
τ∈T f

πτ satisfies all requirements
of the lemma, where Π denotes the set of all permutations on N and T the set of all
permutations on A.

Remark 1. Lemma 2 can be applied to properties other than α-Condorcet-consistency,
too. For example, given a strategyproof and β-ex post efficient SDS, we can construct
another SDS that satisfies these axioms as well as neutrality and anonymity. In general, our
construction maintains all axioms P that are simple (for given m and n, P can be described
by a finite number of linear inequalities) and symmetric (if P entails inequalities for f(R), it
also entails the corresponding inequalities for f(τ(π(R)) for all π : N → N and τ : A→ A).

Next, we derive upper bounds for the α-Condorcet-consistency of point voting SDSs and
supporting size SDSs. We first discuss point voting SDSs.

Lemma 3. No point voting SDS is α-Condorcet-consistent for α ≥ 2
m if n ≥ 3 and m ≥ 3.



The proof of this lemma relies on the observation that there can be dm2 e Condorcet
winner candidates, i.e., alternatives x that can be made into the Condorcet winner by
keeping x at the same position in the preferences of every voter and only reordering the
other alternatives. Since reordering the other alternatives does not affect the probability of
x in a point voting SDS, it follows that every Condorcet winner candidate has a probability
of at least α. Hence, we derive that α ≤ 1

dm2 e
≤ 2

m and a slightly more involved argument
shows that the inequality is strict.

Remark 2. Point voting SDSs can be interpreted as positional scoring rules that randomize
proportional to the assigned scores. A result by Smith (1973) shows that for large n, every
scoring rule except Borda’s rule can assign the Condorcet winner the lowest score. Hence,
for every point voting SDS except the randomized Borda rule, there is a profile where the
Condorcet winner receives less than 1

m probability. Moreover, the randomized Borda rule
is ( 1

m + t
nm )-Condorcet-consistent, where t = 2− (n mod 2). This argument gives a more

restrictive bound on the α-Condorcet-consistency of point voting SDSs when there is a large
number of voters. In particular, the construction of Smith (1973) requires O(m!) voters.

The last ingredient of our proof is that no supporting size SDS can assign a probability
of more than 2

m to any alternative. This immediately implies that no supporting size SDS
satisfies α-Condorcet-consistency for α > 2

m .

Lemma 4. No supporting size SDS can assign more than 2
m probability to an alternative.

The proof of this lemma follows straightforwardly from the definition of supporting size
SDSs. Each such SDS is defined by a scoring vector (bn, . . . , b0) such that bi+bn−i = 2

m(m−1)

for all i ∈ {0, . . . , n} and bn ≥ bn−1 ≥ · · · ≥ b0 ≥ 0. The probability of an alternative x in a
supporting size SDS f is therefore f(R, x) =

∑
y∈A\{x} bnxy(R) ≤ (m− 1) 2

m(m−1) = 2
m .

Finally, we have all necessary lemmas for the proof of our first theorem: no strategyproof
SDS satisfies α-Condorcet-consistency for α > 2

m if n ≥ 3.

Theorem 4. No strategyproof SDS satisfies α-Condorcet-consistency for α > 2
m if n ≥ 3.

Proof. The theorem is trivially true if m ≤ 2 because α-Condorcet consistency for α > 1
is impossible. Hence, let f denote a strategyproof SDS for m ≥ 3 alternatives. We show
in the sequel that f cannot satisfy α-Condorcet-consistency for α > 2

m . As a first step,
we use Lemma 2 to construct a strategyproof SDS f∗ that satisfies anonymity, neutrality,
and α-Condorcet-consistency for the same α as f . It suffices to show that f∗ violates α-
Condorcet-consistency for any α > 2

m as the contraposition of Lemma 2 entails in this case
that f cannot satisfy this axiom either. Since f∗ is anonymous, neutral, and strategyproof,
it follows from Theorem 3 that f∗ can be represented as a mixture of a point voting SDS
fpoint and a supporting size SDS fsup, i.e., f∗ = λfpoint + (1− λ)fsup for some λ ∈ [0, 1].

Next, we consider fpoint and fsup separately. Lemma 3 implies for fpoint that there is a
profile R with a Condorcet winner a such that fpoint(R, a) < 2

m . Moreover, Lemma 4 shows
that no supporting size SDS fsup can assign more than 2

m probability to an alternative.
Hence, it holds also that fsup(R, a) ≤ 2

m and we derive the following inequality.

α ≤ f∗(R, a) = λfpoint(R, a) + (1− λ)fsup(R, a) ≤ λ 2

m
+ (1− λ)

2

m
=

2

m

This equation shows that f∗ fails α-Condorcet-consistency for α > 2
m . We thus conclude

that no strategyproof SDS satisfies α-Condorcet-consistency for α > 2
m when n ≥ 3.

Remark 3. The theorem does not hold when there are only n = 2 voters because random
dictatorships are strategyproof and Condorcet-consistent in this case since a Condorcet
winner needs to be the most preferred alternative of both voters. If there are m = 2
alternatives, the randomized Copeland rule is strategyproof and Condorcet-consistent.



Theorem 4 shows that strategyproofness does not allow for any meaningful notion of
Condorcet-consistency. The reason for this is that strategyproof SDSs can guarantee the
Condorcet winner a probability of at most 2

m , which is only twice the amount compared to
the uniform lottery. Therefore, our result significantly strengthens the incompatibility of
Condorcet-consistency and strategyproofness.

A natural follow-up question is to ask which strategyproof SDSs satisfy 2
m -Condorcet-

consistency. As already mentioned in Section 2.2, the randomized Copeland rule fC satisfies
this axiom and it is even the only strategyproof SDS that satisfies 2

m -Condorcet consistency,
neutrality, and anonymity. Recall that fC is the supporting size SDS defined by the scoring
vector b with bi = 2

m(m−1) if bi > n
2 , bi = 1

m(m−1) if bi = n
2 and bi = 0 otherwise.

Theorem 5. The randomized Copeland rule is the only strategyproof SDS that satisfies
anonymity, neutrality, and 2

m -Condorcet-consistency if m ≥ 3 and n ≥ 3.

The theorem consists of two claims: on the one side, we show that the randomized
Copeland rule is anonymous, neutral, strategyproof, and 2

m -Condorcet-consistent and, on
the other side, that no other SDS satisfies all these axioms. As the randomized Copeland rule
is a supporting size SDS, it satisfies by definition anonymity, neutrality and strategyproof-
ness. Moreover, it is also 2

m -Condorcet consistent because the Condorcet winner x wins every
majority comparison in R, i.e, nxy(R) > n

2 for all alternatives y ∈ A\{x}. Hence, the proba-
bility of a Condorcet winner x is always fC(R, x) =

∑
y∈A\{x} bnxy(R) = (m−1) 2

m(m−1) = 2
m ,

which means that the randomized Copeland rule is 2
m -Condorcet consistent. For the sec-

ond part, let f denote an SDS that satisfies anonymity, neutrality, strategyproofness, and
2
m -Condorcet consistency. We show that f is the randomized Copeland rule. First, note
that f is a supporting size SDS as otherwise, it can be represented as a proper mixture of
a point voting SDS and a supporting size SDS. However, it follows then from Lemma 3 and
Lemma 4 that f is only α-Condorcet-consistent for α < 2

m . Next, observe that an alter-
native x can only receive a probability of 2

m in a supporting size SDS if bnxy(R) = 2
m(m−1)

for all y ∈ A \ {x}. Furthermore, Condorcet winners are indifferent about the exact sup-
porting sizes and therefore, bi = 2

m(m−1) for all i > n
2 . The remaining entries of the scoring

vector are given by the constraints bi + bn−i = 2
m(m−1) , which imply that bi = 0 for i < n

2

and bn
2

= 1
m(m−1) . Hence, f is a supporting size SDS with the same scoring vector as the

randomized Copeland rule which means that f = fC .

Remark 4. All axioms in the proof of Theorem 5 are independent. The SDS that picks the
Condorcet winner with probability 2

m if one exists and distributes the remaining probability
uniformly at random between the other alternatives only violates strategyproofness. The
randomized Borda rule satisfies all axioms of Theorem 5 but 2

m -Condorcet-consistency.
An SDS that satisfies strategyproofness, anonymity and 2

m -Condorcet-consistency can be
defined based on an arbitrary order of alternatives x0, . . . , xm−1. Then, we pick an index
i ∈ {0, . . . ,m− 1} uniformly at random and return the winner of the majority comparison
between xi and xi+1 mod m (if there is a majority tie, a fair coin toss decides the winner).
This SDS is strategyproof as it is a mixture of duples, and 2

m -Condorcet-consistent as
each alternative has a chance of 2

m of being chosen for the pairwise majority comparison,
which is always won by a Condorcet winner. Finally, we use the randomized Copeland rule
fC to construct an SDS that fails only anonymity for even n: we just ignore a voter in the
calculation of fC . If n is even and x is the Condorcet winner in R, then nxy(R)−nyx(R) ≥ 2
for all y ∈ N \{x}. Hence, the Condorcet winner remains a Condorcet winner after removing
a single voter and the SDS satisfies all axioms but anonymity.

Remark 5. The randomized Copeland rule has multiple appealing interpretations. Firstly,
it can be defined as a supporting size SDS as shown in Section 2.1. Alternatively, it can



be defined as the SDS that picks two alternatives uniformly at random and then picks
the majority winner between them; majority ties are broken by a fair coin toss. Next,
Theorem 5 shows that the randomized Copeland rule is the SDS that maximizes the value
of α for α-Condorcet-consistency among all anonymous, neutral, and strategyproof SDSs.

3.2 β-ex post Efficiency
Gibbard’s random dictatorship theorem implies that random dictatorships are the only
strategyproof SDSs that satisfy ex post efficiency. In this section, we show that this result is
rather robust because every strategyproof SDS that assigns Pareto-dominated alternatives
at most β < 1/m probability will be a random dictatorship with positive probability. More
formally, we show that no 0-randomly dictatorial SDS satisfies β-ex post efficiency for β < 1

m .
It follows from this result that for every ε ∈ [0, 1], all strategyproof and 1−ε

m -ex post efficient
SDSs are γ-randomly dictatorial for γ ≥ ε.

Next, we start proving our impossibility result. Since Theorem 1 states that every
strategyproof SDS can be represented as a convex combination of duples and unilaterals,
we consider these two types of SDSs separately. First, we show that no SDS that can be
represented as a mixture of duples satisfies β-ex post efficiency for β < 1

m .

Lemma 5. No SDS that can be represented as a convex combination of duples satisfies β-ex
post efficiency for β < 1

m if m ≥ 3.

For the proof of this lemma, we first apply the averaging construction of Lemma 2 be-
cause this construction also preserves β-ex post efficiency. Hence, we can focus on SDSs
that are anonymous and neutral, and that can be represented as mixtures of duples. This
class of SDSs is equivalent to Barberà’s supporting size SDSs, which cannot satisfy β-ex post
efficiency for β < 1

m . This follows by considering a preference profile in which each voter
submits the same preference relation. In this profile, the probabilities of the unanimously
best and the unanimously worst alternative sum up to 2

m because of the definition of sup-
porting size SDSs. This means that m−2

m probability is assigned to m− 2 Pareto-dominated
alternatives and hence, at least one of them has a probability of at least 1

m . The contrapo-
sition of Lemma 2 entails therefore that no SDS satisfies β-ex post efficiency for β < 1

m if it
can be represented as a mixture of duples.

Next, we focus on SDSs that can be represented as mixtures of unilaterals. The next
lemma shows that such SDSs cannot be both 0-randomly dictatorial and β-ex post efficient
for β < 1

m .

Lemma 6. No 0-randomly dictatorial SDS that can be represented as a convex combination
of unilaterals satisfies β-ex post efficiency for β < 1

m if m ≥ 3.

The proof of this lemma is rather involved. First, we discuss a construction that trans-
forms a 0-randomly dictatorial mixture of unilaterals f into a function similar to a point
voting rule while ensuring that the resulting SDS is strategyproof, 0-randomly dictatorial,
and β-ex post efficient for the same β as f . Note that Lemma 2 cannot be used here as it
does not guarantee that the resulting SDS is 0-randomly dictatorial. For the resulting SDS,
we then show that a profile exists where every alternative receives a probability of at most
β. This results in a contradiction because the sum of the probabilities of all alternatives is
less than 1 if β < 1

m .
Finally, we use Lemma 5 and Lemma 6 to show that no strategyproof SDS is both 0-

randomly dictatorial and β-ex post efficient for β < 1
m . As a consequence of this result,

no 0-randomly dictatorial SDS outperforms the uniform lottery with respect to β-ex post
efficiency. If we are only interested in this axiom, we may therefore dismiss the voters’
preferences completely instead of using a 0-randomly dictatorial SDS.



Theorem 6. There is no strategyproof SDS that is both 0-randomly dictatorial and β-ex
post efficient for β < 1

m if m ≥ 3.

The proof of this result is quite similar to the one of Theorem 4. We consider a 0-
randomly dictatorial SDS f that satisfies β-ex post efficiency for some β ∈ [0, 1] and show
that β ≥ 1

m must be true. Note that we can use Theorem 1 to represent f as the convex
combination of a 0-randomly dictatorial mixture of unilaterals funi and a mixture of duples
fduple . We even know that these SDSs violate β-ex post efficiency for β < 1

m because of
Lemma 5 and Lemma 6. However, there is no direct implication for f since funi and fduple
might violate β-ex post efficiency for different profiles or alternatives. We solve this problem
by transforming f into a 0-randomly dictatorial SDS f∗ that is β-ex post efficient for the
same β as f and satisfies additional properties. In particular, f∗ can be represented as a
convex combination of a 0-randomly dictatorial mixture of unilaterals f∗uni and a mixture
of duples f∗duple such that f∗uni(R, x) ≥ 1

m and f∗duple(R, x) ≥ 1
m for some profile R in which

alternative x is Pareto-dominated. Consequently, f∗ fails β-ex post efficiency for β < 1
m ,

which implies that also f violates this axiom.
Theorem 6 identifies a trade-off between β-ex post efficiency and the similarity to a ran-

dom dictatorship. In more detail, we now show that for every ε ∈ [0, 1], every strategyproof
and 1−ε

m -ex post efficient SDS is γ-randomly dictatorial for γ ≥ ε.

Corollary 1. For every ε ∈ [0, 1], every strategyproof and 1−ε
m -ex post efficient SDS is

γ-randomly dictatorial for γ ≥ ε.

Proof. Consider an SDS f that is strategyproof, γ-randomly dictatorial for some γ ∈ [0, 1],
and 1−ε

m -ex post efficient for some ε ∈ [0, 1]. We show in the sequel that γ ≥ ε. First, we
use the definition of γ-randomly dictatorial SDSs to derive that f = γd+ (1− γ)g, where d
is a random dictatorship and g is another strategyproof SDS. In particular, the maximality
of γ implies that g is 0-randomly dictatorial. Hence, Theorem 6 shows that g is at best
1
m -ex post efficient, i.e, there is a profile R with a Pareto-dominated alternative x such that
g(R, x) ≥ 1

m . This results in the following inequality for f(R, x).

f(R, x) = γd(R, x) + (1− γ)g(R, x) ≥ γ0 + (1− γ)
1

m
=

1− γ
m

.

On the other hand, we know that f(R, x) ≤ 1−ε
m because f is 1−ε

m -ex post efficient.
Therefore, we derive that 1−γ

m ≤ 1−ε
m , which is equivalent to ε ≤ γ. Hence, all strategyproof

and 1−ε
m -ex post efficient SDSs are γ-randomly dictatorial for γ ≥ ε.

Corollary 1 is a continuous strengthening of Gibbard’s random dictatorship theorem. If
we set ε = 1, then Corollary 1 is equivalent to the random dictatorship theorem as every
strategyproof and 0-ex post efficient SDSs is 1-randomly dictatorial. Moreover, increasing
the ε of 1−ε

m -ex post efficiency allows for strategyproof SDSs that are less similar to random
dictatorships. On the other hand, Corollary 1 entails that a γ-randomly dictatorial SDS can
only satisfy 1−ε

m -ex post efficiency for ε ≤ γ. Hence, the more ex post efficiency is required,
the closer a strategyproof SDS gets to a random dictatorship.
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Appendix: Omitted Proofs
Here, we discuss the missing proofs of all lemmas and of Theorem 5 and Theorem 6. Proof
sketches providing intuition for the lemmas can be found in the main body. First, we discuss
the proof of Lemma 1. Recall for this proof that Ri:yx is the profile derived from R by letting
voter i reinforce y against x.

Lemma 1. A strategyproof SDS f is γ-randomly dictatorial if and only if there are non-
negative values γ1, . . . , γn that satisfy the following conditions:

i)
∑
i∈N γi = γ.

ii) f(Ri:yx, y) − f(R, y) ≥ γi for all alternatives x, y ∈ A, voters i ∈ N , and preference
profiles R in which voter i prefers x the most and y the second most.

iii) for every voter i ∈ N there are alternatives x, y ∈ A and a profile R such that voter i
prefers x the most and y the second most in R, and f(Ri:yx, y)− f(R, y) = γi.

Proof. ” ⇐= ” Assume that f is a strategyproof SDS for which there are values γ1, . . . , γn
such that f(Ri:yx, y)−f(R, y) ≥ γi ≥ 0 for all alternatives x, y ∈ A, voters i ∈ N , and profiles
R such that voter i prefers x the most and y the second most in R. Furthermore, we assume
that for every voter i ∈ N , this inequality is tight for at least one pair of alternatives x, y ∈ A
and one such profile R. We show next that f is γ-randomly dictatorial for γ =

∑
i∈N γi.

Therefore, we define g = 1
1−γ

(
f −

∑
i∈N γidi

)
, where di is the SDS that assigns the best

alternative of voter i probability 1. Note that g is a well-defined SDS because for every
voter i ∈ N , his best alternative receives probability of at least γi. The reason for this is



that reinforcing an alternative from second to first place in voter i’s preferences increases
its probability by at least γi.

Next, we show that g is strategyproof, which implies that f is γ′-randomly dictatorial
for γ′ ≥ γ because f =

∑
i∈N γidi + (1− γ)g. Hence, we show that g is localized and non-

perverse, which implies that it is strategyproof because of Theorem 2. In more detail, g is
localized because the SDS f and all SDSs di are localized. Hence, swapping two alternatives
in the preferences of a voter only affects these two alternatives. For seeing that g is non-
perverse, consider a voter i, two alternatives x, y ∈ A and a profile R such that x is voter
i’s k-th best alternative and y is his k + 1-th best one. We show that g(Ri:yx) ≥ g(R, y),
which entails that g is non-perverse. Note for this that dj(Ri:yx) = dj(R) for all j ∈ N \ {i}
because the preferences of these voters did not change, and f(Ri:yx, y)−f(R, y) ≥ 0 because
f is strategyproof and therefore non-perverse. Furthermore, if x and y are not the two
best alternatives of voter i, then di(R

i:yx) = di(R). Hence, it immediately follows that
g(Ri:yx, y) − g(R, y) = 1

1−γ

(
f(Ri:yx, y) − f(R, y)

)
≥ 0. On the other hand, if x and y are

voter i’s two best alternative, we have that di(Ri:yx, y) = 1 and di(R, y) = 0. Moreover,
it holds that f(Ri:yx, y) − f(R, y) ≥ γi because x and y voter i’s two best alternatives
and thus, our initial assumption applies. Hence, we calculate that g(Ri:yx, y) − g(R, y) =

1
1−γ

(
f(Ri:yx, y)− f(R, y) + γi(di(R

i:yx, y)− di(R, y))
)
≥ 1

1−γ

(
γi− γi · 1

)
= 0, which shows

that g is non-perverse.
Finally, we show that f cannot be γ′-randomly dictatorial for γ′ > γ. If this was

the case, we can represent f as f =
∑
i∈N γ

′
idi + (1 − γ′)g′, where γ′i ≥ 0 are values

such that
∑
i∈N γ

′
i = γ and g′ is a strategyproof SDS. Since γ′ > γ, there is a voter

i with γ′i > γi. Furthermore, we know from our assumptions that there is a profile R
and alternatives x, y such that voter i prefers x the most and y the second most in R,
and f(Ri:yx, y) − f(R, y) = γi. Moreover, we have that di(Ri:yx, y) − di(R, y) = 1 and
dj(R

i:yx, y)−dj(R, y) = 0 for all j ∈ N \{i}. Hence, it follows the contradiction assumption
that γi = f(Ri:yx, y)− f(R, y) = γ′i + (1− γ)

(
g′(Ri:yx, y)− g′(R, y)

)
. This is only possible

if g′(Ri:yx, y)− g′(R, y) < 0, which means that g′ violates non-perversity and therefore also
strategyproofness. Hence, the assumption that f is γ′-randomly dictatorial for γ′ > γ is
wrong and f is therefore γ-randomly dictatorial.

” =⇒ ” Let f be a strategyproof γ-randomly dictatorial SDS. We show next that there
are values γi that satisfy the requirements of the lemma. Since f is γ-randomly dictatorial,
it can be represented as f = γd+(1−γ)g, where d is a random dictatorship and g is another
strategyproof SDS. Moreover, as d is a random dictatorship, there are values δ1, . . . , δn such
that δi ≥ 0 for all i ∈ N ,

∑
i∈N δi = 1, and d =

∑
i∈N δidi, where di denotes the SDS that

assigns probability 1 to voter i’s best alternative. Combining these two equations, we get
that f = γ

∑
i∈N δidi + (1 − γ)g. We show in the sequel that the values γi = γδi satisfy

all requirements of our lemma. First, note that the conditions γi ≥ 0 for all i ∈ N and∑
i∈N γi = γ are obviously true.
Next, consider two alternatives x, y ∈ A, an arbitrary voter i ∈ N , and a profile R in

which voter i reports x as his best alternative and y as his second best one. It holds that
g(Ri:yx, y)−g(R, y) ≥ 0 because g is strategyproof and therefore non-perverse, dj(Ri:yx, y)−
dj(R, y) = 0 for all j ∈ N \ {i} because Ri:yxj = Rj , and di(Ri:yx, y) − di(R, y) = 1 as y is
voter i’s best alternative in Ri:yx, but not in R. Hence, it follows that f(Ri:yx, y)−f(R, y) ≥
γδi = γi for all voters i ∈ N , alternatives x, y ∈ A, and preference profiles R in which voter
i reports x as his best and y as his second best alternative.

Finally, it remains to show that there is for every voter i a pair of alternatives x, y ∈ A and
a profile R such that voter i prefers x the most in R and y the second most and f(Ri:yx, y)−
f(R, y) = γi. Assume this is not the case for some voter i, i.e, that f(Ri:yx, y)−f(R, y) > γi



for all alternatives x, y ∈ A and profiles R in which x is voter i’s best alternative and y his
second best one. Hence, let γ′i > γi denote the minimal value of f(Ri:yx, y)−f(R, y) among
all alternatives x, y ∈ A and preference profiles R in which voter i reports x as his best
alternative and y as his second best one. Moreover, define γ′ = γi +

∑
j∈N\{i} γj and

g = 1
1−γ′

(
f −

∑
j∈N\{i} γjdj − γ′idi

)
. It follows from the same arguments as in the inverse

direction of the proof that g is strategyproof and thus, f = γ′idi +
∑
j∈N\{i}+(1 − γ′)g is

γ′-randomly dictatorial for γ′ > γ. This contradicts our assumption that f is γ-randomly
dictatorial as γ must be the maximal value such that f can be represented as f = γd +
(1− γ)g, where d is a random dictatorship and g is another strategyproof SDS. Hence, the
assumption that f(Ri:yx, y) − f(R, y) > γi for all alternatives x, y ∈ A and profiles R in
which x is voter i’s best alternative and y his second best one is wrong, which shows that
our choice of γi satisfies all requirements of the lemma.

Next, we discuss the lemmas required in the proof of Theorem 4 and Theorem 5. First,
we discuss the averaging construction of Lemma 2 in detail.

Lemma 2. If a strategyproof SDS satisfies α-Condorcet-consistency for some α ∈ [0, 1],
there is also a strategyproof SDS that satisfies anonymity, neutrality, and α-Condorcet-
consistency for the same α.

Proof. Let f denote an arbitrary strategyproof SDS that is α-Condorcet-consistent for some
α ∈ [0, 1]. We construct in the sequel an anonymous and neutral SDS f∗ that satisfies
strategyproofness and α-Condorcet-consistency for the same α as f . As first step, we define
the SDS fπτ for arbitrary permutations π : N → N and τ : A → A as follows. First, fπτ
permutes the voters in the input profile R according to π and the alternatives according
to τ . Next, we compute f on the resulting profile τ(π(R)) and finally, we define fπτ (R, x)
as the probability assigned to τ(x) by f in τ(π(R)). More formally, fπτ is defined as
fπτ (R, x) = f(τ(π(R)), τ(x)), where the profile τ(π(R)) satisfies for all i ∈ N and x, y ∈ A
that τ(x) �π(i) τ(y) in τ(π(R)) if and only if x �i y in R. Note that fπτ is strategyproof
for all permutations π and τ because every manipulation of fπτ implies a manipulation
of f . Furthermore, fπτ is α-Condorcet-consistent because for every preference profile R
with Condorcet winner x, τ(x) is the Condorcet winner in τ(π(R)). Hence, if fπτ violates
α-Condorcet-consistency in some profile R, then f violates this axiom in the profile τ(π(R)).

Finally, we define the SDS f∗ by averaging over fπτ for all permutations π and τ . Hence,
let Π denote the set of all permutations on N and let T denote the set of all permutations
on A. Then, f∗ is defined as follows.

f∗(R, x) :=
∑
π∈Π

1

|Π|
∑
τ∈T

1

|T|
fπτ (R, x) =

∑
π∈Π

∑
τ∈T

1

n!m!
f(τ(π(R)), τ(x))

Next, we show that f∗ satisfies all axioms required by the lemma. First, f∗ is strate-
gyproof since all SDSs fπτ are strategyproof. The α-Condorcet-consistency of f∗ is shown
by the following inequality, where R denotes a profile in which x is the Condorcet winner.

f∗(R, x) =
∑
π∈Π

∑
τ∈T

1

n!m!
f(τ(π(R)), τ(x)) ≥

∑
π∈Π

∑
τ∈T

1

n!m!
α = α

Furthermore, observe that f∗ is anonymous because it averages over all possible permu-
tations of the voters, i.e., for all permutations of the voters π ∈ Π : f∗(R) = f∗(π(R)). It
follows from a similar argument that f∗ is neutral: since f∗ averages over all permutations
of the alternatives, it holds that f∗(R, x) = f∗(τ(R), τ(x)) for every τ ∈ T. Hence, f∗ is
strategyproof, α-Condorcet-consistent, anonymous, and neutral.
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Figure 2: Profiles used in the base cases of the proof of Lemma 3 if m ∈ 3, 4. The profile
Ri shows the profile corresponding to case i.

Next, we present the proof of Lemma 3 which states that point voting SDSs cannot
satisfy α-Condorcet-consistency for α ≥ 2

m . Note that we use additional notation for this
proof. The rank r(x,Ri) of an alternative x in the preferences of a voter i is the number
of alternatives that are weakly preferred to x by voter i, i.e., r(x,Ri) = |{y ∈ A : y %i x}|.
Moreover, the rank vector r∗(x,R) of an alternative x in a preference profile R is the vector
that contains the rank of x with respect to every voter in increasing order. An important
observation for point voting SDSs f is that f(R, x) = f(R′, x) if r∗(x,R) = r∗(x,R′). The
reason for this is that a point voting SDSs assign an alternative every time probability ai
when it is ranked i-th. Finally, the proof focuses mainly on Condorcet winner candidates,
which are alternatives that can be made into the Condorcet winner without changing their
rank vectors.

Lemma 3. No point voting SDS is α-Condorcet-consistent for α ≥ 2
m if n ≥ 3 and m ≥ 3.

Proof. Let f be a point voting SDS for m ≥ 3 alternatives and let a = (a1, . . . , am) be the
scoring vector that defines f . Furthermore, assume for contradiction that f is α-Condorcet-
consistent for α ≥ 2

m . In the sequel, we show that there can be many Condorcet winner
candidates in a profile R. Since we can turn Condorcet winner candidates into Condorcet
winners without changing their rank vector and since f(R, x) = f(R′, x) for all profiles R
and R′ with r∗(x,R) = r∗(x,R′), it follows that each Condorcet winner candidate has at
least probability α in R. This observation is in conflict with

∑
x∈A f(R, x) = 1 if α > 2

m
because there can be dm2 e Condorcet winner candidates. By investigating our profiles in
more detail, we also deduce that α = 2

m is not possible.
We use a case distinction with respect to the parity of n and m to construct profiles

with dm2 e Condorcet winner candidates. Moreover, we first focus on cases with fixed n, and
provide in the end an argument for generalizing the impossibility to all n ≥ 3. Figure 2
illustrates our construction for all four base cases with m ∈ {3, 4}.

Case 1: n = 3 and m is odd
In this case, we choose k = m+1

2 alternatives which are denoted by x1, . . . , xk. We
construct the profile R1 with k Condorcet winner candidates as follows. For every i ∈
{1, . . . , k}, voters 1 and 2 rank alternative xi at position i, and voter 3 ranks it at position
m+2−2i. The sum of ranks of xi is then equal to 2i+m+2−2i = m+2, which means that
only m − 1 alternatives can be ranked above xi. Note for this that the sum of ranks of an
alternative x is the number of voters n plus the number of alternatives that are ranked above
x. Hence, for every i ∈ {1, . . . , k}, we can reorder the alternatives in A\{xi} such that each
alternative y ∈ A \ {xi} is preferred to xi by a single voter. Consequently, xi is a Condorcet
winner candidate in R1, and thus f(R1, xi) ≥ α for all i ∈ {1, . . . , k}. Since there are
k = m+1

2 Condorcet winner candidates and
∑k
i=1 f(R1, xi) ≤ 1, we derive that αm+1

2 ≤ 1.
This is equivalent to α ≤ 2

m+1 <
2
m , and hence, f cannot satisfy α-Condorcet-consistency

for α ≥ 2
m in this case.



Case 2: n = 3 and m is even
If n = 3 and m is even, we construct a preference profile R2 with m

2 Condorcet winner
candidates similar to the last case. More precisely, we first choose an alternative z, and
apply the construction of the last case to the alternatives A \ {z}. Then, we add z as the
last-ranked alternative of voters 1 and 2 and as first-ranked alternative of voter 3. Note that
adding z does not affect whether an alternative is a Condorcet winner candidate because it
is last-ranked by two out of three voters. Thus, there are m

2 Condorcet winner candidates
in R2 and it follows analogously to the last case that αm2 ≤ 1, which is equivalent α ≤ 2

m .
Finally, note that α = 2

m is also not possible. Otherwise, each of the m
2 Condorcet winner

candidates has a probability of 2
m . As a consequence, all other alternatives have a probability

of 0. In particular, this means that f(R2, z) = 0 for voter 3’s best alternative z. Hence, we
derive for f ’s scoring vector a = (a1, . . . , am) that a1 = 0. This is not possible because the
scoring vector of a point voting SDS is monotone, i.e, ai ≥ aj if i < j, and

∑m
i=1 ai = 1

n .
Hence, we deduce also for this case that α < 2

m holds.

Case 3: n = 4 and m is odd
Just as in the first case, we choose k = m+1

2 alternatives which are denoted by x1, . . . , xk.
Next, we construct a profile R3 with k Condorcet winner candidates as follows. For every
i ∈ {1, . . . , k}, voters 1 and 2 rank alternative xi at position i, and voters 3 and 4 rank it at
position m+1

2 + 1− i. The sum of ranks of xi is then equal to 2i+ 2
(
m+1

2 + 1− i
)

= m+ 3.
Since the sum of ranks of an alternative x is the number of voters plus the number of
alternatives ranked above x, we derive that only m− 1 alternatives can be ranked above xi.
Hence, for every i ∈ {1, . . . , k}, we can reorder the alternatives such that each alternative
y ∈ A\{xi} is ranked above xi once without changing the rank vector of xi. This entails that
each alternative xi is a Condorcet winner candidate and thus, we derive that α ≤ 2

m+1 <
2
m

analogously to Case 1.

Case 4: n = 4 and m is even
Finally, consider the case that n = 4 and m is even. In this situation, we construct the

profile R4 with m
2 Condorcet winner candidates as follows: we choose an alternative z, and

apply the construction of Case 3 to the alternatives in A \ {z}. Then, voters 1 to 3 add z as
their least preferred alternative and voter 4 adds it as his best alternative. Just as in Case 2,
every alternative that is a Condorcet winner candidate before adding z is also a Condorcet
winner candidate after adding this alternative because for every other alternative y there is
only a single voter who prefers z to y. Hence, there are m

2 Condorcet winner candidates in
R4, which implies that α ≤ m

2 . Finally, we show that α = 2
m is not possible either. If this

was the case, it follows that f(R4, xi) ≥ 2
m for all i ∈ {1, . . . , k}, and consequently that the

remaining alternatives have probability 0. In particular, f(R4, z) = 0. However, this entails
for the scoring vector a of f that a1 = 0 as voter 4 ranks z first. This is impossible because
a1 ≥ aj for all j ∈ {1, . . . ,m} and

∑m
i=1 ai = 1

n must be true for the scoring vector of a
point voting SDS. Therefore, it follows that f can only satisfy α-Condorcet-consistency for
α < 2

m .

Case 5: Generalizing the impossibility to larger n
Finally, we explain how to generalize the last four cases to an arbitrary number of voters

n ≥ 3. In this case, we also construct a profile with dm2 e Condorcet winner candidates.
In more detail, we choose the suitable base case and add repeatedly pairs of voters with
inverse preferences until there are n voters. Note that voters with inverse preferences do not
change the majority margins, and therefore they do not change whether an alternative is a
Condorcet winner candidate. Hence, every alternative that is a Condorcet winner candidate
in the base case is also a Condorcet winner candidate in the extended profile, which means
that the arguments in the base cases also apply for larger numbers of voters. Therefore, no
point voting SDS can satisfy α-Condorcet-consistency for α ≥ 2

m



Next, we prove Lemma 4, which bounds the probability that can be guaranteed to
Condorcet winners by supporting size SDSs.

Lemma 4. No supporting size SDS can assign more than 2
m probability to an alternative.

Proof. Let f be a supporting size SDS and let b = (bn, . . . , b0) be the scoring vector that
defines f . Furthermore, let R denote a profile and x denote an alternative. The probability
that the SDS f assigns to alternative x in profile R is f(R, x) =

∑
y∈A\{x} bnxy(R). The

definition of supporting size SDSs requires that the scoring vector b satisfies bn ≥ · · · ≥ b0 ≥
0 and bi + bn−i = 2

m(m−1) for all i ∈ {1, . . . bn2 c}. Therefore, it follows that bi ≤
2

m(m−1) for
all i ∈ {0, . . . , n} and we derive that f(R, x) =

∑
y∈A\{x} bnxy ≤ (m − 1) 2

m(m−1) = 2
m for

all preference profiles R and alternatives x.

Lemma 4 is the last lemma required for the proofs of Theorem 4 and Theorem 5. We
now show Theorem 5 before we continue with the lemmas required for Theorem 6.

Theorem 5. The randomized Copeland rule is the only strategyproof SDS that satisfies
anonymity, neutrality, and 2

m -Condorcet-consistency if m ≥ 3 and n ≥ 3.

Proof. The randomized Copeland rule fC is a supporting size SDS and satisfies therefore
anonymity, neutrality and strategyproofness. Furthermore, it satisfies also 2

m -Condorcet-
consistency because a Condorcet winner x wins every pairwise majority comparison in R.
Hence, nxy(R) > n

2 for all y ∈ A \ {x}, which implies that fC(R, x) =
∑
y∈A\{x} bnxy(R) =

(m−1) 2
m(m−1) = 2

m for all alternatives x and profiles R in which x is the Condorcet winner.
Next we show that the randomized Copeland rule is the only SDS that satisfies all of

these axioms. Let f be an SDS satisfying anonymity, neutrality, strategyproofness, and
2
m -Condorcet-consistency. We show that f is a supporting size SDS with the same scoring
vector as fC and thus, f is the randomized Copeland rule. Since f is anonymous, neutral,
and strategyproof, we can apply Theorem 3 to represent f as f = λfpoint+(1−λ)fsup, where
λ ∈ [0, 1], fpoint is a point voting SDS, and fsup is a supporting size SDS. Lemma 3 states
that there is a profile R with Condorcet winner x such that fpoint(R, x) < 2

m , and it follows
from Lemma 4 that fsup(R, x) ≤ 2

m . Hence, f(R, x) = λfpoint(R, x) + fsup(R, x) < 2
m if

λ > 0. Therefore, f is a supporting size SDS as it satisfies 2
m -Condorcet-consistency.

Next, we show that f has the same scoring vector as the randomized Copeland rule.
Since f is a supporting size SDS, there is a scoring vector b = (bn, . . . , b0) with bn ≥
bn−1 ≥ · · · ≥ b0 ≥ 0 and bi + bn−i = 2

m(m−1) for all i ∈ {1, . . . , n} such that f(R, x) =∑
y∈A\{x} bnxy(R). Moreover, f(R, x) = 2

m if x is the Condorcet winner in R because of
2
m -Condorcet-consistency and Lemma 4. We derive from the definition of supporting size
SDSs that the Condorcet winner x can only achieve this probability if bnxy(R)

= 2
m(m−1) for

every other alternatives y ∈ A \ {x}. Moreover, observe that the Condorcet winner needs to
win every majority comparison but is indifferent about the exact supporting sizes. Hence, it
follows that bi = 2

m(m−1) for all i > n
2 as otherwise, there is a profile in which the Condorcet

winner does not receive a probability of 2
m . We also know that bi+bn−i = 2

m(m−1) , so bi = 0

for all i < n
2 . If n is even, then bn

2
= 1

m(m−1) is required by the definition of supporting size
SDSs as n

2 = n− n
2 . Hence, the scoring vector of f is equivalent to the scoring vector of the

randomized Copeland rule fC , which entails that f is fC .

We focus next on the proofs of the lemmas that are required for Theorem 6. Hence,
our goal is to derive a lower bound for the β-ex post efficiency of strategyproof 0-randomly
dictatorial SDSs. Since Theorem 1 allows us to represent every strategyproof SDS as a
mixture of duples and unilaterals, we focus next on these two classes.



Lemma 5. No SDS that can be represented as a convex combination of duples satisfies β-ex
post efficiency for β < 1

m if m ≥ 3.

Proof. Let the SDS f denote a mixture of duples. First, we apply the construction in the
proof of Lemma 2 to turn f into an anonymous, neutral, and strategyproof SDS f∗ defined as
f∗(R, x) =

∑
π ∈ Π

∑
τ∈T

1
m!n!f(τ(π(R)), τ(x)), where Π denotes the set of all permutation

on N and T the set of all permutations on A. Next, we show that f∗ satisfies β-ex post
efficiency for the same β as f . This follows immediately from the observation that, if x
is Pareto-dominated in R, then τ(x) is Pareto-dominated in τ(π(R)). Since f is β-ex post
efficient, it follows that f(τ(π(R)), τ(x)) ≤ β for all permutations π : N → N and τ : A→ A.
Hence, it holds for all profiles R and alternatives x such that x is Pareto-dominated in R
that f∗(R, x) =

∑
π∈Π

∑
τ∈T

1
m!n!f(τ(π(R)), τ(x)) ≤

∑
π∈Π

∑
τ∈T

1
m!n!β = β, which proves

that f∗ is β-ex post efficient.
Since f is a mixture of duples, f∗ is an anonymous and neutral mixtures of duples. We

now show that f∗ can be represented as a supporting size SDS. If one pair of alternatives
has a duple component in f∗, then neutrality implies that every pair has an identical duple
component with the same weight. In particular, this means that every pair of alternatives
has a duple SDS with weight 2

m(m−1) . We can then construct the scoring vector (bn, . . . , b0)

for formalizing f∗ as a supporting size SDS by choosing a pair of alternatives x, y, the
corresponding duple fxy, and a profile Rj for every j ∈ {1, . . . , n} such that nxy(Rj) = j.
Then, bj = 2

m(m−1)fxy(Rj , x) since anonymity implies that the probability assigned to x
by fxy only depends on the number of voters who prefer x to y. In particular, observe
that f(Rj , x) is independent of the preferences on the alternatives A \ {x, y} because of
strategyproofness and the definition of duples. Finally, we check that the scoring vector
b = (bn, . . . , b0) satisfies the conditions of a supporting size SDS: bn ≥ · · · ≥ b0 ≥ 0
and bi + bn−i = 2

m(m−1) for all i ∈ {1, . . . , bn2 c}. Start with the profile R0. Clearly,
b0 = 2

m(m−1)fxy(R0, x) ≥ 0 by the definition of an SDS. We now repeatedly let one voter
push x above y. The duples are strategyproof and therefore non-perverse, so the probability
of x cannot decrease during these steps. Thus, bn ≥ · · · ≥ b1 ≥ b0. For the second
condition bi + bn−i = 2

m(m−1) for all i ∈ {0, . . . , bn2 c}, observe that fxy is a duple and thus,
fxy(R, x) + fxy(R, y) = 1. Moreover, if nxy(Rj) = j, then nyx(Rj) = n − j, and therefore,
bj + bn−j = 2

m(m−1) (fxy(Rj , x) + fxy(Rj , y)) = 2
m(m−1) . Hence, f∗ is indeed a supporting

size SDS.
Next, we show that all supporting size SDSs have β ≥ 1

m . Let R denote the profile in
which all voters report x1 > x2 > · · · > xm. Then, f∗(R, x1) = (m− 1)bn and f∗(R, xm) =
(m−1)b0. Furthermore, the scoring vector b satisfies that bn+ b0 = 2

m(m−1) . Therefore, the
probabilities of x1 and xm sum up to 2

m . This means that f∗ distributes a probability of m−2
m

among the alternatives x2, . . . , xm−1, so at least one Pareto-dominated alternative receives
a probability of 1

m or more. Hence, f∗ cannot satisfy β-ex post efficiency for β < 1
m , and it

follows from the construction of f∗ that f also violates β-ex post efficiency for β < 1
m .

Next, we aim to show that no 0-randomly dictatorial SDS that can be represented as
a mixture of unilaterals satisfies β-ex post efficiency for β < 1

m . Similar to the proof of
Lemma 5, we would like to use such an SDS f to construct a 0-randomly dictatorial SDS f∗
that satisfies β-ex post efficiency for the same β as f , and that is additionally neutral and
anonymous. Unfortunately, we cannot use Lemma 2 here as this lemma does not preserve
that f∗ is 0-randomly dictatorial. This follows by considering the unilaterals f ixy, which are
defined as follows: if voter i’s most preferred alternative a is x or y, then f ixy(R, a) = 1

2 and
f ixy(R, b) = 1

2 , where b denotes voter i’s second best alternative; otherwise, f ixy(R, a) = 1.
It follows from Lemma 1 that f ixy is 0-randomly dictatorial as only voter i can affect the
outcome, and the probability of y does not increase if it swapped with x when x is voter i’s



best alternative and y is his second best one. As a consequence, the following SDS f+ for(
m
2

)
voters and m ≥ 3 alternatives is 0-randomly dictatorial. First, every voter i is assigned

a different pair of alternatives x, y ∈ A. Next, f+ chooses a voter uniformly at random and
returns f ixy. If we apply the construction of Lemma 2 to f+, we derive the point voting
SDS that is defined by the scoring vector ( 1

n−
m−1

2n(m2 )
, m−1

2n(m2 )
, 0, . . . , 0). It follows immediately

from Lemma 1 that this SDS is not 0-randomly dictatorial as pushing an alternative from
second place to first place increases its probability always by 1− m−1

n(m2 )
≥ 1

3n .

Therefore, we propose another construction in the next lemma that, given an arbitrary
strategyproof 0-randomly dictatorial SDS that can be represented as a mixture of unilaterals,
constructs a strategyproof 0-randomly dictatorial SDS that is β-ex post efficient for the same
β as the original SDS and that has a lot of symmetries. Unfortunately, this construction does
not result in a neutral or anonymous SDS. Nevertheless, the resulting SDS is significantly
easier to work with and its properties are crucial for the proof of Lemma 6,

Note that we require some additional terminology for the next lemma. In the sequel,
we say that voter i or his unilateral SDS fi is 0-randomly dictatorial for alternatives x, y if
f(R) = f(Ri:yx) for all preference profiles R in which x is voter i’s best alternative and y
is his second best alternative.

Lemma 7. Let f be a strategyproof 0-randomly dictatorial SDS that satisfies β-ex post
efficiency for some β ∈ [0, 1] and that can be represented as a mixture of unilaterals. Then,
there is a strategyproof 0-randomly dictatorial SDS f∗ for

(
m
2

)
voters that can be represented

as a mixture of unilaterals and that is β-ex post efficient for the same β as f . Moreover,
f∗ satisfies the following conditions:

(i) For every voter i ∈ N , there is a set {xi, yi} such that i is 0-randomly dictatorial for
xi, yi and {xi, yi} 6= {xj , yj} if i 6= j.

(ii) There is a constant δ such that f∗(Ri:cb, c) − f∗(R, c) = δ for all voters i ∈ N ,
alternatives {a, b} = {xi, yi}, c ∈ A\{xi, yi}, and preference profiles R such that voter
i reports a as his best alternative, b as his second best one, and c as his third best one.

(iii) If every voter i ∈ N reports xi and yi as their two best alternatives, then there exists
a scoring vector a = (a1, . . . , am) such that a1 = a2 ≥ 0, a3 ≥ · · · ≥ am ≥ 0, and
f∗(R, x) =

∑
i∈N a|{y∈A:y%ix}|.

Proof. Let β ∈ [0, 1] and let f denote a strategyproof 0-randomly dictatorial SDS that is
β-ex post efficient and that can be represented as a mixture of unilaterals. In the sequel, we
use f to construct the SDS f∗ that satisfies all requirements of the lemma. Note that this
proof is quite involved and therefore, we use some auxiliary observations that are proven in
the end.

We start by representing f as f(R) =
∑
i∈N λifi(Ri), where fi denotes the unilateral

SDS of voter i and λi ≥ 0 is its weight. Note that we interpret unilaterals in this proof as
SDSs that take the preference of a single voter as input. This is possible as unilaterals only
rely on the preferences of a single voter. Observation 1 states that for every voter i ∈ N
there are alternatives x, y such that voter i is 0-randomly dictatorial for x and y. Note
that there can be multiple such pairs of alternatives. Nevertheless, we associate from now
on every voter i with exactly one such pair xi, yi because we can choose an arbitrary pair if
there are multiple.

Next, we define the SDSs fτi as fτi (R, x) = fi(τ(R), τ(x)) for all voters i ∈ N and
permutations τ on the alternatives. Note that fτi is again a unilateral SDS and thus, it
only takes a single preference relation as input. Moreover, observation 2 states that these
SDSs are all strategyproof and 0-randomly dictatorial for τ−1(xi), τ−1(yi), where τ−1 is



the inverse permutation of τ and xi and yi are the alternatives for which fi is 0-randomly
dictatorial. Note again that fτi can be 0-randomly dictatorial for many pairs of alternatives,
but we only need the pair τ−1(xi), τ−1(yi). Hence, we assume for the sake of simplicity
that fτi is only for this pair 0-randomly dictatorial. This assumption does not restrict the
generality of the proof as we only use it to partition the functions fτi in the next step and
we could derive this partition also by another relation that associates fτi always with the
correct pair of alternatives.

We group the SDSs fτi with respect to the alternatives for which they are 0-randomly dic-
tatorial. In more detail, let Fxy = {fτi : i ∈ N, τ ∈ T, fτi is 0-randomly dictatorial for x, y}
denote the set of SDSs fτi that are 0-randomly dictatorial for x and y. Note that
these sets form a partition of all SDSs fτi as every such SDS is by assumption only
for a single pair of alternatives 0-randomly dictatorial. In more detail, fτi is in Fxy if
and only if {τ(x), τ(y)} = {xi, yi} (where xi, yi are the alternatives for which fi is 0-
randomly dictatorial). There are for every fi exactly 2(m − 2)! permutations τ such that
{τ(x), τ(y)} = {xi, yi} because τ can behave arbitrarily on A \ {x, y} and there are two
possibilities to achieve {τ(x), τ(y)} = {xi, yi}. Hence, we derive that each set Fxy contains
2n(m− 2)! SDSs.

Let N ′ be a set of
(
m
2

)
voters and let j ∈ N ′ be a voter of the new SDS f∗. We use the

sets Fxy to define the unilateral SDS fxy for a single voter j as fxy =
∑
fτi ∈Fxy

λi
2(m−2)!f

τ
i .

First, note that fxy is well-defined because the original SDS f is defined for n voters and for
each unilateral SDS fi of these voters, there are exactly 2(m− 2)! functions in Fxy. Hence,∑
fτi ∈Fxy

λi
2(m−2)! = 2(m − 2)!

∑
i∈N

λi
2(m−2)! = 1. Moreover, fxy is strategyproof because

it is a mixture of strategyproof SDSs, and it is 0-randomly dictatorial for x, y because all
SDSs in Fxy are 0-randomly dictatorial for these alternatives.

Finally, we use these SDSs fxy to define the SDS f∗ for the
(
m
2

)
voters in N ′. Therefore,

associate every voter j ∈ N ′ with a different pair of alternatives xj , yj and define f∗j = fxjyj .

Then, f∗(R) = 1

(m2 )

∑(m2 )
j=1 f

∗
j (Rj). Clearly, f∗ is strategyproof because it is a mixture of

strategyproof SDSs. Moreover, it is 0-randomly dictatorial because for every voter j, there
is a pair of alternatives for which f∗j is 0-randomly dictatorial. Furthermore, Observation 3
shows that f∗ is β-ex post efficient for the same β as f .

Next, we show that the SDS f∗ satisfies the properties (i), (ii), and (iii). First,
note that it satisfies (i) by construction as every voter is 0-randomly dictatorial for a
different pair of alternatives. For (ii) and (iii), we show first the auxiliary claim that
the unilateral of every voter is equal up to a permutation that maps the 0-randomly
dictatorial pairs of the unilaterals onto each other. Consider for this claim two sets
Fxy and Fx′y′ , and choose a permutation τ ′ such that {τ ′(x), τ ′(y)} = {x′, y′}. Then,
we can map the set Fx′y′ to the set Fxy with the permutation τ ′. In more detail,
Fτ ′(x)τ ′(y) = {fτ ′◦τi : i ∈ N, τ ′ ◦ τ ∈ T, fτ

′◦τ
i is 0-randomly dictatorial for τ ′(x), τ ′(y)} =

{fτi : i ∈ N, τ ∈ T, fτi is 0-randomly dictatorial for x, y} = Fxy. Therefore, the sets Fxy and
Fx′y′ can be mapped to each other by every permutation that maps the pair x, y to the pair
x′, y′. The functions fxy and fx′y′ are defined by Fxy and Fx′y′ and thus, we derive that
f∗i (Ri, a) = fxiyi(R, a) = fτ ′(xj)τ ′(yj)(τ

′(Ri), τ
′(a)) = f∗j (τ ′(Ri), τ

′(a)) for every permuta-
tion τ ′ that maps xi and yi to xj and yj . In particular, note f∗i (Ri, a) = f∗i (τ ′(Ri), τ

′(a)) if
τ ′ maps xi and yi to xi and yi.

We now use the auxiliary claim to show (ii). Hence, consider an arbitrary voter i and let
xi, yi denote the alternatives for which he is 0-randomly dictatorial. Furthermore, consider
a profile R in which voter i prefers xi the most, yi the second most, and some arbitrary
alternative z ∈ A\{xi, yi} the third most. We define δ = f∗(Ri:zyi , z)−f∗(R, z). First, note
that Ri:zyi and R only differ in the preferences of voter i and thus, f∗(Ri:zyi , z)−f∗(R, z) =
f∗i (Ri:zyii , z)−f∗i (Ri, z). Next, observe that the order of the alternatives z′ ∈ A\{xi, yi, z} in



Ri does not matter as f∗i is strategyproof and therefore localized. Furthermore, we can use
the auxiliary claim to show that δ = f∗i (Ri:z

′yi
i , z′) − f∗i (Ri, z

′) for every z′ ∈ A \ {xi, yi}.
Therefore, consider another alternative z′ ∈ A \ {xi, yi, z} and the permutation τ such
that τ(z) = z′, τ(z′) = z, and τ(x) = x for all other alternatives. Our auxiliary claim
states that f∗i (R′, a) = fxiyi(R

′, a) = f∗τ(xi)τ(yi)
(τ(R′), τ(a)) = f∗xiyi(τ(R′), τ(a)) for all

alternatives a ∈ A and preference profiles R′. Hence, if we exchange z with z′ in Ri
and Ri:zyii , the probabilities of z and z′ are exchanged, too. Consequently, it holds that
δ = f∗i (Ri:z

′yi
i , z′) − f∗i (Ri, z

′) for every z′ ∈ A \ {xi, yi}. Finally, consider a voter j 6= i,
let xj , yj denote the alternatives for which he is 0-randomly dictatorial, and let R denote
a profile in which he reports xj as his best alternative, yj as his second best one, and an
alternative z ∈ A \ {xj , yj} as his third best one. Furthermore, let τ denote a permutation
such that τ(xj) = xi, τ(xi) = xj , τ(xj) = xi, τ(yi) = yj , and τ(z) = z for all remaining
alternatives, i.e., τ exchanges xi with xj , and yi with yj . The following equation shows that
f∗j (R

j:zyj
j , z)− f∗j (Rj , z) = δ for all voters j ∈ N \ {i} and alternatives z ∈ A \ {xj , yj}. The

last equality is true because xi is the best alternative and yi the second best one in τ(Rj).
Hence, property (ii) is proven.

f∗j (R
j:zyj
j , z)− f∗j (Rj , z) = f∗xjyj (R

j:zyj
j , z)− f∗xjyj (Rj , z)

= f∗xiyi(τ(R
j:zyj
j ), z)− f∗xiyi(τ(Rj), z)

= f∗i (τ(R
j:zyj
j ), z)− f∗i (τ(Rj), z)

= δ

Finally, we discuss why property (iii) is true. We show first that if a fixed voter i top-
ranks xi, yi, then f∗i can be described by a scoring vector. This is equivalent to showing that
every alternative that is ranked at position k by voter i receives probability ak. Note that we
always assume in the sequel that xi and yi are voter i’s two best alternatives. First, consider
an alternative z ∈ A \ {xi, yi} and an arbitrary permutation τ that maps each alternative
in {xi, yi} to an alternative in {xi, yi}. It follows from our auxiliary claim that f∗i (Ri, z) =
fxiyi(Ri, z) = fτ(xi)τyi(τ(Ri), τ(z)) = fxiyi(τ(Ri), τ(z)). This means that permuting the
alternatives A \ {xi, yi} in Ri, also permutes the probabilities of these alternative. Hence,
if an alternative z ∈ A \ {xi, yi} is ranked k-th, it always receives a fixed probability ak if
voter i ranks xi and yi top. Moreover, it follows from strategyproofness that ak ≥ ak+1

for all k ∈ {3, . . . ,m − 1} and from the definition of an SDS that am ≥ 0. Next, consider
the alternatives xi and yi. Since we assume that these alternatives are top-ranked by voter
i, it follows from strategyproofness that reordering the alternatives A \ {xi, yi} does not
affect their probabilities. Furthermore, we derive that each of these alternatives receives
probability ak when ranked k-th for k ∈ {1, 2} by considering the permutation τ that swaps
xi and yi. Then, f∗i (Ri, xi) = f∗xiyi(Ri, xi) = f∗xiyi(τ(Ri), τ(xi)). Hence, the probabilities
assigned to these alternatives can be described by values a1 and a2. Moreover, note that f∗i
is 0-randomly dictatorial for xi, yi, which means that the probability of yi does not change
if it is reinforced against xi. This entails that a1 = a2. Hence, the scoring vector of f∗i
satisfies all requirements of the lemma. Finally, our auxiliary claim implies that all f∗j are
described by the same scoring vector if xj and yj are the best alternatives of voter j. The
reason for this is that we can just consider a permutation τ that swaps xi and xj , and yi
and yj . Then, f∗i (Ri, x) = f∗j (τ(Ri), τ(x)) for all voters i, j ∈ N and alternatives x ∈ A.
Since τ(x) is ranked k-th in τ(Ri) if x is ranked k-th in Ri, this shows that the scoring
vector a describes all f∗i and therefore also f∗.

Observation 1: For every voter i, there exists a pair of alternatives xi, yi such



that f(R) = f(Ri:yixi) for all preference profiles R in which voter i reports x as
best alternative and y as second best one.

Since fi is a strategyproof 0-randomly dictatorial SDS, it follows from Lemma 1 that
for every voter i there exists a pair of alternatives xi, yi and preference profiles R such that
fi(R) = fi(R

i:yixi) if xi is top-ranked and yi is second-ranked by voter i in R. We show in
the sequel that f(R) = f(Ri:yixi) for all preference profiles R in which voter i reports xi and
yi as his best and second best alternative. Since f is a mixture of strategyproof unilateral
SDSs, it follows that f(R) = f(Ri:yixi) if fi(Ri) = f(Ri:yixii ) because the remaining voters
j ∈ N \ {i} do not change their preferences. Moreover, it follows from strategyproofness,
which entails localizedness, that fi(R̄i, z) = fi(Ri, z) = fi(R

i:yixi
i , z) = fi(R̄

i:yixi
i , z) for

z ∈ {xi, yi} and all preferences profiles R̄ that only differ from R in the order of the
alternatives A \ {xi, yi} in voters i’s preference. Because R̄ and R̄i:yixi differ by definition
only in voter i’s preferences on xi and yi, another application of localizedness implies that
fi(R̄) = fi(R̄

i:yixi). Hence, it holds indeed that f(R) = f(Ri:yixi) for all preference profiles
in which voter i reports xi and yi as his two best alternatives.

Observation 2: The SDS fτi defined by fτi (R, x) = fi(τ(R), τ(x)) is strategyproof
and 0-randomly dictatorial for τ−1(xi), τ−1(yi).

First, note that fτi is strategyproof as every manipulation of this SDS could be mapped
to a manipulation of fi. In more detail, if voter i can manipulate fτi by switching from R
to R′, he can also manipulate fi by switching from τ(R) to τ(R′). This is true because a
manipulation requires an alternative x such that

∑
y�ix f

τ
i (R′, y) >

∑
y�ix f

τ
i (R, y), which

entails by definition of fτi that
∑
y�ix fi(τ(R′), τ(y)) >

∑
y�ix fi(τ(R), τ(y)). Finally, since

y �i x in R if and only if τ(y) �i τ(x) in τ(R), we derive that switching from τ(R) to τ(R′)
is a manipulation for voter i in fi.

Furthermore, fτi is a 0-randomly dictatorial SDS because fi is one: Observation 1 shows
that for every voter i, there exists a pair of alternatives xi, yi such that f(R) = f(Ri:yixi)
for all preference profiles R in which voter i prefers xi the most and yi the second most.
It follows from this observation that fτi (τ−1(R), τ−1(x)) = fi(R, x) = fi(R

i:yixi , x) =
fτi (τ−1(Ri:yixi), τ−1(x)) for all x ∈ A, where τ−1 is the inverse permutation of τ , i.e.,
τ−1(τ(x)) = x for all x ∈ A. Therefore, fτi (τ−1(R), τ−1(xi)) = fτi (τ−1(Ri:yixi), τ−1(xi))
and fτi (τ−1(R), τ−1(yi)) = fτi (τ−1(Ri:yixi), τ−1(yi)). Moreover, the preference profiles
τ−1(R) and τ−1(Ri:yixi) only differ in the order of the two best alternatives τ−1(x) and
τ−1(y) of voter 1 and the proof of Observation 1 entails thus that fτi is 0-randomly dicta-
torial for these two alternatives.

Observation 3: The SDS f∗ is β-ex post efficient for the same β as f .
For proving this observation, we construct another SDS f+ and show that this SDS is β-

ex post efficient for the same β as f . Then, we show that f∗ is β-ex post efficient for the same
β as f+, which proves this auxiliary claim. Before defining f+, we first define fτ : just as the
SDSs fτi , it is defined as fτ (R, x) = f(τ(R), τ(x)). In particular, fτ is β-ex post efficient for
the same β as f . This follows by considering an arbitrary profile R in which an alternative
x is Pareto-dominated. It is easy to see that τ(x) is then Pareto-dominated in τ(R), and we
derive therefore that fτ (R, x) = f(τ(R), τ(x)) ≤ β because f is β-ex post efficient. Next, we
define the SDS f+ for nm! voters as follows: we partition the voters {1, . . . , nm!} intom! sets
N1, . . . , Nm! with |Ni| = n and associate with every set a different permutation τi : A→ A.
Then, f+(R) = 1

m!

∑m!
i=1 f

τi(RNi), where RNi denotes the restriction of R to the voters in
Ni. Observe that f+ is β-ex post efficient for the same β as f because an alternative x
that is Pareto-dominated in R is also Pareto-dominated in all RNi and all fτi are β-ex post
efficient. Hence, it follows that f+(R, x) = 1

m!

∑m!
i=1 f

τi(RNi , x) ≤ 1
m!

∑m!
i+1 β = β.

Next, we show that f+ and f∗ satisfy β-ex post efficiency for the same β. Therefore,
we change the representation of f+. The central observation here is that fτ =

∑
i∈N λif

τ
i .



Hence, we can also associate every voter j ∈ {1, . . . , nm!} with an index i ∈ N and a
permutation τ such that each index-permutation pair is assigned exactly once and define
fj = fτi and λj = λi (i.e., the weight of fτi is the same as the weight of fi in the original
SDS f). Then, we can write f+ as f+(R) = 1

m!

∑nm!
j=1 λjfj(Rj). Next, note that every fτi

appears once in f+(R, x) and once in the union of all Fxy. Therefore, we can write f+(R) =
2

m(m−1)

∑
{x,y}⊂(A2)

∑
fτi ∈Fxy

λi
2(m−2)!f

τ
i (Ri). Next, we restrict our attention to profiles R

such that for all {x, y} ⊂
(
A
2

)
, all voters j with fj ∈ Fxy submit the same preference. In this

case, we may replace the preferences of all voters j with fj ∈ Fxy with a single preference.
Then, there are exactly

(
m
2

)
voters left, each of which is associated with a different pair of

alternatives. In particular, we can use the definition of fxy(Ri) =
∑
fτi ∈Fxy

λi
2(m−2)!f

τ
i (Ri)

now as we apply all unilateral SDSs in Fxy to the same preference relation Ri. Hence, we
derive that f+ returns the same outcomes as f∗ if all voters j with fj ∈ Fxy report for each
{x, y} ⊂

(
A
2

)
the same preferences as the voter corresponding to fxy in f∗. Since f+ is β-ex

post efficient, it follows therefore also that f∗ is β-ex post efficient.

Finally, we use Lemma 7 to prove that no 0-randomly dictatorial SDS that can be
represented as a mixture of unilaterals is β-ex post efficient for β < 1

m .

Lemma 6. No 0-randomly dictatorial SDS that can be represented as a convex combination
of unilaterals satisfies β-ex post efficiency for β < 1

m if m ≥ 3.

Proof. Let the SDS f denote a mixture of unilaterals. First, we apply Lemma 7 to construct
the SDS f∗ as specified by this lemma. In the sequel, we show that f∗ is β-ex post efficient
for β ≥ 1

m and therefore f is also β-ex post efficient for β ≥ 1
m . In our proof, we construct

a profile R∗ in which every alternative must receive a probability of at most β which leads
to a contradiction if β < 1

m . Let N with |N | =
(
m
2

)
be the set of voters of f∗. Furthermore,

recall that every voter j ∈ N is associated with a different pair of alternatives {xj , yj} for
which he is 0-randomly dictatorial because of Lemma 7 (i).

First, we explain the construction of an auxiliary profile R. For this profile, we choose
an arbitrary pair of alternatives a, b and assume without loss of generality that voter 1 is
0-randomly dictatorial for a, b, i.e, {a, b} = {x1, y1}. Voter 1 submits the preference relation
R1 = b �1 a �1 . . . in R. Furthermore, there are m−2 other voters j ∈ N with a ∈ {xj , yj}
and b /∈ {xj , yj}. We assume without loss of generality that the voters in {2, . . . ,m − 1}
are these m − 2 voters and that a = xj . The preferences of voter j ∈ {2, . . . ,m − 2} in
R is Rj = yj �j a �j b �j . . . . Also, there are m − 2 voters j with a /∈ {xj , yj} and
b ∈ {xj , yj}. We assume that these voters are the ones in {m, . . . , 2m− 3} and that b = yj .
The preferences of these voters is Rj : b �j xj �j a �j . . . . Finally, the remaining voters
j ∈ {2m − 2, . . . ,

(
m
2

)
} have a, b /∈ {xj , yj}. These voters report Rj = xj �j yj �j b �j a

in R. Note that if m = 3, there are no voters of the fourth type. Furthermore, every voter
j ∈ N ranks the alternatives xj , yj for which he is 0-randomly dictatorial at the top. The
full profile for m = 4 is shown in Figure 3.

We show next that f∗(R, a) ≤ β by constructing a new preference profile R′ such that
f∗(R, a) = f∗(R′, a) ≤ β. For the construction of R′, let all voters in the second group
j ∈ {2, . . . ,m−1} swap a and b, and all voters in the third group j ∈ {m, . . . , 2m−3} swap
a and xj . The resulting preference profile is shown in Figure 4 for the case that m = 4. It is
easy to see that b Pareto-dominates a in R′ and, as f∗ is β-ex post efficient, f∗(R′, a) ≤ β.
Alternative a was moved from third to second and from second to third place by m − 2
voters. It follows therefore from Lemma 7 (ii) and localizedness that the probability that
alternative a gains when m− 2 voters swap it from third to second place is the same as the
probability that a looses when m − 2 voters swap it from second to third place. Thus, we
derive that f∗(R, a) = f∗(R′, a) ≤ β.



1 1 1 1 1 1

b c d b b c
a a a c d d
c b b a a b
d d c d c a

Figure 3: The preference profile R that in the proof of Lemma 6 for m = 4. There are four
groups of voters. The first group contains only the first voter who is 0-randomly dictatorial
for a and b. The next two groups have both m− 2 voters and are 0-randomly dictatorial for
one of a and b. The last group contains the remaining

(
m−2

2

)
voters that are not 0-randomly

dictatorial a or b. All voters have the pair for which they are 0-randomly dictatorial ranked
at the top.

1 1 1 1 1 1

b c d b b c
a b b a a d
c a a c d b
d d c d c a

Figure 4: The preference profile R′ for m = 4 alternatives that results from R by swapping
the second and third alternative of voters j ∈ {2, . . . , 2m − 3}. Alternative a is Pareto-
dominated by alternative b.

Finally, note that in R, all voters j ∈ N report the pair xj , yj for which they are
0-randomly dictatorial as their two best alternatives. Hence, Lemma 7 (iii) entails the
existence of a scoring vector (a1, . . . , am) such that a1 = a2 ≥ 0, a3 ≥ · · · ≥ am ≥ 0 and
f∗(R, x) =

∑
j∈N a|{y∈A:y%jx}| for all x ∈ A. In particular, observe that the probability of

an alternative only depends on its rank vector r∗(x,R). Recall that the rank vector r∗(x,R)
of an alternative x in a preference profile R is the vector that contains the rank of x with
respect to every voter in increasing order. The rank vector of alternative a in R is

r∗(a,R) = (

m−1︷ ︸︸ ︷
2, . . . , 2,

m−2︷ ︸︸ ︷
3, . . . , 3,

(m−2
2 )︷ ︸︸ ︷

4, . . . , 4).

Furthermore, observe that f∗(R̄, x) ≤ f∗(R, a) in every profile R̄ in which (i) each voter
j ∈ N reports the alternatives xj , yj as his two best alternatives and (ii) r∗(x, R̄)k ≥
r∗(a,R)k for all k ∈ {m, . . . ,

(
m
2

)
}. Condition (i) implies that f∗ can be computed based

on the scoring vector (a1, . . . , am). Furthermore, it implies that every alternative x ∈ A is
among the two best alternatives of exactly m− 1 voters, and since a1 = a2, it follows that
we can ignore these entries when comparing the probability of a in R with the probability
of x in R̄. Finally, the claim follows as a3 ≥ · · · ≥ am and r∗(x, R̄)k ≥ r∗(a,R)k for all
k ∈ {m, . . . ,

(
m
2

)
} entails thus that f∗(R, a) ≥ f∗(R̄, x). We use this fact to construct a new

profile R∗ where f∗(R∗, x) ≤ f∗(R, a) ≤ β for every x ∈ A. Let every voter j ∈ N report
the alternatives xj , yj for which he is 0-randomly dictatorial as his two best alternatives.
Furthermore, distribute all other alternatives such that no alternative is ranked third by
more than m − 2 voters. This is always possible as there are m ≥ 3 alternatives and
m(m−1)

2 voters. It follows from the construction that r∗(x,R∗)k ≥ r∗(a,R)k for every
k ∈ {m, . . . ,

(
m
2

)
} and every x ∈ A. Hence, we derive that f∗(R∗, x) ≤ f∗(R, a) ≤ β for

every x ∈ A. If β < 1
m , this entails that

∑
x∈A f

∗(R∗, x) < 1, a contradiction. Thus, f∗
cannot satisfy β-ex post efficiency for β < 1

m , and thus, f violates this axiom, too. This



show that there exists no 0-randomly dictatorial SDS that can be represented as a mixture
of unilaterals and that satisfies β-ex post efficiency for β < 1

m when m ≥ 3.

Finally, we use Lemma 5 and Lemma 6 to prove the impossibility of 0-randomly dicta-
torial SDSs that satisfy β-ex post efficiency for β < 1

m .

Theorem 6. There is no strategyproof SDS that is both 0-randomly dictatorial and β-ex
post efficient for β < 1

m if m ≥ 3.

Proof. Let f denote a strategyproof SDS for n voters and m ≥ 3 alternatives that is 0-
randomly dictatorial. Our argument focuses mainly on the profiles Rx,y, in which all voters
report x as their best choice and y as their second best choice. The reason for this is that
if f(R, y) > β for some profile R in which y is Pareto-dominated by x, then f(Rx,y, y) >
β. This is a direct consequence of strategyproofness as we can transform R into Rx,y by
reinforcing x and y. Hence, non-perversity implies that f(Rx,y, y) ≥ f(R, y) > β. Moreover,
localizedness entails that the order of the alternatives z ∈ A\{x, y} in Rx,y is not important
as it does not affect the probabilities of x and y.

Next, we use Theorem 1 to represent f as mixture of duples and unilaterals, i.e, f =
λfuni + (1 − λ)fduple , where λ ∈ [0, 1], funi is a mixture of unilaterals, and fduple is a
mixture of duples. While Lemma 5 and Lemma 6 imply that funi and fduple are not β-ex
post efficient for β < 1

m , this does not imply that f violates β-efficiency for β < 1
m , too.

The reason for this is that funi and fduple may violate β-ex post efficiency for different
profiles or alternatives. We solve this problem by constructing a strategyproof SDS f∗ =
λf∗uni + (1 − λ)f∗duple that is 0-randomly dictatorial and β-ex post efficient for the same β
as f , and for which f∗uni and f∗duple denote mixtures of unilaterals and duples such that
f∗uni(R

x,y, y) = f∗uni(R
τ(x),τ(y), τ(y)) and f∗duple(Rx,y, y) = f∗duple(Rτ(x),τ(y), τ(y)) for all

permutations τ : A→ A.
For this construction, we define fτ as fτ (R, x) = f(τ(R), τ(x)) for every permutation

τ : A→ A. We construct the SDS f∗ for m!n voters as follows: we partition the electorate
in m! sets Nk with |Nk| = n and associate each of these m! sets with a different permutation
τk : A → A. Then, we choose one of these sets Nk uniformly at random and consider
from now on only the preference profile RNk defined by the voters in Nk. Finally, return
fτk(RNk), where τk denotes the permutation associated with Nk. More formally, f∗(R) =
1
m!

∑m!
k=1 f

τk(RNk).
First, note that f∗ is 0-randomly dictatorial because of Lemma 1. Since f is a 0-randomly

dictatorial, there is for every voter i a profile R and alternatives x, y such that voter i prefers
x the most in R and y the second most, and f(R, y) = f(Ri:yx, y). Consequently, there are
such profiles and alternatives for every voter in each SDS fτ . Finally, we derive that such
profiles and alternatives exist also for f∗. For a voter i ∈ Nk, the corresponding alternatives
x, y are the same as for fτk , the preferences of the voters in Nk are the same as for fτk , and
the preferences of the remaining voters do not matter. If f∗ does not choose Nk in the first
step, the preferences of voter i do not matter, and if f∗ chooses Nk, it only computes fτk .
Hence, if voter i now swaps x and y, the outcome of f∗ does not change as the outcome of
fτk does not change. Consequently, Lemma 1 implies that f∗ is 0-randomly dictatorial.

Next, observe that f∗(R) = 1
m!

∑m!
k=1 f

τk(RNk) is strategyproof as it is a mixture of
strategyproof SDSs. In particular, we can interpret each term fτk(RNk) as SDS defined
for m!n voters that ignores the preferences of the voters in N \Nk. It follows immediately
from its definition that fτk is strategyproof for the voters in Nk, and thus we derive that
f∗ is strategyproof. Hence, we can use Theorem 1 to represent f∗ as f∗ = λf∗uni + (1 −
λ)f∗duple , where f

∗
uni is a mixture of unilaterals and f∗duple is a mixture of duples. In more

detail, the following equation shows that f∗uni(R) = 1
m!

∑m!
k=1 f

τk
uni(RNk) and f∗duple(R) =

1
m!

∑m!
k=1 f

τk
duple(RNk), where fτuni and fτduple are defined analogously to fτ .



f∗(R) =
1

m!

m!∑
k=1

fτk(RNk)

=
1

m!

m!∑
k=1

λfτkuni(RNk) + (1− λ)fτkduple(RNk)

= λ
1

m!

m!∑
k=1

fτkuni(RNk) + (1− λ)
1

m!

m!∑
k=1

fτkduple(RNk)

= λf∗uni(RNk) + (1− λ)f∗duple(RNk)

Note that the definition from f∗uni and f∗duple entails that f∗uni(R
x,y, y) =

f∗uni(R
τ(x),τ(y), τ(y)) and f∗duple(Rx,y, y) = f∗duple(Rτ(x),τ(y), τ(y)) for every permutation

τ : A → A. For f∗uni , this follows from the following equations and a symmetric argu-
ment holds for f∗duple .

f∗uni(R
x,y, y) =

1

m!

m!∑
k=1

fτkuni(R
x,y
Nk
, y) =

1

m!

m!∑
k=1

funi(τk(Rx,yNk ), τk(y))

=
1

m!

m!∑
k=1

funi(τk(ρ(Rx,yNk )), τk(ρ(y))) = f∗uni(R
ρ(x),ρ(y), ρ(y)))

The first two equations rely only on our definitions. The third equation follows because
{τ ◦ ρ : τ ∈ T} = T = {τk : k ∈ {1, . . . ,m!}} for every permutation ρ : A → A, where T is
the set of all permutations on A.

Finally, we show that f∗ violates β-ex post efficiency for every β < 1
m , which entails

that f also violates this axiom. We use Lemma 5 and Lemma 6 for this as these lemmas
imply that f∗duple and f∗uni violate β-ex post efficiency. Note for this that f∗uni is 0-randomly
dictatorial as otherwise, f∗ cannot be 0-randomly dictatorial. Hence, there are profiles
R1 and R2, and alternatives x1, y1, x2, and y2 such that xi Pareto-dominates yi in Ri

for i ∈ {1, 2}, f∗uni(R1, y1) ≥ 1
m , and f∗duple(R2, y2) ≥ 1

m . Hence, we derive from strate-
gyproofness that f∗uni(Rx1,y1 , y1) ≥ 1

m and f∗duple(Rx2,y2 , y2) ≥ 1
m . Finally, it follows from

the symmetry of f∗uni and f∗duple with respect to the profile Rx,y that f∗uni(Rx,y, y) ≥ 1
m

and f∗duple(Rx,y, y) ≥ 1
m for all alternatives x, y ∈ A. Consequently, we conclude that

f∗(Rx,y, y) = λf∗uni(R
x,y, y) + (1− λ)f∗duple(Rx,y, y) ≥ 1

m for all x, y ∈ A. This means that
f∗ and therefore also f violate β-ex post efficiency for every β < 1

m .
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