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Abstract

Gerrymandering is the process of creating electoral districts for partisan advantage,
allowing a party to win more seats than what is reasonable for their vote. While
research on gerrymandering has recently grown, many issues are still not fully un-
derstood such as what influences the degree to which a party can gerrymander and
what techniques can be used to counter it. One commonly suggested (and, in some
states, mandated) requirement is that districts be ”compact”. However, there are
many competing compactness definitions and the impact of compactness on the ger-
rymandering power of the parties is not well understood.
We explore the impact of compactness by conducting experiments using real data
from US political elections and the Polsby-Popper score, a widely accepted compact-
ness definition. Our experiments show that imposing compactness constraints does
limit the power to gerrymander, but only in ruling out extreme gerrymandering pos-
sibilities. Furthermore, regardless of how strict the constraint, the more-rural party
maintains greater gerrymandering power than the more-urban party. Along the way,
we develop a modular, scalable, and efficient algorithm to design gerrymandered yet
compact maps. We confirm its effectiveness on several US states by pitting it against
maps ”hand-drawn” by political experts.

1 Introduction

In many democracies, politicians are elected to represent the people of particular geographic
areas, called districts1. There is no global, country-wide, vote, but instead voters within
a district pick a winner from the alternatives vying to represent their district. The overall
winner is the alternative which won the majority (or sometimes plurality) of districts. This
method of decision-making by using bottom-up structures is not unique to countries, of
course, but can be seen in organizations (e.g., universities reaching decisions by approving
them at the departmental level, and if enough departments support, at the Faculty level,
etc.), and other structures where sub-unit level divisions make sense.

How voters are partitioned into these districts directly affects the makeup of the legisla-
tive body. In addition to connectivity and population balance constraints, there are many
competing goals when designing a districting plan [38]. One could prioritize not breaking
up communities of interest, such as those with a shared culture and history2. Another rea-
sonable goal would be to obtain geographically compact regions (a goal enshrined in some
US states’ laws and regulations3). A less defensible, but fairly common goal, is gerryman-
dering : designing districts for partisan gain, i.e., creating districts which help a particular
party gain a number of seats beyond its popular support.

In the US, following every 10-year census, state legislatures decide their new federal

1Many countries use more specific terminology for these, but we shall use the term ‘district’ to refer to
them in general.

2At least regarding ethnic minorities, this is required by the US’ Voting Rights Act of 1965.
3For example, California’s constitution states, in article XXI, “districts shall be drawn to encourage

geographical compactness”.



congressional borders, and partisan concerns are often part of the consideration [37]. For
example, in the 2020 federal election in North Carolina, a state accused of gerrymandering
(partially overturned by courts [9]), the Democratic party received 49.96% of the vote and
won five districts; the Republican party received 49.41% of the vote and won eight districts.
As noted above, due to the many competing goals, even with clearly stated goals it is not
clear what is fair or optimal when it comes to non-partisan districting (see Wasserman [38]
for further discussion and a comparison of objectives).

Parallel to the political partisan redistricting process there is a more complex, ongoing
population-wide process. In the US [3, 29] and Europe [26], voters are reorganizing them-
selves, living closer to other voters with similar political viewpoints. Voters of left leaning
parties are clustering in urban centres; while voters of right leaning parties tend to spread
out in rural regions.

Our work explores aspects of both of these processes – both the immediate partisan one,
as well as the process of population sorting. In the first part of our work (Section 5), we
introduce our automated redistricting procedure, which, unlike some previous work, operates
on the scale of real-world data. Our method is flexible and can be used to design plans for
various objectives, both partisan and nonpartisan. Compared to districts drawn by political
experts, we almost always match, and even sometimes exceed, their performance.

Our algorithm allows us to examine possible requirements that have been suggested as
a means to mitigate or eliminate gerrymandering. In particular, we study the impact of
a compactness requirement. In Section 6, a few compactness measures are considered and
we see that in the US, the more rural party (Republicans) still consistently outperforms
the more urban party (Democrats). Moreover, we see that this advantage is robust even
in a non-gerrymandered, optimally-compact plan. This advantage is necessarily not due to
political gaming of the division process, but rather due to to the geographic spread of each
party’s supporters.

We further examine, in Section 7, how much compactness constraints affect gerrymander-
ing possibilities. We see that, indeed, demanding stringent compactness constraints reduces
the ability of parties to gerrymander. However, in most cases, the compactness requirement
allows for greater rural-party gerrymandering, as it can achieve more districts than its vote
proportion would seem to justify.

2 Related Work

Political districting, and in particular gerrymandering, has long been studied within various
fields. There have been legal discussions [31, 19, 16], though recently the US Supreme Court
ruled [30] that partisan gerrymandering cannot be addressed by federal courts. Gerryman-
dering has long been studied from a historical perspective [12, 6] and by political scientists
[13, 17, 34, 14].

Automated redistricting for various objectives has been widely studied in the computer
science and mathematics literature, since Vickrey [36] suggested its possibility (see Becker
and Solomon [2] for a recent summary). Various methods and suggestions for detecting
gerrymandering can be found in Wang [37], Grofman and King [18], Puppe and Tasnádi
[28], Fifield et al. [15]. A novel approach to district division, accepting gerrymandering as
a given, was recently suggested [27], involving an iterated setting inspired by the “cut and
choose” algorithm for cake cutting. In any case, finding an optimal gerrymandered solution
has been shown to be NP-hard in multiple variations [22, 11, 35].

The AI community has been exploring dividing voters into groups [1, 5, 20], and more
concretely geographic concerns, as in cake-cutting [32]. More specifically, with respect to
our work, the AI community has explored gerrymandering and its connection to voter distri-



bution. Cohen-Zemach et al. [7] examined gerrymandering in a synthetic arbitrary graph,
and Lewenberg et al. [22] examined gerrymandering when different parties have support
in different urban centres, finding greedy algorithms work decently well on their simulated
data. In their work each party has different urban strengths, unlike our work (and many
real-world voting patterns), where there are distinct urban and rural parties. Both papers’
methods ignored (or stretched) population bounds, creating districts that would be highly
illegal in any real districting plan. Finally, Borodin et al. [4] directly examine gerrymander-
ing in urban/rural settings. They worked on small, structured simulations (16× 16 grids),
using an integer-linear programming based approach and respecting population bounds.
While they found a rural party advantage, their method is unable to scale beyond small and
structured examples. Our technique respects population bounds on arbitrary planar graphs
with tens of thousands of nodes.

3 Model

We examine gerrymandering with a graph-theoretic formulation. We shall be using a US-
oriented terminology (states, precincts, etc.), but it holds true for any district geographic
setting. A state is an undirected graph G(V,E). Each node v ∈ V represents a precinct,
a small geographic region where votes are aggregated4. An edge (u, v) ∈ E represents the
physical adjacency of precincts u and v. For v ∈ V let nv be the number of people who live
in v, and np,ev be the number of people who live in v who vote for party p in election e. We
will omit e when the context is obvious. Let N =

∑
v∈V nv be the total number of voters in

the state. We limit our focus to two parties: the rural party (in the US, Republicans (R)),
and the urban party (in the US, Democrats (D)).

To create a districting plan we partition G into K vertex-disjoint subgraphs G1, · · · , GK

(the districts). The number of districts is externally determined (in the US, by a census
every 10 years). There are two widely accepted requirements for legal districts in the US
and elsewhere:

Contiguity For each k ∈ [K], Gk must form a connected subgraph of G.

Population balance-δ For each k ∈ [K],

1− δ ≤
∑

v∈V (Gk)
nv

N/K
≤ 1 + δ.

The exact value of δ required in the U.S. changes between states (and judicial decisions).
Informally, the criteria is that districts should be as near equal-sized in population as possi-
ble [21]. We take δ = 0.005, so that any two districts are, at most, within 1% of each other.
This is the legal requirements in some states (and far tighter than many previous works on
gerrymandering).

As an example, for an election e and district k, if
∑

v∈V (Gk) n
D,2012
v >

∑
v∈V (Gk) n

R,2012
v

we say the Democrats won the district according to the 2012 presidential vote totals. If the
inequality is reversed we say the Republicans win district Vk in that election. Ties are broken
arbitrarily, though they have not occurred in our dataset. Note that this definition is only
one possibility to define winning. In Section 5.1 we will look at winning as a probabilistic
event, blending vote totals from prior elections.

4In the US, census block data is more fine grained, but it does not contain any voting information, so
not useful for our needs.



4 Election Settings

After showing our algorithm’s effectiveness in comparison with existing state-of-the-art in
Section 5, we shall focus on data from six elections in three states. In each of these three
states we use the last two US presidential elections for which granular, precinct-level, data
is available5 – 2012 and 2016. Each of these three states has a particular election of interest:

Pennsylvania (PA) 2012 Sizeable Democrat advantage. The Democratic candidate
(Barack Obama) won 51.97% of the vote, vs. 46.59% to the Republican candidate
(Mitt Romney).

North Carolina (NC) 2016 Sizeable Republican advantage. The Republican candidate
(Donald Trump) won 49.83% of the vote, vs. 46.17% to the Democratic candidate
(Hillary Clinton).

Wisconsin (WI) 2016 Near tie. The Republican candidate (Donald Trump) won 47.22%
of the vote, vs. 46.45% to the Democratic candidate (Hillary Clinton).

In addition to these particular vote outcomes they also provide a good mix of features.
WI, for example, has its north-east corner carved up by lake Michigan, forming a jagged
bay. PA and NC, on the other hand, have a much more convex shape. Furthermore, the
population distribution is varied: PA’s large urban centres are in its east and west edges.
In NC the urban centres are concentrated in the middle of the state.

4.1 Voting and the Urban-Rural Divide

State 2012 correlation 2016 correlation
NC 0.79 0.80
PA 0.47 0.58
WI 0.38 0.57

Table 1: Spearman correlation between a precinct’s fraction of D party votes and its density
(total population divided by area) in three states and two elections.

As noted by political scientists [3, 29] and political commentators [24], US political par-
ties’ main geographical spread feature is a growing divide between the more rural Republican
party and the more urban Democratic party. We follow elections in three widely different
states, with differing ethnic makeup, education patterns, and history. However, this feature
is clear in our data as well: densely populated urban centres favour the Democrats while
sparsely populated rural regions favour Republicans (see Table 1).

5 The GREAT Algorithm

Here, we introduce our Goal-based Redistricting for Elections Automatically using Technol-
ogy (great) algorithm, an algorithm that can create districts from graph representations,
optimizing for various objectives. A few of the objectives we optimize for include maximiz-
ing partisan wins by a fixed threshold of votes or by high probability wins; as well as for
maximizing overall compactness according to different compactness measures. Furthermore,
the algorithm can optimize towards a goal while ensuring strict constraints on other metrics
(e.g., optimize compactness while maintaining a fixed number of wins). In Section 5.1 we

5Data from MGGG (https://github.com/mggg-states).



State Total seats Our D 538 D Our R 538 R
MD 8 7 5 (8) 4 4 (4)
MA 9 9 9 (9) 0 0 (0)
NC 13 7 8 (8) 11 10 (10)
PA 18 8 8 (9) 13 13 (13)
WI 8 5 5 (5) 6 6 (6)

Table 2: The first column is the total number of seats in the state. The second and third
columns are the number of districts D take with over 82% probability with our algorithm
and the 538 optimally-gerrymandered plan without compactness restrictions, respectively.
The fourth and fifth columns are the same for the R party. The 538 numbers show the
number of districts won according to their plan based on our election data. In parentheses
are 538’s reported results using absentee data to which we did not have access.

show it is capable of creating highly partisan plans, comparable to state of the art hand-
crafted ones. In Section 6.1 we show it is capable of generating plans far more compact than
those used in practice. Here we give a brief overview (see Appendix for a full description).

Our method is based on simulated annealing (SA), a local-search like method which occa-
sionally makes non-improvement steps, allowing it to escape local optima. After some fixed
number of iterations or elapsed time, the process is terminated and the best of all iterated
solutions is returned. Starting from a (often random) initial plan, a step is considered by
using a modification of the tree-recombination procedure proposed by the Metric Geometry
and Gerrymandering Group [25]. Briefly, the method takes a set of m adjacent districts,
from the current solution, and recombines the nodes in them to form m new districts. This
is done by drawing random spanning trees over the precincts of the m districts and cutting
random edges in the trees to separate the nodes into the desired number of districts. For
performance reasons, we generally use m = 2. In short, any objective that can be expressed
numerically and calculated from an arbitrary districting may be used. Additionally, any
binary constraint that can be can be calculated from an arbitrary districting may also be
used.

5.1 Proof of Concept: Gerrymandering Districts

Unfortunately, like the body of work before us, we are unable to provide guarantees on our
method’s performance. Instead, we will compare against Nate Silver’s 538 gerrymandering
project [33]. The election experts at 538 hand-crafted thousands of electoral districts for
various objectives. While there is no guarantee their plans are optimal, there are no publicly
available ones which surpass them.

As noted above, plurality by a single vote is not the only way to quantify winning. At
538, they took a probabilistic view, designing partisan plans that maximized the number
of districts that were likely to be won. Unfortunately, they released few details regarding
their method. But, we believe we were able to reconstruct it using released results (see
Appendix for a detailed description of our reconstruction). Briefly, 538 uses the Cook
Partisan Voting Index (CPVI) [10], which measures a district’s D party bias according to
the 2012 and 2016 elections. Using prior election outcomes, 538 transforms a district’s CPVI
into the probability the D win it. When gerrymandering for party P , 538’s objective was
to maximize the number of districts for which P ’s probability of winning was at least 82%.
To guide our method we used a combination of the expected number of wins and the total
number of districts above 82%. For an exact breakdown of this technique see Appendix.

The availability of presidential election data at the precinct level is inconsistent. Thus,
we are unable to compare the plans our method generated against 538’s on all possible



states. There are five states for which we have publicly available data, and for each of them
we optimized for the 538 objective for each party. For each state and party we ran 60 parallel
threads of our algorithm for 24 hours, though we found the algorithm stoped advancing well
before this deadline. Out of all solutions iterated in all threads, we took the one with the
most districts above 82% for our target party. Our results are shown in Table 2. We note
the values 538 reported on their website include absentee data (mail-in ballots), which is
not publicly available at the precinct level for us, so we do not use it when comparing plans.

Overall, there was only one case, NC for D, where we did not match the 538 value. Even
here, we only missed by one district out of the 13. We did outperform 538 in Maryland for
the Ds, but we caution each party had over 25% of their vote come from absentee ballots6.
In NC for the republicans we also outperformed 538.

5.2 The Ethics of Automated Redistricting

Before discussing our main results, we wish to touch upon the ethics of automated redis-
tricting and its potential implications. There is an understandable concern such a tool could
be used to negatively impact democratic freedoms. This point is especially salient for our
tool, which, in hours, can match what human experts take much longer to produce.

We believe the marginal utility of such a tool, for gerrymanderers and others who seek to
disenfranchise voters, is minimal. The redistricting process takes years, and is only actually
done once every ten years in the United States (and many other democracies). In these
situations, nefarious parties would have years, and often near unlimited resources, to have
experts hand design districts. And as we have shown, they still are able to occasionally
outperform our automated process.

Instead, we see the real use of or tool as something researchers can use. As we will show,
our tool helps illustrate the geographic bias in single winner electoral districts. With it, we
will be able to calculate the effectiveness of proposed solutions for gerrymandering, including
compactness requirements. Furthermore, it can be used to help combat gerrymandering. If
our algorithm produces plans that are as partisan as ones that have been implemented, this
can be seen as evidence that the real districts are gerrymandered. Furthermore, because
our tools is highly modular, it can be used to quickly propose alternative plans. These may
not be the final ones implemented, but they can provide an idea of what is possible.

6 Designing Compact Districts

As mentioned, compactness is often a required consideration, even if the type or required
level is not specified. Furthermore, it is not clear if compact plans are more free of partisan
bias than less compact ones. Thus, in this section we study plans designed to optimize
various notions of compactness. We examine these plans from a partisan perspective and
contrast them with currently used plans. We find that various definitions of compactness
can reduce partisan bias, relative to plans used in real life. Despite this, we find a persistent
partisan bias to these compact plans, i.e., they favour the R party despite being optimized
for a non-partisan goal.

To measure compactness of a district within a plan we use the following measures (formal
definitions in the Appendix):

Polsby-Popper (PP) The Polsby-Popper score of a district is the ratio of the district’s
area to the area of the circle with the same perimeter as the district.

6In the other 4 states at most 0.3% came from absentee ballots.



Figure 1: Uniform swing for each party (R in red, D in blue) in the 2016 presidential election
in PA under our Polsby-Popper compact plan. Vertical axis shows the fraction of districts
won; horizontal axis the vote fraction. The dots on the party curves indicate the actual
election outcome (0 swing). The green line is the range of proportional outcomes on the
range [0.4, 0.6]. The point (1/2, 1/2) is marked with the green star.

Convex Hull (CH) The Convex Hull score of a district is the ratio of the district’s area
to the area of the minimum convex hull that bounds the district.

538 metric The 538 metric is the sum of how far each resident in the district is from the
centroid of that district. That is, it is the sum of the straight line distance of every
resident to the “middle” of their district.

For all of these metrics we use the plan that best optimized the average of the com-
pactness measure across all the districts in the plan. For the first two metrics we find this
plan using our simulated annealing procedure (the 538 researchers used a different algorithm
to optimize for their metric). Because each optimizes for a different goal, and there is no
optimal notion of compactness, we cannot say if one is superior to another. Instead, we use
all of them in a broad interpretation of compactness.

To measure how partisan a plan is we use uniform swing. Uniform swing is a way of
measuring how an equal shift of vote share in every district would impact outcomes. That
is, for a fixed, baseline election, the uniform swing of a party is a curve which measures
what a vote share increase (or decrease) of t for a particular party in each district does to
the number of seats won by that party (Figure 1). A swing of 0 means no change from the
outcome of the current election, and note that a swing of +t for one party is the equivalent of



Figure 2: PA districts (R wins in red); (D wins in blue) based on the 2016 PA election data.
The upper one is our plan, optimizing the convex hull score; the lower one is PA’s actual
2011 districts.

a swing of −t for the other party. The uniform swing model is a useful tool for modelling any
range of hypothetical elections, including those close to the actual elections, or those which
see a massive shift in voting intention. There are several metrics that use the uniform swing
curve and report how partisan it is. We are interested in the partisan bias score. This value
measures the vertical displacement of the swing curve from the point (1/2, 1/2). Intuitively,
the partisan bias measures divergence from the idea “half the votes should translate to half
the seats”. More generally, we can measure the vertical displacement from any point (a, a)
for a ∈ [0, 1] (“an a fraction of the vote share should translate into an a fraction of the
seats”).

We introduce a continuous generalization of this idea. Fixing a line segment [l, r] (l, r ∈
[0, 1]), we measure the average distance from the swing curve to the line y = x over the line
segment. That is, we measure what fraction of districts, on average, does a party win over
a proportional division in a reasonable range of vote shares (and in the two party case, one
party’s advantage is the other’s loss). By reasonable range, we mean those elections that are
close to, and include, the actual election outcomes. Since a swing of +t for one party is the
equivalent of a swing of −t for the other party the swing curves for each party are reflections
of each other about the point ( 1

2 ,
1
2 ). Thus, for any any line segment that is centred about

the point ( 1
2 ,

1
2 ) our generalization of partisan bias for one party is just the negation of if

of for the other party. Intuitively a large absolute value for the partisan bias score would
indicate that this particular districting overly favours one of the political parties (which one
depends on the sign of the partisan bias score).

6.1 How Compact is Compact?

Our algorithm is capable of designing highly compact, and legal, plans. As mentioned,
there isn’t one dominating notion of compactness, so we optimized for several. There is also
no public optimally compact map we can compare against as we did for gerrymandering.
From a visual standpoint (see Figure 2) our plans pass an “eye test” for looking compact,
especially compared to the plans enacted in practice. While each plan was optimized for
its own metric, there was a fair bit of correlation – a plan compact according to one metric
was usually also quite compact according to another. In all three states the plans built to
optimize the purely geographic measures, PP and CH, scored higher than 538’s compact
plans on both metrics, not to mention the existing plans (NC’s optimally PP-score was 4



times higher than the 2011 plan).

6.2 Compactness Can Improve Fairness

Figure 3: Average distance from the R swing curve to the y = x line over the range [40, 60]
for the various plans in each state using 2012 presidential election data. The WI 2011 plan
was not struck down, unlike in PA and NC, thus there is no “new” plan for it.

We find optimizing for compactness can improve the fairness of outcomes, relative to the
2011 plans, according to our generalization of partisan bias. This improvement is consis-
tent, and independent of the compactness measure chosen. Figure 3 shows the generalized
partisan bias score for various states and plans using the 2012 presidential election data
over the range [40, 60]7 . In every state all of the compact plans exhibit a lower bias to-
wards R than the 2011 plans do. This exact pattern also held using the 2016 presidential
election data. This improvement could be extreme: in NC, the 2011 plan (with a 17% R
advantage) is more than three times as biased as any of the compactness scores; The 2016
plan (a 11% R advantage) was more than twice as biased than any of them. Even if we
narrow our comparison range to the [45, 55] interval the pattern is largely unchanged. For
this smaller interval, the only time the 2011 plan is less R-biased is the 2016 election in WI
when compared to the CH optimal plan (and this is only a 1% difference).

Interestingly, the updated plans in NC and PA seem quite dissimilar. In both states
the 2011 plans were stuck down for being overly biased. In NC the plan was found to
disenfranchise minority voters [9] while in PA the plan was found to disenfranchise Ds [23].
For both comparison ranges and both elections the new NC plan is still significantly more
R-biased than any of the compact plans. The exact opposite holds for the new PA plan. Its
level of bias is comparable to the compact plans, and it is often a bit lower, although it is,
of course, less compact. This may have to do with the new PA plan possibly being designed
with partisan proportionality in mind [8].

7Most presidential election’s popular votes fall in this range.



6.3 The Rural Advantage

For all plans, in all three states, both elections, and both ranges of comparison there is one
consistent pattern: The R party always has a positive score in our metric8, that is, the
more rural party can expect to gain more seats than its proportional voter share. This is
despite the fact every single one of these plans was designed only to optimize some notion of
compactness (one was even supposedly designed to maximize fairness). This advantage can
be significant, with the compact plans in PA this was a 10% (and often higher) advantage
in seat share on average.

7 Designing Partisan Districts

Figure 4: Gerrymandering power when faced with a minimum required Polsby-Popper score
using data from the 2016 PA presidential election. R in red; D in blue. The vertical purple
line is the Polsby-Popper score of the 2011 congressional plan, the vertical grey line is the
Polsby-Popper score of the 2018 court mandated plan. Average distance between the two
curves is a 10.8% advantage for the Rs.

In this section we examine what limits do fixed compactness thresholds impose on par-
tisan gerrymandering. As we saw in the previous section, compactness constraints can lead
to more balanced outcomes, but we do not know what restrictions are necessary. For com-
pactness, we use the average Polsby-Popper score of a plan. To measure gerrymandering
ability, we use gerrymandering power (introduced in Borodin et al. [4]). For a particular
election, the gerrymandering power of party p is defined as the difference between the share
of seats it can optimally gerrymander to win and the seat share it would have received in
a purely proportional election. A high gerrymandering power indicates there is a plan that

8As our intervals are symmetric about the middle point, this means Ds have a negative score.



stretches p’s vote share into a disproportionally large number of districts. A low (or nega-
tive) gerrymandering power indicates p is unable to stretch its vote into many extra wins
(or is unable to win a proportional amount of seats).

To gerrymander for party p while staying compact, we run our algorithm with the ob-
jective of generating plans which are as compact as possible while maintaining k wins9 for
party p. As we saw in previous sections, our algorithm is capable of generating highly com-
pact districts and highly partisan districts. Unsurprisingly, we find it performs quite well
when combining these goals. For example, in NC our algorithm can stretch the number
of districts Rs win to all 13 using the 2016 election data, all while creating a plan more
compact than the existing one (in the existing plan, Rs won 10 of 13). We can also create
a map for Ds that is more compact than the existing one, but in which they win 11 seats
instead of 3.

We vary k from the most partisan possible outcome (maximal number of districts won
with no compactness constraint), to the most compact possible outcome (number of seats
won by p in the Polsby-Popper compact plan from Section 6). PA’s results can be seen
in Figure 4. A full description of our method, and the figures for WI and NC, are in the
Appendix.

7.1 Effect of Increasing Compactness

While increasing the required Polsby-Popper score lowers the gerrymandering power of both
parties, to have an impact, a steep increase beyond what current the plans use (and often
near the most compact) is required. Figure 4 shows the existing plans do not have a
compactness score that constrains any party’s gerrymandering (this is also true in WI and
NC).

While compactness requirements can limit gerrymandering power, they are an unbal-
anced tool, favouring the R party. That is, for almost any Polsby-Popper score, their
gerrymandering power is well above the D one. In PA there is no Polsby-Popper score
where the Ds have an advantage. In NC and WI there is a brief period of near maximum
compactness requirements where the Ds have the advantage, and even then it is small and
quickly reverses. In WI when the compactness requirement is lower than that of the current
plan the democrats do have a (very) marginal advantage, but more stringent requirements
give a large R advantage. Measuring the average distance between the two curves, there is
about 10% R advantage in gerrymandering power in PA and NC, and about 4% in WI.

Moreover, even with the most extreme compactness requirements, Rs are able to stretch
their vote share beyond proportional, while Ds, even if they can have any legal districting
they desire, have a negative gerrymandering power – they cannot even reach their propor-
tional allocation.

8 Discussion

In this work we introduced a modular and powerful automated redistricting technique. We
showed our technique can generate highly partisan districts, as biased as the hand drawn
ones from 538. We also showed our method is able to generate compact districts, far more
compact (according to various metrics) than the plans used in practice (or electoral experts’
compact plans). Using our technique we showed how designing plans for compactness can
reduce partisan bias over the existing plans. Despite their design objective, we found these
plans still had a partisan bias. We then used our technique to design plans which are both
partisan and satisfy compactness restrictions (according to the Polspy-Popper metric). We

9By win we mean party p has a majority of votes.



found while compactness restrictions can reduce the ability of either party to gerrymander,
the potential for some degree of gerrymandering remains, and is, once again, with a partisan
bias. All the biases we saw, in all states, under all metrics, with their differing characteristics,
pointed towards an advantage to the geographic spread of Republican voters, i.e., a rural
party advantage.

We see many applications of our algorithm for future work, but a few clear issues stand
out. We are working on expanding the gerrymandering power metric used in Section 7: In
this work we used the same one vote margin definition of victory used by previous work,
but we believe it could be extended using win margins or probabilistic models, which might
make the outcomes more precise. We also believe the Republicans redistricting advantage
deserves further exploration. This rural party advantage was noticed in simulations [5] and
analytically argued by Rodden [29]. To explore this relation we are working on modifications
of the uniform swing model that incorporate ideas like population density. With these
models we hope to generate vote distributions that resemble what is seen with the increasing
urban-rural divide. Finally, since our algorithm is highly modular we believe it can be
configured to design districts that are fair from a partisan perspective. While there are many
definitions of “fair”, our algorithm is capable of optimizing for any that can be expressed
numerically and calculated from an arbitrary plan. An interesting future direction could be
exploring the tradeoff in fairness and various other desirable goals, such as compactness.
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A Appendix

A.1 Description of the GREAT Algorithm

In this section we will describe the great algorithm in its general form.
Our basic approach is built around simulated annealing (SA), a general optimization

technique that has found much success in various discrete optimization problems. To build
our SA approach we will expand on the Markov Chain Monte Carlo (MCMC) package for
redistricting known as Gerrychain provided by MGGG. Details of what they provide and
our extensions will be expanded on in subsequent sections.

With hill-climbing based approaches, at every iteration we have a candidate, current,
solution and we examine some neighbouring solution. We need to decide if we should move
to this neighbouring solution or not. In standard hill-climbing methods, like (greedy) local
search, only moves which improve the solution are accepted.

At a high level, simulated annealing-based optimization is essentially a hill-climb, but
moves are allowed towards inferior solutions. The ability to accept non-improvement steps,
i.e., objectively worse solutions, becomes increasingly less permissible as the optimization
proceeds. The logic with non-improvement steps is that they allow the procedure to escape
local optima earlier in the process. If the space of solutions is non-convex (with respect
to solution quality) these local optima can act as sinks for procedures which only allow
improvement steps. The ability to accept a non-improvement neighbour is controlled by
two parameters, the temperature of the system and the difference in quality (also known as
energy-difference) of the current and proposed solution.

Energy: The first component of a SA based approach is the energy of a solution. The
energy of a solution is a function which maps a potential solution to a numeric measure of
quality, for our work we consider the set of solutions to be all legal districting plans. That is
if a graph of a state has node set with n nodes and they must be partitioned into K districts
the energy function is:

E : [n]K → R+ ∪∞. (1)

It is standard for lower energy values to correspond to superior solutions and for zero
energy to be the best any solution can take on10.

Proposal: The second component of the SA based approach is the proposal function. A
proposal function P takes in a potential solution S and picks a neighbour S′ of S:

P : [n]K → [n]K . (2)

There is no fixed definition of what a neighbour is and this can vary from domain to
domain, or even within a problem itself. For our work we will use the following recom-
proposal function, which was first suggested by MGGG. The recom-proposal is presented in
the following algorithm 1:

When we say a solution or district is valid we mean that it satisfies all constraints we
place on districts. Note that using Kruskal’s algorithm for drawing spanning trees (the
drawing of Tt) can effectively be done in time linear in the number of nodes left in R11.

Each time through the for loop at step 6 the algorithm may pick several edges in the
spanning tree Tt (steps 6 through 8). For each iteration of the loop the first such e must

10The optimal solution for a particular instance could have non-zero energy, zero just serves as a lower
bound. Generally invalid solutions have infinite energy.

11To draw a random spanning tree we find the minimum spanning tree after randomly assigning each edge
a weight.



Algorithm 1 recom proposal(G, S, j):

1: Let S be the current solution (districting plan which partitions the vertices into k
components).

2: Pick i ∈ {2, · · · , j} random, but connected, districts from S (where j ≤ k).
3: Let R denote the precinct nodes in these i districts.
4: for t ∈ {1, · · · , i− 1} do
5: Draw a random spanning tree using using only the nodes of R. Call this spanning

tree Tt.
6: Sample a random edge e that has yet to be picked (see particular heuristic in text)

in Tt. This divides Tt into 2 connected components.
7: If Tt beneath e forms a valid district: Make it one of our new districts, remove these

nodes from R.
8: Else, if there are edges yet to be sampled and Tt beneath e is not a valid district:

Repeat step 6.
9: If all of the edges of Tt have been sampled and no valid district was ever found in
Tt: repeat step 5.

10: end for
11: Let the remaining nodes of R be the final new district.
12: Let S′ be the solution identical to S but where R has been redistricted according to

steps 4− 11.
13: if S′ is a valid solution then
14: Return S′

15: else
16: Retry the algorithm from step 1.
17: end if

be connected to a leaf of Tt (the first time step 6 is executed for each loop iteration). If
the node under e is not a valid district then another random edge is chosen (step 8). This
next edge is either another edge connected to a leaf, or the edge directly above e in Tt.
In subsequent steps (if they are required) the algorithm picks an edge e that has not been
previously selected in Tt. In addition there are two more restrictions on selecting the new e:
First, the algorithm requires that this edge is either connected to a leaf node or is the direct
ancestor of a previously chosen edge. Second, the algorithm requires that all of the edges
under e in Tt have previously been selected. Intuitively, this process works by bubbling up
through the various branches for Tt, trying edges until a sufficient one is found.

Each time through the for loop the algorithm should find one of the districts we need.
It is possible some iteration of the for loop will fail to find a valid division, sampling every
edge in Tt (step 9). In this case this iteration of the for loop restarts, finding a new spanning
tree, but keeps the districts found up to this point.

It is also possible that at some iteration of the for loop, no spanning tree can lead to
a valid districting. That is, it will just draw new spanning trees forever. We are unaware
of any method that can detect this scenario, short of sampling every spanning tree. As a
heuristic solution, we put a time limit on the algorithm. We found the algorithm tends to
find solutions within 20 seconds for the most complex instances we work with. If after 1000
seconds we do not have a solution we restart the entire algorithm. This was an addition we
made to the functionality provided by MGGG.

We note that the recombination method proposed by MGGG only worked for recom-
bining two districts at a time, whereas we extended it to work for any number. In the step
where we pick i random districts for recombination we do so by sampling uniformly at ran-
dom from the set of all sets of connected districts up to size j. The intention of the MGGG



method seems to be the same (for j = 2), but their code shows that they pick districts by
uniformly sampling from all edges which cross district boundaries. This will favour picking
pairs of districts which share large boundaries (in terms of nodes). In general we found that
increasing the number of merged districts beyond two did not improve our solution quality
(but it did slow the procedure down).

Temperature: The third part of the SA approach is the temperature, which acts as a
control for how likely negative moves are at a given state of time. Generally the temperature
is a decreasing function of the number of iterations so far in the optimization. While there
are many temperature functions and choosing the ideal one is somewhat of a black-box
in optimization, we’ve found the following temperature function works well (here (s) is an
iteration counter):

T (s) = 10000 · (0.99s) (3)

This is known as the exponential cooling schedule. From the initial temperature of
10, 000 at every step we retain 99-percent of the remaining heat until we eventually cool to
a temperature of 0.

A.1.1 The simulated annealing method

The simulated annealing method is as follows for a graph G = (V,E) which is to be parti-
tioned into K districts:

Algorithm 2 simulated annealing for gerrymandering(G):

1: Let S0 = recom proposal(G,None,K).
2: i = 0
3: while i ≤ smax do
4: S′ = recom proposal(G,Si, j)
5: if E(Si) ≥ E(S′) then
6: Si+1 = S′

7: i = i+ 1
8: else
9: Let ∆E = E(Si)− E(S′)

10: Let r be drawn uniformly at random from [0, 1].
11: if exp ∆E

T (i) ≥ r then

12: Si+1 = S′

13: i = i+ 1
14: end if
15: end if
16: end while

In the first step None refers to the districting which makes no assignments. To find the
initial partition we do not need to provide the sub-routine with a valid districting since we
are recombining all of the nodes. Intuitively the algorithm will always move to a lower energy
solution and will move to a higher energy solution with high probability if the increase in
energy is not too high and the temperature is not too cool.

It is entirely possible that the procedure will eventually be caught in a local optimum
(or even the global one) it cannot move away from with reasonable probability. This is
especially true later on as the temperature cools. If this is the case the main loop will, with
very high probability, make no progress to completion. Because of this we often set a hard



time limit and cut off the procedure after this point. In general with SA, or any random
algorithm, one needs to run many parallel executions of the procedure, and each of these
will iterate over many potential solutions. The best of all iterated solutions will be chosen
as the returned solution.

A.2 Description of 538 Reconstruction

Reconstructing the model 538 used to evaluate wins involved multiple steps and analysis.

A.2.1 The Cook PVI

538 builds their probabilistic model on the Cook partisan voting index (Cook PVI or PVI)
published by the Cook Political Report [10] a non-partisan and independent newsletter that
analyzes elections and trends in the United States. The PVI is a metric which measures
how partisan a group of voters, in particular those who form a congressional district, are
relative to the average voter in the United States. To calculate the PVI there needs to be a
running value for how partisan the country is as a whole (call this value βD). To calculate
this we take the number of votes garnered in the two most recent presidential elections12

and see what fraction of these votes belong to the Democratic party. The partisan skew
expresses the average of the vote fractions for the Democrats in the last two presidential
elections. Note, this is an average of averages, it is not weighted by the total votes in each
election. To calculate the PVI 538 used we need the 2012 election where:

• For the Barack Obama and Joe Biden of the Democratic party 65, 915, 795 votes.

• For Mitt Romney and Paul Ryan of the Republican party 60, 933, 504 votes.

For the 2016 election the exact results were:

• For the Hillary Clinton and Tim Kaine of the Democratic party 65, 853, 514 votes.

• For Donald Trump and Mike Pence of the Republican party 62, 984, 828 votes.

Using the above information we get the value of βD would be:

65,915,795
65,915,795+60,933,504 + 65,853,514

65,853,514+62,984,828

2
(4)

Thus, we see βD is roughly 51.53857559136132%. Note because the United States uses
the electoral college system, Donald Trump and Mike Pence won the 2016 election despite
receiving fewer votes than Hillary Clinton and Tim Kaine. Note that while the United
States is effectively a two party system there are other candidates who run for various offices
including president. For example, in 2016, Gary Johnson and Joe Weld of the Libertarian
party received 4, 489, 341 votes (over 3% of the total vote). Since the Cook PVI is meant to
be a direct comparison between the Democratic and Republican party it does not factor in
third-party votes. 13

The PVI of a district is then just how partisan that district is relative to βD. In district
i, let the total number of Democratic votes denoted by ND,1

i and the Republican ones as

12The presidential election is chosen since they use the same candidate for the entire country and thus
are free of any local effects.

13The Cook Political Report does not actually publish the formula or exact method for this metric. In
particular they did not make it clear if the mean of the two elections was weighted or not. We confirmed
our interpretation by measuring the reported PVI in single district states and comparing to the formula we
derived.



NR,1
i for the last presidential election; and ND,2

i and NR,2
i the same for the presidential

election before that, then the PVI is :

100 · (
ND,1

i

ND,1
i +NR,1

i

+
ND,2

i

ND,2
i +NR,2

i

2
− βD) (5)

Equation (5) can range from −βD · 100 for completely Republican dominated districts,
to (1 − βD) · 100 for districts with only Democratic voters, or 0 for districts which match
the national average in the last two presidential elections.

Intuitively a district with a very positive PVI should be safely Democratic. Even if
there is a uniform swing towards Republican sentiments this particular district should lean
Democratic (the same is true for Republicans and districts with a very negative PVI).

A.2.2 The 538 Sigmoid

Figure 5: First figure shows the reported Cook PVI for each district created by 538 vs their
estimation of the probability that the Democrats will win that district. Second figure shows
the output of our reconstruction of the 538 model vs the 538 model itself, the inputs to
these two models were each of the districts created by 538.

The next step in the 538 model is going from the Cook PVI for a hypothetical district
to how probable it is that district elects a Democrat. We suspect 538 went with the sigmoid
function (the sigmoid function is ideal since it is monotone in its inputs and the output falls
in the range (0, 1)). Recall, the sigmoid function takes the form:

σ(x) =
1

1 + e−w·x (6)

This function is fitted to data (x) by adjusting the weight parameter w. Unfortunately
538 was not specific on what exact data was used to fit the sigmoid, or if regularization terms
were included in the fitting. Luckily, 538 did publicly report the Cook PVI and their derived



probability of a Democratic win for all the districts in their catalogue for each state14. The
probability of a Democratic win, plotted against the Cook PVI (first subfigure of Figure 5),
clearly shows a sigmoid shape. From here we just need to derive what weight parameter w
they use is. To figure this out we first invert the sigmoid function using the log-odds (or
logit) function:

logit(σ(x)) = loge

1

1− σ(x)
(7)

Inverting the sigmoid function with the logit function would produce a line given by
y = w · x, thus we simply need to invert any two data point in the second subfigure of
Figure 5 and take the slope of the resulting line as w (since this is a linear function of one
variable any two distinct points are sufficient to determine it). Briefly, we mention two
important points. Firstly, the sigmoid, and hence the line from the logit, may have a bias
term associated with them. We found 538 did not include one since their their sigmoid
passes through (0, 50)15 and the resulting logit line passes through (0, 0). Secondly, the
points 538 published do not perfectly follow a sigmoid, instead there is a small amount of
“jitter” on some of the points in the first subfigure of Figure 5. This deviation could simply
be a rounding issue or minor transcription errors, in either case the points still very closely
follow the sigmoid pattern. Because of the small amount of noise the resulting inverted plot
found with the logit function will not be perfectly linear. Thus our choice of the two points
for the inference of w would (very slightly) influence the outcome. To mitigate this issue
we take the ordinary least squares (OLS) regression line, also known as the line of best fit,
for all of the points (after inverting them with the logit). We found the slope of the OLS
line was 0.3047121945377743 which we ended up using for the w parameter in our sigmoid
model. Our resulting model is a near perfect fit for the 538 model since they form the line
y = x when plotted against each other (the final subfigure of Figure 5)

A.3 Additional Material for Section 5

In this section we describe how to use Algorithm 2 to match the 538 partisan plans. The
main specifics required are the specifications of Equation 1. For our purposes we will have
our energy function be based on the expected number of districts won with one slight
modification. Say we are gerrymandering for the Democratic party. If a potential solution
S is comprised of K districts called S1, · · · , SK then the energy of that solution is:

E(S) = K −
∑
i

vD(Si), (8)

where vD(Si) is equal to :

vD(Si) =

{
σ(Si) σ(Si) ≤ τ
1 otherwise

Where σ is the sigmoid function we derived from the 538 data. If the target party is
Republican party we can replace vD(Si) with vR(Si)

16 which is defined as follows:

vR(Si) =

{
1− σ(Si) 1− σ(Si) ≤ τ
1 otherwise

14In total there are 2568 districts. These districts are the entirety of all of their created plans. This
includes plans such as the partisan plans, competitive plans and plans that emphasize compactness. They
also include the current congressional plans.

15There is exactly one data point with a PVI of 0 and a Democratic probability of winning of 50%.
16Recall, the probability the Republican party wins a district is just one minus the probability the Demo-

cratic party wins it.



Here, τ is the threshold for what we consider a strong win. That is if a district win
probability for our target party is above τ , we say that is a safe win for that party. Intuitively
our function is aiming to maximize the number of safe wins for the target party. Our method
would prefer a solution with several borderline safe wins over a solution with fewer very safe
wins. For all of our simulations we copy 538 and use τ = 0.82.

Our only constraints were that districts must be connected and within half a percent of
the ideal population. For each state and party we found well before our cutoff of 24 hours
the algorithm had stopped making steps. We also found with 60 parallel runs we were able
to get the results shown in Table 2.

A.4 Additional Material for Section 6

Compactness presents a set of challenges, from definitions to implementation.

A.4.1 The Compactness Measures

Here we formally define each of the compactness metrics we use. For ease of notation we
define the following functions for a district i with subgraph Gi and polygon Pi. Let the area
be A(Pi), let the length of the perimeter be L(Pi), and let the geometric centre point be
C(Pi)

17. These measures can be defined for any arbitrary 2D polygon (not necessarily just
those that belong to a district). Let the straight line distance between two points a, b ∈ R2

be d(a, b). And finally, let the shortest (in terms of number of edges) path between two
nodes in i, j ∈ V (Gi) be SP (i, j).

Polsby-Popper (PP) Let Ci be the circle where L(Ci) = L(Pi). The Polsby-Popper score

is equal to A(Pi)
A(Ci)

. This value ranges from the least compact 0 (a district with no area),

to the most compact 1 (a circle-shaped district).

Convex Hull (CH) Let CHi be the convex shape which bounds Pi and has the minimal

value for A(CHi). The Convex Hull score is equal to A(Pi)
A(CHi)

. This value ranges from

the least compact 0 (a district with no area), to the most compact 1 (a convex district).

538 metric The 538 metric was not formally explained, it is described as “the average
distance between each constituent and his or her district’s geographic centre”. One
possible interpretation of this could be

∑
∀u∈V (Gi)

d(u,C(Pi)). But it is also possible
there are other interpretations of what centre means.

A.4.2 Redistricting for Compactness

First we describe how Equation 1 is set to optimize for each of these metrics. For the Convex
Hull and Polsby-Popper metrics, given a plan we calculate the compact score in each district
(in the range [0, 1]) and take the overall mean of them, call this value x. We then set the
energy of this plan to be 1 − x. Since 538 calculated the solution for the final metric, we
do not optimize for it. From what we’ve found18, the 538 optimization also seemed to be
annealing based, but instead of a tree based recombination the proposals involved swapping
nodes on the boundaries of districts.

For each of our measures we ran 120 threads in parallel (this led to many threads ending
up with nearly the same highest level of compactness) for 48 hours. We found this time
more than sufficient for ensuring the process stopped making improvement steps.

17This is the point where Pi would balance on a pin tip.
18See https://bdistricting.com/2010/ for a high level description of their method.



A.4.3 Additional Plots for Swing Advantage

Here we provide the plots for other data ranges and elections showing the Republican ad-
vantage in the uniform swing model. In Section 6, Figure 3 showed the advantage for the
2012 election using the [40, 60] data range. Here we provide the other three items men-
tioned. The 2016 election for both the [40, 60] data range (Figure 6) and [45, 55] data range
(Figure 7). And the 2012 election using the [45, 55] data range (Figure 8). As mentioned
earlier, in any setting the partisan bias of the compact plans is lower than that of the 2011
plans, with one exception. In Wisconsin in 2016, over the [45, 55] data range the Convex
Hull plan has a marginally higher bias than the 2011 plan. Furthermore every single plan
we examine shows a Republican bias, none have a democrat lean.

Figure 6: Average distance from the R swing curve to the y = x line over the range [40, 60]
for the various plans in each state using 2016 presidential election data. The WI 2011 plan
was not struck down, unlike in PA and NC, thus there is no “new” plan for it.

A.5 Additional Materials for Section 7

In Section 7 we discussed combining gerrymandering with compactness constraints, which
we further elaborate on below.

A.5.1 Compact Gerrymandering

We use our method to generate compact, but partisan, districts. First, for each party,
we generate highly partisan outcomes. That is, given a partitioning of the nodes of G
into S = (S1, · · · , SK) set Equation 1 as follows (assuming we are gerrymandering for the
Democrats):

E(S) = K −
∑
i

vD(Si), (9)

where vD(Si) is equal to :



Figure 7: Average distance from the R swing curve to the y = x line over the range [45, 55]
for the various plans in each state using 2016 presidential election data. The WI 2011 plan
was not struck down, unlike in PA and NC, thus there is no “new” plan for it.

vD(Si) =


ND

i

ND
i +NR

i

ND
i

ND
i +NR

i
≤ τ

1 otherwise

Here ND
i is the total Democrat vote in district i ( NR

i is the total Republican vote in
district i). If we want to gerrymander for the Republicans, replace vD(Si) with vR(Si) which
is defined as follows:

vR(Si) =


NR

i

ND
i +NR

i

NR
i

ND
i +NR

i
≤ τ

1 otherwise

For our experiments we always take τ = 0.5, that is we require a simple majority of
the vote for a win. This is similar to our method for emulating 538, but now the sigmoid
function’s contribution to the energy has been replaced by a linear distance to winning the
district. We tried other definitions of vD(Si) and vR(Si), such as exponentially decreasing
energy as one gets closer to winning the district, a small decreasing contribution to energy
even if the target party is winning a district, and modifications of the sigmoid. In the end
we found the presented definitions worked best.

For the rest of this section, assume we are gerrymandering for party P . For our first
phase, in each state for P we run our method 288 times for 48 hours. This time limit was
more than sufficient for the convergence of the various processes. This first phase gives us
several runs that have the most possible wins for P in each state, call this set of solutions
Wmax. In addition, for each state we ran 288 executions of our code to optimize for the
Polsby-Popper score (just like we did in Section 619) Then for P in each state state, we
have a range of potential win values {wmax, · · · , wmin} (where wmax is the most number of

19For these new 288 runs we included them with the results reported in that section. They did not lead
to a significant improvement.



Figure 8: Average distance from the R swing curve to the y = x line over the range [45, 55]
for the various plans in each state using 2012 presidential election data. The WI 2011 plan
was not struck down, unlike in PA and NC, thus there is no “new” plan for it.

wins found for P in the first phase and wmin is the number of wins for P in the optimally
compact solution).

For each value w ∈ {wmax, · · · , wmin + 1} we execute the following procedure. Dividing
the solutions of Wmax among 288 cores as evenly as possible we run our algorithm using
these solutions as the initial plans and optimize for the Polsby-Popper score (again like in
Section 6). We add the additional constraint, for a proposal to be considered in algorithm 1
we require that the total number of wins for P is at least w. We found improvements were
ending well before the 24 hour cutoff for each of these simulations.

A.5.2 Missing Charts for Gerrymandering Power

In Section 7 we explored what happened to the gerrymandering power as stronger Polsby-
Popper constraints were added. We found compactness constraints can decrease gerryman-
dering power, but to have any impact on any party in any state, the required levels were
beyond the compactness of current plans. We provided the plot showing this effect in PA
for the 2012 election, here we provide the same plots for WI and PA (which show a similar
effect). Figure 9 shows the equivalent plot for WI in 2016. Note, since the 2011 plan was
never struck down there is only one vertical line. Figure 10 shows the equivalent plot for
NC in 2016. As was the case with PA, the 2011 plan in NC was found to be illegal. It was
replaced in 2016.



Figure 9: Gerrymandering power when faced with a minimum required Polsby-Popper score
using data from the 2016 WI presidential election. R in red; D in blue. The vertical purple
line is the Polsby-Popper score of the 2011 congressional plan. Average distance between
the two curves is a 4.3% advantage for the Rs.



Figure 10: Gerrymandering power when faced with a minimum required Polsby-Popper
score using data from the 2016 NC presidential election. R in red; D in blue. The vertical
purple line is the Polsby-Popper score of the 2011 congressional plan, the vertical grey line
is the Polsby-Popper score of the 2016 court mandated plan. Average distance between the
two curves is a 10.4% advantage for the Rs.



Allan Borodin
University of Toronto
Toronto, Ontario, Canada
Email: bor@cs.toronto.edu

Omer Lev
Ben-Gurion University
Beersheba, Israel
Email: omerlev@bgu.ac.il

Nisarg Shah
University of Toronto
Toronto, Ontario, Canada
Email: nisarg@cs.toronto.edu

Tyrone Strangway
Ben-Gurion University
Beersheba, Israel
Email: strangwa@bgu.ac.il


