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Abstract

The guarantee of an anonymous mechanism is the worst case welfare

an agent can secure against unanimously adversarial others. How high

can such a guarantee be, and what type of mechanism achieves it?

We address the worst case design question in the n-person probabilistic

voting/bargaining model with p deterministic outcomes. If n ≥ p the

uniform lottery is the only maximal (unimprovable) guarantee; there are

many more if p > n, in particular the ones inspired by the random dictator

mechanism and by voting by veto.

If n = 2 the maximal set M(n, p) is a simple polytope where each

vertex combines a round of vetoes with one of random dictatorship. For

p > n ≥ 3, writing d = b p−1
n
c, we show that the dual veto and random

dictator guarantees, together with the uniform one, are the building blocks

of 2d simplices of dimension d in M(n, p). Their vertices are guarantees

easy to interpret and implement. The set M(n, p) may contain other

guarantees as well; what we can say in full generality is that it is a finite

union of polytopes, all sharing the uniform guarantee.
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1 Guarantees and protocols

Worst case analysis is a simple mechanism design question. Fix an arbitrary

collective decision problem by its feasible outcomes — allocation of resources,

public decision making, etc.. —, the domain of individual preferences and the

number n of relevant agents. We evaluate a mechanism (game form) solving

this problem by the guarantee it offers to the participants. This is the welfare

level each one can secure in this game form without any prior knowledge of how

others will play their part: the worst case assumption is that their moves are

collectively adversarial (what I know or believe about their preferences, what I

expect about their behaviour is irrelevant). My guarantee is the value of the

two-person zero-sum game pitting me against the rest of the world.

Given the decision problem, what guarantees can any mechanism offer, and

which mechanisms implement such guarantees? We are particularly interested

in the maximal guarantees, those that cannot be improved: a higher guarantee

is a better default option if I am clueless about other participants or unwilling

to engage in risky strategic moves; it encourages acceptance of and participation

in the mechanism.

These questions were first addressed by the cake-cutting literature ([4], [1],

[3]). Two agents divide a cake over which their utilities are additive and non

atomic. In the Divide and Choose mechanism (D&C for short) they each can

guarantee a share worth 1/2 of the whole cake: the Divider must cut the cake in

two parts of equal worth, any other move is at her own risk. This guarantee is

not only maximal but also optimal (higher than any other feasible guarantee):

when the two agents have identical preferences, their common guarantee cannot

be worth more than 1/2 of the cake.

Contrast D&C with the simple Nash demand game: each agent claims a

share of the cake, demands are met if they are compatible, otherwise nobody gets

any cake. Against an adversarial player I will not get anything: this mechanism

offers no guarantee at all. The appeal of D&C is that I cannot be tricked to

accept a share worth less than 1/2.

Worst case analysis is related to the familiar implementation methodology

in mechanism design, but only loosely. We speak of a mechanism implementing

a certain guarantee —mapping my preferences to a certain welfare level —but

we do not postulate that each agent behaves under the worst case assumption,

nor do we ask what social choice function will then be realised, as some papers

reviewed in section 2 did. Instead the guarantee of a game form is just one of
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its features, an important one for two reasons:

• an agent using a best reply to the other agents’strategies gets at least her
guaranteed welfare (because she has a safe strategy achieving that level

no matter what); so any Nash equilibrium of the game delivers at least

the guaranteed welfare to everyone,

• if an agent plays the mechanism repeatedly with changing sets of partici-

pants, the safe strategy is always available when she happens to be clueless

about the other agents’behaviour,

Many different mechanisms can implement the same guarantee, as the ex-

ample below makes clear.1 We call the whole class of game forms sharing a

certain guarantee the protocol implementing it. The two concepts of guarantee

and protocol and their relation is the object of worst case analysis.

We initiate this approach in the probabilistic voting model, where the pro-

tocols we identify can be interpreted as the guidelines for a partially informal

bargaining process. There are finitely many pure (deterministic) outcomes and

we must choose a convex compromise (probabilistic or otherwise) between these.

For tractability, we maintain a symmetric treatment of agents (Anonymity) and

of outcomes (Neutrality). We find that, depending on the number n of agents

and p of pure outcomes the set of maximal guarantees and their protocols can

be either very simple and dull (when n ≥ p, see below) or dauntingly complex.
A good starting point is the simple case of deterministic voting over p out-

comes with ordinal preferences. An anonymous and neutral guarantee is a rank

k from 1 to p (where rank 1 is the worst): it is feasible if for any preference

profile there is at least one outcome ranked k or above by each voter. Suppose

first n ≥ p: at a profile where each outcome is the worst for some agent, the

rank k must be 1, so the guarantee idea has no bite. Now if n < p we can give to

each voter the right to veto up to d = bp−1n c outcomes: this is feasible because
nd < p, so the rank k = d + 1 is a feasible guarantee, clearly the best possible

one. Worst case analysis’simple advice to a committee smaller than the num-

ber of outcomes it chooses from, is to distribute d veto rights to its members,

not at all what a standard voting rule à la Condorcet or Borda does. However

the corresponding protocol contains, inter alia, the following mechanisms: ask

everyone to pick independently d outcomes to veto, then use any voting rule to

pick among the remaining free outcomes, often more than p− nd of them.
1Similarly we can implement the optimal “one half of the whole cake”guarantee by D&C

or by any one of Dubins and Spanier’moving knife procedures ([1])
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We allow compromises between the pure outcomes, interpreted as lotteries,

time shares, or the division of a budget. Distributing veto tokens is a natural

way to achieve a high guarantee, but there are others. The familiar random

dictator2 mechanism ([2]) with two voters implements the guarantee putting a

1/2 probability on both my first and worst ranks. And the uniform lottery over

all ranks is yet another guarantee implemented by any mechanism where each

participant has the right, at some stage of the game that could depend upon

the agent, the play of the game etc.., to force the decision by flipping a fair coin

between all outcomes.

Example: three agents, six outcomes The uniform guarantee UNI(6) is

the lottery λuni = ( 16 ,
1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ), where each rank is equally probable.

Distributing one veto token to each agent implements λ1 = (0, 1, 0, 0, 0, 0)

(recall the first coordinate is the worst rank), as in the deterministic case. But

λ1 is not maximal: it is improved by making the protocol a bit more precise.

After the veto tokens have been used, we can pick one of the remaining outcomes

uniformly, or give the option to force this random choice to each agent. Then

the rank distribution cannot be worse for anyone than λvt = (0, 13 ,
1
3 ,

1
3 , 0, 0),

because my worst case after the vetoing phase is that the two other agents killed

my two best outcomes. And λvt stochastically dominates λ1. We will use the

notation V T (3, 6) instead of λvt when it is important to specify n and p.

The random dictator mechanism between our three agents delivers the guar-

antee λ2 = (23 , 0, 0, 0, 0,
1
3 ): my worst case is that the two other agents pick my

worst outcome. Again λ2 is not maximal, and improved by the following proto-

col: agents report (one of) their top outcome(s); if they all agree on a we choose

a; if they each choose a different outcome, we pick one of them with uniform

probability; but if the choices are a, a, b we randomize uniformly between a, b

and an arbitrary third outcome c. This implements the correct random dictator

guarantee RD(3, 6) : λrd = ( 13 ,
1
3 , 0, 0, 0,

1
3 ), that stochastically dominates λ2.

It is easy to check directly that UNI(6), V T (3, 6) and RD(3, 6) are all

maximal. For instance this follows for λrd and λvt by inspecting respectively

the left or right profile of strict ordinal preferences

≺1 a b x y z c

≺2 b c y z x a

≺3 c a z x y b

≺1 a x y z b c

≺2 b y z x c a

≺3 c z x y a b

2Each agent has an equal chance to choose the final outcome.
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(where agent 1’s worst is a and best is c). At the left profile, to give a 1
3

chance of their best outcome to all agents a protocol implementing λrd must

pick a, b or c, each with probability 1
3 : then each agent experiences exactly the

distribution λrd over her ranked outcomes, and no other lottery λ stochastically

dominating λrd is a feasible guarantee at this profile. Similarly at the right

profile, implementing λvt implies zero probability on a, b, c, and at most (hence

exactly) 1
3 on each of x, y and z. The symmetry of these two arguments is not

a coincidence: a critical duality relation connects λvt and λrd (section 4).

What other guarantees are maximal for n = 3, p = 6? Convex combina-

tions preserve feasibility but not maximality: for instance an equal chance of

the protocols implementing V T (3, 6) and RD(3, 6) delivers the feasible guaran-

tee 1
2λ

rd + 1
2λ

vt = (16 ,
1
3 ,

1
6 ,

1
6 , 0,

1
6 ) which is dominated by λuni. But lotteries

between UNI(6) and V T (3, 6), or between UNI(6) and RD(3, 6) are in fact

maximal. Moreover for this choice of n and p, the maximal guarantees cover

exactly the two intervals [λuni, λvt] and [λuni, λrd] (Theorem 1 in section 5).

The choice facing the worst case designer in this example is sharp, and its

resolution is context dependent: the veto guarantee is a good fit when bargain-

ing is about choosing an expensive infrastructure project, or a person to hold

a position for life; the random dictator approach makes sense if we are divid-

ing time between different activities, or choosing a pair of roman consuls; the

uniform guarantee stands out if we value a disagreement outcome revealing no

information about individual preferences.

Critical to their practical application, the protocols implementing UNI, V T

and RD above rely on ordinal preferences only, as do the agents’ safe action

when they report which outcome(s) they veto, or which ones they prefer among

those still in play.

The punchline Our results cast a new light on two familiar collective decison

mechanisms, random dictator and voting by veto. Together and in combination

with the uniform guarantee, they generate all maximal guarantees if n = 2, and

essentially all of them again if 3 ≤ n < p ≤ 2n. In the general case they can be

sequentially combined to produce a very large subset of maximal guarantees.

1.1 Contents of the paper

After a review of the literature in section 2 we define in section 3 the concept

of guarantee in three related models. In the first one, agents have ordinal
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preferences over the pure outcomes, and incomplete preferences over lotteries

by stochastic dominance. In the second they have von Neuman Morgenstern

(vNM) utilities over lotteries. In the third they have quasi-linear utilities over

outcomes and money, and lotteries are replaced by cash compensations. A

guarantee is a convex combination of the ranks 1 to p where rank 1 is the

worst. It is feasible if at each profile of preferences, there is a lottery over pure

outcomes, or a pure outcome and a balanced set of cash compensations in the

quasi-linear model, that everyone weakly prefers to her guaranteed utility.

Lemma 1 shows that the three definitions are equivalent and that feasible

guarantees cover a canonical polytope G(n, p) in the simplex with p ranked ver-

tices. Its Corollary gives a compact though abstract characterisation of G(n, p).

Section 4 focuses on the subsetM(n, p) of maximal guarantees, starting with

a complete characterisation in two easy cases (section 4.1):

If n ≥ p the unique maximal guarantee is UNI(p), dominating every other

feasible guarantee (Proposition 1), so the worst case viewpoint tells us to allow

each agent to force this canonical anonymous and neutral disagreement outcome.

In every other case there are many more options.

If n = 2 < p a guarantee λ is maximal if and only if it is symmetric with

respect to the middle rank (Proposition 2). For instanceM(2, 6) is the convex

hull of λrd = ( 12 , 0, 0, 0, 0,
1
2 ) (RD(2, 6)), λmix = (0, 12 , 0, 0,

1
2 , 0), and λvt =

(0, 0, 12 ,
1
2 , 0, 0) (two veto tokens per person). Here is the protocol for λmix: the

agents veto one outcome each, then choose randomly a dictator (equivalently,

we randomly give one veto token to one agent and four tokens to the other).

Note that UNI(p) is the center of the polytopeM(2, p).

When 3 ≤ n < p, the structure ofM(n, p) is much more complicated. Section

4.2 describes a critical duality property inside M(n, p), relating V T (n, p) and

RD(n, p), while UNI(p) is self-dual: Proposition 3. We define in section 4.3

the large set C(n, p) of canonical guarantees: for three or more agents they are
a rich family of vertices ofM(n, p). Their protocols combine up to d successive

rounds (recall d = bp−1n c) of either veto (one token each) or a (partial) random
dictator.

Our first main result Theorem 1 in section 5.1, gives a fairly complete pic-

ture of all maximal guarantees with three or more agents and at most twice

as many pure outcomes (p ≤ 2n ⇐⇒ d = 1). As long as p 6= 2n − 1 and

(n, p) 6= (4, 8), (5, 10), they cover exactly the two intervals [UNI(p), V T (n, p)]

and [UNI(p), RD(n, p)], as in the numerical example above. There are addi-

tional maximal guarantees when p = 2n − 1 or (n, p) = (4, 8), (5, 10), some of

6



them described after the Theorem (Proposition 4).

In section 5.2 we turn to the general case 3 ≤ n < p with no restrictions

on d. The set M(n, p) is a union of polytopes (faces of G(n, p)), of which

UNI(p) is always a vertex. Theorem 2 uses the canonical guarantees in C(n, p)
to construct 2d simplices of dimension d, one for each sequence Γ of length d

in {V T,RD}: the vertices of such a simplex are lotteries in C(n, p) obtained
from the d initial subsequences of Γ, plus UNI(p). For instance the sequence

Γ = (V T,RD) gives the triangle in C(3, 7) with vertices UNI(p), V T (3, 7), and

λ = (0, 13 ,
1
3 , 0,

1
3 , 0, 0) denoted V T ⊗ RD; the latter is implemented by a first

round of one veto each, followed by RD(3, q) over the remaining q outcomes (four

or more). This construction does not cover the entire setM(n, p) but delivers a

large subset built from simple combinations of veto and random dictator steps.

Section 6 gathers some open questions and potential research directions.

Several proofs are gathered in the Appendix, section 7.
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