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Abstract

Tournament solutions provide methods for selecting the “best” alternatives from a
tournament and have found applications in a wide range of areas. Previous work
has shown that several well-known tournament solutions almost never rule out any
alternative in large random tournaments. Nevertheless, all analytical results thus
far have assumed a rigid probabilistic model, in which either a tournament is chosen
uniformly at random, or there is a linear order of alternatives and the orientation
of all edges in the tournament is chosen with the same probabilities according to
the linear order. In this work, we consider a significantly more general model where
the orientation of different edges can be chosen with different probabilities. We
show that a number of common tournament solutions, including the top cycle and
the uncovered set, are still unlikely to rule out any alternative under this model.
This corresponds to natural graph-theoretic conditions such as irreducibility of the
tournament. In addition, we provide tight asymptotic bounds on the boundary of
the probability range for which the tournament solutions select all alternatives with
high probability.

1 Introduction

Tournaments play an important role in numerous situations as a means of representing
entities and a dominance relationship between them. For instance, both the outcome of a
round-robin sports competition and the majority relation of voters in an election can be
represented by a tournament. A question that occurs frequently is therefore the following:
Given a tournament, how can we choose the “best” alternatives in a consistent manner?
This question has been addressed by a rich and beautiful literature on tournament solutions,
which have found applications in areas ranging from sports competitions [Ushakov, 1976]
to multi-criteria decision analysis [Arrow and Raynaud, 1986, Bouyssou, 2004] to biology
[Schjelderup-Ebbe, 1922, Landau, 1953, Slater, 1961, Allesina and Levine, 2011]. Over the
past half century several tournament solutions have been proposed, two of the oldest and
best-known of which are the top cycle [Good, 1971, Schwartz, 1972, Miller, 1977] and the
uncovered set [Miller, 1980].1

Given that the purpose of tournament solutions is to discriminate the “best” alternatives
from the remaining ones, it perhaps comes as a surprise that many common tournament
solutions—including the top cycle, the uncovered set, the Banks set, and the minimal cov-
ering set—select all alternatives with high probability in a large random tournament [Fey,
2008, Scott and Fey, 2012]. Put differently, the aforementioned tournament solutions almost
never exclude any alternative in a tournament chosen at random. Nevertheless, these results
are based on the uniform random model, in which all tournaments are drawn with equal
probability, or equivalently each edge is oriented in one direction or the other with equal
probability independently of other edges. For a large majority of applications of tourna-
ments, one would not expect that this assumption holds. Indeed, stronger teams are likely
to beat weaker teams in a sports competition, and candidates with a large base of support

1For a thorough treatment of tournament solutions, we refer the reader to excellent surveys by Laslier
[1997] and Brandt et al. [2016].



have a higher chance of winning an election. Moreover, real-world tournaments often exhibit
a certain degree of transitivity: If alternatives a, b, and c are such that a dominates b and
b dominates c, then it is more likely that a dominates c than the other way around.

A more general model of random tournaments is the Condorcet random model, previously
considered by Frank [1968],  Luczak et al. [1996], Vassilevska Williams [2010] and Kim et al.
[2017]. In this model, there is a linear order of alternatives, which can be interpreted as
an ordering of the alternatives from strongest to weakest. For each pair of alternatives,
the probability that the edge is oriented from the alternative that occurs later in the linear
order to the alternative that occurs earlier in the linear order is p, independently of other
pairs of alternatives.2 Crucially, the value of p is the same for all pairs of alternatives. The
Condorcet random model generalizes the uniform random model, since the latter can be
obtained from the former by taking p = 1/2.  Luczak et al. [1996] showed that under the
Condorcet random model, the top cycle selects all alternatives as long as p ∈ ω(1/n). The
same authors show furthermore that this bound is tight, that is, the statement no longer
holds if p ∈ O(1/n).3

Although the Condorcet random model addresses the issues raised above with regard to
the uniform random model, it is still rather unrealistic for two important reasons. Firstly,
in tournaments in the real world, the orientation of different edges are typically determined
by different probabilities. For instance, in a sports tournament the probability that a very
strong team beats a very weak team is usually higher than the probability that a moderately
strong team beats a moderately weak team; a similar phenomenon can be observed in
elections. Secondly, even though one can roughly order the alternatives in a tournament
according to their strength, it is often the case that not all probabilities of the orientation
of the edges respect the ordering. Indeed, this precisely corresponds to the notion of “bogey
teams”—weak teams that nevertheless frequently beat certain supposedly stronger teams.
Given the limitations of the uniform random model and the Condorcet random model, it is
natural to ask whether previous results continue to hold under more general and realistic
models of random tournaments, or whether they break down as soon as we move beyond
these restricted models.

In this paper, we show that a number of tournament solutions, including the top cycle
and the uncovered set, still choose all alternatives with high probability under a significantly
more general model of random tournaments. Unlike the Condorcet random model, our
model does not rely on an ordering of the alternatives. Instead, the orientation of each edge
is determined by probabilities within the range [p, 1 − p] for some parameter p, and these
probabilities are allowed to vary across edges. The only substantive assumption that we
make is that the orientations of different edges are chosen independently from one another.
Under this model, which is more general than both the uniform random model and the
Condorcet random model, we establish in Section 3 that the top cycle almost never rules
out any alternative as long as p ∈ ω(1/n), thus generalizing the result by  Luczak et al. [1996].
We also show that our bound is asymptotically tight, and that analogous results hold for
two other tournament solutions based on the set of Condorcet winners and losers as well.
Moreover, we prove in Section 4 that the uncovered set is likely to include the whole set of
alternatives when p ∈ ω(

√
log n/n). This bound is again asymptotically tight, and the same

holds for another tournament solution based on the uncovered set. Since the condition that
the top cycle or the uncovered set chooses all alternatives have meaningful graph-theoretic
interpretations—the top cycle is the whole set of alternatives if and only if the tournament
is strongly connected4, and the uncovered set fails to exclude any alternative exactly when

2By symmetry, we may assume without loss of generality that p ≤ 1/2.
3See, e.g., Cormen et al. [2009] for the definitions of asymptotic notations.
4A strongly connected tournament is also said to be strong. Strong connectedness is equivalent to

irreducibility and to the property of having a Hamiltonian cycle [Moon, 1968].



all alternatives are kings5—we believe that our results are of independent interest in graph
theory and discrete mathematics. Furthermore, the generality of our model allows us to
derive consequences in Section 5 for a different model in which tournaments are generated
from random voter preferences, and we complement our theoretical results with experimental
data in Section 6.

1.1 Related Work

The study of the behavior of tournament solutions in large random tournaments goes back
to Moon and Moser [1962], who showed that the top cycle almost never rules out any
alternative in a large tournament chosen uniformly at random. In fact, they proved a
stronger statement that the probability that the top cycle excludes at least one alternative
is inverse exponential in the number of alternatives; the estimate was later made more
precise by Moon [1968] in his seminal book on tournaments. Bell [1981] also considered
the top cycle but assumed that tournaments are generated from the preferences of a large
number of voters, each with a uniform random ranking over the alternatives; he likewise
found that the top cycle selects all alternatives with high probability under this assumption.
Fey [2008] and later Scott and Fey [2012] established results on several tournament solutions
including the uncovered set, the Banks set, the Copeland set, the minimal covering set, and
the bipartisan set using the uniform random model. While the uncovered set, the Banks
set, and the minimal covering set are likely to include all alternatives in a large random
tournament, the same event is unlikely to occur for the Copeland set. On the other hand,
the bipartisan set chooses on average half of the alternatives in a random tournament of any
fixed size [Fisher and Ryan, 1995]; it is the unique most discriminating tournament solution
satisfying standard properties proposed in the literature [Brandt et al., 2018].

The discriminative power of tournament solutions has also been investigated empirically
by Brandt and Seedig [2016]. Building on the observation that the distributions of real-world
tournaments are typically far from uniform, these authors examined the behavior of eleven
common tournament solutions on tournaments generated according to stochastic preference
models and empirical data. The stochastic models that they used include the impartial
culture model, the Mallows mixtures model, and the Pólya-Eggenberger urn model. They
reported that under these more realistic models, most tournament solutions are in fact much
more discriminating than the analytical results for uniform random tournaments suggest.

2 Preliminaries

A tournament T consists of a set A = {a1, a2, . . . , an} of alternatives and a dominance
relation. The dominance relation is an asymmetric and connex binary relation on A repre-
sented by a directed edge between each unordered pair of distinct alternatives in A. We say
that alternative ai dominates another alternative aj if there is an edge from ai to aj . An
alternative is said to be a Condorcet winner if it dominates all of the remaining alternatives,
and a Condorcet loser if it is dominated by all of the remaining alternatives. We extend
the dominance relation to sets and say that a set A′ ⊆ A of alternatives dominates another
set A′′ ⊆ A of alternatives disjoint from A′ if for all a′ ∈ A′ and a′′ ∈ A′′, a′ dominates a′′.
A tournament is commonly interpreted as the outcome of a round-robin sports competition
and as the majority relation of an odd number of voters with linear preferences. In the
former interpretation, alternative ai dominating alternative aj means that the player or

5A king is an alternative that can reach any other alternative via a directed path of length at most two
[Maurer, 1980]. Therefore, all alternatives of a tournament are kings if and only if every pair of alternatives
can reach each other via a directed path of length at most two. Such a tournament has been studied in
graph theory and called an all-kings tournament [Reid, 1982].



team represented by ai beats the player or team represented by aj in the competition. In
the latter interpretation, the same dominance relation signifies that more than half of the
voters prefer ai to aj .

We are interested in tournament solutions, which are functions that map each tourna-
ment to a nonempty subset of its alternatives, usually referred to as the choice set. Two
simple tournament solutions are COND , which chooses a Condorcet winner if one exists and
chooses all alternatives otherwise6, and the set of Condorcet non-losers (CNL), which con-
sists of all alternatives that are not Condorcet losers. Other tournament solutions considered
in this paper are the following:

• The top cycle (TC ) is the (unique) smallest set of alternatives such that all alternatives
in the set dominate all alternatives not in the set;

• The uncovered set (UC ) consists of all alternatives that can reach all other alternatives
via a domination path of length at most two;7

• The iterated uncovered set (UC∞) is the result of iteratively computing the uncovered
set until there is no further reduction.

The inclusions UC∞(T ) ⊆ UC (T ) ⊆ TC (T ) ⊆ CNL(T ) and TC (T ) ⊆ COND(T ) hold for
any tournament T .

Next, we describe the random models for generating tournaments that we consider in
this paper. We will work with the first model in Sections 3 and 4 and the second model in
Section 5.

• Model 1: For each pair of distinct alternatives ai, aj , there is an edge from ai to
aj with probability pi,j and an edge from aj to ai with probability pj,i = 1 − pi,j ,
independently of other pairs of alternatives.

• Model 2: There is a constant number k of voters, where k is odd. For each voter v
and each pair of distinct alternatives ai, aj , the voter prefers ai to aj with probability
qv,i,j and prefers aj to ai with probability qv,j,i = 1 − qv,i,j , independently of other
voters and other pairs of alternatives.8 The majority relation, in which alternative ai
dominates another alternative aj if and only if more than half of the voters prefer ai
to aj , forms a tournament with A as its set of alternatives.

Several models for generating random tournaments considered in previous work are special
cases of our models. For example, the uniform random model [Fey, 2008, Scott and Fey,
2012] corresponds to taking pi,j = 1/2 for all i, j in Model 1 or taking qv,i,j = 1/2 for all
v, i, j in Model 2 with any k. The Condorcet random model [Frank, 1968,  Luczak et al.,
1996, Vassilevska Williams, 2010, Kim et al., 2017] corresponds to taking pi,j = p for all
i < j in Model 1, for some fixed value of p. The Condorcet random model for voters [Brandt
and Seedig, 2016] corresponds to taking qv,i,j = p for all v and all i < j in Model 2, for
some fixed value of p. Following standard terminology, we say that an event occurs “with
high probability” or “almost surely” if the probability that the event occurs converges to 1
as n, the number of alternatives, goes to infinity.

We end this section by listing some standard tools for deriving probabilistic bounds. Our
first lemma is the Chernoff bound, which gives us an upper bound on the probability that
a sum of independent random variables is far away from its expected value.

6Note that the set of Condorcet winners is not a tournament solution because it can be empty.
7This is known in graph theory as the set of kings (cf. Footnote 5). An alternative definition, which is

also the origin of the name “uncovered set”, is based on the covering relation. An alternative ai is said to
cover another alternative aj if (i) ai dominates aj , and (ii) any alternative that dominates ai also dominates
aj . The uncovered set corresponds to the set of alternatives that are not covered by any other alternative.

8One way to interpret the possible intransitivity of the preferences is as a result of noise in the voters’
true preferences. Laslier [2010] introduced the term Rousseauist cultures for this kind of models.



Lemma 1 (Chernoff bound). Let X1, X2, . . . , Xr be independent random variables that take
on values in the interval [0, 1], and let S = X1 +X2 + · · ·+Xr. For every δ ≥ 0, we have

Pr[S ≥ (1 + δ)E[S]] ≤ exp

(
−δ2 E[S]

3

)
.

The next two lemmas allow us to estimate the expression 1 + x from above and below.

Lemma 2 (Bernoulli’s inequality). For all real numbers r ≥ 1 and x ≥ −1, we have

(1 + x)r ≥ 1 + rx.

Lemma 3. For all real numbers x, we have 1 + x ≤ ex.

3 Top Cycle

In this section, we consider the top cycle. We show that when each probability pi,j is between
f(n) and 1− f(n) for some function f(n) ∈ ω (1/n), TC chooses all alternatives with high
probability (Theorem 1). By using the inclusion relationships between TC , COND , and
CNL, we obtain analogous statements for COND and CNL. We also show that our results
are asymptotically tight—for all three tournament solutions, the statement ceases to hold
if f(n) ∈ O (1/n) (Theorem 2).

We begin with our main result of the section.

Theorem 1. Let f : Z+ → R≥0 be a function such that f(n) ≤ 1/2 for all n and f(n) ∈
ω (1/n). Assume that a tournament T is generated according to Model 1, and that

pi,j ∈ [f(n), 1− f(n)]

for all i 6= j. Then with high probability, TC (T ) = A.

Theorem 1 generalizes a result by  Luczak et al. [1996] that establishes the claim for the
case where pi,j = f(n) for all i < j (or, by symmetry, the case where pi,j = 1− f(n) for all
i < j). We remark that their proof relies crucially on the assumption that there is a linear
order of alternatives and all edges are more likely to be oriented in one direction than in
the other direction according to the order. Indeed, this assumption allows the authors to
show that with high probability, any alternative can be reached by the strongest alternative
and can reach the weakest alternative via a domination path of length at most two each.
Moreover, with the assumption f(n) ∈ ω (1/n) one can show that the weakest alternative
can almost surely reach the strongest alternative via a domination path of length four, thus
establishing the strong connectivity of the tournament. In contrast, we do not assume that
the edges in the tournament are likely to be oriented in one direction or the other. As such,
we will need a completely different approach for our proof.

We give here a high-level overview of the proof of Theorem 1; the full proof can be found
in the appendix. We observe that TC (T ) 6= A exactly when there exists a proper, nontrivial
subset of alternatives B that dominates the complement set of alternatives A\B. Using the
union bound, we then upper bound the probability that TC (T ) 6= A by the sum over all sets
B of the probabilities that B dominates A\B. This sum can be written entirely in terms
of the variables pi,j for i < j and is moreover linear in all of these variables, implying that
its maximum is attained when all variables take on a value at one of the two boundaries of
their domain. Using a number of helper lemmas (Lemmas 4, 5, and 7), we show that the
sum is in fact maximized when all variables take on a value at the same boundary. This



allows us to bound the sum directly by plugging in the value at a boundary and complete
the proof.

Since TC (T ) ⊆ COND(T ) and TC (T ) ⊆ CNL(T ), we immediately obtain the following
corollary.

Corollary 1. Let f : Z+ → R≥0 be a function such that f(n) ≤ 1/2 for all n and f(n) ∈
ω (1/n). Assume that a tournament T is generated according to Model 1, and that

pi,j ∈ [f(n), 1− f(n)]

for all i 6= j. Then with high probability, COND(T ) = CNL(T ) = A.

Next, we show that Theorem 1 and Corollary 1 are tight in the sense that if f(n) ∈
O (1/n), the results no longer hold.

Theorem 2. Let c ≥ 0 be a constant. Assume that a tournament T is generated according
to Model 1, and that

pi,j ≤
c

n

for all i > j. Then for large enough n, with at least constant probability both TC (T ) and
COND(T ) contain a single alternative. Moreover, for large enough n, with at least constant
probability CNL(T ) does not contain all alternatives.

Proof. The probability that a1 dominates all of the remaining alternatives is at least(
1− c

n

)n−1
→ e−c

as n→∞. When this occurs, both TC and COND only choose a1.
An analogous argument shows that an is dominated by all of the remaining alternatives

with at least constant probability for large enough n. When this occurs, CNL chooses all
alternatives except an.

Theorems 1 and 2 and Corollary 1 allow us to obtain the following corollary on the
Condorcet random model.

Corollary 2. Let f : Z+ → R≥0 be a function such that f(n) ≤ 1/2 for all n. Assume that
a tournament T is generated according to Model 1, and that pi,j = f(n) for all i > j.

• If f(n) ∈ ω (1/n), then with high probability, TC (T ) = COND(T ) = CNL(T ) = A.

• If f(n) ∈ o (1/n), then with high probability, TC (T ) and COND(T ) contain a single
alternative, and CNL(T ) does not contain all alternatives.

• If f(n) ≤ c/n for some constant c ≥ 0, then for large enough n, with at least constant
probability TC (T ) and COND(T ) contain a single alternative. Moreover, for large
enough n, with at least constant probability CNL(T ) does not contain all alternatives.

 Luczak et al. [1996] also considered the case where pi,j = c/n for all i > j and showed
that the probability that TC selects all alternatives converges to (1 − e−c)2 in this special
case. Our next theorem establishes an analogous result for COND and CNL. Its proof can
be found in the appendix.

Theorem 3. Let c ≥ 0 be a constant. Assume that a tournament T is generated according
to Model 1, and that

pi,j =
c

n

for all i > j. Then the probability that COND(T ) = A converges to 1− e−c as n→∞. The
same statement holds for CNL.



4 Uncovered Set

In this section, we turn our focus to the uncovered set. We show that when each probability
pi,j is between f(n) and 1 − f(n) for some function f(n) ≥ c

√
log n/n with c >

√
2 a

constant, UC chooses all alternatives with high probability (Theorem 4). As with TC , we
also show that our result is asymptotically tight—if f(n) ≤ 0.6

√
log n/n, the statement

no longer holds (Theorem 5). It follows that similar results hold for UC∞, implying that
Θ(
√

log n/n) is the threshold where the two tournament solutions go from almost always
choosing all alternatives to excluding at least one alternative with high probability.

Our first result of the section shows that UC chooses the whole set of alternatives for a
wide range of distributions over tournaments.

Theorem 4. Let c >
√

2 be a constant. Assume that a tournament T is generated according
to Model 1, and that

pi,j ∈

[
c

√
log n

n
, 1− c

√
log n

n

]
for all i 6= j. Then with high probability, UC (T ) = A.

The proof of Theorem 4 can be found in the appendix.
Since the uncovered set is the finest tournament solution satisfying the axioms of Con-

dorcet consistency, neutrality, and expansion [Moulin, 1986], Theorem 4 implies that any
tournament solution that satisfies these three axioms also selects all alternatives with high
probability when the tournament is generated according to the assumptions of the theorem.

Next, we show that the statement of Theorem 4 breaks down if f(n) ≤ 0.6
√

log n/n,
thus confirming that the assumption of the theorem cannot be relaxed asymptotically.

Theorem 5. Assume that a tournament T is generated according to Model 1, and that

pi,j ≤ 0.6

√
log n

n

for all i > j. Then with high probability, UC (T ) 6= A.

Proof. Let A1 = {a1, a2, . . . , abn0.49c}, and let A2 be the set of alternatives that an domi-
nates. We first prove the following claim.

Claim: With high probability, the following two events occur simultaneously: (i) an does
not dominate any of the alternatives in A1, and (ii) |A2| ≤ 0.61

√
n log n.

Proof of Claim: First, using Lemma 2, the probability that an dominates at least one of
the alternatives in A1 is at most

1−

(
1− 0.6

√
log n

n

)bn0.49c
≤ 1−

(
1− 0.6

⌊
n0.49

⌋√ log n

n

)

≤ 0.6 ·
√

log n

n0.01
,

which converges to 0 as n→∞.
Next, for each ai ∈ A with i = 1, 2, . . . , n − 1, let Xi be an indicator random variable

that indicates whether an dominates ai or not: Xi takes on the value 1 if an dominates ai
and 0 otherwise. We have

E[Xi] ≤ 0.6

√
log n

n
≤ 0.6

√
n log n

n− 1
.



Define X ′i = Xi + 0.6
√
n logn

n−1 − E[Xi], and X ′ =
∑n−1

i=1 X
′
i. We now have

E[X ′i] =
0.6
√
n log n

n− 1
and E[X ′] = 0.6

√
n log n.

Moreover, observe that |A2| =
∑n−1

i=1 Xi. By Lemma 1, it follows that

Pr
[
|A2| > 0.61

√
n log n

]
≤ Pr

[
X ′ > 0.61

√
n log n

]
= Pr

[
X ′ >

0.61

0.6
· E[X ′]

]
≤ exp

(
−
(

0.61

0.6
− 1

)2

· E[X ′]

3

)

= exp

(
− 1

3600
· 0.6
√
n log n

3

)
,

which again vanishes for large n.
Using the union bound over the two events, we have our claim. �
From now on, we assume that an does not dominate any of the alternatives in A1 and

that |A2| ≤ 0.61
√
n log n. Under this assumption, an can reach all of the alternatives in

A1 via a domination path of length at most two if and only if each alternative in A1 is
dominated by some alternative in A2. Note that the event that this holds for a particular
alternative in A1 is independent of the corresponding events for other alternatives in A1. It
follows that

Pr [an can reach all ai ∈ A1 via a domination path of length at most two]

= Pr [an can reach a fixed ai ∈ A1 via a domination path of length two]bn
0.49c

= (1− Pr [a fixed ai ∈ A1 dominates aj for all aj ∈ A2])bn
0.49c

≤

1−

(
1− 0.6

√
log n

n

)0.61
√
n logn

bn
0.49c

=

1−

(1− 0.6

√
log n

n

)0.61
√

n
log n

logn

bn0.49c

≤

1−

(
1− 0.6

√
log n

n
· 0.61

√
n

log n

)logn
bn

0.49c

=
(
1− 0.634logn

)bn0.49c

≤
(
1− n−0.46

)bn0.49c

≤ e−n
−0.46bn0.49c,

where we use Lemma 2, the estimate 0.634 > e−0.46, and Lemma 3 for the second, third,
and fourth inequalities, respectively.

Finally, since

lim
n→∞

e−n
−0.46bn0.49c = 0,



the probability that an 6∈ UC (T ) converges to 1 as n goes to infinity. This implies that with
high probability, UC (T ) is not the whole set of alternatives, as desired.

Since UC (T ) = A exactly when UC∞(T ) = A, we immediately have the following
corollary.

Corollary 3. Assume that a tournament T is generated according to Model 1.

• Let c >
√

2 be a constant. If pi,j ∈
[
c
√

logn
n , 1− c

√
logn
n

]
for all i 6= j, then with high

probability, UC∞(T ) = A.

• If pi,j ≤ 0.6
√

logn
n for all i > j, then with high probability, UC∞(T ) 6= A.

Theorems 4 and 5 and Corollary 3 allow us to obtain the following corollary on the
Condorcet random model.

Corollary 4. Let f : Z+ → R≥0 be a function such that f(n) ≤ 1/2 for all n. Assume that
a tournament T is generated according to Model 1, and that pi,j = f(n) for all i > j.

• If f(n) ∈ ω
(√

log n/n
)

or f(n) ≥ c
√

log n/n for some constant c >
√

2, then with

high probability, UC (T ) = UC∞(T ) = A.

• If f(n) ∈ o
(√

log n/n
)

or f(n) ≤ 0.6
√

log n/n, then with high probability, UC (T ) 6=
A and UC∞(T ) 6= A.

5 Majority Tournaments

Thus far, we have established probabilistic results for a general model in which the distribu-
tion over tournaments is defined by the probabilities that an alternative dominates another
alternative in the tournament (Model 1). As we mentioned in Section 2, a common inter-
pretation of tournaments is as the majority relation of an odd number of voters who are
endowed with linear preferences over a set of alternatives. In this section, we investigate a
more specific model in which the distribution over tournaments is determined by the proba-
bility that a voter prefers an alternative to another alternative (Model 2). It turns out that
the generality of our results for Model 1 will allow us to derive similar results for Model 2
as consequences.

Theorem 6. Let f : Z+ → R≥0 be a function such that f(n) ≤ 1/2 for all n, and f(n) ∈
ω
(
1/n2/(k+1)

)
. Assume that a tournament T is generated according to Model 2, and that

qv,i,j ∈ [f(n), 1− f(n)]

for all voters v and all i 6= j. Then with high probability, TC (T ) = COND(T ) = CNL(T ) =
A.

Theorem 7. Let c >
√

2 be a constant. Assume that a tournament T is generated according
to Model 2, and that

qv,i,j ∈

[
c

(
log n

n

) 1
k+1

, 1− c
(

log n

n

) 1
k+1

]
for all voters v and all i 6= j. Then with high probability, UC (T ) = UC∞(T ) = A.

The proofs of these two results can be found in the appendix.



6 Experiments

To complement our theoretical results, we investigated the asymptotic behavior of random
tournaments according to the Condorcet random model. Starting from a set of alternatives
{a1, a2, . . . , an}, we generated random tournaments by inserting for each pair of alternatives
ai, aj with i < j an edge from ai to aj with probability p and an edge in the reverse
direction with probability 1 − p. The tournament solutions that we consider can be all
computed efficiently: A simple counting algorithm suffices to compute COND , a depth-
first search algorithm computes TC in linear time, and the asymptotic running time for
computing UC equals that of matrix multiplication [Hudry, 2009]. In our experimental
setup, we drew 10000 random tournaments of each size n ∈ {5, 10, 20, 30, . . . , 100} for each
p ∈ {0.5, 0.3, 1/n, 1/n2,

√
2 log n/n, 0.6

√
log n/n} and checked for each tournament solution

S ∈ {COND ,UC ,TC} whether it selects all alternatives.9,10 Out of that, we computed the
percentage of tournaments in which all alternatives are selected. The resulting graphs are
displayed in Figure 1.

For p = 0.5, which corresponds to the uniform random model, our experimental results in
Figure 1(a) coincide with the main theorem of Fey [2008]. The results moreover reveal that
UC chooses all alternatives with high probability in tournaments with at least 50 alternatives
while COND and TC already do so in much smaller tournaments. As p decreases from
0.5 toward 0, the curves of COND , TC , and UC are shifted to the right; this is to be
expected since for smaller p the tournament is more skewed, making it more likely for
weaker alternatives to be excluded. Nevertheless, for any fixed p the fraction of tournaments
in which all alternatives are chosen approaches 1. In particular, when p = 0.3, UC almost
never rules out any alternative in tournaments of size 100 or more (Figure 1(b)).

Next, we look at the regimes where the probability p goes to 0 as n approaches infinity.
For the case of p = 1/n we find that, in line with Theorem 3, the probability that COND
selects all alternatives converges to 1−e−1 ≈ 0.6321 (Figure 1(c)). Similarly, the probability
that TC selects all alternatives converges to (1 − e−1)2 ≈ 0.3996 for the same value of p,
confirming a result by  Luczak et al. [1996]. Letting p approach 0 even faster, we find that
for p = 1/n2, both TC and COND are discriminative with high probability (Figure 1(d)).
As 1/n2 ∈ o (1/n), this is consistent with Corollary 2. Note that UC is discriminative for
almost all tournaments for both p = 1/n and p = 1/n2; indeed, this is implied by Corollary 4

since already 1/n ∈ o
(√

log n/n
)

.

Finally, we consider the regime p = Θ
(√

log n/n
)

, which according to Corollary 4 is

the boundary between UC almost never ruling out any alternative and almost always ruling
out at least one alternative. The experimental setting for p = c

√
log n/n with c ∈ {0.6,

√
2}

differs from the previous settings in that we only examined tournaments of size n ≥ 50,
since for small n the expression

√
2 log n/n is larger than 0.5, making it unsuitable for

our experiments. On the other hand, as p decreases rather slowly, we examined random
tournaments up to size 1000 in order to increase the expressive power of our experiments.
We find that COND and TC select all alternatives with high probability for both values
of c; this is in line with Corollary 2 and the observation that c

√
log n/n ∈ ω (1/n). On

the other hand, our experiments indicate that UC returns all alternatives in almost all
tournaments in the case of p =

√
2 log n/n (Figure 1(e)) but is discriminative in almost all

tournaments when p = 0.6
√

log n/n (Figure 1(f)). These findings coincide with Corollary 4
and demonstrate the interesting fact that a small gap in the constant factor constitutes the

9Our setting is slightly different for the last two values of p, as we explain later in this section.
10Since the probability that CNL selects all alternatives is equal to the corresponding probability for

COND for any fixed n by symmetry, and UC∞ selects all alternatives exactly when UC does, the results
for CNL and UC∞ are captured by those for COND and UC , respectively.
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Figure 1: Percentage of tournaments for which the tournament solution chooses the whole
set of alternatives. The horizontal and vertical axes correspond to the number of alternatives
in the tournament and the percentage, respectively. Averages are taken over 10000 runs.



threshold with regard to the discriminative power of UC .

7 Conclusion

In this paper, we investigate the behavior of a number of tournament solutions in large
random tournaments under a general probabilistic model. We establish tight asymptotic
bounds on the boundary of the probability range for which each tournament solution is
unlikely to exclude any alternative. In particular, we illustrate a difference between the
discriminative power of the top cycle and the uncovered set; this difference is not evident
in previous studies that focused on more restricted models. Indeed, while both tournament
solutions include all alternatives with high probability in the uniform random model, our
results suggest that the uncovered set is in fact considerably more discriminative than the
top cycle.

Our work leaves many interesting open questions for future study. A natural next step
would be to investigate the asymptotic behavior of other tournament solutions that have
been previously studied in the uniform random model—including the Banks set [Fey, 2008],
the minimal covering set [Scott and Fey, 2012], and the bipartisan set [Fisher and Ryan,
1995]—using our general probabilistic model. For instance, it is conceivable that the ap-
proach used by Fey [2008] to show that the Banks set almost never rules out any alternative
in the uniform random model can be extended to establish an analogous statement when
each edge probability is drawn from some constant range. It is not clear, however, whether
the approach would still work if we allow the range to depend on the number of alternatives
in the tournament like we do in the current work.

From a broader point of view, we believe that an important direction is to apply our
model to other tournament problems beyond those concerning tournament solutions, for
example the problem of finding a dominating set of minimum size. It is well-known that a
dominating set of size at most log2(n + 1) always exists and can be found using a simple
greedy algorithm. While a dominating set can be as small as a singleton in tournaments that
admit a Condorcet winner, Scott and Fey [2012] showed that for uniform random tourna-
ments, a dominating set of logarithmic size is the best that one can hope for. More precisely,
these authors showed that given any constant 0 < c < 1, the smallest dominating set of
a tournament chosen uniformly at random contains at least c log2 n alternatives with high
probability. Establishing a similar result in our general probabilistic model is an intriguing
technical challenge that would allow us to better understand the behavior of such structures
in the real world.
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A Appendix

A.1 Proof of Theorem 1

In what follows, we assume that x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) are vectors of
nonnegative integers with n components. We start by defining majorization, a preorder on
vectors that we will use frequently in our proof.

Definition 1 (Majorization). For a vector x, let x↓ = (x↓1, x
↓
2, . . . , x

↓
n) be the vector with

the same components, but sorted in descending order. Given two vectors x,y, we say that
x majorizes y, and write x � y, if the following two conditions are satisfied:

(i)
∑j

i=1 x
↓
i ≥

∑j
i=1 y

↓
i for j = 1, 2, . . . , n− 1;

(ii)
∑n

i=1 xi =
∑n

i=1 yi.

When one vector majorizes another vector, Karamata’s inequality allows us to compare
the sum of an arbitrary convex function at the components of one vector to the corresponding
sum of the other vector.

Lemma 4 (Karamata’s inequality). Let f : Z≥0 → R be a convex function, and let x,y be
vectors with n components such that x � y. Then

n∑
i=1

f(xi) ≥
n∑

i=1

f(yi).

We next show that if one vector majorizes another vector, then an analogous statement
holds for the two vectors that arise from taking the sum of all subsets with any fixed number
of components of the original vectors.

Definition 2. Let n be a positive integer and k ∈ {1, 2, . . . , n}. For a vector x with n
components, define x(k) to be the vector with

(
n
k

)
components consisting of all sums of k

distinct components of x in nonincreasing order.

For example, if n = 4 and x = (2, 4, 5, 7), then x(2) = (12, 11, 9, 9, 7, 6).

Lemma 5. If two vectors x,y with n components are such that x � y, then we also have
x(k) � y(k) for all k = 1, 2, . . . , n.

Before we prove Lemma 5, we first give a characterization of when one vector majorizes
another. To this end, we define the notion of an equalizing move, which involves taking two
components of a vector and bringing them “closer together”.

Definition 3. Given a vector x, an equalizing move on x takes two components xi > xj
and replaces them by xi − 1 and xj + 1, respectively.

Lemma 6. For any vector x, a vector y can be obtained from x by a finite number of
equalizing moves if and only if x � y.

Proof. The direction from left to right follows from the observation that an equalizing move
never decreases the sum of the j highest components of the vector for any j = 1, 2, . . . , n−1,
and leaves the sum of all components invariant.

For the converse direction, we proceed by induction on n, the number of components of
the vectors. The base case n = 1 holds trivially. Assume that the statement holds when
there are at most n− 1 components. To prove the statement when there are n components,
assume for contradiction that it does not hold for some pairs x,y, i.e., x � y but y cannot



be obtained from x by a finite number of equalizing moves. For each pair assume without
loss of generality that x1 ≥ · · · ≥ xn and y1 ≥ · · · ≥ yn, and consider the pairs that
minimize the difference x1 − y1 among all such pairs; this difference is guaranteed to be
nonnegative by condition (i) of Definition 1. Among all of the pairs under consideration,
take one that minimizes the largest index k such that xk = x1. Let l be the smallest
index such that

∑l
i=1 xi =

∑l
i=1 yi; the existence of l is guaranteed by condition (ii) of

Definition 1. If l < n, we can apply the induction hypothesis on the first l components and
the last n− l components separately to obtain y from x using a finite number of equalizing
moves, which would be a contradiction. Hence we may assume that l = n. In particular,∑j

i=1 xi ≥
∑j

i=1 yi + 1 for all j = 1, 2, . . . , n− 1.
Let m be the smallest index such that xm = xn. If xk = xm or xk = xm+1, then the only

vector with nonincreasing components that is majorized by x is x itself, a contradiction. So
xk ≥ xm + 2, and we may replace (xk, xm) by (xk − 1, xm + 1) in an equalizing move. Let
x′ = (x′1, x

′
2, . . . , x

′
n) be the vector resulting from this move, i.e., x′k = xk − 1, x′m = xm + 1,

and x′i = xi for all i 6∈ {k,m}. By definition of k and m, we have x′1 ≥ · · · ≥ x′n. Moreover,∑n
i=1 x

′
i =

∑n
i=1 yi, and for any j = 1, 2, . . . , n−1 we have

∑j
i=1 x

′
i ≥

∑j
i=1 xi−1 ≥

∑j
i=1 yi.

This means that x′ � y. If k = 1, we have x′1−y1 < x1−y1, which means that we can make
a sequence of equalizing moves on x′ to obtain y, a contradiction. Else, if k > 1, then we
have x′1 − y1 = x1 − y1 and x′k < x′1, so we can again make a sequence of equalizing moves
on x′ to obtain y and arrive at a contradiction, completing our proof.

We now proceed to the proof of Lemma 5.

Proof of Lemma 5. Suppose that x � y, and fix k ∈ {1, 2, . . . , n}. By Lemma 6, there exists
a sequence of equalizing moves that takes x to y. It suffices to show that if an equalizing
move takes x to x′, then there is a corresponding sequence of equalizing moves that takes
x(k) to x′(k). Indeed, if this is true, then the sequence of equalizing moves that takes x to
y gives rise to a corresponding sequence of equalizing moves that takes x(k) to y(k). By
Lemma 6 again, this will imply that x(k) � y(k).

Consider an equalizing move that takes x to x′; assume that the move replaces the
components xi > xj by xi− 1 and xj + 1, respectively. Note that the only components that
change between x(k) and x′(k) are the ones that contain exactly one of xi and xj in their
sum. These components can be paired up in such a way that for each pair, one component
contains xi, the other component contains xj , and both components contain exactly the
same subset of the remaining xl’s with l 6∈ {i, j}. For each pair, replacing xi and xj by
xi− 1 and xj + 1 corresponds to an equalizing move. It follows that there exists a sequence
of equalizing moves that takes x(k) to x′(k), as claimed.

Our final lemma shows that the outdegree vector of a transitive tournament majorizes
the corresponding vector of any tournament. Given a tournament T and alternative a in
the tournament, denote by degT (a) the outdegree of a in T .

Lemma 7. Let W be a transitive tournament on alternatives d1, d2, . . . , dn, where di dom-
inates dj for all i < j. For any tournament U with alternatives b1, b2, . . . , bn, we have

(degW (d1),degW (d2), . . . ,degW (dn)) � (degU (b1),degU (b2), . . . ,degU (bn)).

Proof. Note that (degW (d1),degW (d2), . . . ,degW (dn)) = (n − 1, n − 2, . . . , 0). We verify
that both conditions in Definition 1 are satisfied.

Fix k ∈ {1, 2, . . . , n − 1}, and assume without loss of generality that degU (b1) ≥ · · · ≥
degU (bn). Let B = {b1, b2, . . . , bn} and B′ = {b1, b2, . . . , bk}. The number of edges from an
alternative in B′ to another alternative in B′ is exactly

(
k
2

)
. On the other hand, the number



of edges from an alternative in B′ to an alternative in B\B′ is at most k(n− k). It follows
that

degU (b1) + degU (b2) + · · ·+ degU (bk) ≤
(
k

2

)
+ k(n− k)

= k

(
n− k + 1

2

)
= (n− 1) + (n− 2) + · · ·+ (n− k),

so condition (i) is satisfied.
Finally, observe that

degU (b1) + degU (b2) + · · ·+ degU (bn) =

(
n

2

)
= (n− 1) + (n− 2) + · · ·+ 0,

so condition (ii) is also satisfied.

With Lemmas 4, 5, and 7 in hand, we are now ready to prove Theorem 1.
Let c ≥ 10 be a constant. Since f(n) = ω (1/n), there exists N ′ such that f(n) ≥ c/n

for all n ≥ N ′. Let N = max(N ′, 4c). We will show that for n ≥ N , the probability that
TC does not choose the whole set of alternatives is at most 16ce−

c
2 . Since the expression

converges to 0 as c approaches infinity, this will establish the desired result.
Assume that n ≥ N . Observe that TC (T ) 6= A exactly when there is a proper, nontrivial

set of alternatives that dominate the complement set of alternatives. Hence

Pr[TC (T ) 6= A] = Pr[B dominates A\B for some ∅ 6= B ⊂ A]

≤
n−1∑
k=1

∑
B⊂A
|B|=k

Pr[B dominates A\B]

=

n−1∑
k=1

∑
B⊂A
|B|=k

∏
1≤i 6=j≤n

ai∈B
aj∈A\B

pi,j

=

n−1∑
k=1

∑
B⊂A
|B|=k


∏

1≤i<j≤n
ai∈B

aj∈A\B

pi,j
∏

1≤i<j≤n
ai∈A\B
aj∈B

(1− pi,j)

 , (1)

where we use the union bound for the inequality. We will derive an upper bound for
expression (1). Note that if we view the terms pi,j with i < j as variables, then the
expression in linear in each variable. This implies that the maximum of expression (1)
over the range pi,j ∈ [c/n, 1− c/n] is attained when each pi,j is either c/n or 1 − c/n (but
not necessarily when all pi,j are identical). We henceforth assume that for each i < j,
either pi,j = c/n or pi,j = 1 − c/n. We will show that expression (1) is maximized when
pi,j = 1− c/n for all i < j (or alternatively, when pi,j = c/n for all i < j). In fact, we will
show the stronger statement that for each particular value of k in the outermost summation,
the expression inside the outermost summation is also maximized when pi,j = 1 − c/n for
all i < j.

Fix k ∈ {1, 2, . . . , n − 1}. Define a tournament U on n alternatives b1, b2, . . . , bn as
follows: For any i, j ∈ {1, 2, . . . , n} with i < j, there is an edge from bi to bj if pi,j = 1− c/n



and an edge from bj to bi if pi,j = c/n. We have

∑
B⊂A
|B|=k


∏

1≤i<j≤n
ai∈B

aj∈A\B

pi,j
∏

1≤i<j≤n
ai∈A\B
aj∈B

(1− pi,j)


=
∑
B⊂A
|B|=k

∏
1≤i6=j≤n

ai∈B
aj∈A\B

pi,j

=
(

1− c

n

)k(n−k) ∑
B⊂A
|B|=k

(
c

n− c

)|{(ai,aj)∈B×A\B such that (bi,bj) is not an edge in U}|

=
(

1− c

n

)k(n−k) ∑
B⊂A
|B|=k

(
c

n− c

)(n−1)k−(k
2)−

∑
i:ai∈B

degU (bi)

=
(

1− c

n

)k(n−k)( c

n− c

)(n−1)k−(k
2) ∑

B⊂A
|B|=k

(
n− c
c

)∑
i:ai∈B

degU (bi)

. (2)

Let W be a transitive tournament on n alternatives d1, d2, . . . , dn, where di dominates dj
for all i < j. In particular, degW (di) = n− i for all i = 1, 2, . . . , n. To show that expression
(1) is maximized when pi,j = 1 − c/n for all i < j, it suffices to show that expression
(2) is maximized when U = W . The terms outside the summation do not depend on the
tournament U that we choose, so for the purpose of maximizing expression (2) we may
ignore them.

From Lemma 7, we know that

(degW (d1),degW (d2), . . . ,degW (dn)) � (degU (b1),degU (b2), . . . ,degU (bn)).

Lemma 5 then implies that

(degW (d1),degW (d2), . . . ,degW (dn))k � (degU (b1),degU (b2), . . . ,degU (bn))k.

Using Lemma 4 with the convex function f(x) =
(
n−c
c

)x
, we find that∑

B⊂A
|B|=k

(
n− c
c

)∑
i:ai∈B

degU (bi)

≤
∑
B⊂A
|B|=k

(
n− c
c

)∑
i:ai∈B

degW (di)

.

It follows that expression (2) is maximized when U = W , as claimed.
We return to expression (1), which we now know is maximized when pi,j = 1 − c/n for

all i < j. Substituting pi,j = 1− c/n for all i < j, expression (1) becomes

n−1∑
k=1

(1− c

n

)k(n−k) ∑
B⊂A
|B|=k

(
c

n− c

)(n−1)k−(k
2)−

∑
i:ai∈B

degW (di)



≤ 2

bn/2c∑
k=1

e− ck(n−k)
n

∑
B⊂A
|B|=k

(
2c

n

)(n−1)k−(k
2)−

∑
i:ai∈B

(n−i)





≤ 2

bn/2c∑
k=1

e− ck
2

∑
B⊂A
|B|=k

(
2c

n

)∑
i:ai∈B

i−(k+1
2 )

 ,

where we use Lemma 3, the assumption n ≥ 4c, and the symmetry between the terms
with k = i and k = n − i for the first inequality. Observe that

∑
i:ai∈B i −

(
k+1
2

)
is always

nonnegative, and is zero exactly when B = {1, 2, . . . , k}. Moreover, for any j = {1, 2, . . . , k},
the number of subsets B ⊂ A with |B| = k such that

∑
i:ai∈B i −

(
k+1
2

)
≤ j is at most nj .

Indeed, if a subset B satisfies this inequality, the n − j smallest elements of B must be
1, 2, . . . , n − j, which leaves at most nj choices for the remaining elements. Note also that
|{B ⊂ A | |B| = k}| =

(
n
k

)
≤ nk. We have

2

bn/2c∑
k=1

e− ck
2

∑
B⊂A
|B|=k

(
2c

n

)∑
i:ai∈B

i−(k+1
2 )



≤ 2

bn/2c∑
k=1

e− ck
2

∑
B⊂A
|B|=k

(
2c

n

)min
(
k,
∑

i:ai∈B
i−(k+1

2 )
)

≤ 2

bn/2c∑
k=1

e− ck
2

k∑
j=0

(
nj ·

(
2c

n

)j
)

= 2

bn/2c∑
k=1

e− ck
2

k∑
j=0

(2c)j


≤ 2

bn/2c∑
k=1

e−
ck
2 (4c)k

= 2

bn/2c∑
k=1

(
4ce−

c
2

)k
≤ 2

∞∑
k=1

(
4ce−

c
2

)k
=

8ce−
c
2

1− 4ce−
c
2

≤ 16ce−
c
2 ,

where we use the assumption c ≥ 10 for the last inequality.
In conclusion, when n ≥ N , the probability that TC (T ) 6= A is at most 16ce−

c
2 , com-

pleting our proof.

A.2 Proof of Theorem 3

We show the result for COND ; a similar argument holds for CNL. We have

Pr[COND(T ) 6= A] =

n∑
i=1

Pr[ai is a Condorcet winner]



=

n∑
i=1

(
1− c

n

)n−i ( c
n

)i−1
=
(

1− c

n

)n−1
·
n−1∑
i=0

(
c

n− c

)i

.

The first term converges to e−c as n→∞. For the second term, notice that it is always at
least 1. Moreover, when n ≥ (k + 1)c for some positive k > 1, the term is at most

1 +
1

k
+

1

k2
+ · · · = k

k − 1
,

which approaches 1 for large n. Hence the second term converges to 1, and therefore the
probability that COND(T ) 6= A converges to e−c, yielding the desired result.

A.3 Proof of Theorem 4

Choose N such that c2(N−2)
N > 2, and let n ≥ N . Fix a pair of distinct alternatives ai, aj .

We first bound the probability that ai cannot reach aj via a domination path of length at
most two. For each l 6∈ {i, j}, the probability that there is an edge from ai to al and an

edge from al to aj is at least
(
c
√

log n/n
)2

= c2 log n/n. The probability that ai cannot

reach aj via a domination path of length at most two is therefore bounded above by(
1− c2 log n

n

)n−2

≤ e−
c2(n−2) log n

n

= n−
c2(n−2)

n ,

where we use Lemma 3 for the inequality.
Observe that UC (T ) = A exactly when any alternative can reach any other alternative

via a domination path of length at most two. Using the union bound over all (ordered) pairs
of distinct alternatives i, j, we find that the probability that some alternative cannot reach
some other alternative via a domination path of length at most two is no more than

n(n− 1)n−
c2(n−2)

n ≤ n2−
c2(n−2)

n ,

which vanishes for large n.

A.4 Proof of Theorem 6

Since TC (T ) ⊆ COND(T ) and TC (T ) ⊆ CNL(T ), it suffices to prove the statement for
TC . Let c > 0 be a constant. Since f(n) ∈ ω

(
1/n2/(k+1)

)
, there exists N ′ such that

f(n) ≥ c/n2/(k+1) for all n ≥ N ′. Let N = max(N ′, (2c)(k+1)/2) and n ≥ N , and fix a pair
of distinct alternatives ai, aj . Let pi,j denote the probability that ai dominates aj in T .
Observe that pi,j is minimized when qv,i,j = c/n2/(k+1) for all voters v. When qv,i,j takes
on this value for all v, the probability that ai dominates aj is at least the probability that
exactly (k + 1)/2 voters prefer ai to aj . The latter probability is(

k
k+1
2

)(
c

n
2

k+1

) k+1
2
(

1− c

n
2

k+1

) k−1
2

≥
(

k
k−1
2

)
· c

k+1
2

n
·
(

1

2

) k−1
2



≥

(
k

k−1
2

) k−1
2

· c
n
·
(

1

2

) k−1
2

≥ 2
k−1
2 · c

n
·
(

1

2

) k−1
2

≥ c

n
,

where we use the assumption n ≥ (2c)(k+1)/2 for the first inequality and the approximation(
n
k

)
≥ (n/k)

k
for the second inequality. Hence pi,j ≥ c/n for all n ≥ N . This implies that

there exists a function f(n) ∈ ω (1/n) such that pi,j ∈ [f(n), 1 − f(n)]. Using Theorem 1,
we have that TC (T ) = A with high probability, as desired.

A.5 Proof of Theorem 7

Since UC (T ) = A implies that UC∞(T ) = A, it suffices to prove the statement for UC . Let
n ≥ (2c)2k+2, and fix a pair of distinct alternatives ai, aj . Let pi,j denote the probability

that ai dominates aj in T . Observe that pi,j is minimized when qv,i,j = c (log n/n)
1/(k+1)

for all voters v. When qv,i,j takes on this value for all v, the probability that ai dominates aj
is at least the probability that exactly (k+1)/2 voters prefer ai to aj . The latter probability
is

(
k

k+1
2

)(
c

(
log n

n

) 1
k+1

) k+1
2
(

1− c
(

log n

n

) 1
k+1

) k−1
2

≥
(

k
k−1
2

)(
c

(
log n

n

) 1
k+1

) k+1
2 (

1

2

) k−1
2

≥

(
k

k−1
2

) k−1
2
(
c

(
log n

n

) 1
k+1

) k+1
2 (

1

2

) k−1
2

≥ 2
k−1
2 c

k+1
2

√
log n

n

(
1

2

) k−1
2

≥ c
√

log n

n
,

where we use the assumption n ≥ (2c)2k+2 for the first inequality and the approximation(
n
k

)
≥ (n/k)

k
for the second inequality. Using Theorem 4, we have that UC (T ) = A with

high probability, as desired.


