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Abstract

Multiwinner voting rules can be used to select a fixed-size committee from a larger
set of candidates. We consider approval-based committee rules, which allow vot-
ers to approve or disapprove candidates. In this setting, several voting rules such
as Proportional Approval Voting (PAV) and Phragmén’s rules have been shown to
produce committees that are proportional, in the sense that they proportionally rep-
resent voters’ preferences; all of these rules are strategically manipulable by voters.
On the other hand, a generalisation of Approval Voting gives a non-proportional but
strategyproof voting rule. We show that there is a fundamental tradeoff between
these two properties: we prove that no multiwinner voting rule can simultaneously
satisfy a weak form of proportionality (a weakening of justified representation) and
a weak form of strategyproofness. Our impossibility is obtained using a formulation
of the problem in propositional logic and applying SAT solvers; a human-readable
version of the computer-generated proof is obtained by extracting a minimal unsat-
isfiable set (MUS). We also discuss several related axiomatic questions in the domain
of committee elections.

1 Introduction

The theory of multiwinner elections is concerned with designing and analysing procedures
that, given preference information from a collection of voters, select a fixed-size committee
consisting of k members, drawn from a larger set of m candidates. Often, we will be
interested in picking a representative committee whose members together cover the diverse
interests of the voters. We may also aim for this representation to be proportional ; for
example, if a group of 20% of the voters have similar interests, then about 20% of the
members of the committee should represent those voters’ interests.

Historically, much work in mathematical social science has tried to formalise the latter
type of proportionality requirement, in the form of finding solutions to the apportionment
problem, which arises in settings where voters express preferences over parties which are
comprised of many candidates (Balinski and Young, 1982). More recently, theorists have
focussed on cases where there are no parties, and preferences are expressed directly over
the candidates (Faliszewski et al., 2017). The latter setting allows for applications in areas
outside the political sphere, such as in group recommendation systems.

To formalise the requirement of proportionality in this party-free setting, it is convenient
to consider the case where input preferences are given as approval ballots: each voter reports
a set of candidates that they find acceptable. Even for this simple setting, there is a rich
variety of rules that exhibit different behaviour (Kilgour, 2010), and this setting gives rise
to a rich variety of axioms.

One natural way of selecting a committee of k candidates when given approval ballots
is to extend Approval Voting (AV): for each of the m candidates, count how many voters
approve them (their approval score), and then return the committee consisting of the k
candidates whose approval score is highest. Notably, this rule can produce committees that
fail to represent large groups of voters. Consider, for example, an instance where k = 3,
and where 5 voters approve candidates a, b and c, while 4 other voters approve only the
candidate d. Then AV would select the committee {a, b, c}, leaving almost half of the
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electorate unrepresented. Intuitively, the latter group of 4 voters, consisting of more than a
third of the electorate, should be represented by at least 1 of the 3 committee members.

Aziz et al. (2017b) introduce an axiom called justified representation (JR) which for-
malises this intuition that a group of n/k voters should not be left without any representa-
tion; a stronger version of this axiom called proportional justified representation (PJR) has
also been introduced and studied (Sánchez-Fernández et al., 2017). While AV fails these
axioms, there are appealing rules which satisfy them. An example is Proportional Approval
Voting (PAV), first proposed by Thiele (1895). The intuition behind this rule is that voters
prefer committees which contain more of their approved candidates, but that there are de-
creasing marginal returns; specifically, let us presume that voters gain 1 ‘util’ in committees
that contain exactly 1 approved candidates, 1 + 1

2 utils with 2 approved candidates, and
in general 1 + 1

2 + · · · + 1
r utils with r approved candidates. PAV returns the committee

that maximises utilitarian social welfare with this choice of utility function. PAV satisfies a
strong form of justified representation (Aziz et al., 2017b).

When voters are strategic, PAV has the drawback that it can often be manipulated.
Indeed, suppose a voter i approves candidates a and b. If a is also approved by many other
voters, PAV is likely to include a in its selected committee anyway, but it might not include
b because voter i is already happy enough due to the inclusion of a. However, if voter i
pretends not to approve a, then it may be utility-maximising for PAV to include both a and
b, so that i successfully manipulated the election.1 Besides PAV, there exist several other
proportional rules, such as rules proposed by Phragmén (Janson, 2016; Brill et al., 2017a),
but all of them can be manipulated using a similar strategy.

That voting rules are manipulable is very familiar to voting theorists; indeed the
Gibbard–Satterthwaite theorem shows that for single-winner voting rules and strict prefer-
ences, every non-trivial voting rule is manipulable. However, in the approval-based multi-
winner election setting, we have the tantalising example of Approval Voting (AV): this rule
is strategyproof in the sense that voters cannot induce AV to return a committee including
more approved candidates by misrepresenting their approval set. This raises the natural
question of whether there exist committee rules that combine the benefits of AV and PAV:
are there rules that are simultaneously proportional and strategyproof?

The contribution of this paper is to show that these two demands are incompatible.
No approval-based multiwinner rule satisfies both requirements. This impossibility holds
even for very weak versions of proportionality and of strategyproofness. The version of
proportionality we use is much weaker than JR. It requires that if there is a group of at
least n/k voters who all approve a certain candidate c, and none of them approve any
other candidate, and no other voters approve c, then c should be part of the committee.
Strategyproofness requires that a voter cannot manipulate the committee rule by dropping
candidates from their approval ballot; a manipulation would be deemed successful if the
voter ends up with a committee that contains additional approved candidates. In particular,
our notion of strategyproofness only requires that the committee rule be robust to dropping
candidates; we do not require robustness against arbitrary manipulations that both add and
remove candidates.

The impossibility theorem is obtained using computer-aided techniques that have re-
cently found success in many areas of social choice theory (Geist and Peters, 2017). We
encode the problem of finding a committee rule satisfying our axioms into propositional
logic, and then use a SAT solver to check whether the formula is satisfiable. If the formula
is unsatisfiable, this implies an impossibility, for a fixed number of voters, a fixed number
of candidates, and a fixed k. We can then manually prove induction steps showing that the
impossibility continues to hold for larger parameter values. Such techniques were first used

1For a specific example, consider P = (abc, abc, abc, abd, abd) for which abc is the unique PAV-committee
for k = 3. If the last voter instead reports to approve d only, then the unique PAV-committee is abd.
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by Tang and Lin (2009) to give alternative proofs of Arrow’s and other classic impossibili-
ties, and by Geist and Endriss (2011) to find impossibilities for set extensions. Brandt and
Geist (2016) developed a method based on minimal unsatisfiable sets that allows extracting
a human-readable proof of the base case impossibility. Thus, even though parts of the proofs
in this paper are computer-generated, they are entirely human-checkable.

We begin our paper by describing several possible versions of strategyproofness and
proportionality axioms. We then present the proof obtained for proportionality and strat-
egyproofness. We end by discussing some extensions to our main result, and contrast our
result to a related impossibility theorem due to Duddy (2014). In an appendix, we explain
the computer-aided method for obtaining impossibility results in more detail.

2 Preliminaries

Let C be a fixed finite set of m candidates, and let N = {1, . . . , n} be a fixed finite set of n
voters. An approval ballot is a proper2 subset Ai of C, so that ∅ 6= Ai ( C; let B denote the
set of all ballots. For brevity, when writing ballots, we often omit braces and commas, so
that the ballot {a, b} is written ab. An (approval) profile is a function P : N → B assigning
every voter an approval ballot. For brevity, we write a profile P as an n-tuple, so that
P = (P (1), . . . , P (n)). For example, in the profile (ab, abc, d), voter 1 approves candidates
a and b, voter 2 approves a, b, and c, and voter 3 approves d only.

Let k be a fixed integer with 1 6 k 6 m. A committee is a subset of C of cardinality k.
We write Ck for the set of committees, and again for brevity, the committee {a, b} is written
as ab. An (approval-based) committee rule is a function f : BN → Ck, assigning to each
approval profile a unique winning committee. Note that this definition assumes that f is
resolute, so that for every possible profile, it returns exactly one committee. Let us define
two specific committee rules which will be useful examples throughout.

Approval Voting (AV) is the rule that selects the k candidates with highest approval
score, that is, the k candidates c for which |{i ∈ N : c ∈ P (i)}| is highest. Ties are broken
lexicographically.

Proportional Approval Voting (PAV) is the rule that returns the set W ⊆ C with |W | = k
which maximises ∑

i∈N

(
1 +

1

2
+ · · ·+ 1

|P (i) ∩W |

)
.

In case of ties, PAV returns the lexicographically first optimum.
Other important examples that we occasionally mention are Monroe’s rule, Chamberlin–

Courant, Phragmén’s rules, and the sequential version of PAV. For definitions of these rules,
we refer to the book chapter by Faliszewski et al. (2017); they are not essential for following
our technical results.

3 Our Axioms

In this section, we discuss the axioms that will be used in our impossibility result. These
axioms have been chosen to be as weak as possible while still yielding an impossibility. This
can make them sound technical and unnatural in isolation. To better motivate them, we
discuss stronger versions that may have more natural appeal.

2Nothing hinges on the assumption that ballots are proper subsets. Since we are mainly interested in
impossibilities, this ‘domain restriction’ slightly strengthens the results.
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3.1 Strategyproofness

A voter can manipulate a voting rule if, by submitting a non-truthful ballot, the voter can
ensure that the voting rule returns an outcome that the voter strictly prefers to the outcome
at the truthful profile. It is not obvious how to phrase this definition for committee rules,
since we do not assume that voters have preferences over committees; we only have approval
ballots over candidates.

One way to define manipulability in this context is to extend the preference information
we have to preferences over committees. This is the approach also typically taken when
studying set-valued (irresolute) voting rules (Taylor, 2005; Gärdenfors, 1979) or probabilistic
voting rules (Brandt, 2017). In our setting, there are several ways to extend approval
ballots to preferences over committees, and hence several notions of strategyproofness. Our
impossibility result uses the weakest notion.

For the formal definitions, let us introduce the notion of i-variants. For a voter i ∈ N ,
we say that a profile P ′ is an i-variant of profile P if P and P ′ differ only in the ballot of
voter i, that is, if P (j) = P ′(j) for all j ∈ N \ {i}. Thus, P ′ is obtained after i manipulated
in some way, assuming that P was the truthful profile.

One obvious way in which one committee can be better than another in a voter’s view
is if the former contains a larger number of approved candidates. Suppose at the truthful
profile, we elect a committee of size k = 5, of which voter i approves 2 candidates. If i
can submit a non-truthful approval ballots which leads to the election of a committee with
3 candidates who are approved by i, then this manipulation would be successful in the
cardinality sense.

Cardinality-Strategyproofness If P ′ is an i-variant of P , then we do not have |f(P ′)∩
P (i)| > |f(P ) ∩ P (i)|.

One can check that AV with lexicographic tie-breaking satisfies cardinality-
strategyproofness: it is neither advantageous to increase the approval score of a
non-approved candidate, nor to decrease the approval score of an approved candidate.

Alternatively, we can interpret an approval ballot A ∈ B to say that the voter likes the
candidates in A (and would like them to in the committee), and that the voter dislikes
the candidates not in A (and would like them not to be in the committee). The voter’s
‘utility’ derived from committee W would be the number of approved candidates in W
plus the number of non-approved candidates not in W . Interpreting approval ballots and
committees as bit strings of length m, the voter thus desires the Hamming distance between
their ballot and the committee to be small. For two sets A,B, write H(A,B) = |A ∆ B| =
|(A ∪B) \ (A ∩B)|.

Hamming-Strategyproofness If P ′ is an i-variant of P , then we do not have
H(f(P ′), P (i)) < H(f(P ), P (i)).

One can check that Hamming-strategyproofness and cardinality-strategyproofness are equiv-
alent, because for a fixed ballot P (i), a committee is Hamming-closer to P (i) than another
if and only if the number of approved candidates is higher in the former.

The notions of strategyproofness described so far make sense if we subscribe to the inter-
pretation of an approval ballot as a dichotomous preference, with the voter being completely
indifferent between all approved candidates (or being unable to distinguish between them).
In some settings, this is not a reasonable assumption.

For example, suppose i approves {a, b, c}; still it might be reasonable for i to prefer a
committee containing just a to a committee containing both b and c, maybe because i’s
underlying preferences are such that a is preferred to b and c, even though all three are
approved. However, i should definitely prefer a committee that includes a strict superset of
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Figure 1: Proportionality axioms and logical implications.

approved candidates. For example, a committee containing a and b should be better than a
committee containing only a. This is the intuition behind superset-strategyproofness, which
is a weaker notion than cardinality-strategyproofness.

Superset-Strategyproofness If P ′ is an i-variant of P , then we do not have f(P ′) ∩
P (i) ) f(P ) ∩ P (i).

Interestingly, PAV and other proportional rules are often manipulable in a particularly
simple fashion: a manipulator can obtain a better outcome by dropping popular candidates
from their approval ballot. Formally, these rules can be manipulated even through reporting
a proper subset of the truthful ballot. Our final and official notion of strategyproofness
is a version of subset-strategyproofness which only requires the committee rule to resist
manipulators who report a subset of the truthful ballot.

Strategyproofness If P ′ is an i-variant of P with P ′(i) ⊂ P (i), then we do not have
f(P ′) ∩ P (i) ) f(P ) ∩ P (i).

Manipulating by reporting a subset of one’s truthful ballot is sometimes known as Hyl-
land free riding (Hylland, 1992; Schulze, 2004): the manipulator free-rides on others ap-
proving a candidate, and can pretend to be worse off than they actually are. This can then
induce the committee rule to add further candidates from their ballot to the committee.
Aziz et al. (2017a) study a related notion of ‘excludable strategyproofness’ in the context
of probabilistic voting rules.

Interestingly, one can check that PAV cannot be manipulated by reporting a superset of
one’s ballot; such a manoeuvre never helps.

3.2 Proportionality

We now discuss several axioms formalising the notion that the committee rule f should
be proportional, in the sense of proportionally representing different factions of voters: for
example, a ‘cohesive’ group of 10% of the voters should be represented by about 10% of
the members of the committee. The version of proportionality used in our impossibility is
the last axiom we discuss. All other versions imply the one leading to impossibility; thus,
this version is the weakest notion among the ones discussed here. Figure 1 shows a Hasse
diagram of all discussed axioms. Approval Voting (AV) fails all of them, as can be checked
for the example profile P = (abc, abc, d) and k = 3, where AV returns abc.

We say that a profile P is a party-list profile if for all voters i, j ∈ N , either P (i) = P (j),
or P (i)∩P (j) = ∅. For example, (ab, ab, cde, cde, f) is a party-list profile, but (ab, c, c, abc) is
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not. A party-list profile induces a partition of the set C of candidates into disjoint parties,
so that each voter approves precisely the members of exactly one party. The problem of
finding a proportional committee given a party-list profile has been extensively studied
as the problem of apportionment. Functions g : {party-list profiles} → Ck are known as
apportionment methods; thus any committee rule induces an apportionment by restricting
its domain to party-list profiles (Brill et al., 2017b). Many proportional apportionment
methods have been introduced and defended over the last few centuries. Given a committee
rule f , one way to formalise the notion that f is proportional is by requiring that the
apportionment method induced by f is proportional.

Given a party-list profile P , let us write nP (A) = |{i ∈ N : P (i) = A}| for the number
of voters approving party A. An apportionment method g satisfies lower quota if for every
party-list profile P , each party A in P gets at least bnP (A) · knc seats, that is, |g(P ) ∩A| >
bnP (A) · knc. This notion gives us our first proportionality axiom.

Lower quota extension The apportionment method induced by f satisfies lower
quota.

This axiom is satisfied by PAV, the sequential version of PAV, by Monroe’s rule if k divides
n, and Phragmén’s rule (Brill et al., 2017b).

We can strengthen this axiom by imposing stronger conditions on the induced apportion-
ment method. For example, the apportionment method induced by PAV and by Phragmén’s
rule coincides with the d’Hondt method (aka Jefferson method, see Brill et al. (2017b) for a
definition), so we could use the following axiom.

d’Hondt extension The apportionment method induced by f is the d’Hondt method.

Aziz et al. (2017b) introduce a different approach of defining a proportionality axiom.
Instead of considering only the case of party-list profiles, they impose conditions on all
profiles. The intuition behind their axioms is that sufficiently large groups of voters that have
similar preferences ‘deserve’ at least a certain number of representatives in the committee.
They introduce the following axiom:

Justified Representation (JR) If P is a profile, and N ′ ⊆ N is a group with |N ′| > n
k

and
⋂

i∈N ′ P (i) 6= ∅, then f(P ) ∩
⋃

i∈N ′ P (i) 6= ∅.
Thus, JR requires that no group of at least n

k voters for which there is at least one candidate
c ∈ C that they all approve can remain unrepresented: at least one of the voters in the group
must approve at least one of the committee members. This axiom is satisfied, for example,
by PAV, Phragmén’s rule, and Chamberlin-Courant (Aziz et al., 2017b), but not by the
sequential version of PAV unless k 6 5 (Sánchez-Fernández et al., 2017; Aziz et al., 2017b).

One may think that JR is too weak: even if there is a large majority of voters who all
report the same approval set, JR only requires that one of their candidates be a member of
the committee. But this group may deserve several representatives. The following strength-
ened version of JR is due to Sánchez-Fernández et al. (2017). It requires that a large group
of voters for which there are several candidates that they all approve should be represented
by several committee members.

Proportional Justified Representation (PJR) For any profile P and each ` =
1, . . . , k, if N ′ ⊆ N is a group with |N ′| > ` · n

k and |
⋂

i∈N ′ P (i)| > `, then
|f(P ) ∩

⋃
i∈N ′ P (i)| > `.

This axiom is also satisfied by PAV and Phragmén’s rule (Sánchez-Fernández et al., 2017;
Brill et al., 2017a). Brill et al. (2017b) show that if a rule satisfies PJR, then it is also
a lower quota extension. A yet stronger version of JR is EJR, introduced by Aziz et al.
(2017b); EJR requires that there is at least one group member who has at least ` approved
committee members.
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Extended Justified Representation (EJR) For any profile P and each ` = 1, . . . , k,
if N ′ ⊆ N is a group with |N ′| > ` · nk and |

⋂
i∈N ′ P (i)| > `, then |f(P ) ∩ P (i)| > `

for some i ∈ N ′.

This axiom is satisfied by PAV (Aziz et al., 2017b), but not by Phragmén’s rule (Brill et al.,
2017a).

The proportionality axiom we use in our impossibility combines features of the JR-style
axioms with the apportionment-extension axioms. Consider the following axiom.

JR on party lists Suppose P is a party-list profile, and some ballot A ∈ B appears at
least n

k times in P . Then f(P ) ∩A 6= ∅.

This axiom only requires JR to hold for party-list profiles; thus, it only requires that we
represent large-enough groups of voters who all report the exact same approval ballot (see
also Behrens et al., 2014). As an example, this axiom requires that f(ab, ab, cd, cd) ∈
{ac, ad, bc, bd}, because the ballots ab and cd both appear at least n

k = 4
2 = 2 times.

Our official proportionality axiom is still weaker, and only requires us to represent sin-
gleton parties with large-enough support.

Proportionality Suppose P is a party-list profile, and some singleton ballot {c} ∈ B
appears at least n

k times in P . Then c ∈ f(P ).

This axiom should be almost uncontroversial if we desire our committee rule to be propor-
tional in any sense. A group of voters who all approve just a single candidate is certainly
cohesive (there are no internal disagreements), it is clear what it means to represent this
group (add their approved candidate to the committee), and the group is uniquely identified
(because no outside voters approve sets that intersect with the group’s approval ballot).

Since our proportionality axiom only refers to the apportionment method induced by f ,
our impossibility states that no reasonable apportionment method admits an extension to
the ‘open list’ setting (where voters are not bound to a party) which is strategyproof.

A type of axiom related to proportionality are diversity requirements. These typically
require that as many voters as possible should have a representative in the committee,
but they do not insist that groups of voters be proportionally represented (Elkind et al.,
2017a; Faliszewski et al., 2017). The Chamberlin–Courant rule (1983) is an example of
a rule selecting diverse committees. Lackner and Skowron (2017) propose the following
formulation of this requirement for the approval setting:

Disjoint Diversity Suppose P is a party-list profile with at most k different parties.
Then f(P ) contains at least one member from each party.

Our main result (Theorem 1) also holds when replacing proportionality by disjoint diversity,
since all profiles in its proof where proportionality is invoked feature at most k different
parties.

4 The Impossibility Theorem

We are now in a position to state our main result, that there are no proportional and
strategyproof committee rules.

Theorem 1. Suppose k > 3, the number n of voters is divisible by k, and m > k +
1. Then there exists no approval-based committee rule which satisfies proportionality and
strategyproofness.
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The assumption that k > 3 is critical; we discuss the cases k = 1 and k = 2 separately
in Section 4.3. The assumption that n be divisible by k also appears to be critical; the SAT
solver indicates positive results when n is not a multiple of k. However, we do not know
short descriptions of these rules, and it is possible (likely?) that impossibility holds for large
n and m. When strengthening the proportionality axiom, we can extend our result to hold
for all sufficiently large n; see Appendix B.

The proof of this impossibility was found with the help of computers, but it was signif-
icantly simplified manually. One convenient first step is to establish the following simple
lemma. It uses strategyproofness to extend the applicability of proportionality to certain
profiles that are not party-list profiles.

Lemma 1. Let m = k + 1. Let f be strategyproof and proportional. Suppose that P is a
profile in which some singleton ballot {c} appears at least n

k times, but in which no other
voter approves c. Then c ∈ f(P ).

Proof. Let P ′ be the profile defined by

P ′(i) =

{
{c} if P (i) = {c},
C \ {c} otherwise.

Then P ′ is a party-list profile, and by proportionality, c ∈ f(P ′). Thus, f(P ′) 6= C \ {c}.
Now, step by step, we let each non-{c} voter j in P ′ change back their vote to P (j). By
strategyproofness, at each step the output committee cannot be C \ {c}. In particular, at
the last step, we have f(P ) 6= C \ {c}. Thus, c ∈ f(P ), as required.

4.1 Base case

The first major step in the proof is to establish the impossibility in the case that k = 3,
n = 3, and m = 4. In Section 4.2, we extend this result to larger values of k, n, and m.

The proof of the base case is by contradiction, assuming the existence of a function
satisfying the axioms. We start by considering the profile P1 = (ab, c, d), and break some
symmetries. (This is a useful strategy to obtain smaller and better-behaved MUSes.) Using
proportionality, symmetry-breaking allows us to assume that f(P1) = acd. The proof then
goes through seven steps, applying the same reasoning each time. In each step, we use
strategyproofness to infer the values of f at certain profiles P2, . . . , P7. Finally, we find that
strategyproofness implies that f(P1) 6= acd, which contradicts our initial assumption about
f(P1). Hence, no such rule f can exist.

Lemma 2. There is no committee rule that satisfies proportionality and strategyproofness
for k = 3, n = 3, and m = 4.

Proof. Suppose for a contradiction that such a committee rule f existed. Consider the
profile P1 = (ab, c, d). By proportionality, we have c ∈ f(P1) and d ∈ f(P1). Thus, we
have f(P1) ∈ {acd, bcd}. By relabelling the alternatives, we may assume without loss of
generality that f(P1) = acd.

Consider P1.5 = (ab, ac, d). By Lemma 1, d ∈ f(P1.5). Thus, f(P1.5) = acd, or else voter
2 can manipulate towards P1.

Consider P2 = (b, ac, d). By proportionality, f(P2) ∈ {abd, bcd}. If we had f(P2) = abd,
then voter 1 in P1.5 could manipulate towards P2. Hence f(P2) = bcd.

Consider P2.5 = (b, ac, cd). By Lemma 1, b ∈ f(P2.5). Thus, f(P2.5) = bcd, or else voter
3 can manipulate towards P2.

Consider P3 = (b, a, cd). By proportionality, f(P3) ∈ {abc, abd}. If we had f(P3) = abc,
then voter 2 in P2.5 could manipulate towards P3. Hence f(P3) = abd.
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Consider P3.5 = (b, ad, cd). By Lemma 1, b ∈ f(P3.5). Thus, f(P3.5) = abd, or else voter
2 can manipulate towards P3.

Consider P4 = (b, ad, c). By proportionality, f(P4) ∈ {abc, bcd}. If we had f(P4) = bcd,
then voter 3 in P3.5 could manipulate towards P4. Hence f(P4) = abc.

Consider P4.5 = (b, ad, ac). By Lemma 1, b ∈ f(P4.5). Thus, f(P4.5) = abc, or else voter
3 can manipulate towards P4.

Consider P5 = (b, d, ac). By proportionality, f(P5) ∈ {abd, bcd}. If we had f(P5) = abd,
then voter 2 in P4.5 could manipulate towards P5. Hence f(P5) = bcd.

Consider P5.5 = (b, cd, ac). By Lemma 1, b ∈ f(P5.5). Thus, f(P5.5) = bcd, or else voter
2 can manipulate towards P5.

Consider P6 = (b, cd, a). By proportionality, f(P6) ∈ {abc, abd}. If we had f(P6) = abc,
then voter 3 in P5.5 could manipulate towards P6. Hence f(P6) = abd.

Consider P6.5 = (b, cd, ad). By Lemma 1, b ∈ f(P6.5). Thus, f(P6.5) = abd, or else voter
3 can manipulate towards P6.

Consider P7 = (b, c, ad). By proportionality, f(P7) ∈ {abc, bcd}. If we had f(P7) = bcd,
then voter 2 in P6.5 could manipulate towards P7. Hence f(P7) = abc.

Finally, consider P7.5 = (ab, c, ad). By Lemma 1, c ∈ f(P7.5). Thus, f(P7.5) = abc,
or else voter 1 can manipulate towards P7. But then voter 3 can manipulate towards
P1 = (ab, c, d), because by our initial assumption, we have f(P1) = acd. Contradiction.

4.2 Induction steps

We now extend the base case to larger parameter values, by proving induction steps. The
proofs all take the same form: Assuming the existence of a committee rule satisfying the
axioms for large parameter values, we construct a rule for smaller values, and show that the
smaller rule inherits the axiomatic properties of the larger rule. This is done, variously, by
introducing dummy voters, by introducing dummy alternatives, and by copying voters.

Our first induction step reduces the number of voters. The underlying construction
works by copying voters, and using the ‘homogeneity’ of the axioms of proportionality and
strategyproofness. For the latter axiom, we use the fact that in the case m = k + 1,
the preference extension of approval ballots to committees is complete, in that any two
committees are comparable.

Lemma 3. Suppose k > 2 and m = k + 1, and let q > 1 be an integer. If there exists a
proportional and strategyproof committee rule for q · k voters, then there also exists such a
rule for k voters.

Proof. For convenience, we write profiles as lists. Given a profile P , we write qP for the
profile obtained by concatenating q copies of P . Let fqk be the rule for q · k voters. We
define the rule fk for k voters as follows:

fk(P ) = fqk(qP ) for all profiles P ∈ Bk.

Proportionality. Suppose P ∈ Bk is a party-list profile in which at least n
k = k

k = 1
voters approve {c}. Then qP is a party-list profile in which at least q · nk = qn

k = q voters
approve {c}. Since fqk is proportional, c ∈ fqk(qP ) = fk(P ).

Strategyproofness. Suppose for a contradiction that fk is not strategyproof, so that
there is P and an i-variant P ′ with fk(P ′) ∩ P (i) ) fk(P ) ∩ P (i). Because m = k + 1, the
committees fk(P ′) and fk(P ) must differ in exactly 1 candidate. Since the manipulation
was successful, fk(P ′) must be obtained by replacing a non-approved candidate in fk(P )
by an approved one, say fk(P ′) = fk(P ) ∪ {c} \ {d} with c ∈ P (i) 63 d. Now consider
fqk(qP ), and step-by-step let each of the q copies of P (i) in qP manipulate from P (i) to
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P ′(i) obtaining qP ′ in the last step. Because fqk is strategyproof, at each step of this process
fqk cannot have exchanged a non-approved candidate by an approved candidate according
to P (i). This contradicts that fk(P ′) = fk(P ) ∪ {c} \ {d}.

Our second induction step is the simplest: We reduce the number of alternatives using
dummy candidates that no voter ever approves.

Lemma 4. Fix n and k, and let m > k. If there exists a proportional and strategyproof
committee rule for m + 1 alternatives, then there also exists such a rule for m alternatives.

Proof. Let fm+1 be the committee rule defined on the candidate set Cm+1 =
{c1, . . . , cm, cm+1}. Note that every profile P over candidate set Cm = {c1, . . . , cm} is
also a profile over candidate set Cm+1. We then just define the committee rule fm for the
candidate set Cm by fm(P ) := fm+1(P ) for all profiles P over candidate set Cm. It is easy
to check that fm is proportional and strategyproof.

Our last induction step reduces the committee size from k + 1 to k. The construction
introduces an additional candidate and an additional voter, and appeals to Lemma 1 to
show that the new candidate is always part of the winning committee. Thus, the larger rule
implicitly contains a committee rule for size-k committees.

Lemma 5. Let k > 2. If there exists a proportional and strategyproof committee rule for
committee size k + 1, for k + 1 voters, and for k + 2 alternatives, then there also exists such
a rule for committee size k, for k voters, and for k + 1 alternatives.

Proof. Let fk+1 be the committee rule assumed to exist, defined on the candidate set
Ck+2 = {c1, . . . , ck+2}. We define the rule fk for committee size k on candidate set
Ck+1 = {c1, . . . , ck+1} as follows:

fk(A1, . . . , Ak) = fk+1(A1, . . . , Ak, {ck+2}) \ {ck+2},

for every profile P = (A1, . . . , Ak) over Ck+1. Notice that this is well-defined and re-
turns a committee of size k, since by Lemma 1 applied to fk+1, we always have ck+2 ∈
fk+1(A1, . . . , Ak, {ck+2}).

Proportionality. Let P = (A1, . . . , Ak) be a party-list profile over Ck+1, in which the
ballot {c} occurs at least n

k = k
k = 1 time. Then P ′ = (A1, . . . , Ak, {ck+2}) is a party-list

profile, in which {c} occurs at least n+1
k+1 = k+1

k+1 = 1 time; thus, by proportionality of fk+1,
we have c ∈ fk+1(P ′) = fk(P ).

Strategyproofness. If there is a successful manipulation from P to P ′ for fk, then there
is a successful manipulation from (P, {ck+2}) to (P ′, {ck+2}) for fk+1, contradiction.

Finally, we can combine all three induction steps, applying them in order, and the base
case, to get our main result.

Proof of the Main Theorem. Let k > 3, let n be divisible by k, and let m > k + 1. Suppose
for a contradiction that there does exist an approval-based committee rule f which satisfies
proportionality and strategyproofness for these parameters.

By Lemma 4 applied to f , there also exists such a rule f ′ for k + 1 alternatives. By
Lemma 3 applied to f ′, there also exists such a rule f ′′ for k voters. By Lemma 5 applied
to f ′′, there must exist a proportional and strategyproof rule for committee size 3, for 3
voters, and for 4 alternatives. But this contradicts Proposition 2.
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4.3 Small committees

Theorem 1 only applies to the case where k > 3. For the case k = 1, where we elect just
a single winner, Approval Voting with lexicographic tie-breaking is both proportional and
strategyproof.3 This leaves open the case of k = 2.

The SAT solver indicates that the statement of Theorem 1 does not hold for k = 2, and
that there exists a proportional and strategyproof rule, at least for small parameter values.
However, we can recover an impossibility by strengthening strategyproofness to superset-
strategyproofness, i.e., by allowing manipulators to report arbitrary ballots (rather than
only subsets of the truthful ballot).

Theorem 2. Let k = 2, m > 4, and let n be even. Then there is no approval-based
committee rule that satisfies JR on party lists and superset-strategyproofness.

The proof of this result was also obtained via the computer-aided method. However,
this proof is long and involves many case distinctions, so we omit the details. The proof
begins with the starting profile P = (ab, ab, cd, cd). By JR on party lists, we have f(P ) ∈
{ac, ad, bc, bd}. By relabeling alternatives, we may assume that f(P ) = ac. The proof
then applies strategyproofness to deduce the values of f at other profiles, and arrives at a
contradiction.

Theorem 2 requires an even number of voters. This is necessary, since for k = 2 and odd
numbers of voters, AV satisfies both axioms.

Proposition 1. For k = 2, any m > 3, and n odd, AV satisfies proportionality (it even
satisfies JR) and is cardinality-strategyproof.

Proof. AV is cardinality-strategyproof. Aziz et al. (2017b, Thm. 3) showed that for k = 2
and odd n, AV satisfies JR. For completeness, we repeat their argument here. Let P be a
profile. Suppose there is some group N ′ ⊆ N with |N ′| > n

k with c ∈ P (i) for all i ∈ N ′.
Note that |N ′| > n

k implies |N ′| > n
2 , so that c has approval score > n

2 . Then the highest
approval score is also > n

2 , and so there is some d ∈ AV(P ) with approval score > n
2 . Thus,

a strict majority of voters approve d. Since strict majorities intersect, there must be a voter
i ∈ N ′ who approves d. Thus d ∈ AV(P ) ∩

⋃
i∈N ′ P (i), whence the latter set is non-empty,

and JR is satisfied.

5 Related Work

The closest work to ours is a short article by Duddy (2014), who also proves an impos-
sibility about approval-based committee rules involving a proportionality axiom. Duddy’s
result is about probabilistic committee rules, which return probability distributions over the
set of committees. Because any deterministic committee rule induces a probabilistic one
(which puts probability 1 on the deterministic output), Duddy’s probabilistic result also
has implications for deterministic rules, which we can state as follows.

Theorem 3 (Duddy, 2014). For m = 3 and k = 2, no approval-based committee rule f
satisfies the following three axioms.

1. (Representative.) There exists a profile P in which n voters approve {x} and n + 1
voters approve {y, z}, but f(P ) 6= {y, z}, for some n ∈ N and all distinct x, y, z ∈ C.

2. (Pareto-consistent.) If in profile P , the set of voters who approve of x is a strict subset
of the set of voters who approve of y, then f(P ) 6= {x, z}, for all distinct x, y, z ∈ C.

3It is well-known that AV is strategyproof. Proportionality for k = 1 is equivalent to a unanimity
condition, since n

k
= n, and AV satisfies unanimity.
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3. (Strategyproof.) Suppose profiles P and P ′ are identical, except that voter i approves
{x, y} in P but {x} in P ′. If f(P ) 6= {x, y}, then also f(P ′) 6= {x, y}.

How does Duddy’s theorem relate to ours? Duddy’s strategyproofness is weaker than
but very similar to our strategyproofness. Our result does not require an efficiency axiom.
Duddy’s representative axiom is noticeably different from the proportionality axioms that
we have discussed. Logically it is incomparable to our proportionality axiom; in spirit it
may be slightly stronger. Note that not even the strongest of the proportionality axioms
that we have discussed (i.e., EJR) imply Duddy’s representativeness. It is also worth noting
that Duddy’s result works for smaller values of m and k than our result, suggesting that
Duddy’s axioms are stronger overall.

In computational social choice, there has been much recent interest in axiomatic ques-
tions in committee rules. Working in the context of strict orders, Elkind et al. (2017a)
introduced several axioms and studied which committee rules satisfy them. Skowron et al.
(2016) axiomatically characterise the class of committee scoring rules, and Faliszewski et al.
(2016) study the finer structure of this class. For the approval-based setting, Lackner and
Skowron (2017) characterise committee counting rules, and give characterisations of PAV and
of Chamberlin–Courant. They also have a result suggesting that AV is the only consistent
committee rule which is strategyproof.

From a computational complexity perspective, there have been several papers study-
ing the complexity of manipulative attacks on multiwinner elections (Meir et al., 2008;
Obraztsova et al., 2013; Faliszewski et al., 2017; Aziz et al., 2015; Baumeister et al., 2015).
Other work has studied the complexity of evaluating various committee rules. Notably, it is
NP-complete to find a winning committee for PAV (Aziz et al., 2015; Skowron et al., 2015).

6 Conclusions and Future Work

We have proved an impossibility about approval-based committee rules. The versions of
the proportionality and strategyproofness axioms we used are very weak. It seems unlikely
that, by weakening the axioms used, one can find a committee rule that exhibits satisfying
versions of these requirements. A technical question which remains open is whether our
impossibility holds for all numbers n of voters, no matter whether it is a multiple of k (see
Appendix B). It would also be interesting to study irresolute or probabilistic rules.

To circumvent the classic impossibilities of Arrow and Gibbard–Satterthwaite, it has
proved very successful to study restricted domains such as single-peaked preferences, which
can often give rise to strategyproof voting rules (Moulin, 1988; Elkind et al., 2017b). Elkind
and Lackner (2015) propose analogues of single-peaked and single-crossing preferences for
the case of approval ballots and dichotomous preferences. For example, a profile of approval
ballots satisfies the Candidate Interval (CI) condition if there exists an underlying linear
ordering of the candidates such that each voter approves an interval of candidates (see also
Faliszewski et al., 2011). Restricting the domain to CI profiles in our SAT encoding suggests
that an impossibility of the type we have studied cannot be proven for this domain – at
least for small values of n, m, and k. Finding a proportional committee rule that is not
manipulable on the CI domain would be an exciting avenue for future work.

It would be interesting to obtain impossibilities using other axioms. Recently, Sánchez-
Fernández and Fisteus (2017) found some incompatibilities between proportionality and
monotonicity. Their version of proportionality (‘perfect representation’), however, is very
strong and possibly undesirable. It would be interesting to see whether such results hold
for weaker versions of their axioms.
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A The Computer-Aided Approach

To obtain our impossibility result, we have used the computer-aided technique developed by
Tang and Lin (2009) and Geist and Endriss (2011). This approach is based on using a com-
puter search (usually in form of a SAT solver) to establish the base case of an impossibility
theorem, and then using (manually proved) induction steps to extend the theorem to bigger
values of n and m. Tang and Lin (2009) used this technique to give proofs of Arrow’s and
other classic impossibility theorems in social choice, and Geist and Endriss (2011) used it to
find new impossibilities in the area of set extensions. A paper by Brandt and Geist (2016)
used this approach to prove an impossibility about strategyproof tournament solutions; an
important technical contribution of their paper was the use of minimal unsatisfiable sets to
produce human-readable proofs of the base case. This technology was also used to prove
new impossibilities about the no-show paradox (Brandt et al., 2017), about half-way mono-
tonicity (Peters, 2017), and about probabilistic voting rules (Brandl et al., 2016). A recent
book chapter by Geist and Peters (2017) provides a survey of these results.

The “base case” of an impossibility theorem proves that no voting rule exists satisfying
a certain collection of axioms for a fixed number of voters and alternatives, and (in our
case) a fixed committee size k. Fixing these numbers, there are only finitely many possible
rules, and we can in principle iterate through all

(
m
k

)
2mn

possibilities and check whether any
satisfies our axioms. However, this search space quickly grows out of reach of a näıve search.

In many cases, we can specify our axiomatic requirements in propositional logic, and use
a SAT solver to check for the existence of a suitable voting rule. Due to recent dramatic
improvements in solving times of SAT solvers, this approach often makes this search feasible,
even for moderately large values of n and m (Brandt et al., 2017).

How can we encode our problem of finding a proportional and strategyproof committee
rule into propositional logic? This turns out to be straightforward. Our formula will be
specified so that every satisfying assignment explicitly encodes a committee rule satisfying
the axioms. We generate a list of all (2m)n possible approval profiles, and for each profile
P and each committee W , we introduce a propositional variable xP,W with the intended
interpretation that

xP,W is true ⇐⇒ f(P ) = W.

We then add clauses that ensure that any satisfying assignment encodes a function (so
that f(P ) takes exactly one value), we add clauses that ensure that only proportional
committees may be returned, and we iterate through all profiles P and all i-variants of
it, adding clauses to ensure that no successful manipulations are possible. The details are
shown in Algorithm 1; the formulation we use is slightly more efficient by never introducing
the variable xP,W in case that the committee W is not proportional in profile P .

Now, given numbers n, m, and k, Algorithm 1 encodes our problem, passes the resulting
propositional formula to a SAT solver (Biere, 2013; Audemard and Simon, 2009) and reports
whether the formula was satisfiable. If it is satisfiable, then we know that there exists a
propotional and strategyproof committee rule for these parameter values, and the SAT solver
will return an explicit example of such a rule in form of a look-up table. If the formula is
unsatisfiable (like in our case), then we have an impossibility for these parameter values.

A remaining challenge is to extend this impossibility result to other parameter values,
which is usually done by proving induction steps; however, this is not always straightforward
to do, and in some cases, impossibilities do not hold for all larger parameter values (e.g.,
Peters, 2017). In many cases, the induction step on n is most-difficult to establish. We also
run into trouble proving this step, and our impossibility is only proved for the case where n
is a multiple of k.

Another challenge is to find a proof of the obtained impossibility, and preferably one
that can easily be checked by a human. Many SAT solvers can be configured to output a
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ALGORITHM 1: Encode Problem for SAT Solving

Input: Set C of candidates, set N of voters, committee size k.
Question: Does a proportional and strategyproof committee rule exist?
for each profile P ∈ BN do

if P is a party-list profile then
allowed[P ]← {C ∈ Ck : C provides JR to singleton parties}

else
allowed[P ]← Ck

for each committee C ∈ allowed[P ] do
introduce propositional variable xP,C

for each profile P ∈ BN do
add clause

∨
C∈allowed[P ] xP,C

add clauses
∧

C 6=C′∈allowed[P ](¬xP,C ∨ ¬xP,C′)

for each voter i ∈ N do
for each i-variant P ′ of P with P ′(i) ⊆ P (i) do

for each C ∈ allowed[P ] and C′ ∈ allowed[P ′] do
if C′ ∩ P (i) ) C ∩ P (i) then

add clause (¬xP,C ∨ ¬xP ′,C′)

pass formula to SAT solver
return whether formula is satisfiable

proof trace which contains all steps used to deduce that the formula is unsatisfiable; but
these proofs can become very large. Recent examples are SAT-generated proofs of a special
case of the Erdős Discrepancy Conjecture (Konev and Lisitsa, 2014) which takes 13GB, and
of a solution to the Boolean Pythagorean Triples Problem (Heule et al., 2016) which takes
200TB. Clearly, humans cannot check the correctness of these proofs.

We use the method introduced by Brandt and Geist (2016) via minimal unsatisfiable sets
(MUS). An MUS of an unsatisfiable propositional formula in conjunctive normal form is a
subset of its clauses which is already unsatisfiable, but minimally so: removing any further
clause leaves a satisfiable formula. Thus, every clause in an MUS corresponds to a ‘proof
ingredient’ which cannot be skipped. MUSes of formulas derived from voting problems like
ours are often very small, only referring to a few dozen profiles. This can be explained
through the ‘local’ nature of the axioms used: proportionality constrains the behaviour of
the committee rule at a single profile, and strategyproofness links the behaviour at two
profiles.

MUSes can be found using MUS extractors, which have become reasonably efficient. We
used MUSer2 (Belov and Marques-Silva, 2012) and MARCO (Liffiton et al., 2015). Once
one finds a small MUS, it can then be manually inspected to understand how the clauses
in the MUS fit together. More details of this process are described in the book chapter by
Geist and Peters (2017).

B Extension to other electorate sizes

One drawback of Theorem 1 is the condition on the number of voters n. For larger values of
k, practical elections are unlikely to have a number of voters which is exactly a multiple of
k. The impossibility as we have proved it does not rule out that for other values of n, there
does exist a proportional and strategyproof rule. Indeed, at least for small parameter values,
the SAT solver confirms that this is the case. An important open question is whether, for
fixed k > 3, the impossibility holds for all sufficiently large n.

In this section, we give one result to this effect, obtained by strengthening the propor-
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tionality axiom. Note that all the axioms we discussed in Section 3.2 are based on the
intuition that a group of n

k voters should be represented by one committee member. The
value “n

k ” is known as the Hare quota. An alternative proposal is the Droop quota, according
to which every group consisting of strictly more than n

k+1 voters should be represented by
one committee member. Thus, with Droop quotas, slightly smaller groups already need to
be represented. The strengthened axiom is as follows.

Droop Proportionality Suppose P is any profile, and some singleton ballot {c} ∈ B
appears strictly more than n

k+1 times in P . Then c ∈ f(P ).

Note that Droop proportionality applies to all profiles and not only party-list profiles. With
this stronger proportionality axiom, we can show that for fixed k and all sufficiently large
n, we have an incompatibility with strategyproofness.

Proposition 2. Let k > 3, let m > k + 1, and let n > k2. Then there is no approval-based
committee rule satisfying strategyproofness and Droop proportionality.

Proof. Suppose such a rule fn exists. By Lemma 4 (suitably reproved to apply to the Droop
quota), there also is a such rule for m = k+1 alternatives, so we may assume that m = k+1.

Write n = q · k + r for some 0 6 r < k and some q > k. We will show that there exists
a committee rule for q · k voters which satisfies proportionality (with respect to the Hare
quota) and strategyproofness, which contradicts Theorem 1.

Fix r arbitrary ballots B1, . . . , Br. We define a committee rule fqk on q · k voters, m
alternatives, and for committee size k, as follows:

fqk(A1, . . . , Aqk) = fn(A1, . . . , Aqk, B1, . . . , Br),

for all profiles P = (A1, . . . , Aqk) ∈ Bqk.
It is clear that fqk inherits strategyproofness from fn: Any successful manipulation of

fqk is also successful for fn.
We are left to show that fqk satisfies (Hare) proportionality. So suppose that P =

(A1, . . . , Aqk) ∈ Bqk is a party-list profile in which singleton party {c} is approved by at
least qk

k = q voters. Note that, because r < k 6 q,

n

k + 1
=

qk + r

k + 1
<

qk + q

k + 1
=

q(k + 1)

k + 1
= q,

Thus, in the profile P ′ = (A1, . . . , Aqk, B1, . . . , Br), there are strictly more than n
k+1 voters

who approve {c}. Thus, by Droop proportionality, c ∈ fn(P ′) = fqk(P ). Thus, fqk is (Hare)
proportional.

Remark. If we want to restrict the Droop proportionality axiom to only apply to party-
list profiles, we can instead assume in Proposition 2 that m > k + 2, and then let B1 =
· · · = Br = {ck+2}, defining the rule fqk only over the first k + 1 alternatives. Then the
final profile P ′ is a party-list profile.
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