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Abstract

We study the stable marriage problem in the partial information setting where the
agents, although they have an underlying true strict linear order, are allowed to
specify partial orders either because their true orders are unknown to them or they
are unwilling to completely disclose the same. Specifically, we focus on the case
where the agents are allowed to submit strict weak orders and we try to address
the following questions from the perspective of a market-designer: i) How can a
designer generate matchings that are robust—in the sense that they are “good” with
respect to the underlying unknown true orders? ii) What is the trade-off between
the amount of missing information and the “quality” of solution one can get? With
the goal of resolving these questions through a simple and prior-free approach, we
suggest looking at matchings that minimize the maximum number of blocking pairs
with respect to all the possible underlying true orders as a measure of “goodness”
or “quality”, and subsequently provide results on finding such matchings.
In particular, we first restrict our attention to matchings that have to be stable with
respect to at least one of the completions (i.e., weakly-stable matchings) and show
that in this case arbitrarily filling-in the missing information and computing the
resulting stable matching can give a non-trivial approximation factor (i.e., o(n2))
for our problem in certain cases. We complement this result by showing that, even
under severe restrictions on the preferences of the agents, the factor obtained is
asymptotically tight in many cases. We then investigate a special case, where only
agents on one side provide strict weak orders and all the missing information is
at the bottom of their preference orders, and show that in this special case the
negative result mentioned above can be circumvented in order to get a much better
approximation factor; this result, too, is tight in many cases. Finally, we move
away from the restriction on weakly-stable matchings and show a general hardness
of approximation result and also discuss one possible approach that can lead us to
a near-tight approximation bound.

1 Introduction

Two-sided matching markets have numerous applications, e.g., in matching students to dor-
mitories (i.e., Stable Roommates problem (SR) [13]), residents to hospitals (i.e., Hospital-
Resident problem (HR) [20]) etc., and hence are ubiquitous in practice. Perhaps unsurpris-
ingly, then, this line of research has received much attention, with plenty of work done on
investigating numerous problems like SR and HR, and their many variations (we refer the
reader to the excellent books by Gusfield and Irving [10] and Manlove [19] for a survey on
two-sided matching problems). The focus of this paper, too, is on one such problem—one
that is perhaps the most widely-studied, but yet the simplest—called the Stable Marriage
problem (SM), first introduced by Gale and Shapley [9]. In SM we are given two disjoint sets
(colloquially referred to as the set of men and women) and each agent in one set specifies a
strict linear order over the agents in the other set, and the aim is to find a stable matching,
i.e., a matching where there is no man-woman pair such that each of them prefers the other
over their partner in the matching. (Such a pair, if it exists, is called a blocking pair.)

While the assumption that the agents will be able to specify strict linear orders is not
unreasonable in small markets, in general, as the markets get larger, it may not be feasible
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for an agent to determine a complete ordering over all the alternatives. In addition to
this, we can also conceive of situations where the agents are simply unwilling to provide
strict total orders due to, say, privacy concerns. Given these issues, it is natural for the
designer to allow the agents to specify partial orders, and so in this paper we assume that
the agents submit strict weak orders1 (i.e, strict partial orders where incomparability is
transitive) that are consistent with their underlying true strict linear orders. Although the
issue of partially specified preferences has received attention previously, we believe that
with respect to certain aspects it has not been addressed sufficiently. In particular, the
common approach to the question of what constitutes a “good” matching in such a setting
has been to either work with stable matchings that arise as a result of an arbitrary linear
extension of the submitted partial orders (these are known as weakly-stable matchings) or
to look at something known as super-stable matchings, which are matchings that are stable
with respect to all the possible linear extensions of the submitted partial orders [14, 22]. In
the case of the former, the main issue is that we often do not really know how “good” a
particular weakly-stable matching is with the respect to the underlying true orders of the
agents, and in the case of the latter they often do not exist. Hence, in this paper we strive to
find a middle-ground when it comes to working with partial preference information, and try
to answer the following questions from the perspective of a market-designer: i) How should
one handle partial information so as to be able to provide some guarantees with respect
to the underlying true preference orders? ii) What is the trade-off between the amount of
missing information and the quality of a matching that one can achieve? We discuss our
proposal in more detail in the following sections.

1.1 How does one work with partial information?

When agents do not submit full preference orderings, there are several possible ways to cope
with the missing information. For instance, one approach that immediately comes to mind
is to assume that there exists some underlying distribution from which the agents’ true
preferences are drawn, and then use this information to find a “good” matching—which is,
say, the one with the least number of blocking pairs in expectation. However, the success of
such an approach crucially depends on having access to information about the underlying
preference distributions which may not always be available. Therefore, in this paper we
make no assumptions on the underlying preference distributions and instead adopt a prior-
free worst-case approach where we assume that any of the linear extensions of the given
strict partial orders can be the underlying true order, and we aim to provide solutions that
perform well with respect to all of them. We note that similar worst-case approaches have
been looked at previously, for instance, by Chiesa et al. [5, 6] in the context of auctions.

The objective we concern ourselves with here is that of minimizing the number of block-
ing pairs, which is well-defined and has been considered previously in the context of matching
problems (for instance, see [1, 4]). In particular, for a given instance I our aim is to return
a matchingMopt that has the best worst case—i.e., a matching that has the minimum max-
imum ‘regret’ after one realises the true underlying preference orders. (We refer toMopt as
the minimax optimal solution.) More precisely, let I = (pU , pW ) denote an instance, where
pU = {pu1

, · · · , pun
}, pW = {pw1

, · · · , pwn
}, U = {ui}i∈{1,2,··· ,n} and W = {wi}i∈{1,2,··· ,n}

are the set of men and women respectively, and pi is the strict partial order submitted by
agent i. Additionally, let C(pi) denote the set of linear extensions of pi, C be the Cartesian
product of the C(pi)s, i.e., C =×i∈U∪W C(pi), bp(M, c) denote the set of blocking pairs
that are associated with the matching M according to some linear extension c ∈ C, and S

1All our negative results naturally hold for the case when the agents are allowed to specify strict partial
orders. As for our positive results, most of them can be extended for general partial orders, although the
resulting bounds will be worse.
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denote the set of all possible matchings. Then the matchingMopt that we are interested in
is defined as Mopt = arg minM∈S maxc∈C |bp(M, c)|.

While we are aware of just one work by Drummond and Boutilier [7] who consider the
minimax regret approach in the context of stable matchings (they consider it mainly in
the context of preference elicitation; see Section 1.4 for more details), the approach, in
general, is perhaps reminiscent, for instance, of the works of Hyafil and Boutilier [12] and
Lu and Boutilier [17] who looked at the minimax regret solution criterion in the context
of mechanism design for games with type uncertainty and preference elicitation in voting
protocols, respectively.

Remark: In the usual definition of a minimax regret solution, there is a second term
which measures the ‘regret’ as a result of choosing a particular solution. That is, in the
definition above, it would usually be Mopt = arg minM∈S maxc∈C |bp(M, c)| − |bp(Mc, c)|,
where Mc is the optimal matching (with respect to the objective function |bp()|) for the
linear extension c. We do not include this in the definition above because |bp(Mc, c)| = 0
as every instance of the marriage problem with linear orders has a stable solution (which
by definition has zero blocking pairs). Additionally, the literature on stable matchings uses
the term regret to denote the maximum cost associated with a stable matching, where the
cost of a matching for an agent is the rank of its partner in the matching and the maximum
is taken over all the agents (for instance, see [18]). However, here the term regret is used in
the context of the minimax regret solution criterion.

1.2 How does one measure the amount of missing information?

For the purposes of understanding the trade-off between the amount of missing information
and the “quality” of solution one can achieve, we need a way to measure the amount of
missing information in a given instance. There are many possible ways to do this, however in
this paper we adopt the following. For a given instance I, the amount of missing information,
δ, is the fraction of pairwise comparisons one cannot infer from the given strict partial orders.
That is, we know that if every agent submits a strict linear order over n alternatives, then we
can infer

(
n
2

)
comparisons from it. Now, instead, if an agent i submits a strict partial order

pi, then we denote by δi the fraction of these
(
n
2

)
comparisons one cannot infer from pi (this

is the “missing information” in pi). Our δ here is equal to 1
2n

∑
i∈U∪W δi. Although, given

a strict partial order pi, it is straightforward to calculate δi, we will nevertheless assume
throughout that δ is part of the input. Hence, our definition of an instance will be modified
the following way to include the parameter for missing information: I = (δ, pU , pW ).

Remark: δ = 0 denotes the case when all the preferences are strict linear orders. Also,
for an instance with n agents on each side, the least value of δ when the amount of missing
information is non-zero is 1

2n
1

(n
2)

(this happens in the case where there is only one agent with

just one pairwise comparison missing). However, despite this, in the interest of readability,
we sometimes just write statements of the form “for all δ > 0”. Such statements need to be
understood as being true for only realizable or valid values of δ that are greater than zero.

1.3 Our Contributions

The focus of our work is on computing the minimax optimal matching, i.e., a matching that,
when given an instance I, minimizes the maximum number of blocking pairs with respect
to all the possible linear extensions (see Section 2.1 for a formal definition of the problem).
Towards this end, we make the following contributions:

• We formally define the problem and show that, interestingly, the problem under con-
sideration is equivalent to the problem of finding a matching that has the minimum
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number of super-blocking pairs (i.e., man-woman pairs where each of them weakly-
prefers the other over their current partners).

• While an optimal answer to our question might involve matchings that have man-
woman pairs such that each of them strictly prefers the other over their partners, we
start by focusing our investigation on matchings that do not have such pairs. Given
the fact that any matching with no such pairs are weakly-stable, through this setting
we address the question “given an instance, can we find a weakly-stable matching that
performs well, in terms of minimizing the number of blocking pairs, with respect to all
the linear extensions of the given strict partial orders?” We show that by arbitrarily
filling-in the missing information and computing the resulting stable matching, one
can obtain a non-trivial approximation factor (i.e., one that is o(n2)) for our problem
for many values of δ. We complement this result by showing that, even under severe
restrictions on the preferences of the agents, the factor obtained is asymptotically tight
in many cases.

• By assuming a special structure on the agents’ preferences—one where strict weak
orders are specified by just agents on one side and all the missing information is at the
bottom of their preference orders—we show that one can obtain a O(n)-approximation
algorithm for our problem. The proof of the same is via finding a 2-approximation for
another problem (see Problem 3) that might be of independent interest.

• In Section 4 we remove the restriction to weakly-stable matchings and show a general
hardness of approximation result for our problem. Following this, we discuss one
possible approach that can lead to a near-tight approximation guarantee for the same.

1.4 Related Work

There has recently been a number of papers that have looked at problems relating to missing
preference information or uncertainty in preferences in the context of matching.

Drummond and Boutilier [7] used the minimax regret solution criterion in order to drive
preference elicitation strategies for matching problems. While they discussed computing
robust matchings subject to a minimax regret solution criteria, their focus was on providing
an NP-completeness result and heuristic preference elicitation strategies for refining the
missing information. In contrast, in addition to focusing on understanding the exact trade-
offs between the amount of missing information and the solution “quality”, we concern
ourselves with arriving at approximation algorithms for computing such robust matchings.

Rastegari et al. [22] studied a partial information setting in labour markets. However,
again, the focus of this paper was different than ours. They looked at pervasive-employer-
optimal matchings, which are matchings that are employer-optimal (see [22] for the defi-
nitions) with respect to all underlying linear extensions. In addition, they also discussed
how to identify, in polynomial time, if a matching is employer-optimal with respect to some
linear extension.

Recent work by Aziz et al. [2] looked at the stable matching problem in settings where
there is uncertainty about the preferences of the agents. They considered three different
models of uncertainty and primarily studied the complexity of computing the stability prob-
ability of a given matching and the question of finding a matching that will have the highest
probability of being stable. In contrast to their work, in this paper we do not make any
underlying distributional assumptions about the preferences of the agents.

Finally, we also briefly mention another line of research which deals with partial infor-
mation settings and goes by the name of interview minimization (see, for instance, [21, 8]).
One of the main goals in this line of work is to come with a matching that is stable (and
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possibly satisfying some other desirable property) by conducting as few ‘interviews’ (which
in turn helps the agents in refining their preferences) as possible. We view this work as an
interesting, orthogonal, direction from the one we pursue in this paper.

2 Preliminaries

Let U and W be two disjoint sets. The sets U and W are colloquially referred to as the
set of men and women, respectively, and |U | = |W | = n. We assume that each agent in
U and W has a true strict linear order (i.e., a ranking without ties) over the agents in
the other set, but this strict linear order may be unknown to the agents or they may be
unwilling to completely disclose the same. Hence, each agent in U and W specifies a strict
partial order over the agents in the other set (which we refer to as their preference order)
that is consistent with their underlying true orders, and pU and pW , respectively, denote
the collective preference orders of all the men and women. For a strict partial order pi
associated with agent i, we denote the set of linear extensions associated with pi by C(pi)
and denote by C the Cartesian product of the C(pi)s, i.e., C =×i∈U∪W C(pi). We refer to
the set C as “the set of all completions” where the term completion refers to an element in
C. Also, throughout, we denote strict preferences by � and use � to denote the relation
‘weakly-prefers’. So, for instance, we say that an agent c strictly prefers a to b and denote
this by a �c b and use a �c b to denote that either c strictly prefers a to b or finds them
incomparable. As mentioned in the introduction, we restrict our attention to the case when
the strict partial orders submitted by the agents are strict weak orders over the set of agents
in the other set.

Remark: Strict weak orders are defined to be strict partial orders where incomparability
is transitive. Hence, although the term tie is used to mean indifference, it is convenient to
think of strict weak orders as rankings with ties. Therefore, throughout this paper, whenever
we say that agent c finds a and b to be tied, we mean that c finds a and b to be incomparable.
Additionally, we will use the terms ties and incomparabilities interchangeably.

An instance I of the stable marriage problem (SM) is defined as I = (δ, pU , pw), where
δ denotes the amount of missing information in that instance and this in turn, as defined
in Section 1.2, is the average number of pairwise comparisons that are missing from the
instance, and pU and pW are as defined above. Given an instance I, the aim is usually to
come up with a matching M—which in turn is a set of disjoint pairs (m,w), where m ∈ U
and w ∈W—that is stable. There are different notions of stability that have been proposed
and below we define two of them that are relevant to our paper: i) weak-stability and
ii) super-stability. However, before we look at their definitions we introduce the following
terminology that will be used throughout this paper. (Note that in the definitions below we
implicitly assume that in any matching M all the agents are matched. This is so because
of the standard assumption that is made in the literature on SM (i.e., the stable marriage
problem where every agent has a strict linear order over all the agents in the other set) that
an agent always prefers to be matched to some agent than to remain unmatched.)

Definition 1 (blocking pair/obvious blocking pair). Given an instance I and a matching
M associated with I, (m,w) is said to be a blocking pair associated with M if w �mM(m)
and m �wM(w). The term blocking pair is usually used in situations where the preferences
of the agents are strict linear orders, so in cases where the preferences of the agents have
missing information, we refer to such a pair as an obvious blocking pair.

Definition 2 (super-blocking pair). Given an instance I where the agents submit partial
preference orders and a matchingM associated with I, we say that (m,w) is a super-blocking
pair associated with M if w �mM(m) and m �wM(w).
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Given the definitions above we can now define weak-stability and super-stability.

Definition 3 (weakly-stable matching). Given an instance I and matching M associated
with I, M is so said to be weakly-stable with respect to I if it does not have any obvious
blocking pairs. When the preferences of the agents are strict linear orders, such a matching
is just referred to as a stable matching.

Definition 4 (super-stable matching). Given an instance I and matching M associated
with I,M is so said to be super-stable with respect to I if it does not have any super-blocking
pairs.

2.1 What problems do we consider?

As mentioned in the introduction, we are interested in finding the minimax optimal matching
where the objective is to minimize the number of blocking pairs, i.e., to find, from the set S
of all possible matchings, a matching that has the minimum maximum number of blocking
pairs with respect to all the completions. This is formally defined below.

Problem 1 (δ-minimax-matching). Given a δ ∈ [0, 1] and an instance I = (δ′, pU , pW ),
where δ′ ≤ δ is the amount of missing information and pU , pW are the pref-
erences submitted by men and women respectively, compute Mopt where Mopt =
arg minM∈S maxc∈C |bp(M, c)|.

Although the problem defined above is our main focus, for the rest of this paper we will be
talking in terms of the following problem which concerns itself with finding an approximately
super-stable matching (i.e., a super-stable matching with the minimum number of super-
blocking pairs). As we will see below, the reason we do the same is because both the
problems are equivalent.

Problem 2 (δ-min-bp-super-stable-matching). Given a δ ∈ [0, 1] and an instance I =
(δ′, pU , pW ), where δ′ ≤ δ is the amount of missing information and pU , pW are the
preferences submitted by men and women respectively, compute MSS

opt where MSS
opt =

arg minM∈S |super-bp(M)| and super-bp(M) is the set of super-blocking pairs associated
with M for the instance I.

Below we show that both the problems described above are equivalent. However, before
that we prove the following lemma. Due to space constraints, most of the proofs only appear
in the appendix.

Lemma 1. Let M be a matching associated with some instance I = (δ, pU , pW ), α denote
the maximum number of blocking pairs associated with M for any completion of I, and
β denote the number of super-blocking pairs associated with M for the instance I. Then,
α = β.

Theorem 2. For any δ ∈ [0, 1], the δ-minimax-matching and δ-min-bp-super-stable-
matching problems are equivalent.

For the rest of this paper, we assume that we are always dealing with instances which do
not have a super-stable matching as this can be checked in polynomial-time [14, Theorem
3.4]. So, now, in the context of the δ-min-bp-super-stable-matching problem, it is easy to
show that if the number of super-blocking pairs k in the optimal solution is a constant, then
we can solve it in polynomial-time. We state this in the theorem below. Later, in Section 4,
we will see that the problem is NP-hard, even to approximate.

Theorem 3. δ-min-bp-super-stable-matching problem can be solved exactly in O(n2(k+1))
time, where k is the number of super-blocking pairs in the optimal solution.
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3 Investigating weakly-stable matchings

In this section we focus on situations where obvious blocking pairs are not permitted. In
particular, we explore the space of weakly-stable matchings and ask whether it is possible to
find weakly-stable matchings that also provide good approximations to the δ-min-bp-super-
stable-matching problem (and thus the δ-minimax-matching problem).

3.1 Approximating δ-min-bp-super-stable-matching with weakly-
stable matchings

It has previously been established that a matching is weakly-stable if and only if it is stable
with respect to at least one completion [18, Section 1.2]. Therefore, given this result, one
immediate question that arises in the context of approximating the δ-min-bp-super-stable-
matching problem is “what if we just fill in the missing information arbitrarily and then
compute a stable matching associated with such a completion?” This is the question we
consider here, and we show that weakly-stable matchings do give a non-trivial (i.e., one that
is o(n2), as any matching has only O(n2) super-blocking pairs) approximation bound for
our problem for certain values of δ.

Theorem 4. For any δ > 0 and an instance I = (δ′, pU , pW ) where δ′ ≤ δ, any weakly-stable

matching with respect to I gives an O
(

min
{
n3δ, n2

√
δ
})

-approximation for the δ-min-bp-

super-stable-matching problem.

3.2 Can we do better when restricted to weakly-stable matchings?

While Theorem 4 established an approximation factor for the δ-min-bp-super-stable-
matching problem when considering only weakly-stable matchings, it was simply based
on arbitrarily filling-in the missing information. Therefore, there remains the question as
to whether one can be clever about handling the missing information and as a result obtain
improved approximation bounds. In this section we consider this question and show that
for many values of δ the approximation factor obtained in Theorem 4 is asymptotically the
best one can achieve when restricted to weakly-stable matchings.

Theorem 5. For any δ ∈ [ 16
n2 ,

1
4 ], if there exists an α-approximation algorithm for δ-min-

bp-super-stable-matching that always returns a matching that is weakly-stable, then α ∈
Ω
(
n2
√
δ
)

. Moreover, this result is true even if we allow only one side to specify ties and

also insist that all the ties need to be at the top of the preference order.

3.3 The case of one-sided top-truncated preferences: An O(n) ap-
proximation algorithm for δ-min-bp-super-stable-matching

While Theorem 5 is an inherently negative result, in this section we consider an interesting
restriction on the preferences of the agents and show how this negative result can be cir-
cumvented. In particular, we consider the case where only agents on one side are allowed
to specify ties and all the ties need to be at the bottom. Such a restriction has been looked
at previously in the context of matching problems and as noted by Irving and Manlove
[15] is one that appears in practise in the Scottish Foundation Allocation Scheme (SFAS).
Additionally, restricting ties to only at the bottom models a very well-studied class of pref-
erences known as top-truncated preferences, which has received considerable attention in
the context of voting (see, for instance, [3]).
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Top-truncated preferences model scenarios where an agent is certain about their most
preferred choices, but is indifferent among the remaining ones or is unsure about them.
More precisely, in our setting, the preference order submitted by, say, a woman w is said to
be a top-truncated order if it is a linear order over a subset of U and the remaining men are
all considered to be incomparable by w. In this section we consider one-sided top-truncated
preferences, i.e., where only men or women are allowed to specify top-truncated orders,
and show an O(n)-approximation algorithm for δ-min-bp-super-stable-matching under this
setting. (Without loss of generality we assume throughout that only the women submit
strict weak orders.) Although arbitrarily filling-in the missing information and computing
the resulting weakly-stable matching can lead to an O(n2

√
δ)-approximate matching even

for this restricted case (see Appendix B for an example), we will see that not all weakly-
stable matchings are “bad” and that in fact the O(n)-approximate matching we obtain is
weakly-stable.

However, in order to arrive at this result, we first introduce the following problem which
might be of independent interest. (To the best of our knowledge, this has not been previously
considered in the literature.) Informally, in this problem we are given an instance I and are
asked if we can delete some of the agents to ensure that the instance, when restricted to the
remaining agents, will have a perfect super-stable matching.

Problem 3 (min-delete-super-stable-matching). Given an instance I = (δ, pU , pW ), where
δ is the amount of missing information and pU , pW are the preferences submitted by men
and women respectively, compute the set D of minimum cardinality such that the instance
I−D = (δ−D, pU\D, pW\D), where δ−D = 1

|(U∪W )\D|
∑
i∈(U∪W )\D δi, has a perfect super-

stable matching (i.e., every agent in (U ∪W ) \D is matched in a super-stable matching).

Below we first show a 2-approximation for the min-delete-super-stable-matching problem
when restricted to the case of one-sided top-truncated preferences. Subsequently, we use
this result in order to get an O(n)-approximation for our problem. However, before that,
we introduce the following terminology which will be used throughout in this section.

• An instance I of the min-delete-super-stable-matching problem can also be thought
of as the set of agents along with their preference lists. Initially for every agent this
list has all the agents in the other set listed in some order. Now, during the course
of our algorithm sometimes we use the operation “delete(a, b)” which removes agent a
from b’s list and b from a’s. After such a deletion (or after a series of such deletions)
our instance now refers to the set of agents along with their updated lists.

• We say that a matching M is internally super-stable with respect to an instance I if
M is super-stable with respect to the instance that is obtained by only considering
the matched agents in M

• We say that an instance I with no ties has an exposed rotation ρ = (m1, w1),
· · · , (mr, wr) if, in I, wi is the first agent in mi’s list and wi+1 is the second agent in
mi’s list (here (i+ 1) is done modulo r).

Proposition 6. Algorithm 1 is a 2-approximation algorithm for the min-delete-super-stable-
matching problem when restricted to the case of one-sided top-truncated preferences.

Proof. The main idea for Algorithm 1 is inspired by the work of Tan [23] who looked at
the problem of finding the maximum internally stable matching for the stable roommates
problem (which is equivalent to the problem of finding the minimum number of agents to
delete so that the rest of the agents will have a stable matching when the instance is just
restricted to themselves). Informally, at a very high level, the key idea in Tan’s algorithm was
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Procedure: proposeWith(A, I)
1: assign each agent a ∈ A to be free
2: while some a ∈ A is free do
3: b← first agent on a’s list
4: if b is already engaged to agent p && b finds p and a incomparable then
5: delete (a, b)
6: else
7: if b is already engaged to agent p then
8: assign p to be free
9: end if
10: assign a and b to be engaged
11: for each agent c in b’s list such that a �b c do
12: delete (c, b)
13: end for
14: end if
15: end while
16: for each man m do
17: w ← first woman on m’s list
18: if there exists a man m′ such that w finds m and m′ incomparable then
19: delete (m′, w)
20: end if
21: end for . deletions in this loop only happen once and results in the removal of all the remaining ties

22: return I . this returns the updated lists

Main:
Input: a one-sided top-truncated instance I = (δ, pU , pW )
23: I′ ← proposeWith(U, I)
24: I′ ← proposeWith(W, I′)
25: while there exists some exposed rotation (m1, w1), (m2, w2), · · · , (mr, wr) in I′ do
26: delete (mi, wi) for all i ∈ {1, · · · , r}
27: I′ ← proposeWith(U, I′)
28: I′ ← proposeWith(W, I′)
29: end while
30: M← for all men m ∈ U , match m with the only woman in his list
31: construct G = (V,E) where V = U ∪W , (m,w) ∈ E if (m,w) is a super-blocking pair in M w.r.t. I
32: D ← minimum vertex cover of G
33: for each a ∈ D do
34: D ← D ∪M(a)
35: end for
36: return (D,M)

Algorithm 1: For the case of one-sided top-truncated preferences, the set D returned by the
algorithm is a 2-approximation for the min-delete-super-stable-matching problem and the
matching M returned is an O(n)-approximation for δ-min-bp-super-stable-matching

to show that some of the entries in each agent’s list can be deleted by running the proposal-
rejection sequence like in Gale-Shapley algorithm and through rotation eliminations, while
at the same time maintaining at least one solution of the maximum size. As we will see
below, this is essentially what we do here as well, adapting this idea as necessary for our
case when there are ties on one side but only at the bottom.

Before we go on to the main lemmas, let us suppose that I = (δ, pU , pW ) is an arbitrary
instance of the min-delete-super-stable-matching problem when restricted to the case of one-
sided top-truncated preferences, where δ is the amount of missing information, pU , pW are
the preference orders submitted by the men and women, respectively, and |U | = |W | = n.
Also, let Dopt be the optimal solution for this instance. This in turn implies that we can

form a perfect and internally super-stable matching of size k = n− Dopt

2 , and that in fact k
is the maximum size of any such matching (as otherwise Dopt cannot be optimal). Next, for
now, let us assume the correctness of the following lemmas (note that all the instances we
talk about in this section are restricted to the case of one-sided top-truncated preferences).
The proofs of the same are in the appendix.

Lemma 7. Let I1 denote some instance and I2 denote the instance returned by the procedure
proposeWith(A, I1), where the set A represents the proposing side. If there exists a matching
of size t in I1 that is internally super-stable with respect to I, then there exists a matching
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of size t in I2 that is internally super-stable with respect to I.

Lemma 8. Let I1 denote some instance that does not contain any ties, (m1, w1), (m2, w2),
· · · , (mr, wr) be a rotation that is exposed in I1, and I2 be the instance that is obtained by
deleting the entries (mi, wi) for all i ∈ {1, · · · , r} from I1. If there exists a matching of size
t in I1 that is internally super-stable with respect to I, then there exists a matching of size
t in I2 that is internally super-stable with respect to I.

Lemma 9. If I1 is an instance that does not contain any exposed rotation, then the list of
every man in I1 has only one woman and vice versa.

Given the above lemmas and given the fact that the instance I has an internally super-
stable matching of size k = n− Dopt

2 , we can start with the instance I and repeatedly apply

Lemma 7 and see that the instance Î that we obtain after line 24 of Algorithm 1 has a
matching of size k that is internally super-stable matching with respect to I. Next, starting
with the instance Î, we can again repeatedly apply Lemma 8 and see that the instance I ′
that remains after line 29 of Algorithm 1 also has a matching of size k that is internally
super-stable matching with respect to I. Additionally, from Lemma 9 we know that in this
instance each man has only one woman in his list and vice versa. So, now, consider the
matching M that can be obtained by matching each man with the only woman in his list.
Next, consider the bipartite graph G = (V,E) where V = U ∪W and (m,w) ∈ E if (m,w)
is a super-blocking pair with respect to the original instance I, and consider a minimum

vertex cover C of G. We show below that k ≤ n− |C|2 .
Suppose this is false and that I has an internally super-stable matching of size greater

than n − |C|2 . Now, from the discussion above, we know that this implies I ′ also has a

matching of size greater than n− |C|2 such that it is internally super-stable with respect to
I. This in turn implies that we can remove less than |C| agents and have a matching that is
internally super-stable with respect to I. That is, we can remove less than |C| agents and
also at the same time ensure that for every (m,w) ∈ E, this matching has only one of m
or w matched in it, for if otherwise it will not be internally super-stable with respect to I.
However, this implies that |C| is not the size of the minimum vertex cover of G, and hence
we have a contradiction.

Now, to get our approximation bound, consider the set D that is returned by the al-
gorithm. We know that D ≤ 2|C| ≤ 4(n − k) = 2Dopt, where the first inequality arises
because of lines 33-35 in Algorithm 1 and the second inequality uses the observation above

that k ≤ n− |C|2 . Finally, it is easy to see that all the steps can be done in polynomial-time
(it is well-known through the Kőnig’s Theorem that one can find a minimum vertex cover
of a bipartite graph in polynomial-time).

Given Proposition 6, we can now prove the following theorem.

Theorem 10. For any δ > 0, Algorithm 1 is a O(n)-approximation algorithm for the δ-
min-bp-super-stable-matching problem when restricted to the case of one-sided top-truncated
preferences. Moreover, the O(n)-approximate matching that is returned is also weakly-stable.

Proof. Consider an arbitrary instance I of the δ-min-bp-super-stable-matching problem
when restricted to the case of one-sided top-truncated preferences. LetMopt be the optimal
solution associated with I. Next, consider the same instance I for the min-delete-super-
stable-matching problem and let us consider the matchingM that is returned by Algorithm 1
for this instance. Also, let Dopt be the optimal solution of the min-delete-super-stable-
matching problem for the instance I and D be the set that is returned by Algorithm 1. (We
can assume throughout that Dopt ≥ 1, for if otherwise this implies that it has a super-stable
matching, and as mentioned in Section 2.1 we do not consider such instances.) First, it
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is easy to see that this matching is weakly-stable (because in every instance that results
after the first proposal-rejection sequence (which is in line 23), a matching that is formed
by matching each man with the first woman on his list will be weakly-stable). Second,
note that we can rewrite M as M = M1 ∪ M2, where M1 = M \ {∪a∈D(a,M(a))}
and M2 = ∪a∈D(a,M(a)). Now, if S1 (S2) denotes the number of super-blocking pairs
associated with men in M1 (M2), then

|super-bp(M)| = S1 + S2 ≤
(
n− |D|

2

)
· |D|

2
+
|D|
2
· n ≤ n · |D| ≤ 2n · |Dopt|, (1)

where the second step is using the fact that the men in M1 can form at most |D|2 super-
blocking pairs with women outside ofM1 and the men inM2 can in the worst case form a
blocking pair with all the women, and the last step is using the fact that Dopt ≥ 1 and that
|D| ≤ 2 · |Dopt|, which we know is true by Proposition 6.

Also, if Mopt is the optimal solution for the δ-min-bp-super-stable-matching problem,
then we know that

|super-bp(Mopt)| ≥
|Dopt|

2
, (2)

as otherwise one can delete all the men who are involved in super-blocking pairs in Mopt

and their corresponding partners and get a super-stable matching on the remaining agents.
Finally, using Equations 1 and 2 we have our theorem.

Before we end this section, we address one final question as to whether, for the class
of one-sided top-truncated preferences, one can obtain a better approximation result if one
continues to consider only weakly-stable matchings. In the theorem below we show that for
δ ∈ Ω( 1

n ) Algorithm 1 is asymptotically the best one can do under this restriction.

Theorem 11. For δ ≤ 1
2 , if there exists an α-approximation algorithm for δ-min-bp-super-

stable-matching that always returns a matching that is weakly-stable for the case of one-sided

top-truncated preferences, then α ∈ Ω
(

min
{
n

3
2

√
δ, n
})

.

4 Beyond Weak-Stability

In the previous section we investigated weakly-stable matchings and we showed several
results concerning this situation. Here we move away from this restriction and explore what
happens when we do not place any restriction on the matchings. In particular, we begin
this section by showing a general hardness of approximation result, and then follow it with
a discussion on one possible approach that can lead to a near-tight approximation result.

4.1 Inapproximability result for δ-min-bp-super-stable-matching

We show a hardness of approximation result for the δ-min-bp-super-stable-matching problem
through a gap-producing reduction from the Vertex Cover (VC) problem, which is a well-
known NP-complete problem [16]. In the VC problem, we are given a graph G = (V,E),
where V = {v1, · · · , vk}, and a k0 ≤ k and are asked if there exists a subset of the vertices
with size less than or equal to k0 such that it contains at least one endpoint of every edge.

Theorem 12. For any constant ε ∈ (0, 1] and δ ∈ (0, 1), one cannot obtain a polynomial-
time (n

√
δ)1−ε approximation algorithm for the δ-min-bp-super-stable-matching problem un-

less P = NP.
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4.2 A possible general approach for obtaining a near-tight approx-
imation factor for δ-min-bp-super-stable-matching

While obtaining a general near-tight approximation result for the δ-min-bp-super-stable-
matching problem is still open, in this section we propose a potentially promising direction
for this problem. In particular, we demonstrate how solving even a very relaxed version of the
min-delete-stable-matching problem will be enough to get an O(n)-approximation for δ-min-
bp-super-stable-matching in general. Below, we first define the relaxation in question, which
we refer to as an (α, β)-approximation to the min-delete-super-stable-matching problem.

Definition 5 ((α, β)-min-delete-super-stable-matching). Given an instance I =
(δ, pU , pW ), compute a set D′ such that |D′| ≤ α · |Dopt|, where |Dopt| is the size of the op-
timal solution to the min-bp-super-stable-matching for the same instance, and the instance
I−D′ = (δ−D′ , pU\D′ , pW\D′), where δ−D′ = 1

|(U∪W )\D′|
∑
i∈(U∪W )\D′ δi, has a matching

with at most β super-blocking pairs.

Next, we show that an (α, β)-approximation to the min-delete-super-stable-matching
problem gives us an (αn + β)-approximation for δ-min-bp-super-stable-matching. So, in
particular, if we have an (α, β)-approximation where α is a constant and β ∈ O(n), then
this in turn gives us an O(n)-approximation for δ-min-bp-super-stable-matching in general.

Proposition 13. If there exists an (α, β)-approximation algorithm for the min-delete-super-
stable-matching problem, then there exists an (αn + β)-approximation algorithm for the δ-
min-bp-super-stable-matching problem.

5 Conclusion

In this paper we initiated a study on matching with partial information in order to investi-
gate what makes a matching “good” in this context, and to better understand the trade-off
between the amount of missing information and the quality of different matchings. To-
wards this end, we introduced a measure for accounting for missing preference information
in an instance, and argued that a natural definition of a “good” matching in this context is
one that minimizes the maximum number of blocking pairs with respect to all the possible
completions. Subsequently, using an equivalent problem (δ-min-bp-super-stable-matching)
we first explored the space of matchings that contained no obvious blocking pairs (i.e.,
weakly-stable matchings) in order to better understand how missing preference information
effected/affected the quality, in terms of approximation with respect to the objective of min-
imizing the number of super-blocking pairs. Later on, by expanding the space of matchings
we considered (i.e., removing the restriction that matches must be weakly-stable), we asked
whether it was possible to improve on the approximation factors that were achieved under
the restriction to weakly-stable matchings.

There are a number of interesting directions for future work. First, while in Section 4.2
we proposed one possible approach that can lead to near-tight approximations, there may
be other approaches that can prove fruitful. Second, we believe that the min-delete-super-
stable-matching problem, and its relaxation we introduced, are both of independent interest,
and so an open question is to see if one can obtain general results on them. In Proposi-
tion 6 we saw that a 2-approximation was achievable for the case of one-sided top-truncated
preferences and hence it would also be interesting to determine if there are other interesting
classes of preferences for which constant-factor approximations are possible. Finally, there
are possible extensions, like, for instance, allowing incompleteness—meaning the agents can
specify that they are willing to be matched to only a subset of the agents on the other
set—that one could consider and ask similar questions like the ones we considered.
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A Omitted Proofs

A.1 Proof of Lemma 1

First, it is easy to see that if there are α blocking pairs associated withM for a completion,
then there are at least as many super-blocking pairs associated with M. Therefore, α ≤ β.

Next, we will show that if β is the number of super-blocking pairs associated with M,
then I has at least one completion such that it has β number of blocking pairs associated
with M. To see this, for each mi ∈ U and for each wj ∈ W such that (mi, wj) is a
super-blocking pair, do the following:

• if mi finds wj incomparable toM(mi), then construct a new partial order p′mi
for mi

such that it is the same as pmi
except for the fact that in p′mi

we have that mi strictly
prefers wj over M(mi).

• if wj finds mi incomparable to M(wj), then construct a new partial order p′wj
for wj

such that it is the same as pwj
except for the fact that in p′wj

we have that wj strictly
prefers mi over M(wj).

Once the above steps are done, if there still exists any agent whose preference order is
partial, then complete it arbitrarily. Now, consider this instance I ′ that is obtained. Then,
again, it is easy to see that every (mi, wj) which was a super-blocking pair associated with
M in I forms a blocking pair in M with respect to I ′. Therefore, this completion has β
blocking pairs, and since the maximum number of blocking pairs in any completion is α, we
have that β ≤ α. Combining this with the case above, we have that α = β.
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A.2 Proof of Theorem 2

To see this, let I = (δ′, pU , pW ) be some instance, where δ′ ≤ δ, and M be some matching
associated with I. We show that M is an optimal solution for the δ-minimax-matching
problem if and only if it is an optimal solution for the δ-min-bp-super-stable-matching
problem.

( =⇒ ) Let us suppose that M is not an optimal solution for the δ-min-bp-super-
stable-matching problem. This implies that there exists some other matchingM′ such that
|super-bp(M′)| < |super-bp(M)|. However, from Lemma 1 we know that the maximum
number of blocking pairs associated with M′ for any completion with respect to I is equal
to |super-bp(M′)|, which in turn contradicts the fact thatM was optimal for the δ-minimax-
matching problem.

(⇐= ) We can prove this analogously.

A.3 Proof of Theorem 3

We will describe the algorithm below whose main idea is based on the following observation.
For an instance I, consider its optimal solutionMopt and let the k super-blocking pairs

associated with Mopt be B = {(m1, w1), · · · , (mk, wk)}. Next, for each such pair (mi, wi),
put mi (wi) at the end of wi’s (mi’s) preference list (i.e., make every other man (woman),
except those involved in another blocking pair with wi (mi), rank better than mi (wi)). If
either of them are involved in multiple blocking pairs in B, then make those partners as
incomparable at the end of the preference list. Let us call the new instance I ′. Notice that
Mopt is super-stable with respect to I ′ as the pairs in B are no longer blocking and no new
blocking pairs are created because of our manipulations to the preference list.

Given the above observation, we can now describe the exponential algorithm.

• Initially j = 1. Given a j, try out every possible set of pairs of size j to see if they are
the right blocking pairs.

• For each set generated in the previous step, modify the original instance I to I ′
as described above and see if I ′ has a super-stable matching (this can be done in
polynomial time). If yes, then return the super-stable matching as that is the solution.
Otherwise, if none of the sets of size j result in a “yes”, then go back to step 1 and
try again with the next value of j.

Now, it is easy to see that we end up with the optimal solution this way since we try
all possible sets of blocking pairs. As for the time, we know that for each j we have at
most (n2)j choices of sets and for each set we need at most 2n2 time to do the necessary
manipulations to the instance and to check for super-stability. Hence, the total time required
is
∑k
j=1 2n2j+2 = O(n2(k+1)).

A.4 Proof of Theorem 4

Let M be a weakly-stable matching associated with I. By the definition of weakly-stable
matchings we know thatM does not have any obvious blocking pairs. This implies that for
every super-blocking pair (m,w) associated with M, either m finds w incomparable to his
partnerM(m) or w finds m incomparable to her partnerM(w). If it is the former then we
refer to the super-blocking pair (m,w) as one that is associated with m and if not we say
that it is associated with w. Next, let us suppose that there are d agents who have a blocking
pair associated with them and let bi denote the number of super-blocking pairs associated
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with agent i. So, now, the number of super-blocking pairs, |super-bp(M)|, associated with
M can be written as

|super-bp(M)| =
d∑
i=1

bi ≤
d∑
i=1

(`i − 1) =

d∑
i=1

`i − d, (3)

where `i refers to the length of largest tie associated with agent i and the inequality follows
from the definition of an association of a super-blocking pair with an agent.

Additionally, for each i ∈ {1, · · · , d}, we know that at least
(
`i
2

)
pairwise comparisons are

missing with respect to i (since i has a tie of length `i). Therefore, using the Cauchy-Schwarz
inequality, we have that

d∑
i=1

(
`i
2

)
=

1

2

d∑
i=1

`2i − `i ≥
1

2

1

d

(
d∑
i=1

`i

)2

−
d∑
i=1

`i

 . (4)

Also, since the total amount of missing information δ′ in the instance I is less than or
equal to δ and since each `i ≥ 2 (as it is a weak order and a tie, if it exists, is of length at
least 2) we have that

d ≤
d∑
i=1

(`i − 1) ≤
d∑
i=1

(
`i
2

)
≤ δ(2n)

(
n

2

)
≤ δn3. (5)

Now, using Equation 5 and the fact that d is also upper-bounded by 2n (as there are only
2n agents in the instance), we have that d ≤ min{2n, δn3}. Therefore, using Equation 4
and again using the fact that δ is the maximum amount of missing information, we have,

1

2

1

d

(
d∑
i=1

`i

)2

−
d∑
i=1

`i

 ≤ d∑
i=1

(
`i
2

)
≤ δ(2n)

(
n

2

)
. (6)

This in turn implies that if we solve for
∑d
i=1 `i, we have,

d∑
i=1

`i ≤
1

2

(
d+

√
d2 + 8dn2(n− 1)δ

)
< d+

√
d2 + 8dn2(n− 1)δ.

So, now, we can use the fact that d ≤ min{2n, δn3} to see that

d∑
i=1

`i − d ≤ min{4n3δ, 5n2
√
δ}.

Finally, this along with Equation 3 gives our result since the number of super-blocking
pairs in the optimal solution is at least 1 (since, as mentioned in Section 2.1, we are only
considering instances that do not have a super-stable matching).

A.5 Proof of Theorem 5

To prove this, we first construct an instance I as shown in Figure 1, where ties appear only
on the women’s side. Furthermore, we define the following:

• y = n
√
δ

2 , z = n
2y (for simplicity we assume that y and z are integers; we can appro-

priately modify the proof if that is not the case)
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Men

m1 : w1 � WB1 � · · · � WBz � WF\{1}

m2 : w1 � w2 � [· · · ]
m3 : w2 � w3 � WF\{2,3} � WS

m4 : w2 � w4 � WF\{2,4} � WS

...
mn

2
: w2 � wn

2
� WF\{2,n

2
} � WS

mb0 : w1 � wb0 � WB1\{b0} � WS\B1
� WF\{1}

...
mb1−1 : w1 � wb1−1 � WB1\{b1−1} � WS\B1

� WF\{1}

mb1 : w1 � wb1 � WB2\{b1} � WS\B2
� WF\{1}

...
mb2−1 : w1 � wb2−1 � WB2\{b2−1} � WS\B2

� WF\{1}
...

mbz−1
: w1 � wbz−1

� WBz\{bz−1} � WS\Bz
� WF\{1}

...
mbz−1 : w1 � wbz−1 � WBz\{bz−1} � WS\Bz

� WF\{1}

Women

w1 : m2 � m1 � [· · · ]
w2 : m2 � M(F∪S)\{1} � m1

w3 : m1 � m3 � [· · · ]
w4 : m1 � m4 � [· · · ]

...
wn

2
: m1 � mn

2
� [· · · ]

wb0 : MT
B1\{b0} � MS\B1

� m1 � mb0 � MF\{1}
...

wb1−1 : MT
B1\{b1−1} � MS\B1

� m1 � mb1−1 � MF\{1}

wb1 : MT
B1\{b1} � MS\B1

� m1 � mb1 � MF\{1}
...

wb2−1 : MT
B1\{b2−1} � MS\B1

� m1 � mb2−1 � MF\{1}
...

wbz−1
: MT

B1\{bz−1} � MS\B1
� m1 � mbz−1

� MF\{1}

...

wbz−1 : MT
B1\{bz−1} � MS\B1

� m1 � mbz−1 � MF\{1}

Figure 1: The instance I that is used in the proof of Theorem 5

• bj = n
2 + jy + 1,∀j ∈ [0, · · · z]

• Bi = {bi−1, · · · , bi − 1},∀i ∈ [1, · · · z]

• F = {1, · · · , n2 }, S = {n2 + 1, · · · , n}

• WX : for some set X, place all the women with index in X in the increasing order of
their indices

• WT
X : for some set X, place all the women with index in X as tied

• MX : for some set X, place all the men with index in X in the increasing order of
their indices

• MT
X : for some set X, place all the men with index in X as tied

• [· · · ] : place all the remaining alternatives in some strict order.

Next, we will show that all the weakly-stable matchings associated with I haveO
(
n2
√
δ
)

super-blocking pairs, whereas the optimal solution has exactly one super-blocking pair. To
do this, first note that the optimal solution Mopt associated with the instance is Mopt =
{(m1, w1), (m2, w2), · · · , (mn, wn)}, where (m2, w1) is the only super-blocking pair (and it
is an obvious blocking pair). Also, it can be verified that the total amount of missing
information in I is at most δ. So, next, we prove the following claim.

Claim 1. If M is a weakly-stable matching associated with the instance I, then ∀i ∈
{n2 + 1, · · · , n},M(mi) 6= wi.

Proof. First, note that in any weakly-stable matching m2 will always be matched to w1 as
otherwise it will result in an obvious blocking pair. Next, let us suppose that there exists
an i ∈ {n2 + 1, · · · , n} such thatM(mi) = wi. Now, we will consider the following two cases
and show that in both the cases this is impossible.
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Case 1. m1 is matched to a woman w ∈ WF\{1} in M: In this case one can see that
(m1, wi) forms an obvious blocking pair.

Case 2. m1 is matched to a woman w ∈WS inM: Note that if this is the case, then there
is at least one j ∈ S such that mj is matched with a woman w ∈ WF . Now, notice that
(mj , wi) forms an obvious blocking pair.

Given the claim above, consider a man m whose index is in some block Bj and let his
index value be k. From the way the preferences are defined, it is easy to see that in any
weakly-stable matching, m will be matched to a woman w whose index lies in the same
block Bj (because otherwise it will result in an obvious blocking pair). At the same time,
from the claim above we know that this w’s index is not k. Now, let us consider the woman
wbj−1 who is the woman with the highest index value in Bj and let m′ denote the man who
is matched to wbj−1 in a weakly-stable matching. From the observation above we know that
m′ has an index value in Bj . Additionally, given the way the preferences are defined for
m′ and using the fact that any woman wp such that p ∈ Bj finds all the men in Bj \ {p}
to be incomparable, one can see that m′ forms (|Bj | − 2) super-blocking pairs (with all
the women in Bj except wbj−1 and the one with the same index value as m′). Also, by
using the same argument again, but with respect to wbj−2, we can show that partner of
wbj−2 in the matching forms at least (|Bj |− 3) super-blocking pairs (with all women except
wbj−2, wbj−1, and the one with the same index). Continuing this way we see that each
block Bj contributes O(|Bj |2) super-blocking pairs. And so, since there are z blocks and

|Bj | = y for all j, we have that there are O(n2
√
δ) super-blocking pairs in any weakly-stable

matching.

A.6 Proof of Lemma 7

Let us first prove the following claims. However, before that we introduce the following
terminology. When the procedure proposeWith(A, I1) is executed, for every run of the
while loop in line 2 with respect to an agent a, we can track the instance that is currently
being used. That is, initially we have the instance I1 and this is referred to as the instance
that is “currently being used” by the agent a1 where a1 is the first agent with respect whom
the while loop is executed. Now, after the first run of the while loop (w.r.t. a1) we have
an updated instance (because of some delete operations that happened in lines 3-14), say,
Icurr. Therefore, the next time the while loop is run with respect to some agent a2, this is
the instance that is “currently being used” with respect to a2. We use this terminology in
the following claim.

Claim 2. Let a ∈ A be an agent who is assigned to be ‘free’ in the procedure
proposeWith(A, I1), Icurr denote the instance that is currently being used with respect to
a, and I ′1 be the instance obtained by running lines 3-14 with respect to agent a. If there
exists a matching of size t in Icurr that is internally super-stable with respect to I, then
there exists a matching of size t in I ′1 that is internally super-stable with respect to I.

Proof. First, note that every time the procedure proposeWith() is called with the set A, the
agents in this set do not have any ties. This is because, when proposeWith() is called with
the set of women W for the first time in line 24, all ties are already broken due to the first
call of proposeWith() with the set of men in line 23. Therefore, in all the arguments below
we do not need to concern ourselves with issues that can arise as a result of the agents in A
having ties.

Now, to prove this claim we consider the following two cases separately.

1. when b, the first agent in a’s list, is either engaged to p, but prefers a to p, or is not
engaged currently
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2. when b is engaged to p ∈ A and finds p and a incomparable

Case 1: In this case the only change that happens to the instance Icurr are due to deletions
of the form (c, b) where a �b c. Let the resulting instance be I ′1. So, in order to prove that
I ′1 has a matching of size t that is internally super-stable with respect to I, we just need to
prove that there exists a matching of size t in Icurr that is internally super-stable matching
with respect to I and does not have any matches of the form (c, b). Now, let us suppose
that’s not the case and that in every matchingM of size t in Icurr that is internally super-
stable with respect to I there exists such a pair. This in turn implies that a is unmatched
in M, for if otherwise (a, b) will form an obvious-blocking pair. Hence, we can form the
matching M′ = (M\ (c, b)) ∪ (a, b). Note that M′ is internally-stable with respect to I as
this does not introduce any new super-blocking pair (since b is the first agent on a’s list and
b does not block any other agent in M′ as he prefers the new partner over his old partner
c) and has the same size as M. This in turn is a contradiction and hence we have that I ′1
has a matching of size t that is internally super-stable with respect to I.

Case 2: In this case, the only change that happens to the instance Icurr is the deletion of
(a, b). Let the resulting instance be I ′1. So, in order to prove that I ′1 has a matching of size
t that is internally super-stable with respect to I, we just need to prove that there exists
a matching of size t in Icurr that is internally super-stable matching with respect to I and
does not have any matches of the form (a, b). Suppose that’s not the case and that every
matchingM of size t in Icurr that is internally super-stable matching with respect to I has
(a, b). This in turn implies that p is unmatched in M, for if otherwise (p, b) will form a
super-blocking pair (since b is the first agent on p’s list and b finds p and a incomparable).
Hence, we can now form the matching M′ = (M\ (a, b)) ∪ (p, b), which is internally super-
stable with respect to I as this does not introduce any new super-blocking pair (since i)
b is the first agent on p’s list and ii) b does not block any other agent in M′ as it finds a
and b incomparable and so if he blocks someone now he also blocked them when (a, b) was
present, thus contradicting the fact that M was internally super-stable) and has the same
size asM. This in turn is a contradiction and hence, again, we have that I ′1 has a matching
of size t that is internally super-stable with respect to I.

Next, we prove the following claim whose proof is omitted since it can be proved in a
way that is similar to Case 2 in the proof of Claim 2.

Claim 3. Let m be a man, w be the first woman on m’s list, I3 be some instance obtained
after line 15, and I4 be the instance obtained after deleting each (m′, w) in line 19. If there
exists a matching of size t in I3 that is internally super-stable with respect to I, then there
exists a matching of size t in I4 that is internally super-stable with respect to I.

Given the two lemmas above, we are now ready to prove Lemma 7. First, starting with
I1 and by repeatedly using Claim 2 with respect to each free agent a ∈ A, we can see that
the instance I ′1 that we obtain at the end of the while loop (i.e., line 15) has a matching of
size t that is internally super-stable matching with respect to the initial instance I. Second,
starting with I ′1 and by repeatedly using Claim 3 with respect to each man, we can see that
the instance I2 that is returned from the procedure proposeWith(A, I1) has a matching of
size t that is internally super-stable with respect to the instance I. This in turn proves our
lemma.

A.7 Proof of Lemma 8

Let M be a matching of size t in I1 that is internally super-stable with respect to I. We
will consider the following two cases separately and show that in each case there exists a
matching of size t in I2 that is internally super-stable with respect to I.
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1. for all i ∈ {1, · · · , r}, (mi, wi) ∈M

2. there exists some j ∈ {1, · · · , r} such that (mj , wj) /∈M

Case 1: Consider the matching M′ that is obtained by removing (mi, wi) and instead
adding (mi, wi+1) for all i ∈ {1, · · · , r} (here i+ 1 is done modulo r). Now, it is easy to see
that this does not lead to any new internal super-blocking pairs with respect to I. Hence,
M′ is internally super-stable with respect to I, has the same size as M (as every agent
matched in M is also matched in M′), and all the matched pairs in M′ are in I2.

Case 2: First, note that if (mi, wi) /∈ M for all i ∈ {1, · · · , r}, then we are done as
the only deleted entries in I2 are (mi, wi) for all i ∈ {1, · · · , r}. So this implies that we
can, without loss of generality, consider the smallest k ∈ {1, · · · , r} such that (mj , wj) /∈M
for all j ∈ {1, · · · , k}, but (mk+1, wk+1) ∈ M (since there is at least one j such that
(mj , wj) /∈ M, this can always be done because we can re-index the rotation so that the
first element (m1, w1) of the rotation is not inM). Let I ′2 be the instance that is formed by
deleting the entries (mi, wi) for all i ∈ {1, · · · , k + 1}. Below, we will show that I ′2 satisfies
the conditions of the lemma, i.e., we show that I ′2 has a matching of size t that is internally
super-stable with respect to I. And so once we have that, we can just repeat this argument
until we get to the instance I2.

To see why I ′2 satisfies the conditions of the lemma, notice that mk needs to be un-
matched in M, for if otherwise then (mk, wk+1) will be an obvious blocking-pair. This
in turn implies that we can construct another matching M′ such that M′ = (M \
(mk+1, wk+1)) ∪ (mk, wk+1), both of them have the same size, and all the matched pairs in
M′ are in I ′2. Also, one can see that this does not lead to any new super-blocking pairs
since i) wk+1 improved and so will not be part of any new super-blocking pair and ii) mk

does not form a super-blocking pair as it is matched to the agent who is second in his list
and wk who is first in his list, if matched in M, has to be matched to someone better (as
mk is the last agent in wk’s list).

A.8 Proof of Lemma 9

First, note that throughout an agent a is in b’s list if and only if b is in a’s list. Second, we
prove the following claim.

Claim 4. Let I2 be some initial instance, I3 be the instance that is obtained after running
the procedure proposeWith() with the men’s side proposing, and I4 be the instance that is
obtained after running the procedure proposeWith() with the women’s side proposing. For
any two agents a and b in I4, if a is the only agent in b’s list, then b is the only agent in
a’s list.

Proof. To prove our claim let us consider the following two cases in the instance I3.

1. there exists a woman w1 such that m1 is the only man on w1’s list, but m1 has at
least one other woman other than w1 in his list

2. there exists a man m1 such that w1 is the only woman on m1’s list, but w1 has at
least one other man other than m1 in her list

Case 1: Since we are looking at I3, note that w1 must be the first woman on m1’s list,
for if otherwise there is some other man, say, mk who is not engaged (because w1 has only
m1 in her list). However, we know that this is not possible and so w1 is the first woman
on m1’s list. Therefore, now, when we run the procedure proposeWith() with the women’s
side proposing, w1 will propose to m1 and as a result m1 will delete all other women from
his list. And so, in I4, w1 is the only agent in m1’s list and vice versa.
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Men

m1 : w2 � w1 � [· · · ]
m2 : w3 � w1 � w2 � [· · · ]
m3 : w4 � w1 � w3 � [· · · ]

...
mn−y : wn−y+1 � [· · · ]

mn−y+1 : wn−y+2 � w1 � wn−y+1 � [· · · ]
mn−y+2 : wn−y+2 � w1 � w2 � [· · · ]
mn−y+3 : wn−y+2 � w1 � wn−y+3 � [· · · ]

...
mn : wn−y+2 � w1 � wn � [· · · ]

Women

w1 : m1 � · · · � mn−y � (mn−y+1, · · · ,mn)

w2 : m1 � [· · · ]
w3 : m2 � [· · · ]
w4 : m3 � [· · · ]

...
wn−y+1 : mn−y � [· · · ]
wn−y+2 : mn−y+1 � mn−y+2 � [· · · ]
wn−y+3 : mn−y+3 � [· · · ]
wn−y+4 : mn−y+4 � [· · · ]

...
wn : mn � [· · · ]

Figure 2: The instance I that is used in the proof of Theorem 11

Case 2: For this case, let us suppose that even after running the procedure proposeWith()
with the women’s side proposing, w1 still has at least one other man other than m1 in her
list (if not, then we are already done). Let this man be m2. This in turn implies that in
the engagement relation that results, at least one of the women, say, wk, is not engaged
(because m1 has only w1 in his list). However, we know that this is not possible as this
would imply that the engagement relation has an obvious blocking pair (mk, wk), where mk

is the last agent on wk’s list (and we know this cannot happen since we are just running the
same proposal-rejection sequence as in the Gale-Shapley algorithm).

Given the observations above, let us assume for the sake of contradiction that there
exists an instance I1 such that it does not have any exposed rotation but has at least one
agent who has a list of size greater than one. Using Claim 4 and the fact that an agent a is
in b’s list if and only if b is in a’s list, we can assume without loss of generality that there
exists a man m1 such that he has at least two women in his list. Let w1 and w2 be the
first and second woman, respectively, in m1’s list. Since I1 is obtained after running the
procedure proposeWith() twice, once each with the men’s and women’s side proposing, from
Claim 4 we know that m2, who is the last man on w2’s list, too has at least two women in
his list as otherwise w2 would also have just one man m2 in her list. Let w3 be the second
woman in m2’s list. Now, we can see that we can just inductively keep on applying the
above argument and form the following pairs ρ = (m1, w1), (m2, w2), (m3, w3), · · · , (mr, wr)
for some r ∈ {2, · · · , n}, where mi is the last man on wi’s list and wi+1 is the second
woman on mi’s list. However, note that ρ is an exposed rotation, and hence we have a
contradiction.

A.9 Proof of Theorem 11

To prove this, consider the instance I defined as in Figure 2, where y = min
{
b2n 3

2

√
δc, n

}
.

Below we will show that the statement of the theorem is true when δ ≤ 1
2n , i.e., show that

in this case α ∈ Ω
(
n

3
2

√
δ
)

. For δ > 1
2n it is then trivial to extend our instance by just

having some of the other women (other than w1) specify partial preferences.
First, it is easy to verify that this instance has at most δ amount of information missing.

Second, one can see that the optimal solution, i.e., the matching with the minimum number
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of super-blocking pairs, for this instance is

Mopt =
{

(m1, w1), (m2, w3), · · · , (mn−y+1, wn−y+2), (mn−y+2, w2),

(mn−y+3, wn−y+3), · · · , (mn, wn)
}
,

where (m1, w2) is the only super-blocking pair.
Given the above observation, let us now consider an arbitrary matchingM that is weakly-

stable. Since mi prefers wi+1 the most and vice versa for all i ∈ {1, · · · , n−y+ 1}, we know
that M(mi) = wi+1. Hence, M(w1) = mk, for some k ∈ {n− y + 2, · · · , n}. Additionally,
we also know that for all j ∈ {n−y+ 2, · · · , n} such that j 6= k, w1 �mj M(mj), as none of
these can men can be matched to wn−y+2. This in turn implies that since w1 finds mk and
mj incomparable for j ∈ {n−y+2 · · · , n} such that j 6= k, (mj , w1) is a super-blocking pair.

Therefore, in any weakly-stable matching M we have (y − 2) ∈ O(n
3
2

√
δ) super-blocking

pairs.

A.10 Proof of Theorem 12

The proof here is similar to the one by Hamada et al. [11, Theorem 1]. The main difference
is in the construction of the instance, which in our case is more involved; once we have that
we can essentially use the same proof as the one by Hamada et al.

Given an instance I = (G = (V,E), k0) of the VC problem, where |V | = k, we construct
the following instance I ′ of the δ-min-bp-super-stable-matching problem, where

• d =
⌈

8
ε

⌉
, y = kd + 1, z = d 1√

δ
e

• MA1
= {m1, · · · ,mk0}, MA2

= {mk0+1, · · · ,mk}, WA = {w1, · · · , wk}

• for every i < j such that (vi, vj) ∈ E and c ∈ {1, · · · , z}, Si,jc = {si,jc,1, · · · si,jc,y},
T i,jc = {ti,jc,1, · · · ti,jc,y}, P i,jc = {pi,jc,1, · · · pi,jc,y}, and V i,jc = {vi,jc,1, · · · vi,jc,y}

• Si,j = {Si,j1 , · · ·Si,jz }, T i,j = {T i,j1 , · · ·T i,jz }, P i,j = {P i,j1 , · · ·P i,jz }, and V i,j =

{V i,j1 , · · ·V i,jz }

• MA = MA1
∪MA2

, S =
⋃
Si,j , T =

⋃
T i,j , P =

⋃
P i,j , and V =

⋃
V i,j

• U = MA ∪ S ∪ P and W = WA ∪ T ∪ V

• for each i, j the preference orders of the agents are as given in Figure 3. For an agent
a, if RS appears in its preference list for some R and S, then this implies that a finds
all the agents in RS as incomparable. Also, [· · · ] denotes that the rest of the agents
can be placed in any order.

Note that n = |U | = |W | = k + 2yz|E|. Also, the amount of missing information per

agent is at most
(k
2)+(y

2)
(n
2)

≤ (k+y
2 )

(n
2)

. Therefore, the total amount of missing information is

≤ (k+y
2 )

(n
2)
≤ (2y

2 )
(n
2)
≤ 4y2

n2 ≤ 4y2

4y2z2 ≤ δ. Next, in order to show the correctness, we prove the

following claims. Again, as noted above, the proofs of these use similar ideas as in Hamada
et. al’s proof of Theorem 1 in [11]. Also, throughout, we make use of the following definition:
for every mi, if mi is not matched to a woman in WA, then we call such a pair as a bad
pair. Additionally, for every si,ja,b, if si,ja,b is matched to a woman who is outside of the top

three women in his list (i.e., for instance, if si,j1,1 is matched with anyone other than ti,j1,1, wi,

or ti,jz
2 +1,1), then we again call such pairs as being bad.
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Men

mi : WA � V i,j
1 � [· · · ]

si,j1,1 : ti,j1,1 � wi � ti,jz
2
+1,1

� V i,j
1 � [· · · ]

si,j1,2 : ti,j1,2 � wi � ti,j1,3 � V i,j
1 � [· · · ]

...

si,j1,y : ti,j1,y � wi � ti,j2,1 � V i,j
1 � [· · · ]

si,j2,1 : ti,j2,1 � wi � ti,j2,2 � V i,j
2 � [· · · ]

...

si,j2,y : ti,j2,y � wi � ti,j
3,1

� V i,j
2 � [· · · ]

...

..

.

si,jz
2
,y

: ti,jz
2
,y

� wi � ti,j1,1 � V i,j
z
2

� [· · · ]

si,jz
2
+1,1

: ti,j1,2 � wj � ti,jz
2
+1,2

� V i,j
z
2
+1

� [· · · ]

si,jz
2
+1,2

: ti,jz
2
+1,2

� wj � ti,jz
2
+1,3

� V i,j
z
2
+1

� [· · · ]

...

si,jz
2
+1,y

: ti,jz
2
+1,y

� wj � ti,jz
2
+2,1

� V i,j
z
2
+1

� [· · · ]

...

...

si,jz,y−1 : ti,jz,y−1 � wj � ti,jz,y � V i,j
z � [· · · ]

si,jz,y : ti,jz,y � wj � ti,jz
2
+1,1

� V i,j
z � [· · · ]

pi,j1,1 : vi,j1,1 � [· · · ]

...

...

pi,jz,y : vi,jz,y � [· · · ]

Women

wi : MA1
� S � MA2

ti,j1,1 : MA � si,jz
2
,y

� Si,j
1 � [· · · ]

ti,j1,2 : MA � si,jz
2
+1,1

� Si,j
1 � [· · · ]

ti,j1,3 : MA � si,j1,2 � Si,j
1 � [· · · ]

...

ti,j1,y : MA � si,j1,y−1 � Si,j
1 � [· · · ]

ti,j2,1 : MA � si,j1,y � Si,j
2 � [· · · ]

...

ti,j2,y : MA � si,j2,y−1 � Si,j
2 � [· · · ]

...

ti,jz
2
+1,1

: MA � si,j1,1 � Si,j
z
2
+1

� [· · · ]

ti,jz
2
+1,2

: MA � si,jz
2
+1,1

� Si,j
z
2
+1

� [· · · ]

...

...

ti,jz,y : MA � si,jz,y−1 � Si,j
z � [· · · ]

vi,j1,1 : MA � Si,j
1 � pi,j1,1 � [· · · ]

...

vi,j1,y : MA � Si,j
1 � pi,j1,y � [· · · ]

vi,j2,1 : MA � Si,j
2 � pi,j2,1 � [· · · ]

...

vi,j2,y : MA � Si,j
2 � pi,j2,y � [· · · ]

...

...

vi,jz,y : MA � Si,j
z � pi,jz,y � [· · · ]

Figure 3: The instance I′ that is used in the proof of Theorem 12

Claim 5. If a matching M contains a bad pair, then it has at least y − 1 super-blocking
pairs.

Proof. Consider the case when mi is matched to a woman w′ who is not in WA. This implies
that it at least forms a super-blocking pair with all w ∈ V i,j1 such that w 6= w′. And since

every women in V i,j1 finds all the men in MA as incomparable, therefore we at least have

|V i,j1 | − 1 = y − 1 super-blocking pairs.

Next, consider the case when there is a man si,ja,b who is matched to a woman w′ who is
outside of the top three women in his list. This implies that it at least forms a super-blocking
pair with all w ∈ V i,ja such that w 6= w′. And since we can assume that no women in V i,ja
is matched to a man in MA (as this would anyway result in y − 1 super-blocking pairs as
proved above) and since all of them find the men in Si,ja as incomparable, this implies that
we have at least |V i,ja | − 1 = y − 1 super-blocking pairs.
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Before we go on to the next claim, for every i < j such that (vi, vj) ∈ E, consider

the sets Si,j and T i,j and let us the define the following two perfect matchings, Mi,j
1 and

Mi,j
2 , between Si,j and T i,j . The matching Mi,j

1 (Mi,j
2 ) can be inferred from Figure 3 by

matching every man in Si,j with the woman coloured red (blue) in his list.

Mi,j
1 =

{
(si,j1,1, t

i,j
1,1), (si,j1,2, t

i,j
1,2), · · · , (si,jz

2 ,y
, ti,jz

2 ,y
), (si,jz

2 +1,1, t
i,j
z
2 +1,2), (si,jz

2 +1,2, t
i,j
z
2 +1,3), · · · , (si,jz,y, t

i,j
z
2 +1,1)

}
Mi,j

2 =
{

(si,j1,1, t
i,j
z
2 +1,1), (si,j1,2, t

i,j
1,3), · · · , (si,jz

2 ,y
, ti,j1,1), (si,jz

2 +1,1, t
i,j
1,2), (si,jz

2 +1,2, t
i,j
z
2 +1,2), · · · , (si,jz,y, ti,jz,y)

}
Claim 6. For every i < j such that (vi, vj) ∈ E, Mi,j

1 and Mi,j
2 are the only perfect

matchings between Si,j and T i,j that do not include a bad pair. Moreover, both Mi,j
1 and

Mi,j
2 have only one super-blocking pair (m,w) such that m ∈ Si,j and w ∈ T i,j.

Proof (sketch). It is easy to observe the first part. As for the second part, note that none
of si,j1,1, · · · , s

i,j
z
2 ,y

form any super-blocking pair in M1 as they are matched to their topmost

choices. Also, none of si,jz
2 +1,2, · · · , si,jz,y form any super-blocking pairs since the only woman

they can form super-blocking pairs with, which are ti,jz
2 +1,2, · · · ti,jz,y respectively, strictly prefers

their currently matched partner, which are si,jz
2 +1,2, · · · , si,jz,y respectively. Hence, the only

super-blocking pair is (si,jz
2 +1,1, t

i,j
1,2). We can make similar arguments with respect toM2 to

show that (si,j1,1, t
i,j
1,1) is the only super-blocking pair.

Given the two claims above, we can now prove the correctness of the reduction through
the following lemmas.

Lemma 14. If I = (G, k0) is a “yes” instance of VC, then I ′ has a solution with at most
2k2 super-blocking pairs.

Proof. Let the vertex cover of G be C and since it is a “yes” instance, we know that |C| ≤ k0.
If the size of C is strictly less than k0, then add arbitrary vertices to it in order to make
its size k0. So from now on we can assume that |C| = k0. Next, construct the following
matching M for the instance I ′.

• For every woman wi ∈ WA, if vi ∈ C, then match wi with some man in MA1
. Other-

wise, match wi with some man in MA2 .

• For every i < j such that (vi, vj) ∈ E, if vi ∈ C, then match every man in Si,j with a

woman in T i,j usingMi,j
2 as defined above. Otherwise, match every man in Si,j with

a woman in T i,j using Mi,j
1 as defined above.

• For every i < j such that (vi, vj) ∈ E, match pi,ja,b with vi,ja,b.

Now, we know that the each man in MA can form at most k super-blocking pairs (one
with each woman in WA). Additionally, we know from Claim 6 that both Mi,j

1 and Mi,j
2

have at most one super-blocking pair, and that none of the men in P form any super-blocking
pair as they all get their topmost choice. Hence, the total number of blocking pairs is at
most k2 + |E| ≤ 2k2.

Lemma 15. If I = (G, k0) is a “no” instance of VC, then every matching for I ′ has at
least y − 1 super-blocking pairs.
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Proof. Here we will show that if there exists a matching M with less than y − 1 super-
blocking pairs for I ′, then I has a vertex cover of size at most k0. To see this, considerM.
Since it has less than y− 1 blocking pairs, we know from Claim 5 that it does not have any
bad pair. This in turn implies that all the men in MA are matched with a woman in WA

(since all men in MA have to be attached to a woman in WA and size of both the sets are
equal).

Next, for every i < j such that (vi, vj) ∈ E, let us consider the men and women in
Si,j and T i,j . Since, again, we cannot have any bad pairs, we know that there has to be a
perfect matching between these two sets. Additionally, from Claim 6 we know that Mi,j

1

and Mi,j
2 are the only two perfect matchings that have no bad pairs. Now, for an (i, j), if

we were using Mi,j
1 , then it is easy to see that wj should be matched with a man in MA1

as otherwise she would form a super-blocking pair with all the men in {si,jz
2 ,1
, · · · , si,jz,y}, thus

resulting in at least zy > y − 1 super-blocking pairs for M. Similarly, if we were using
Mi,j

2 , then wi should be matched with a man in MA1
as otherwise we would have at least

zy > y − 1 blocking pairs. Therefore, we have that for each edge (vi, vj) ∈ E at least
one of the women wi or wj should be matched to a man in MA1

. So, now, if we define
C = {vi | M(wi) ∈MA1

}, then we have a vertex cover of size at most k0 (as size of MA1
is

k0).

Finally, from Lemmas 14 and 15, we have an inapproximability gap of α, where

α ≥ y − 1

2k2

=
kd

2k2

>
n
√
δ

16k4
(using the fact that n = 2yzk2 + k ≤ 8kd+2 1√

δ
)

>
(
n
√
δ
)1−ε

(using the fact that n = 2yzk2 + k > 2yz > 2kd 1√
δ
)

A.11 Proof (sketch) of Proposition 13

We can proceed to prove this almost exactly as in the proof of Theorem 10. Here, if D
denotes the (α, β)-approximate solution returned by the algorithm, then the only difference
is that we defineM1 to be the matching with the set of agents in (U ∪W ) \D such that it
has at most β super-blocking pairs (from the definition of the problem we know that such
a matching exists) and M2 to be an arbitrary matching on the set of agents in D. Once
we have this, then we can arrive at the bound by proceeding exactly as in the proof of
Theorem 10, with the only difference being that here we would use S1, which is the number

of super-blocking pairs associated with M1, to be equal to
(
n− |D|2

)
· |D|2 + β.

B Example to illustrate “bad” weakly-stable matchings
in the case of one-sided top-truncated preferences

Consider the instance I as shown in Figure 4, where ties appear only on the women’s side.
Furthermore, we define the following:

• δ ∈ [ 16
n2 ,

1
4 ]
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Men

m1 : w1 � WF\{1} � WB1
� · · · � WBz

m2 : w1 � w2 � [· · · ]
m3 : w2 � w3 � WF\{2,3} � WS

m4 : w2 � w4 � WF\{2,4} � WS

...
mn

2
: w2 � wn

2
� WF\{2,n

2
} � WS

mb0 : w1 � WB1\{b0} � wb0 � WS\B1
� WF\{1}

.

..
mb1−1 : w1 � WB1\{b1−1} � wb1−1 � WS\B1

� WF\{1}

mb1 : w1 � WB2\{b1} � wb1 � WS\B2
� WF\{1}

...
mb2−1 : w1 � WB2\{b2−1} � wb2−1 � WS\B2

� WF\{1}
...

mbz−1
: w1 � WBz\{bz−1} � wbz−1

� WS\Bz
� WF\{1}

...
mbz−1 : w1 � WBz\{bz−1} � wbz−1 � WS\Bz

� WF\{1}

Women

w1 : m2 � m1 � [· · · ]
w2 : m2 � m1 � [· · · ]
w3 : m1 � m3 � [· · · ]
w4 : m1 � m4 � [· · · ]

...
wn

2
: m1 � mn

2
� [· · · ]

wb0 : MS\B1
� m1 � mb0 � MF\{1} � MT

B1\{b0}
...

wb1−1 : MS\B1
� m1 � mb1−1 � MF\{1} � MT

B1\{b1−1}

wb1 : MS\B1
� m1 � mb1 � MF\{1} � MT

B1\{b1}
...

wb2−1 : MS\B1
� m1 � mb2−1 � MF\{1} � MT

B1\{b2−1}
...

wbz−1
: MS\B1

� m1 � mbz−1
� MF\{1} � MT

B1\{bz−1}
...

wbz−1 : MS\B1
� m1 � mbz−1 � MF\{1} � MT

B1\{bz−1}

Figure 4: The instance I that is used to illustrate that there can be weakly-stable matchings with
O(n2

√
δ) super-blocking pairs even in the case of one-sided top-truncated preferences

• y = n
√
δ

2 , z = n
2y (for simplicity we assume that y and z are integers; we can appro-

priately modify the proof if that is not the case)

• bj = n
2 + jy + 1,∀j ∈ [0, · · · z]

• Bi = {bi−1, · · · , bi − 1},∀i ∈ [1, · · · z]

• F = {1, · · · , n2 }, S = {n2 + 1, · · · , n}

• WX : for some set X, place all the women with index in X in the increasing order of
their indices

• WT
X : for some set X, place all the women with index in X as tied

• MX : for some set X, place all the men with index in X in the increasing order of
their indices

• MT
X : for some set X, place all the men with index in X as tied

• [· · · ] : place all the remaining alternatives in some strict order.

First thing is to see that the optimal solution Mopt associated with the instance is

Mopt = {(m1, w1), (m2, w2), · · · , (mn, wn)} ,

where (m2, w1) is the only super-blocking pair (and it is an obvious blocking pair). Also, it
can be verified that the total amount of missing information in I is at most δ.
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Now, consider the matching M, where

M =

{
(m1, w2), (m2, w1), (m3, w3), (m4, w4) · · · , (mn

2
, wn

2
),

(mb0 , wb0+1), (mb0+1, wb0+2), · · · , (mb1−2, wb1−1), (mb1−1, wb0),

(mb1 , wb1+1), (mb1+1, wb1+2), · · · , (mb2−2, wb2−1), (mb2−1, wb1), · · · ,

· · · , (mbz−1 , wbz−1+1), (mbz−1+1, wbz−1+2), · · · , (mbz−2, wbz−1), (mbz−1, wbz−1)

}
.

It is easy to check that M is weakly-stable. Also, it can be verified that it has O(n2
√
δ)

super-blocking pairs (this is because with respect to each block Bj one can see that M has
O
(
|Bj |2

)
super-blocking pairs).
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