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Abstract

Without monetary payments, the Gibbard-Satterthwaite theorem proves that under
mild requirements all truthful social choice mechanisms must be dictatorships. When
payments are allowed, the Vickrey-Clarke-Groves (VCG) mechanism implements the
value-maximizing choice, and has many other good properties: it is strategy-proof,
onto, deterministic, individually rational, and does not make positive transfers to
the agents. By Roberts’ theorem, with three or more alternatives, the weighted
VCG mechanisms are essentially unique for domains with quasi-linear utilities. The
goal of this paper is to characterize domains of non-quasi-linear utilities where “rea-
sonable” mechanisms (with VCG-like properties) exist. Our main result is a tight
characterization of the maximal non quasi-linear utility domain, which we call the
largest parallel domain. We extend Roberts’ theorem to parallel domains, and use
the generalized theorem to prove two impossibility results. First, any reasonable
mechanism must be dictatorial when the utility domain is quasi-linear together with
any single non-parallel type. Second, for richer utility domains that still differ very
slightly from quasi-linearity, every strategy-proof, onto and deterministic mechanism
must be a dictatorship.

1 Introduction

We study social choice mechanisms that aggregate individual preferences and select one
among a finite set of alternatives. Our interest is in the existence of strategy-proof social
choice mechanisms under general, non quasi-linear utility functions. In the classical voting
problem without money, the seminal Gibbard-Satterthwaite theorem [18, 42] states that if
agents’ preferences can be any ordering over the alternatives, the only deterministic, onto
(i.e. every alternative can be selected) and strategy-proof mechanisms for three or more
alternatives are dictatorial. On the other hand, with the introduction of monetary transfers
and quasi-linear utilities, the Vickrey-Clarke-Groves (VCG) mechanism [44, 10, 19] (which
selects a value-maximizing alternative, and charges each agent the negative externality she
imposes on the rest of the economy), maximizes social welfare in dominant strategies, and
can be generalized to implement any affine maximizer of agents’ values [38, 24].

However, quasi-linearity is a strong assumption, violated for example in domains with
budget constraints and problems with lack of liquidity [11] or with wealth effect and risk-
aversion [37]. Non quasi-linearity can also arise as a result of the timing of payments coupled
with temporal preferences [16], when payments are contingent on agents’ actions and the
presence of payments affects decisions and thus the likelihood of contingencies [28, 29], and
in the context of illiquid currencies such as points-based allocation schemes [21].

To the best of our knowledge, few papers considered social choice mechanisms with
monetary transfers and non quasi-linear utilities.1 The main result of this paper is a tight
characterization of the maximal utility domain, which we name the largest parallel domain,
where there exist non-dictatorial mechanisms that are strategy-proof, onto, deterministic,
individually rational and satisfy no subsidy (i.e. no positive transfers from the mechanism
to the agents). These properties are those of the VCG mechanism in quasi-linear utility

1A preliminary, short version of this paper [27] proved a special case of the impossibility result for
two agents and the richest non quasi-linear utility domain, with additional assumptions of unanimity and
neutrality. The proof techniques are different, and this preliminary version does not make use of the
generalized Roberts theorem.
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domains. As a special case, we prove that for utility domains that contain all quasi-linear
types but do not reside within the largest parallel domain, the only mechanisms satisfying
the above conditions must be dictatorial. The proofs make use of a generalized Roberts’
theorem, which we extended to non quasi-linear utility domains with suitable properties. We
also provide a negative result for a broader class of mechanisms: by allowing richer utility
domains that still differ very slightly from quasi-linearity, we establish the impossibility of
non-dictatorial mechanisms even without requiring individual rationality or no subsidy.

A key observation is that the critical property of agents’ utilities that enables non-
dictatorial mechanisms is not the linear dependency on payments. We say the utility func-
tions of an agent is of parallel type if for any two alternatives a and b, within the range of
interest, no matter how much the agent is charged for b, to achieve the same utility, the ad-
ditional amount she is willing to pay for a stays the same. Quasi-linear utility functions have
this property, but there can also be non quasi-linear parallel types. Intuitively, a parallel
type requires that regardless of which alternative is selected, the agent’s marginal cost for
money is the same if she has the same utility level, thus the trade-off with money depends
on how happy the agent is, not how much she is paying. A domain where all types are
parallel is called a parallel domain, and the largest parallel domain is the set of all parallel
types.

The rest of the paper is organized as follows. After a brief discussion of related work,
we provide in Section 2 a formal definition of parallel domains. We prove a positive re-
sult in Section 3, that within the parallel domains, the family of generalized weighted VCG
mechanisms are strategy-proof, onto, deterministic, individually rational (IR), and satisfy
no subsidy. In Section 4, we generalize Roberts’ Theorem [38] to parallel domains, and prove
that when the differences in agents’ willingness to pay for different alternatives are unre-
stricted, maximizers of affine functions of the willingness to pay are the only implementable
choice rules amongst mechanisms with these properties. With this characterization, we
prove in Section 5 our main result— that when agents have types outside of the parallel
domain, the only mechanisms that are strategy-proof, onto, deterministic, individually ra-
tional, and satisfy no subsidy must be fixed-price dictatorships, i.e. there exists a dictator
who chooses her favorite alternative given fixed prices associated with each alternative. We
also develop a negative result for a broader class of mechanisms: by allowing utility domains
that are slightly richer in their non quasi-linearity, we show that individual rationality and
no subsidy can be relaxed, while the impossibility of non-dictatorial mechanisms can still
be established. We give in Section 5.1, for example, an impossibility result for a two-slopes
domain, when the utility function of each agent for each alternative is linear, with the slope
taking one of two possible values. Proofs omitted from the body of the paper are provided
in Appendix A.

1.1 Related Work

In social choice without money, the classical Gibbard-Satterthwaite theorem has been ex-
tended to more restricted preference domains, including the saturated domains [20], linked
domains [3], circular domains [41], and weakly connected domains [36]. Domains for which
there are positive results have also been extensively studied, see Black’s majority rule [8],
Moulin’s median voting schemes and generalizations [32, 34] and results on graphs with
metric spaces [6, 43, 14].

For social choice with payments and quasi-linear utilities, Roberts [38] showed that with
three or more alternatives, when the values can take any real numbers, positive association
of differences is necessary and sufficient for strategy-proof implementation, and that the
only implementable choice rules are affine maximizers of agent values. Such choice rules
can be implemented by weighted VCG mechanisms [24]. Characterizations of strategy-
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proof implementations have also been developed for mechanism design problems in specific
domains [33, 39, 25, 7, 40].

One approach to mechanism design without quasi-linearity is to assume that the func-
tional form of agent utility functions is known to the designer, for example auctions public
budget constraints [13], or auctions with known risk preferences [30]. In contrast, we assume
that the functional form of agent utility functions are private. For private non quasi-linear
utilities, under suitable richness of type space, Kazumura et al.[22] prove a “taxation prin-
ciple” style characterization and a “revenue uniqueness” result of truthful mechanisms, and
show various applications to problems other than social choice, e.g. single item allocation.
The existence of truthful and non-dictatorial social choice mechanisms is not discussed.

For the assignment problem with unit demand, the minimum Walrasian-equilibrium
mechanism is known to be truthful [12, 2, 1, 15, 31], even for any general non-increasing
utility function in payment. On the other hand, truthfulness cannot be achieved together
with Pareto-efficiency for allocation problems in which agents may demand more than one
unit of good, or when agents have multi-dimensional type spaces [23, 13, 4]. We do not
impose Pareto-efficiency in proving our impossibility results. Randomized mechanisms for
bilateral trade [17] and revenue-optimal auctions in very simple settings [5, 9, 35] have also
been studied in the context of private budget constraints. We focus here on social choice
rather than assignment or allocation problems, settings for which there is more structure on
agents’ preferences and also indifference toward outcomes where an agent’s own assignments
are the same.

2 Preliminaries

Denote N = {1, 2, . . . , n} as the set of agents and A = {a, b, . . . ,m} as the set of alternatives.
A social choice mechanism accepts reports from agents as input, selects a single alternative
a∗ ∈ A, and may also determine payments. A mechanism is onto if for any alternative a ∈ A,
there exists a preference profile for which a is selected. A mechanism is dominant-strategy
incentive compatible (DSIC) if no agent can gain by reporting false preferences.

We allow monetary transfers, and the utility of an agent may depend both on the selected
alternative and her assigned payment. Denote ui,a(z) as the utility of agent i ∈ N if
alternative a ∈ A is selected and she needs to pay z ∈ R. ui = (ui,a, . . . , ui,m) determines
agent i’s type and is her private information. Denote u = (u1, . . . , un) as a type profile, and
u−i = (u1, . . . , ui−1, ui+1, . . . , un) as the type profile of agents except for agent i.

Denote the utility of alternative a to agent i at zero payment as vi,a , ui,a(0), which we
call the value of alternative a to agent i. Let āi ∈ arg maxa∈A vi,a and ai ∈ arg mina∈A vi,a
be a most and a least preferred alternative at zero payment. A utility profile u is quasi-linear
if ui,a(z) = vi,a−z for all i ∈ N , a ∈ A and z ∈ R. In this case, the values {vi,a}i∈N,a∈A fully
determine the type profile. Let the quasi-linear domain UQL be the set of all quasi-linear

types of a single agent where the vi,a’s can take any value in R, and let UQL ,
∏n
i=1 UQL

be the set of all quasi-linear type profiles.
We consider non quasi-linear utilities such that for all i ∈ N and all a ∈ A,

(S1) ui,a(z) is continuous and strictly decreasing in z,

(S2) limz→+∞ ui,a(z) < mina′∈A vi,a′ .

Property (S1) guarantees that agents strictly prefer to make smaller payments. Prop-
erty (S2) means that every agent prefers the worst alternative at zero payment to any
alternative at some very large payment. Denote the general non quasi-linear utility domain
U0 as the set of all types of an agent satisfying (S1) and (S2), and let U0 ,

∏n
i=1 U

0 be the
general non quasi-linear utility domain for a set of n agents.
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A social choice mechanism (x, t) on type domain U ⊆ U0 is composed of a choice rule
x : U → A and a payment rule t = (t1, . . . , tn) : U → Rn. Thus if the reported type profile
is û ∈ U , the choice made is x(û), and the utility of agent i is ui,x(û)(ti(û)). A mechanism
(x, t) is DSIC if and only if, for any agent i ∈ N , any type ui ∈ Ui of agent i, and any
reported profile from other agents û−i ∈ U−i, agent i cannot gain by misreporting any type
ûi ∈ Ui:

ui,x(ui,û−i)(ti(ui, û−i)) ≥ ui,x(ûi,û−i)(ti(ûi, û−i)). (1)

A mechanism is individually rational (IR) if and only if, by truthfully participating in the
mechanism, regardless of the reports made by the other agents, no agent can be worse off
than having their worst alternative at zero payment selected and not making any payment.2

That is, ∀i ∈ N, ∀ui ∈ Ui, ∀û−i ∈ U−i,

ui,x(ui,û−i)(ti(ui, û−i)) ≥ min
a∈A

vi,a. (2)

We are interested in mechanisms with the following set of properties.

P1. Dominant-strategy incentive compatible

P2. Deterministic

P3. Onto

P4. Individually rational

P5. No subsidy

Ontoness only requires that all alternatives will be selected given some type profile,
but does not require all payment schedules are achievable. No subsidy requires that the
mechanism does not make positive transfers to the agents.

Before continuing, we review a well-known characterization of deterministic DSIC mecha-
nisms. We say that a mechanism is agent-independent if an agent’s payment is independent
of her report, conditioned on a particular alternative being selected; i.e. fixing the type
profile of the rest of the agents u−i, ∀ui, u′i ∈ Ui, x(ui, u−i) = x(u′i, u−i) ⇒ ti(ui, u−i) =
ti(u

′
i, u−i). Given an agent-independent mechanism and any u−i ∈ U−i, if there exists

ui ∈ Ui s.t. x(ui, u−i) = a, let the agent-independent price be the payment i pays when a is
selected: ti,a(u−i) , ti(ui, u−i), which depends only on u−i. Otherwise, if x(ui, u−i) 6= a for

all ui ∈ Ui, let ti,a(u−i) , +∞. An agent-independent mechanism is also agent-maximizing
if given the agent-independent prices {ti,a(u−i)}i∈N,a∈A, the alternative selected by the
mechanism maximizes the utilities of all agents simultaneously, i.e. ∀u ∈ U , ∃a∗ ∈ A s.t.
a∗ ∈ arg maxa∈A ui,a(ti,a(u−i)) for all i ∈ N , and x(u) = a∗. The properties of agent-
independence and agent-maximization are necessary and sufficient for deterministic DSIC
mechanisms with quasi-linear utilities [45], and this equivalence can be easily generalized to
general utilities that strictly decrease with payment.

As an example, the Vickrey-Clarke-Groves (VCG) mechanism collects values
{v̂i,a}i∈N,a∈A from agents, selects an alternative that maximizes the total values, and
charges each agent the negative externality she imposes on the rest of the agents. The
allocation rule is x(v̂) = a∗ ∈ arg maxa∈A

∑
i∈N v̂i,a, and the payment rule is ti(v̂) =

maxa∈A{
∑
i′ 6=i v̂i,a} −

∑
i′ 6=i v̂i,a∗ for all i ∈ N . We can check that the mechanism satisfies

agent-independence, and that the agent-independent price agent i faces for alternative a is of
the form ti,a(v̂−i) = maxa′∈A{

∑
i′ 6=i v̂i,a′}−

∑
i′ 6=i v̂i,a. It is also easy to show that given such

prices, with quasi-linearity, the welfare-maximizing alternative a∗ = arg maxa∈A
∑
i∈N v̂i,a

is agent-maximizing for all agents.

2For a mechanism where IR is violated, an agent may benefit from not participating. See Section 5
for more discussions on voluntary participation. Assuming for all i ∈ N and a ∈ A, vi,a may take any
non-negative value, for DSIC mechanisms, this definition of IR is equivalent to requiring that the utility of
any truthful agent is non-negative.
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Figure 1: An example type in the parallel domain. All horizontal sections of the shaded area
(e.g. the dotted arrows) are of the same length, i.e. utility curves are horizontal translations
of each other within the range but need not be straight lines.

A dictatorship in social-choice without money identifies an agent i∗ as the dictator, and
always selects her favorite alternative. We generalize this concept for social choice with
money as follows:

Definition 1 (Fixed Price Dictatorship). Under a fixed price dictatorship, there exists a
dictator i∗ ∈ N and fixed prices ~z = (za, . . . , zm) ∈ Rm. Given any type profile u ∈ U ,
one of the dictator’s favorite alternatives under these prices is selected, i.e. x(u) = a∗ ∈
arg maxa∈A ui∗,a(za), and the dictator pays ti∗(u) = zx(u).

2.1 Parallel Domains

Given any type of an agent ui ∈ U0, for each alternative a, we define the willingness to
pay pi,a as the payment for a at which the agent is indifferent between getting a at this
payment, and getting her least preferred alternative ai at zero payment:

pi,a , u−1i,a (vi,ai). (3)

See Figure 1. pi,a is the maximum amount the agent can be charged if alternative a is
selected, without violating IR. pi,ai = 0 always holds, and (S1)-(S2) imply that for all
a ∈ A, pi,a exists, and 0 ≤ pi,a < +∞.

Definition 2 (Parallel Domain). A utility domain Ui ⊂ U0 for an agent is a parallel domain
if for all ui ∈ Ui,

ui,a (z + (pi,a− pi,b)) = ui,b(z), ∀a, b ∈ A s.t. vi,a≥vi,b, ∀z ∈[0, pi,b]. (4)

See Figure 1. We call a ui ∈ U0 a parallel type if (4) is satisfied. For a parallel type ui,
for a, b ∈ A s.t. vi,a ≥ vi,b, for any utility level w ∈ [vi,ai , vi,b], we have

u−1i,a (w)− u−1i,b (w) = pi,a − pi,b = u−1i,a (vi,b). (5)

In words, the differences in the payments for a and b in order to achieve utility level w is
a constant that does not depend on w, i.e. the additional amount an agent is willing to
pay for a over b does not depend on how much the agent is charged for b.3 Equivalently,

3There is no requirement on the shape of the utility functions below the utility level vi,ai
= mina∈A vi,a,

or where the payments are negative, since utilities in these ranges are irreverent to the incentive properties
of mechanisms that are IR and satisfy no subsidy. This also implies that the shape of the utility function of
the least preferred alternative is irrelevant, and that when there are only two alternatives, the general non
quasi-linear domain U0 is parallel.
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conditioned on achieving a particular utility level, an agent’s marginal cost for money is the
same irrespective of which alternative is selected— the marginal cost of money depends on
an agent’s utility level, not on how much money she is paying. This allows, for example,
an agent with wealth effect to have a smaller marginal cost for money at the same payment
amount when paying for a strong vs weak alternative.

Denote U‖ ⊂ U0 as the largest parallel domain (i.e. the set of all parallel types), and
U‖ =

∏n
i=1 U‖. The quasi-linear domain UQL is a parallel domain, where pi,a = vi,a − vi,ai

for all a ∈ A and pi,a − pi,b = vi,a − vi,b for all a, b ∈ A. Another special case of the parallel
domain is the linear parallel domain, where for every ui, there exists α > 0 s.t. ∀a ∈ A and
all z ∈ R, ui,a(z) = vi,a − αz (so the quasi-linear domain is a special case when α = 1). For
these two domains, the “vertical” distances between the utility curves also stay the same,
and the utility functions are horizontal translations of each other everywhere.

A utility domain for an agent Ui ⊆ U0 is said to have unrestricted willingness to pay if
for any m-dimensional non-negative vector with at least one zero entry, there exists ui ∈ Ui
s.t. the willingness to pay according to ui is equal to this vector element-wise (at least one
zero entry is required since an agent always has zero willingness to pay for ai). Formally,
∀λ ∈ Rm≥0 for which ∃a ∈ A s.t. λa = 0, there exists ui ∈ Ui s.t. pi,a = λa for all a ∈ A.4 We
call a parallel domain with unrestricted willingness to pay an unrestricted parallel domain.
In particular, UQL is an example of an unrestricted parallel domain. A utility domain
U =

∏n
i=1 Ui is an unrestricted parallel utility domain if each of the Ui is unrestricted and

parallel.

We now prove two lemmas.

Lemma 1. Let (x, t) be a DSIC and deterministic social choice mechanism on a utility
domain U ⊆ U0 with unrestricted willingness to pay. The mechanism satisfies (P4) IR
and (P5) No subsidy if and only if ∀i ∈ N and ∀u−i ∈ U−i, the agent-independent prices
{ti,a(u−i)}a∈A satisfy:

(i) ti,a(u−i) ≥ 0 for all alternatives a ∈ A,

(ii) there exists an alternative a ∈ A s.t. ti,a(u−i) = 0.

Thus, the agent-independent prices any agent faces under a mechanism satisfying (P1)-
(P5) must be standard, i.e. the minimum price among all alternatives is zero. We leave the
proof of the lemma to Appendix A.1.

Lemma 2. For any parallel type ui ∈ U‖ and any standard prices {ti,a}a∈A:

(i) ∀a, b ∈ A s.t. 0 ≤ ti,a ≤ pi,a and 0 ≤ ti,b ≤ pi,b,

pi,a − ti,a ≥ pi,b − ti,b ⇔ ui,a(ti,a) ≥ ui,b(ti,b).

(ii) arg maxa∈A{ui,a(ti,a)} = arg maxa∈A{pi,a − ti,a}.

Proof. We first prove part (i). Assume w.l.o.g that vi,a ≥ vi,b. We know from the mono-
tonicity of ui,a and the definition of parallel domain (4) that

pi,a − ti,a ≥ pi,b − ti,b ⇔ ti,a ≤ ti,b + pi,a − pi,b
⇔ui,a(ti,a) ≥ ui,a(ti,b + (pi,a − pi,b))⇔ ui,a(ti,a) ≥ ui,b(ti,b).

For part (ii), observe that if the price for at least one of the alternatives is zero, the
highest utility at the given prices among all alternatives maxa∈A{ui,a(ti,a)} is at least

4There are multiple (actually, infinite number of) types in U0 with the same vector of willingness to pay,
and we only require at least one of them to be included.
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mina∈A ui,a(0) = mina∈A vi,a. Therefore, for any alternative a ∈ A s.t. ti,a > pi,a, the
alternative cannot be agent-maximizing. Among the alternatives s.t. ti,a ≤ pi,a, the agent-
maximizing alternative(s) coincides with the maximizer(s) of pi,a− ti,a, according to (i).

Thus, in a parallel domain, the agent-maximizing alternative given standard prices is
the maximizer of the difference between the willingness to pay and the price: pi,a− ti,a. As
a result, the willingness to pay serves similar roles as values in the quasi-linear domain, and
it is this connection that enables us to generalize Roberts’ theorem to unrestricted parallel
domains.

3 The Generalized Weighted VCG Mechanism

We prove in this section a positive result, that in parallel domains, the generalized weighted
VCG mechanisms implement in dominant strategy any affine maximizer of willingness to
pay:

x(u) ∈ arg max
a∈A

{
n∑
i=1

kipi,a + Ca

}
, (6)

for non-negative weights k1, . . . , kn ≥ 0, and real constants {Ca}a∈A.

Definition 3 (Generalized Weighted VCG). The generalized weighted VCG mechanism,
parametrized by non-negative weights {ki}i∈N and real constants {Ca}a∈A, collects a
type profile û = (û1, . . . , ûn) from agents, and computes the willingness to pay p̂i,a =
û−1i,a (mina′∈A v̂i,a′). It is defined as

• Choice rule: x(û) = a∗, where a∗ ∈ arg maxa∈A
{∑

i∈N kip̂i,a + Ca
}

, breaking ties
arbitrarily.

• Payment rule: ti(û) = 0 for i ∈ N s.t. ki = 0; for i s.t. ki 6= 0:

ti(û) =
1

ki

∑
j 6=i

kj p̂j,a∗−i
+ Ca∗−i

−
∑
j 6=i

kj p̂j,a∗ − Ca∗

 , (7)

where a∗−i ∈ arg maxa∈A{
∑
j 6=i kj p̂j,a + Ca}.

Theorem 1. With type domain U ⊆ U‖, any non-negative coefficients {ki}i∈N and any
real constants {Ca}a∈A, the generalized weighted VCG mechanism is DISC, IR and does
not make positive transfers to the agents.

Proof. We first consider an agent i ∈ N s.t. ki > 0. Given u−i, we can check that for any
ui agent i reports s.t. x(ui, u−i) = a, agent i’s agent-independent payment would be

ti,a(u−i) =
1

ki

∑
j 6=i

kjpj,a∗−i
+ Ca∗−i

−
∑
j 6=i

kjpj,a − Ca

 . (8)

For agent i s.t. ki = 0, arg maxa∈A{
∑
j∈N kjpj,a +Ca} and arg maxa∈A{

∑
j 6=i kjpj,a +Ca}

coincide. No matter what agent i reports, a∗−i = a∗ is always selected and she does not pay
anything, thus

ti,a∗−i
(u−i) = 0 and ti,a(u−i) = +∞ for a 6= a∗−i. (9)
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Since a∗−i is the maximizer of
∑
j 6=i kjpj,a + Ca, all agent-independent prices are non-

negative. Moreover, a∗−i has the minimum price among all alternatives, which is exactly
zero: mina∈A{ti,a(u−i)} = ti,a∗−i

(u−i) = 0. By Lemma 1, we know that the prices are

standard, and the mechanism satisfies (P4) IR and (P5) No subsidy if it is DSIC. What
is left to prove is choosing a∗ at such agent-independent prices is agent-maximizing for all
agents, which implies DSIC. From Lemma 2 we know that we only need to prove a∗ is the
maximizer of pi,a − ti,a(u−i) for all agents. This is immediate for agents with ki = 0. For
an agent with ki > 0, for any alternative a ∈ A, we have

pi,a∗ − ti,a∗(u−i)− (pi,a − ti,a(u−i))

=pi,a∗ −
1

ki

∑
j 6=i

kjpj,a∗−i
+ Ca∗−i

−
∑
j 6=i

kjpj,a∗ − Ca∗


− pi,a +

1

ki

∑
j 6=i

kjpj,a∗−i
+ Ca∗−i

−
∑
j 6=i

kjpj,a − Ca


=

1

ki

∑
j∈N

kjpj,a∗ + Ca∗ −
∑
j∈N

kjpj,a − Ca

 ≥ 0,

thus a∗ indeed maximizes pi,a − ti,a(u−i).

Note that when U ⊆ UQL, we have pi,a = vi,a − vi,ai for all a ∈ A, i ∈ N , and
maximizing an affine function of the willingness to pay is equivalent to maximizing the
same affine function of the values. Thus, this mechanism coincides with the weighted VCG
mechanisms when utilities are quasi-linear. Ontoness is satisfied if ki > 0 for at least one
agent and when the utility domain is unrestricted.

4 Generalizing Roberts’ Theorem

With quasi-linear utilities, Roberts [38] showed that with three or more alternatives, if each
agent’s value for each alternative can be any real number, the choice rule of any social choice
mechanism that is (P1) DISC, (P2) deterministic and (P3) onto must be a maximizer of
some affine function of agents’ values. With two additional conditions, (P4) IR and (P5)
No subsidy, we generalize Roberts’ theorem to the unrestricted parallel domains.

Theorem 2 (Roberts’ Theorem on Parallel Domains). With three or more alternatives and
an unrestricted parallel utility domain U , for every social choice mechanism satisfying (P1)-
(P5), there exists non-negative weights k1, . . . , kn (not all equal to zero) and real constants
C1, . . . , Cm such that for all u ∈ U ,

x(u) ∈ arg max
a∈A

{
n∑
i=1

kipi,a + Ca

}
.

We prove in Lemma 3 that the weak monotonicity condition defined in terms of willing-
ness to pay (which is eqivalent to the W-Mon condition in terms of values [7] when utilities
are quasi-linear, see Definition 4) is a necessary condition of incentive compatibility. Follow-
ing the same steps as in the first proof of Roberts’ theorem presented in Lavi et al. [26] while
treating willingness to pay as “values” in the proof, we conclude that affine maximizers of
the willingness to pay are the only implementable choice rules (see Appendix A.2 for the
details). The coefficients {ki}i∈N cannot be all zero in order to satisfy (P3) Ontoness.
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Regarding the requirements on the utility domain: in the proof of Robert’s theorem [26],
the values can take any real numbers, whereas the willingness to pay for a non quasi-linear
type takes non-negative values and one of them has to be exactly zero. This does not prevent
us from generalizing the proof, since what is necessary is that the differences in the values
vi,a−vi,b for all a, b ∈ A can be any real numbers. We get this from the unrestricted parallel
domain.

Definition 4 (Weak Monotonicity). Let U =
∏n
i=1 Ui ⊆ U0 be a utility domain. A choice

rule x : U → A satisfies weak monotonicity (W-Mon) if for all u−i ∈ U−i and all ui, u
′
i ∈ Ui,

x(ui, u−i) = a, x(u′i, u−i) = b⇒ p′i,b − pi,b ≥ p′i,a − pi,a.

In words, W-Mon in a parallel domain means that if alternative a is selected under
(ui, u−i) and alternative b is selected under (u′i, u−i), the additional willingness to pay for b
comparing with a according to u′i, i.e. p′i,b − p′i,a, must be at least as big as the additional
willingness to pay for b comparing with a according to ui: pi,b−pi,a. This is a generalization
of the W-Mon condition in terms of values as defined in [7], and the two are equivalent when
utilities are quasi-linear, in which case pi,a − pi,b = vi,a − vi,b holds for all a, b ∈ A.

Lemma 3. With any parallel utility domain U ⊆ U‖, every social choice mechanism satis-
fying (P1), (P2), (P4) and (P5) must satisfy W-Mon.

Proof. Consider two types ui, u
′
i and a social choice mechanism (x, t) s.t. x(u) = a

and x(u′i, u−i) = b. We know from agent-maximization and Lemma 2 that facing prices
{ti,a′(u−i)}a′∈A, alternative a must be a maximizer of pi,a′ − ti,a′(u−i) according to
ui, and alternative b must be a maximizer of p′i,a′ − ti,a′(u−i) according to u′i. Thus,
pi,a − ti,a(u−i) ≥ pi,b − ti,b(u−i) and p′i,b − ti,b(u−i) ≥ p′i,a − ti,a(u−i) must hold. Adding
both sides of the two inequalities we get pi,a+p′i,b ≥ pi,b+p′i,a ⇒ p′i,b−pi,b ≥ p′i,a−pi,a.

5 Impossibility results

We now state the main result in this paper.

Theorem 3 (Dictatorship). With at least three alternatives and a utility domain U =∏n
i=1 Ui such that

(C1) for each i ∈ N , Ui contains an unrestricted parallel domain,

(C2) for at least n− 1 agents, Ui 6⊂ U‖,

the only social choice mechanisms that satisfy (P1)-(P5) are fixed price dictatorships.

The quasi-linear domain is unrestricted and parallel, thus a special case of the theorem
can be stated as: on any utility domain containing UQL, if the utility domains of at least
n− 1 agents contain non-parallel types, the only mechanisms satisfying (P1)-(P5) are fixed
price dictatorships. We provide here an outline of the proof and leave the full version to
Appendix A.3.

Given any mechanism (x, t) with (P1)-(P5) on a utility domain U satisfying (C1) and
(C2), we prove that the restriction of the mechanism on the parallel subspace Ũ , U ∩ U‖
must also satisfy (P1)-(P5). Theorem 2 then implies that on Ũ , the choice rule x must be
the maximizer of some affine function of agents’ willingness to pay. Fixing the choice rule,
agent-independence and agent-maximization determine the agent-independent prices up to
a constant (when there is no tie), and the requirement that prices being standard fully pins
down {ti,a(u−i)}a∈A as (8) and (9) for all i ∈ N and any u−i s.t. ui′ is parallel for all
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Figure 2: An example non-parallel type u∗2 of agent 2.

i′ 6= i. Theorem 2 requires that there exists at least one agent with a non-zero coefficient
ki. If the number of agents for whom ki > 0 is more than one, Ui 6⊂ U‖ for at least one of
them. Assume w.l.o.g. that k1, k2 > 0 and ∃u∗2 ∈ U2\U‖. Fixing some parallel type profile
of the rest of the agents u∗−1,−2, {t1,a(u∗2, u

∗
−1,−2)}a∈A are not yet pinned down by the above

mentioned characterization since u∗2 is not parallel. We prove that no agent-independent
prices {t1,a(u∗2, u

∗
−1,−2)}a∈A guarantees that an alternative that is agent-maximizing for all

agents always exists for all economies (u1, u
∗
2, u
∗
−1,−2) where u1 ∈ U1. This contradicts

DSIC.
Now we know that there exists exactly one agent (say i∗) with a non-zero coefficient.

This implies that when the reported profile is parallel (i.e. u ∈ U ∩ U‖), the outcome of the
mechanism must be determined according to a fixed price dictatorship. By induction on the
number of agents whose type is not parallel, we then prove that for any u ∈ U , the outcome
must also be determined by the same fixed price dictatorship.

On the Tightness of the Negative Result That the utility domain U contains an
unrestricted parallel domain is necessary for Theorem 2. If the number of agents that has a
type outside of the parallel domain is smaller than n−1, there are at least two agents whose
types are always parallel. The generalized weighted VCG mechanism with ki > 0 only for
these agents would satisfy all (P1)-(P5), and still would not be a dictatorship.

Regarding the properties (P1)-(P5), the mechanism being (P1) DSIC and (P2) deter-
ministic are trivially necessary. (P3) ontoness is required, since if some alternatives are
never selected, the number of alternatives can be effectively reduced to two, in which case
all types satisfying (S1) and (S2) are parallel, thus even for the most general U0, any gen-
eralized weighted VCG mechanism with coefficients not all zero satisfies (P1)-(P5).

The conditions on the utility domain (C1) and (C2) in the statement of Theorem 3
require only a small deviation from quasi-linearity or the parallel domain. As an example,
with n = 1 and m = 3, the type domain U1 = UQL and U2 = UQL ∪ {u∗2} for any u∗2 /∈ U‖
(e.g. as illustrated in Figure 2) satisfies both (C1) and (C2). Assuming only (C1) and (C2),
truthful mechanisms that violate one or both of (P4) and (P5) may still exist. For the
above described utility domain, the mechanism which always adds 1 to agent 2’s payment
but otherwise functions exactly as a generalized weighted VCG mechanism satisfies (P1)-
(P3) and (P5). More detailed discussions are provided in Appendix A.4, and we present an
alternative impossibility result assuming only (P1)-(P3) in Section 5.1.
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On the Fixed Price Dictatorship In a fixed price dictatorship, the dictator may still
be asked to make some non-zero payments. It is clear that such a mechanism is DSIC, and
when the prices that the dictator faces are standard, it is also IR and never pays the agents.
In order to replace the fixed-price dictatorship in Theorem 3 with full dictatorship, i.e. the
dictator chooses her favorite alternative free of charge, we can impose another condition,
voluntary participation (VP), which means any agent can choose to walk away from the
mechanism and accept the alternative decided by the rest of the agents without having
to make any payment. If the dictator is charged a positive fixed price za > 0 for some
alternative a ∈ A, and a is still the dictator’s favorite choice under the fixed prices, then
when a is selected by the sub-economy without the dictator (which should be the case for
some u−i∗ given onto-ness), the dictator would have the incentive to walk away, in which
case a will be selected and the dictator pays 0. This contradicts VP.

VP is stronger than IR. To see this, note that IR requires that for every agent at least
one of the prices is weakly below the agent’s willingness to pay. On the other hand, VP
requires that the mechanism is well defined for any economy of n− 1 agents and satisfy the
same properties, moreover, each agent must face a zero-price for the alternative that would
be selected in the sub-economy without her.

Regarding the payments from the rest of the agents— when the dictator strictly prefers
a single alternative a ∈ A (i.e. ∀a′ 6= a, ui∗,a′(za′) < ui∗,a(za)), the rest of the agents
do not make any payment: ti(u) = 0 for all i 6= i∗. In the degenerate case where
| arg maxa∈A ui∗,a(za)| > 1, i.e. the dictator is indifferent toward multiple best alternatives,
some or all the rest of the agents may be charged a non-zero payment to break ties among
the dictator’s favorite alternatives, and this would still satisfy (P1)-(P5). See Appendix A.3.

5.1 Relaxing IR and No Subsidy

We show in the rest of the section that with more richness in non quasi-linearity (e.g. with
the linear domain with two slopes defined below), the dictatorship result remains given only
(P1)-(P3).

Definition 5 (Linear Domain with Two Slopes). Ui is a linear domain with two slopes if
there exists αi, βi > 0, αi 6= βi s.t. for all ui ∈ Ui, ∀a ∈ A, either ui(z) = vi,a − αiz for all
z ∈ R or ui(z) = vi,a − βiz for all ∀ ∈ R.

We say a linear domain with two slopes Ui is unrestricted if for each i ∈ N , the values
{vi,a} can be any real numbers, and the slopes of utility functions for different alternatives
can be any combination of αi and βi.

Theorem 4. With at least three alternatives and a utility domain U =
∏n
i=1 Ui s.t. for each

i ∈ N , Ui contains an unrestricted linear domain with two slopes, a social choice mechanism
satisfying (P1)-(P3) must be a fixed price dictatorship.

Intuitively, each Ui contains as a sub-domain an unrestricted linear parallel domain
(e.g. the set of ui s.t. ui,a(z) = vi,a − αiz for all z ∈ R and all a ∈ A), which is a
special case of a strictly parallel domain. For strictly parallel domains, with only (P1)-(P3),
we can generalize Roberts’ Theorem, and still determine the agent-independent prices up
to a constant. We then prove that if more than one agent has a positive coefficient in
the choice rule, the induced agent-independent prices will result in contradictions when an
agent’s utility domain consists of utility functions with mixed slopes. Then we can prove
by induction that the only agent with a positive coefficient must be a fixed price dictator.
See Appendix A.4.1 for the full proof.

The theorem still holds if αi = α, βi = β for all i. Moreover, we would reach the same
result if the αi’s and βi’s are known to the mechanism designer. Since the αi’s and the
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βi’s can be arbitrarily close, this theorem shows that very slight disturbances on the slopes
of agents’ utility functions is sufficient to rule out the existence of truthful non-dictatorial
mechanisms.

6 Conclusions

The existence of truthful and non-dictatorial social choice mechanisms strongly depends on
whether monetary transfers are allowed. The seminal Gibbard-Satterthwaite theorem proves
that without payments, the only truthful and onto mechanisms are dictatorial, whereas for
the (rather restrictive) quasi-linear utility domain, any affine maximizer of agent values can
be implemented if payments are allowed.

We study social choice with payments and general utilities, distinguish types being par-
allel as the central property of quasi-linearity for DSIC mechanisms to exist, generalize
(with additional conditions IR and No subsidy) Roberts’ theorem to parallel domains with
unrestricted willingness to pay, and provide a tight characterization of the largest parallel
domain. Within the largest parallel domain, the generalized weighted VCG mechanisms
implement any affine maximizer of agents’ willingness to pay, and satisfy DSIC, onto, de-
terministic, IR and do not make payments to agents. Adding any non-parallel type to an
unrestricted parallel domain, the only mechanisms with the above properties are dictatorial.
We also discuss utility domains that are richer in their non quasi-linearity but still deviate
very slightly from the quasi-linear domain, for which individual rationality and no subsidy
can be relaxed and the dictatorship result remains.

Interesting directions for future work include studying mechanisms with weaker solution
concepts than DSIC, and analyzing how non quasi-linearity can be restricted to enable DSIC
mechanisms for other problems (e.g. assignment with multiple demands) where impossibility
results are known when fully general utility functions are allowed.
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A Proofs

A.1 Proof of Lemma 1

Proof. We first prove parts (i) and (ii) given (P4) and (P5). Assume part (i) does not
hold, that there exists u−i and a ∈ A s.t. ti,a(u−i) < 0. Consider u1 s.t. a = āi. In
any agent-maximizing mechanism, the agent is guaranteed utility at least ui,a(ti,a(u−i)) >
maxa′∈A vi,a′ , which is not possible without the mechanism making a positive payment to
the agent, and this violates (P5). Now we only need to prove that it cannot be the case that
ti,a(u−i) > 0 for all a ∈ A. This is obvious, since if otherwise, there exists ui ∈ Ui for whom
pi,a < ti,a(u−i) for all a ∈ A thus maxa∈A ui,a(ti,a(u−i)) < mina∈A vi,a, in which case (P4)
is violated.

We now prove the other direction. Given part (i), it is obvious that no matter which
alternative is selected, the transfer from any agent to the mechanism is non-negative thus
(P5) holds. Given (ii), we know that the agent’s minimum possible utility under an agent-
maximizing mechanism is vi,a, which is at least mina′∈A vi,a′ , thus (P4) holds.

A.2 Proof of Theorem 2

We had proved in Lemma 3 that W-Mon is a necessary condition for (P1)-(P5) if the utility
domain is unrestricted and parallel. We provide here a few more steps where the details
differ slightly for values and willingness to pay, following the first proof presented in Lavi et
al. [26], however, the high level ideas are the same.

Definition 6 (Positive Association of Differences). A social choice function x on a parallel
domain U satisfies positive association of differences (PAD) if: for all u and u′ in U , if
x(u) = a and p′i,a − pi,a > p′i,b − pi,b for all b 6= a and all i ∈ N , then it must be the case
that x(u′) = a, as well.

Lemma 4 (IC ⇒ PAD). A social choice mechanism on an unrestricted parallel domain U
with (P1), (P2), (P4) and (P5) satisfies PAD.

Proof. By Lemma 3, x must satisfy W-Mon. Let u, u′ ∈ U be type profiles such that
x(u) = a and p′i,a − pi,a > p′i,b − pi,b for all b 6= a and all i ∈ N . We need to show that

x(u′) = a. Denote u(`) = (u′1, . . . , u
′
`, u`+1, . . . , un). We know x(u(0)) = x(u) = a. Assume

x(u(`−1)) = a for some ` > 0, we show by contradiction that x(u(`)) = a must also hold. By
induction, this implies that x(u′) = x(u(n)) = a.

Assume that there exists ` ≥ 0 and b 6= a s.t. x(u(`−1)) = a but x(u(`)) = b 6= a.
Since all players except player ` have the same type in u(`−1) and in u(`), we get by W-Mon
that p′`,b − p`,b ≥ p′`,a − p`,a, which contradicts the PAD assumption on u′ and u. Thus,

x(u(`)) = a must hold. This completes the proof of the induction step.

We now prove the result analogous to Claim 1 in Lavi et al. [26].

Claim 1. Assume a choice rule x on an unrestricted parallel domain U satisfies PAD. Fix
type profiles u, u′ ∈ U s.t. x(u′) = a. If p′i,b − pi,b > p′i,a − pi,a holds for all i ∈ N for some
b ∈ A, then x(u) 6= b.

Proof. We follow the same proof as in Lavi et al. [26], and prove this claim by contradiction.
The construction differs slightly from the original proof since the willingness to pay is always
normalized s.t. the an agent’s smallest willingness to pay among all alternatives is zero.

Suppose by contradiction that x(u) = b. For each i ∈ N , denote δi , p′i,b − p1,b −
(p′i,a − pi,a). We know that δi > 0 for all i ∈ N , and in addition, pi,a − p′i,a − δi/2 =
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pi,b − p′i,b + δi/2 > pi,b − p′i,b. Consider p̃ s.t. for all i ∈ N ,

˜pi,a =pi,a − δi/2,
˜pi,b =pi,b,

and for c ∈ A s.t. c 6= a, b,

p̃i,c = min{pi,c, p′i,c + pi,a − p′i,a} − δi.

Then, let p′′ be the normalized version of p̃, i.e.

p′′i,c , ˜pi,c −min
d∈A
{ ˜pi,d}, ∀i ∈ N, ∀c ∈ A.

First, we observe that minc∈A{p′′i,c} = 0 holds for all i ∈ N , i.e. p′′ is a valid set of
willingness to pay for the agents. Since U is unrestricted, we can find u′′ ∈ U where agents’
willingness to pay is given by p′′. Second, observe that for all i ∈ N and any pair of
alternatives c, d ∈ A, p′′i,c − p′′i,d = ˜pi,c − ˜pi,d.

We now show that the PAD condition from u → u′′ results in x(u′′) = b, whereas
applying PAD condition from u′ → u′′ results in x(u′′) = a, thus a contraction.

To show x(u′′) = b must hold, observe that for all i ∈ N ,

p′′i,b − pi,b − (p′′i,a − pi,a) = ˜pi,b − ˜pi,a − (pi,b − pi,a)

=pi,b − pi,a + δi/2− (pi,b − pi,a) = δi/2 > 0,

and that for all c 6= a, b,

p′′i,b − pi,b − (p′′i,c − pi,c) = ˜pi,b − ˜pi,c − (pi,b − pi,c)
≥pi,b − pi,c + δi − (pi,b − pi,c) = δi > 0.

From Lemma 4, we know that x(u′′) = b must hold. Similarly, to show x(u′′) = a must
hold, we can check that for all i ∈ N ,

p′′i,b − p′i,b − (p′′i,a − p′i,a) = ˜pi,b − ˜pi,a − (p′i,b − p′i,a)

=pi,b − pi,a − (p′i,b − p′i,a) + δi/2 = −δi/2 < 0,

and that for all c 6= a, b,

p′′i,c − p′i,c − (p′′i,a − p′i,a) = ˜pi,c − ˜pi,a − (p′i,c − p′i,a)

≤p′i,c + pi,a − p′i,a − δi − (pi,a − δi/2)− (p′i,c − p′i,a) = −δi/2 < 0.

Lemma 4 then implies x(u′′) = a must hold.

We now consider the same sets that are analyzed in Lavi et al. [26] in the first proof for
Roberts’ theorem, however, we define these sets in terms of differences in willingness to pay
instead of differences in values. Let U be an unrestricted parallel domain. For all tuples
(a, b) ∈ A×A that a 6= b:

P (a, b) , {α ∈ Rn | ∃u ∈ U s.t. pa − pb = α and x(u) = a}

The two immediate properties of the sets under quasi-linearity also holds:

1. For every a and b, the set P (a, b) is not empty, as long as the choice rule x is onto.
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2. If α ∈ P (a, b), then for any positive δ ∈ Rn s.t. δi > 0 for all i, α + δ ∈ P (a, b). To see
this, note that α ∈ P (a, b) implies that there exists u s.t. x(u) = a and pa−pb = α. Now
we look for another type profile u′ ∈ U s.t. comparing with u, we are increasing pa by δ,
while keeping the other willingness to pay the same. We know from PAD that x(u′) = a
must still hold, and in this case p′a − p′b = α+ δ ∈ P (a, b) as required.

We now prove the following claim, which is analogous to Claim 2 in Lavi et al. [26].
Without otherwise specify, the claims in the rest of this section assumes that there are
three or more alternatives, that the utility domain is parallel and unrestricted, and that the
mechanism satisfies (P1)-(P5).

Claim 2. For every α, ε ∈ Rn , ε > 0:

1. α− ε ∈ P (a, b)⇒ −α /∈ P (b, a).

2. α /∈ P (a, b)⇒ −α ∈ P (a, b).

Proof. For the first part, note that α − ε ∈ P (a, b) implies that there exists u′ ∈ U s.t.
p′a−p′b = α−ε and x(u′) = a. Now let u ∈ U be any type profile s.t. pb−pa = −α. We know
that for all i ∈ N , pi,a − pi,b = αi > αi − ε = p′i,a − p′i,b. This implies p′i,b − pi,b > p′i,a − pi,a
for all i ∈ N , and we get x(u) 6= b by applying Claim 1. This shows that for all u ∈ U s.t.
pb − pa = −α, x(u) 6= b, therefore −α /∈ P (b, a).

For the second part, for any c 6= a, b, take some βc ∈ P (a, c) and fix some ε > 0. Choose
any u s.t. pa − pb = α and pa − pc = βc + ε for all c 6= a, b. Since px − pb = α 6= P (a, b),
we know that x(u) 6= a. For all alternatives c 6= a, b, from Claim 1 and the fact that ∃u′ s.t.
p′a − p′c = βc and x(u′) = a, we know that x(u) = c cannot hold. It follows that x(u) = b,
thus ∃u s.t. pb − pa = −α s.t. x(u) = b, thus −α ∈ P (b, a).

Intuitively, part 1 means that if for some u s.t. pa − pb = α − ε, x(u) = a, it must be
the case that for all u s.t. pa − pb = α, x(u) 6= b. This is because if a is selected under
pa − pb = α− ε, when the difference in the willingness to pay for a vs. b increases by ε thus
becomes larger, a still dominates b thus b cannot be selected.

Part 2 means that if for all u s.t. pa − pb = α, x(u) 6= a, then there exists some u s.t.
pa − pb = α and x(u) = b. This can be proved by constructing a type s.t. the willingness
to pay for all alternatives other than a and b in a way that they are all dominated by a so
cannot be selected, leaving b to be the only alternative that can be selected.

Claim 3. For every α, β, ε(α), ε(β) ∈ Rn, ε(α), ε(β) > 0:

α− ε(α) ∈P (a, b), β− ε(β) ∈P (b, c)⇒α+β− ε
(α) + ε(β)

2
∈ P (a, c).

Proof. Choose any u ∈ U s.t. pa − pb = α − ε(α)/2 and pb − pc = β − ε(β)/2. We know
from Claim 1 that x(u) 6= b and x(u) 6= c. If the total number of alternatives is more than
three, then for all d 6= a, b, c, fix some δ(w) ∈ P (a, d) and some ε ∈ Rn, ε > 0, and let
pa − pd = δ(w) + ε. Again by Claim 1, we know that x(u) 6= d. Therefore x(u) = a must
hold, and therefore α+ β − (ε(α) + ε(β))/2 ∈ P (a, c).

With the same argument as in the proof for quasi-linear Roberts’ theorem, we know
that if ~0 ∈ P (a, b) for all pairs (a, b) ∈ A×A, then the interior of all P (a, b) must be equal.
However, P (a, b) does not necessarily include ~0 thus needs to be “shifted” to contain this
point. We can similarly define

γ(x, y) = inf{q ∈ R | q ·~1 ∈ P (a, b)}.
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It is easy to see that the infimum exists. We first argue that the set is not empty. Given that
the social choice rule is onto, we can find some u ∈ U s.t. x(u) = a. Let q = maxi{pi,a−pi,b}
and find u′ s.t. p′i,j = pi,j for all i and j 6= a, and p′i,a = pi,b + q for all i. We know from

PAD that x(u′) = a must still hold, thus this shows that q · ~1 ∈ P (a, b) thus the set is
non-empty. To show that the set of q’s is lower-bounded, observe that if this is not the case,
the corresponding set P (b, a) would be empty, which contradicts ontoness.

The rest of the proof in Lavi et al. [26] for Roberts’ theorem for quasi-linear utility
domains analyzes of the sets P (a, b) given the above lemmas and claims. Since these analysis
does not depend on the values or the utility functions, the same identical arguments follow
through for the parallel domain. This completes the proof of the Robert’s theorem on
unrestricted parallel domains.

A.3 Proof of Theorem 3

Before proving the main theorem, we first prove two lemmas. The following first lemma
provides a characterization of agent-independent prices for mechanisms that satisfy (P1)-
(P5).

Lemma 5. Fix any social choice mechanism on an unrestricted parallel domain U with
choice rule x(u) ∈ arg maxa∈A

∑
i∈N kipi,a + Ca, ∀u ∈ U . If the mechanism satisfies (P1)-

(P5), the agent-independent prices are determined by:

(i) for i ∈ N s.t. ki > 0, for any u−i ∈ U−i, let a∗−i ∈ arg maxa∈A
∑
j 6=i kjpj,a + Ca, we

have ti,a(u−i) = 1/ki(
∑
j 6=i kjpj,a∗−i

+ Ca∗−i
−
∑
j 6=i kjpj,a − Ca) for all a ∈ A.

(ii) for i ∈ N s.t. ki = 0, for any u−i ∈ U−i, s.t. there exists a∗−i ∈ A that satis-
fies

∑
j 6=i kjpj,a + Ca <

∑
j 6=i kjpj,a∗ + Ca∗ for all a 6= a∗−i, we have ti,a∗−i

(u−i) =

0 and ti,a(u−i) = +∞, ∀a 6= a∗−i.

In other words, for agents s.t. ki 6= 0, and for agents s.t. ki = 0 but when there is no tie
in the choice rule, the agent-independent prices must be determined by (8) and (9). As a
consequence, when there is no tie, the outcome of the mechanism must be the same as that
under the generalized weighted VCG mechanism.

Proof. Fix the choice rule as x(u) ∈ arg maxa∈A
∑n
i=1 kipi,a + Ca, ∀u ∈ U for some non-

negative coefficients {ki}i∈N and real constants {Ca}a∈A.

Part (i): Consider any agent i ∈ N s.t. ki > 0. For all u−i ∈ U−i, for any two alternatives
a, b ∈ A, there exists ui ∈ Ui such that both

∑
j∈N kjpj,a + Ca >

∑
j∈N kjpj,c + Cc and∑

j∈N kjpj,b + Cb >
∑
j∈N kjpj,c + Cc hold, since Ui is unrestricted and ki > 0. We know

from the choice rule that only alternatives a and b can be selected, and a is selected if

∑
j∈N

kjpj,a + Ca >
∑
j∈N

kjpj,b + Cb ⇔ pi,a − pi,b >
1

ki

∑
j 6=i

kjpj,b + Cb −
∑
j 6=i

kjpj,a − Ca

 .

(10)

From Lemma 2, we also know that agent-maximization requires that a cannot be selected if

pi,a − ti,a(u−i) < pi,b − ti,b(u−i)⇔ pi,a − pi,b < ti,a(u−i)− ti,b(u−i). (11)

If the differences in the agent-independent prices satisfies ti,a(u−i) − ti,b(u−i) >
1
ki

(
∑
j 6=i kjpj,b+Cb−

∑
j 6=i kjpj,a−Ca), there exists ui ∈ Ui s.t. pi,a−pi,b ∈ ( 1

ki
(
∑
j 6=i kjpj,b+

Cb−
∑
j 6=i kjpj,a−Ca), ti,a(u−i)−ti,b(u−i)) in which case both (10) and (11) hold. This is a
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contradiction. Similarly, we can show that it cannot be the case that ti,a(u−i)− ti,b(u−i) <
1
ki
t(
∑
j 6=i kjpj,b + Cb −

∑
j 6=i kjpj,a − Ca), thus the price difference must be

ti,a(u−i)− ti,b(u−i) =
1

ki

∑
j 6=i

kjpj,b + Cb −
∑
j 6=i

kjpj,a − Ca

 . (12)

Since the choice of a and b are arbitrary, all prices are pinned-down up to a constant,
given that the differences between any pair of prices are determined. Now observe ti,a(u−i)
is smaller if

∑
j 6=i kjpj,a + Ca is larger. From Lemma 1 we know that all prices must be

non-negative, and that one of the prices must be zero, thus ti,a∗−i
(u−i), the smallest of all,

must be exactly zero. Therefore we get:

ti,a∗−i
(u−i) = 0 =

1

ki

∑
j 6=i

kjpj,a∗−i
+ Ca∗−i

−
∑
j 6=i

kjpj,a∗−i
− Ca∗−i

 ,

and

ti,a(u−i) =ti,a∗−i
+

1

ki

∑
j 6=i

kjpj,a∗−i
+ Ca∗−i

−
∑
j 6=i

kjpj,a − Ca


=

1

ki

∑
j 6=i

kjpj,a∗−i
+ Ca∗−i

−
∑
j 6=i

kjpj,a − Ca

 .

Part (ii): Now consider i ∈ N s.t. ki = 0. For all u−i ∈ U−i such that ∃a∗−i ∈ A that
satisfies ∀a 6= a∗−i,

∑
j 6=i kjpj,a + Ca <

∑
j 6=i kjpj,a∗ + Ca∗ , we know that no type of agent

i in the parallel domain ui ∈ U‖ will result in x(ui, u−i) = a for a 6= a∗−i. Therefore
alternative a cannot be the unique agent-maximizing alternative for any ui ∈ Ui, which
implies ti,a(u−i) = +∞ must hold. Now we know from Lemma 1 that ti,a∗−i

(u−i) = 0 must
be true, since one of the prices must be zero.

Given a utility domain U =
∏n
i=1 Ui, denote the parallel sub-domain of each agent i ∈ N

as Ũi , Ui∩U‖, and let Ũ , U ∩U‖ be the subspace of U containing all parallel type profiles.
If the utility domain U satisfies (C1), i.e. when Ui contains an unrestricted parallel domain,
then each of the Ũi is an unrestricted parallel domain, and Ũ is also unrestricted. For any
social choice mechanism (x, t) on U , we show that its restriction on Ũ must inherit its good
properties.

Lemma 6. Fix any social choice mechanism (x, t) under (P1)-(P3) on a utility domain U
that satisfies (C1). The restriction of (x, t) on the parallel subdomain Ũ = U ∩ U‖ also
satisfies (P1)-(P3). Moreover, if (x, t) also satisfies (P4) and (P5), then (P4) and (P5) are
also satisfied by its restriction on Ũ .

Proof. For any mechanism that satisfies (P1)-(P3), it is immediate that (P1) DSIC (P2)
deterministic must also hold for its restriction on any subdomain. Similarly, for a mechanism
with (P1)-(P5), its restriction on any subdomain must also satisfy (P4) IR and (P5) no
subsidy. What is left to show is that any mechanism that with (P1)-(P3) on a domain
U that satisfies condition (C1), its restriction on Ũ must also be onto. Assume toward a
contradiction, that there exists a∗ ∈ A s.t. ∀u ∈ Ũ , x(u) 6= a∗. We prove by induction that
the following statement holds for all ` ≤ n− 1:

G`: ∀i ∈ N , ∀u−i ∈ U−i such that |{i′ ∈ N | i′ 6= i, ui′ /∈ Ũi}| ≤ `, we have ti,a∗(u−i) =∞.
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This implies that a∗ cannot be the agent-maximizing alternative for any agent under any
type profile u ∈ U , thus a∗ cannot be selected, and this violates the ontoness of (x, t) on U .

We first prove G0. When |{i′ ∈ N | i′ 6= i, ui′ /∈ Ũi}| ≤ 0, we know u−i ∈ Ũ−i.
For any i ∈ N and any u−i ∈ Ũ−i, assuming ti,a∗(u−i) < ∞, there exists ui ∈ Ũi s.t.

pi,a∗ − ti,a∗(u−i) > pi,a − ti,a(u−i) for all a 6= a∗, given that Ũi is unrestricted. In this case,
given the parallel profile (ui, u−i), a

∗ is the unique agent-maximizing alternative for agent i
thus has to be selected. This contradicts the assumption that x(u) 6= a∗ for all u ∈ Ũ , thus
ti,a∗(u−i) =∞ must hold.

Now assume G`−1 holds for some ` s.t. 1 ≤ ` ≤ n − 2, we show that G` also holds.
W.l.o.g., we consider agent 1 and some u−1 s.t. ui ∈ Ũi for all i ≥ ` + 2. In this case,
only u2, . . . , u`+1 can be non-parallel. Now consider agent 2, and any u1 ∈ Ũi, we know
in u−2 = (u1, u−1,−2), |{i ∈ N |i 6= 2, ui /∈ Ũi}| ≤ ` − 1. As a result, G`−1 implies that
t2,a∗(u−2) = ∞, thus alternative a∗ cannot be agent-maximizing for agent 2 and therefore

cannot be selected in the economy (u1, u−1). Since this holds for any u1 ∈ Ũ1, with the
same arguments that we proved G0, we conclude t1,a∗(u−1) = ∞ must hold as well, since
otherwise a∗ would be the unique agent-maximizing alternative for some parallel type u1
and this violates DSIC. This proves G`−1 ⇒ G`, and therefore completes the proof of this
lemma.

We are now ready to prove the main theorem.

Proof of Theorem 3. Recall that Ũi , Ui ∩ U‖ for each i ∈ N , and Ũ , U ∩ U‖. For
any social choice mechanism (x, t) on U that satisfies (P1)-(P5), Lemma 6 implies that its
restriction on Ũ must also satisfy (P1)-(P5). Theorem 2 then guarantees that there exist
non-negative coefficients {ki}i∈N , not all of them zero, and real constants {Ca}a∈A s.t.
x(u) ∈ arg maxa∈A

∑
i∈N kipi,a + Ca for all u ∈ Ũ . Although this does not immediately

determine the outcome of the mechanism for any non-parallel type profile u ∈ U\Ũ , we
do know from agent independence that for any agent i, and any parallel profile for the
other agents u−i ∈ Ũ−i, the agent-independent prices agent i faces {ti,a(u−i)}a∈A must be
characterized as in Lemma 5. We use this characterization and condition (C2) Ui 6⊂ U‖ for
at least n− 1 agents to prove the dictatorship result in the following two steps:

• Step 1: the number of agents s.t. ki 6= 0 is exactly one.

• Step 2: the only agent with ki 6= 0 must be a fixed price dictator.

Step 1: We know from Theorem 2 that there exists at least one agent with ki > 0. Assume
towards a contradiction, that there exist at least two agents, which we name agent 1 and
agent 2, for whom k1, k2 > 0. For at least one of them, say agent 2, U2 ⊆ U‖ does not

hold due to condition (C2), thus there exists a non-parallel type u∗2 ∈ U2\Ũ2. We prove
that for some parallel profile for the rest of the agents u∗−1,−2 ∈ Ũ−1,−2, there do not exist

agent-independent prices {t1,a(u∗2, u
∗
−1,−2)}a∈A for agent 1, such that for any u1 ∈ Ũ1, there

exists an alternative that is agent-maximizing for all agents in economy (u1, u
∗
2, u
∗
−1,−2).

This contradicts DSIC, therefore there is exactly one agent s.t. ki > 0.
We assume w.l.o.g. that alternative a is one of agent 2’s favorite alternatives at zero

payment: a ∈ arg maxa′∈A v
∗
2,a′ (where v∗2,a , u∗2,a(0) for all a ∈ A). For any parallel type

u2 ∈ U‖ s.t. a ∈ arg maxa′∈A{v2,a′}, we know from the definition of the parallel domain that

for any alternative a′ ∈ A, u2,a′(z) = u2,a(z + p2,a − p2,a′) = u2,a(z + u−12,a(v2,a′)) must hold
for all z ≤ p2,a′ . u∗2 /∈ U‖ implies that there exists some alternative b /∈ arg mina′∈A v

∗
2,a′

and some price z∗ ∈ (0, p∗2,b] s.t. u∗2,b(z
∗) 6= u∗2,a(z∗ + (u∗2,a)−1(v∗2,b)). Let w , u∗2,b(z

∗) and

define ∆1 , (u∗2,a)−1(v∗2,b) and ∆2 , (u∗2,a)−1(w)−z∗. We assume u∗2,b(z
∗) < u∗2,a(z∗+∆1),
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u∗2,a′(z)

∆1

z∗
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∆2

p∗2,b p∗2,a

z∗ + ∆1

u∗2,a(z∗ + ∆1)

v∗2,a

v∗2,b

v∗2,a2

u∗2,a(z)

u∗2,b(z)

u∗2,a2(z)

Figure 3: Illustration of u∗2 ∈ U2\Ũ2, for Step 1 of the proof of Theorem 3.

in which case ∆2 > ∆1 ≥ 0, as illustrated in Figure 3. The other direction can be proved
in the same way.

Fixing the type of the agents other than 1 and 2 to be parallel with zero willingness to
pay on all alternatives, i.e. for all i ≥ 3, let u∗i ∈ Ũi be such that p∗i,a′ = 0 for all a′ ∈ A.

Such types exist since Ũi is unrestricted for each i ∈ N . Denote u∗−1 = (u∗2, u
∗
3, . . . , u

∗
n), and

let ε be some small positive number s.t. 0 < ε < (∆2 −∆1)/2. We prove:

• Step 1.1: t1,b(u
∗
−1)− t1,a(u∗−1) ≤ k2/k1(∆1 + ε) + (Ca − Cb)/k1,

• Step 1.2: t1,b(u
∗
−1)− t1,a(u∗−1) ≥ k2/k1(∆2 − ε) + (Ca − Cb)/k1.

Since k2/k1(∆2 − ε) + (Ca −Cb)/k1 > k2/k1(∆1 + ε) + (Ca −Cb)/k1, we know that this
is a contradiction, thus the number of agents for whom ki > 0 cannot be more than one.

Step 1.1: Assume towards a contradiction that t1,b(u
∗
−1) − t1,a(u∗−1) > k2/k1(∆1 + ε) +

(Ca −Cb)/k1 and consider a parallel type u1 ∈ Ũ1 of agent 1 with the following willingness
to pay:

p1,c = 0, ∀c 6= a, b, (13)

p1,b = max
c6=a,b

{
k2
k1
p∗2,c +

Cc − Cb
k1

}
+ δ, (14)

p1,a = p1,b −
(
k2
k1

(∆1 + ε/2) +
Ca − Cb
k1

)
, (15)

where δ is strictly positive, and large enough s.t. p1,a and p1,b as defined are both non-

negative. Such u1 is guaranteed to exist since Ũ1 is unrestricted. We know from (15) and
the assumption t1,b(u

∗
−1)− t1,a(u∗−1) > k2/k1(∆1 + ε) + (Ca − Cb)/k1 that:

p1,a − t1,a(u∗−1)−
(
p1,b − t1,b(u∗−1)

)
=p1,a − p1,b +

(
t1,b(u

∗
−1)− t1,a(u∗−1)

)
>−

(
k2
k1

(∆1 + ε/2) +
Ca − Cb
k1

)
+

(
k2
k1

(∆1 + ε) +
Ca − Cb
k1

)
=
k2
2k1

ε > 0,

thus p1,a− t1,a(u∗−1) > p1,b− t1,b(u∗−1). We conclude according to Lemma 2 that with prices
{t1,a′(u∗−1)}a′∈A, b cannot be an agent-maximizing alternative for agent 1.
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We now prove that b is the only agent-maximizing alternative for agent 2, therefore no
alternative can be agent-maximizing for both agents, leading to a contradiction to DSIC.
First, by assumption, p∗i,a′ = 0 for all i 6= 1, 2 and all a′ ∈ A, thus when the type profile of
the rest of the economy is given by (u1, u

∗
3, . . . , u

∗
n), we have

arg max
a′∈A

k1p1,a′ +
∑
i≥3

kip
∗
i,a′ + Ca′

 = arg max
a′∈A

{k1p1,a′ + Ca′} .

We can now check that b ∈ arg maxa′∈A {k1p1,a′ + Ca′}. From (15) we know

k1p1,b + Cb − (k1p1,a + Ca) = k1(p1,b − p1,a) + Cb − Ca
=k2(∆1 + ε/2) + (Ca − Cb)− (Ca − Cb) = k2(∆1 + ε/2) > 0,

thus k1p1,b+Cb > k1p1,a+Ca. Moreover, for any c 6= a, b, we know from (13) and (14) that

k1p1,b + Cb − (k1p1,c + Cc) = k1(p1,b − p1,c) + Cb − Cc

>k1

(
k2
k1
p∗2,c +

Cc − Cb
k1

)
+ Cb − Cc = k2p

∗
2,c ≥ 0,

therefore, k1p1,b + Cb > k1p1,c + Cc holds for all c 6= a, b. Now we know b ∈
arg maxa′∈A {k1p1,a′ + Ca′} which implies t2,b(u1, u

∗
−1,−2) = 0, according to Lemma 5.

Thus we know the utility agent 2 gets from alternative b at the current price is:
u∗2,b(t2,b(u1, u

∗
−1,−2)) = u∗2,b(0) = v∗2,b.

For alternative a, we know from (12) and (15) that

t2,a(u1, u
∗
−1,−2) = t2,b(u1, u

∗
−1,−2) +

1

k2
(k1(p1,b − p1,a) + Cb − Ca)

=0 +
1

k2
(k2(∆1 + ε/2) + Ca − Cb + Cb − Ca) = ∆1 + ε/2 > ∆1.

Therefore, u∗2,a(t2,a(u1, u
∗
−1,−2)) < u∗2,a(∆1) = v∗2,b. For all other alternatives c 6= a, b, we

know from (12), (13) and (14) that

t2,c(u1, u
∗
−1,−2) = t2,b(u1, u

∗
−1,−2) +

1

k2
(k1(p1,b − p1,c) + Cb − Cc)

>0 +
1

k2

(
k1

(
k2
k1
p∗2,c +

Cc − Cb
k1

)
+ Cb − Cc

)
= p∗2,c.

Therefore, u∗2,c(t2,c(u1, u
∗
−1,−2)) < mina′∈A v

∗
2,a′ ≤ v∗2,b for all c 6= a, b. This proves that

{b} = arg maxa′∈A u
∗
2,a′(t2,a′(u1, u

∗
−1,−2)), thus completes the proof of part Step 1.1.

Step 1.2: Assume for contradiction that t1,b(u
∗
−1)−t1,a(u∗−1) < k2/k1(∆2−ε)+(Ca−Cb)/k1.

As discussed above, b cannot be the least preferred alternative at zero price according to
u∗2, thus we assume w.l.o.g. m ∈ arg mina′∈A v

∗
2,a′ . Consider the type u1 ∈ Ũ1 s.t.

p1,c = 0, ∀c 6= a, b,m,

p1,a = max
c6=a,b,m

{
k2
k1
p∗2,c +

Cc − Ca
k1

}
+ δ,

p1,b = p1,a +

(
k2
k1

(∆2 − ε/2) +
Ca − Cb
k1

)
,

p1,m = p1,b +
1

k1
(k2z

∗ + Cb − Cm),
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where δ is some non-negative number such that min{p1,a, p1,b, p1,m} ≥ 0.5 Similar to the
proof of part Step 1.1, for u1 as constructed, we can show that a cannot be the agent-
maximizing alternative for agent 1 given prices {t1,a′(u∗−1)}a′∈A since p1,b − t1,b(u

∗
−1) >

p1,a − t1,a(u∗−1) thus a is not the maximizer of p1,a′ − t1,a′(u∗−1). Moreover, we can prove
that a is the unique agent-maximizing alternative for agent 2, by showing:

1) m ∈ arg maxa′∈A{k1p1,a′ + Ca′} which implies t2,m(u1, u
∗
−1,−2) = 0, t2,a′(u1, u

∗
−1,−2) =

1/k2(k1p1,m + Cm − k1p1,a′ − Ca′) for all a′ ∈ A, and u∗2,m(t2,m(u1, u
∗
−1,−2)) =

mina′∈A v
∗
2,a′ ≤ w.

2) t2,b(u1, u
∗
−1,−2) = z∗ thus u∗2,b(t2,b(u1, u

∗
−1,−2)) = u∗2,b(z

∗) = w,

3) t2,c(u1, u
∗
−1,−2) > p∗2,c, thus u∗2,c(t2,c(u1, u

∗
−1,−2)) < mina′∈A v

∗
2,a′ ≤ w for all c 6= a, b,m,

and

4) t2,a(u1, u
∗
−1,−2) = ∆2 + z∗ − ε/2 < ∆2 + z∗, therefore u∗2,a(t2,a(u1, u

∗
−1,−2)) > u∗2,a(∆2 +

z∗) = w ≥ maxa′ 6=a{u∗2,a′(t2,a′(u1, u∗−1,−2))}.

This shows that no alternative is agent-maximizing for both agents 1 and 2, and completes
the proof of this Step 1.2, and also Step 1.

Step 2: The mechanism must be a fixed price dictatorship.
So far, we have proved that for any mechanism (x, t) satisfying (P1)-(P5), its restriction

on the parallel subdomain Ũ must be an affine maximizer of willingness to pay with coeffi-
cients {ki}i∈N and constants {Ca}a∈A, where ki > 0 for exactly one agent. Let’s name her
agent 1 and let ~z be a vector of fixed prices in Rm≥0 s.t.

za ,
1

k1

(
max
a′∈A
{Ca′} − Ca

)
, ∀a ∈ A. (16)

To show that agent 1 is a fixed price dictator, i.e. x(u) ∈ arg maxa∈A u1,a(za) and t1(u) =
zx(u) for all u ∈ U , agent-maximization implies that it is sufficient to show for all u−1 ∈ U−1,
t1,a(u−1) = za holds. We prove this by induction on the number of agents whose types are
not parallel in the profile u−1. For any ` = 0, 1, . . . , n− 1, let the induction statements be

G`: For all u−1 ∈ U−1 s.t. |{i ∈ N |i 6= 1, ui /∈ U‖}| ≤ `, t1,a(u−1) = za holds for all a ∈ A.

H`: For all i 6= 1, for all u−i ∈ U−i such that (I) |{j ∈ N |j 6= i, uj /∈ U‖}| ≤ `, and (II) ∃a∗
s.t. u1,a∗(za∗) > u1,a(za) for all a 6= a∗, we have ti,a∗(u−i) = 0, and ti,a(u−i) = +∞
for all a 6= a∗.

We first observe that Lemma 5 implies G0. For u−1 s.t. |{i ∈ N |i 6= 1, ui /∈ U‖}| = 0,

u−1 ∈ Ũ−1, thus part (i) of Lemma 5, agent-independence and the fact ki = 0 for i 6= 1
imply that ∀a ∈ A:

t1,a(u−1) =
1

k1
max
a′∈A

∑
i 6=1

kipi,a′ + Ca′

− 1

k1

∑
i6=1

kipi,a + Ca

 =
1

k1

(
max
a′∈A

Ca′ − Ca
)

= za.

We show in the following two steps that G` ⇒ H` and H`−1 ⇒ G`. This implies that G`
holds for all ` = n − 1, and completes the proof of the theorem. Hn−1 also implies that

5If the number of alternatives is exactly 3, then we may set p1,a = δ where δ ∈ R guarantees
min{p1,a, p1,b, p1,m} = 0, so that the smallest willingness to pay among all alternatives is zero. The rest of
the proof remains the same.
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when the dictator has a unique most preferred alternative at the fixed prices {za}a∈A, the
rest of the agents cannot be charged any payment.

Step 2.1: G` ⇒ H` for 0 ≤ ` ≤ n− 1.
W.l.o.g., consider agent i = 2, and some u−2 ∈ U−2 s.t. |{j ∈ N |j 6= 2, uj /∈ U‖}| = `.

For any u2 ∈ Ũ2, in the economy (u2, u−2), the number of agents in the profile u−1 with
types outside of the parallel domain is at most `. Since |{j ∈ N |j 6= 2, uj /∈ U‖}| = ` and u2
is parallel, |{j ∈ N |j 6= 1, uj /∈ U‖}| = `− 1 if u1 /∈ U‖, and |{j ∈ N |j 6= 1, uj /∈ U‖}| = ` if
u1 ∈ U‖. We know from G` that ti,a(u−1) = za for all a ∈ A.

If there exists a unique agent-maximizing alternative for agent 1 given fixed prices ~z,
i.e. ∃a∗ s.t. u1,a∗(za∗) > u1,a(za), ∀a 6= a∗, the only alternative that can be selected in the

economy (u2, u−2) is a∗. This implies that for all u2 ∈ Ũ2, x(u2, u−2) = a∗ must hold. Since
Ũ2 is unrestricted, in order for a∗ to be agent-maximizing for agent 2 for any u2 ∈ Ũ2, we
must have t2,a(u−2) =∞ for all a 6= a∗. Since prices must be standard, t2,a∗(u−2) = 0 and
this completes the proof of G` ⇒ H`.

Step 2.1: H`−1 ⇒ G` for all 1 ≤ ` ≤ n− 1.
Let there be ` entries in u−1 that are outside of the parallel domain, and w.l.o.g. assume

that u2, . . . , u`+1 /∈ U‖. Assume that ∃a ∈ A s.t. t1,a(u−1) 6= za, we first show a contradic-
tion for the case that t1,a(u−1) > za, and then show that the other direction cannot hold
either. First, note that it cannot be the case if t1,a′(u−1) > za′ for all a′ ∈ A. This is
because ~z as defined in (16) is a vector of standard prices with the minimal entry equal to
0. If t1,a′(u−1) > za′ for all a′ ∈ A, we know t1,a′(u−1) > 0 for all a′, and this violates
Lemma 1. W.l.o.g., we assume t1,b(u−1) ≤ zb.

Denote ε , t1,a(u−1) − za and assume ε > 0. Consider some parallel type of agent 1,

u1 ∈ Ũ1, where the willingness to pay is of the form:

p1,a =za + ε/2,

p1,b =zb + ε/3,

p1,c =0, ∀c 6= a, b.

We know that a is the unique agent-maximizing alternative for agent 1 under the vector of
prices ~z, given Lemma 2 and the fact that a is the unique maximizer of pi,a′ − za′ :

p1,a − za = ε/2,

p1,b − zb = ε/3,

p1,c − zc = −zc, ∀c 6= a, b.

In the economy (u1, u2, . . . , u`+1, u`+2, . . . , un), there are `− 1 entries in the profile u−2
that are outside of the parallel domain: |{i ∈ N |i 6= 2, ui /∈ U‖}| = ` − 1. H`−1 implies
that t2,a(u−2) = 0, t2,a′(u−2) = +∞ for all a′ 6= a thus a is the unique agent-maximizing
alternative for agent 2. However, a cannot be agent-maximizing for agent 1, since

p1,a − t1,a(u−1)− (p1,b − t1,b(u−1)) ≤ p1,a − (za + ε)− p1,b + zb

=za + ε/2− (za + ε)− (zb + ε/3) + zb = −5/6ε < 0.

This contradicts DSIC, thus we conclude t1,a(u−1) > za cannot be true. Similarly, if
t1,a(u−1) < za, the price being standard requires that za > t1,a(u−1) ≥ 0 and that there

exists b ∈ A s.t. t1,b(u−1) ≥ zb. Let ε , za − t1,a(u−1) > 0, and let u1 be a parallel type
with willingness to pay

p1,a = za − ε/2,
p1,b = zb + ε/3,

p1,c = 0, ∀c 6= a, b.
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We can check that b is the unique agent-maximizing alternative for agent 1 under prices
~z thus H`−1 implies that t2,a(u−2) = ∞, thus a cannot be agent-maximizing for agent 2
thus cannot be selected in the economy (u1, u2, . . . , un). However, a is the unique agent-
maximizing alternative for agent 1, since p1,a − t1,a(u−1) = ε/2, whereas p1,b − t1,b(u−1) ≤
p1,b − zb = ε/3 and p1,c − t1,c(u−1) ≤ 0 for all c 6= a, b. This is a contradiction, thus
t1,a(u−1) = za must hold.

This completes the proof of this theorem.

From Gn−1 and Hn−1, we know that when the dictator has a unique most preferred
alternative under the fixed prices ~a, the rest of the agents do not make any payment to
the mechanism. However, when there are multiple most preferred alternatives that are
tied for the dictator given the prices ~z, Hn−1 does not specify what must happen to the
payments from the rest of the agents. We may consider various tie-breaking mechanisms
among the alternatives toward which the dictator is indifferent, for example another fixed
price dictatorship, or some generalized weighted VCG mechanism between two alternatives
that are tied (in which case the general non-quasi-linear utility domain U0 is parallel). These
mechanism would still satisfy (P1)-(P5), and would charge the non-dictators some non-zero
payments in the degenerate case when the dictator is indifferent.

A.4 Relaxing IR and No Subsidy

Conditions (C1) and (C2) in Theorem 3 require the utility domain to deviate very minimally
from the parallel domain, however, the negative result no longer holds if one of (P4) or (P5)
is relaxed. (P4) IR and (P5) No subsidy require prices to be standard (Lemma 1). With
standard prices, the shapes of an agent’s utility functions where the prices are negative,
or where the utilities are below mina∈A vi,a, are irrelevant to which alternative is agent-
maximizing for this agent. The parallel domain only requires that the utility functions in
the range that is relevant to be horizontal translations of each other.

As we have shown in the proof of Lemma 5, an affine maximizer as the choice rule
together with DSIC determine the agent-independent prices that each agent faces up to a
constant (when there are no ties). The requirement that prices being standard then fully
pins down the agent-independent prices. Without (P4), (P5), a local violation of “the
relative willingness to pay between any two alternatives remains constant” (e.g. u∗2 as in
Figure 2) can be made irrelevant by setting non-standard prices carefully and we still get
an incentive compatible mechanism.

Here we provide a family of such mechanisms that violates only one of (P4) or (P5).
This shows that the parallel domain as we defined in Section 2 is not the only maximal
utility domain where mechanisms that satisfy (P1)-(P3) exist. We say a utility domain is
parallel w.r.t. price z∗ if the relative willingness to pay remains the same in the range where
(I) payments are at least z∗, and (II) the utilities are weakly above mina′∈A{ui,a′(z∗)}, as

illustrated in Figure 4. Denote pi,a(z∗) , u−1i,a (mina′∈A{ui,a′(z∗)}).

Definition 7. A utility domain for an agent Ui ⊂ U0 is parallel with respect to
z∗ ∈ R if ∀ui ∈ Ui, ∀a, b ∈ A s.t. ui,a(z∗) ≥ ui,b(z

∗), and ∀z ∈ [z∗, pi,b(z
∗)],

ui,a (z + (pi,a(z∗)− pi,b(z∗)) = ui,b(z).

Definition 8. The generalized weighted VCG mechanism with fixed payment z∗

parametrized by z∗, non-negative weights {ki}i∈N and real constants {Ca}a∈A collects type
profile û from the agents, and computes the willingness to pay {p̂i,a(z∗)}i∈N,a∈A w.r.t. z∗.

• Choice rule: x(û) = a∗ where a∗ ∈ arg maxa∈A
{∑

i∈N kip̂i,a(z∗)+Ca
}

, breaking ties
arbitrarily.
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Figure 4: An example type in the parallel domain w.r.t. z∗.

• Payment rule: ti(û) = z∗ for i ∈ N s.t. ki = 0; for i s.t. ki 6= 0:

ti(û)=
1

ki

∑
j 6=i

kj p̂j,a∗−i
(z∗)+Ca∗−i

−
∑
j 6=i

kj p̂j,a∗(z
∗)−Ca∗

+z∗,

where a∗−i ∈ arg maxa∈A{
∑
j 6=i kj p̂j,a(z∗) + Ca}.

Proposition 1. Assuming Ui is parallel w.r.t. z∗ for all i ∈ N , the generalized weighted
VCG mechanism with fixed payment z∗ and at least one non-zero coefficient ki satisfies
(P1)-(P3). In addition, (P4) is satisfied if z∗ is non-positive, whereas (P5) is satisfied if z∗

is non-negative.

Proof. It is immediate that the mechanism is DSIC for agents i ∈ N s.t. ki = 0. Fix
an agent i ∈ N s.t. ki > 0. Her agent-independent prices is given by: ti,a(û−i) =
1/ki(

∑
j 6=i kj p̂j,a∗−i

(z∗) +Ca∗−i
−
∑
j 6=i kj p̂j,a(z∗)−Ca) + z∗, which implies ti,a∗−i

(û−i) = z∗

and ti,a(û−i) ≥ z∗ for all a. Similar to Lemma 1, we can show that the agent-maximizing
alternative for agent i given {ti,a(û−i)}a∈A is the maximizer of p̂i,a(z∗)− ti,a(û−i). We can
then examine that a∗ is a maximizer of p̂i,a(z∗)− ti,a(û−i), and this implies that the choice
rule is agent-maximizing and this completes the proof of DSIC.

When z∗ ≤ 0, the minimum agent-independent price for agent i among all alterna-
tives is non-positive, thus the agent-maximizing alternative gives the agent a utility at
least mina∈A ûi,a(z∗) ≥ mina∈A ûi,a(0) thus (P4) IR is satisfied. When z∗ ≥ 0, all agent-
independent prices are non-negative, thus the mechanism satisfies (P5) No subsidy.

A.4.1 Proof of Theorem 4

We first define strictly parallel domains as sets of agent types where utility curves are
horizontal shifts of each other everywhere. Quasi-linear utility functions, for example, are
strictly parallel.

Definition 9 (Strictly Parallel Domain). A utility domain Ui ⊂ U0 is a strictly parallel
domain if for all ui ∈ Ui,

ui,a (z + (pi,a − pi,b)) = ui,b(z), ∀z ∈ R, ∀a, b ∈ A. (17)

On any strictly parallel domain, pi,a − ti,a ≥ pi,b − ti,b ⇔ ui,a(ti,a) ≥ ui,b(ti,b) holds for
any prices ti,a, ti,b ∈ R, therefore, arg maxa∈A{ui,a(ti,a)} = arg maxa∈A{pi,a − ti,a} holds
for any prices, without the requirement that the prices are standard. This implies that
W-Mon is a necessary condition for any mechanism that is deterministic and DSIC for
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strictly parallel utility domains, and that Roberts’ theorem can be generalized without the
additional assumptions (P4) and (P5).

Lemma 7. With any strictly parallel utility domain U , every social choice mechanism that
is DSIC and deterministic must satisfy W-Mon in terms of willingness to pay.

Lemma 8 (Roberts’ Theorem on Strictly Parallel Domains). With three or more alterna-
tives, and an unconstrained strictly parallel domain U , for every social choice mechanism
that satisfies (P1)-(P3), there exist non-negative weights k1, . . . , kn (not all of them zero)
and constants C1, . . . , Cm such that for all u ∈ U , x(u) ∈ arg maxa∈A {

∑n
i=1 kipi,a + Ca}.

We now prove the impossibility result for the linear domain with two slopes.

Proof of Theorem 4. Let Uαi ⊂ Ui be the set of all ui ∈ Ui s.t. ui,a(z) = vi,a − αiz holds
for all a ∈ A, i.e. the set of “α types”. We know Uαi is a strictly parallel domain with
unrestricted willingness to pay. Let Uα ,

∏n
i=1 U

α
i , Lemma 6 implies that fixing any

mechanism (x, t) on U that satisfies (P1)-(P3), the restriction of (x, t) on Uα must also satisfy
(P1)-(P3). Lemma 8 then implies that there exists non-negative coefficients {ki}i∈N and real
constants {Ca}a∈A s.t. ki 6= 0 for some i ∈ N and x(u) ∈ arg maxa∈A {

∑n
i=1 kipi,a + Ca}

for all u ∈ Uα. With the same arguments as in the proof of Lemma 5, we can show that
∀i ∈ N s.t. ki > 0, ∀a, b ∈ A, the difference in the agent-independent prices satisfies:

ti,a(u−i)− ti,b(u−i) =
1

ki

∑
j 6=i

kjpj,b + Cb −
∑
j 6=i

kjpj,a − Ca

 . (18)

Assume k1 > 0 w.l.o.g, we prove that agent 1 is the fixed-price dictator with the following
steps.

• Step 1. ki = 0 for all i 6= 1.

• Step 2. There exists fixed prices ~z ∈ Rm s.t. ∀u−1 ∈ Uα−1, ∀a ∈ A, t1,a(u−1) = za.

• Step 3. Agent 1 is the fixed-price dictator for any u ∈ U .

The reason that Step 2 is not immediately implied by Step 1 is that without the as-
sumptions of (P4) and (P5), so that prices are not necessarily standard, (18) only pins
down the agent-independent prices up to a constant, and we need to show by induction that
the prices t1,a(u−1) must be fixed for all u−1 ∈ Uα−1. We then prove in Step 3 by induction
that t1,a(u−1) = za must hold for all u−1 ∈ U−1, which shows that agent 1 is the fixed price
dictator.

Step 1. We show by contradiction that k2 = 0 must hold. The same argument can be
repeated for all i 6= 1. We first prove the following claim.

Claim 4. Fix any u−1,−2 ∈ Uα−1,−2, and assume k1, k2 > 0. ∀a, b ∈ A, and ∀u2, u′2 ∈ Uα2 ,
p2,a − p2,b = p′2,a − p′2,b ⇒ t1,a(u2, u−1,−2) = t1,a(u′2, u−1,−2).

Proof. Let u2, u
′
2 ∈ Uα2 be two types of agent 2 s.t. p2,a − p2,b = p′2,a − p′2,b, and assume

for contradiction that t1,a(u2, u−1,−2) 6= t1,a(u′2, u−1,−2). Denote u−1 , (u2, u−1,−2) and

u′−1 , (u′2, u−1,−2). t1,a(u−1)− t1,b(u−1) = ti,a(u′−1)− t1,b(u′−1) follows from (18). Assume
w.l.o.g. that t1,a(u−1) < t1,a(u′−1), and that α1 > β1. We can construct u1 ∈ U1 as
illustrated in Figure 5 such that u1,a(z) = v1,a − α1z, u1,b(z) = v1,b − β1z, and that

u1,c(t1,c(u−1)) < u1,b(t1,b(u−1)) < u1,a(t1,a(u−1)), ∀c 6= a, b, (19)

u1,c(t1,c(u
′
−1)) < u1,a(t1,a(u′−1)) < u1,b(t1,b(u

′
−1)), ∀c 6= a, b. (20)
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Figure 5: Illustration of u1 ∈ U1\Uα1 , for the proof of Claim 4.

Such u1 exists since α1 > β1, t1,a(u−1) − t1,b(u−1) = ti,a(u′−1) − t1,b(u
′
−1), and the

values are unrestricted. Agent-maximizing for agent 1 then implies x(u1, u−1) = a and
x(u1, u

′
−1) = b. Note that the agent-independent prices facing agent 2, {t2,a′(u−2)}a′∈A,

remain the same in the two economies. Agent-maximization for agent 2 therefore implies

p2,a− t2,a(u−2)≥ p2,b− t2,b(u−2)⇔ p2,a − p2,b≥ t2,a(u−2)− t2,b(u−2),

p′2,a− t2,a(u−2)≤ p′2,b− t2,b(u−2)⇔ p′2,a − p′2,b≤ t2,a(u−2)− t2,b(u−2),

Given the assumption p2,a − p2,b − p′2,a − p′2,b, we must have

p2,a − p2,b = p′2,a − p′2,b = t2,a(u−2)− t2,b(u−2). (21)

Let ε be some small positive number that 0 < ε < u1,b(t1,b(u
′
−1)) − u1,a(t1,a(u′−1)).

Consider type u′1 ∈ U1 such that for all z ∈ R, u′1,a(z) = ui,a(z), u′1,b(z) = ui,b(z) − ε and
u′1,c(z) = ui,c(z). In words, u′1 is identical to u1, except that v′1,b = v1,b − ε, where ε is
small enough that both (19) and (20) still hold if u1 is replaced with u′1. Thus we have
x((u′1, u2, u−1,−2)) = a and x((u′1, u

′
2, u−1,−2)) = b from agent-maximization for agent 1

given u′1.
Replacing u1 with u′1 results in a decrease in the willingness to pay for alternative b,

thus p′1,a − p′1,b > p1,a − p1,b. Given (18) and the assumption that k1, k2 > 0, we know
t2,a((u′1, u−1,−2))− t2,b((u′1, u−1,−2)) < t2,a(u−2)− t2,b(u−2). Combined with (21), we know:

t2,a((u′1, u−1,−2))− t2,b((u′1, u−1,−2)) < p′2,a − p′2,b
⇒p′2,a − t2,a((u′1, u−1,−2)) > p′2,b − t2,b((u′1, u−1,−2)),

meaning that the alternative x((u′1, u
′
2, u−1,−2)) = b is not agent-maximizing for agent 2 in

economy (u′1, u
′
2, u−1,−2). This contradicts DSIC, thus we conclude that t1,a(u2, u−1,−2) =

t1,a(u′2, u−1,−2) must hold.

Assume k1, k2 > 0, fix any u−1,−2 ∈ Uα−1,−2 and some u∗2 ∈ Uα2 , we know
t1,a(u∗2, u−1,−2) < ∞, since k1 > 0 and Uα1 is unrestricted thus there exists u1 ∈ Uα1
s.t. x((u1, u

∗
2, u−1,−2)) = a. Denote ∆∗a,b , p∗2,a − p∗2,b, ∆∗a,c , p∗2,a − p∗2,c and

za , t1,a(u∗2, u−1,−2). We know from Claim 4 that ∀u2 ∈ Uα2 s.t. p2,a − p2,c = ∆∗a,c,
t1,a(u2, u−1,−2) = za. For any ∆a,b ∈ R, we can find u′2 ∈ Uα2 s.t. p′2,a − p′2,b = ∆a,b

and p′2,a − p′2,c = ∆∗a,c, for which t1,a(u′2, u−1,−2) = za. Apply Claim 4 again, we know
that for all u2 ∈ Uα2 s.t. p2,a − p2,b = ∆a,b, t1,a(u2, u−1,−2) = za. Since this holds for all
∆a,b ∈ R, we conclude that ∀u2 ∈ Uα2 , t1,a(u2, u−1,−2) = za. This implies that even for
u2, u′2 ∈ Uα2 s.t. p2,a − p2,b 6= p′2,a − p′2,b, we still have t1,a(u2, u−1,−2) − t1,b(u2, u−1,−2) =
t1,a(u′2, u−1,−2)− t1,b(u′2, u−1,−2). This contradicts (18), thus k2 = 0 must hold.
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Figure 6: Illustration of u′1 ∈ U1, for the proof of Claim 5.

Step 2. Given (18) and Step 1 that ki = 0 for all i 6= 1, we know that for all u−1 ∈ Uα−1, for
any pair of alternatives a, b ∈ A, t1,a(u−1)− t1,b(u−1) = 1/k1(Cb − Ca) must hold. Denote

this price difference as δa,b , 1/k1(Cb − Ca). We prove the following claim.

Claim 5. For all i 6= 1, for all u−1,−i ∈ Uα−1,−i, and for all ui, u
′
i ∈ Uαi , if there exists a∗ ∈ A

s.t. t1,a∗((u
′
i, u−1,−i)) 6= t1,a∗((ui, u−1,−i)), then pi,a = p′i,a for all a ∈ A, i.e. ui and u′i have

the same willingness to pay for all a ∈ A.

Proof. Fix agent i = 2 and any u−1,−i ∈ Uα−1,−i, denote u−1 , (u2, u−1,−2), u′−1 =
(u′2, u−1,−2), and assume that there exists a ∈ A s.t. t1,a(u′−1) > t1,a(u−1). We first
prove p2,a − p′2,a = p2,b − p′2,b for all b ∈ A. This pins down the willingness to pay for all
alternatives up to a constant. The fact that the smallest willingness to pay among all alter-
natives must be zero then implies p2,b = p′2,b for all b ∈ A. Repeating the same arguments
for all i 6= 1 completes the proof of this claim.

We now prove p2,a−p′2,a = p2,b−p′2,b. First, we know t1,a(u′−1)− t1,b(u′−1) = t1,a(u−1)−
t1,b(u−1) = δa,b from Step 1. Same as the proof of Claim 4, we may find u1 ∈ U1 as shown
in Figure 5, where (19) and (20) both hold. Agent-maximization for agent 1 then implies

x((u1, u2, u−1,−2)) = a, x((u1, u
′
2, u−1,−2)) = b. (22)

Similarly, there exists u′1 ∈ U1 as illustrated in Figure 6 such that u′1,a(z) = v′1,a − β1z,
u′1,b(z) = v′1,b − α1z, and that

u′1,c(t1,c(u−1)) < u′1,a(t1,a(u−1)) < u′1,b(t1,b(u−1)), ∀c 6= a, b,

u′1,c(t1,c(u
′
−1)) < u′1,b(t1,b(u

′
−1)) < u′1,a(t1,a(u′−1)), ∀c 6= a, b.

Agent-maximization for agent 1 with type u′1 then requires

x((u′1, u2, u−1,−2)) = b, x((u′1, u
′
2, u−1,−2)) = a. (23)

Given (22), we know from W-Mon that p2,a− p′2,a ≥ p2,b− p′2,b must hold. Similarly, we get
p2,a − p′2,a ≤ p2,b − p′2,b from (23), therefore p2,a − p′2,a = p2,b − p′2,b.

Intuitively, Claim 5 shows that for any i 6= 1, for any u−1,−i ∈ Uα−1,−i, and any all
ui, u

′
i ∈ Uαi , if there exists a ∈ A s.t. pi,a 6= p′i,a, then we must have t1,a′((u

′
i, u−1,−i)) =

t1,a′((ui, u−1,−i)) for all a′ ∈ A. Fix any u∗−1 = (u∗2, . . . , u
∗
n) ∈ Uα−1, and define za , t1,a(u∗−1)

for all a ∈ A. We prove by induction that ∀u−1 ∈ Uα−1, t1,a(u−1) = za must hold for all
a ∈ A. For any ` = 0, 1, . . . , n− 1, let the induction statements be

G∗` : ∀u−1 ∈ Uα−1 s.t. |{i ∈ N |i 6= 1, ui 6= u∗i }| ≤ `, t1,a(u−1) = za,∀a ∈ A.
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H∗` : ∀i 6= 1, for all u1 ∈ U1 and ∀u−1,−i ∈ Uα−1,−i, if (I) |{j ∈ N |j 6= 1, j 6= i, uj 6= u∗j}| ≤ `,
and (II) ∃a∗ s.t. u1,a∗(za∗) > u1,a(za), ∀a 6= a∗, then ti,a(u−i) = +∞ ∀a 6= a∗.

G∗0 trivially holds from agent-independence since when |{i ∈ N |i 6= 1, ui 6= u∗i }| ≤ 0,
u−1 = u∗−1. We now prove G∗` ⇒ H∗` and H∗`−1 ⇒ G∗` , and this would complete the proof
of the claim of this step, which is G∗n−1.

Step 2.1. G∗` ⇒ H∗` for all 0 ≤ ` ≤ n− 1.
Consider agent i = 2, and fix any u−1,−2 ∈ Uα−1,−2 s.t. |{j ∈ N |j 6= 1, j 6= 2, uj 6=

u∗j}| ≤ `. We know from G∗` that for all a ∈ A, t1,a(u∗2, u−1,−2) = za. Fix some u1 ∈ U1

for which there exists a∗ ∈ A s.t. u1,a∗(za∗) > u1,a(za) for all a 6= a∗. For any alternative
b 6= a∗, and any u2 ∈ Uα2 s.t. p2,b > p∗2,b, we know from Claim 5 that t1,a(u2, u−1,−2) =
t1,a(u∗2, u−1,−2) = za for all a ∈ A, thus a∗ is also the unique agent-maximizing alternative
for agent 1 in the economy (u1, u2, u−1,−2). Since p2,b can be arbitrarily large, we must
have t2,b(u1, u−1,−2) =∞ so that a∗ is also always agent-maximizing for agent 2. The same
argument can be repeated for all agents i 6= 1.

Step 2.2. G∗`−1 and H∗`−1 ⇒ G∗` , for all 1 ≤ ` ≤ n− 1.
Consider any type profile u−1 ∈ Uα−1 such that |{i ∈ N |i 6= 1, ui 6= u∗i }| = `. We assume

w.l.o.g. that u2 6= u∗2. We know from G∗`−1 that t1,a(u∗2, u−1,−2) = za holds for all a ∈ A,
since in (u∗2, u−1,−2), |{i ∈ A|i 6= 1, ui 6= u∗i }| = ` − 1. Given that both u2 and u∗2 are
in Uα2 , if there exists any alternative a ∈ A s.t. p2,a 6= p∗2,a, we know from Claim 5 that
t1,a(u2, u−1,−2) = t1,a(u∗2, u−1,−2) = za holds for all a ∈ A, which is what we are looking
for. Therefore, the only remaining case is for u2 ∈ Uα2 s.t. p2,a = p∗2,a for all a ∈ A.

Assume toward a contradiction, that there exists u2 ∈ Uα2 s.t. p2,a = p∗2,a for all
a ∈ A, for which there exists an alternative, say alternative a s.t. t1,a(u2, u−1,−2) 6=
t1,a(u∗2, u−1,−2) = za. Assume t1,a(u2, u−1,−2) > t1,a(u∗2, u−1,−2), and the other di-
rection can be proved similarly. Fix any alternative b 6= a, we know from (18) that
t1,a(u2, u−1,−2) − t1,b(u2, u−1,−2) = t1,a(u∗2, u−1,−2) − t1,b(u∗2, u−1,−2) must hold. Similar
to the proof of Claim 4, we can find u1 ∈ U1 s.t. u1,a(z) = v1,a − α1z, u1,b = v1,b − β1z for
all z ∈ R, and that

u1,c(t1,c(u
∗
2, u−1,−2)) < u1,b(t1,b(u

∗
2, u−1,−2)) < u1,a(t1,a(u∗2, u−1,−2)), ∀c 6= a, b,

u1,c(t1,c(u2, u−1,−2)) < u1,a(t1,a(u2, u−1,−2)) < u1,b(t1,b(u2, u−1,−2)), ∀c 6= a, b.

We know that in the economy (u1, u2, u−1,−2), alternative b is the unique agent-
maximizing alternative for agent 1. However, given since t1,a′(u

∗
2, u−1,−2) = za′ holds for

all a′ ∈ A, we know that given the vector of prices ~z, alternative a is the unique agent-
maximizing alternative for agent 1. Therefore, H∗`−1 together with |{i ∈ A|i 6= 1, i 6= 2, ui 6=
u∗i }| = ` − 1 implies that t2,b(u1, u−1,−2) = ∞. This shows that alternative b cannot be
agent-maximizing for agent 2 in the economy (u1, u2, u−1,−2). This violates DSIC, completes
the proof of G∗`−1 and H∗`−1 ⇒ G∗` , and also the proof of Step 2 of this theorem.

Step 3. Step 2 implies that when u−1 ∈ Uα−1, the outcome of the mechanism must be
determined according to the fixed price dictator where agent 1 is the dictator and the fixed
prices are given by ~z. The proof of the third step is very similar to the proof of Step 2 of
Theorem 3: by induction on the number of agents whose type is outside of Uαi , we can show
that the outcome must be determined by the same fixed-price dictatorship for any u ∈ U .
This completes the proof of Theorem 4.
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